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Abstract. In this paper we show how to construct noninteractive zero knowledge proofs for
any NP statement under general (rather than number theoretic) assumptions, and how to enable
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1. Introduction.

1.1. Background. Blum, Feldman, and Micali [BFM] suggested the intriguing
concept of noninteractive zero knowledge (NIZK) proofs, aimed at eliminating the
interaction between prover and verifier in zero knowledge interactive proof systems
[GMR]. The prover P writes down a zero knowledge proof that an input x belongs
to a prespecified language L, and any verifier V can check the validity of this written
proof against a universal publicly available random string (such as the RAND string of
one million random digits), called the common reference string. NIZK has become an
important primitive for cryptographic protocols, with applications such as signature
schemes [BG] and encryption schemes secure against chosen ciphertext attack [NY].

NIZK proof systems for any NP statement were constructed in [BFM] and [DMP87],
under specific number theoretic assumptions (namely, that it is difficult to distinguish
products of two primes from products of three primes, or that it is difficult to decide
quadratic residuosity modulo products of two primes). The main disadvantage of
these bounded NIZK proofs is that the prover can prove only one statement of size
bounded by the length of the common reference string: if polynomially many proofs
are given using the same reference string, the zero knowledge property breaks down.1

In [BDMP] it was finally shown how a single prover can give polynomially many proofs
using the same reference string, but the scheme is still based on a specific number the-
oretic assumption: deciding quadratic residuosity (modulo composite integers whose
factorization is not known) is computationally hard. Moreover, their scheme cannot
support polynomially many provers.

A variation of the NIZK model was suggested by De Santis, Micali, and Persiano
[DMP88]. In their noninteractive with preprocessing model, the verifier and prover
create a common reference string (which need not look like a random string) dur-
ing an interactive preliminary stage. Based on this common reference string (CRS),
the prover can then prove any single NP statement (of bounded length). Unlike
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the original NIZK model, in the noninteractive with preprocessing model, the proof
should look convincing only to the verifier who takes part in the initial preprocessing
stage, which makes this model unsuitable for applications such as signature schemes.
[DMP88] showed an implementation of this idea based on the general assumption that
one-way functions exist. Under the stronger cryptographic assumption that oblivious
transfer protocols exist, [KMO] shows how after an initial preprocessing stage, the
prover can noninteractively prove polynomially many NP statements, but again the
proof is verifiable only by its original recipient. [BeMi] show how to do oblivious
transfer without interaction (and hence NIZK proofs, by [KMO]) in a model where
the verifier is first given a special public key.

1.2. Our results. In this paper we answer the two major open questions associ-
ated with the concept of NIZK, as presented by Blum, De Santis, Micali, and Persiano
[BDMP]: how to construct NIZK proof systems for any NP statement under general
(rather than number theoretic) assumptions and how to enable polynomially many
provers to share the same random reference string in giving such proofs.

As a preliminary result leading to our solution of the first open question, we
construct (under the assumption that one-way functions exist) a very simple zero
knowledge noninteractive with preprocessing proof for Hamiltonicity, whose efficiency
is comparable with the efficiency of the interactive proofs presented by Blum [Blum]
and Goldreich, Micali, and Wigderson [GMW]. In contrast, all the previously known
constructions of NIZK with preprocessing proofs [DMP88] are more complex and less
efficient than their interactive counterparts. Then, under the assumption that one-way
permutations exist, we show that if the prover and verifier initially share a common
random string (which we call a common reference string), then the initial prepro-
cessing stage of our protocol can be discarded, yielding a NIZK proof for any NP
statement in the original noninteractive model of Blum, Feldman, and Micali. This
noninteractive protocol is the only known implementation which relies on general
computational assumptions and is conceptually simpler than the number-theoretic
protocols2 presented by Blum, De Santis, Feldman, Micali, and Persiano. Under the
stronger assumption that certified trapdoor permutations exist (i.e., that the prover
can demonstrate that his chosen function is indeed a permutation without reveal-
ing its trapdoor), our NIZK protocol can be carried out by probabilistic polynomial
time provers and thus can be used in cryptographic applications which require NIZK
protocols.

As a solution to the second open problem, we show how to transform any bounded
NIZK proof system for an NP complete language into a general NIZK proof system
in which polynomially many independent provers can share the same reference string
and use it to prove polynomially many statements of polynomial length. The trans-
formation is based on the general assumption that one-way functions exist.

Independent of our work, De Santis and Yung [DY] also show how to transform
bounded NIZK proof systems into general ones, although their transformation pro-
duces noninteractive proofs which are longer than ours.

In order to use NIZK proof systems in cryptographic applications it is often
necessary to extend the security conditions imposed on NIZKs to withstand adaptive
attacks (see [BG], [NY]). The original definitions of NIZK proof systems assume
that the statements to be proved are chosen independently of the CRS, whereas the

2This is based on the assumption that deciding quadratic residuosity (modulo composite integers
whose factorization is not known) is computationally hard.
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adaptive setting allows for the possibility that statements to be proven are chosen after
the CRS is given, and may depend upon the CRS. In the last section of this paper
we show that our constructions also satisfy the more stringent conditions imposed by
the adaptive setting.

1.3. Definitions. A(x) denotes the random variable describing the output of a
probabilistic algorithm A on input x. Informally, ν(n) denotes functions vanishing
faster than the inverse of any polynomial; i.e., f(n) ≤ ν(n) is shorthand notation for

∀d ∃N s.t. ∀n > N 0 ≤ f(n) <
1

nd

and f(n) ≥ 1− ν(n) is shorthand notation for

∀d ∃N s.t. ∀n > N 1 ≥ f(n) > 1− 1

nd
.

Definition 1.1. A binary relation R is polynomially bounded if it is decidable in
polynomial time and also there is a polynomial p such that for all (x,w) ∈ R it is the
case that |w| ≤ p(|x|). For any such relation and any x we let w(x) = {w : (x,w) ∈ R}
denote the witness set of x. We let LR = {x | ∃w s.t. (x,w) ∈ R}.

R will denote a polynomially bounded relation in what follows. Note that if R is
polynomially bounded, then LR is in NP.

A NIZK proof system for NP allows a prover P to use a publicly available random
string (the CRS) in order to prove in writing (without interaction) any NP theorem,
without revealing any knowledge besides the validity of the theorem. Any polynomial
time verifier V with access to the CRS can verify the validity of the proof.

The input of P is a triple (x, ω, σ) where (x, ω) ∈ R, R is a polynomially testable
relation, and σ is the CRS. Its output P (x, ω, σ) is a noninteractive proof (based on
the witness ω, with respect to the CRS σ) that x ∈ LR. The initial input of V (before
receiving P ’s proof) is the pair (x, σ). Let |x| = n denote the size of the common
input x. Let V (x, σ, P (x, ω, σ)) denote the output of the verifier V , after receiving
the noninteractive proof P (x, ω, σ). This output may be either “accept” or “reject.”
For brevity of notation, we sometimes do not explicitly specify x and σ as inputs to
V , when x and σ are clear from the context.

As in the case of interactive proofs, noninteractive proofs satisfy the completeness
and the soundness conditions: if x ∈ LR then P ’s proof causes V to accept, and if
x 6∈ LR the probability that V accepts P ’s output is negligible. The following is the
formal definition of a noninteractive proof.

Definition 1.2. A noninteractive proof system for an NP language LR is a pair
of probabilistic algorithms (P, V ) (where V is polynomial time) satisfying the following
conditions.

There exist two integers b, c ≥ 1 such that the following hold:
(1) Completeness. ∀(x, ω) ∈ R, ∀σ of length nbkc V (x, σ, P (x, ω, σ)) = accept.
(2) Soundness. If σ is a random string, then the probability of succeeding in

proving a false statement is negligible, even if the theorem is chosen by P
after seeing σ.3 Formally, ∀n ≥ 1 at least (1−ν(k)) of the strings σ of length
nbkc satisfy

∀x ∈ ({0, 1}n − LR) ∀y V (x, σ, y) = reject.

3In nonadaptive definitions of soundness, the prover could produce a false statement based on
the choice of the random string, whose proof (associated with this particular string) will be accepted.
Our definition of soundness disallows this possibility.
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Remark. In the definition above (and in Definition 1.3 below), k is a security
parameter (known to all parties) that quantifies how “sound” a noninteractive proof
must be (or quantifies the “zero knowledge” property in Definition 1.3). More for-
mally, we assume that the value of k (represented in unary notation as 1k) is an
additional input provided to all the algorithms, but we do not make this dependence
explicit in order to simplify our notation. It is often convenient (and is the practice
of most other papers on zero knowledge) to choose k = n and require the desired
properties of noninteractive proof systems to hold for “large enough n.”

As in the case of interactive proofs (see [GMR]), the formal definition of NIZK
proofs involves the notion of a probabilistic expected polynomial time simulator M ,
whose input is just the common input x of P and V (without an appropriate witness
ω), and its output M(x) consists of two strings: one of them simulates the common
(random) reference string, and the other one simulates the real noninteractive proof
(sent by P ). Informally, a noninteractive proof is zero knowledge if such a pair of
strings is computationally indistinguishable from what V sees in the actual noninter-
active proof which is (σ, P (x, ω, σ)). The following is the formal definition of NIZK.

Definition 1.3. A noninteractive proof system for an NP-language LR is zero
knowledge if there exists a probabilistic machine M (called a simulator) such that for
any x ∈ LR, M(x) terminates in expected polynomial time and the two ensembles
{(σ, P (x, ω, σ))}4 and {M(x)}5 are computationally indistinguishable on LR by any
nonuniform polynomial time distinguisher D = {Dl}l≥1:

∃b, c ≥ 1 ∃M ∀D = {Dl}l≥1 ∀(x, ω) ∈ R ∀d ≥ 1 ∃K ≥ 1 ∀k > Max(K, |x|),

|Pr(Dk(M(x)) = 1)− Pr(Dk(σ, P (x, ω, σ)) = 1)| < 1

kd
,

where the probability space is taken over the random choices of σ ∈R {0, 1}|x|bkc and
over the random tapes of P and M .

Remark. A nonuniform algorithm D = {Dl}l≥1 is an algorithm that for every
input length l gets an auxiliary input (“advice”) of length polynomial in l. These
algorithms are equivalent to polynomial size circuit families.

In cryptographic applications we would like to use efficient protocols for both
P and V . The term NIZK proof systems with efficient provers denotes NIZK proof
systems in which the truthful prover (in the completeness condition) is probabilistic
polynomial time (in n, the length of the input x, and in k, the security parameter).
“Cheating” provers (in the soundness condition) are never required to be computa-
tionally bounded.

2. NIZKs under general cryptographic assumptions.

2.1. A NIZK proof with preprocessing. In this subsection we present a
protocol for a different model which is called a NIZK proof with preprocessing. This
is not the final protocol: it is presented here just as an intermediate step in order to
facilitate the understanding of the final NIZK proof system.

Consider a prover who wants to prove the Hamiltonicity of an arbitrary graph G
with n nodes. We assume that the prover and the verifier are allowed to execute a

4Every element in this ensemble is uniquely determined by the choice of σ ∈R {0, 1}|x|bkc and
the prover’s random tape.

5Here, every element is uniquely determined by the value of the random tape of the probabilistic
machine M .
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preliminary interactive stage which is independent of G (i.e., at this stage they know
that in the noninteractive stage the prover will prove the Hamiltonicity of an n node
graph, but they don’t know which graph it will be). Only after the termination of this
interactive stage they get G and execute the noninteractive move in which the prover
sends a written message to the verifier in order to convince him in zero knowledge
that G is Hamiltonian. The verifier is not allowed to ask the prover any questions
and should be convinced just by reading this message.

The basic step. Let H be a randomly chosen directed Hamiltonian cycle on
n nodes. We call such a graph a good graph. Note that this is a cyclic list without
any starting point. The adjacency matrix of H is a matrix in which each row and
each column contains exactly one entry that is set to 1, and the locations of the
entries that are 1 define a permutation with a single cycle. Let S be the adjacency
matrix of a good graph in which each entry is replaced by a string that hides it (for
example, by the hard bit construction of [GL] or by a probabilistic encryption), so
that a polynomially bounded observer cannot determine the locations of the ones.

Assume now that S is given to both P and V , and that P wants to prove to V
that some n-nodes graph G is Hamiltonian. Since P is infinitely powerful, he can
recover (to himself) the hidden 0/1 values of S which define the Hamiltonian cycle H
in the good graph and determine a permutation π on the nodes of G such that H is
a Hamiltonian cycle in π(G) (i.e., H ⊆ π(G)).

In order to convince V that G is Hamiltonian, P just sends it a message which
consists of the permutation π and the decryptions of all entries Si,j in the good matrix
S for which (i, j) /∈ E(π(G)). V accepts the proof iff all the revealed entries are 0.
The proof system is complete since P can carry it out and V will accept it when G
is indeed Hamiltonian. The proof system is sound because V ’s acceptance implies
that all the n ones that remain unrevealed in S (and define a Hamiltonian cycle)
correspond to edges of π(G), which means that π(G) contains a Hamiltonian cycle
and thus the common input graph G is Hamiltonian.

We informally argue that the proof is zero knowledge. All that the verifier receives
is a random permutation π and a collection of random encryptions (the entries of S)
along with the decryption of those Si,j for which (i, j) /∈ E(π(G)). All these decrypted
values are 0. Since the original good matrix H (which defines the 0/1 values of S) is
randomly chosen with uniform distribution (among the (n−1)! possibilities), then so is
π ∈R Sym(n) (the permutation group on [1 . . . n]). This follows from the fact that any
two different Hamiltonian cycles H and H ′ determine two disjoint sets AH and AH′
of n permutations, where each permutation in AH (AH′) maps the Hamiltonian cycle
of G onto H (H ′).6 Therefore, for any permutation in Sym(n), the probability that
V receives it is 1

n! . Therefore, this protocol can be easily simulated: the simulator
(whose input is just the graph G) chooses a random permutation π ∈R Sym(n)
with uniform distribution, chooses random 0/1 values for all entries S′i,j for which
(i, j) ∈ E(π(G)), fixes all the others to be 0, and produces random encryptions for all
entries of S′. Then the simulator outputs π and the decryptions of all entries S′i,j for
which (i, j) /∈ E(π(G)). Since π is uniformally chosen in Sym(n) and all the above
encryptions are randomized, this simulation is computationally indistinguishable from
the real proof.

Based on the above, we construct a NIZK proof system with preprocessing (re-
gardless of whether P is efficient or not): In the preliminary interactive stage P
sequentially sends k (= security parameter) good random matrices S1, S2, . . . , Sk to

6There may be several Hamiltonian cycles in G, but we concentrate on any one of them.
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V and receives k random bits b1, b2, . . . , bk from V . In the noninteractive move it
reveals all entries of those Si’s for which bi = 0 and executes the above basic step for
those Si for which bi = 1. If all the Si with bi = 0 are good (i.e., hidden adjacency
matrices of Hamiltonian cycles), then V can conclude with high probability that at
least one of the other Si is also good, in which case G is guaranteed to be Hamiltonian.

In order to compare this protocol with Blum’s protocol for Hamiltonicity [Blum],
let us recall that in the first move of Blum’s scheme P randomly permutes G and
sends V the encrypted adjacency matrix of this isomorphic copy. V then sends a
random bit to P and according to that bit P either reveals all the entries in the
matrix and the permutation or reveals only the entries which correspond to the edges
of the Hamiltonian cycle. Our protocol resembles Blum’s protocol, with one major
difference: in Blum’s protocol all the moves depend on G, while in our protocol only
the last move depends on G. As a result, Blum’s protocol cannot be split into a
preprocessing stage and a noninteractive proof as we did in our protocol.

Remark. This particular NIZK proof with preprocessing can be extended for
directly proving (without reduction to the Hamiltonian problem) a variety of graph
theoretic problems which are satisfied by a single minimal (or maximal) graph (under
isomorphism). This family includes clique, graph coloring, graph partition into k-
cliques, three-dimensional matching, etc. We don’t know how to extend our proof
technique directly to other NP-complete problems.

2.2. A NIZK proof with a common reference string. In this subsection
we show that under the assumption that (strong) one-way permutations exist, if the
prover and the verifier initially share a random string (or CRS) σ, then the initial
preprocessing stage of the protocol described in section 2.1 can be discarded, yielding
a NIZK proof for any NP statement in the noninteractive model of Blum, Feldman,
and Micali.

Definition 2.1. A permutation f is a (strong) one-way function if for any x
(|x| = n), f(x) (which is also of length n) can be computed in polynomial time, but
for any nonuniform polynomial time algorithm A,

Prob(A(y) = f−1(y)) ≤ ν(n),

where the probability is computed over the random choices of y ∈R {0, 1}n.
We remark that strong one-way permutations exist if “weak” one-way permuta-

tions (i.e., the probability of not inverting y is nonnegligible) exist [Yao], [GILVZ].
In our NIZK construction we want to guarantee the hardness of inverting the

one-way permutation f at the single bit level. This idea is captured in the notion of
a hard-core predicate of a one-way function. A hard-core predicate of a function f is
a predicate B : {0, 1}∗ −→ {0, 1}, which is efficiently computable but such that given
only f(x) it is hard to guess B(x) with a probability significantly better than 1/2.

Definition 2.2. We call the predicate B : {0, 1}∗ −→ {0, 1} a hard-core predi-
cate of the function f : {0, 1}∗ −→ {0, 1}∗ if the following conditions are satisfied:

1. B is computable in deterministic polynomial time.
2. For every nonuniform polynomial time probabilistic algorithm A, for every

integer c > 0, and for every large enough n,

Prob{A(f(x)) = B(x)} < 1

2
+

1

nc
,

where the probability is taken over the coin tosses of A and for x uniformly
chosen in {0, 1}n.



MULTIPLE NONINTERACTIVE ZERO KNOWLEDGE PROOFS 7

The idea of hard-core predicates was introduced and first implemented (based on
a specific one-way permutation) by [BM]. [Yao] presented a general transformation
of any (strong) one-way function into one which has a hard-core predicate, but the
transformation was impractical. Goldreich and Levin [GL] provided an alternative
transformation which was much more efficient. Our NIZK construction uses such a
hard-core predicate in order to extract hard-to-guess bits from any given one-way
function.

2.2.1. Informal description. Assume that P and V possess a CRS σ, and P
wants to send V a NIZK proof based on σ (rather than on an interactive preprocessing
stage) that an arbitrary n node graph G is Hamiltonian. Basically, the proof technique
consists of two stages.

1. Interpretation of the CRS as an encoding of a string of “secret” bits—a hid-
den random string (HRS). Only the unbounded prover can initially read the
hidden bits, but he can later selectively reveal the value of some of the hidden
bits to the polynomially bounded verifier without revealing any information
on the other hidden bits.

2. Interpretation of the HRS as a sequence of n×n matrices in such a way that
at least one of them represents a good graph with overwhelming probability.
For each matrix the prover P is allowed to do one of two things: to prove to
V that the matrix is not good by revealing all its entries, or to use it as if it is
a good matrix in the Hamiltonicity testing protocol of section 2.1. Note that
the prover can claim that a bad matrix is good, but he cannot successfully
claim that a good matrix is bad, and thus he will be forced to use all the
good matrices in the protocol. If the input G is non-Hamiltonian, P will fail
to convince V except in the extremely unlikely case in which all the matrices
defined by the HRS are bad.

The first stage is implemented by considering the CRS as a concatenation of poly-
nomially many blocks u1, u2, . . . , where each block contains k (= security parameter)
random bits. We define a corresponding intermediate random string (IRS) by con-
catenating the values of w1, w2, . . . , where each wi is equal to f−1(ui). The ith bit si
in the HRS is a hard-core bit defined by the ith block ui in the CRS. By revealing si
we mean that P sends to V the bit si along with wi from the IRS. By checking si we
mean that V checks that f(wi) = ui and B(wi) = si. Note that f−1(ui) exists and is
uniquely defined by our assumption that f is a one-way permutation, and thus even
the unbounded prover cannot “flip” the value of this bit without being caught by the
verifier.

The second stage is implemented by interpreting the HRS as a sequence of n× n
0/1 matrices which with overwhelming probability contain at least one good matrix.
Notice that if we naively interpret each block of n2 consecutive bits from the HRS as
an n× n 0/1 matrix, then the probability that even one of these polynomially many
matrices is good is exponentially low. Therefore, we have to encode our matrices in a
more complicated way.

Assume that the HRS can be partitioned into equal size segments z1, z2, z3, . . .,
each of which defines (in some way) an n2 × n2 matrix Bi of zeros and ones, such
that for each i and each (j, l) the probability that the (j, l)th entry in Bi is 1 equals
1
n3 (i.e., Pr{Bi(j, l) = 1} = 1

n3 ). Therefore, for any segment zi the expected number
of 1-entries in the corresponding matrix Bi is n, and we will later prove that every
Bi contains, with nonnegligible probability, exactly n rows and n columns, each of
which contains a single 1-entry and the n × n permutation matrix induced by these



8 URIEL FEIGE, DROR LAPIDOT, AND ADI SHAMIR

rows and columns is Hamiltonian. Therefore, if the length of the HRS is large enough
(polynomial in n and k), then, with high probability, at least one of its segments
defines a good matrix.

All we have to show is how to transform a given random string into a sequence of
matrices, each of which has the property of Bi. Consider the given random string as a
concatenation of polynomially many consecutive blocks of m bits where m = log(n3)
(w.l.o.g. we can assume that it is an integer). We interpret a block as 1 if all its m
bits are 1, and 0 otherwise. Therefore, for every m-bit block, the probability of being
interpreted as 1 is 1

n3 and thus we can pack each consecutive segment of n4m random
bits into the desired n2 × n2 0/1 matrix Bi discussed above.

Informally, the proof technique is the following: for each matrix Bi, the prover
must either prove that it contains no good n× n submatrix or execute the basic step
(described in section 2.1) on a good matrix derived from Bi. In order to construct a
good matrix from a given matrix B = Bi and to prove that the input n-node graph
G is Hamiltonian, P executes the following.

1. If the number of ones in B is different from n or there exists a row or a column
which contains at least two ones, then P proves this fact by revealing all
entries in B. Otherwise (i.e., B contains an n×n permutation submatrix), P
reveals all entries in the n2−n rows and the n2−n columns which contain only
zeros, and removes them from B. If the resulting n× n Boolean matrix does
not represent a permutation with a single cycle (i.e., it is not an adjacency
matrix of some Hamiltonian cycle), then P proves this fact by revealing all
entries of the remaining n× n matrix.

2. Otherwise (i.e., the remaining n × n matrix forms an adjacency matrix of
some Hamiltonian cycle), P must execute the basic protocol (described in
the previous section) on the resulting n× n good matrix.

In order to formally describe the scheme and prove its correctness, we introduce
some notation and definitions.

2.2.2. Notation and definitions. Let

σ = r1 . . . rpoly(k,n) ri ∈R {0, 1}

= u1 . . . upoly(k,n) ui ∈R {0, 1}k

be the CRS, shared by P and V . Let f be a (strong) one-way permutation, and let
si be the hard bit that corresponds to the k-bit string ui (with respect to f).

We associate with the CRS an IRS defined by (f−1(u1), . . . , f−1(upoly(k,n))). Ac-
cording to the definition of a hard bit (see [GL]) each si (of the HRS) is polynomially
computable from the corresponding f−1(ui) (of the IRS) which acts as its “witness.”

For each i ≥ 1 let

bi =
m∧
j=1

s(i−1)m+j ,

where m = log(n3).
LetBi be an n2×n2 matrix which is defined as follows: Bi(j, l) = b(i−1)n4+(j−1)n2+l

for every 1 ≤ i, j, l.
Definition 2.3. We say that Bi is a proper matrix if it contains exactly n ones

and each column and row contains at most a single one.
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If Bi is a proper matrix let Ni be the n× n matrix obtained by removing all the
n2−n columns and n2−n rows which contain only zeros. Otherwise Ni is undefined.

Definition 2.4. A Boolean n × n matrix is called good if it is the adjacency
matrix of a graph which consists of a single directed cycle passing through all the n
vertices.

With some abuse of notation, we also call the large n2 × n2 matrix Bi good if it
is proper, and if the (unique) n× n submatrix Ni it defines is good.

2.2.3. The scheme. Assume that P and V have a CRS with 2n7k2m bits and
fix some one-way permutation f .

P ’s protocol. For each 1 ≤ i ≤ kn3 do the following:

1. If the matrix Bi is not good then reveal all its entries.
2. Otherwise (Bi contains a good n× n submatrix Ni), reveal and remove (the

entries of) all the n2 − n columns and all the n2 − n rows which contain
only zeros, and execute the noninteractive stage (of the protocol described in
section 2.1) on the remaining good matrix Ni.

V ’s protocol. For each 1 ≤ i ≤ kn3 do the following:

1. If P reveals all entries of Bi then check that the revealed bits are correct and
that the matrix they define is not a good matrix.

2. Otherwise, P should reveal n2 − n columns and n2 − n rows: check that
the revealed bits are correct and that all entries they define in these rows
and columns are zeros; in addition, P should execute in this case the basic
protocol (described in section 2.1) on the remaining hidden n × n matrix:
check that this proof is carried out correctly.

Accept the proof iff each of these kn3 checks is successful.

2.3. Correctness.

2.3.1. Completeness. If the input graph is indeed Hamiltonian, then the prover
can execute correctly the proof with respect to each one of the good matrices (if they
exist). In each n2×n2 matrix that does not yield a good submatrix, P is just required
to reveal the entire matrix and V will accept its proof as valid. As a result, an honest
prover never fails.

2.3.2. Soundness.

Claim 2.5. For every i, the probability that exactly n entries of Bi are 1 is at
least 1

4
√
n

.

Proof. The bits of the HRS are unbiased and independent, and for each j the
probability that bj = 1 is 1/n3. Therefore, the probability that Bi has exactly n ones
is (

n4

n

)(
1

n3

)n(
1− 1

n3

)n4−n
>

1

4
√
n

for all sufficiently large n.

The size of Bi is n2 × n2 and the 0/1 value of each entry is determined indepen-
dently of the others since these bits are determined by nonoverlapping blocks from
the random CRS. Assume now that Bi has exactly n ones. Its entries are independent
of each other, and thus the locations of the n ones in the n2 rows of Bi can be viewed
as the result of placing n balls in n2 buckets. The same argument holds also for the
columns. By the birthday paradox, with constant probability, the n ones are located
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in n distinct rows and n distinct columns, and thus with constant probability a matrix
Bi with n ones is proper.

The number of permutations in Sym(n) which consist of a single cycle (of length
n) is (n− 1)!. Therefore, the probability that Ni is a good matrix, given that it is a
permutation matrix, is n−1.

We conclude that, for every i, the probability that Bi is good is at least ≥ dn−3/2,
where d is a constant. Thus if the length of the CRS is Ω(n13/2k2m) bits, then with
probability (1− e−nk) at least one of the Bi’s yields a good matrix. Any such matrix
will expose a cheating P , since it cannot prove that Bi is bad and cannot use it in
the basic step, and these are its only two options.

Remark. If log(n3) is not an integer, set m = dlog(n3)e and choose Bi as a
dbn2e × n2 matrix where b = 2m

n3 (1 < b < 2).

2.3.3. Zero knowledge. We construct a random polynomial time simulator
M which generates a “random string” and a “proof” of Hamiltonicity which are
polynomially indistinguishable (by nonuniform distinguishers) from those generated
by a real execution of the protocol.

Consider the task of M . Compared with the real prover P , it is handicapped in
two respects: It cannot invert one-way functions (and thus cannot expose the HRS
defined by the given CRS), and it may not know a Hamiltonian cycle in G. We solve
one problem at a time and use the transitivity of indistinguishability to prove that
the two solutions can be combined into one. First we construct a random polynomial
time algorithm P ′ that cannot invert one-way functions, but does have access to
the Hamiltonian cycle of G. P ′ uniformally generates a CRS in such a way that it
can recover its associated HRS. Since the original CRS (appended to a proof of the
real prover) is also uniformally chosen, these two strings are identically distributed.
Next we construct a probabilistic expected polynomial time simulator M whose input
is the Hamiltonian graph G (without its Hamiltonian cycle) and whose output is
polynomially indistinguishable from that of P ′. Therefore, these constructions imply
that our scheme is zero knowledge.

Let P ′ be the random polynomial time algorithm whose input consists of the
graph G along with its Hamiltonian cycle. The instructions of the original P and
the definition of the one-way permutation f (which is fixed in the original proof) are
parts of P ′. P ′ executes the real protocol with the following exception: instead of
using the given random CRS to compute its associated IRS, it chooses a truly random
IRS and computes its associated CRS by applying the one-way permutation f (in the
forward direction) to each consecutive block of k bits in the IRS. Namely, for each
segment vi (vi ∈R {0, 1}k) in the IRS, P ′ evaluates f(vi) and set f(vi) to be the ith
k-segment of the new CRS. The output of P ′ consists of his CRS accompanied by a
noninteractive proof for the Hamiltonicity of G (which is performed exactly according
to the instructions of the real P ). Since both the original CRS (which is used by P )
and that produced by P ′ are uniformally distributed random strings, and P ′ and P
behave identically once the CRS is determined, we conclude that the output of P ′ is
indistinguishable from the original CRS followed by the real prover’s proof.

We now change P ′ further to get the simulator M . This simulator accepts a
Hamiltonian graph G and the security parameter k as inputs but is not given any
Hamiltonian cycle in G. Its output is a string σk of length n7k2m bits and a “proof”
of Hamiltonicity based on this CRS. The basic idea behind the simulator is that it tries
to execute the protocol and changes the CRS in an indistinguishable way whenever it
encounters difficulties. To do this, it leaves unchanged all the bits of the HRS which
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were part of bad matrices but changes to zero all the bits of the HRS which were
part of good matrices. This would allow the simulator to successfully carry out both
stages of the proof (namely, demonstrating the unsuitability of the bad matrices by
revealing all their entries and revealing the required zero entries in all the presumably
good remaining matrices). To change an HRS bit to zero, the simulator repeatedly
tries new random IRS values until it finds one which makes the corresponding HRS
bit zero and then replaces the corresponding CRS block by f applied to the new IRS
value (which remains random and indistinguishable from the original value). More
precisely, the simulator M performs the following steps:

1. M randomly chooses a sequence of n7k2m truly random bits and uses them
as the IRS. Every segment in this IRS that yields a good matrix M changes
all entries whose value is 1 to zeros. This is done in the following way: for
each i for which Ni is a good matrix and for each j, l such that Ni(j, l) = 1,
M executes the following trial: it replaces all bits in the IRS which give rise
to this Ni(j, l) by new random km bits. M repeatedly executes this trial until
Ni(j, l) = 0 (the probability of success is 1− 1

n3 ).
2. M computes the CRS σk from the modified IRS by applying f in the forward

direction and then computes the HRS from the IRS in exactly the same way
as it is done by P .

3. For each i such that Bi has not been changed in the first step, M reveals
all entries of Bi. For each of the other Bi’s, M reveals n2 − n random rows
and n2 − n random columns. Since the resulting n× n matrix contains only
zeros, M can easily simulate the basic step by choosing a random permutation
ψ ∈R Sym(n) and revealing every Bi(j, l) such that there is no edge between
j and l in ψ(G).

The output of M is denoted by (σk, proof
′(σk, G)), where the first component

plays the role of the CRS and the second one includes all revealed bits and permuta-
tions. Let τk be a string of length n7k2m bit which is produced by P ′ as a CRS and
denote by proof(τk, G) a proof of P ′ based on G and τk.

For any nonuniform distinguisher D, let D(x) denote the 0/1 output of D on
input x. Let

ρDP ′,k,G = Pr{D((τk, proof(τk, G)), G) = 1},

ρDM,k,G = Pr{D((σk, proof
′(σk, G)), G) = 1},

where the probabilities are taken over the random tapes of P ′ and M and thus also
over the random choices of τk and σk (which are chosen by P ′ and M , respectively).

Lemma 2.6. For any polynomial Q and any positive integer t, there exists a pos-
itive integer K, such that for any Hamiltonian graph G of size n, for any nonuniform
distinguisher D, and for any k ≥ max(K,n),

|ρDP ′,k,G − ρDM,k,G| <
1

Q(k)
,

where the running time of D is bounded by kt.
Proof. The proof is based on the well-known hybrid argument of [GM]. We assume

the existence of some efficient distinguisher D, a polynomial Q, and an infinite subset
of security parameters I ⊂ N such that for every k ∈ I,

(∗) |ρDP ′,k,G − ρDM,k,G| ≥
1

Q(k)
.
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Our goal is to show how to use the existence of these entities in order to success-
fully predict some hard-core bit, in violation of the assumption that f is a one-way
permutation. More precisely, we would like to construct a probabilistic polynomial
time nonuniform algorithm C which, given as input f(x) for a randomly chosen x,
predicts its hard-core predicate B(x) with nonnegligible probability of success. This C
chooses a Hamiltonian graph G and constructs a proof of Hamiltonicity whose CRS is
a mixture of an initial segment corresponding to a real proof by P ′ and a final segment
corresponding to a simulated proof by M . (Note that both P ′ and M are polynomial
time, and thus their behavior can be replicated by C.) It is not difficult to show that
for some location of this boundary, our assumption implies that the distinguisher’s
probability of outputting 1 jumps nonnegligibly when the CRS boundary moves by a
single block. If C embeds its input f(x) at this crucial location in the CRS, it can use
the success of the distinguisher to predict the value of the hard-core bit of its input.
This will lead to a contradiction, and thus the probability distributions generated by
P ′ and by M are polynomially indistinguishable.

From here on we omit the superscript D and the subscript G. Let k be an
element in I. Let α = (i1, . . . , it, ψ1, . . . , ψu) (1 ≤ i1 < · · · < it ≤ n7km and for
each 1 ≤ i ≤ u ψi ∈ Sym(n)) and let ρα,k (ρ′α,k) denote the probability that the
hidden bits which are revealed by P ′ (respectively, M) are those which are indexed
(in the HRS) by i1, . . . , it and ψ1, . . . , ψu are the permutations associated with good
matrices chosen by P ′ (respectively, M). Since M and P ′ follow exactly the same
procedure for choosing the locations of the revealed bits (M may change the value of
some revealed bits from 1 to 0 by replacing their corresponding CRS blocks but does
not try to move their location), and both of them choose truly random permutations
to apply to G, we conclude that for any α,

ρα,k = ρ′α,k.

Let proof(τk, G, α) and proof ′(σk, G, α) denote proofs of P ′ and M based on τk
and σk, respectively, in which the locations of the revealed bits and the random per-
mutations (in Sym(n)) are identical and are defined by α = (i1, . . . , it, ψ1, . . . , ψu).
Denote by ρP ′,α,k the probability that D outputs 1 on (τk, proof(τk, G, α)) (produced
by P ′) and by ρM,α,k the probability that D outputs 1 on (σk, proof

′(σk, G, α)) (pro-
duced by M).

It is obvious that

(∗∗) ρP ′,k =
∑
α

ρα,kρP ′,α,k

and

(∗ ∗ ∗) ρM,k =
∑
α

ρα,kρM,α,k.

We now want to show that for any fixed choice of α, D is unable to distinguish
between (τk, proof(τk, G, α)) and (σk, proof

′(σk, G, α)).
Claim 2.7. For every α,

|ρP ′,α,k − ρM,α,k| < 1

Q(k)
.

Proof. Assume that this is not true; namely, there is α for which w.l.o.g.

ρP ′,α,k − ρM,α,k ≥ 1

Q(k)
.
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We now use the hybrid argument by scanning across the list of locations of re-
vealed bits and defining a sequence of associated probabilities. For every 1 ≤ j ≤
n7km, ρjα,k denotes the probability that D outputs 1 on the following (string, proof):
the first k(j − 1) bits in the string are a prefix of a CRS generated by P ′ from a
randomly chosen IRS, while the remaining bits in the string are generated by M from
a random IRS which was modified to force zeros to appear in certain HRS revealed
positions. The proof following the string is the implied combination of a prefix pro-
duced by P ′ and a suffix produced by M , where both parts are based on the vector
α. By the hybrid argument we conclude that there is 1 ≤ i ≤ n7km for which

ρi+1
α,k − ρiα,k ≥

1

Q(k)n7km
.

We’ll now describe the formal construction of the probabilistic polynomial time
nonuniform algorithm Ck whose auxiliary input is the graphG, including the definition
of a Hamiltonian cycle, α, i, and the auxiliary input needed for D. This algorithm
uses the polynomial time P ′, M , and D as subroutines and on input f(x) (where x
is randomly chosen) outputs a bit b which is the hard bit of f(x) with probability
≥ 1

2 + 1
poly(k) . This is a contradiction to the assumption that f is oneway.

The algorithm Ck executes the following steps.
1. Run P ′ so that the indices of the hidden bits which are revealed and the

permutations associated with the Hamiltonian matrices are according to α.
2. Run M according to the same rule.
3. Erase from the output of P ′ all the bits coming after the (i − 1)th block of

the CRS (call this prefix SP ).
4. Erase from the output of M the first i blocks; namely, keep the last n7k2m−ik

bits of the CRS and append the revealed bits and the permutations associated
with the Hamiltonian matrices (which are based on α and thus are identical
for P ′ and M). Call this suffix SM .

5. Feed D with SP ◦ f(x) ◦ SM .
6. If D(SP ◦ f(x) ◦ SM ) = 1, then b = 1 else b = 0.

Without loss of generality, assume that the bit defined by the ith block of P ′ is
1, and M changes it to 0 (these are the only changes made by M , and unchanged
locations cannot possibly trigger a reaction by the distinguisher). It is easy to verify
that with probability ≥ 1

2 + 1
poly(k) , b is the hard bit of f(x) and this is a contradiction

to the assumption that f is oneway.
This claim together with (∗∗) and (∗∗∗) contradicts (∗) which completes the proof

of the Lemma.

2.4. Efficient provers.

2.4.1. The scheme. If the truthful prover is restricted to be a random polyno-
mial time machine (namely, it has the same computational power as V ) then it can
not invert the one-way permutation in the protocol described in the previous section.
In order to overcome this difficulty we use the notion of families of certified trapdoor
permutations. Therefore, our assumption in this section is that such families exist.
Informally, a permutation is trapdoor if its values can be computed in polynomial
time and it is hard to compute its inverse, but there exists an auxiliary information
(which is called the trapdoor) such that there is an algorithm which gets this trapdoor
information as an auxiliary input and computes the inverse of this function in poly-
nomial time. Such a family is certified if it is easy to verify that a given function does
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belong to this family. The following is the formal definition of a family of certified
trapdoor permutations.

Definition 2.8. Let I be an infinite set of indices. A set of functions F =⋃
k≥1 Fk where

Fk = {fi : Di −→ Di : i ∈ I
⋂
{0, 1}k}

is a family of certified trapdoor permutations if for every i ∈ I, fi is a permutation
over the finite domain Di ⊆ {0, 1}k and the following conditions are satisfied:

1. There exists a random polynomial time generating algorithm G that on in-
put k (in unary representation) generates a random pair (i, t(i)), where i ∈
I
⋂{0, 1}k (defines the function fi) and t(i) is a trapdoor information for fi.

2. There exists a probabilistic polynomial time algorithm that on input i deter-
mines whether fi ∈ F (in particular whether fi is a permutation).

3. There exists a random polynomial time algorithm that on input i ∈ I chooses
a random element x ∈ Di with uniform distribution over Di. There exists
a polynomial time algorithm that for any i ∈ I and any x checks whether
x ∈ Di.

4. There exists a polynomial time algorithm A such that

∀i ∈ I ∀x ∈ Di A(i, x) = fi(x).

5. For any random polynomial time algorithm B, for every constant c > 0, and
for every large enough integer k,

Prob{B(i, fi(x)) = x} < 1

kc

where the probability space is taken over the random tape of B combined with
the distribution of i as generated by G(1k) and a random uniform choice of
x ∈ Di.

6. There exists a polynomial time algorithm C such that

C(i, t(i), fi(x)) = x ∀x ∈ Di, ∀i ∈ I.

For simplicity, we assume that there exists a family of certified trapdoor permu-
tations in which each of the domains Di = {0, 1}ni , where ni is some integer that
depends on i. (However, we emphasize that this assumption can be relaxed in several
ways, such as allowing the domains Di to cover a nonnegligible fraction of {0, 1}ni ,
or using one-to-one functions rather than permutations. In particular, the number
theoretic assumptions used in [BDMP]’s construction of NIZKs are a special case of
our relaxed assumptions.) Under this assumption, the scheme described in section 2.2
can be modified to accommodate probabilistic polynomial time provers. Efficient P
randomly chooses a trapdoor permutation f ∈ Fk, sends its index i (of length k) to V ,
and keeps the trapdoor information t(i) secret. The ability of P to invert f efficiently
is due to its knowledge of the trapdoor information.

The proof of completeness remains unchanged. The proof of soundness has to be
modified for the following reason. In contrast to the scheme described in section 2.2
in which the (unbounded) prover does not choose the one-way permutation, in the
efficient scheme a cheating prover may choose a particularly useful trapdoor permu-
tation after seeing the CRS. Namely, he can choose a trapdoor permutation for which
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the corresponding hidden string HRS (determined by the given CRS and this par-
ticular trapdoor permutation) does not yield any Hamiltonian matrix. Such a string
enables a cheating prover to “prove” the Hamiltonicity of any graph, in particular
non-Hamiltonian graphs, without getting caught by the verifier.

To overcome this difficulty, we only have to extend the length of the CRS. Recall
(see section 2.3.2) that for any fixed (either trapdoor or one-way) permutation, if the
length of the CRS is Ω(n13/2k2m) bits, then the fraction of bad CRSs (those which
do not yield any Hamiltonian matrix) is e−nk. Since all random bits of the CRS
are independent, we conclude that if the length of the CRS is twice as long, then the
fraction of bad CRSs with respect to any fixed trapdoor permutation is less than e−2nk.
But recall that in the new scheme the prover can choose any trapdoor permutation he

wishes, out of a family of at most 2k trapdoor permutations. Therefore, 2k

e2nk
< 2−k is

an upper bound on the fraction of random strings which can be bad relative to some
trapdoor permutation.

The proof of the zero knowledge property of our new scheme resembles its coun-
terpart for the original scheme (with an unbounded prover), except that we have to
consider a family of certified trapdoor permutations rather than a fixed one-way per-
mutation. Namely, the probability distribution over all pairs (CRS , proof) includes
now also the uniform distribution over all trapdoor permutations in this family, rather
than just the uniform distribution over all random strings. Now, the intermediate sim-
ulator P ′ (which has an access to a Hamiltonian cycle in G) should uniformly choose
a random trapdoor permutation f (without its trapdoor information) in order to have
an output’s distribution identical to that of the real prover. The main simulator M
(which does not know any Hamiltonian cycle in G) uses the same random f , and both
P ′ and M should apply f in the forward direction. The rest of the proof (regarding
the indistinguishability between the outputs of M and P ′) goes exactly as introduced
in section 2.3.3.

We remark that the certification assumption (part 2 of Definition 2.8) can be
relaxed. It states that there exists a polynomial time algorithm that on input i de-
termines whether fi ∈ F . This item is included to guarantee that a cheating prover
cannot choose a function which does not belong to the prespecified family F of trap-
door permutations. In particular, if P sends to V a definition of a trapdoor function
which is not a permutation at all, soundness does not necessarily hold, as the opening
of the hard-core bits is not unique. Recently, Bellare and Yung [BY] constructed a
NIZK proof system for proving that a given function (whose description is of poly-
nomial size) is “almost permutation” (permutation on all but a small fraction of the
domain). They showed that this implies that part 2 of the definition is not necessary
for the construction of efficient NIZK proof systems for NP.

2.4.2. Public-key cryptosystems secure against chosen ciphertext at-
tacks. The existence of public-key cryptosystems which are secure against passive
eavesdropping under the assumption that certified trapdoor permutations exist is
well known [GM, Yao, GL]. Naor and Yung [NY] show how to construct a public-key
cryptosystem which is provably secure against chosen ciphertext attacks (CCS-PKC),
given a public-key cryptosystem which is secure against passive eavesdropping and a
NIZK proof system in the shared string model. Using their result together with our
construction (for polynomial time provers) we have the following corollary.

Corollary 2.9. CCS-PKC exist under the general assumption that certified
trapdoor permutations exist.

This is the first known CCS-PKC which does not rely on the hardness of specific
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computational number-theoretic problems.

3. Multiple NIZK proofs based on a single random string.

3.1. Introduction. In the previous section we constructed a bounded NIZK
proof system, in which the prover can prove a single statement. In this section we
construct a general NIZK proof system, in which polynomially many statements can
be proven by polynomially many provers independently. Our main concern will be
to control the length of the common random string σ. Recall that in the case of
bounded NIZKs, the length of σ is some explicit polynomial in n (the length of the
statement to be proved) and k (a security parameter). One may attempt to transform
a bounded NIZK proof system into a general one by reusing the bits of σ over and over
again each time a new statement is proved. Unfortunately, it is not known whether
the zero knowledge property is preserved if the number of statements proven exceeds
O(logn). If there is an a-priori bound m on the number of statements to be proved,
then an alternative approach may be to extend σ by a factor of m. However, this
solution is extremely wasteful in the length of σ (and even more if m turns out to
be an overestimate). Thus throughout this paper we make the requirement that the
length of σ depends on n and k alone, but not on the number of statements to be
proven, which can be an arbitrary polynomial in n.

Notation and conventions. Throughout the following sections, n denotes the size
of a single input statement, whereas m denotes the number of input statements to
be proved, each of length n. The value of m is a function of n (typically, some
polynomial in n), though we do not introduce special notation to denote this fact.
To avoid excessive use of parameters, we identify the security parameter k with the
length n of a single input statement (see the remark following Definition 1.2). We
use the ν(n) notation of section 1.3 whenever it is not a source for confusion. We
assume that outputs of provers (denoted by P (x,w, σ)) include explicitly the input x
and the CRS σ. Recall our nonstandard use of ensembles (see section 1.3) in which
the ensemble for the simulator is indexed by inputs x ∈ LR, whereas the ensemble
for the truthful prover is indexed by inputs x ∈ LR, together with a valid witness
w for each input. The two ensembles were said to be indistinguishable if, for any
(large enough) input x ∈ LR, the corresponding distributions (the prover’s proofs and
the simulator’s simulated proofs) were indistinguishable, regardless of the witness w
used by the truthful prover. We extend this concept of ensembles to accommodate
multiple noninteractive proofs. The ensemble for the simulator is indexed by sequences
of equal length inputs in LR, where, for each sequence, its length m is bounded by
some polynomial in the length n of single input statements in the sequence. The
ensemble for the truthful prover is indexed by a sequence of equal length inputs in
LR, together with a sequence of corresponding valid witnesses. The two ensembles are
indistinguishable if for any sequence of equal length inputs in LR the corresponding
distributions (the prover’s sequence of proofs and the simulator’s simulated proofs) are
indistinguishable, regardless of the sequence of witnesses used by the truthful prover.
For computational indistinguishability, the probability of distinguishing between the
two ensembles must decrease as fast as ν(n), which is equivalent to ν(mn), by our
requirement that m is polynomial in n. The distinguishing algorithm is denoted by
D and runs in nonuniform polynomial time. Hence ∀D quantifies over all nonuniform
polynomial time algorithms. D will typically receive the output of the prover as input,
which by our convention regarding P (x,w, σ) implies that D also sees x and σ.

Definition 3.1. A noninteractive proof systems for the language LR is general
zero knowledge if there exists a random polynomial time simulator M such that for
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any positive constant c, for any m ≤ nc, the two ensembles {(σ, P (x1, w1, σ), . . . ,
P (xm, wm, σ))} and {M(x1, x2, . . . , xm)} are computationally indistinguishable. In
any sequence of instances that indexes the ensembles, all xi are of the same length
(denoted by n), and for all 1 ≤ i ≤ m, (xi, wi) ∈ R.

Remark. An important feature of our definition of general zero knowledge non-
interactive proof systems is that each of the statements xj is proven independently.
Consequently, polynomially many provers can share the same random reference string
σ and prove polynomially many statements independently. A somewhat weaker def-
inition, in which the proof of statement xj may depend on the proof of previous
statements, is given in [BDMP]. Their definition applies only to the case that a single
prover uses σ to prove polynomially many statements. The construction that they
propose does not support polynomially many independent provers (i.e., our stronger
definition).

In this section we show how to transform any bounded NIZK proof system for an
NP complete language LR into a general NIZK proof system for the same language
LR. Our transformation uses the NP-completeness of LR in an essential way, and
does not handle cases in which LR is not NP-complete. Our transformation applies
only to NIZK proof systems with efficient provers (and does not apply to NIZK proof
systems such as that of section 2.2 in which P inverts one-way permutations).

We now give a quick overview of our construction. It is based on the concept
of witness indistinguishability [FS], which informally means that it is intractable to
distinguish which of two possible witnesses P is using in his proof of an NP statement.
We prove that any NIZK proof system with efficient provers is also witness indistin-
guishable. Furthermore, the witness indistinguishability property is preserved even
if polynomially many noninteractive witness indistinguishable proofs are given using
the same reference string (again, provided that the prover in each individual proof is
efficient).

If one could argue that any sequence of noninteractive witness indistinguishable
proofs is also zero knowledge then we would be done. It is not true that in general
witness indistinguishability implies zero knowledge, but there are special cases where
this implication holds. We show, under the assumption that one-way functions exist,
that any NIZK proof system for any NP-complete language can be modified to a new
noninteractive proof system for which witness indistinguishability always implies zero
knowledge.

3.2. Noninteractive witness indistinguishability. In this subsection we de-
fine the concept of noninteractive witness indistinguishability and prove some of its
important properties.

Definition 3.2. A noninteractive proof system (P, V ) is bounded witness in-
distinguishable over R if for any large enough input x, any w1, w2 ∈ w(x), and for
a randomly chosen reference string σ, the ensembles which differ only in the witness
that P is using, but not in x or σ, are computationally indistinguishable. In more
detail,
∀D ∃N ∀n > N ∀x ∈ LR

⋂{0, 1}n ∀w1, w2 ∈ w(x),∑
σ

2−|σ| · | Prob(D(P (x,w1, σ)) = 1),− Prob(D(P (x,w2, σ)) = 1)| < ν(n).

The probability space is that of P ’s random coin tosses.
We remark that there are two plausible ways of defining noninteractive witness

indistinguishability. In the first alternative, the proofs that use different witnesses
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need to look similar when both use the same CRS σ. In the second alternative, each
proof may use a different σ (that is, for each witness we first average the output of the
distinguisher over all choices of σ, and only then compare between the use of different
witnesses). The first alternative is stronger, and we adopted it in Definition 3.2. The
second alternative is also useful, as it relates more naturally to noninteractive zero
knowledge, where σ produced by the simulator M is not required to be identical to σ
used by the prover. For the case of efficient provers, the following lemma shows the
equivalence of the two alternatives.

Lemma 3.3. Noninteractive proof system (P, V ) with efficient provers is bounded
witness indistinguishable over R if and only if
∀D ∃N ∀n > N ∀x ∈ LR

⋂{0, 1}n ∀w1, w2 ∈ w(x),∣∣∣∣∣∑
σ

2−|σ|(Prob(D(P (x,w1, σ)) = 1)− Prob(D(P (x,w2, σ)) = 1))

∣∣∣∣∣ < ν(n).

Proof. The “only if” direction is obvious. We prove only the “if” direction.
Assume that for some infinite sequence I of triplets (x,w1, w2) of inputs together

with their respective witnesses, some nonuniform polynomial time algorithm D can
distinguish between P using witness w1 and P using witness w2. Formally, for some
k > 0,∑

σ

2−|σ| · |Prob(D(P (x,w1, σ)) = 1)− Prob(D(P (x,w2, σ)) = 1)| > 1

(|x|)k ,

where (x,w1, w2) ∈ I, and the probabilities are taken over the random choices of P .
We construct a new nonuniform random polynomial time distinguisher D′, which uses
“knowledge” of both w1 and w2 and contradicts the condition of the lemma. (D′ can
be transformed into a deterministic nonuniform distinguisher by standard averaging
techniques.) The distinguisher D′ essentially simulates the behavior of D but with the
following modification: on public random strings σ for which Prob(D(P (x,w1, σ)) =
1) < Prob(D(P (x,w2, σ)) = 1), algorithm D′ inverts the output of D so as to
prevent a cancelation effect between σ with the above property and σ for which
Prob(D(P (x,w1, σ)) = 1) > Prob(D(P (x,w2, σ)) = 1).

On input z, a noninteractive proof for x using the public random string σ, D′

operates as follows. First, ignoring z, algorithm D′ performs the following bias test
for σ, obtaining a “bias indicator” b. Algorithm D′ generates |x|k+1 independent
strings from each of the distributions P (x,w1, σ) and P (x,w2, σ) (we note that this
is possible because P is polynomial time, and D′ can simulate P with the relevant
auxiliary input). D′ feeds these strings to D, obtaining from D two sequences of
output bits, each of length |x|k+1. If the first such sequence (corresponding to w1)
contains less 1 entries than the second (corresponding to w2), then b is set to 1.
Otherwise b is set to 0. Then D′ feeds D with z and flips the output of D if and only
if b = 1.

It is a simple matter to show that∣∣∣∣∣∑
σ

2−|σ|(Prob(D′(P (x,w1, σ)) = 1)− Prob(D′(P (x,w2, σ)) = 1))

∣∣∣∣∣ > 1

2(|x|)k .

Remark. The above proof uses the fact that P is efficient (i.e., polynomial time).
The equivalence between definitions might not hold if the prover is nonpolynomial.
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Consider for example the zero knowledge proof system of section 2.2 in which the
prover inverts one-way functions. It is witness indistinguishable in the sense of
Lemma 3.3—this can be proved in a way similar to the proof of Lemma 3.4 below.
However, it is not witness indistinguishable in the sense of Definition 3.2: the prover
is deterministic, and hence for any particular σ, the use of different witnesses by the
prover is distinguishable by examining a single bit location (that may depend on σ)
of the prover’s output. An averaging argument shows that there is some bit location
that (for a polynomial fraction of the possible choices of σ) distinguishes between the
two witnesses that the prover may be using.

Lemma 3.4. Any bounded NIZK proof system with polynomial time prover is also
a bounded noninteractive witness indistinguishable proof system.

Proof. Assume that the proof system is not witness indistinguishable. By Lemma
3.3, for some constant k and an infinite sequence of inputs there exists a distinguisher
D that satisfies∣∣∣∣∣∑

σ

2−|σ|(Prob(D(P (x,w1, σ)) = 1)− Prob(D(P (x,w2, σ)) = 1))

∣∣∣∣∣ > 1

(|x|)k .

Now the proof system cannot be zero knowledge. For consider any proposed
simulator M . No matter what value Prob(D(M(x)) = 1) takes on, it differs either
from Prob(D(P (x,w1)) = 1) or from Prob(D(P (x,w1)) = 1) by at least 1

2(|x|)k . Since

both the latter cases are valid distributions of noninteractive proofs for x, we conclude
that D is a distinguisher which fails any simulator.

Definition 3.5. A noninteractive proof system is general witness indistinguish-
able over R if for any positive constant c, for any m ≤ nc, we have that the two ensem-
bles {(P (x1, w

1
1, σ), P (x2, w

1
2, σ), . . . , P (xm, w

1
m, σ))} and {(P (x1, w

2
1, σ), P (x2, w

2
2, σ),

. . . , P (xm, w
2
m, σ))} are computationally indistinguishable (in the sense of Defini-

tion 3.2, where σ is identical in the two ensembles). In more detail,

∀D ∀c ∃N ∀n > N ∀m < nc

whenever xi ∈ LR
⋂{0, 1}n and w1

i , w
2
i ∈ w(xi) for all 1 ≤ i ≤ m, then∑

σ

2−|σ| · |Prob(D(P (x1, w
1
1, σ), . . . , P (xm, w

1
m, σ)) = 1)

−Prob(D(P (x1, w
2
1, σ), . . . , P (xm, w

2
m, σ)) = 1)| < ν(n).

The probability space is that of P ’s random coin tosses.
Lemma 3.6. Any bounded noninteractive witness indistinguishable proof system

with efficient provers is also general witness indistinguishable.
Proof. Assume that for some constant c and infinitely many n the following

holds: there exists a distinguisher D of size at most nc, a positive integer m, where
m ≤ nc, a sequence X = (x1, x2, . . . , xm) of inputs (each of size n), and two sequences,
W1 = (w1

1, . . . , w
1
m) and W2 = (w2

1, . . . w
2
m), of witnesses for the respective xi ∈ X ,

such that ∑
σ

2−|σ| · |Prob(D(P (x1, w
1
1, σ), . . . , P (xm, w

1
m, σ)) = 1)

−Prob(D(P (x1, w
2
1, σ), . . . , P (xm, w

2
m, σ)) = 1)| > n−c,
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where probabilities are taken over the random coin tosses of P . Then by the “hybrid”
argument of [GM] (also known as “probability walk” argument), there must be a
“polynomial jump” somewhere in the execution: there exists k, where 1 ≤ k ≤ m,
such that∑

σ

2−|σ| · |Prob(D(P (x1, w
1
1, σ), . . . , P (xk, w

1
k, σ), . . . , P (xm, w

2
m, σ)) = 1)

−Prob(D(P (x1, w
1
1, σ), . . . , P (xk, w

2
k, σ), . . . , P (xm, w

2
m, σ)) = 1)| > 1

mnc
.

We now use the nonuniformity of the distinguishers to derive a contradiction.
Since the proof system has efficient provers, the whole set of proofs (P (x1, w

1
1, σ),

. . . ,P (xk−1, w
1
k−1, σ), P (xk+1, w

2
k+1, σ), . . . ,P (xm, w

2
m, σ)) can be simulated by a mod-

ified D′, who has as auxiliary input ((x1, w
1
1), . . . ,(xk1

, w1
k−1), (xk+1, w

2
k+1), . . . ,

(xm, w
2
m)). This random nonuniform polynomial time D′ can now distinguish be-

tween proofs for xk in which the prover uses w1
k and proofs in which the prover uses

w2
k. This contradicts our assumption that the original protocol was witness indistin-

guishable.

3.3. The transformation. We assume the existence of pseudorandom bit gen-
erators (see [BM], [Yao]), which extend n-bit random seeds to 2n-bit pseudorandom
strings, computationally indistinguishable from strings of truly random 2n bits. The
existence of pseudorandom generators follows from the assumption that one-way func-
tions exist [ILL], [Ha].

Let (P, V ) be any bounded NIZK proof system with polynomial time prover for
the NP-complete language LR. We construct (P̄, V̄), a general NIZK proof system
for LR, under the sole assumption that one-way functions exist.

Let g : {0, 1}n −→ {0, 1}2n be a pseudorandom bit generator. We introduce two
new NP languages. LRg is the NP language corresponding to the relation Rg(y, s)
iff g(s) = y. LR#

is the NP language corresponding to the relation R#(x#y, w) iff
either R(x,w) or Rg(y, w), where # is used as a special delimiting character in the
alphabet of the inputs to LR#

.
We now describe the algorithm of P̄ on input (x,w) ∈ R and reference string σ.
1. Divide the CRS σ into two segments: the first 2n bits, denoted by y, and

called the reference statement; the rest of the CRS is denoted by σ′.
2. Construct the instance x#y ∈ LR#

. Observe that w, the witness that P̄ has
for x ∈ LR, is a witness for x#y ∈ LR#

.
3. Reduce x#y to an instance X of the NP-complete language LR, using a

publicly known reduction with efficient transformation of witnesses. (That
is, any witness for the original instance can be efficiently transformed into
a witness for the target instance, and vice versa. Known reductions to NP-
complete languages have this property.) Reduce w, the witness for x#y ∈
LR#

, to W , a witness for X ∈ LR.
4. Send x, X, and P (X,W, σ′). (The last term, P (X,W, σ′), is a random variable

that denotes the NIZK proof that the prover P from the system (P, V ) would
produce on input X, witness W , and reference string σ′, depending on P ’s
private random string.)

The verifier V̄ accepts if the publicly known reduction (from LR#
to LR) gives X

when applied to x#y, and if furthermore V would have accepted P (X,W, σ′).
Theorem 3.7. Under the assumptions that (P, V ) is a bounded NIZK proof

system with efficient provers for LR, that LR is NP-complete, and that g is a pseudo-
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random generator, the above transformed scheme is a general NIZK proof system for
LR.

Proof. We first give an intuitive introduction to the full proof. The completeness,
soundness, and zero knowledge properties of (P̄, V̄) are based on the corresponding
properties of (P, V ). Efficiency is preserved in the completeness property since from a
witness to x, prover P̄ can derive a witness to X, and thus execute the bounded NIZK
proof system (P, V ). The soundness property follows from the fact that y is chosen
as a truly random (rather than pseudorandom) string. Thus, for almost all possible
choices of y, it is not in the range of g, and consequently X ∈ LR if and only if x ∈ LR.
The zero knowledge property requires more subtle analysis. The simulation of (P̄, V̄)
is done by replacing the reference statement y by a pseudorandom string y′. This y′

is generated by selecting at random an n bit seed s and computing y′ = g(s). Since g
is a pseudorandom bit generator, this replacement is indistinguishable to polynomial
time observers. Now any statement x with witness w is transformed into a statement
X which also has s, the seed of y′, as its witness. The simulator uses s instead of w in
order to prove X. The concept of witness indistinguishability can now be used to show
that this change of witnesses in the proof of X is indistinguishable to polynomial time
observers, even if it is done polynomially many times. We now give a more detailed
proof.

Completeness (while preserving efficiency). The reduction of LR#
to LR allows

efficient transformation of witnesses. Thus P̄, who knows a witness for x ∈ LR, and
hence for x#y ∈ LR#

, can also compute in polynomial time a witness for X and use
it in order to perform the protocol. The reduction is also publicly known, and so V̄
can check that it was followed correctly. The completeness property then follows from
the completeness property of (P, V ).

Soundness. From the soundness property of (P, V ) it follows that either x ∈ LR
or y is in the range of the generator g (i.e., there is an s such that y = g(s)). But
simple counting shows that the probability that the random string y of length 2n is in
the range of g (i.e., has a seed of length n) is at most 2−n, and thus with overwhelming
probability indeed x ∈ LR.

The completeness and soundness property trivially continue to hold even if poly-
nomially many statements are proved.

Zero knowledge. For any large enough value of n, consider any sequence (x1, w1),
(x2, w2), . . . , (xm, wm), of inputs together with their respective witnesses, where m
is polynomial in n. Assume that P̄ proves for these inputs membership in LR (by
using private coin tosses, the associated witnesses, and the CRS σ). We construct
a simulator M which creates an ensemble indistinguishable from the ensemble that
P̄ produces. M receives as input only the sequence of instances {xi}, without their
respective witnesses.

M randomly selects an n bit seed s and computes the 2n-bit string y′ = g(s),
to be used as the reference statement (instead of a random y used in reality). M
generates a truly random reference string σ′. For each 1 ≤ j ≤ m, M reduces xj#y

′

to an instance Xj of LR and derives from s a witness w′ for this instance. Then
M uses the proof system (P, V ) and the reference string σ′ to simulate a proof that
X ∈ LR, by using its knowledge of the seed s (rather than a witnesses it does not
have to the statements xj).

In order to prove that M ’s simulation is indistinguishable from P̄’s proofs, we
construct a hybrid M̄ , which constructs y′ pseudorandomly as M does, but simulates
the proofs using w1, w2, . . . as P̄ does.
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Lemma 3.8. For any positive constant c, for any m ≤ nc, the two ensem-
bles {(σ, P̄ (x1, w1, σ), . . . , P̄ (xm, wm, σ))} and {M̄((x1, w1), (x2, w2), . . . , (xm, wm))}
are computationally indistinguishable. In any sequence of instances that indexes the
ensembles, all xi are of the same length (denoted by n), and for all 1 ≤ i ≤ m,
(xi, wi) ∈ R.

Proof. Assume otherwise, and let D be a distinguisher that distinguishes be-
tween M̄’s output and P̄’s output. We construct a distinguisher D′ that distinguishes
between truly random strings, and outputs of the generator g, contradicting its pseu-
dorandomness. For infinitely many values of n, nonuniform algorithm D′ has as
auxiliary input the corresponding sequence (x1, w1), (x2, w2), . . . , (xm, wm) for which
D distinguishes between the two ensembles. In order to test whether a string y of
length 2n was generated from the distribution of outputs of the generator g, D′ gen-
erates a random reference string σ′ and simulates P̄’s action on the sequence (x1, w1),
(x2, w2), . . . , (xm, wm), with respect to the reference string composed of y and σ′.
Now the verdict of D of whether the output was produced by P̄ (which uses truly
random y) or by M̄ (which uses pseudorandom y) forms a statistical test as to whether
y was truly random or generated by g.

The proof of the following lemma is the heart of our argument that the trans-
formed scheme is general zero knowledge.

Lemma 3.9. For any positive constant c, for any m ≤ nc, the two ensembles
{M̄((x1, w1), (x2, w2), . . . , (xm, wm))} and {M(x1, x2, . . . , xm)} are computationally
indistinguishable. In any sequence of instances that indexes the ensembles, all xi are
of the same length (denoted by n), and for all 1 ≤ i ≤ m, (xi, wi) ∈ R.

Proof. Consider what the simulators M̄ and M actually do. They are giving NIZK
proofs for a sequence of statements X1, . . . , Xm, derived from the sequence x1, . . . , xm,
by taking into account a reference statement y′. In more detail, they first generate a
reference statement y′, and thereafter each of them uses the truly random reference
string σ′ to execute NIZK protocols for the sequence X1, . . . , Xm, in the same way as
a true prover in (P, V ) would execute such protocols. The only difference between M̄
and M is in the sequence of witnesses that they are using, where M̄ uses the sequence
w1, . . . , wm, and M repeatedly uses s as a witness for each of the Xi (recall that s is
the seed that was used in order to generate y′).

Protocol (P, V ) is zero knowledge. By Lemma 3.4 it is witness indistinguishable.
By Lemma 3.6, even polynomially many executions of (P, V ) on the same reference
string σ′ are witness indistinguishable. Hence the ensembles that M̄ and M create
are indistinguishable.

From the two lemmas above it follows that the outputs of M and P̄ are com-
putationally indistinguishable, which completes the proof that the protocol is zero
knowledge.

Remarks.

1. In giving multiple NIZK proofs, the prover reuses public randomness (the
CRS) over and over again. However, the prover must use “fresh” private
randomness (internal random coin tosses) in each execution of the protocol.
Otherwise, zero knowledge might not be preserved. In particular, when apply-
ing our transformation to the efficient bounded NIZK described in section 2.4,
the truthful prover is expected to use a different trapdoor permutation for
each input statement being proved.

2. The complexity of the pseudorandom bit generator g has major impact on
the overall complexity of our transformation. The choice of g (and, in par-
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ticular, the time required for a nondeterministic Turing machine to accept
the language LRg ) influences the size of X, the statement that the truth-
ful prover eventually proves (which may be much larger than the size of x,
the original statement that the prover wants to prove). There is a spectrum
of constructions of pseudorandom bit generators, where the complexity of
the construction typically depends on the strength of the underlying com-
putational complexity assumptions (e.g., compare [BM] with [ILL, Ha]). In
applying our transformation, one should first determine the computational
complexity assumptions that were made in the construction of the partic-
ular bounded NIZK proof system, and based on them, select the simplest
pseudorandom bit generator.

3. The term bounded NIZK proof systems indicates that the length of the CRS
bounds the size of the (single) NP statement that can be proven. We have
seen that using general NIZK proof systems, polynomially many NP state-
ments, each of bounded length, can be proved. [BDMP] show that under
the assumption that one-way functions (and hence encryption schemes) ex-
ist, general NIZK proof systems can be used in order to prove statements
that are longer than the bound implied by the length of the CRS. For com-
pleteness, we sketch how this is done.
On input of a satisfiable 3-SAT formula Φ (any other NP-statement can be
reduced to 3-SAT, if necessary), the prover encrypts separately the satisfy-
ing value of each variable and for each clause C ∈ Φ constructs the string
composed of the concatenation of the encrypted values of the three variables
in C. Observe that the length of each such string does not depend on the
length of Φ. Each string is treated as an NP-statement: “there exists a de-
cryption of the encrypted values that would show that clause C is satisfiable.”
The prover gives a NIZK for each such statement separately, and the verifier
verifies that each of the NIZK proofs is acceptable.

4. Security against adaptive attacks.

4.1. Definitions. NIZK proof systems are useful design primitives in the con-
struction of cryptographic schemes, such as signature schemes [BG] and encryption
schemes [NY]. It is often required that the cryptographic scheme will be robust against
attacks of adaptive nature, which are the strongest types of attack. For example, a
standard security requirement of signature schemes is that even after requesting sig-
natures of polynomially many messages of his choice, the adversary is not able to
forge a signature to any new message. In order to treat adaptive attacks we extend
the security requirements of NIZK proof systems.

In a typical adaptive scenario, a polynomial time adversary A repeatedly selects
statements and observes their noninteractive proofs. His goal is to come up with
a statement x on which one of the three basic properties of NIZK proof systems is
violated: either x is true but P cannot produce a noninteractive proof for it (violating
the completeness condition) or x is false but there exists a noninteractive “proof”
that convinces V to accept x (violating the soundness condition), or x is true and the
adversary can extract useful information from the noninteractive proof that P gives
(violating the zero knowledge property).

Definition 1.2 is strong enough to serve as the definition of completeness and
soundness for the adaptive scenario. However, Definition 3.1 of zero knowledge needs
to be modified. We define the concept of adaptive zero knowledge in a way similar
to Bellare and Goldwasser [BG] (see also [GGM]’s test for pseudorandom functions).
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We call this test adaptive indistinguishability, or the AI test (partially because of
its origins as Turing’s test for artificial intelligence). In our AI test, an adversary
A is confronted with a blackbox B. His goal is to determine whether B contains a
real prover P or whether it contains a simulator M . A first requests the random
reference string σ from B. If P is inside the box, it replies with a truly random string.
If M is inside the box, it replies with a string of its choice. Now, possibly based
on σ, A generates a pair (x,w) ∈ R and sends it to B. If P is inside the box, it
produces a noninteractive proof P (x,w, σ). If M is inside the box, w is “magically”
filtered away, and M must simulate a noninteractive proof for x. This procedure of
adaptively choosing theorems and receiving noninteractive proofs for them is repeated
polynomially many times until A is ready to pass a decision: ′0′ or ′1′. (M,P ) are
said to pass the AI test if the probabilities that A outputs ′1′ when M is inside the
box and when P is inside the box are equal up to negligible additive terms.

Definition 4.1. A noninteractive adaptive proof system (P, V ) is adaptive zero
knowledge if there exists a random polynomial time simulator M such that (M,P )
pass the AI test for any nonuniform polynomial time adversary A.

We remark that in [BG]’s definition, A is not required to supply witnesses for
x ∈ LR to the blackbox. This leaves open the question of how the real prover P
(which is assumed to be efficient) comes up with a witness w for x ∈ LR, to be used
in producing a NIZK proof for this fact. One possibility is that some computationally
unbounded agent produces this witness for P . Another is that A has to produce the
witness. In our definition we choose the latter possibility, with the intention of using
it only in applications where all parties are (nonuniform) polynomial time. We do not
know if the theorems to follow (and, in particular, Theorem 4.4) hold also with respect
to the stronger definition of zero knowledge, in which a computationally unbounded
agent produces the witnesses.

Proposition 4.2. Any noninteractive proof system which is adaptive zero knowl-
edge (Definition 4.1) is also general zero knowledge (Definition 3.1).

Proof. The proof follows directly from the nonuniformity of the adversary in
Definition 4.1. If there is a sequence of inputs with respective witnesses that serves
to defeat the general zero knowledge property (according to Definition 3.1), then the
adversary A (of Definition 4.1) can hold this same sequence as auxiliary input and
defeat the adaptive zero knowledge property.

A somewhat weaker condition than adaptive zero knowledge is single statement
adaptive zero knowledge. For such proof systems, the adversary of the AI test is
allowed to request only one noninteractive proof from B before passing his judgment
as to what is inside the box.

Proposition 4.3. Any noninteractive proof system which is single statement
adaptive zero knowledge is also bounded zero knowledge (Definition 1.3).

Proof. The proof follows directly from the nonuniformity of the adversary.
Remark. The converse of the above proposition is probably not true. For example,

consider the NIZK proposed in [BDMP] for the language NQR. [BDMP] prove that
the noninteractive proof system for this language is zero knowledge by producing a
simulator M that constructs a CRS only after it sees the input x. In contrast, adaptive
zero knowledge postulates that σ is generated first, and x is chosen only later. Despite
the fact that [BDMP]’s NIZK proof system for the language NQR is bounded zero
knowledge, it is not known to be single statement adaptive zero knowledge.

4.2. Robustness of our protocols. All theorems and lemmas that deal with
the adaptive zero knowledge scenario are straightforward modifications of their coun-
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terparts that dealt with the nonadaptive scenario. For this reason, we only state our
theorems, and give some “hints” to help the reader in modifying the proofs in previous
sections so that they also apply to the adaptive case.

Theorem 4.4. The NIZK of section 2 is single statement adaptive zero knowl-
edge.

Proof. There are two parts to a proof that a certain protocol is zero knowledge.
One part is to construct the simulator M . The other part is to prove that its output
is indistinguishable from the output of the real prover.

We first address the problem of constructing the “adaptive” simulation. Consider
the simulator M described in section 2. This simulator generates a reference string σ′

independently of the common input x. This σ′ can be used to simulate a noninteractive
proof for any input x. Consequently, the same simulator can be used even if the input
statement is chosen adaptively after the CRS is chosen.

The proof of indistinguishability follows the same arguments as those which are
used in the proof of subsection 2.3.3. Recall that it was shown that if the proof system
is not zero knowledge on input (x,w) ∈ R, then one could construct an efficient
algorithm (denoted by C) that predicts the hard bits of the one-way permutation
(or trapdoor permutation, if the prover is required to be efficient). This algorithm
had (x,w) as auxiliary input and constructed a reference string σ in the course of
its operation. For the case of adaptive zero knowledge, the end result would again
be an efficient algorithm C that predicts the hard bits of the one-way permutation.
However, this algorithm would not explicitly receive any (x,w) ∈ R as auxiliary input.
The reason for this is that in the adaptive scenario, the adversary A need not have a
prespecified (x,w) that it uses in foiling the zero knowledge property. Instead, A may
generate (x,w) only after observing σ. Likewise, we must allow C to generate (x,w)
only after constructing σ, in a way similar to A. Hence, instead of supplying C with
explicit (x,w) as auxiliary input, we supply it with the auxiliary input of A, which C
can later use to generate (x,w) that depend on σ.

In the rest of this section we consider only NIZK proofs with efficient provers.

Theorem 4.5. The transformation of section 3.3 transforms efficient noninter-
active single statement adaptive zero knowledge proof systems into efficient (general)
noninteractive adaptive zero knowledge proof systems.

Proof. Theorem 4.5 is proved in the same way as Theorem 3.7, which is its
nonadaptive counterpart. We only sketch the modifications that are necessary.

The proof of the completeness and soundness conditions is straightforward. The
main emphasis is on the proof of the adaptive zero knowledge property. Recall that
in order to prove Theorem 3.7, we used the concept of witness indistinguishability.
In order to prove Theorem 4.5, we define a corresponding notion of adaptive witness
indistinguishability. Once this concept is defined, and its main properties are estab-
lished (see Lemmas 4.7 and 4.8 below), the proof of Theorem 4.5 can be carried out
in a way similar to the proof of Theorem 3.7.

In the AI test for witness indistinguishability a nonuniform polynomial time ad-
versary A is confronted with a blackbox B that may contain one of two possible
provers, denoted by P1 and P2. The provers differ in the witnesses that they select to
use in producing NIZK proofs, and the goal of A is to determine whether B contains
P1 or P2. A first requests the random reference string σ from B. Now, possibly based
on σ, A generates a triplet (x,w1, w2), where (x,w1) ∈ LR and (x,w2) ∈ LR and
sends the triplet to B. If P1 is inside B, it uses only the first of the given witnesses for
x to generate the noninteractive proof P (x,w1, σ). If P2 is inside B, it uses only the
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second of the given witnesses to generate P (x,w2, σ). This procedure of adaptively
choosing theorems and receiving noninteractive proofs for them is repeated polyno-
mially many times until A is ready to pass a decision: ′0′ or ′1′. (P1, P2) are said to
pass the AI test for witness indistinguishability if the probabilities that A outputs ′1′

when P1 is inside the box and when P2 is inside the box are equal up to negligible
additive terms.

Definition 4.6. A noninteractive adaptive proof system (P, V ) is adaptive wit-
ness indistinguishable if (P1, P2) pass the AI test for witness indistinguishability.

In single statement adaptive witness indistinguishability, the adversary A is al-
lowed to request only one noninteractive proof from B before passing his judgment of
whether P1 or P2 is inside the box.

Lemma 4.7. Any noninteractive proof system which is single statement adaptive
zero knowledge is also single statement adaptive witness indistinguishable.

The proof of Lemma 4.7 is similar to the proof Lemma 3.4 and is omitted.
The following lemma shows that adaptive witness indistinguishability is preserved

under repeated applications of the noninteractive proof system with the same random
reference string.

Lemma 4.8. Any noninteractive proof system which is single statement adaptive
witness indistinguishable is also adaptive witness indistinguishable.

Proof. Assume that there exists an adversary A which adaptively generates
triplets (xi, w

1
i , w

2
i ) (for i ≥ 1) and can distinguish between P1 and P2. By the

“hybrid” argument of [GM], there must be a “polynomial jump” somewhere in the
execution: there exists k, such that if for i < k the adversary uses the first of the two
generated witnesses of each instance to produce P (xi, w

1
i , σ) by itself, then generates

(xk, w
1
k, w

2
k) and gives it to the blackbox, and finally (for i > k) uses the second of

the two generated witnesses of each instance to produce P (xi, w
2
i , σ) by itself, then

A can distinguish between the case that P1 is inside the box and the case that P2 is
inside the box. This contradicts our assumption that the original protocol was single
statement adaptive witness indistinguishable.

The rest of the proof of Theorem 4.5 can be carried out in a way similar to the
proof of Theorem 3.7. The details are omitted.

5. Conclusions. We show how one can construct general NIZK proof systems
under general computational complexity assumptions. Theoretically, NIZK proof sys-
tems have numerous cryptographic applications ([BG], [NY], and we are confident
that more will follow). However, to be useful in practice, the efficiency of NIZK proof
systems must be greatly improved. One parameter that deserves special attention
is the length of the CRS. To prove Hamiltonicity of n-node graphs, our NIZK proof
system requires |σ| = Ω(n11/2). Recently, Kilian [K94] presented considerably more
efficient NIZK proof systems for circuit satisfiability, and this was further simplified
and improved by Kilian and Petrank [KP], to a point where the complexity of NIZK
proof systems for NP statements almost matches that of the most efficient known
interactive zero knowledge proof systems.

The following question remains open: what are the minimal computational com-
plexity assumptions that support bounded NIZK proof systems?

Recall that once bounded NIZK proof systems with efficient provers are con-
structed, the transformation to general NIZK proof systems requires only the assump-
tion that one-way functions exist and are relatively efficient. Since the transformation
to general NIZK proof systems requires only bounded noninteractive witness indistin-
guishable proof systems as a starting point, the above question can be reformulated
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with NIZK replaced by noninteractive witness indistinguishability.
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Abstract. This paper presents an analysis of the following load balancing algorithm. At each
step, each node in a network examines the number of tokens at each of its neighbors and sends a
token to each neighbor with at least 2d+1 fewer tokens, where d is the maximum degree of any node
in the network. We show that within O(∆/α) steps, the algorithm reduces the maximum difference
in tokens between any two nodes to at most O((d2 logn)/α), where ∆ is the global imbalance in
tokens (i.e., the maximum difference between the number of tokens at any node initially and the
average number of tokens), n is the number of nodes in the network, and α is the edge expansion
of the network. The time bound is tight in the sense that for any graph with edge expansion α,
and for any value ∆, there exists an initial distribution of tokens with imbalance ∆ for which the
time to reduce the imbalance to even ∆/2 is at least Ω(∆/α). The bound on the final imbalance
is tight in the sense that there exists a class of networks that can be locally balanced everywhere
(i.e., the maximum difference in tokens between any two neighbors is at most 2d), while the global
imbalance remains Ω((d2 logn)/α). Furthermore, we show that upon reaching a state with a global
imbalance of O((d2 logn)/α), the time for this algorithm to locally balance the network can be as
large as Ω(n1/2). We extend our analysis to a variant of this algorithm for dynamic and asynchronous
networks. We also present tight bounds for a randomized algorithm in which each node sends at
most one token in each step.
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1. Introduction. A natural way to balance the workload in a distributed system
is to have each workstation periodically poll the other stations to which it is connected
and send some of its work to stations with less work pending. This paper analyzes
the effectiveness of this local load balancing strategy in the simplified scenario in
which each workstation has a collection of independent unit-size jobs (called tokens)
that can be executed on any other workstation. We model a distributed system as a
graph, where nodes correspond to workstations and edges correspond to connections
between stations, and we assume that in one unit of time, at most one token can be
transmitted across an edge of the graph in each direction. Our analysis addresses only
the static load balancing aspect of this problem: we assume that each processor has
an initial collection of tokens and that no tokens are created or destroyed while the
tokens are being balanced.

We analyze the algorithms in this paper in terms of the initial imbalance of tokens,
i.e., the maximum difference between the number of tokens at any node and the
average number of tokens, which we denote ∆; the number of nodes in the graph,
which we denote n; the maximum degree of the graph, d; and the node and edge
expansion of the graph. We define the node expansion µ of a graph G to be the
largest value such that every set S of n/2 or fewer nodes in G has at least µ|S|
neighbors outside of S. We define the edge expansion α of a graph G to be the largest
value such that for every set S of n/2 or fewer nodes in G, there are at least α|S|
edges in G with one endpoint in S and the other not in S.

The performance of an algorithm is characterized by the time that it takes to
balance the tokens and by the final balance that it achieves. We say that an algorithm
globally balances (or just balances) to within t tokens if the maximum difference in the
number of tokens between any two nodes in the graph is at most t. We say that an
algorithm locally balances to within t tokens if the maximum difference in the number
of tokens between any two neighboring nodes in the graph is at most t.

We analyze two different types of algorithms in this paper: single-port and multi-
port. In the single-port model, a node may send and/or receive at most one token in
one unit of time. In the multiport model, a node may send and/or receive a token
across all of its edges (there may be as many as d) in a single unit of time. Not
surprisingly, the load balancing algorithms run faster in the multiport model. In
practice, however, single-port nodes may be preferred to multiport nodes because
they are easier and less costly to build.

1.1. Our results. This paper analyzes the simplest and most natural local al-
gorithms in both the single-port and multiport models.

In the single-port algorithm, a matching is randomly chosen at each step. First,
each (undirected) edge in the network is independently selected to be a candidate
with probability 1/(4d). Then each candidate edge (u, v) for which there is another
candidate edge (u, x) or (y, v) is removed from the set of candidates. The remaining
candidates form a matching M in the graph. For each edge (u, v) in M , u sends a
token to v if at the beginning of the step node u contains at least two more tokens
than v. This algorithm was first analyzed in [14].

We analyze the performance of the single-port algorithm in terms of both the
edge expansion and the node expansion of the graph. In terms of edge expansion,
we show that the single-port algorithm balances to within O((d logn)/α) tokens in
O(d∆/α) steps with high probability. In terms of node expansion, the final imbalance
is O((logn)/µ) and the time is O(d∆/µ) with high probability. (To compare these
bounds, note that µ ≤ α ≤ dµ.) The time bounds are tight in the sense that for many
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values of n, d, α, µ, and ∆, there is a graph with n nodes, maximum degree d, edge
expansion α or node expansion µ, and an initial placement of tokens with imbalance
∆ such that the time (for any algorithm) to balance to within even ∆/2 tokens is at
least Ω(d∆/α). Similarly, in terms of node expansion, there exist classes of graphs
where the time to balance to within even ∆/2 tokens is at least Ω(d∆/µ).

The multiport algorithm is simpler and deterministic. At each step, a token is
sent from node u to node v across edge (u, v) if at the beginning of the step node u
contains at least 2d+ 1 more tokens than node v. This algorithm was first analyzed
in [2].

As in the single-port case, we analyze the multiport algorithm in terms of both
edge expansion and node expansion. In terms of edge expansion, the algorithm bal-
ances to within O((d2 logn)/α) tokens in O(∆/α) steps. This bound is tight in the
sense that for any network with edge expansion α, and any value ∆, there exists
an initial distribution of tokens with imbalance ∆ such that the time to reduce the
imbalance to even ∆/2 is Ω(∆/α). In terms of node expansion, the algorithm bal-
ances to within O((d logn)/µ) tokens in O(∆/µ) time. This bound is tight in the
sense that for many values of d, n, and µ, and any value ∆, there exists an n-node,
maximum degree d graph with node expansion µ and an initial distribution of tokens
with imbalance ∆ for which the time to balance to within ∆/2 tokens is Ω(∆/µ).

Both the single-port and the multiport algorithms will eventually locally bal-
ance the network, the single-port algorithm to within one token and the multi-
port algorithm to within 2d tokens. However, even after reducing the global im-
balance to a small value, the time for either of these algorithms to reach a locally
balanced state can be quite large. In particular, we show that after reaching a
state that is globally balanced to within O((d logn)/µ) tokens, the multiport algo-
rithm may take another Ω(n1/2) steps to reach a state that is locally balanced to
within 2d tokens. For networks with large node expansion and small degree, e.g.,
µ = Ω(1) and d = O(1), and small initial imbalance, e.g., ∆ = O((d log2 n)/µ),
the time to locally balance the network, Ω(n1/2), may be much larger than the
time, O(∆/µ) = O((d log2 n)/µ2) = O(log2 n), to reach a state that is globally bal-
anced to within O((d logn)/µ) tokens. Moreover, there exist networks with diameter
Θ(logn/µ) for which even after reducing the global imbalance to the asymptotically
best possible value of O(d logn/µ) tokens in optimal time, the multiport algorithm
can still take a long time to locally balance to within d tokens. We prove similar
bounds for the single-port algorithm.

Thus far we have described a network model in which the nodes are synchronized
by a global clock (i.e., a synchronous network) and in which the edges are assumed
not to fail. With minor modifications, however, the load balancing algorithms can be
made to work in both asynchronous and dynamic networks. In a dynamic network,
the set of edges in the network may vary at each time step. In any time step, a live
edge is one that can transmit one message in each direction. We assume that at each
time step, each node in a synchronous dynamic network knows which of its edges are
live. In an asynchronous network, the topology is fixed, but an adversary determines
the speed at which each edge operates at every instant of time. For every undirected
edge between two nodes, we allow at most two messages to be in transit at any instant
in time. These messages may travel in opposite directions across the edge, or both
may travel in one direction while no message travels in the opposite direction. An
edge is said to be live for a unit interval of time if every message that was in transit
across the edge (in either direction) at the beginning of the interval is guaranteed to
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reach the end of the edge by the end of the interval. We analyze the performance of
the multiport load balancing algorithm under the assumption that at each time step,
the set of live edges has some edge expansion α or node expansion µ.

We also study the off-line load balancing problem, in which every node has knowl-
edge of the global state of the network. This problem has been studied on static syn-
chronous networks in [29]. We use their results to obtain tight bounds on off-line load
balancing in terms of edge expansion and node expansion. For the single-port model,
we prove that any network can be balanced off-line in d(1 + µ)∆/µe steps so that
no node has more than two tokens more than the average. This result can be used
to show that any network can be balanced off-line to within three tokens in at most
2d(1 + µ)∆/µe steps in the single-port model. Moreover, there exists a network and
an initial token distribution for which any single-port off-line algorithm takes more
than d(1 + µ)∆/µe steps to balance the network to within one token. Similarly, in
the multiport model, any network can be balanced off-line in at most d∆/αe steps so
that no node contains more than d tokens more than the average. Using this result,
we show that any network can be balanced to within d+ 1 tokens in at most 2d∆/αe
steps. It is easy to observe that for any network there exists an initial token distribu-
tion such that any algorithm will take at least d∆/αe steps to balance the network to
within one token.

1.2. Previous and related work. Load balancing has been studied extensively
because it comes up in a wide variety of settings, including adaptive mesh partitioning
[17, 39], fine-grain functional programming [16], job scheduling in operating systems
[13, 25], and distributed tree searching [22, 26]. A number of models have been
proposed for load balancing, differing chiefly in the amount of global information used
by the load balancing algorithm [2, 11, 12, 14, 27, 31]. In these models, algorithms
have been proposed for specific applications; also, proposed heuristics and algorithms
have been analyzed using simulations and queueing-theoretic techniques [28, 35, 37].
In what follows, we focus on models that allow only local algorithms and on prior
work that takes an analytical approach to the load balancing problem.

Local algorithms restricted to particular networks have been studied on counting
networks [4, 23], hypercubes [20, 34], and meshes [17, 29]. Another class of networks on
which load balancing has been studied is the class of expanders. Peleg and Upfal [32]
pioneered this study by identifying certain small-degree expanders as being suitable
for load balancing. Their work has been extended in [9, 18, 33]. These algorithms
use either strong expanders to approximately balance the network or the AKS sorting
network [3] to perfectly balance the network. Thus, they do not work on networks
of arbitrary topology. Also, these algorithms work by setting up fixed paths through
the network on which load is moved and therefore cannot cope with changes in the
network topology. In contrast, our local algorithm works on any arbitrary dynamic
network that remains connected.

On arbitrary topologies, load balancing has been studied under two models. In
the first model, any amount of load can be moved across a link in any time step [8,
12, 14, 15, 19, 36]. The second model is the one that we adopt here, namely, one
in which at most one unit load can be moved across a link in each time step. Load
balancing algorithms for the second model were first proposed and analyzed in [2]
for the multiport variant and in [14] for the single-port variant. The upper bounds
established by them are suboptimal by a factor of Ω(log(n∆)) or Ω(

√
n), respectively.

We improve these results for both single-port and multiport variants.

As remarked earlier, our multiport results (and those in [2]) hold even for dynamic
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or asynchronous networks. In general, work on dynamic and asynchronous networks
has been limited. In work related to load balancing, for instance, an end-to-end com-
munication problem, namely, one in which messages are routed from a single source to
a single destination, has been studied in [1, 7] on dynamic networks. Our scenario is
substantially more involved since we are required to move load between several sources
and destinations simultaneously. Another result on dynamic networks is the recent
analysis of a local algorithm for the approximate multicommodity flow problem [5, 6].
While their result has several applications including the end-to-end communication
problem mentioned above, it does not seem to extend to load balancing. Our result
on load balancing is related to their work in the technique; however, our algorithm
and analysis are simpler and we obtain optimal bounds for our problem.

The convergence of local load balancing algorithms is related to that of random
walks on Markov chains. Indeed the convergence bounds in both cases depend on
the expansion properties of the underlying graph, and they are established using
potential function arguments. There are, however, two important differences. First,
the analysis of the rapid convergence of random walks [21, 30] relies on averaging
arbitrary probabilities across any edge. This corresponds to sending an arbitrary
(possibly nonintegral) load along an edge, which is forbidden in our model. In this
sense, the analysis in [12] (and all references in the unbounded capacity model) are
similar to the random walk analysis. Second, our argument uses an exponential
potential function. The analyses in [12, 21, 30], in contrast, use quadratic potential
functions. Our potential function and our amortized analysis were necessary, since a
number of previous attempts using quadratic potential functions yielded suboptimal
results [2, 14] for local load balancing.

As mentioned earlier, we consider only the static aspect of load balancing. For a
recent survey on the dynamic aspect of this problem (i.e., when tokens can be created
or destroyed while the tokens are being balanced), see [40].

1.3. Outline. The remainder of this paper is organized as follows. Section 2
contains some definitions. Section 3.1 analyzes the performance of the single-port
algorithm. Section 3.2 analyzes the performance of the multiport algorithm. In
section 4, we show that the time to reach a locally balanced state can be quite large,
even if the network starts in a state that is well balanced globally. Section 5 describes
extensions to dynamic and asynchronous networks. Finally, section 6 presents tight
bounds on off-line load balancing.

2. Preliminaries. For any network G = (V,E) with n nodes and edge expansion
α, we denote the number of tokens at v ∈ V by w(v). We denote the average number
of tokens by ρ, i.e., ρ = (

∑
v∈V w(v))/n. For simplicity, throughout this paper we

assume that ρ is an integer. We assign a unique rank from [1, w(v)] to every token at
v. The height of a token is its rank minus ρ. The height of a node is the maximum
among the heights of all its tokens.

Consider a partition of V given by {Si}, where the index i is any integer (positive,
negative, or zero) and Si may be empty for any i. Let S>j be ∪i>jSi. Similarly, we
define S≥j , S<j , and S≤j . We define index i to be good if |Si| ≤ α|S>i|/2d. An
index that is not good is called a bad index. Thus, index i is good if there are at
least α|S>i|/2 edges from nodes in S>i to nodes in S<i. To observe this, note that
the number of edges out of S>i is at least α|S>i|. On the other hand, the number
of edges coming out of Si is at most d|Si|, which is at most α|S>i|/2 if i is good.
Therefore, at least α|S>i|/2 edges go from nodes in S>i to nodes in S<i.
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For any bad index i, it follows from the equality |Si| = |S>i−1| − |S>i| that
|S>i| < |S>i−1|/(1 +α/(2d)). Consider the reduction in |S>i| as i increases. For each
bad index, there is a reduction by a factor of 1/(1 + α/(2d)). Hence, there can be at
most dlog(1+α/(2d)) ne bad indices because (1 + α/(2d))log(1+α/(2d)) n ≥ n. It follows
that at least half of the indices in [1, 2dlog(1+α/(2d)) ne] are good.

Finally, we note that for 0 ≤ a ≤ 1, 1+a ≥ ea−a2/2 ≥ ea/2. Thus ln(1+a) ≥ a/2,
implying log(1 + a) = Θ(a). We will use this result several times in the sections to
follow, without further justification.

3. Analysis for static synchronous networks.

3.1. The single-port model. In this section, we analyze the single-port load
balancing algorithm that is described in section 1.1.

Theorem 3.1. For an arbitrary network G with n nodes, maximum degree d,
edge expansion α, and initial imbalance ∆, the single-port algorithm balances within
O((d logn)/α) tokens in O((d∆)/α) steps, with high probability.

For the sake of analysis, before every step we partition the set of nodes according
to how many tokens they contain. For every integer i, we denote the set of nodes
having ρ + i tokens as Si. Consider the first T steps of the algorithm, with T to be
specified later. It holds that either |S>0| ≤ n/2 at the start of at least half the steps,
or |S≤0| ≤ n/2 at the start of at least half the steps. Without loss of generality,
assume the former is true. Thus, every subset of nodes in S>0 expands, and we will
use this expansion property to show that the number of nodes that have at least
ρ+ 2 log(1+α/(2d)) n tokens rapidly goes to zero.

Recall that at least half of the indices in [1, 2dlog(1+α/(2d)) ne] are good in any
time step. Therefore, there exists an index j in [1, 2dlog(1+α/(2d)) ne] that is good in
at least half of those time steps in which |S>0| ≤ n/2. Hence j is good in at least T/4
steps.

With every token at height x we associate a potential of φ(x), where φ : N → R
is defined as follows:

φ(x) =

{
0 if x ≤ j,
(1 + ν)x otherwise,

(3.1)

where ν = α/(cd) and c > 1 is a real constant to be specified later. The potential of the
network is the sum of the potentials of all tokens in the network. While transmitting a
token, every node sends its token with maximum height. Similarly, any token arriving
at a node with height h is assigned height h+ 1. It follows from the definition of the
potential function, and the fact that the height of a token never increases, that the
potential of the network never increases. In the following, we show that during any
step when j is good, the expected decrease in the potential of the network is at least
an εν2 fraction of the potential before the step, where ε > 0 is a real constant to be
specified later.

Before proving Theorem 3.1, we present an informal outline of the proof. For
simplicity, let us assume that G is a constant-degree expander, i.e., d = O(1) and
µ = Ω(1). Consider the scenario in which all of the indices greater than j are bad. In
this situation, for indices greater than j, the size of the set S≥i decreases exponentially
with increasing i, and hence the number of tokens with height i decreases exponentially
with increasing i. If the rate of growth of φ(x) with increasing x is smaller than the
rate of decrease of |S≥i| with increasing i, then the total potential due to tokens at
height i dominates the total potential due to tokens at height greater than i. In



ANALYSIS OF LOCAL LOAD BALANCING 35

such a case the potential of S>j is essentially a constant times the potential of tokens
at height j + 1. In addition, if the potential of tokens at height at most j is zero,
then in every step when j is good, there is a constant fraction potential drop because
a constant fraction of the nodes in S>j send tokens to S<j in such a step. The
exponential function we have defined in (3.1) satisfies the properties described above
for c sufficiently large.

In general, the indices greater than j may form any sequence of good and bad
indices, provided that the upper bound on the number of bad indices is respected.
We consider the indices greater than j in reverse order and show by an amortized
analysis that for each index i we can view all indices greater than or equal to i as
bad. If i is bad, then this view is trivially preserved; otherwise, the number of edges
from S>i to S<i is at least α|S>i|/2 and hence there is a significant potential drop
across the cut (S≤i, S>i). This drop can be used to rearrange the potential of S>i in
order to maintain the view that all indices greater than i are bad. We then invoke
the argument for the case in which all indices greater than j are bad, and complete
the proof.

Consider step t of the algorithm. Let Φt denote the potential of the network after
step t > 0. Let Mi be the set of tokens that are sent from a node in S>i to a node
in S<i. Note that a token may appear in several different sets Mi. Let mi = |Mi|.
We say that a token p has an i-drop of φ(i+ 1)− φ(i) if p moves from a node in S>i
to a node in S<i. Thus, the potential drop due to a token moving on an edge from
node u ∈ Si to node v ∈ Si′ , i > i′ + 1, can be expressed as the sum of k-drops for
i′ < k < i. In Lemma 3.2, we use this notion of i-drops to relate the total potential
drop in step t, Ψ, to the mi’s.

Lemma 3.2.

Ψ =

∑
i>j

miν(1 + ν)i

+mj(1 + ν)j+1.

Proof. Let M be the set of tokens that are moved from a node in S>j . (Note that
tokens that start from and end at nodes in S>j also belong to M .) For any token p,
let a(p) (resp., b(p)) be the height of p after (resp., before) step t.

Ψ =
∑
p∈M

(φ(b(p))− φ(a(p)))

=
∑
p∈M

∑
a(p)≤i<b(p)

(φ(i+ 1)− φ(i))

=
∑
i≥j

∑
p∈Mi

(φ(i+ 1)− φ(i))

=

∑
i>j

∑
p∈Mi

(φ(i+ 1)− φ(i))

+
∑
p∈Mj

(φ(j + 1)− φ(j))

=

∑
i>j

∑
p∈Mi

ν(1 + ν)i

+
∑
p∈Mj

(1 + ν)j+1

=

∑
i>j

miν(1 + ν)i

+mj(1 + ν)j+1.
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(The second equation holds since the sum of φ(i+ 1)−φ(i) over i telescopes. For the
third equation, we interchange the order of summation and use the fact that φ(i) is
zero for all i ≤ j. The fourth equation is obtained by separating the case i ≥ j into
two cases i > j and i = j. For deriving the fifth equation, we use (i) for all i > j,
φ(i + 1) − φ(i) = ν(1 + ν)i, and (ii) φ(j) = 0. The last equation follows from the
definition of mi.)

We now describe the amortized analysis, which we alluded to earlier in this section,
that we use to prove Theorem 3.1. We associate a charge of εν2φ(h) with each token
at height h. We show that we can pay for all of the charges using the expected
potential drop E[Ψ], which implies a lower bound on E[Ψ]. We consider the indices
in [j + 1, `] in reverse order, where ` is the maximum token height. For every i in
[j, `], we maintain a “debt” term, given by Γi below, which is the difference between
the charges due to tokens at height greater than i and the sum of i′-drops for i′ > i.
We will place an upper bound on E[Γi] that lets us view all of the indices in [i+ 1, `]
as bad indices. In other words, we upper bound E[Γi] by εν|S≥i|(1 + ν)i. It follows
from this upper bound and the informal argument outlined earlier in this section that
the expected total debt can be paid for by the expected drop across index j.

Formally, for any i > j, we define

Ψi =
∑
k≥i

mkν(1 + ν)k,

Γi = (εν2)

 ∑
p:b(p)≥i

(1 + ν)b(p)

−Ψi.

We also define

Γ = (εν2)

 ∑
p:b(p)>j

(1 + ν)b(p)

−Ψ.

Note that Φt−1 =
∑
p:b(p)>j(1 + ν)b(p) is the total potential of S>j prior to step t.

In order to prove the upper bound on E[Γi], we place a lower bound on E[mi]
that is obtained from the following lemma of [14].

Lemma 3.3 (see [14]). For any edge e ∈ E, the probability that e is selected in
the matching is at least 1/(8d).

Lemma 3.4. There exists a real constant ε > 0 such that for all i > j, we have
E[Γi] ≤ (εν)|S≥i|(1 + ν)i.

Proof. The proof is by reverse induction on i. If i > `, then the claim holds
trivially since Γi and |S≥i| are both equal to zero. (Recall that ` denotes the maximum
token height.) Therefore, for the base case we consider i = `. Since m` = 0, we have
Ψ` = 0. Thus, Γ` = (εν2)|S`|(1 + ν)` ≤ (εν)|S≥`|(1 + ν)`, since ν = α/(cd) ≤ 1/c ≤ 1
by our choice of c.

For the induction step we consider two cases, depending on whether i is good or
bad. We begin with the case when i is good. By the definition of a good index, we
have |Si| ≤ α|S>i|/2d. Since each node has at most d adjacent edges, there are at
most α|S>i|/2 edges adjacent to nodes in Si. Therefore, there are at most α|S>i|/2
edges from S>i to Si. By the expansion property of the graph, S<i has at least α|S<i|
edges to nodes in S≥i, so there are at least α|S>i|/2 edges from S>i to S<i. By
Lemma 3.3, we have E[mi] ≥ α|S>i|/(16d).
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We are now ready to place a bound on E[Γi]. By definition, Γi can be calculated
by subtracting the sum of i-drops from Γi+1 and adding the charges due to tokens at
height i. Therefore, we have

E[Γi] = E[Γi+1] + (εν2)|S≥i|(1 + ν)i − E[mi]ν(1 + ν)i

≤ E[Γi+1] + (εν2)|S≥i|(1 + ν)i − cν2|S>i|(1 + ν)i/16

≤ E[Γi+1]− (ν2)|S≥i|(1 + ν)i(f(c, α, d)− ε)
≤ (εν)|S>i|(1 + ν)i+1 − (ν2)|S≥i|(1 + ν)i(f(c, α, d)− ε)
≤ (εν)|S≥i|(1 + ν)i((1 + ν)− ν(f(c, α, d)− ε)/ε),

where f(c, α, d) = c/(16(1 + α/(2d))). (In the first equation, we use the fact the
number of tokens p such that b(p) = i is |S≥i|. The second equation follows from
the lower bound on E[mi]. The third equation follows from the fact that |S>i| ≥
|S≥i|/(1 + α/(2d)) whenever i is a good index. The fourth equation follows from the
induction hypothesis. The last equation follows from the fact that |S>i| ≤ |S≥i|.)

The second case is when i is bad. Thus |Si| > α|S>i|/(2d). We now place an
upper bound on E[Γi] as follows.

E[Γi] ≤ E[Γi+1] + (εν2)|S≥i|(1 + ν)i

≤ (εν)|S>i|(1 + ν)i+1 + (εν2)|S≥i|(1 + ν)i

≤ (εν)|S≥i|(1 + ν)i((1 + ν)/(1 + cν/2) + ν).

(In the first equation, we use the fact the number of tokens p such that b(p) = i is
|S≥i|. The second equation follows from the induction hypothesis. The third equation
follows from the fact that |S≥i| > (1 + α/(2d))|S>i| whenever i is a bad index.)

We now complete the induction step by determining values for c and ε such that
the following equations hold:

((1 + ν)− ν(f(c, α, d)− ε)/ε) ≤ 1,(3.2)

(1 + ν)/(1 + cν/2) + ν ≤ 1.(3.3)

We set c to be any constant greater than or equal to (α/d) + 4 (e.g., c = 5). For this
choice of c, ν = α/(cd) ≤ (c− 4)/c, and hence 2ν+ cν2/2 ≤ cν/2. Therefore, we have

(1 + ν)/(1 + cν/2) + ν = (1 + 2ν + cν2/2)/(1 + cν/2)

≤ (1 + cν/2)/(1 + cν/2)

= 1.

Thus, (3.3) is satisfied. Since α ≤ d, we find that f(c, α, d) ≥ c/24. We now set
ε = c/48 to establish (3.2). (For example, c = 5 and ε = 5/48.)

We are now in a position to bound E[Γ] on those steps in which j is good. By
applying Lemma 3.4 with i = j + 1, we obtain that E[Γj+1] ≤ (εν)|S≥j+1|(1 + ν)j+1.
If j is good, then by the definitions of Γ, Γj+1, and Ψ, we have

E[Γ] = E[Γj+1]− E[mj ](1 + ν)j+1

≤ E[Γj+1]− α|S>j |(1 + ν)j+1/(16d)

≤ (εν)|S>j |(1 + ν)j+1 − α|S>j |(1 + ν)j+1/(16d)

= ν|S>j |(1 + ν)j+1(ε− c/16)

≤ 0.
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(The second equation follows from the fact that E[mj ] ≥ α|S>j |/16d whenever j
is good. The third equation follows from the upper bound on E[Γj+1]. The fifth
equation holds since c/16 ≥ ε.)

We now derive a lower bound on the expected drop in the potential of the network
during a sequence of T steps. By the definitions of Ψ and Γ, we have Φt = Φt−1 −Ψ
and Γ = εν2Φt−1 − Ψ. If j is good during step t, we have E[Γ] ≤ 0, and therefore
E[Φt] ≤ Φt−1(1 − εν2), where the expectation is taken over the random matching
selected in step t. Since j is good in at least T/4 steps, we obtain that E[Φt+T ] ≤
Φt(1− εν2)T/4, where the expectation is taken over all the random matchings in the
T steps. By setting T = d(4 ln 4)/(εν2)e, we obtain E[Φt+T ] ≤ Φt/4. By Markov’s
inequality, the probability that Φt+T ≥ Φt/2 is at most 1/2. Therefore, using standard
Chernoff bounds [10], we can show that in T ′ = 8aT d(log Φ0 + log n)e steps, ΦT ′ > 1
with probability at most O(1/(Φ0)a + 1/na) for any constant a > 0.

If ∆ is at most 2 log(1+α/(2d)) n, then the claim of the theorem holds trivially.
Accordingly, we assume that ∆ is greater than 2 log(1+α/(2d)) n in what follows. Since

Φ0 is at least (1+ν)∆, Φ0 is at least n2/c. Therefore, 1/(Φ0)a is inverse-polynomial in
n. Since Φ0 ≤ n(1 + ν)∆+1/ν, we have log Φ0 ≤ (∆ + 1)(ν) + logn− log ν. Therefore,
for T ′ = O(∆d/α+d2 logn/α2), we have ΦT ′ < 1 with high probability, which implies
that after T ′ steps |S>2 log(1+α/(2d)) n| = 0 with high probability.

To establish balance in the number of tokens below the average, we use an av-
eraging argument to show that after T ′ steps |S<−2 log(1+α/(2d)) n| ≤ n/2 with high
probability and then repeat the above arguments with the potential redefined appro-
priately. This proves Theorem 3.1.

3.2. The multiport model. In this section, we analyze the deterministic multi-
port algorithm described in section 1.1.

Theorem 3.5. For an arbitrary network G with n nodes, maximum degree d,
edge expansion α, and initial imbalance ∆, the multiport algorithm load balances to
within O((d2 logn)/α) tokens in O(∆/α) steps.

The proof of Theorem 3.5 is similar to that of Theorem 3.1. We assign a potential
to every token, where the potential is exponential in the height of the token. We then
show by means of an amortized analysis that a suitable rearrangement of the potential
reduces every instance of the problem to a special instance that we understand well.

For the sake of analysis, before every step we partition the set of nodes according
to how many tokens they contain. For every integer i, we denote the set of nodes
having between ρ − d + 2id and ρ + d − 1 + 2id tokens as Si. (Recall that ρ is the
average number of tokens per node.) Consider the first T steps of the algorithm
with T to be specified later. Without loss of generality, we assume that |S>0| ≤ n/2
holds in at least half of these steps. As shown in section 2, there exists an index j in
[1, 2dlog(1+α/(2d)) ne] that is good in at least half of those steps in which |S>0| ≤ n/2.
Hence in T steps of the algorithm, j is good in at least T/4 steps.

With every token at height h we associate a potential of φ(h), where φ : N → R
is defined as follows:

φ(x) =

{
0 if x ≤ 2jd,
(1 + ν)x otherwise,

where ν = α/(cd2) and c > 0 is a constant to be specified later. The potential of the
network is the sum of the potentials of all tokens in the network.

While transmitting some number (say, m) of tokens in a particular step, a node
sends the m highest-ranked tokens. Similarly, if m tokens arrive at a node during a
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step, they are assigned the m highest ranks within the node. Thus, tokens that do
not move retain their ranks after the step. We now describe what specific ranks we
assign to tokens that move during any step t. Let u be a node in S<i with height h
at the start of step t. Let A (resp., B) be the set of tokens that u receives from nodes
in S>i (resp., S≤i). We assign new ranks to tokens in A and B such that the rank of
every token in A is less than that of every token in B. Let C be the set of tokens in
A that attain height at most h+ (d/2) after the step. Since |A| ≤ d, by the choice of
our ranking, we have |C| ≥ |A|/2. We call C the set of primary tokens. We also note
that for any node v with height h all tokens leaving v during a step are at height at
least h− d+ 1 prior to the step.

It follows from the definition of the potential function and the fact that the height
of a token never increases that the network potential never increases. In the following
we show that whenever j is good the potential of S>j decreases by a factor of εν2d2,
where ε > 0 is a real constant to be specified later. (For the sake of simplicity, we
assume that d is even. If d is odd, we can replace d by d+ 1 in our argument without
affecting the bounds by more than constant factors.)

For any token p, let a(p) (resp., b(p)) be the index i such that Si contains p after
(resp., before) the step. (Note that the indexing is done prior to the step.) Let Mi

be the set of primary tokens received by nodes in S<i. Let mi = |Mi|. Note that mi

is at least half the number of edges connecting nodes in S<i and nodes in S>i. This
is because a token is sent along every one of the edges connecting S<i and S>i and
at least half the tokens received by any node in S<i from nodes in S>i are primary
tokens. Lemma 3.6 establishes the relationship between the total potential drop Ψ in
step t and the mi’s.

Lemma 3.6.

Ψ ≥
1

2

∑
i>j

miνd(1 + ν)(2i−1)d

+mj(1 + ν)2jd+1.

Proof. Let M be the set of primary tokens that are moved from nodes in S>j .
(Note that primary tokens that start from a node in S>j and end at a node in S>j
are in M .) Let p be a token in M . By the definition of a primary token, the height of
p prior to the step is at least 2b(p)d− 2d+ 1 and the height after the step is at most
2a(p)d+ 3d/2. Moreover, p belongs to Mi for all i such that a(p) < i < b(p).

Ψ ≥
∑
p∈M

[φ(2b(p)d− 2d+ 1)− φ(2a(p)d+ 3d/2)]

≥
∑
p∈M

∑
a(p)<i<b(p)

[φ(2(i+ 1)d− 2d+ 1)− φ(2(i− 1)d+ 3d/2)]

=
∑
i≥j

∑
p∈Mi

[φ(2(i+ 1)d− 2d+ 1)− φ(2(i− 1)d+ 3d/2)]

=
∑
i>j

∑
p∈Mi

[φ(2(i+ 1)d− 2d+ 1)− φ(2(i− 1)d+ 3d/2)]

+
∑
p∈Mj

[φ(2(j + 1)d− 2d+ 1)− φ(2(j − 1)d+ 3d/2)]

≥
1

2

∑
i>j

∑
p∈Mi

νd(1 + ν)2id−d

+
∑
p∈Mj

(1 + ν)2jd+1
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≥
1

2

∑
i>j

miνd(1 + ν)2id−d

+mj(1 + ν)2jd+1.

(The first equation follows from the lower bound (resp., upper bound) on the height
of a token p in M before (resp., after) the step. For the second equation, note that
2id − 2d + 1 ≤ 2(i − 1)d + 3d/2. Therefore, φ(2id − 2d + 1) ≤ φ(2(i − 1)d + 3d/2).
The second equation now follows since the sum telescopes. The third equation is
obtained by interchanging the sums and noting that φ(x) is 0 for x ≤ 2jd. The fourth
equation is obtained by partitioning M into the subsets M \Mj and Mj . The fifth
equation is derived using the following calculations: (i) φ(2id + 1) − φ(2id − d/2) ≥
((1 + ν)d/2 − 1)(1 + ν)2id−d/2 ≥ νd(1 + ν)2id−d/2, (ii) φ(2jd+ 1) = (1 + ν)2jd+1, and
(iii) φ(2jd− d/2) = 0. The last equation follows from the definition of mi.)

We establish Theorem 3.5 by means of an amortized analysis similar to the one
used in section 3.1. We associate a charge of εν2d2φ(h) with every token at height h.
We show that we can pay for all of the charges using the potential drop Ψ and thus
place a lower bound on Ψ. We consider the sets Si in reverse order and maintain a
“debt” term Γi for each i. Informally, Γi indicates the difference between the total
charges due to tokens at height at least 2id− d and the current upper bound on the
potential drop. Our amortized analysis terminates by showing that the total debt Γ
is at most zero.

We now formally define Γi and Γ. For any token p, let h(p) denote the height of
p prior to the step. Thus 2b(p)d − d ≤ h(p) ≤ 2b(p)d + d − 1. For i > j and for a
suitable constant ε > 0 to be specified later, we define

Ψi =
1

2

∑
k≥i

mkνd(1 + ν)2kd−d and

Γi = (εν2d2)

 ∑
p:h(p)≥2id−d

(1 + ν)h(p)

−Ψi.

We also define

Γ = (εν2d2)

 ∑
p:h(p)>2jd

(1 + ν)h(p)

−Ψ.

For any step t′, let Φt′ denote the total potential after step t′. Thus, Φt−1 =∑
p:h(p)>2jd(1 + ν)h(p) is the total potential prior to step t.

Lemma 3.7. There exists a real constant δ > 0 such that for all i > j, we have

Γi ≤ (δνd2)|S≥i|(1 + ν)2id−d.

Proof. The proof is by reverse induction on i. Let ` be the maximum token
height. Consider first the case when i > b(` + d)/2dc. Since 2id − d > `, there is no
token with height at least 2id − d. Hence Γi ≤ 0 and |S≥i| = 0. Thus, the desired
claim holds. We now consider i = b(`+ d)/2dc. Since Ψi = 0, we have

Γi ≤ (2εν2d3)|S≥i|(1 + ν)`

≤ (2εν2d3)|S≥i|(1 + ν)2d(i+1)−d

≤ (δνd2)|S≥i|(1 + ν)2id−d.
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(The first equation holds because (i) each node in Si has at most 2d tokens with height
at least 2id− d, and (ii) h(p) ≤ ` for each token p. The second equation follows from
the fact that ` < 2(i + 1)d − d. The third equation is obtained by choosing δ and ε
such that δ > 2ενd(1 + ν)2d. Note that for c sufficiently large, (1 + ν)2d can be set to
an arbitrarily small constant.)

For the induction step we consider two cases. If i is good, then |Si| ≤ α|S>i|/(2d)
and mi ≥ α|S>i|/4. Therefore, we have

Γi ≤ Γi+1 + (2εν2d3)|S≥i|(1 + ν)2id+d−1 −miνd(1 + ν)2id−d/2
≤ Γi+1 + (2εν2d3)|S≥i|(1 + ν)2id+d−1 − cν2d3|S>i|(1 + ν)2id−d/8
≤ Γi+1 − (ν2d3)|S≥i|(1 + ν)2id−d(f(c, α, d)− 2ε(1 + ν)2d)

≤ (δνd2)|S>i|(1 + ν)2(i+1)d−d − (ν2d3)|S≥i|(1 + ν)2id−d(f(c, α, d)− 4ε)

≤ (δνd2)|S≥i|(1 + ν)2id−d((1 + ν)2d − νd(f(c, α, d)− 4ε)/δ),

where f(c, α, d) = c/(8(1 + α/(2d))). (The first equation holds because (i) each node
in Si has at most 2d tokens with height at least 2id − d, and (ii) h(p) ≤ 2id + d − 1
for each token p that contributes to Γi and not to Γi+1. The third equation follows
from the fact that |S>i| ≥ |S≥i|/(1 + α/(2d)). The fourth equation follows from the
induction hypothesis and the equation (1 + ν)2d ≤ 2 for c sufficiently large. The last
equation is derived using straightforward algebra.)

The second case is when i is bad. Thus |Si| > α|S>i|/(2d). We have

Γi ≤ Γi+1 + (2εν2d3)|S≥i|(1 + ν)2id+d−1

≤ (δνd2)|S>i|(1 + ν)2(i+1)d−d + 2εν2d3|S≥i|(1 + ν)2id+d−1

≤ (δνd2)|S≥i|(1 + ν)2id−d((1 + ν)2d/(1 + α/(2d)) + 2ενd(1 + ν)2d/δ).

We now set c, δ, and ε such that c > 4, c/12−4ε ≥ 4δ, and c/4−2ε/δ ≥ 4. (One set of
choices is c = 50, δ = 1, and ε = 1/24.) Since α ≤ d, we have f(c, α, d) ≥ c/12. Since
c > 4, we have 2νd < 1/2, and hence (1+ν)2d ≤ 1+

∑
i>0(2νd)i = 1+2νd/(1−2νd) ≤

1 + 4νd. Thus,

((1 + ν)2d − νd(f(c, α, d)− 4ε)/δ) ≤ 1 + 4νd− 4νd ≤ 1.

Since α/(2d) ≤ 1/2, we have 1/(1 +α/(2d)) ≤ 1−α/2d+ (α/2d)2 ≤ 1−α/(2d) +
α/(4d) = 1− α/(4d), and hence

(1 + ν)2d/(1 + α/(2d)) + 2ενd(1 + ν)2d/δ = (1 + ν)2d(1/(1 + α/(2d)) + 2ενd/δ)

≤ (1 + ν)2d(1− α/4d+ 2ενd/δ)

= (1 + ν)2d(1− cνd/4 + 2ενd/δ)

≤ (1 + 4νd)(1− 4νd) < 1.

(The second equation follows from the upper bound on 1/(1 + α/(2d)). The fourth
equation follows from the upper bound of (1 + 4νd) on (1 + ν)2d.)

Thus, in both cases, Γi ≤ (δνd2)|S≥i|(1 + ν)2id−d. This completes the induction
step.

Corollary 3.8. If j is good in step t, then we have Ψ ≥ εν2d2Φt−1.
Proof. Applying Lemma 3.7 with i = j+1, it follows that Γj+1 ≤ (δνd2)|S≥j+1|(1+

ν)2(j+1)d−d. If j is good, then |S≥j | ≤ (1 + α/(2d))|S>j | ≤ 3|S>j |/2 and mj ≥
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α|S>j |/2. Therefore,

Γ ≤ Γj+1 + εν2d3|S≥j |(1 + ν)2jd+d−1 − α|S>j |(1 + ν)2jd+1/2

≤ (δνd2)|S>j |(1 + ν)2(j+1)d−d

+ (3εν2d3)|S>j |(1 + ν)2jd+d−1/2− α|S>j |(1 + ν)2jd+1/2

≤ (νd2)|S>j |(1 + ν)2(j+1)d−d(δ + 3εα/(2cd)− c/4)

≤ 0

for c, δ, and ε as chosen in the proof of Lemma 3.7. (In the first equation, the term
εν2d3|S≥j |(1 + ν)2jd+d−1 is an upper bound on the contribution to Γj by tokens in
S≥j since (i) tokens with height at least 2jd+d contribute to Γj+1, and (ii) each node
in S≥j has d − 2 ≤ d tokens with height in the interval [2jd + 1, 2jd + d − 1]. Also,
the third term in the first equation is the second term in the right-hand side of the
equation of Lemma 3.6. In the second equation, we use the upper bounds on Γj+1 and
|S≥j |. The third equation follows from the choice of c, δ, and ε and the fact that for
c > 4, we have (1 + ν)d ≤ (1 +α/(cd2))d ≤ (1 + 1/(cd))d < (1 + 1/(4d))d ≤ e1/4 ≤ 2.)

By the definitions of Γ and Ψ, we have Φt ≤ Φt−1 −Ψ and Γ = εν2d2Φt−1 −Ψ.
If j is good during step t, then Γ ≤ 0 and the desired claim follows.

By Corollary 3.8, if j is good during step t, then we have

Φt ≤ Φt−1(1− εν2d2).

After T = d4 ln Φ0/(εν
2d2)e steps, we have ΦT ≤ Φ0(1 − εν2d2)T/4 < 1. Since the

height of each node is at most ∆ initially, Φ0 ≤ n
∑

2jd<i≤∆(1+ν)i ≤ n(1+ν)∆+1/ν,

ln Φ0 = O(∆ν + logn). Substituting α/(cd2) for ν, we obtain that within O(∆/α +
d2 lnn/α2) steps, |S>2 log(1+α/(2d)) n| ≤ |S>j | = 0.

We use an averaging argument to show that after T steps, |S<−2 log(1+α/(2d)) n| ≤
n/2. By redefining the potential function and repeating the above analysis in the
other direction, we obtain that in another T steps |S<−4 log(1+α/(2d)) n| = 0. This
completes the proof of Theorem 3.5.

3.3. Results in terms of node expansion. The proofs of Theorems 3.1 and 3.5
can be easily modified to analyze the algorithm in terms of the node expansion µ of
the graph instead of the edge expansion α. Recall that µ and α are related by the
following inequalities: α/d ≤ µ ≤ α. The primary modifications that need to be done
to obtain bounds in terms of node expansion are to change the definition of a good
index and to set ν appropriately. We call index i good if |Si| ≤ µ|S>i|/2. We set
ν = µ/c (resp., ν = µ/(cd)) for the single-port model (resp., multiport model).

By an argument similar to the one used in section 2, we obtain that the number of
bad indices is at most dlog(1+µ) ne. (In fact, the argument in section 2 uses α/d as a
lower bound on µ.) This bound on the number of bad indices leads to an upper bound
of O((logn)/µ) (resp., O(d(logn)/µ)) on the final imbalance obtained by the single-
port algorithm (resp., multiport algorithm). For a bound on the number of steps, note
that while deriving a bound on the potential drop in sections 3.1 and 3.2, we use the
edge expansion α to obtain a lower bound on the number of tokens leaving sets S>i.
Since the best lower bound on α in terms of node expansion is µ, our time bounds
here are obtained by substituting µ for α in the time bounds of Theorems 3.1 and 3.5,
respectively. We thus obtain Theorems 3.9 and 3.11. Finally, Corollary 3.10 (resp.,
Corollary 3.12) follows from Theorems 3.1 and 3.9 (resp., Theorems 3.5 and 3.11).
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Theorem 3.9. For an arbitrary network G with n nodes, maximum degree d,
node expansion µ, and initial imbalance ∆, the single-port algorithm balances to within
O((logn)/µ) tokens in O(d∆/µ) steps with high probability.

Corollary 3.10. If ∆ ≥ (d logn)/µ, the single-port algorithm balances to within
O(logn/µ) tokens in O((d∆)/α) steps with high probability. If ∆ < (d logn)/µ, the
single-port algorithm balances to within O(logn/µ) tokens in O((d∆)/µ) steps with
high probability.

Theorem 3.11. For an arbitrary network G with n nodes, maximum degree d,
node expansion µ, and initial imbalance ∆, the multiport algorithm balances to within
O((d logn)/µ) tokens in O(∆/µ) steps.

Corollary 3.12. If ∆ ≥ (d2 logn)/µ, the multiport algorithm balances to within
O((d logn)/µ) tokens in O(∆/α) steps. If ∆ < (d2 logn)/µ, the multiport algorithm
balances to within O((d logn)/µ) tokens in O(∆/µ) steps.

4. Local load balancing can be expensive. Here we show that upon reaching
a state with small global imbalance, the algorithms presented in this paper may
still take many steps until they reach a locally balanced state. More specifically,
in section 4.1, we show that locally load balancing to within 2d tokens using the
multiport algorithm of [2] described in section 1.1 can take Ω(

√
n) more time than

globally load balancing to within O((d logn)/µ) tokens. We extend this bound to
the single-port algorithm presented in [14]; i.e., upon reaching a state where the
network is globally balanced to within O((logn)/µ) tokens, the expected number of
additional steps this algorithm may take to perform local balancing to within one
token is Ω(d

√
n). Furthermore, in section 4.2, we show that in the single-port case,

the network may be one step away from being locally balanced to within one token
but have an expected running time of Ω(µ

√
n) for reaching a locally balanced state.

Finally, we prove upper bounds on the time each algorithm takes to reach a locally
balanced state in section 4.3.

All results in this section are stated in terms of the node expansion of the network,
rather than in terms of its edge expansion. This is done for the sake of making our
arguments more intuitive and clear. Similar bounds can be derived in terms of edge
expansion.

For any positive n and any µ, 0 < µ < 1/72, we present an example of a graph
G = (V,E) on n nodes with node expansion at least µ and with maximum degree d
that depends on µ, where, given some initial distribution of tokens, locally balancing
is difficult.

First, we define the node set V of G. Let µ0 be equal to
√

8µ (note that 0 <
µ0 < 1/3). Let V be equal to (∪ki=0Li) ∪ (∪k−1

i=0 Ri), where Li and Ri are disjoint sets
of (1 + µ0)i nodes each and k will be specified shortly. For simplicity, we shall ignore
integrality constraints on the number of nodes in each set. We could be more formal
by setting the size of each set Li or Ri to be d(1+µ0)ie, but this would only make the
calculations in this section more involved without changing the asymptotic results. For
convenience, let L−1 (resp., R−1) denote R0 (resp., L0) and Rk denote Lk. Note that

each Li and each Ri has size (1+µ0)i = µ0(
∑i−1
j=0 |Lj |)+1 = µ0(

∑i−1
j=0 |Rj |)+1. Thus,

setting n =
∑k
j=0 |Lj |+

∑k−1
j=0 |Rj | and solving for k, we have k = Θ((logn)/ log(1 +

µ0)) = Θ((logn)/ log(1 + µ)) = Θ((logn)/µ). For simplicity, we assume that k =
(logn)/ log(1 + µ) and that k is even.

Given µ, we can choose the maximum degree d of G, independent of n, such that
the following construction of the edges in G is possible. We obtain a similar structure
for the Ri’s by replacing Lj by Rj below. Let the only node in L0 be adjacent to
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Fig. 4.1. The initial distribution of tokens on G for the first case.

every node in L1. For all i, 0 ≤ i ≤ k, we insert the edges between nodes in Li such
that (i) there are at most d/2 such edges adjacent to any node in Li, and (ii) every
subset S of Li of size less than or equal to 2|Li|/3 has at least µ0|S| neighbors in
Li \ S (see [24, 38] for a proof that such a construction is possible). Also, let each
node in Li have d(1 + µ0)/(2(2 + µ0)) neighbors in Li+1 and each node in Li+1 have
d/(2(2+µ0)) neighbors in Li, 0 < i ≤ k−1. For simplicity, we again ignore integrality
constraints. Let S be any subset of Li. There are (|S|d(1 + µ0))/(2(2 + µ0)) edges
between S and Li+1, and each node in Li+1 has d/(2(2 + µ0) neighbors in Li. Thus,
S has at least (1 + µ0)|S| neighbors in Li+1.

Now we consider how Li+1 “expands” into Li. We can use an approach similar to
that of [24, 38] to show that we can choose the edges between Li and Li+1, respecting
the degree constraints, such that any subset S of Li+1 of size less than or equal to
3|Li+1|/(4(1 + µ0)) has at least (1 + µ0)|S| neighbors in Li. This construction is
possible since (1+µ0)3|Li+1|/(4(1+µ0)) = 3(1+µ0)|Li|/4 < |Li|. The same analysis
as in [24], but for a bipartite graph with node sets of sizes |Li+1| and |Li+1|/(1 + µ0)
and of regular node degrees d/(2(2 + µ0)) and d(1 + µ0)/(2(2 + µ0)), respectively,
applies here.

To complete the edge construction of G, let u be the only node in L0, let v be the
only node in R0, and add the edge e = (u, v) to the set E. Note that the diameter of
G is Θ(k) = Θ((logn)/µ).

We give a pictorial representation of the sets Ri’s and Li’s in Figure 4.1. The
initial distribution of tokens in Figure 4.1 (given by the quantities above the ovals
representing each set Li or Ri) may be ignored for the moment.

We still need to show that the graph G has node expansion at least µ, as claimed.

Theorem 4.1. The graph G, constructed as described, has node expansion at
least µ.

Proof. We will show how to account for the node expansion of any subset of G of
at most n/2 nodes. Let U be a subset of V of size at most n/2. We will show that
there exists a set of at least µ|U | = µ2

0|U |/8 nodes outside of U that are all adjacent
to nodes in U . For any subsets X and Y of V , we define the neighborhood of X in
Y , NY (X), as the subset of nodes in Y , but not in X, that are adjacent to some node
in X, i.e., NY (X) = {y ∈ (Y \X) : (x, y) ∈ E, x ∈ X}. If the set Y is not specified,
assume Y = V . Let ULi = U ∩ Li and URi = U ∩ Ri for all 0 ≤ i ≤ k. We consider
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two cases, according to whether the size of ULk is greater than 2|Lk|/3 or not.
Case 1. If |ULk | > 2|Lk|/3, then let WL (resp., WR) be the union of the sets

ULj (resp., URj ) of size greater than 2|Lj |/3 (resp., 2|Rj |/3) such that there is no ULq
(resp., URq ), q > j, of size less than or equal to 2|Lq|/3 (resp., 2|Rq|/3). Let ` (resp.,

r) be the minimum index of a set ULj in WL (resp., URt in WR). In case no such j

(resp., t) exists, let ` = 0 (resp., r = 0). Let S denote (∪kj=`Lj) ∪ (∪k−1
j=rRj), and let

W = WL ∪WR. Note that since |ULj | > 2|Lj |/3 for all j ≥ ` and |URj | > 2|Rj |/3
for all j ≥ r, there are at most 3|W |/2 nodes in S. Furthermore, since the set U
has at most n/2 nodes, there are at most 3n/4 nodes in S. Hence, there are at

least n/4 nodes that are not in S, and so we must have either
∑`−1
i=0 |Li| ≥ n/8 or∑r−1

i=0 |Ri| ≥ n/8. Assume without loss of generality that the former is true. This
implies that |L`| > µ0n/8.

We will account for the node expansion of U using the neighborhood of UL` in
L`−1 \ UL`−1. If |UL` | < 3|L`|/(4(1 + µ0)) (implying that µ0 < 1/8, since |UL` | >
2|L`|/3), then

|NL`−1
(UL` ) \ UL`−1| ≥

(1 + µ0)2|L`|
3

− 2|L`−1|
3

=
2|L`|

3

(
(1 + µ0)− 1

(1 + µ0)

)
>

2|L`|µ0(2 + µ0)

3(1 + µ0)
> µ0|L`| > µ2

0n

8

(the second-to-last inequality follows from (2 + µ0)/(1 + µ0) > 3/2). Otherwise, any
subset of |UL` | of size 3|L`|/(4(1+µ0)) has at least (1+µ0)3|L`|/(4(1+µ0)) neighbors
in L`−1. Thus

|NL`−1
(UL` ) \ UL`−1| ≥

(1 + µ0)3|L`|
4(1 + µ0)

− 2|L`−1|
3

= |L`|
(

3

4
− 2

3(1 + µ0)

)
>

9µ0|L`|
12(1 + µ0)

>
µ0|L`|

2
>
µ2

0n

16
.

We obtained the second-to-last inequality by substituting 1 + µ0 by 4/3 in the de-
nominator of the left-hand side of the inequality.

Hence, in Case 1 we have at least µ2
0n/16 ≥ µ2

0|U |/8 nodes not in U that are
adjacent to the nodes in U .

Case 2. If |ULk | ≤ 2|Lk|/3, then each set ULi and each set URj is considered in
exactly one of the following subcases. We prove the results that follow for the sets
ULj ’s only. Similar results hold if we replace ULj by URj and Lj by Rj in the two
subcases below.

Case 2.1. Let i be the maximum index such that |ULi | > 2|Li|/3 and |ULi+1| ≤
2|Li+1|/3. If |ULi+1| ≤ |Li+1|/3, then the neighbors of ULi in Li+1 that are

not in ULi+1 can account for the node expansion of ∪i+1
j=0U

L
j , because

|NLi+1
(ULi ) \ ULi+1| >

(1 + µ0)2|Li|
3

− |Li+1|
3

=
|Li+1|

3

>
µ0

3

 i∑
j=0

|Lj |
 ≥ µ0

4

 i∑
j=0

|Lj |
+ |Li+1| − 1


≥ µ0

4

i+1∑
j=0

|ULj |
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(the second-to-last inequality follows from the fact that |Li+1|=µ0(
∑i
j=0 |Lj |)

+ 1 ≤ [(
∑i
j=0 |Lj |)/3] + 1, since µ0 < 1/3). Otherwise, |Li+1|/3 < |ULi+1| ≤

2|Li+1|/3, and the neighborhood of ULi+1 in Li+1 can account for the node

expansion of ∪i+1
j=0U

L
j , since

|NLi+1
(ULi+1)| ≥ µ0|ULi+1| >

µ0|Li+1|
3

>
µ2

0

3

 i∑
j=0

|Lj |


≥ µ2
0

4

 i∑
j=0

|Lj |+ |Li+1| − 1

 ≥ µ2
0

4

i+1∑
j=0

|ULj |
 .

Case 2.2. Now we consider every ULj , i+ 2 ≤ j ≤ k, that we did not account for

in Case 2.1. Any set ULj that was not considered in Case 2.1 has size less than
or equal to 2|Lj |/3 by the choice of i in Case 2.1. Thus the neighborhood of
each ULj in Lj , i < j ≤ k, has size at least µ0|ULj |, and so it accounts for the

node expansion of ULj .

It follows from Cases 1 and 2 that U has at least (µ2
0|U |)/8 = µ|U | neighbors

outside of U in G.
We group the sets Ri’s and Li’s into L and R, groups of k/2 consecutive sets, and

M, a group of k+1 consecutive sets (note that we have 2k+1 distinct sets). Let L =
{L0, L1, . . . , Lk/2−1}, R = {R0, R1, . . . , Rk/2−1}, and M = {Lk/2, Lk/2+1, . . . , Lk−1,
Lk (= Rk), Rk−1, . . . , Rk/2}. Our choice for L, M, and R is such that the number of
sets in L is close to half the number of sets in M.

4.1. It may be expensive to locally balance G. We give an initial distri-
bution of tokens on G that has global imbalance of Θ((d logn)/µ). Then we show
that the multiport algorithm will take Ω(

√
n) steps to locally balance G to within 2d

tokens. Suppose we have the following initial distribution of tokens on G: For every
node z inR, w(z) = m+1, where m is an integer such that m ≥ 2kd; for all z in Ri, Ri
inM, let w(z) = m−2(i−k/2)d; for all z in Li, Li inM, let w(z) = m−2(3k/2−i)d;
for all z in Li, Li in L, let w(z) = m− 2(i+ k/2 + 1)d. Then w is globally balanced
to within Θ(dk) = Θ((d logn)/µ) tokens, but it is not locally balanced to within 2d
tokens, since w(v)− w(u) = (k + 2)d+ 1 ≥ 2d+ 1. See Figure 4.1.

We will maintain the invariant that at any step of the multiport algorithm, every
node in Li (resp., Ri) has the same number of tokens for all 0 ≤ i ≤ k. The following
lemma shows that this invariant holds.

Lemma 4.2. Suppose every node in Li (resp., Ri) had the same number of tokens
at the start of the multiport algorithm for all 0 ≤ i ≤ k. Then every node in Li (resp.,
Ri) has the same number of tokens at any step of the algorithm for all 0 ≤ i ≤ k.

Proof. We prove this lemma using induction, and without loss of generality, we
will prove it for the sets Li only. Suppose that every node in Li had the same number
of tokens at time step t − 1. A node x in Li sends a token to one of its neighbors y
in Li+1 only if it has at least 2d + 1 more tokens than y. Thus if at time t, x sends
a token to some y in Li+1, then it sends a token to all of its neighbors in Li+1, since
all of them had the same number of tokens at time t − 1. Note that x has at least
2d+ 1 tokens and x has at most d neighbors. Hence at time t, every edge between Li
and Li+1 is traversed by a token. Since every node in Li+1 is adjacent to the same
number of nodes in Li, they all receive the same number of tokens from Li. We can
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use a similar argument for tokens that move from Li to Li−1. For i = k, consider
only tokens moving from Lk (= Rk) to Lk−1 (and Rk−1). No token moves between
any two nodes in Li, since all nodes in Li had the same number of tokens at time
t− 1 (thus we can ignore the edges inside each set Li and Ri).

Now we prove the main theorem in this section for the multiport model.

Theorem 4.3. The multiport algorithm may take Ω(
√
n) steps to locally balance

G, even if G is globally balanced to within Θ((d logn)/µ) tokens initially.

Proof. Assume we have a initial token distribution on G as defined above. The
number of nodes in R, as well as in L, is proportional to |Rk/2−1| = (1 + µ0)k/2−1 =

(1 +µ0)
logn

2 log(1+µ)
−1 >

√
n/(1 +µ0) >

√
n/2. We claim that in order for G to be locally

balanced to within 2d tokens, we need to move at least
√
n/2 tokens from R to L

across edge e. Since at most one token at a time can traverse e, this will require time
Ω(
√
n). Our proof proceeds as follows.

(1) Since every node in Rj (resp., Lj) for 0 ≤ j ≤ k/2−1 is identical with respect
to both the number of tokens it has (by Lemma 4.2) and the number of neighbors it
sees in Rj−1 and Rj+1 (resp., Lj−1 and Lj+1), we observe that the tokens in G flow as
follows. Tokens will be sent from v to u across edge e until u has 2d+ 1 more tokens
than a node in L1. Then, every node in L1 receives a token from u. This process
continues until the nodes in L1 each have at least 2d + 1 more tokens than a node
in L2. Then every node in L1 will send a token to each of its neighbors in L2 (by
Lemma 4.2, every node in L2 receives the same number of tokens from the nodes in
L1). Continuing in this fashion, the flow of tokens in L will proceed only from left to
right, i.e., tokens never move from Li to Li−1, or inside Li, for all Li in L. In parallel,
as the number of tokens in v gets small, the nodes in R1 will all send a token to v.
When the nodes in R1 have each sent 2d+ 1 tokens to v, the nodes in R2 will all send
a token to each of its neighbors in R1, etc. Thus, as in L, the tokens also flow only
from left to right in R (i.e., tokens never move from Ri to Ri+1, or inside Ri, for all
Ri in R). Thus, no token ever moves from R to M or from M to L.

(2) Now we show that only after
√
n/2 steps have elapsed can we have (i) w(x)−

w(y) ≤ 2d for all x in Li for all y in Li+1 for all Li in L, i.e., L is locally balanced,
and (ii) w(u) > m − (k + 2)d. Suppose we reach such a configuration at some time
t. Then every node in L has at least one more token than it had initially (since
w(u) = m − (k + 2)d and w(x) − w(y) = 2d for all x in Li, y in Li+1, and Li in L,
initially). That is, we have at least |L| ≥ √n/2 “extra” tokens in L at time t, all of
which have reached L by traversing e from v to u, since no token moves from M to
L. Hence t ≥ √n/2.

(3) We also show that only after
√
n/2 steps have elapsed can we have (i) w(y)−

w(x) ≤ 2d for all x in Ri for all y in Ri+1 for all Ri inR, i.e., R is locally balanced, and
(ii) w(v) ≤ m − kd. A counting argument (similar to the one above) on the number
of tokens in R and the fact that no token is ever sent from R to M is sufficient to
show this.

From (2) and (3), we conclude that on each of the first
√
n/2 steps the following

holds: Either w(u) ≤ m − (k + 2)d and w(v) > m − kd, and so v sends a token to
u, or the subnetwork induced by L ∪ R is not 2d-locally balanced. Thus G is not
locally balanced before the first

√
n/2 steps. Hence the algorithm takes Ω(

√
n) time

to locally balance G.

A similar result holds for the single-port model. Assume we have the following
initial distribution of tokens: for every node z in R, w(z) = m + 1, where m is an
integer such that m ≥ k; for all z in Ri, Ri inM, let w(z) = m+k/2−i; for all z in Li,
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Li inM, let w(z) = m−(3k/2−i); for all z in Li, Li in L, let w(z) = m−(i+k/2+1).

The arguments used in the proof of Theorem 4.3 can be easily modified to hold
for the single-port model with the initial distribution of tokens defined above, since
the lower bound on the number of steps required to reach a locally balanced state is
given only in terms of how many tokens traverse the edge e. Lemma 4.2, which is used
to show that no token moves fromM to L without traversing edge e, no longer holds
in the single-port model. Instead, we prove Lemma 4.4, which implies that no token
moves fromM to L without traversing edge e, as stated in Corollary 4.5. Recall that
in the single-port algorithm, a token moves from node x to node y at some step only
if edge (x, y) is selected to be in the matching, and x has at least two more tokens
than y, at that step.

We first prove Lemma 4.4, from which we derive Corollary 4.5. Let M denote
the set of tokens in M either that were initially in M or that moved from R to M
without using the edge e (i.e., tokens that moved from R to M through some node
in Rk/2) at any step of the single-port algorithm. Without loss of generality, assume
that if a node inM sends a token at step t of the algorithm, it will send a token that
is not in M if it has one for all t.

Lemma 4.4. At any step of the single-port algorithm for any node x in M, the
number of tokens on x that belong to M is at most the total number of tokens on x
initially.

Proof. By definition, a token in M is either a token that was in M initially or
a token that moved from R to M through some node in Rk/2. Suppose, for the
sake of contradiction, that at step t, a node x in M has one more token in M than
it had initially. Assume x had b tokens initially. There exists a sequence of nodes
x = x1, . . . , xp such that (i) xi is adjacent to xi+1 in G, (ii) xi had at least b+ i tokens
at time ti, (iii) tp < · · · < t1 = t, and (iv) xp is in Rk/2 and xi, i 6= p, is not in Rk/2.
There are two cases to consider.

(1) If no xi is in L (i.e., every node xi is in M), then let q be the distance in M
from x to xp. Thus xp has at least b+p ≥ b+ q+1 = m+1 tokens at time tp. But no
node in Rk/2 can have m+ 1 tokens, since m+ 1 is the maximum number of tokens
in G initially, and no node in Rk/2 had that many tokens initially.

(2) Otherwise, let xj (resp., xj′) be the first (resp., last) node in the sequence
that is not in M. Then xj−1 and xj′+1 belong to Lk/2. Let q be the distance from v
to xj−1 in M. Then xj′+1 has at least b+ p ≥ b+ q + 2 ≥ (m− k) + q + 1 tokens at
step tj′+1. Thus xp has at least b+ q + k + 2 ≥ m+ q + 1 ≥ m+ 1 tokens at step tp,
a contradiction (see item (1)).

Corollary 4.5. No token initially in M∪R ever moves from M to L without
traversing edge e.

Proof. By Lemma 4.4, no node x in Lk/2 will ever have more tokens in M than
it had initially. Since the number of tokens on x at the beginning of the algorithm,
m− k, is minimal (over the entire network), it follows that x will have exactly m− k
tokens that belong to M at any step of the algorithm. Thus x will never send a token
that belongs to M to any other node in G. Since a token can move fromM to L only
through some node in Lk/2, the corollary follows.

Any edge is selected independently with probability O(1/d) at each iteration of
the single-port algorithm. Thus an edge e is selected, on average, an O(1/d) fraction
of the time. Hence, we can show that it will take Ω(d

√
n) expected time for G to be

locally balanced to within one token in the single-port model, even if initially G is
globally balanced to within O((logn)/µ) tokens, as stated in the theorem below.
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Fig. 4.2. The initial distribution of tokens on G for the second case.

Theorem 4.6. The single-port algorithm may take Ω(d
√
n) expected number of

steps to locally balance G to within one token, even if G is globally balanced to within
O((logn)/µ) tokens initially.

4.2. The single-port algorithm may diverge from an almost locally bal-
anced state. In this section we consider the single-port model only. Suppose we
have the following distribution of tokens on G: for all z in Rk/2−1, let w(z) = m+ 1
(where m is an integer such that m ≥ k), and for all z in Ri, i ≤ k/2− 2 (note that
Ri ∈ R), let w(z) = m− (k/2− i− 1); for all z in Rk/2, let w(z) = m− 1; for all z in
Ri, i ≥ k/2 + 1 (note that Ri ∈ M), let w(z) = m − (i − k/2); for all z in Li, Li in
M, let w(z) = m− (3k/2− i); for all z in Li, Li in L, let w(z) = m− (k/2 + i). Thus
w is globally balanced to within O((logn)/µ) tokens but it is not locally balanced to
within one token, since w(x)−w(y) = 2, for any x in Rk/2−1 and y in Rk/2 ∪Rk/2−2.
See Figure 4.2.

The intuition for this case is that if all tokens move in the “right direction”
initially, we reach a locally balanced state in a single time step. Otherwise, if a large
number of tokens move in the “wrong direction” in the first step, it will take many
steps until we reach such a state. If every node in Rk/2−1 is matched with some node
in Rk/2 (we can construct G such that every node in Rk/2−1 has a distinct neighbor in
Rk/2), G reaches local balance in a single time step. On the other hand, if some tokens
move across a matching between the nodes in Rk/2−1 and Rk/2−2, then these tokens
will continue moving “down” (nondecreasing indices of Ri) and will never move “up.”
The expected size of such a matching will be Ω(|Rk/2−1|/d) (each node in Rk/2−1

has d/(2(2 + µ0)) ≥ d/5 neighbors in Rk/2−2). Using an analysis similar to that of
section 4.1 for the single-port model, we see that no token that was initially inM∪R
moves from M to L without traversing edge e and that either w(v) > m − k/2 + 1
and w(u) ≤ m − k/2 or L ∪ R is not locally balanced for each of the Ω(|Rk/2−1|/d)
initial steps. Thus, once any of the tokens that moved from Rk/2−1 to Rk/2−2 in the
first step reaches v, it will eventually traverse e onto u.

Hence, eventually all tokens that moved from Rk/2−1 to Rk/2−2 in the initial step
will reach u. Since |Rk/2−1| ≥ µ

√
n/((1 + µ0)2) and 1 < (1 + µ0)2 < 2, the expected

number of edges between nodes in Rk/2−1 and nodes in Rk/2−2 in a selected matching
is Ω(|Rk/2−1|/d) = Ω(µ

√
n/d). The expected time for edge e to be in a selected

matching is at least d. Thus the expected time for G to be locally balanced to within
one token is Ω(µ

√
n). This result is stated in the following theorem.
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Theorem 4.7. There exists an initial distribution of tokens from which the net-
work G can be locally balanced to within one token in one step, but for which the
expected number of steps required by the single-port algorithm to locally balance G to
within one token is Ω(µ

√
n).

4.3. Convergence to a locally balanced state. We now prove that if the
graph G is globally balanced to within ∆ tokens, in O(n∆2/d) subsequent steps the
multiport algorithm locally balances G to within 2d tokens. Define the potential Φ
of the network as

∑
v∈V (w(v) − ρ)2. If the network is globally balanced to within

∆ tokens, then Φ = O(n∆2). At any step, if there exists an edge (u, v) such that
|w(u)−w(v)| ≥ 2d+1, then a token is transmitted along (u, v) resulting in a potential
drop of at least d. Thus, within O(n∆2/d) steps the network is globally balanced.
Similarly, it is not difficult to show that if the graph G is globally balanced to within ∆
tokens, then the single-port algorithm locally balances to within one token in O(nd∆2)
subsequent steps with high probability, since a token transmitted along an edge results
in a potential drop of at least one and an edge is selected with probability at least
1/(8d).

5. Extension to dynamic and asynchronous networks. In this section, we
extend our results of section 3.2 for the multiport model to dynamic and asynchronous
networks. We first prove that a variant of the local multiport algorithm is optimal on
dynamic synchronous networks in the same sense as for static synchronous networks.
We then use a result of [2] that relates the dynamic synchronous and asynchronous
models to extend our results to asynchronous networks.

In the dynamic synchronous model, the edges of the network may fail or succeed
dynamically. An edge e ∈ E is live during step t if e can transmit a message in each
direction during step t. We assume that in each step each node knows which of its
adjacent edges are live. The local load balancing algorithm for static synchronous
networks can be modified to work on dynamic synchronous networks. The algorithm
presented here is essentially the same as in [2].

Since edges may fail dynamically, a node u may have no knowledge of the height
of a neighboring node v and hence may be unable to decide whether to send a token
to v. In our algorithm, which we call DS, every node u maintains an estimate eu(v)
of the number of tokens at v for every neighbor v of u. (The value of eu(v) at the start
of the algorithm is arbitrary.) In every step of the algorithm, each node u performs
the following operations:

(1) For each live neighbor v of u, if w(u) − eu(v) > 12d, u sends a message
consisting of w(u) and a token; otherwise, u sends a message consisting only of w(u).
Next, w(u) is decreased by the number of tokens sent.

(2) For each message received from a live neighbor v, eu(v) is updated according
to the message, and if the message contains a token, w(u) is increased by one.

Unlike the algorithm for static networks, the above algorithm may (temporarily)
worsen the imbalance since a node may have an old estimate of the height of one of its
neighbors. Two anomalies may occur while executing DS: (i) a token sent by u to v
may gain height as it is possible for w(u)−eu(v) to be greater than 12d even if w(u) is
at most w(v), and (ii) node u may not send a token to v as it is possible for w(u)−eu(v)
to be at most 12d even if w(u) − w(v) is much larger than 12d. Consequently, the
analysis for dynamic networks is more difficult than for static networks. We employ
a more complicated amortized analysis to account for the above anomalies.

For every integer i, let Si denote the set of nodes that have at least ρ−12d+24id
and at most ρ+ 12d− 1 + 24id tokens. Consider T steps of DS. We assume without
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loss of generality that |S>0| ≤ n/2 at the start of at least T/2 steps. As shown in
section 2, there exists an index j in [1, 2dlog(1+α/(2d)) ne] that is good in at least half
of those steps in which |S>0| ≤ n/2. (Recall that index i is good if |Si| ≤ α|S>i|/2d.)
If index j is good at the start of step t, we call t a good step. For any token p, let
ht(p) denote the height of p after step t, t > 0. For convenience, we denote the height
of p at the start of DS by h0(p). Similarly, for t ≥ 0, we define ht(u) for every node
u and eut (v) for every edge (u, v).

With every token at height h, we associate a potential of φ(h), where φ : N → R
is defined as follows:

φ(x) =

{
0 if x ≤ 24jd− 11d,
(1 + ν)x otherwise,

where ν = α/(cd2) and c > 0 is a constant to be specified later. Let Φt denote the
total potential of the network after step t. Let Ψt denote the potential drop during
step t.

We analyze DS by means of an amortized analysis over the steps of the algo-
rithm. Let Et be the set {(u, v) : (u, v) is live during step t, u ∈ S>j , and ht−1(u)−
ht−1(v) ≥ 24d}. For every step t, we assign an amortized potential drop of

Ψ̂t =
1

50

∑
(u,v)∈Et

ht−1(u)>ht−1(v)

(φ(ht−1(u)− d)− φ(ht−1(v) + d)).

The definition of Ψ̂t is analogous to the amount of potential drop that we use in step t
in the argument of section 3.2 for the static case. By modifying that argument slightly
and choosing appropriate values for the constants c and ε, we show the following
lemma.

Lemma 5.1. If the live edges of G have an edge expansion of α during every step
of DS, then for every good step t we have Ψ̂t ≥ εν2d2Φt−1, where ε is an appropriately
chosen constant.

Proof (sketch). Let Mi denote the set of live edges between nodes in S<i and
nodes in S>i. Let mi = |Mi|. For any node u, let g(u) represent the group to which
u belongs prior to step t. We now place a lower bound on Ψ̂t which is analogous to
that on Ψ in Lemma 3.6 of section 3.2. By the definition of Ψ̂t, we have

Ψ̂t =
1

50

∑
(u,v)∈Et

ht−1(u)>ht−1(v)

(φ(ht−1(u)− d)− φ(ht−1(v) + d))

≥ 1

50

∑
(u,v)∈Et

ht−1(u)>ht−1(v)

∑
g(v)<i<g(u)

(φ(24(i+ 1)d− 13d)− φ(24(i− 1)d+ 13d))

=
1

50

∑
i≥j

∑
(u,v)∈Mi

ht−1(u)>ht−1(v)

(φ(24(i+ 1)d− 13d)− φ(24(i− 1)d+ 13d))

=
1

50

∑
i>j

∑
(u,v)∈Mi

ht−1(u)>ht−1(v)

(φ(24(i+ 1)d− 13d)− φ(24(i− 1)d+ 13d))

+
1

50

∑
(u,v)∈Mj

ht−1(u)>ht−1(v)

φ(24(j + 1)d− 13d)
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≥ 22

50

∑
i>j

∑
(u,v)∈Mi

ht−1(u)>ht−1(v)

νd(1 + ν)24id−11d +
1

50

∑
(u,v)∈Mj

ht−1(u)>ht−1(v)

(1 + ν)24jd+11d

≥ 22

50

∑
i>j

miνd(1 + ν)24id−11d +
1

50
mj(1 + ν)24jd+11d.

(For the second equation, note that 24id−13d ≤ 24(i−1)d+13d. Therefore, φ(24id−
13d) ≤ φ(24(i−1)d+13d). The second equation now follows since the sum telescopes.
The third equation is obtained by interchanging the sums and noting that φ(x) is
zero for x ≤ 24jd − 11d. The fourth equation is obtained by partitioning the set M
into subsets M \Mj and Mj . The fifth equation uses the following calculations: (i)
φ(24id+ 11d)− φ(24id− 11d) ≥ ((1 + ν)22d − 1)(1 + ν)24id−11d ≥ 22d(1 + ν)24id−11d,
(ii) φ(24jd + 11d) = (1 + ν)24jd+11d, and (iii) φ(24jd − 11d) = 0. The last equation
follows from the definition of mi.)

We next establish claims similar to Lemma 3.7 and Corollary 3.8 of section 3.2
by modifying the constants in the proofs. Thus we have Ψ̂t ≥ εν2d2Φt−1 for an
appropriately chosen constant ε.

The following lemma relates the amortized potential drops to the actual potential
drops.

Lemma 5.2. For any initial load distribution and any step t′ > 0, we have

∑
t≤t′

Ψt ≥
∑
t≤t′

Ψ̂t

− 2Φ0 − n2φ(24jd).(5.1)

In order to prove Lemma 5.2, we need to address two issues that arise in the
dynamic setting: (i) potential gains, i.e., when a token gains height, and (ii) the lack
of a potential drop across edges that join nodes differing by at least 24d tokens. We
show that for any of the above events to occur, “many” tokens should have lost height
in previous steps. We use a part of this prior potential drop to account for (i) and
(ii). At a high level, our proof follows the lines of Lemma 3 of [2]. However, since
the potential functions involved are different, the two proofs differ considerably in the
details. We have included a complete proof of Lemma 5.2 in Appendix B.

The main result follows from Lemmas 5.1 and 5.2. We first show that within
O(1/(εν2d2)) steps, there is a step when the actual potential of the network either
decreases by a factor of 2 or falls below a threshold value.

Lemma 5.3. Let t be any integer such that at least 7/(εν2d2) of the first t steps
are good. There exists t′ ≤ t such that Φt′ ≤ max{Φ0/2, n

2φ(24jd)}.
Proof. If Φ0 ≤ n2φ(24jd), then the claim is proved for t = 0. For the remainder

of the proof, we assume that Φ0 ≥ n2φ(24jd). If Φt′ ≤ Φ0/2 for any t′ < t, the claim
is proved. Otherwise, for all t′ < t, we have Φt′ > Φ0/2. In this case, we obtain

Φt = Φ0 −
∑
t′<t

Ψt′

≤ 3Φ0 + n2φ(24jd)−
∑
t′<t

Ψ̂t′

≤ 4Φ0 −
∑
t′<t

t′good

(εν2d2)Φt′

≤ Φ0/2.
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(To obtain the second equation, we invoke Lemma 5.2. For the third equation, we
invoke Lemma 5.1 and use the inequalities Φ0 ≥ n2φ(24jd) and Ψ̂t′ ≥ 0 for every t′.
For the last equation, we use the fact that at least 7/(εν2d2) of the t steps are good
and the equation Φt′ > Φ0/2 for every t′ < t.)

Theorem 5.4. For an arbitrary network G with n nodes, degree d, and initial
imbalance ∆, if the live edges at every step t of G have edge expansion α, then the dy-
namic synchronous multiport algorithm load balances to within O(d2(logn)/α) tokens
in O(∆/α) steps.

Proof. We first place an upper bound on the number t of steps such that the height
of each node at the end of step t is O(d2(logn)/α2). If ∆ is at most d2(logn)/α2,
then a trivial bound is 0.

We now consider the case when ∆ is at least d2(logn)/α2. By repeatedly invoking
Lemma 5.3, we obtain that within T = d(7/(εν2d2))edlog Φ0e good steps, there exists
a step after which the potential of the network is at most n2φ(24jd). (Note that the
fact that Lemma 5.2 holds for arbitrary initial values of the estimates, the eu(v)’s,
is crucial here.) Since at least T/4 of the first T steps are good, there exists t ≤
4d(7/(εν2d2))edlog Φ0e such that Φt ≤ n2φ(24jd). Since Φ0 ≤ n(1 + ν)(∆+1)/ν, we
have log Φ0 ≤ logn+ (∆ + 1) log(1 +ν)− log ν. Since ν = α/(cd2) and log(1 +ν) < ν,
we have t = O((∆/α) + d2(logn)/α2) = O(∆/α).

Let h be the maximum height of any node after step t. We thus have

φ(h) ≤ Φt

≤ n2(1 + ν)24jd.

Therefore, if φ(h) > 0, then h ≤ log(1+ν)(n
2(1 + ν)24jd). If φ(h) = 0, then h ≤

24jd− 11d. In either case,

h ≤ 24jd+ (2 logn)/ log(1 + ν)

≤ 24jd+ (4 logn)/ν

= O((d2 logn)/α).

(The right-hand side of the first equation is an expansion of log(1+ν)(n
2(1 + ν)24jd).

The second equation holds since log(1 + ν) < ν/2 for c appropriately large. The final
inequality follows from the relations ν = α/(cd2) and j = O((d logn)/α).)

Thus, at the end of step t, no node has more than a = ρ + h tokens. We now
prove by contradiction that for every step after step t, no node has more than a+ d
tokens. Let t′ be the first step after step t such that there exists some node u with
more than a+ d tokens. (If no such t′ exists, the claim holds trivially.) Of the d+ 1
highest tokens received by u after step t, at least 2 tokens (say p and q) were last sent
by the same neighbor v of u. Without loss of generality, we assume that p arrived at
u before q. Let t1 be the step when p was last sent by v to u. Therefore, we have
evt1(u) ≥ ht1(p)− d ≥ a− d. Hence q can be sent to u only when v has height at least
a+ 11d, which contradicts our choice of t′.

We have shown that after O(∆/α) steps, no node ever has more than ρ +
O((d2 logn)/α) tokens. An easy averaging argument shows that there exists k =
O((d logn)/α) such that after every step t′ ≥ t, |S<−k| ≤ n/2. By defining an appro-
priate potential function for tokens with heights below the average and repeating the
analysis done for S>j , we show that in another O(∆/α) steps, all nodes have more
than ρ−O(d2(logn)/α) tokens.
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As suggested in [2], a simple variant of DS can be defined for asynchronous
networks. As shown in [2], the analysis for the dynamic synchronous case can be used
for asynchronous networks to yield the same time bounds. Hence, the multiport local
load balancing algorithm balances to within O(d2 logn/α) tokens in time O(∆/α) on
asynchronous networks.

6. Tight bounds on off-line load balancing. In this section, we analyze
the load balancing problem in the off-line setting for both single-port and multiport
models. We derive nearly tight bounds on the minimum number of steps required
to balance on arbitrary networks in terms of the node and edge expansion of the
networks. We assume that the network is synchronous.

We first consider the network G = (V,E) under the single-port model. For any
subset X of V , let X denote V \X, m(X) denote the number of edges in a maximum
matching between X and X, A(X) denote the set {v ∈ X : ∃x ∈ X such that (x, v) ∈
E}, and B(X) denote the set {x ∈ X : ∃y ∈ A(X) such that (x, y) ∈ E}. For subsets
X and Y of V , let M(X,Y ) denote the set of edges with one endpoint in X and the
other in Y .

Lemma 6.1. For any network G = (V,E) with node expansion µ and any subset
X of V , we have m(X) ≤ µmin{|X|, |X|}/(1 +µ). Moreover, for any subset X of V ,
m(X ∪A(X)) ≤ |A(X)|.

Proof. Without loss of generality, assume that |X| ≤ |X|. Consider the bipar-
tite graph H = (B(X), A(X),M(X,X)). A maximum matching in H is equal to
a maximum flow in the graph I = (B(X) ∪ A(X) ∪ {s, t},M(X,X) ∪ {(s, x) : x ∈
B(X)} ∪ {(x, t) : x ∈ A(X)}) from source s to sink t. (All of the edges of I have unit
capacity.) We will show that every cut C of I separating s and t is of cardinality at
least µ|X|/(1 + µ).

Consider any cut C = (S, T ) with s ∈ S and t ∈ T . The set of edges in C is
M(S, T ). Let Y = T ∩ B(X) and Z = T ∩ A(X). The capacity of C, given by
|M(S, T )|, can be lower bounded as follows.

|M(S, T )| = |Y |+ |M(Y,A(X) \ Z)|+ |M(B(X) \ Y, Z)|+ |A(X) \ Z|
≥ |Y |+ |M(B(X) \ Y, Z)|+ |A(X) \ Z|
≥ |A(X \ Y )|
≥ µ|X \ Y |
= µ(|X| − |Y |)
≥ µ|X|/(1 + µ).

(For the third equation, see Figure 6.1. Three subsets of nodes contribute to the set
A(X \ Y ): (i) the set of nodes in Y that have an edge to a node in X \ Y , (ii) the
set of nodes in Z that have an edge to a node in X \ Y , and (iii) the set of nodes in
A(X) \Z that have an edge to a node in X \Y . The size of the three sets is bounded
by |Y |, |M(B(X) \ Y, Z)|, and |A(X) \ Z|, respectively. The fourth equation follows
from the definition of A(X \ Y ). The fifth equation holds since Y is a subset of X.
The last equation holds since |Y | ≤ |M(S, T )|.)

For the second part of the lemma, we note that since all of the neighbors of X
are in A(X), any node in X ∪A(X) that connects to some node outside of X ∪A(X)
is in A(X). Therefore, m(X ∪A(X)) ≤ |A(X)|.

Theorem 1 of [29] obtains tight bounds on the off-line complexity of load bal-
ancing in terms of the function m. We restate the theorem using our notation and
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X
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A(X)

Y

Z

Fig. 6.1. The sets X, Y , Z, A(X), and B(X) in the proof of Lemma 6.1.

terminology. Before stating the theorem, we need one additional notation. For any
subset X of nodes of any network, let I(X) denote the number of tokens held by
nodes in X in the initial distribution.

Theorem 6.2 (see [29]). Consider a network G = (V,E) in the single-port model.
The network G can be balanced in at most max∅6⊆X 6⊆V d(I(X) − ρ|X|)/m(X)e steps
so that every node has at most dρe+ 1 tokens. Moreover, any algorithm takes at least
max∅6⊆X 6⊆V d(I(X)−ρ|X|)/m(X)e steps to balance the network so that every node has
at most dρe tokens.

Theorem 6.2 and Lemma 6.1 imply the following result.

Lemma 6.3. Assume the single-port model. Any network G with node expansion
µ and initial imbalance ∆ can be balanced in at most d∆(1+µ)/µe steps so that every
node has at most dρe + 1 tokens. Moreover, there exist a network G and an initial
load distribution with imbalance ∆ such that any algorithm takes at least d∆(1+µ)/µe
steps to balance G such that every node has at most dρe tokens.

Proof. If I(X) is the total number of tokens belonging to nodes in X in the
initial distribution, then we have −∆|X| ≤ I(X)− ρ|X| ≤ ∆|X| for all X. Moreover,
|I(X)−ρ|X|| = |I(X)−ρ|X||. Therefore, for all X, |I(X)−ρ|X|| = ∆ min{|X|, |X|}.
By Lemma 6.1, m(X) is at least µmin{|X|, |X|}/(1 + µ) for all X. Thus, the first
claim of Theorem 6.2 establishes the first claim of the desired lemma.

For the second claim of the lemma, given any µ, we construct the following net-
work G = (V,E) with node expansion µ. The node set V is partitioned into three
sets X, Y , and Z such that (i) |Y | = µ|X| and (ii) |Z| = |X|(1 + µ)2/(1− µ). Let n
and x denote |V | and |X|, respectively. Thus, n equals x(1 + µ+ (1 + µ)2/(1− µ)) =
2x(1 + µ)/(1 − µ). The edge set E is the union of the sets X × X, X × Y , Y × Y ,
Y × Z, and Z × Z.

We now show that the node expansion of G is µ. Consider any nonempty subset
U of V of size at most n/2, and let X ′, Y ′, and Z ′ denote U ∩X, U ∩ Y , and U ∩Z,
respectively. Let n(U) denote the number of neighbors of U that lie outside of U . We
need to show that n(U) is at least µ|U |.

We consider two cases: (i) Y ′ and Z ′ are both empty, and (ii) Y ′ is nonempty or
Z ′ is nonempty. In the first case, U = X ′. Therefore, n(U) ≥ |Y | = µx ≥ µ|U |. In
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the second case, we have

n(U) ≥ |Z| − |Z ′|
≥ |Z| − |U |
≥ x((1 + µ)2/(1− µ)− (1 + µ)/(1− µ))

= xµ(1 + µ)/(1− µ)

≥ µ|U |.
(The second equation holds since Z′ is a subset of U . For the third equation, note
that |U | ≤ n/2 = x(1 + µ)/(1− µ). The last equation follows from the upper bound
of x(1 + µ)/(1− µ) on |U |.)

We now apply the second claim of Lemma 6.1 to the subset X. Since A(X) = Y ,
m(X ∪ Y ) = µx = µ|X ∪ Y |/(1 + µ). Given any ∆, consider the initial token
distribution in which each node in X ∪ Y has ρ + ∆ tokens and each node in Z has
ρ−∆(1−µ)/(1+µ) tokens, where ρ is any integer that is at least ∆(1−µ)/(1+µ). (Note
that the average number of tokens is ρ.) By applying the second claim of Theorem 6.2,
we obtain that the number of steps to balance G so that each node has at most ρ
tokens is at least (I(X∪Y )−ρ|X∪Y |)/m(X∪Y ) ≥ ∆|X∪Y |/m(X∪Y ) ≥ ∆(1+µ)/µ.
Since the number of steps is an integer, the desired claim follows.

By using the techniques of [29], we can modify the proof of Lemma 6.3 to show
that any network G with node expansion µ and initial imbalance ∆ can be globally
balanced to within 3 tokens in at most 2d∆(1 + µ)/µe steps. The extra factor of 2
is required because even after balancing the network so that each node has at most
dρe+1 tokens, there may exist a node with considerably fewer than ρ tokens. It takes
an additional d∆(1 + µ)/µe steps to bring the network to a state in which the global
imbalance is at most 3.

Lemma 6.3 implies that the time bound achieved by the single-port algorithm (see
Theorems 3.1 and 3.9) is not optimal for all networks. An example of a network for
which the single-port algorithm is not optimal is the hypercube, which has maximum
degree log n, edge expansion 1, and node expansion Θ(1/

√
logn). The local algorithm

balances in Ω(∆ logn) time, while there exists an O(∆
√

logn + log2 n) time load
balancing algorithm for the hypercube [34] which is optimal for ∆ sufficiently large.
For the class of constant-degree networks, however, the time taken by the single-port
algorithm to reduce the global imbalance to O(logn/µ) (see Theorem 3.9) is within a
constant factor of the time taken by any algorithm to completely balance the network
(see Lemma 6.3).

The proofs of Theorem 1 of [29] and Lemma 6.3 can be modified to establish the
following result for the multiport model.

Lemma 6.4. Assume the multiport model. Any network G with edge expansion
α and initial imbalance ∆ can be balanced in at most d∆/αe steps so that every node
has at most dρe + d tokens. Moreover, for every network G, there exists an initial
load distribution with imbalance ∆ such that any algorithm takes at least d∆/αe steps
to balance G so that every node has at most dρe tokens.

Proof (sketch). We prove that there exists an off-line algorithm that balances

to within d tokens in at most T = max∅⊂X⊂V d |I(X)−ρ|X||
|M(X,X)| e steps. For all X ⊆ V ,

we have (i) |I(X) − ρ|X|| ≤ ∆ min{|X|, |X|} (see proof of Lemma 6.3), and (ii)
|M(X,X)| ≥ αmin{|X|, |X|}. It follows from (i) and (ii) that T ≤ d∆/αe.

We modify the proofs of Theorem 1 and Lemma 4 of [29] (where the single-port
model was assumed) to establish the desired claims for the multiport model. We
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transform the load balancing problem on G to a network flow problem on a directed
graph H = (V ′, E′), which is constructed as follows. Let Vi be {〈v, i〉 : v ∈ V },
0 ≤ i ≤ T . Let Ei be {(〈u, i〉, 〈v, i+ 1〉) : (u, v) ∈ E or u = v}, 0 ≤ i < T . We set V ′

to {s} ∪ ⋃0≤i≤T Vi ∪ {t} and E′ to {(s, 〈v, 0〉) : v ∈ V } ∪ ⋃0≤i<T Ei ∪ {(〈v, T 〉, t) :
v ∈ V }. For any v in V , the capacity of the edge (s, 〈v, 0〉) is w(v). For any (u, v) in
E, the capacity of any edge (〈u, i〉, 〈v, i + 1〉), 0 ≤ i < T , is 1. For any v in V , the
capacity of any edge (〈v, i〉, 〈v, i+ 1〉), 0 ≤ i < T , is ∞. For any v in V , the capacity
of the edge (〈v, T 〉, t) is dρe+ d.

We show that the value of the maximum integral flow in H is equal to the total
number of tokens N in V , from which it follows that there exists an off-line algorithm
that balances to within d tokens in T steps. Consider any cut C = (S, T ) of H
separating s ∈ S and t ∈ T . Let Si = S ∩ Vi and D(Si) = {v ∈ V : 〈v, i〉 ∈ Si}. If
S0 = ∅, or ST = VT , or there is an edge of infinite capacity, then the capacity of C
is at least N . Otherwise, the number of edges from Vi to Vi+1 that belong to the cut
is at least |M(D(Si), D(Si))| − d(|Si+1| − |Si|). Moreover, since there is no edge with
infinite capacity in C, D(Si) is a subset of D(Si+1). Thus the capacity of C is at least

I(D(V0) \D(S0)) +

(
T−1∑
i=0

(
|M(D(Si), D(Si))| − d(|Si+1| − |Si|)

))
+ (dρe+ d)|ST |

≥ I(D(V0) \D(S0)) +

(
T−1∑
i=0

((I(D(Si))− ρ|Si|)/T − d(|Si+1| − |Si|))
)

+ (dρe+ d)|ST |

≥ I(D(V0) \D(S0)) +

(
T−1∑
i=0

((I(D(S0))− ρ|ST |)/T − d(|ST | − |S0|))
)

+ (dρe+ d)|ST |

≥ I(D(V0) \D(S0)) + I(D(S0))− ρ|ST |+ d|S0|+ dρe|ST |
≥ N.
(In the first equation, (i) I(D(V0) \D(S0)) is the capacity of the edges from s to V0

that belong to the cut, (ii) |M(D(Si), D(Si))| − d(|Si+1| − |Si|) is the capacity of the
edges from Vi to Vi+1 that belong to the cut, and (iii) (dρe + d)|ST | is the capacity
of the edges from ST to t that belong to the cut. The second equation follows from
the definition of T and the fact that |D(Si)| = |Si|. For the third equation, note that
D(S0) is a subset of D(Si) for all i and |ST | ≥ |Si| for all i. The fourth equation
holds since the sum of |Si+1| − |Si| telescopes. The final equation is obtained since
I(D(V0)) = N .) Since the capacity of the cut ({s}, V ′ \ {s}) equals N , the maximum
flow in H is N .

To prove the second part of the lemma, given any network G with a partition
(V1, V2) of its nodes such that |V1| ≤ n/2 and |M(V1, V2)| = α|V1|, we define an initial
load distribution with average ρ in which each node in V1 has ρ+ ∆ tokens and each
node in V2 has ρ − ∆|V1|/|V2| tokens. The desired claim holds since at least ∆|V1|
tokens need to leave the set V1.

Lemma 6.4 implies that the local multiport algorithm is asymptotically optimal
for all networks. As in the single-port case, we can modify the above proof to obtain
upper bounds on the off-line complexity of globally balancing a network. We can show
that any network G with edge expansion α and initial imbalance ∆ can be globally
balanced to within d+ 1 tokens in at most 2d∆/αe steps.

Appendix A. Some technical inequalities. Let ν equal α/(cd2). For the
following we set c large enough so that (1 + ν)12d ≤ 3/2. The function φ is defined in
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section 5.
Lemma A.1. For any integer x, if φ(x) > 0, then φ(x+ 12d) ≤ 3φ(x)/2.
Proof. Since φ(x) > 0, we have φ(x + 12d) = (1 + ν)12dφ(x) ≤ 3φ(x)/2. (Note

that if φ(x) = 0, then φ(x+ 12d) may not equal (1 + ν)12dφ(x).)
Lemma A.2. For any integer x we have

max{φ(24jd), φ(x− 12d)} ≥ 2φ(x)/3.

Proof. If φ(x− 12d) > 0, then 2φ(x)/3 ≤ φ(x− 12d) by Lemma A.1. Otherwise,
x−12d ≤ 24jd−11d, which implies that x ≤ 24jd+d. Therefore, φ(x) ≤ φ(24jd+d) ≤
φ(24jd)(1 + ν)d ≤ 3φ(24jd)/2.

Lemma A.3. For any integers x and y, if φ(x) > 0 and x − y ≥ 11d, then we
have φ(x)− φ(y) ≥ 2(φ(x+ 11d)− φ(y))/5.

Proof.

2(φ(x+ 11d)− φ(y))/5 = 2(φ(x+ 11d)− φ(x))/5

+2(φ(x)− φ(y))/5

≤ 2(1 + ν)11d(φ(x)− φ(x− 11d))/5

+2(φ(x)− φ(y))/5

≤ 2(1 + ν)11d(φ(x)− φ(y))/5

+2(φ(x)− φ(y))/5

≤ φ(x)− φ(y).

(In the second equation we use x− 11d ≥ y. In the last equation we use (1 + ν)11d ≤
3/2.)

Appendix B. Proof of Lemma 5.2. We define a notion of “goodness” of the
tokens. Initially, all tokens are unmarked. After any step t, for every token p that is
moved along an edge, p is marked good if ht−1(p)−ht(p) ≥ 6d; otherwise, p is marked
bad . The marking of tokens that do not move is unchanged.

Lemma B.1. For any two bad tokens p1 and p2 present at any node v at the
start of any step t, if p1 and p2 are last sent to v by the same neighbor u of v, then
|ht(p1)− ht(p2)| > 4d.

Proof. Let t1 (resp., t2) be the step during which p1 (resp., p2) is last sent to v.
Without loss of generality, we assume t1 < t2 < t. Thus we have ht(p1) < ht(p2).
Since u’s estimate of the number of tokens at v is updated in step t1, we have eut1(v) ≥
ρ+ht1(p1)−d. (Note that eut1(v) is u’s estimate of the number of tokens at v after step
t1.) Since p1 remains at v during the interval [t1, t2), we find that eut′(v) ≥ ρ+ht′(p1)−d
for every step t′ in [t1, t2). In particular, we have eut2−1(v) ≥ ρ+ht2−1(p1)−d. Since u
sends p2 to v in step t2, ht2−1(p2) ≥ ht2−1(u)−d ≥ eut2−1(v)−ρ+11d ≥ ht2−1(p1)+10d.
Since p2 is bad, we also have ht2(p2) > ht2−1(p2) − 6d ≥ ht2−1(p1) + 4d. Since
ht(p2) = ht2(p2) and ht(p1) = ht2−1(p1), the lemma follows.

Corollary B.2. At any time, for any node u and integer i > 0, there are at
most d bad tokens with heights in (i, i+ 4d].

Proof of Lemma 5.2. Consider an arbitrary step t of the algorithm. For every
token p transferred from u to v in step t, we assign some credit to every edge adjacent
to u or v. Specifically, if p is marked good after step t we assign an outgoing credit
of 9(φ(ht−1(p))− φ(ht(p)))/(20d) units to every edge adjacent to u and an incoming
credit of the same amount to every edge adjacent to v. If p is marked bad we assign
an outgoing credit of (φ(ht(p) + d)− φ(ht(p)))/(20d) + (φ(ht−1(p))− φ(ht−1(p)− d))
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units to every edge adjacent to u and an incoming credit of the same amount to
every edge adjacent to v. Also, for each edge (u, v), we assign an initial credit of
2 max{φ(24jd), φ(h0(u) − d) + φ(h0(v) − d)} units at the start of the analysis. The
total initial credit I is bounded as follows:

I ≤ 2

(
n

2

)
φ(24jd) +

∑
(u,v)∈E

2(φ(h0(u)− d) + φ(h0(v)− d))

≤ n2φ(24jd) +
∑
u∈V

∑
0≤`<d

2φ(h0(u)− `)

≤ n2φ(24jd) + 2Φ0.

(The first equation follows from the fact that the maximum of two quantities is at
most the sum of the particular quantities. We also note that each undirected edge
(u, v) appears at most once in the summation. For the second equation, we note that
each node has at most d edges. Hence for any node u, the term 2φ(h0(u)−d) appears
in at most d terms of the sum. We complete the derivation of the second equation by
observing that φ(h0(u)− `) is at least φ(h0(u)− d) for 0 ≤ ` < d. The third equation
is obtained by the fact that

∑
0≤`<d φ(h0(u)− `) is at most φ(u).) The above bound

on I corresponds to the negative term in (5.1).
We now show that by using the above accounting method we can account for

the amortized potential drop of (φ(ht−1(u)− d)− φ(ht−1(v) + d))/50 units at step t
for every edge (u, v) ∈ Et. To accomplish this, for every live edge (u, v) ((u, v) not
necessarily in Et), we consider three cases: (i) a token p sent from u to v is marked
good, (ii) a token p sent from u to v is marked bad, (iii) no token is sent from u to v.

We first consider case (i). When a token p is marked good after being sent
along (u, v), we use the actual potential drop of p to pay for the amortized drop D1

associated with (u, v) as well as the total credit D2 assigned to the edges adjacent to
u or v due to the transfer of a good token.

D1 +D2 ≤ (φ(ht−1(u)− d)− φ(ht−1(v) + d))/50 + 2d[9(φ(ht−1(p))− φ(ht(p)))]/(20d)

≤ (φ(ht−1(p))− φ(ht(p)))/50 + 9(φ(ht−1(p))− φ(ht(p)))/10

≤ φ(ht−1(p))− φ(ht(p)).

(The first term in the right-hand side of the first equation is the amortized potential
drop. The second term is an upper bound on D2, since the number of edges adjacent
to either u or v is at most 2d. The second equation follows from the fact that ht−1(p)
is at least ht−1(u)− d and ht(p) is at most ht(u) + d.)

We now consider case (ii). In this case we need to account for (1) if ht(p) >
ht−1(p), an amount equal to the potential increase of D1 = φ(ht(p))−φ(ht−1(p)) units,
and (2) a credit of at most (φ(ht(p) + d)− φ(ht(p)))/10 + (φ(ht−1(p))− φ(ht−1(p)−
d))/10 units. We pay for (φ(ht−1(p)) − φ(ht(p)))/10 units of the credit using the
potential change. The remainder of the credit we need to account for is at most the
sum of D2 = (φ(ht(p) + d)− φ(ht(p)))/10 and D3 = (φ(ht(p))− φ(ht−1(p)− d))/10.
(Note that this is true regardless of whether the potential of p decreases in step t.)

We have two subcases, depending on whether t is the first step in which (u, v)
is live (subcase (a)) or not (subcase (b)). In subcase (a), if h0(u) ≥ ht(p) − d,
the initial credit C0 associated with (u, v) is at least 2 max{φ(24jd), φ(ht(p) − 2d)}.
Since φ(ht(p) − 2d) ≥ φ(ht(p) − 12d), it follows from Lemma A.2 that 3C0/4 ≥
φ(ht(p)) ≥ D1. Since φ(ht(p) − 2d) ≥ φ(ht(p) − 11d), C0/4 ≥ φ(ht(p) + d)/3 ≥
φ(ht(p) + d)/10 + φ(ht(p))/10 ≥ D2 +D3. Therefore, we have C0 ≥ D1 +D2 +D3.
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We now consider subcase (a) under the assumption that h0(v) ≤ ht(p) − d. In
order to do the accounting, we use part of the incoming credit associated with the edge
(u, v) due to the set X of good tokens of v with heights in the interval (h0(v), ht(p)−d].
(Note that each token in X is marked and thus has contributed incoming credit to
all edges adjacent to v.) Since each token x in X is good, the height of the token
before the transfer to node v was at least ht(q) + 6d. Therefore, the incoming credit
assigned to (u, v) by a token x in X is at least 9(φ(ht(q)+6d)−φ(ht(q)))/(20d) units.
For each token x in X, we use cx = 8(φ(ht(q) + 6d) − φ(ht(q)))/(20d) units of this
incoming credit. Let C1 denote

∑
x∈X cx. We obtain the following lower bound C1.

By invoking Corollary B.2, we obtain

C1 ≥ 8

20d

∑
1≤i≤bht(p)−d−h0(v)

4d c

∑
1≤k≤3d

(φ(ht(p)− d− 4id+ k + 6d)

− φ(ht(p)− d− 4id+ k + d))

≥ 8

20d

∑
1≤k≤3d

∑
1≤i≤bht(p)−d−h0(v)

4d c
(φ(ht(p)− d− 4id+ k + 6d)

− φ(ht(p)− 4id+ k))

≥ 8

20d

∑
1≤k≤3d

(
φ(ht(p)− d− 4d+ k + 6d)

−φ(ht(p)− 4d

⌊
ht(p)− d− h0(v)

4d

⌋
+ k)

)
≥ 8

20d

∑
1≤k≤3d

(φ(ht(p) + d)− φ(h0(v) + 8d))

= 6(φ(ht(p) + d)− φ(h0(v) + 8d))/5.

(In the first equation we partition the interval (h0(v), ht(p)−d] into subintervals of 4d
consecutive integers starting from ht(p)−d. The last subinterval may have fewer than
4d integers; if so, we ignore the last subinterval in the sum. The second summation
in the first equation is a lower bound on the sum of cx over each good token x in
each subinterval. To obtain the second summation, we invoke Corollary B.2, which
implies that there are at least 3d good tokens in every subinterval of 4d tokens. The
second equation is obtained by interchanging the order of summation. For the third
equation, we use the fact that φ(ht(p)− d− 4(i− 1)d+ k + 6d) ≥ φ(ht(p)− 4id+ k)
and then note that the sum telescopes. For the fourth inequality, note that (i) the

index k is at least 0 and at most 3d, and (ii) ht(p)− 4dbht(p)−d−h0(v)
4d c ≤ h0(v) + 5d.)

Since p is marked bad after step t, we have ht(p) > ht−1(p)− 6d. Therefore,

C0 + C1 ≥ 2 max{φ(24jd), φ(h0(v)− d)}+ 6(φ(ht(p) + d)− φ(h0(v) + 8d))/5

≥ 6φ(ht(p) + d)/5

≥ φ(ht(p))− φ(ht−1(p)) + (φ(ht(p) + d)− φ(ht(p)))/10

+ (φ(ht(p))− φ(ht−1(p)− d))/10

≥ D1 +D2 +D3.

(The first equation states the lower bounds on C0 and C1 obtained above. For the
second equation, we invoke Lemma A.2 as follows: 2 max{φ(24jd), φ(h0(v) − d)} ≥
4φ(h0(v) + 11d)/3 ≥ 6φ(h0(v) + 8d)/5. The third equation is obtained from the
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following three observations: (i) φ(ht(p) + d) ≥ φ(ht(p))− φ(ht−1(p)), (ii) φ(ht(p) +
d)/10 ≥ (φ(ht(p)+d)−φ(ht(p)))/10, and (iii) φ(ht(p)+d)/10 ≥ (φ(ht(p))−φ(ht−1(p)−
d))/10.)

We use a similar argument as above to handle subcase (b), where t is not the first
step in which (u, v) is live. The set X is the set of good tokens of v with heights in the
interval (eut−1(v)−ρ, ht(p)−d]. Let cx and C1 be defined as in subcase (a). That is, cx
equals 8(φ(ht(x)+6d)−φ(ht(x)))/(20d) units of the incoming credit assigned to (u, v)
by a token x in X, and C1 equals

∑
x∈X cx. We will show that 11C1/12 ≥ D1 + D3

and C1/12 ≥ D2, and hence obtain that C1 ≥ D1 +D2 +D3.
We first show that 11C1/12 ≥ D1 +D3. If ht(p) ≤ ht−1(p)− d, then D1 and D3

are both nonpositive and hence the desired claim holds trivially. We now assume that
ht(p) > ht−1(p) − d. Let y denote eut−1(v) − ρ + 8d. We observe that since u sent a
token to v during step t, y = eut−1(v)−ρ+8d ≤ ht−1(u)−4d ≤ ht−1(p)−3d. Since p is
a bad token, we have y ≤ ht−1(p)− 3d < ht(p)− 2d. As in subcase (a), we divide the
interval (eut−1(v)− ρ, ht(p)− d] into subintervals consisting of 4d consecutive integers.
Note that eut−1(v)− ρ ≤ ht(p)− 11d and hence the number of subintervals is at least
1. We obtain the following lower bound on 11C1/12.

11C1/12 ≥ (11/12) · 6(φ(ht(p) + d)− φ(y))/5

≥ 11(φ(ht(p) + d)− φ(ht−1(p)− 2d))/10

≥ (φ(ht(p))− φ(ht−1(p))) + (φ(ht(p))− φ(ht−1(p)− d))/10

= D1 +D3.

(The first equation is obtained in the same manner as the upper bound on C1 in
subcase (a). While the interval considered in subcase (a) is (h0(v), ht(p) − d], we
consider here the interval (eut−1(v) − ρ, ht(p) − d] = [y − 8d, ht(p) − d]. Hence, the
term φ(h0(v) + 8d) obtained in the lower bound on C1 in subcase (a) is replaced by
φ(y) above. The second equation is obtained from the upper bound on y.)

We now show that C1/12 ≥ D2. Since a token is sent by u to v in step t,
eut−1(u) − ρ ≤ ht−1(u) − 12d ≤ ht−1(p) − 11d. Moreover, since p is a bad token,
ht−1(p) ≤ ht(p) − 6d. Therefore, eut−1(u) − ρ ≤ ht(p) − 5d. It follows that (ht(p) −
5d, ht(p) − d] is a subinterval of (eut−1(u) − ρ, ht(p) − d]. Hence, C1 can be lower
bounded by adding cx over all good tokens x whose height is in (ht(p)−5d, ht(p)−d].
By Corollary B.2, at least 3d of the tokens in [ht(p)−5d, ht(p)−d] are good. We thus
obtain

C1/12 ≥ (3d/12) · 8(φ(ht(p) + d)− φ(ht(p)− d))/(20d)

= (φ(ht(p) + d)− φ(ht(p)))/10

≥ D2.

(For the first equation, note that cx = 8(φ(ht(x)+6d)−φ(ht(x)))/(20d) ≥ 8(φ(ht(p)+
d)− φ(ht(p)− d))/(20d) for ht(x) in [ht(p)− 5d, ht(p)− d]. The last equation follows
from the definition of D2.)

To complete the proof for case (ii), we show that for any token x of v, any
incoming credit assigned by x to edge (u, v) that is used at step t for case (ii) is
not used again for case (ii). To prove this, we note that for any x in X, for every
further step t′ > t until x is transferred by u, we have ht′(x) ≥ eut′−1(v) − ρ. While
establishing case (ii) for step t, we use only the incoming credit assigned by tokens in
(eut′−1(v)− ρ, ht′(p)− d]. Hence the incoming credit assigned by x to edges adjacent
to u that is used at step t will never be used again.



62 GHOSH ET AL.

We need to consider case (iii) only under the assumption that (u, v) ∈ Et, i.e.,
(u, v) is live in step t. In this case we account for D = (φ(ht−1(u)− d)− φ(ht−1(v) +
d))/50 units of potential. Again we consider two subcases depending on whether t is
the last step in which (u, v) is live (subcase (a)) or not (subcase (b)). We first consider
subcase (a). If h0(u) ≥ ht−1(u)−12d, then we use C0 = 2 max{φ(24jd), φ(h0(u)−d)}
units of the initial credit associated with (u, v). Since ht−1(u)− d ≤ h0(u)− d+ 12d,
it follows from Lemma A.2 that C0 ≥ 4φ(ht−1(u)− d)/3 ≥ φ(ht−1(u)− d)/50 ≥ D.

We now consider subcase (a) of case (iii) under the assumption that h0(u) <
ht−1(u) − 12d. In addition to C0, we also use part of the incoming credit associated
with the set of tokens Y = {y : y is a token of u and h0(u) < ht(y) ≤ ht−1(u)}.
Specifically, for every token y in Y , we use (φ(ht(y) + d) − φ(ht(y)))/(20d) units of
incoming credit that is assigned to (u, v) by y. Note that since ht(y) > h0(u), token
y has moved and hence has assigned some incoming credit to (u, v). If y is good,
this credit is at least 9(φ(ht(y) + 6d) − φ(ht(y)))/(20d) units; otherwise, this credit
is at least (φ(ht(y) + d) − φ(ht(y)))/(20d). Moreover, if y is a good token, at most
8(φ(ht(y) + 6d) − φ(ht(y)))/(20d) units of incoming credit were used in the analysis
of case (ii). If y is a bad token, none of the incoming credit was used in the analysis
of case (ii). In either case, at least (φ(ht(y) + d)− φ(ht(y)))/(20d) units of incoming
credit still remain. Let this credit be denoted C1. We obtain the following lower
bound on C0 + C1:

C0 + C1 ≥ C0 +
∑

h0(u)<k≤ht−1(u)

(φ(k + d)− φ(k))/(20d)

= C0 +
1

20d

∑
1≤i≤d

(φ(ht−1(u) + i)− φ(h0(u) + i))

≥ C0 + (φ(ht−1(u))− φ(h0(u) + d))/20

≥ φ(ht−1(u))/20

≥ D.

(The second equation holds since the sum in the first equation can be expressed as a
sum of d telescoping sums. For the third equation we invoke Lemma A.2 and obtain
that C0 ≥ 2φ(h0(u) + 11d)/3 ≥ φ(h0(u) + d)/20.)

We now consider subcase (b) of (iii). Recall that by the definition of Et, u is
in S>j at the start of step t. Therefore, ht−1(u) ≥ 24(j + 1)d − 12d ≥ 24jd + 12d.
Since no token was sent along (u, v) in step t, we have eut−1(v) − ρ > ht−1(u) − 12d
(≥ 24jd). By the definition of Et, we also have ht−1(u) ≥ ht−1(v) + 24d. It follows
that eut−1(v) − ρ > ht−1(v) + 12d. Since the last step in which (u, v) was live, at
least eut−1(v) − ρ − ht−1(v) tokens have left v. We use the outgoing credit assigned
to (u, v) due to these token transmissions. Consider a token x that is transmitted by
v in step t′. If x is marked good after the step, then the outgoing credit assigned by
x to (u, v) is at least 9(φ(ht′−1(p))− φ(ht′(p)))/(20d) ≥ 9(φ(ht′−1(p))− φ(ht′−1(p)−
6d))/(20d) units. Otherwise, the outgoing credit assigned by x to (u, v) is at least
(φ(ht′−1(p)) − φ(ht′−1(p) − d))/(20d) units. In either case, the outgoing credit is at
least (φ(ht′−1(p))− φ(ht′−1(p)− d))/(20d) units. We thus obtain the following lower
bound on the total outgoing credit C2 assigned to (u, v) by at least eut−1(v)−ρ−ht−1(v)
tokens.

C2 ≥
∑

ht−1(v)<k≤eu
t−1

(v)−ρ
(φ(k)− φ(k − d))/(20d)
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=
1

20d

∑
1≤i≤d

(φ(eut−1(v)− ρ− d+ i)− φ(ht−1(v)− d+ i))

≥ (φ(eut−1(v)− ρ− d)− φ(ht−1(v)))/20

≥ (φ(eut−1(v)− ρ+ 11d)− φ(ht−1(v) + d))/50

≥ (φ(ht−1(u)− d)− φ(ht−1(v) + d))/50

= D.

(The second equation holds since the sum in the first equation can be expressed as a
sum of d telescoping sums. For the third and fourth inequalities, we first note that
since no token is sent by u to v in step t, we have eut−1(v)−ρ > ht−1(u)−12d ≥ 24jd−d.
The third equation now follows from Lemma A.3 and the fact that φ(eut−1(v)−ρ−d) >
0. The fourth equation follows directly from the lower bound on eut−1(v)− ρ.)

We note that the outgoing credit assigned to edge (u, v) in the above analysis of
case (iii) is used at most once in case (iii). To prove this, we observe that after step t,
the value of eu(v) is updated by u to ht−1(v)+ρ. Therefore, if case (iii) of the analysis
subsequently uses any outgoing credit assigned by a token x that leaves v and whose
height in v is in (ht−1(v), eut−1(v)], then x reached v after step t. Hence, the outgoing
credit assigned by the eut−1(v)− ht−1(v) tokens that are used in the analysis for step
t are not used again for a later step.
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Abstract. The traveling salesman problem on an n-point convex polygon and the minimum
latency tour problem for n points on a straight line are two basic problems in graph theory and have
been studied in the past. Previously, it was known that both problems can be solved in O(n2) time.
However, whether they can be solved in o(n2) time was left open by Marcotte and Suri [SIAM J.
Comput., 20 (1991), pp. 405–422] and Afrati et al. [Informatique Theorique Appl., 20 (1986), pp.
79–87], respectively.

In this paper we show that both problems can be solved in O(n logn) time by reducing them
to the following problem: Given an edge-weighted complete bipartite digraph G = (X,Y,E) with
X = {x0, . . . , xn} and Y = {y0, . . . , ym}, we wish to find the shortest path from x0 to xn in G.
This new problem requires Ω(nm) time to solve in general, but we show that it can be solved in
O(n+m logn) time if the weight matrices A and B of G are both concave, where for 0 ≤ i ≤ n and
0 ≤ j ≤ m, A[i, j] and B[j, i] are the weights of the edges (xi, yj) and (yj , xi) in G, respectively. As
demonstrated in this paper, the new problem is a powerful tool and we believe that it can be used
to solve more problems.

Key words. graph algorithm, shortest path, traveling salesman problem, minimum latency tour
problem, concave matrix

AMS subject classifications. 68Q25, 68R10
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1. Introduction. The traveling salesman problem (TSP) is a classical problem
of combinatorial optimization. It has been the testing ground of many new algorith-
mic ideas during the past half-century: dynamic programming, linear programming,
genetic algorithms, etc. The TSP is NP-hard and even nonapproximatable. This has
motivated researchers to look at its special cases. It turns out that various special
cases of the TSP remain NP-hard but are approximatable. Among the special cases
solvable in polynomial time, the TSP for points on a convex polygon is well known.
In this special case, we are given a set S of n points on the boundary of a convex
polygon C and two points x and y in S and are requested to compute a shortest tour
starting at x, visiting all the points in S−{x, y}, and ending at y. Here, the distance
between two points in S is the Euclidean distance between them. This special case
can be solved in O(n2) time via dynamic programming [10], but whether it can be
solved in o(n2) time was an open question (posed in [10]). In this paper, we give an
affirmative answer to this open question. More specifically, we show that the TSP for
points on a convex polygon can be solved in O(n logn) time.

The minimum latency problem (MLP) is as follows: We are given a metric space
M on n points {x1, . . . , xn} and are requested to compute a tour in M starting at x1
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which minimizes the sum of the arrival times at the n points. More precisely, if T is
a tour starting at x1 we say that the latency of xi with respect to T is the distance
traveled in T before reaching xi; and the latency of T is the sum of the latencies of
the n points. The goal is then to find a tour of minimum latency. The MLP is a
well-studied problem in the operations research literature, where it is also known as
the “delivery-man problem” and the “traveling repairman problem” (see [5] for more
discussions and references). Although it looks similar to the TSP, the MLP is very
different from the TSP in nature [5]. Generally, the MLP is NP-complete [5]. Even
for points on a tree or on a convex polygon, it is not known whether the MLP is in
P or NP-complete [5]. The case where points are on a straight line was considered
in [1, 5]. This case is interesting since it is exactly the following disk head scheduling
problem: A disk head moves along a straight line L. The head must visit a set of
n points on L in order to satisfy disk access requests. The time needed to travel is
proportional to the distance being traveled. Once the head reaches a point, the disk
access time can be ignored (since the disk rotating speed is much higher than the head
moving speed). We want to find a tour of the head such that the average delay (or
equivalently, the total delay) of all requests is minimized. The MLP for this special
case can be solved in O(n2) time via dynamic programming [1, 5]. However, whether
it can be solved in o(n2) time was an open question [1]. In this paper, we answer this
question in the affirmative by giving an O(n logn)-time algorithm for it.

We obtain the two results mentioned above by efficient reductions to a single prob-
lem called the shortest path in bipartite digraph (SPBD) problem, which is defined as
follows. Let G = (X,Y,E) be a complete bipartite digraph with X = {x0, x1, . . . , xn}
and Y = {y0, y1, . . . , ym}. Each edge e ∈ E is associated with a real-valued weight
w(e). We use xi → yj and yj → xi to denote the edges. Let A[0..n, 0..m] be the matrix
with A[i, j] = w(xi → yj) and B[0..m, 0..n] be the matrix with B[i, j] = w(yi → xj).
The weight of a (directed) path P in G is defined as w(P ) =

∑
e∈P w(e). Given such

a digraph G, the SPBD problem is to find a path P in G from x0 to xn such that
w(P ) is minimized. For arbitrary weight matrices, we must examine all the edges of
G in order to find the shortest path. Thus we need at least Ω(nm) time to solve the
problem. A matrix M [0..n, 0..m] is called concave if the following hold:

M [i1, j1] +M [i2, j2] ≤M [i2, j1] +M [i1, j2]

for 0 ≤ i1 ≤ i2 ≤ n and 0 ≤ j1 ≤ j2 ≤ m.(1.1)

Concave matrices were first discussed in [12] and have been very successfully used
in solving various problems (see [2, 3, 4, 6, 7, 8, 9, 11, 12, 13] and the references
cited within). Given two matrices A[0..n, 0..m] and B[0..m, 0..n], the product matrix
W [0..n, 0..n] = A×B is defined by

W [i, j] = min
0≤k≤m

(A[i, k] +B[k, j]).(1.2)

For the SPBD problem we require that G contains no negative cycles since oth-
erwise the shortest path of G is not well defined. If both A and B are concave, as we
will prove later, this requirement is satisfied if all the entries on the main diagonal
of the product matrix W = A × B are nonnegative. In section 4 we will prove the
following theorem.

Theorem 1.1. Given two concave matrices A and B such that all the entries
on the main diagonal of the product matrix W = A × B are nonnegative, the SPBD
problem defined by A and B can be solved in O(n+m logn) time.
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Even for this special case, no algorithm with o(nm) running time was previously
known. In this theorem we assume that the matrices A and B are not explicitly given.
Rather, an entry is computed in constant time when it is needed. This is true when
we apply our SPBD algorithm to solve the TSP and the MLP.

The rest of this paper is organized as follows. In section 2 we present the reduction
from the TSP for points on a convex polygon to the SPBD problem. In section 3 we
reduce the MLP for points on a straight line to the SPBD problem. In section 4 we
prove Theorem 1 by giving an O(n+m logn)-time algorithm for the SPBD problem.
Section 5 concludes the paper.

2. The TSP for points on a convex polygon. Let C be a convex polygon
and Z be the set of the corner vertices of C. The members of Z will be called points.
For two points z1 and z2 in Z, let d(z1, z2) denote the Euclidean distance between
z1 and z2. The points in Z induce an edge-weighted complete graph GZ , where the
weight on each edge {z1, z2} is d(z1, z2). We identify each edge {z1, z2} with the line
segment whose endpoints are z1 and z2. The weight of a path P in GZ is the sum
of the weights on the edges in P and is denoted by w(P ). Fix two points x and y
in Z. Hereafter, a Hamiltonian path in GZ always means one from x to y. Our goal
is to compute an optimal Hamiltonian path in GZ , i.e., a Hamiltonian path in GZ
of minimum weight. An easy geometric argument shows that every optimal path P
must be simple, i.e., no two edges of P cross each other.

Let x = x0, x1, . . . , xn = y be the points in Z that lie on the boundary of C from
x to y in the clockwise order. Let CX be the portion of the boundary of C which
starts at x, includes x1, . . . , xn−1, and ends at y. Similarly, let x = y0, y1, . . . , ym = y
be the points in Z that lie on the boundary of C from x to y in the counterclockwise
order. Let CY be the portion of the boundary of C which starts at x, includes y1, . . . ,

ym−1, and ends at y. For 0 ≤ i < j ≤ n let xi
X→ xj denote the portion of CX from

xi to xj . For 0 ≤ i < j ≤ m let yi
Y→ yj denote the portion of CY from yi to yj .

Let P be an optimal Hamiltonian path from x0 = y0 to xn = ym in GZ . Depend-
ing on whether the first and the last edges of P are in CX or in CY , there are four
possibilities. We assume that both the first and the last edges of P are in CY . Then
P must be of the following form:

xi0 = x0 = y0
Y→ yj1 → x1

X→ xi1 → yj1+1
Y→ yj2 → xi1+1

X→ · · · X→ xit

= xn−1 → yjt+1
Y→ ym = xn

for some 0 < j1 < j2 < · · · < jt < m − 1 and 0 = i0 < i1 < i2 < · · · < it = n − 1.
(See Figure 2.1. In Figure 2.1(b) the points in CX and CY are drawn on two vertical
lines for the sake of clarity.) We use the following dummy path P ′ to represent P (the
edges of P ′ are shown as dashed lines in Figure 2.1(b)):

P ′ : xi0(= x0)→ yj1 → xi1 → yj2 → xi2 → · · · → yjt−1
→ xit−1

→ yjt → xit(= xn−1).

The edges xil−1
→ yjl and yjl → xil in P ′ are called dummy edges. P is completely

specified by P ′.
For each dummy edge xil−1

→ yjl in P ′, the edge xil−1
→ xil−1+1 is not in P ,

while the edge yjl → xil−1+1 is in P . For each dummy edge yjl → xil in P ′, the
edge yjl → yjl+1 is not in P , while the edge xil → yjl+1 is in P . This motivates the
following definition of the weights of dummy edges xi → yj and yj → xi given in the
matrices A[0..n− 1, 0..m− 1] and B[0..m− 1, 0..n− 1]:

A[i, j] = w(xi → yj) = d(xi+1, yj)− d(xi, xi+1),(2.1)
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Fig. 2.1. (a) An optimal path P in a convex polygon; (b) a simplified representation of P .

B[j, i] = w(yj → xi) = d(yj+1, xi)− d(yj , yj+1).(2.2)

Note thatA[0, 0] = B[0, 0] = 0. Let SX =
∑n−1
i=1 d(xi−1, xi) and SY =

∑m
j=1 d(yj−1, yj).

It is easy to verify that the total weight of P is

w(P ) = SX + SY +
t∑
l=1

A[il−1, jl] +
t∑
l=1

B[jl, il].(2.3)

Although the above discussion is carried out by assuming that the first and the
last edges of P are in CY , it also applies to other cases. For example, if the first edge
of P is in CX , we let j1 = 0. If the last edge of P is in CX , we let jt = m − 1. It is
easy to verify that (2.3) is valid for these cases, too.

Since the term SX + SY in (2.3) is fixed for any P , to minimize w(P ) we need
only to minimize the reduced weight w(P ′) defined as follows:

w(P ′) =
t∑
l=1

A[il−1, jl] +
t∑
l=1

B[jl, il].(2.4)

Let G = (X,Y,E) be the complete bipartite digraph with X = {x0, x1, . . . , xn−1}
and Y = {y0, y1, . . . , ym−1} and the weight matrices A and B. Then a dummy path
P ′ with minimum reduced weight w(P ′) is exactly a shortest path in G from x0 to
xn−1.

For 0 ≤ i < i′ ≤ n − 1 and 0 ≤ j < j′ ≤ m − 1, by the definition of A and
the fact that C is a convex polygon, we have A[i, j] + A[i′, j′] − A[i, j′] − A[i′, j] =
d(xi+1, yj) + d(xi′+1, yj′)− d(xi+1, yj′)− d(xi′+1, yj) < 0.

Thus A is concave. Similarly, we can show that B is also concave. Let W = A×B.
Then

W [i, i] = min
0≤j≤m−1

[d(xi+1, yj)− d(xi, xi+1) + d(yj+1, xi)− d(yj , yj+1)].
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By the quadrangle inequality the expression within the min sign is > 0 for each j.
Thus W [i, i] > 0 for all 0 ≤ i ≤ n−1. By Theorem 1.1 we have the following theorem.

Theorem 2.1. The traveling salesman problem for points on an N -point convex
polygon can be solved in O(N logN) time.

3. The MLP for points on a straight line. Consider a set S of n+ 1 points,
a symmetric distance matrix d[0..n, 0..n], and a tour T which visits the points of S
in some order. The latency of a point p ∈ S with respect to T is the length of the
tour from the starting point to the first occurrence of p. More precisely, suppose
that T visits the points in S in the order p0, p1, . . . , pn starting at p0. Let d(pi−1, pi)
be the distance traveled along T between pi−1 and pi. Then the latency of pi is
w(pi) =

∑i
j=1 d(pj−1, pj). The total latency w(T ) of T is the sum of the latencies of

all the points in S: w(T ) =
∑n
i=1 w(pi). Or, equivalently,

w(T ) =

n∑
k=1

d(pk−1, pk)(n− k + 1).(3.1)

We wish to find a tour T with minimum w(T ). In this section we show that the
MLP for points on a straight line can be reduced to the SPBD problem and solved in
O(n logn) time.

Let S = {xn, xn−1, . . . , x1, x0 = y0 = 0, y1, y2, . . . , ym} be a set of N = n+m+ 1
distinct points on the real line from left to right. We overload xi (and yj) to denote
both a point and the distance from it to the origin. The tour starts at the point 0.
Define

w(TX) =
n∑
k=1

(xk − xk−1)(n− k + 1),

w(TY ) =

m∑
k=1

(yk − yk−1)(m− k + 1).

w(TX) is the total latency of the tour TX that starts at x0 = 0 and travels the
points x1, x2, . . . , xn in this order. w(TY ) is the total latency of the tour TY that
starts at y0 = 0 and travels the points y1, y2, . . . , ym in this order.

Consider an optimal tour T for S. Depending on whether the first and the last
edges of T are to the left or to the right, there are four possibilities. If, for example,
the first edge is to the right and the last edge is to the left, then T must be of the
following form (see Figure 3.1):

xi0 = yj0 = x0 = y0
∆→ yj1

∆→ xi1
∆→ yj2

∆→ xi2
∆→ · · · ∆→ xit−1

∆→ yjt = ym
∆→ xit = xn

for some 0 = j0 < j1 < j2 < · · · < jt−1 < jt = m and 0 = i0 < i1 < · · · < it−1 < it =

n. (The notation xi
∆→ yj denotes the straight line segment whose end points are xi

and yj consisting of several edges.) We use the following dummy tour T ′ to represent
T :

T ′ : xi0(= x0)→ yj1 → xi1 → · · · → xit−1
→ yjt(= ym)→ xit(= xn).

T is completely specified by T ′. Define the reduced weight of the dummy tour T ′ to
be

w(T ′) =
t∑
l=1

yjl [n+m− jl − il−1] +
t∑
l=1

xil [n+m− jl − il].(3.2)
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Fig. 3.1. Optimal tour for points on a straight line.

Lemma 3.1. The weight of T and the reduced weight of T ′ satisfies

w(T ) = w(TX) + w(TY ) + 2w(T ′).(3.3)

Proof. First we note that w(TX)+w(Ty) is the sum of the shortest-path distances
from x0 = y0 to the points xi (1 ≤ i ≤ n) and yj (1 ≤ j ≤ m). In the tour T , the
latency of each point will be the shortest-path distance plus some additional delay
(caused by the zigzag-shaped detour). We need to compute this additional delay.
Each “loop” of the form “from y0 to yjl and back” contributes a delay of 2yjl to each
point that is as yet unvisited when this loop is traversed; there are (n+m− jl− il−1)
such points. So the additional delay contributed by this loop is

2yjl(n+m− jl − il−1).

Similarly, the additional delay contributed by a loop of the form “from x0 to xil and
back” is

2xil(n+m− jl − il).

Summing up all these additional delay terms, we have w(T ) = w(TX) + w(TY ) +∑t
l=1 2yjl [n+m− jl − il−1] +

∑t
l=1 2xil [n+m− jl − il] = w(TX) +w(TY ) + 2w(T ′).

Although Lemma 3.1 is proved by assuming that the first edge of T is to the right
and the last edge of T is to the left, it also applies to other cases. For example, if the
first edge of T is to the left, we can let j1 = 0. If the last edge of T is to the right,
we can let it−1 = n and delete from T the subpath from ym to xn. It can be verified
that (3.3) is valid for those cases, too. Since the term w(TX) + w(TY ) is fixed for all
T , in order to minimize w(T ) we need only to minimize w(T ′).

Let G = (X,Y,E) be the complete bipartite digraph with X = {x0, x1, . . . , xn},
Y = {y0, y1, . . . , ym}, and the weight matrices A[0..n, 0..m] and B[0..m, 0..n] defined
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as follows:

A[i, j] = w(xi → yj) = yj(n+m− i− j),
B[j, i] = w(yj → xi) = xi(n+m− i− j).

Note that A[0, 0] = B[0, 0] = 0. It is easy to check that a dummy tour T ′ with
minimum reduced weight w(T ′) is exactly a shortest path in G from x0 to xn. By the
definition of A, for 0 ≤ i < i′ ≤ n and 0 ≤ j < j′ ≤ m, we have (A[i, j] + A[i′, j′])−
(A[i, j′] +A[i′, j]) = (i′ − i)(yj − yj′) < 0. Thus A is concave. Similarly, we can show
that B is also concave. Since all the entries of A and B are nonnegative, all the entries
of W = A×B are nonnegative. Thus by Theorem 1.1 we have the following.

Theorem 3.2. The minimum latency problem for a set of N points on straight
line can be solved in O(N logN) time.

4. Solving the SPBD problem. Our algorithm for solving the SPBD problem
is a reduction to an enhanced version of the least weight subsequence (LWS) problem.
In section 4.1 we describe the LWS problem and its enhanced version. The reduction
from the SPBD problem to the enhanced LWS problem is discussed in section 4.2. An
algorithm for solving the enhanced LWS problem is given in section 4.3. In section 4.4
we give a complete description of our algorithm for the SPBD problem and analyze
its time complexity.

4.1. The LWS problem and the enhanced LWS problem. The following
LWS problem was introduced in [8]. Given a sequence {x0, x1, . . . , xn} and a real-
valued weight function w(xi, xj) defined for indices 0 ≤ i < j ≤ n, find an integer
k ≥ 1 and a sequence S = {0 = i0 < i1 < · · · < ik−1 < ik = n} such that

the total weight w(S) =
∑k
l=1 w(xil−1

, xil) is minimized. The LWS problem can
also be formulated as a graph problem: Given an acyclic digraph G with vertex
set V = {x0, . . . , xn}, the edge set E = {xi → xj | 0 ≤ i < j ≤ n}, and the weight
function w, we wish to find a shortest path in G from x0 to xn. For an arbitrary weight
function w, the LWS problem requires Ω(n2) time to solve. The weight function w is
concave if the following hold:

w(xi1 , xj1) + w(xi2 , xj2)≤w(xi2 , xj1) + w(xi1 , xj2)

for 0 ≤ i1 ≤ i2 ≤ j1 ≤ j2 ≤ n.(4.1)

If the weight function is concave, then we have an instance of the concave LWS
problem. Hirschberg and Larmore showed that the concave LWS problem can be
solved in O(n logn) time [8]. Similar algorithms were developed in [6, 7]. Wilber
discovered an elegant linear-time algorithm for solving this problem [11]. All these
algorithms assume that each entry w(i, j) can be computed in constant time. In this
paper we consider only the concave LWS problem. From now on the phrase “LWS
problem” always means the concave LWS problem.

The enhanced version of the LWS problem is defined as follows. An instance of
the enhanced LWS problem is a sequence {x0, x1, . . . , xn} and a real-valued concave
weight function w(xi, xj) defined on all 0 ≤ i, j ≤ n such that w(xi, xi) ≥ 0 for all
0 ≤ i ≤ n. We want to find a sequence S = {0 = i0, i1, . . . , ik = n} (i0, i1, . . . , ik
are not necessarily in increasing order, as in the ordinary LWS problem), such that

the total weight w(S) =
∑k
l=1 w(xil−1

, xil) is minimized. In terms of the graph
formulation, given a complete digraph G with vertex set V = {x0, x1, . . . , xn} and a
weight function w, we wish to find a shortest x0 to xn path in G. Let e = xi → xj
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be an edge of G. If i < j, e is called a forward edge. If i = j, e is called a selfloop. If
i > j, e is called a backward edge. We require that the weight of the selfloops of G be
nonnegative since otherwise the weight of the shortest path in G would be −∞.

Lemma 4.1. For any instance of the enhanced LWS problem there exists a shortest
x0 to xn path consisting of only forward edges.

Proof. Let P be a shortest path from x0 to xn in G such that the number of
edges in P is minimum. Since w(xi, xi) ≥ 0 for all i, we may assume that P contains
no selfloops. Toward a contradiction, suppose that P contains a backward edge.
Let xil → xil+1

be the first backward edge of P . Then il > il+1 and il > il−1.
By the concavity of w and the assumption that w(xi, xi) ≥ 0 for all xi, we have
w(xil−1

, xil+1
) ≤ w(xil−1

, xil+1
) + w(xil , xil) ≤ w(xil−1

, xil) + w(xil , xil+1
). Thus

replacing the two edges xil−1
→ xil → xil+1

in P by a single edge xil−1
→ xil+1

, we
get a path P ′ such that w(P ′) ≤ w(P ) and the number of edges in P ′ is one less than
that in P . This contradicts the choice of P .

Lemma 4.1, together with the concavity of w, implies that there are no negative
cycles in any instance of the enhanced LWS problem. It also implies that we can
ignore all the backward edges and selfloops when solving the enhanced LWS problem.

4.2. Reduction. In this section we show that the SPBD problem can be reduced
to the enhanced LWS problem. First we need several technical lemmas. The following
lemma was proved in [12].

Lemma 4.2. If both A and B are concave, then the product matrix W = A × B
is also concave.

For 0 ≤ i ≤ n and 0 ≤ j ≤ n, let I(i, j) denote the smallest index k that realizes
the minimum value in definition (1.2). Namely, I(i, j) is the smallest index such that
W [i, j] = A[i, I(i, j)] +B[I(i, j), j]. The following lemma was proved in [12].

Lemma 4.3. For any i, j (0 ≤ i < n, 0 ≤ j < n), we have I(i, j) ≤ I(i, j + 1) ≤
I(i+ 1, j + 1).

Remark. The definitions of concavity and the matrix product in [12] are slightly
different from the definitions used here. In [12] a concave matrix is an upper triangular
matrix such that the condition (1.1) is true for i1 ≤ i2 ≤ j1 ≤ j2. In the matrix
product definition (1.2) the minimum is taken over i ≤ k ≤ j. Under these definitions,
Yao proved Lemmas 4.2 and 4.3. Under our definitions, Lemmas 4.2 and 4.3 can be
proved via similar methods.

Let (i, j) and (i′, j′) be two pairs of indices. If i ≤ i′ and j ≤ j′, we write
(i, j) ≺ (i′, j′). By Lemma 4.3, (i, j) ≺ (i′, j′) implies I(i, j) ≤ I(i′, j′).

Lemma 4.4. Let (i1, j1), (i2, j2), . . . , (ip, jp) be p pairs of indices such that (il, jl) ≺
(il+1, jl+1) for all 1 ≤ l < p. Then I(i1, j1), I(i2, j2), . . . , I(ip, jp) can be computed in
O(m log p) time.

Proof. This can be done in a binary search fashion. More specific, we find
Ip/2 = I(ip/2, jp/2) in the first stage, find I(ip/4, jp/4) (by searching the range 0..Ip/2)
and I(i3p/4, j3p/4) (by searching the range Ip/2..m) in the second stage, and so on. In
total, there are log p stages. Since each stage can be done in O(m) time, the lemma
holds.

Consider an instance of the SPBD problem defined by a complete bipartite di-
graph G = (X,Y,E) and two concave weight matrices A and B. Let G′ = (X,E′) be
the complete digraph on X with the concave weight matrix w = A×B. If w(xi, xi) ≥ 0
for all 0 ≤ i ≤ n, then G′ and w define an instance of the enhanced LWS problem.

Let P ′ : x0 = xi0 → xi1 → · · · → xik = xn be a shortest path in G′ from x0 to
xn. For each l (0 ≤ l ≤ k), let jl = I(il−1, il). Then P : x0 = xi0 → yj1 → xi1 →
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yj2 → · · · → yjk → xik = xn is a path in G from x0 to xn. Let w(P ′) denote the
weight of P ′ in G′ and w(P ) the weight of P in G. Clearly, w(P ) = w(P ′). We will
show that w(P ) is minimum among all paths from x0 to xn in G.

Let Q be a shortest path in G from x0 to xn. Since G is bipartite, Q is a
concatenation of subpaths Q1, Q2, . . . , Qp for some p ≥ 1, where each Ql (1 ≤ l ≤ p)
consists of two edges xi′

l−1
→ yj′

l
→ xi′

l
(i′0 = 0 and i′p = n). For each 1 ≤ l ≤ p, if

j′l 6= I(i′l−1, i
′
l), we can replace Ql by the subpath xi′

l−1
→ yI(i′

l−1
,i′
l
) → xi′

l
without

increasing the total weight w(Q). Therefore, without loss of generality, we may assume
that j′l = I(i′l−1, i

′
l) for all 1 ≤ l ≤ p. Hence the weight of Ql is w[i′l−1, i

′
l]. Thus Q

corresponds to a path Q′ = {x0 = xi′0 → xi′1 → · · · → xi′p = xn} from x0 to xn in G′

with w(Q′) = w(Q). Since the weight of P ′ is minimum among all such paths in G′,
we have w(P ) = w(P ′) ≤ w(Q′) = w(Q). Thus P is a shortest path in G from x0 to
xn.

Lemma 4.5. Let A and B be two concave matrices such that all the entries on
the main diagonal of the product matrix w = A×B are nonnegative. If the enhanced
LWS problem defined by the matrix w can be solved in T (n,m) time, then the SPBD
problem defined by A and B can be solved in O(T (n,m) +m logn) time.

Proof. In order to solve the SPBD problem defined by matrices A and B, we first
solve the enhanced LWS problem defined by the matrix w = A × B. Let P ′ : x0 =
xi0 → xi1 → · · · → xik = xn be the solution path found. We compute j1, j2, . . . , jk,
where jl = I(il−1, il). Since (i0, i1) ≺ (i1, i2) ≺ · · · ≺ (ik−1, ik), this can be done in
O(m logn) time by Lemma 4.4. The path x0 = xi0 → yj1 → xi1 → · · · → yjk →
xik = xn is the solution for the SPBD problem.

We want to use Wilber’s algorithm in [11] to solve our enhanced LWS problem.
In order to do this, however, we have to overcome two difficulties. First, Wilber’s
algorithm is for solving the (ordinary) LWS problem which is defined by an upper
triangle matrix while our problem is defined by a full matrix. Second, Wilber’s algo-
rithm assumes that each entry w(i, j) can be evaluated in O(1) time. In our case, an
entry of the matrix w = A × B may need Θ(m) time to evaluate. We will address
these two issues in the next section.

4.3. An algorithm for the enhanced LWS problem. Our algorithm for the
enhanced LWS problem is a modification of Wilber’s algorithm for the LWS problem.
First, we briefly review Wilber’s algorithm. (We assume that the reader is familiar
with [11].) Then we show how to modify Wilber’s algorithm to solve our problem.

Consider an instance of the LWS problem with the sequence {x0, x1, . . . , xn} and
the weight matrix w(xi, xj). Recall that w is an (n + 1) × (n + 1) upper triangular
matrix. Let f(0) = 0 and, for 1 ≤ j ≤ n, let f(j) be the weight of the lowest weight
subsequence between x0 and xj . For 0 ≤ i < j ≤ n let g(i, j) be the weight of the
lowest-weight subsequence between x0 and xj whose next-to-last element is xi. Then
we have {

f(j) = min0≤i<j g(i, j) for 1 ≤ j ≤ n,
g(i, j) = f(i) + w(xi, xj) for 0 ≤ i < j ≤ n.(4.2)

To solve the LWS problem it is enough to compute f(1), f(2), . . . , f(n). Adding
f(i1) + f(i2) to both sides of inequality (4.1) and applying definition (4.2), we get

g(i1, j1) + g(i2, j2) ≤ g(i1, j2) + g(i2, j1) for 0 ≤ i1 ≤ i2 ≤ j1 ≤ j2 ≤ n.
Consider a matrix M [0..n, 0..m]. For each column index 0 ≤ j ≤ m let i(j) be

the smallest row index such that M(i(j), j) equals the minimum value in the jth
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column of M . The column minima searching problem for M is to find the i(j)’s for
all 0 ≤ j ≤ m. M is called monotone if i(j1) ≤ i(j2) for all 0 ≤ j1 < j2 ≤ m. M
is totally monotone if every 2 × 2 submatrix of M is monotone [3]. If M is concave,
then it is easy to check that M is totally monotone. (The reverse is not necessarily
true.) For a totally monotone matrix M , the column minima searching problem for
M can be solved in O(n+m) time, assuming that each entry of M can be evaluated
in O(1) time [3]. Following [8], we will refer to the algorithm in [3] as the SMAWK
algorithm.

We extend the definition of g by setting g(i, j) = +∞ for 0 ≤ j ≤ i ≤ n. Then g
becomes a full (n+ 1)× (n+ 1) matrix. It is easy to verify that the extended matrix
g is totally monotone. (The only role of the +∞ entries is to make g a full matrix for
convenience. These entries otherwise have no effect on the computation.) Our goal is
to determine the row index of the minimum value in each column of g (which gives
f(1), . . . , f(n)). One might simply want to apply the SMAWK algorithm to g. But
we cannot, because for i < j, the value of g(i, j) depends on f(i) and f(i) depends
on g(0, i), g(1, i), . . . , g(i− 1, i). Thus we cannot compute the value of g in O(1) time
as required by the SMAWK algorithm.

Wilber’s algorithm starts in the upper left corner of g and works rightward and
downward, at each iteration learning enough new values of f to be able to compute
enough new values of g to continue with the next iteration. Actually, during one step
of each iteration, the algorithm might “pretend” to know values of f that it really
does not have. At the end of the iteration, the assumed value of f is checked for
validity.

We use f(j) and g(i, j) to refer to the correct values of f and g, respectively. The
currently computed value of f(j) is denoted by F (j) and sometimes will be incorrect.
The currently computed value of g(i, j) is denoted by G[i, j] and is always computed
as F [i] + w(i, j). Therefore G[i, j] = g(i, j) iff F (i) = f(i). The algorithm does not
explicitly store the matrices w, g,G. Rather, their entries are calculated when needed.
Let G[i1, i2; j1, j2] denote the submatrix of G consisting of the intersection of rows i1
through i2 and columns j1 through j2. G[i1, i2; j] denotes the intersection of rows i1
through i2 with column j. The rows of G are indexed from 0 and the columns are
indexed from 1. Wilber’s algorithm is as follows.

Wilber’s Algorithm.

F [0]← c← r ← 0.

while (c < n) do

1. p← min{2c− r + 1, n}.
2. Apply the SMAWK algorithm to find the minimum in each column of sub-

matrix S = G[r, c; c + 1, p]. For j ∈ [c + 1, p], let F [j] = the minimum value
found in G[r, c; j].

3. Apply the SMAWK algorithm to find the minimum in each column of the
submatrix T = G[c + 1, p − 1; c + 2, p]. For j ∈ [c + 2, p], let H[j] = the
minimum value found in G[c+ 1, p− 1; j].

4. If there is an integer j ∈ [c + 2, p] such that H[j] < F [j], then set j0 to the
smallest such integer. Otherwise set j0 ← p+ 1.

5. if (j0 = p+ 1) then c← p;
else F [j0]← H[j0]; r ← c+ 1; c← j0.

end.

Figure 4.1 shows the submatrices S and T during a typical iteration of the al-
gorithm. (This figure is taken from [11].) Each time we are at the beginning of the
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Fig. 4.1. A typical iteration of Wilber’s algorithm.

loop, the following invariants hold:
(a) r ≥ 0 and c ≥ r.
(b) For each j ∈ [0, c], F [j] = f(j).
(c) All the minima in columns c+ 1 through n of g are in rows ≥ r.
These invariants are clearly satisfied at the beginning when r = c = 0.
Invariant (b) implies that G[i, j] = g(i, j) for all j and all i ∈ [0, c]. So the entries

of the submatrix S are the same as the corresponding entries of g. Therefore S is
totally monotone, and for each j ∈ [c + 1, p] step 2 sets F [j] to the minimum value
of the subcolumn g(r, c; j). Also, since S contains all the finite-valued cells in column
c+ 1 of g that are in rows ≥ r, we have F [c+ 1] = f(c+ 1) at the end of step 2. On
the other hand, we do not necessarily have F [j] = f(j) for any j ∈ [c+ 2, p], since g
has finite-valued cells in those columns that are in rows ≥ r and not in S.

In step 3 we proceed as if F [j] = f(j) for all j ∈ [c+ 1, p− 1]. Since this may be
false, some of the values in T may be bogus. However, T is always totally monotone
because if we add F [i1] + F [i2] to both sides of (4.1) we get G[i1, j1] + G[i2, j2] ≤
G[i1, j2] + G[i2, j1]. Thus the SMAWK algorithm works correctly and H[j] is set to
the minimum value of the subcolumn G[c + 1, p − 1; j] (which is not necessarily the
same as the minimum value of the subcolumn g(c + 1, p − 1; j)). Note that since all
the entries on and below the main diagonal of g are +∞, they cannot be H[j] for any
j and hence have no effect on the computation.

In step 4 we either verify that F [j] = f(j) for all j ∈ [c+ 2, p] (this is the case if
H[j] ≥ F [j] for all j ∈ [c + 2, p]) or we find the smallest j where this condition fails
(this is the case when there exists j ∈ [c+ 2, p] such that H[j] < F [j]). In either case,
the values of c and r are set accordingly at step 5 so that the loop invariants hold.
This completes the description of Wilber’s algorithm.

Next we discuss how to use Wilber’s algorithm to solve the enhanced LWS prob-
lem. Let w[0..n, 0..n] be the weight matrix of an instance of the enhanced LWS
problem. Let L denote the portion of w consisting of the entries on and below the
main diagonal of w. Let w′ be the matrix obtained from w by replacing all the en-
tries in L by +∞. Then w′ defines an instance of the (ordinary) LWS problem. By
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Lemma 4.1, the solution for the problem defined by w′ is identical to the solution for
the problem defined by w. If each entry of w can be computed in O(1) time, we can
use Wilber’s algorithm on w′ to solve the problem. However, if the enhanced LWS
problem is derived from an instance of the SPBD problem, the entries of the matrix
w = A×B cannot be computed in O(1) time. In this case we cannot afford to change
w to w′ since doing so will destroy some properties of w that are crucial for obtaining
a fast algorithm. Fortunately, we will show that Wilber’s algorithm can be applied
directly to w to solve the enhanced LWS problem.

It is enough to show that the entries in L have no effect on the computation
of Wilber’s algorithm. The only place where Wilber’s algorithm needs the entries
in L is step 3, where the SMAWK algorithm is applied to the submatrix T . For
each j ∈ [c + 2, p] let F [j] and H[j] be the minimum value of column j in S and T ,
respectively. There are three cases:

(a) F [j] ≤ H[j].

(b) F [j] > H[j] and H[j] is not in L. Namely, H[j] = G[i, j] for some i < j.

(c) F [j] > H[j] and H[j] is in L. Namely, H[j] = G[i, j] for some i ≥ j.
In cases (a) and (b) the values in L do not affect the computation. In the following

we show that case(c) cannot occur. Toward a contradiction, assume that there exist
indices j ∈ [c+ 2, p] and i such that i ≥ j and H[j] = G[i, j] < F [j].

Case 1: If i = j, then H[j] = G[j, j] = F [j] + w(j, j) ≥ F [j]. This is impossible.

Case 2: If i > j, then H[j] = G[i, j] = F [i] + w(i, j). Recall that F [i] is the
minimum value of the subcolumn G[r, c; i]. Suppose that F [i] = G[t, i] = F [t]+w(t, i)
for some r ≤ t ≤ c. Note that t ≤ c < i and j < i. By the concavity of w
we have w(t, j) + w(i, i) ≤ w(t, i) + w(i, j). Since w(i, i) ≥ 0 for all i, we have
H[j] = F [i]+w(i, j) = F [t]+w(t, i)+w(i, j) ≥ F [t]+w(t, j)+w(i, i) ≥ F [t]+w(t, j) =
G[t, j] ≥ F [j]. This contradicts the assumption that H[j] < F [j].

Since case (c) cannot occur, the entries in L do not affect the computation of
Wilber’s algorithm, regardless of whether they are changed to +∞ or not. Hence we
have proved the following lemma.

Lemma 4.6. An instance of the enhanced LWS problem defined by a (full) concave
matrix w can be correctly solved by applying Wilber’s algorithm to the matrix w.

Next we address the second difficulty mentioned at the end of section 4.2. If
the instance of the enhanced LWS problem is derived from an instance of the SPBD
problem (defined by matrices A and B), the weight matrix w of the enhanced LWS
problem is the product matrix w = A×B. Therefore the key assumption of Wilber’s
algorithm that each entry w[i, j] can be evaluated in O(1) time is not valid.

During each stage of Wilber’s algorithm (steps 2 and 3) we need to find column
minima of the submatrices S and T . Both S and T have the form C′[r, c; q, p] where
C ′[i, j] = F [i] + w[i, j] for some known value F [i]. Since the values C′[i, j] cannot be
computed in O(1) time, we cannot use the SMAWK algorithm directly. Instead, we
use the algorithm given in the following lemma.

Lemma 4.7. The column minima searching problem for the submatrix C ′[r, c; q, p]
with r ≤ q and c ≤ p can be solved in O((c − r) + (p − q) + (k2 − k1)) time, where
k1 = I(r, r) and k2 = I(p, p).

Proof. By Lemma 4.3, for each i ∈ [r, c] and j ∈ [q, p], w[i, j] = min0≤k≤m(A[i, k]+
B[k, j]) can be computed by searching k in the range k ∈ [k1, k2]. For j ∈ [q, p] let d(j)
denote the column minimum of C ′[r, c; j]. Then d(j) = minr≤i≤c{F [i] + w[i, j]} =
minr≤i≤c{F [i]+mink1≤k≤k2(A[i, k]+B[k, j])} = mink1≤k≤k2{B[k, j]+minr≤i≤c(F [i]+
A[i, k])}.
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For i ∈ [r, c] and k ∈ [k1, k2] let A′[i, k] = F [i] + A[i, k]. Then A′ is totally
monotone. For each k ∈ [k1, k2] let J [k] be the minimum of the subcolumn A′[r, c; k].

For k ∈ [k1, k2] and j ∈ [q, p] let B′[k, j] = B[k, j] + J [k]. Then B′ is totally
monotone. Clearly, d(j) is the minimum of the subcolumn B′[k1, k2; j]. Thus the
column minima d(j)’s of C ′[r, c; q, p] can be found by two applications of the SMAWK
algorithm, once on A′ and once on B′. Each entry of A′ and B′ can be evaluated in
O(1) time. Thus the total time needed is O((c−r)+(k2−k1))+O((k2−k1)+(p−q)) =
O((c− r) + (p− q) + (k2 − k1)).

4.4. The SPBD algorithm and its complexity. The following is the com-
plete description of our SPBD algorithm.

SPBD Algorithm.
Input: An instance of the SPBD problem defined by two concave matrices A and B.

1. Compute I(0, 0), I(1, 1), . . . , I(n, n) (cf. Lemma 4.4).
2. Solve the enhanced LWS problem defined by the matrix w = A × B by ap-

plying Wilber’s algorithm on w. But instead of using the SMAWK algorithm
we use the algorithm given in Lemma 4.7 to search the column minima of the
submatrix S and T during the execution.

3. Using the method described in Lemma 4.5, convert the solution of the en-
hanced LWS problem defined by w to the solution of the original SPBD
problem.

end.
The correctness of the algorithm follows from the discussion of the last subsection.

Next we analyze the running time of the SPBD algorithm. We concentrate on step 2
since this is the nontrivial part of the algorithm. Each iteration of Wilber’s algorithm
is completely specified by three parameters: r, c, p. Let ri, ci, pi be the values of these
parameters in the ith iteration. The parameters for the next iteration are calculated
in step 5 as follows:

Case 1: “then” part of step 5 is executed. In this case, ri+1 = ri, ci+1 = pi, and
Case 1a: pi+1 = 2ci+1 − ri+1 + 1, if it is ≤ n, or
Case 1b: pi+1 = n, otherwise.

Case 2: “else” part is executed. In this case, ri+1 = ci + 1, ci+1 = j0 (where
ci + 2 ≤ j0 ≤ pi), and

Case 2a: pi+1 = 2ci+1 − ri+1 + 1, if it is ≤ n, or
Case 2b: pi+1 = n, otherwise.

If Case 1a (or 1b, 2a, 2b, respectively) applies to the ith iteration, we call it a
type 1a (or 1b, 2a, 2b, respectively) iteration. We call [ri, pi] the ith span; ri and pi
are the left and the right ends of the ith span, respectively. Note that after a type 1a
or 1b iteration, the left end is not changed and the right end increases. After a type
2a or 2b iteration, the left end increases and the right end may increase, decrease, or
remain unchanged. For an interval [t, t + 1] (0 ≤ t < n) we say that a span [ri, pi]
covers [t, t+ 1], written as [t, t+ 1] ∈ [ri, pi], if ri ≤ t and t+ 1 ≤ pi. Since the left end
of spans never decreases, the spans “move” from left to right during the execution of
the algorithm. Once the left end of a span is ≥ t + 1, [t, t + 1] will never be covered
by any subsequent spans. First we make the following obvious observations:

(a) If a type 1a or 1b iteration follows a type 1b or 2b iteration, the algorithm
terminates immediately.

(b) If the ith iteration is of type 1a, then pi+1−ri+1 = (2ci+1−ri+1 +1)−ri+1 =
2(pi − ri) + 1. Namely, the length of the (i+ 1)th span is 1 + 2× (the length of the
ith span).
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(c) Suppose that the ith iteration is of type 2a or 2b. Since pi ≤ 2ci − ri + 1, we
have ci ≥ (pi + ri − 1)/2. Hence ri+1 = ci + 1 ≥ (pi + ri − 1)/2 + 1.

(d) Suppose that an interval [t, t + 1] is covered by the ith span [ri, pi]. If the
ith iteration is of type 1a or 1b, and the (i + 1)st iteration is of type 2a or 2b, then
ri+2 = ci+1 + 1 = pi + 1 > t+ 1. Hence [t, t+ 1] is not covered by [ri+2, pi+2] nor by
any subsequent spans.

The following lemma gives an upper bound on the number of times an interval
[t, t+1] can be covered by spans. This bound is needed in the analysis of our algorithm.

Lemma 4.8. Any interval [t, t + 1] (0 ≤ t < n) is covered by at most 2 logn + 2
spans.

Proof. Let [ri1 , pi1 ], [ri2 , pi2 ], . . . , [rik , pik ] be all the spans covering [t, t+1], where
i1 < i2 < · · · < ik. Then ril ≤ t and t+ 1 ≤ pil for all 1 ≤ l ≤ k.

Let l be the first index such that the ilth iteration is of type 1a or type 1b. (If
no such l exists, let l = k.) We first show that k − l ≤ logn+ 2.

Case 1: The ilth iteration is of type 1b. If the (il + 1)st iteration is of type 1a or
1b, then the algorithm terminates by observation (a). If the (il + 1)st iteration is of
type 2a or 2b, then by observation (d) [t, t+ 1] is not covered by [ril+2, pil+2] nor by
any subsequent spans.

Case 2: The ilth iteration is of type 1a. Let s (possibly s = 0) be the largest
integer such that the iterations il, il + 1, . . . , il + s are all of type 1a. Clearly, [t, t+ 1]
is covered by the spans [ril+1, pil+1], . . . , [ril+s, pil+s]. By observation (b) each type
1a iteration doubles the length of the span. Since the length of a span is at most n,
we have s ≤ logn. The (il + s+ 1)st iteration is of type 1b, 2a, or 2b. If it is of type
2a or 2b, then by observation (d) [t, t + 1] is not covered by the (il + s + 2)nd span
nor by any subsequent spans. If the (il + s+ 1)st iteration is of type 1b, then, similar
to Case 1, either the algorithm terminates at the (il + s+ 2)nd iteration, or [t, t+ 1]
is not covered by the (il + s+ 2)nd span nor by any subsequent spans.

In either case, the number of spans following the ilth iteration that cover [t, t+ 1]
is at most log n+2. So k−l ≤ logn+2. Next we show l ≤ logn and this will complete
the proof of the lemma.

For each 1 ≤ h < l the ihth iteration is of type 2a or 2b. Fix an index h. For
each j ≥ ih let Lj = (t + 1) − rj . Note that if Lj ≤ 0, then the span [rj , pj ] cannot
cover the interval [t, t+ 1]. By the fact that t+ 1 ≤ pih and observation (c), we have

Lih+1 = (t+ 1)− rih+1 ≤ (t+ 1)− ((pih + rih − 1)/2 + 1)

= (2t− pih − rih + 1)/2 ≤ (t− rih)/2 < Lih/2.

Since the left end of the spans never decreases, we now have that Lih+1
≤ Lih+1 <

Lih/2. This is true for all 1 ≤ h < l. Hence Lil < Li1/2
l. If l > logn, then Lil

becomes 0 and the interval [t, t+ 1] is not covered by [ril , pil ] nor by any subsequent
spans. So we must have l ≤ logn. This establishes the lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Step 1 of the SPBD algorithm takes O(m logn) time by
Lemma 4.4. In step 2 we use Wilber’s algorithm to solve the enhanced LWS problem
defined by the matrix w = A × B. But instead of using the SMAWK algorithm we
use the subroutine in Lemma 4.7 for finding column minima in S and T . Note that all
the other steps of Wilber’s algorithm take O(n+m) time. Thus if we can show that
the time needed by these subroutine calls is bounded by O(n+m logn), the theorem
will follow from Lemma 4.5.
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Consider the ith iteration. We need to find the column minima of the submatrices
Si = G[ri, ci; ci + 1, pi] and Ti = G[ci + 1, pi − 1; ci + 2, pi]. Let k1 = I(ri, ri),
k2 = I(pi, pi), and k3 = I(ci + 1, ci + 1). Since ri < ci + 1 ≤ pi we have k1 ≤ k3 ≤ k2

by Lemma 4.3.
By Lemma 4.7 the searching of Si needs O((ci− ri) + (pi− ci− 1) + (k2− k1)) =

O((pi − ri) + (k2 − k1)) time. The searching of Ti needs O((pi − 1 − ci − 1) + (pi −
ci − 2) + (k2 − k3)) time. Since pi ≤ 2ci − ri + 1 and k3 ≥ k1, this is bounded by
O((pi − ri) + (k2 − k1)). Thus the total time needed to search Si and Ti in all the

iterations is
∑K
i=1O((pi − ri) + (I(pi, pi) − I(ri, ri))), where K is the total number

of iterations of the algorithm. Since Wilber’s original algorithm takes O(n) time, the

term
∑K
i=1O(pi − ri) is bounded by O(n). On the other hand,

K∑
i=1

(I(pi, pi)− I(ri, ri)) =
K∑
i=1

pi−1∑
t=ri

(I(t+ 1, t+ 1)− I(t, t))

=
∑

t,i where [t,t+1]∈[ri,pi]

(I(t+ 1, t+ 1)− I(t, t)).(4.3)

By Lemma 4.8 each interval [t, t + 1] is covered by at most 2 logn + 2 spans. Thus

the above sum is bounded by O(logn
∑n−1
t=0 (I(t+ 1, t+ 1)− I(t, t))) = O(m logn) as

to be shown.

5. Conclusion. We introduced the SPBD problem and showed that if the weight
matrices are concave, then the SPBD problem can be reduced to the enhanced LWS
problem and solved in O(n+m logn) time. As applications, we showed that the MLP
for points on a straight line and the TSP for points on a convex polygon can be reduced
to the SPBD problem and solved in O(n logn) time, which substantially improves the
previously known O(n2)-time algorithms. The setting of the SPBD problem is quite
general. It is interesting to find other applications of the SPBD problem.

We tried (but failed) to use this technique to solve the MLP for points on a convex
polygon. (To our knowledge, the MLP for this special case is not known to be in P .)
In the two applications discussed in this paper, the optimal paths are simple (i.e., no
two edges of the path cross). Unfortunately, the optimal tour in the MLP for points
on a convex polygon does not have this crucial property. It would be interesting to
find a polynomial-time algorithm for solving the MLP for this case.

Another open problem is to solve the MLP for an r-arm star graph G, which has
a center vertex c and r “arms” connected to c, and each arm is a straight line with
several vertices on it. (Thus the straight line discussed in section 3 is a two-arm star
graph.) If each arm of G contains at most k vertices, then the MLP problem for
G can be solved in O(r × kr) time by using dynamic programming, which is not a
polynomial in terms the number of vertices of G. Is it possible to solve this problem
in polynomial time using ideas similar to the SPBD algorithm? This would seem to
require, at the very least, solving r-partite generalization of the SPBD problem.

Acknowledgments. The authors would like to thank the referees for pointing
out the much simplified proof of Lemma 3.1, for mentioning the last open problem in
section 5, and for suggestions that considerably improved the exposition.
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Abstract. We recall the notion of regular closure of classes of languages. We present two
important results. The first result is that all languages which are in the regular closure of the class
of deterministic (context-free) languages can be recognized in linear time. This is a nontrivial result,
since this closure contains many inherently ambiguous languages. The second result is that the class
of deterministic languages is contained in the closure of the class of deterministic languages with the
prefix property or, stated in an equivalent way, all LR(k) languages are in the regular closure of the
class of LR(0) languages.
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1. Introduction. Despite important insights in applying sophisticated matrix
operations to recognition techniques [16], the known upper bound on the time com-
plexity of context-free language recognition still exceedsO(n2), measured in the length
of the input string. However, there are many languages whose time complexity has
been shown to be linear by means of specialized algorithms but which are not recog-
nized in linear time by general recognition algorithms. The frontier of knowledge in
this area is advanced by the results presented in this article.

We introduce a special class of two-level automata. Their upper level is consti-
tuted by a (classical) finite automaton whose transitions are, however, not enabled
by a single terminal symbol but by any element of a given (lower-level) language. All
languages at the lower level are assumed to have the restrictive LR(k)-property. Due
to the well-known correspondence between regular expressions and finite automata,
the new class of languages may thus be stated to result from the set of deterministic
(i.e., LR(k)) languages by recursively applying concatenation, union, and Kleene star
to given languages in that class.

The new class contains some notorious specimens such as {ambmcn}∪ {ambncn},
an inherently ambiguous language [8]. As will be developed in the body of this article,
a linear upper time bound on recognizing such languages can be established.

The results are related to our previous work [13] on efficient recognition of lan-
guage suffixes. It had in turn been motivated by practical syntax error detection
(more precisely, by noncorrecting error recovery [15]).

The article may be outlined as follows. After introducing the definitional frame-
work in section 2, we show that all deterministic context-free languages can be con-
structed from prefix-free deterministic languages by regular operations (section 3).
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This follows from a detailed decomposition of pushdown computations into sequences
of moves that do not discard more than one element of the stack they started with.

The most important proposition of section 4 is that each deterministic pushdown
automaton can be transformed into an equivalent one which is “loop-free.” This
requires a fairly deep discussion of individual pushing and popping moves. In essence,
automata are changed in such a way that the stack contents after certain moves must
reflect the amount of processed input. Using tabulation, the transformed pushdown
automata can be simulated at all input positions in linear time. This result is part of
a proof of the fact that languages in the regular closure of the deterministic languages
can be recognized in linear time by means of a two-level device, to be defined in
section 5.

Section 6 deals with various syntheses and applications of the obtained results.
In particular, “on-line” and “off-line” variants of the two-level device are presented
and compared. The difference between these notions is rather similar to the one be-
tween Earley’s recognition algorithm [7] and the Cocke–Kasami–Younger technique
[8]. With the latter approach, partial recognition results are collected without refer-
ence to their left context.

Although the parse tree concept is less immediate for the new kind of language
description than for ordinary grammars, we are able to sketch an efficient trans-
duction procedure yielding representations of the syntactic structure of given inputs
(section 7).

Two applications are presented in section 8. First we prove that suffix recognition
is possible in linear time. This new proof is much shorter than recently published
proofs of this fact. We then describe an application in pattern matching.

2. Notation. A finite automaton F is a 5-tuple (S, Q, qs, F, T ), where S and Q
are finite sets of input symbols and states, respectively; qs ∈ Q is the initial state and
F ⊆ Q is the set of final states; and the transition relation T is a subset of Q×S×Q.

An input string b1 · · · bm ∈ S∗ is recognized by the finite automaton if there is a
sequence of states q0, q1, . . . , qm such that q0 = qs, (qk−1, bk, qk) ∈ T for 1 ≤ k ≤ m,
and qm ∈ F . For a certain finite automaton F , the set of all such strings w is called the
language accepted by F , denoted L(F). The languages accepted by finite automata
are called the regular languages.

In the following, we describe a type of pushdown automaton without internal
states and with very simple kinds of transition. This is a departure from the stan-
dard literature (e.g., [9]), but simplifies considerably our definitions and proofs in the
remainder of the paper. That the generative capacity of this type of pushdown au-
tomaton is not affected with respect to any of the more traditional types can be argued
by the fact that every context-free language is accepted by a nondeterministic LR rec-
ognizer of a form very similar to our type of pushdown automaton [14]. See also [13].

Thus, we define a pushdown automaton (PDA) A to be a 5-tuple (Σ, ∆, Xinitial ,
F, T ), where Σ, ∆, and T are finite sets of input symbols, stack symbols and transi-
tions, respectively; Xinitial ∈ ∆ is the initial stack symbol, and F ⊆ ∆ is the set of
final stack symbols.

We consider a fixed input string a1 · · · an ∈ Σ∗. A configuration of the automaton
is a pair (δ, v) consisting of a stack δ ∈ ∆∗ and the remaining input v, which is a
suffix of the original input string a1 · · · an.

The initial configuration is of the form (Xinitial , a1 · · · an), where the stack is
formed by the initial stack symbol Xinitial . A final configuration is of the form
(δX, ε), where the element on top of the stack is some final stack symbol X ∈ F .
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The transitions in T are of the form X
z7→ XY , where z = ε or z = a, or of the

form XY
ε7→ Z.

The application of such a transition δ1
z7→ δ2 is described as follows. If the topmost

symbols on the stack are δ1, then these may be replaced by δ2, provided either z = ε
or z = a and a is the first symbol of the remaining input. If z = a then furthermore
a is removed from the remaining input.

Formally, for a fixed PDA we define the binary relation ` on configurations as
the least relation satisfying (δδ1, v) ` (δδ2, v) if there is a transition δ1

ε7→ δ2 and

(δδ1, av) ` (δδ2, v) if there is a transition δ1
a7→ δ2.

In the case that we consider more than one PDA at the same time we use symbols
z7→A and `A instead of

z7→ and ` if these refer to one particular PDA A.
The recognition of a certain input v is obtained if, starting from the initial con-

figuration for that input, we can reach a final configuration by repeated application
of transitions, or, formally, if (Xinitial , v) `∗ (δX, ε), with some δ ∈ ∆∗ and X ∈ F ,
where `∗ denotes the reflexive and transitive closure of ` (and `+ denotes the tran-
sitive closure of `). For a certain PDA A, the set of all such strings v which are
recognized is called the language accepted by A, denoted L(A). A PDA is called
deterministic if, for all possible configurations, at most one transition is applicable.
The languages accepted by deterministic PDAs (DPDAs) are called deterministic
languages.

We may restrict DPDAs such that no transitions apply to final configurations, by
imposing X /∈ F if there is a transition X

z7→ XY and Y /∈ F if there is a transition
XY

ε7→ Z. We call such a DPDA prefix-free. The languages accepted by such DPDAs
are obviously prefix-free, which means that no string in the language is a prefix of
any other string in the language. Conversely, any prefix-free deterministic language is
accepted by some prefix-free DPDA, the proof being that in a DPDA, all transitions
of the form X

z7→ XY , X ∈ F , and XY
ε7→ Z, Y ∈ F , can be removed without

consequence to the accepted language if this language is prefix-free.
In compiler design, the deterministic languages are better known as LR(k) lan-

guages, and the prefix-free deterministic languages as LR(0) languages [9].
A prefix-free DPDA is in normal form if, for all input v, (Xinitial , v) `∗ (δX, ε),

with X ∈ F , implies δ = ε, and furthermore F is a singleton {Xfinal}. Any prefix-free
DPDA can be put into normal form. (See [9, Theorem 5.1] for a proof of a related
result.) We define a normal PDA (NPDA) to be a prefix-free deterministic PDA in
normal form.

We define a subrelation |=+ of `+ as (δ, vw) |=+ (δδ′, w) if and only if (δ, vw) =
(δ, z1z2 · · · zmw) ` (δδ1, z2 · · · zmw) ` · · · ` (δδm, w) = (δδ′, w), for some m ≥ 1,
where |δk| > 0 for all k, 1 ≤ k ≤ m. Informally, we have (δ, vw) |=+ (δδ′, w) if
configuration (δδ′, w) can be reached from (δ, vw) without the bottommost part δ
of the intermediate stacks being affected by any of the transitions; furthermore, at
least one element is pushed on top of δ. Note that (δ1X, vw) |=+ (δ1Xδ

′, w) implies
(δ2X, vw

′) |=+ (δ2Xδ
′, w′) for any δ2 and any w′, since the transitions neither address

the part of the stack below X nor read the input following v.

3. Metadeterministic languages. In this section we define a new subclass of
the context-free languages, which results from combining deterministic languages by
the operations used to specify regular languages.

We first define the concept of regular closure of a class of languages.1 Let L be a

1This notion was called rational closure in [3].
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class of languages. The regular closure of L, denoted C(L), is defined as the smallest
class of languages such that

(i) ∅ ∈ C(L),
(ii) if l ∈ L then l ∈ C(L),
(iii) if l1, l2 ∈ C(L) then l1l2 ∈ C(L),
(iv) if l1, l2 ∈ C(L) then l1 ∪ l2 ∈ C(L), and
(v) if l ∈ C(L) then l∗ ∈ C(L).

Note that a language in C(L) may be described by a regular expression over symbols
representing languages in L.

Let D denote the class of deterministic languages. Then the class of metadeter-
ministic languages is defined to be its regular closure, C(D). This class is obviously a
subset of the class of context-free languages, since the class of context-free languages
is closed under concatenation, union, and Kleene star, and it is a proper subset, since,
for example, the context-free language {wwR | w ∈ {a, b}∗} is not in C(D). (wR

denotes the mirror image of w.)
Finite automata constitute a computational representation for regular languages;

DPDAs constitute a computational representation for deterministic languages. By
combining these two mechanisms we obtain the metadeterministic automata, which
constitute a computational representation for the metadeterministic languages.

Formally, a metadeterministic automaton M is a triple (F , A, µ), where F =
(S,Q, qs, F, T ) is a finite automaton, A is a finite set of DPDAs with identical alpha-
bets Σ, and µ is a mapping from S to A.

The language accepted by such a device is composed of languages accepted by the
DPDAs in A according to the transitions of the finite automaton F . Formally, a string
v is recognized by automaton M if there is some string b1 · · · bm ∈ S∗, a sequence of
PDAs A1,A2, . . . ,Am ∈ A, and a sequence of strings v1, . . . , vm ∈ Σ∗ such that

(i) b1 · · · bm ∈ L(F),
(ii) Ak = µ(bk) for 1 ≤ k ≤ m,
(iii) vk ∈ L(Ak) for 1 ≤ k ≤ m, and
(iv) v = v1 · · · vm.

The set of all strings recognized by automatonM is called the language accepted
by M, denoted L(M).

Example 3.1. As a simple example of a language accepted by a metadeter-
ministic automaton, consider L = L1 ∪ L2, where L1 = {ambncn | n,m ∈ {0, 1, . . .}}
and L2 = {ambmcn | n,m ∈ {0, 1, . . .}}. It is well established that L is not a deter-
ministic language [9, Example 10.1]. However, it is the union of two languages L1

and L2, which are by themselves deterministic. Therefore, L is accepted by a metade-
terministic automaton M which uses two DPDAs A1 and A2, accepting L1 and L2,
respectively.

We may, for example, define M as (F , {A1,A2}, µ) with F = (S,Q, qs, F, T ),
where

(i) S = {b1, b2},
(ii) Q = {qs, qf},
(iii) F = {qf},
(iv) T = {(qs, b1, qf ), (qs, b2, qf )}, and
(v) µ(b1) = A1 and µ(b2) = A2.

A graphic representation for M is given in Figure 3.1. States q ∈ Q are represented
by vertices labeled q and triples (q, b, p) ∈ T are represented by arrows from q to p
labeled µ(b).
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Fig. 3.1. A metadeterministic automaton.

That the metadeterministic automata precisely accept the metadeterministic lan-
guages is reflected by the following equation

C(D) = {L(M) | M is a metadeterministic automaton}.

This equation straightforwardly follows from the equivalence of finite automata and
regular expressions and the equivalence of DPDAs and deterministic languages.

Let N denote the class of prefix-free deterministic languages. In the same vein,
we have

C(N ) = {L(M) | M = (F , A, µ) is a metadeterministic automaton where

A is a set of NPDAs}.

In the following discussion, we set out to prove a number of properties of languages
in C(D), represented by their metadeterministic automata (i.e., their corresponding
recognition devices). The DPDAs in an arbitrary such device cause some technical
difficulties which may be avoided if we restrict ourselves to metadeterministic au-
tomata which use only normal PDAs, as opposed to arbitrary DPDAs. Fortunately,
this restriction does not reduce the class of languages that can be described, or in
other words, C(N ) = C(D). We prove this equality below.

Since C(N ) ⊆ C(D) is vacuously true, it is sufficient to argue that D ⊆ C(N ),
from which C(D) ⊆ C(C(N )) = C(N ) follows, using the closure properties of C—in
particular, monotonicity and idempotence.

We prove that D ⊆ C(N ) by showing how for each DPDA A a metadeterministic
automaton ρ(A) = (F , A, µ) may be constructed such that A consists only of prefix-
free DPDAs and L(ρ(A)) = L(A). This construction follows.

Construction 1 (DPDA to metadeterministic automaton). Let A = (Σ, ∆,
Xinitial , FA, TA) be a deterministic PDA. Construct the metadeterministic automaton
ρ(A) = (F , A, µ), with F = (S, Q, qs, FF , TF ), where

(i) S = {bX,Y | X,Y ∈ ∆} ∪ {cX,Y | X,Y ∈ ∆},
(ii) Q = ∆,
(iii) qs = Xinitial ,
(iv) FF = FA,
(v) TF = {(X, bX,Y , Y ) | X,Y ∈ ∆} ∪ {(X, cX,Y , Y ) | X,Y ∈ ∆}.

The set A consists of (prefix-free deterministic) PDAs BX,Y and CX,Y for all X,Y ∈
∆, defined as follows.
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Each BX,Y is defined to be (Σ, {X in , Y out}, X in , {Y out}, T ), where X in and Y out

are fresh symbols and the transitions in T are

X in z7→BX,Y X inY out for all X
z7→A XY, some z.

Each CX,Y is defined to be (Σ,∆ ∪ {X in , Y out}, X in , {Y out}, T ), where X in and
Y out are fresh symbols and the transitions in T are those in TA plus the extra transi-
tions

X in z7→CX,Y X inZ for all X
z7→A XZ, some z and Z;

X inZ
ε7→CX,Y Y out for all XZ

ε7→A Y, some Z.
The function µ maps the symbols bX,Y to automata BX,Y and the symbols cX,Y

to automata CX,Y .

Each automaton BX,Y mimics a single transition of A of the form X
z7→A XY .

Formally, BX,Y recognizes a string z if and only if (X, z) `A (XY, ε).
Each automaton CX,Y mimics a computation of A that replaces stack element X

with stack element Y . Formally, CX,Y recognizes a string v if and only if (X, v) |=+
A

(XZ, ε) `A (Y, ε) for some Z ∈ ∆.
For the proof, consider that recognition of v by CX,Y means that (X in , v) |=+

CX,Y
(X inZ, ε) `CX,Y (Y out , ε) for some Z, due to the nature of its transitions. This is
equivalent to (X in , z) `CX,Y (X inW, ε), (W, v′) `∗CX,Y (Z, ε), (X inZ, ε) `CX,Y (Y out , ε),

and v = zv′, for some z, v′, and W , due to the definition of |=+. This is again
equivalent to (X, z) `A (XW, ε), (W, v′) `∗A (Z, ε), (XZ, ε) `A (Y, ε), and v = zv′, by
virtue of the construction of CX,Y from A. Finally, this conjunction is equivalent to
(X, v) |=+

A (XZ, ε) `A (Y, ε).
Note that the languages recognized by some of the BX,Y and CX,Y may be the

empty set.
That all BX,Y and CX,Y are deterministic follows from the fact that by assumption

A is deterministic. That all BX,Y and CX,Y are prefix-free follows from the fact that
no transitions apply when a final stack symbol is on top of the stack.

To prove that L(ρ(A)) = L(A) we have to show the following.
1. Any sequence of transitions of the form (Xinitial , a1 · · · an) `∗A (δX, ε), with

X ∈ FA, can be decomposed into a list of m sequences of transitions (X in
k−1, vk) `∗Ak

(δkX
out
k , ε), 1 ≤ k ≤ m, X0 = Xinitial and Xm = X, using a list of m automata

A1, . . . ,Am ∈ A that recognize strings v1, . . . , vm, respectively, where a1 · · · an =
v1 · · · vm and such that the string b1 · · · bm with µ(bk) = Ak for 1 ≤ k ≤ m is recog-
nized by F .

2. Conversely, if we have a string b1 · · · bm recognized by F , then we must show
that any list of m sequences of transitions (X in

k−1, vk) `∗Ak (δkY
out
k , ε) for automata

Ak = µ(bk), 1 ≤ k ≤ m, can be composed into a single sequence (X0, v1 · · · vm) `∗A
(δYm, ε), with X0 = Xinitial and Ym ∈ FA, using Xk = Yk, 1 ≤ k ≤ m.

The intuition behind decomposing a sequence of transitions for DPDA A is con-
veyed by Figure 3.2. We see the development of the stack, of which the height alter-
nately increases and decreases during performance of the transitions. We assume the
input is recognized at t9, where some final stack symbol X9 is on top of the stack. We
now locate the point in time t8 where the stack was of the same height for the last
time before t9. Assume that at t8 some stack symbol X8 is on top of the stack. The
sequence of transitions from t8 to t9 is of the form (X8, v) |=+

A (X8Z, ε) `A (X9, ε) for
some Z ∈ ∆, which means that the stack development can be mimicked by the PDA
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Fig. 3.2. A stack development of a DPDA A on input v1 · · · v9.

CX8,X9 . In Figure 3.2 the step between t7 and t8 is of the form (X7, z) `A (X7X8, ε),
which is mimicked by the PDA BX7,X8

.

This can be continued until the complete sequence of transitions has been de-
composed into a list of nine sequences which are mimicked by PDAs of the form
BXk−1,Xk or CXk−1,Xk . The corresponding string b1 · · · b9, where bk = bXk−1,Xk or
bk = cXk−1,Xk , 1 ≤ k ≤ 9, then allows state X9 ∈ FF = FA to be reached from state
qs, or, in other words, this string is recognized by finite automaton F .

The proof of the general case uses induction on t. We show that if we have a
sequence of transitions

(X0, z1z2 · · · zt) `A (δ1X1, z2 · · · zt) `A · · · `A (δt−1Xt−1, zt) `A (δtXt, ε),

then for some m there is

(i) a list Y0, . . . , Ym ∈ ∆, with Y0 = X0 and Ym = Xt,
(ii) a list b1, . . . , bm ∈ S, such that (Y0, b1, Y1), (Y1, b2, Y2), . . . , (Ym−1, bm, Ym) ∈

T , and
(iii) a list v1, . . . , vm ∈ Σ∗, such that v1 · · · vm = z1 · · · zt and vk is recognized by

PDA µ(bk), for 1 ≤ k ≤ m.

The case that t = 0 can trivially be solved with m = 0; for t > 0 we distinguish
between two cases:

(i) |δt−1Xt−1| < |δtXt|, or, in other words, the last step used a pushing transi-
tion; or

(ii) |δt−1Xt−1| > |δtXt|, or, in other words, the last step used a popping transi-
tion.

In the first case we may assume by definition that the automaton BXt−1,Xt rec-
ognizes zt. The induction hypothesis for t − 1, applied to (X0, z1z2 · · · zt−1) `∗A
(δt−1Xt−1, ε), provides the required three lists with some m − 1 instead of m. We
set Ym = Xt, bm = bXt−1,Xt (so that µ(bm) = BXt−1,Xt), vm = zt, which gives
us the required three lists for t. Note that (X0, z1 · · · zt−1) `∗A (δt−1Xt−1, ε) and
(X0, z1 · · · zt−1zt) `∗A (δt−1Xt−1, zt) are equivalent.

In the second case we may assume that there is a maximal t′ < t such that
|δt′Xt′ | = |δtXt|. Note that then |δt′′Xt′′ | > |δtXt|, for t′ < t′′ < t, which means
we have (δt′Xt′ , zt′+1 · · · zt) |=+

A (δt′Xt′Xt−1, ε) `A (δt′Xt, ε), which is equivalent
to (Xt′ , zt′+1 · · · zt) |=+

A (Xt′Xt−1, ε) `A (Xt, ε). By definition we get that the au-
tomaton CXt′ ,Xt recognizes zt′+1 · · · zt. The induction hypothesis for t′, applied to
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(X0, z1z2 · · · zt′) `∗A (δt′Xt′ , ε), provides the required three lists with some m − 1 in-
stead ofm. We set Ym = Xt, bm = cXt′ ,Xt (so that µ(bm) = CXt′ ,Xt), vm = zt′+1 · · · zt,
which gives us the required three lists for t. Note that (X0, z1 · · · zt′) `∗A (δt′Xt′ , ε)
and (X0, z1 · · · zt′zt′+1 · · · zt) `∗A (δt′Xt′ , zt′+1 · · · zt) are equivalent.

We now give a proof of the converse, viz. that, if we have a string b1 · · · bm ∈ L(F),
then a list of m sequences of transitions for automata Ak = µ(bk) recognizing strings
vk, 1 ≤ k ≤ m, can be composed into a single sequence for A recognizing v1 · · · vm.

Because of the definition of ρ(A), this list of m sequences consists of sequences
of the form (X in

k−1, vk) `∗Ak (δ′kX
out
k , ε), k = 1, 2, . . . ,m, where δ′k = X in

k−1 if Ak is
of the form BXk−1,Xk and δ′k = ε if Ak is of the form CXk−1,Xk . The existence of
these sequences implies the existence of sequences (Xk−1, vk) `∗A (δkXk, ε), where
δk = Xk−1 if Ak is of the form BXk−1,Xk and δk = ε if Ak is of the form CXk−1,Xk .

We can place these m sequences after one another to obtain (X0, v1 · · · vm) `∗A
(δ1 · · · δmXm, ε), making use of the fact that (Xk−1, vk) `∗A (δkXk, ε) implies
(δ1 · · · δk−1Xk−1, vkvk+1 · · · vk) `∗A (δ1 · · · δk−1δkXk, vk+1 · · · vk). Since b1 · · · bm ∈
L(F) and therefore X0 = qs = Xinitial and Xm ∈ FF = FA, this sequence recog-
nizes v1 · · · vk.

This discussion yields the following theorem.
Theorem 3.2. C(N ) = C(D)
This theorem can be paraphrased as “The class of LR(k) languages is contained

in the regular closure of the class of LR(0) languages.”2

Example 3.3. We demonstrate Construction 1 by means of an example. Con-
sider the language LPal = {wcwR | w ∈ {a, b}∗}, where wR denotes the mirror image
of string w. This language consists of palindromes in which a symbol c occurs as the
center of each palindrome.

Now consider the language LPrePal = {v | ∃w[vw ∈ LPal ]}, consisting of all
prefixes of palindromes. This language, which is obviously not prefix-free, is accepted

by the PDA APrePal = (Σ,∆, I, F, T ), with Σ = {a, b, c}, ∆ = {I, A,B,C,A,A,B,B},
F = {I, A,B,C}, and T consists of the following transitions:

X
a7→ XA for X ∈ {I, A,B},

X
b7→ XB for X ∈ {I, A,B},

X
c7→ XC for X ∈ {I, A,B},

C
a7→ CA,

CA
ε7→ A,

AA
ε7→ C,

C
b7→ CB,

CB
ε7→ B,

BB
ε7→ C.

The automaton operates by pushing each a or b it reads onto the stack in the form of
A or B until it reads c, and then the symbols read are matched against the occurrences
of A and B on the stack. Note that F is {I, A,B,C}, which means that a recognized
string may be the prefix of a palindrome instead of being a palindrome itself.

2Not all definitions of LR(0) in the literature are equivalent. For example, [8] allows some LR(0)
languages that are not prefix-free. Theorem 13.3.1 in [8] implies that the alternative class of LR(0)
languages is contained in the regular closure of the class of what we call LR(0) languages.
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Fig. 3.3. Metadeterministic automaton ρ(APrePal).

The upper level of the metadeterministic automaton ρ(APrePal) is shown in Fig-
ure 3.3. (Automata accepting the empty language have been omitted from this repre-
sentation, as have vertices which after this omission do not occur on any path from I
to any other final state.)

The automaton BA,B accepts the language {b}, since the only pushing transi-
tion of APrePal which places B on top of A reads b. As another example of a
lower level automaton, automaton CA,C accepts the language {wa | w ∈ LPal}, since
(A, v) |=+

A (AZ, ε) `A (C, ε), some Z, holds only for v of the form wa, with w ∈ LPal ;

for example, (A, bcba) `A (AB, cba) `A (ABC, ba) `A (ABCB, a) `A (ABB, a) `A
(AC, a) `A (ACA, ε) `A (AA, ε) `A (C, ε).

Note that Construction 1 together with a mechanical transformation from finite
automata to regular expressions (e.g., [9, Theorem 2.4]) gives us a method for obtaining
a regular expression over LR(0) languages, given an LR(k) language. For example,
the equation LPrePal = {a, b}∗(ε ∪ LPal ) may be derived from Figure 3.3.

4. Recognizing fragments of a string. In this section we investigate the fol-
lowing problem. Given an input string a1 · · · an and an NPDAA, find all pairs of input
positions (j, i) such that substring aj+1 · · · ai is recognized by A; or in other words,
such that (Xinitial , aj+1 · · · ai) `∗ (Xfinal , ε). It will be proved that this problem can
be solved in linear time.

For technical reasons we have to assume that the stack always consists of at
least two elements. This is accomplished by assuming that a fresh stack symbol ⊥
occurs below the bottom of the actual stack and that the actual initial configuration
is created by an imaginary extra step (⊥, v) ` (⊥Xinitial , v).

The original problem stated above is now generalized to finding all 4-tuples
(X, j, Y, i), with X,Y ∈ ∆ and 0 ≤ j ≤ i ≤ n, such that (X, aj+1 · · · ai) |=+ (XY, ε).
In words, this condition states that if a stack has an element labeled X on top, then
the pushdown automaton can, by reading the input between j and i and without ever
popping X, obtain a stack with one more element, labeled Y , which is on top of X.
Such 4-tuples are henceforth called items.

The items are computed by a dynamic programming algorithm based on work
from [1, 11, 6, 12].
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Algorithm 1 (dynamic programming). Consider an NPDA and an input string
a1 · · · an.
1. Let the set U be {(⊥, i,Xinitial , i) | 0 ≤ i ≤ n}.
2. Perform one of the following two steps as long as one of them is applicable.
push 1. Choose a pair, not considered before, consisting of a transition X

z7→ XY
and an input position j, such that z = ε ∨ z = aj+1.

2. If z = ε then let i = j, else let i = j + 1.
3. Add item (X, j, Y, i) to U .

pop 1. Choose a triple, not considered before, consisting of a transition XY
ε7→ Z

and items (W,h,X, j), (X, j, Y, i) ∈ U .
2. Add item (W,h,Z, i) to U .

3. Finally, define the set V to be {(j, i) | (⊥, j,Xfinal , i) ∈ U}.
It can be proved [1, 11] that Algorithm 1 eventually adds an item (X, j, Y, i) to U if

and only if (X, aj+1 · · · ai) |=+ (XY, ε). Specifically, (⊥, j,Xfinal , i) ∈ U is equivalent
to (⊥, aj+1 · · · ai) ` (⊥Xinitial , aj+1 · · · ai) `∗ (⊥Xfinal , ε). Therefore, the existence of
such an item (⊥, j,Xfinal , i) ∈ U , or, equivalently, the existence of (j, i) ∈ V, indicates
that substring aj+1 · · · ai is recognized by A, which solves the original problem stated
at the beginning of this section.

If no restrictions apply, the number of 4-tuples computed in U can be quadratic
in the length of the input. The central observation is this: It is possible that items
(X, j, Y, i) ∈ U are added for several (possibly linearly many) i, with fixed X, j, and Y .
This may happen if (⊥, ah · · · aj · · · aim) `∗ (δX, aj+1 · · · aim) |=+ (δXY, ai1+1 · · · aim)
and (Y, ai1+1 · · · aim) `+ (Y, ai2+1 · · · aim) `+ · · · `+ (Y, aim−1+1 · · · aim) `+ (Y, ε),
which leads to m items (X, j, Y, i1),. . ., (X, j, Y, im). Such a situation can in the most

trivial case be caused by a pair of transitions X
z7→ XY and XY

ε7→ X; the general
case is more complex, however.

However, whenever it can be established that for all X, j, and Y there is at most
one i with (X, j, Y, i) being constructed, the number of entries computed in U is linear
in the length of the input string, and we get a linear time bound by the reasoning
presented at the end of this section.

The following definition identifies the intermediate objective for obtaining a linear
complexity. We define a PDA to be loop-free if (X, v) `+ (X, ε) does not hold for any
X and v. The intuition is that reading some input must be reflected by a change in
the stack.

Our solution to linear-time recognition for automata which are not loop-free is the
following: We define a language-preserving transformation from an arbitrary NDPA to
a loop-free NDPA. (A similar transformation for the purpose of recognizing suffixes of
strings in linear time was described in [13].) Intuitively, this is done by pushing extra
elements X on the stack so that we have (X, v) `+ (XX, ε) instead of (X, v) `+ (X, ε),
where X is a special stack symbol to be defined shortly.

As a first step we remark that for an NPDA we can divide the stack symbols into
two sets PUSH and POP , defined by

PUSH = {X | there is a transition X
z7→ XY },

POP = {Y | there is a transition XY
ε7→ Z} ∪ {Xfinal}.

It is straightforward to show that determinism of the PDA requires that PUSH and
POP be disjoint. We may further assume that each stack symbol belongs to either
PUSH or POP , provided we assume that the PDA is reduced, meaning that there are
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no transitions or stack symbols which are useless for obtaining the final configuration
from an initial configuration.3

Construction 2 (NPDA transformation). Consider an NPDA A = (Σ,∆,
Xinitial , {Xfinal}, T ), of which the set of stack symbols ∆ is partitioned into PUSH
and POP, as explained above. From this NPDA a new PDA τ(A) = (Σ,∆′, X ′initial ,{X ′final}, T ′) is constructed, X ′initial and X ′final being fresh symbols, where ∆′ = ∆ ∪
{X ′initial , X

′
final} ∪ {X | X ∈ PUSH }, X being fresh symbols, and the transitions in

T ′ are given by

XY
ε7→τ(A) Z for XY

ε7→A Z with Z ∈ POP ,

XY
ε7→τ(A) Z for XY

ε7→A Z with Z ∈ PUSH ,

X
ε7→τ(A) XX for X ∈ PUSH ,

X Y
ε7→τ(A) Y for X ∈ PUSH , Y ∈ POP ,

X
z7→τ(A) XY for X

z7→A XY,
and the two transitions X ′initial

ε7→τ(A) X
′
initialXinitial and X ′initialXfinal

ε7→τ(A) X
′
final .

To provide an intuitive explanation of this construction, we observe that the
unwanted sequences of transitions have the property of replacing a push symbol X
by itself without affecting the part of the stack under it in the course of doing so.
The transformation has the effect that instead of X, a padded form of it consisting of
two symbols XX is produced by the corresponding new transition sequence. Thus,
for example, a sequence (X, v1v2) |=+ (XY1, v2) ` (X, v2) |=+ (XY2, ε) ` (X, ε) in
the original automaton is turned into a sequence (X, v1v2) |=+ (XY1, v2) ` (X, v2) `
(XX, v2) |=+ (XXY2, ε) ` (X X, ε) ` (X XX, ε) in the transformed automaton.

The padding has to be gotten rid of later, viz. when some genuine pop symbol is
on top of it. We could, for example, obtain (X XX, z) ` (X XXY, ε) ` (X XZ, ε) `
(XZ, ε) ` (Z, ε), where the original automaton would do (X, z) ` (XY, ε) ` (Z, ε),
assuming Z ∈ POP .

Example 4.1. We demonstrate this construction further by means of a more
elaborate example.

Consider the NPDA A = ({a, b}, {X,Y, Z, P}, X, {P}, T ), where T contains the
transitions given in the left half of Figure 4.1. It is clear that A is not loop-free:
we have (X, a) ` (XY, ε) ` (X, ε). If the input a1 · · · an to Algorithm 1 is an, then
(⊥, aj+1 · · · ai) |=+ (⊥X, ε) and therefore (⊥, j,X, i) ∈ U for 0 ≤ j ≤ i ≤ n. This
explains why the time complexity is quadratic.

We divide the stack symbols into PUSH = {X} and POP = {Y, Z, P}. Of
the transformed automaton τ(A) = ({a, b}, {X,Y, Z, P,X ′, P ′, X}, X ′, {P ′}, T ′), the
transitions are given in the right half of Figure 4.1. That the complexity of Algorithm 1
is no longer quadratic but linear for the transformed PDA is proved in the remainder
of this section.

The recognition of aab by A and τ(A) is compared in Figure 4.2.
We now set out to prove that τ has the required properties.
Lemma 4.2. If A is an NPDA, then τ(A) is an NPDA.
Proof. To check the NPDA property, we must establish that τ(A) is deterministic,

prefix-free, and in normal form. We discuss these points in sequence.
Determinism in the case of X ′initial is obvious since only one transition applies.

This also holds for Xfinal , for which there were no applicable transitions in A because

3Note that each PDA may be turned into a reduced PDA accepting the same language by just
omitting the useless transitions.
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A τ(A)

X ′ ε7→ X ′X
X

a7→ XY X
a7→ XY

XY
ε7→ X XY

ε7→ X

X
ε7→ XX

X
b7→ XZ X

b7→ XZ

XZ
ε7→ P XZ

ε7→ P

XP
ε7→ P (Some other transitions of this

form have been omitted,
because they are useless.)

X ′P ε7→ P ′

Fig. 4.1. The transformation τ applied to an NPDA A.

A τ(A)
Stack Input Stack Input
X aab X ′ aab

X ′X aab
XY ab X ′XY ab
X ab X ′X ab

X ′XX ab
XY b X ′XXY b
X b X ′X X b

X ′X XX b
XZ X ′X XXZ
P X ′X XP

X ′XP
X ′P
P ′

Fig. 4.2. The sequences of configurations recognizing aab, using A and τ(A).

it is prefix-free by assumption. No transitions apply when X ′final is on top of the

stack.
For each symbol X on top of the stack, exactly one pushing transition may be

applied. For each pair of symbols X Y on top of the stack, with Y ∈ POP , exactly
one popping transition may be applied.

The other cases of XY on top with pop symbol Y produce either Z or Z deter-
ministically, depending on whether Z is a push or pop symbol.

For push symbols X ∈ ∆ on top of the stack, the unique push move also available
in A is the only possibility.

Prefix-freeness follows from the fact that no transitions with a final stack symbol
on top of the stack are possible. On the same line, the property of being in normal
form means that the unique final stack symbol can only be at the bottom. This
is guaranteed by producing it only from the initial stack symbol which is itself not
produced by any transition.

Lemma 4.3. If A is an NPDA, then A and τ(A) accept the same language.
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Proof. We first prove that for all stack symbols X1, . . . , Xm from ∆ we have
(Xinitial , v) `∗A (X1 · · ·Xm, ε) if and only if (Xinitial , v) `∗τ(A) (α1X1α2 · · ·αmXm, ε),

where, for all i, 1 ≤ i ≤ m, we have αi = Yi,1 Yi,2 · · ·Yi,ri for some ri ≥ 0.
only if. The proof is given by induction on the number of steps used in (Xinitial , v)

`∗A (X1 · · ·Xm, ε).
1. If zero steps are involved then we have (Xinitial , ε) `∗A (Xinitial , ε). By defi-

nition we have also (Xinitial , ε) `∗τ(A) (Xinitial , ε).

2. Suppose that the last step is a push. Then we have (Xinitial , v) `∗A
(X1 · · ·Xm−1, z) `A (X1 · · ·Xm, ε), where the last transition used is Xm−1

z7→A
Xm−1Xm. The induction hypothesis informs us that (Xinitial , v) `∗τ(A) (α1X1α2 · · ·
αm−1Xm−1, z). Also, because Xm−1

z7→τ(A) Xm−1Xm, we have (Xinitial , v) `∗τ(A)

(α1X1α2 · · ·αm−1Xm−1Xm, ε).
3. Suppose that the last step is a pop. Then we have (Xinitial , v)

`∗A (X1 · · ·Xm−1X
′
mXm+1, ε) `A (X1 · · ·Xm−1Xm, ε), where the last transition

used is X ′mXm+1
ε7→A Xm. The induction hypothesis informs us that (Xinitial , v)

`∗τ(A) (α1X1α2 · · ·αmX ′mαm+1Xm+1, ε), with αm+1 = Y1 · · ·Yr, for some r > 0.

We first have (α1X1α2 · · ·αmX ′mY1 · · ·YrXm+1, ε) `τ(A) (α1X1α2 · · ·αmX ′mY1 · · ·
Yr−1Xm+1, ε) `τ(A) · · · `τ(A) (α1X1α2 · · ·αmX ′mXm+1, ε), using the transitions

YjXm+1
ε7→τ(A) Xm+1, 1 ≤ j ≤ r, which exist since Xm+1 ∈ POP . Subsequently,

there are two possibilities:
(i) If Xm ∈ PUSH then X ′mXm+1

ε7→τ(A) Xm and (α1X1α2 · · ·αmX ′mXm+1, ε)

`τ(A) (α1X1α2 · · ·αmXm, ε) `τ(A) (α1X1α2 · · ·αmXmXm, ε). In the last configura-

tion, αmXm is a sequence of “barred” symbols, as desired.
(ii) If Xm ∈ POP then X ′mXm+1

ε7→τ(A) Xm and (α1X1α2 · · ·αmX ′mXm+1, ε)
`τ(A) (α1X1α2 · · ·αmXm, ε).

if. Analogously to the “only if” part, the proof is given by induction on the
number of steps used in (Xinitial , v) `∗τ(A) (α1X1α2 · · ·αmXm, ε). The following cases
are possible.

1. Suppose that the last transition used was Xm
ε7→τ(A) XmXm. Then we have

(Xinitial , v) `∗τ(A) (α1X1α2 · · ·Xm−1α
′
mXY, ε) `τ(A) (α1X1α2 · · ·Xm−1α

′
mXm, ε)

`τ(A) (α1X1α2 · · ·Xm−1α
′
mXmXm, ε), where αm = α′mXm, and the second-to-last

transition used was XY
ε7→τ(A) Xm for some X and Y . The induction hypothesis in-

forms us that (Xinitial , v) `∗A (X1 · · ·Xm−1XY, ε). From XY
ε7→τ(A) Xm we conclude

the existence ofXY
ε7→A Xm. Therefore, (X1 · · ·Xm−1XY, ε) `A (X1 · · ·Xm−1Xm, ε).

2. Suppose that the last transition used was XXm
ε7→τ(A) Xm. Then we

have (Xinitial , v) `∗τ(A) (α1X1α2 · · ·αmXmXm, ε) `τ(A) (α1X1α2 · · ·αmXm, ε). Since

αmXm is a sequence of barred symbols, the induction hypothesis informs us that
(Xinitial , v) `∗A (X1 · · ·Xm, ε).

3. Suppose that the last transition used was XY
ε7→τ(A) Xm for X and Y from

∆. Then we have (Xinitial , v) `∗τ(A) (α1X1α2 · · ·Xm−1αmXY, ε) `τ(A) (α1X1α2 · · ·
Xm−1αmXm, ε). From the induction hypothesis, (Xinitial , v) `∗A (X1 · · ·Xm−1XY, ε).

The transition XY
ε7→A Xm is identically available in A, thus providing the desired

sequence of transitions.
4. The argument for a transition X

z7→τ(A) XY , X ∈ ∆, is analogous to case 3
because again the transition is available also in the old automaton.
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From the definition of τ it is clear that (X ′initial , v) `∗τ(A) (X ′final , ε) is possible only

if (Xinitial , v) `∗τ(A) (Xfinal , ε). From the “if” part we conclude that (Xinitial , v) `∗τ(A)

(Xfinal , ε) implies (Xinitial , v) `∗A (Xfinal , ε).
From the “only if” part we conclude that (Xinitial , v) `∗A (Xfinal , ε) implies

(X ′initial , v) `τ(A) (X ′initialXinitial , v) `∗τ(A) (X ′initialαXfinal , ε) `∗τ(A) (X ′initialXfinal , ε)

`τ(A) (X ′final , ε), for some α = Y1 · · ·Yr, using the transitions YjXfinal
ε7→τ(A) Xfinal ,

1 ≤ j ≤ r, which exist since Xfinal ∈ POP .
This proves the equivalence of the two accepted languages.
Lemma 4.4. If A is an NPDA, then τ(A) is loop-free.
Proof. Consider the set of stack symbols of τ(A). We define a partial ordering <

on these symbols as the least ordering satisfying

X ′final < X ′initial ,

X < Y for all X ∈ POP , Y ∈ PUSH ,
Y < Z for all Y, Z ∈ PUSH ,
X < Z for all X ∈ POP , Z ∈ PUSH .

Note that this relation is transitive and irreflexive. Below we prove that if (X, v) `+
τ(A)

(Z, ε) then Z < X. This is sufficient to prove that τ(A) is loop-free, since < is
irreflexive.

Consider (X, v) |=+
τ(A) (XY, ε) `τ(A) (Z, ε), using some transition XY

ε7→τ(A) Z

for the last step. It is obvious that X /∈ POP since otherwise Y could not have been
on top of X. There are three remaining cases.

(i) If X = X ′initial then Z must be X ′final . Therefore, Z < X.

(ii) If X ∈ PUSH then either Z ∈ POP or Z is of the form Z ′, with Z ′ ∈ PUSH ,
according to the definition of τ . Therefore, in either case Z < X.

(iii) If X is of the form X ′, with X ′ ∈ PUSH , then the transition XY
ε7→τ(A) Z

must be of the form X ′Y ε7→τ(A) Y , with Y = Z ∈ POP . Therefore, Z < X.

Since each sequence (X, v) `+
τ(A) (Z, ε) can be split up into smaller sequences (in

this case at most two, leading from a symbol in PUSH to a barred symbol and then
to a symbol in POP) of the form (X, v) |=+

τ(A) (XY, ε) `τ(A) (Z, ε) and since < is

transitive, the required result follows.
We now return to the issue of the time complexity of Algorithm 1. We start with

a minor result.
Lemma 4.5. Let U be computed, using Algorithm 1, for a loop-free NPDA and

certain input. There can be at most one item of the form (X, j, Y, i) ∈ U for each X,
Y, and j.

Proof. The existence of an item (X, j, Y, i) ∈ U requires that (X, aj+1 · · · ai) |=+

(XY, ε). Because the NPDA is (by definition) deterministic, the existence of two
items (X, j, Y, i1), (X, j, Y, i2) ∈ U (say, i1 < i2) requires that (X, aj+1 · · · ai1) |=+

(XY, ε) and (Y, ai1+1 · · · ai2) `+ (Y, ε), because of the definition of |=+. However,
(Y, ai1+1 · · · ai2) `+ (Y, ε) is not possible if the NPDA is loop-free.

Theorem 4.6. For a loop-free NPDA, Algorithm 1 has linear time demand,
measured in the length of the input.

Proof. Let the input be a1 · · · an. Let |∆| denote the number of stack symbols.
We investigate how many steps are applied in the process of computing U .

push. Since the PDA is deterministic, there are O(|∆| ·n) combinations of a stack

symbol X and an input position i such that there is a transition X
z7→ XY with

z = ε ∨ z = ai. Therefore, the pushing step is applied O(|∆| · n) times.
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pop. There areO(|∆|2·n) items of the form (W,h,X, j) ∈ U because of Lemma 4.5.
For each of these, there are O(|∆|) items of the form (X, j, Y, i) ∈ U , again because
of Lemma 4.5. The popping step is therefore applied O(|∆|3 · n) times.

Together, they yield O(|∆|3 ·n) steps. Computing V from U can be done straight-
forwardly within |∆|2 · n steps, since there are at worst that many elements in U
according to Lemma 4.5.

Corollary 4.7. For any NPDA A and input a1 · · · an, the set {(j, i) | aj+1 · · · ai
∈ L(A)} can be computed in linear time.

Proof. From Lemmas 4.2 and 4.4 and Theorem 4.6 we conclude that {(j, i) |
aj+1 · · · ai ∈ L(τ(A))} can be computed in linear time. According to Lemma 4.3, this
is the same set as {(j, i) | aj+1 · · · ai ∈ L(A)}.

5. Metadeterministic recognition. With the results from the preceding sec-
tion, we can prove that the recognition problem for metadeterministic languages can
be solved in linear time by giving a tabular algorithm simulating metadeterministic
automata.

Consider a metadeterministic automaton M = (F , A, µ). Because of Theo-
rem 3.2, we may assume without loss of generality that the DPDAs in A are all
NPDAs. Because of the existence of transformation τ , we may furthermore assume
that those NPDAs are all loop-free.

For deciding whether some input string a1 · · · an is recognized by M, we first
determine which substrings of the input are recognized by which NPDAs in A. Then,
we traverse the finite automaton, identifying the input symbols of F with automata
which recognize consecutive substrings of the input string. In order to obtain linear
time complexity, we again use tabulation, this time by means of pairs (q, i), which
indicate that state q has been reached at input position i.

The following is the complete algorithm.

Algorithm 2 (metadynamic programming). Consider a metadeterministic au-
tomaton M = (F , A, µ), where F = (S,Q, qs, F, T ) and A is a finite set of loop-free
NPDAs, and consider an input string a1 · · · an.
1. Construct the tables VA as the sets V in Algorithm 1 for the respective A ∈ A and
input a1 · · · an.
2. Let the set W be {(qs, 0)}. Perform the following as long as it is applicable.

1. Choose a quadruple, not considered before, consisting of
(i) a pair (q, j) ∈ W,
(ii) a PDA A ∈ A,
(iii) a pair (j, i) ∈ VA, and
(iv) a state p ∈ Q,

such that (q, b, p) ∈ T for some b with µ(b) = A.
2. Add (p, i) to W.

3. Recognize the input when (q, n) ∈ W, for some q ∈ F .

Theorem 5.1. Algorithm 2 recognizes a1 · · · an if and only if a1 · · · an ∈ L(M).

Proof. First we prove that Algorithm 2 eventually adds an item (q, i) toW if and
only if there is some string b1b2 · · · bm ∈ S∗, a sequence of states q0, . . . , qm ∈ Q, a
sequence of PDAs A1,A2, . . . ,Am ∈ A, and a sequence of strings w1, . . . , wm ∈ Σ∗

such that

(i) q0 = qs, (qk−1, bk, qk) ∈ T for 1 ≤ k ≤ m, and qm = q,
(ii) Ak = µ(bk) for 1 ≤ k ≤ m,
(iii) wk ∈ L(Ak) for 1 ≤ k ≤ m, and
(iv) a1 · · · ai = w1 · · ·wm.
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The “if” part of the proof is by induction on m: Suppose that the above four
conditions hold. Then in particular (qm−1, bm, qm) ∈ T , Am = µ(bm), and wm =
aj+1 · · · ai ∈ L(Am), some j. This last condition is equivalent to (j, i) ∈ VAm . The
above four conditions for m imply the same conditions for m− 1 with j instead of i,
and therefore we may use the induction hypothesis to derive that (qm−1, j) is added
to W. We conclude that the conditions are fulfilled under which the algorithm adds
(qm, i) to W.

The “only if” part of the proof is very similar. Proof by induction can be applied
here if we assume that each item is given a “time stamp,” identifying the point in
time when that item is (first) added to W.

From the above characterization, the correctness of (q, n) ∈ W as criterion for
recognition of the input immediately follows. A similar property is proved in full
detail in [4].

We now get the main theorem of this article.

Theorem 5.2. Recognition can be performed in linear time for all metadeter-
ministic languages.

Proof. It is sufficient to prove that Algorithm 2 operates in linear time. Because
of Theorem 4.6 and since there is a finite number of NPDAs in A, the tables VA,
A ∈ A, can be constructed in linear time.

Furthermore, the table W is constructed in a linear number of steps, since each
step corresponds with one quadruple ((q, j), A, (j, i), p), with (j, i) ∈ VA, of which
there are at most |Q|2 · |A| · n. Note that prefix-freeness of each A implies that for
any j there is at most one i such that (j, i) ∈ VA.

6. On-line simulation. The nature of Algorithm 2 as simulation of metade-
terministic automata is such that it could be called an off-line algorithm. A case in
point is that it simulates steps of PDAs at certain input positions, which can never be
useful for recognition of the input if the preceding input were taken into account. By
processing the input strictly from left to right and by computing the table elements
in a demand-driven way, we obtain an on-line algorithm, which leads to fewer table
elements, although the order of the time complexity is not reduced.

The realization of this on-line algorithm consists of two steps: first, we adapt
the pushing step so that the PDAs by themselves are simulated on-line; second, we
merge Algorithm 1 and Algorithm 2 such that they cooperate by passing control back
and forth concerning (1) where a PDA should start to try to recognize a subsequent
substring according to the finite automaton and (2) at what input position a PDA
has succeeded in recognizing a substring. Conceptually, the finite automaton and the
PDAs operate in a routine–subroutine relation.

Algorithm 3 (on-line metadynamic programming). Consider a metadetermin-
istic automaton M = (F , A, µ), with F = (S,Q, qs, F, T ) and A is a finite set of
loop-free NPDAs, and consider an input string a1 · · · an.
1. Let the set W be {(qs, 0)}.
2. Let the sets UA be ∅ for all A ∈ A.
3. Perform one of the following four steps as long as one of them is applicable.
down 1. Choose a pair, not considered before, consisting of

(i) a pair (q, i) ∈ W and
(ii) a PDA A ∈ A,

such that (q, b, p) ∈ T for some b with µ(b) = A and some p.
2. Add (⊥, i,Xinitial , i) to UA.
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push 1. For some PDA A ∈ A, choose a pair, not considered before, consisting
of a transition X

z7→A XY and an input position j, such that there is an
item (W,h,X, j) ∈ UA, for some W and h, and such that z = ε∨z = aj+1.

2. If z = ε then let i = j, else let i = j + 1.
3. Add item (X, j, Y, i) to UA.

pop 1. For some PDA A ∈ A, choose a triple, not considered before, consisting
of a transition XY

ε7→A Z and items (W,h,X, j), (X, j, Y, i) ∈ UA.
2. Add item (W,h,Z, i) to UA.

up 1. Choose a quadruple, not considered before, consisting of
(i) a pair (q, j) ∈ W,
(ii) a PDA A ∈ A,
(iii) an item (⊥, j,Xfinal , i) ∈ UA, and
(iv) a state p ∈ Q,

such that (q, b, p) ∈ T for some b with µ(b) = A.
2. Add (p, i) to W.

4. The input is recognized when (q, n) ∈ W for some q ∈ F .
The popping and pushing steps, simulating the PDA steps, operate much as in

Algorithm 1. An important difference is that the pushing step no longer operates
irrespective of preceding input: It simulates only a push on some stack element X if
it has been established with regard to previously processed input that such an element
may indeed appear on top of the stack.

A second difference is that the PDA steps are simulated by starting at input
positions computed by the “down” step, which adds (⊥, i,Xinitial , i) to UA only if
recognition of a substring recognized by A is needed from position i in order to
enable a transition to a next state in the finite automaton.

The “up” step constitutes a shift of control back to the finite automaton after
some PDA has succeeded in recognizing a substring.4

The characterization of the elements in W we gave after Algorithm 2 is still valid
for Algorithm 3. The characterization of the elements in the sets UA is more restricted
than before, however. Relying on a standard result for on-line tabular simulation of
PDAs [11], one can prove that Algorithm 3 eventually adds an item (X, j, Y, i) to UA
for some A ∈ A if and only if there is some h ≤ j and some state q such that

1. (q, h) ∈ W for some q with (q, b, p) ∈ T , some b with µ(b) = A and some p,
2. (⊥, ah+1 · · · aj) `∗A (δX, ε), for some δ, and
3. (X, aj+1 · · · ai) |=+

A (XY, ε).
The first condition states that the finite automaton is in need of a substring recog-
nized by PDA A starting from position h. The second condition states that some
configuration can be reached from an initial configuration by reading the input from
position h up to position j, and in this configuration an element labeled X is on top
of the stack. The third condition is as before.

A device which recognizes some language by reading input strings from left to right
is said to satisfy the correct-prefix property if it cannot read past the first incorrect
symbol in an incorrect input string. A different way of expressing this is that if it has

4If µ is bijective and (q, b, p) ∈ T is unique for each b, then the condition (⊥, j,Xfinal , i) ∈ UA
may be replaced with (Y, j,X, i) ∈ UA, with X final in A, and mention of (q, j) ∈ W may be omitted.
This generalization allows arbitrary PDAs as opposed to NPDAs. In particular, nondeterministic
PDAs may be used. For deterministic, loop-free (but not necessarily normal or prefix-free) PDAs
the on-line algorithm then still has a linear time complexity. We do not pursue this option because
the resulting recognition algorithm cannot be turned into a parsing algorithm; see also section 7.
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succeeded in processing a prefix w of some input string wv, then w is a prefix of some
input string wv′ which can be recognized.

A consequence of the on-line property of Algorithm 3 is that it satisfies the correct-
prefix property, provided that both the finite automaton F and the PDAs in A satisfy
the correct-prefix property. A straightforward proof can be obtained from the char-
acterizations of the elements in W and UA, A ∈ A, given above.

7. Producing parse trees. We have shown that metadeterministic recognition
can be done efficiently. The next step is to investigate how the recognition algorithms
can be extended to become parsing algorithms.

The approach to tabular context-free parsing in [11, 6] is to start with pushdown
transducers. A pushdown transducer can be seen as a PDA of which the transitions
produce certain output symbols when they are applied. The output string, which is a
list of all output symbols which are produced while successfully recognizing an input,
is then seen as a representation of the parse.

If the pushdown transducers are to be realized using a tabular algorithm such as
Algorithm 1, then we may apply the following to compute all output strings with-
out impairing the time complexity of the recognition algorithm. The idea is that a
context-free grammar, the output grammar, is constructed as a side effect of recogni-
tion. For each item (X, j, Y, i) added to the table, the grammar contains a nonterminal
A(X,j,Y,i). This nonterminal is to generate all lists of output symbols which the push-
down transducer produces while computing (X, aj+1 · · · ai) |=+ (XY, ε). The rules of
the output grammar are created when items are computed from others. For example,
if we compute an item (W,h,Z, i) from two items (W,h,X, j), (X, j, Y, i) ∈ U , using

a popping transition XY
ε7→ Z which produces output symbol a, then the output

grammar is extended with rule A(W,h,Z,i) → A(W,h,X,j) A(X,j,Y,i) a.

The start symbol of the output grammar is A(⊥,0,Xfinal ,n), for recognition of

the complete input. For Algorithm 1, however, which recognizes fragments of the
input, we have several output grammars, of which the start symbols are of the form
A(⊥,j,Xfinal ,i)

. The sets of rules of these grammars may overlap.

The languages generated by output grammars consist of all output strings which
may be produced by the pushdown transducer while successfully recognizing the cor-
responding substrings. In the case of DPDAs, these are of course singleton languages.

In a straightforward way this method may be extended to off-line simulation of
a metadeterministic automaton M = (F , A, µ), where A is now a set of pushdown
transducers, as follows.

1. We create subgrammars for v and the respective automata in A separately,
following the ideas above.

2. We merge all grammar rules constructed for the different automata A ∈ A.
We assume that the sets of stack symbols from the respective automata are pairwise
disjoint in order to avoid name clashes.

3. For each automaton A ∈ A we add rules A(A,j,i) → A(⊥,j,Xfinal ,i)
if

A(⊥,j,Xfinal ,i)
is a nonterminal found while constructing UA.

4. While constructing tableW, we may extend the output grammar with a rule
A(p,i) → A(q,j) A(A,j,i) when a pair (p, i) is derived from a pair (q, j) ∈ W and a pair
(j, i) ∈ VA.

5. We extend the output grammar with all rules of the form S → (q, n), where
q ∈ F . S is the start symbol of the grammar.

(For on-line processing similar considerations apply.)
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In this way, we may produce a context-free grammar reflecting the structure of
the input string without impairing the time complexity of the recognition algorithm.

8. Applications.

8.1. Suffix recognition. For a language L we define the language suffix (L) =
{v | ∃w[wv ∈ L]}. A member of suffix (L) will be called a suffix. In this section we
will assume that L is a deterministic language.

Only recently [2] has it been shown that suffixes can be recognized in linear time.
In [13] it was shown furthermore that parsing of suffixes is possible in linear time. Here
we give an alternative proof of this result as a corollary to the previous sections. This
we do by providing a transformation from a deterministic language L, specified in the
form of a deterministic PDA A, to a metadeterministic automaton σ(A) recognizing
suffixes.

For technical reasons, we assume that the PDA A satisfies a property called pop-
realistic, which means that if it can pop a number of elements off a stack, then those
elements may indeed occur on top of a stack in a configuration reachable from an
initial configuration. Formally, we say that a PDA is pop-realistic if (δ, v) `∗ (X, ε),
some δ, v,X, implies (Xinitial , w) `∗ (δ′δ, ε) for some w and δ′.

The assumption that A is pop-realistic is not a theoretical restriction, since any
PDA can be mechanically transformed into one that is pop-realistic and that accepts
the same language [5]; nor is it a practical restriction, since many naturally occurring
PDAs realizing top-down or LR recognition, for example, already satisfy this property.

Construction 3 (suffix recognition). Let A = (Σ,∆, Xinitial , FA, TA) be a
DPDA which is pop-realistic. Construct the metadeterministic automaton σ(A) =
(F , A, µ), with F = (S,Q, qs, {qf}, TF ), where

(i) S = {e} ∪ {bX,Y | X,Y ∈ ∆} ∪ {cX | X ∈ ∆},
(ii) Q = ∆ ∪ {qs, qf},
(iii) qs and qf are fresh symbols,
(iv) TF = {(qs, e,X) | X ∈ ∆}∪ {(X, bX,Y , Y ) | X,Y ∈ ∆}∪ {(X, cX , qf ) | X ∈

∆}.
As the set of PDAs we take A = {E} ∪ {BX,Y | X,Y ∈ ∆} ∪ {CX | X ∈ ∆}. These
PDAs are defined as follows.5

E is defined to be (Σ, {�}, �, {�}, ∅), where � is a fresh symbol.
Each BX,Y is defined to be (Σ,∆∪ {X in , Xout}, X in , {Xout}, T ), where X in and

Xout are fresh symbols and the transitions in T are those in TA plus the extra tran-
sitions

X in ε7→BX,Y X inX,

X inX ′ ε7→BX,Y Xout for all ZX ′ ε7→A Y, some X ′ and Z.

Each CX is defined to be (Σ,∆, X, FA, TA).
The function µ maps the symbol e to automaton E, the symbols bX,Y to automata

BX,Y , and the symbols cX to automata CX .
The automaton E accepts the singleton language containing the empty string.

Its use at a transition (qs, e,X) ∈ TF is to mimic an arbitrary computation of A,
leading to a configuration where X is on top of the stack. During this computation
an unknown input string is read, and the rest of the stack is composed of an unknown
combination of stack symbols.

5Note that the languages recognized by some of these automata may be the empty set.
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Fig. 8.1. A stack development of a DPDA A, divided into recognition of a prefix and recognition
of the remaining suffix.

Each automaton BX,Y mimics all computations beginning with X on top of the
stack and ending with the first configuration where the stack shrinks to below the
original height; at that point Y is on top. Formally, BX,Y recognizes a string v if and
only if there are X ′ and Z such that (X, v) `∗ (X ′, ε) and (ZX ′, ε) ` (Y, ε); first, the
stack may grow and shrink while reading v, replacing X by some element X ′, and
then X ′ and an element Z beneath it in the stack are replaced by Y .

Each automaton CX mimics all computations of A that start with X on top of
the stack and eventually reach a final configuration without ever having a stack of
which the height is 1 less than that of the original stack. Formally, CX recognizes a
string v if and only if (X, v) `∗A (δY, ε) for some Y ∈ FA.

For a complete proof that L(σ(A)) = suffix (L(A)), which is similar to the proof
in section 3, see [5]. In this article we merely convey the intuition.

Figure 8.1 suggests how the stack may alternately grow and shrink while A rec-
ognizes some input. From t0 to t1 some prefix of the input is read. Acceptance of
the remainder of the input, the suffix, is achieved between t1 and t4. Suppose that
the stack shrinks to maximally two elements below the height it had at t1: at t2 the
stack shrinks to one element below the original height, and at t3 the stack shrinks one
element farther. The stack development between t1 and t2 is mimicked by automa-
ton BX1,X2

, where we assume that X1 and X2 are on top of the stack at t1 and t2,
respectively. Similarly, the development between t2 and t3 is mimicked by BX2,X3 .
The final part, between t3 and t4, is mimicked by CX3 .

Conversely, if we have consecutive segments of the input recognized by a sequence
of automata BX1,X2 , BX2,X3 and CX3 , then composition of the three sequences of
transitions leads to a development of the stack as suggested between t1 and t4 in
Figure 8.1. The existence of the required sequence of transitions between t0 and t1
follows from the assumption that A is pop-realistic.

The preceding discussion and Theorem 5.2 together imply the following corollary.
Corollary 8.1. Recognition of suffixes can be performed in linear time for all

deterministic languages.

8.2. Generalized pattern matching. In [10] the following problem is treated.
Given are a finite set of input symbols Σ, an input string a1 · · · an ∈ Σ∗ and a pattern
b1 · · · bm ∈ Σ∗. To be decided is whether a1 · · · an = vb1 · · · bmw for some v, w ∈ Σ∗,
or in words, whether b1 · · · bm is a substring of a1 · · · an.

This problem can also be stated as follows. To be decided is whether a1 · · · an is
a member of the language Σ∗{b1 · · · bm}Σ∗. This language is described as a regular
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expression over deterministic languages, i.e., Σ and {b1 · · · bm}, and therefore this
language is metadeterministic. Consequently, the algorithms in this article apply.

The time demand can then be shown to be O(n ·m), which is, of course, O(n)
if n is taken as sole parameter. This is in contrast to the algorithm in [10], which
provides a complexity of O(n + m). This seems a stronger result if time complexity
is the only matter under consideration. From a broader perspective, however, our
approach allows a larger class of problems to be solved.

For example, the substring problem can be generalized as follows. Given are a
finite set of input symbols Σ, an input string a1 · · · an ∈ Σ∗, and a deterministic
language L ⊆ Σ∗. To be decided is whether a1 · · · an = uvw, some u,w ∈ Σ∗ and
v ∈ L, or in words, whether some substring of a1 · · · an is in L. As before, the problem
can be translated into a membership problem of some string in a metadeterministic
language, and therefore our approach allows this problem to be solved in O(n) time.

9. Conclusions. We have introduced a new subclass of the context-free lan-
guages, the metadeterministic languages, which include the deterministic languages
properly. We have given recognition algorithms for this class and shown that they
have a linear time complexity. Our results are nontrivial since this class contains
inherently ambiguous languages. It is still an open problem whether a constructive
definition exists for all context-free languages which can be recognized in linear time.
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Abstract. Most phylogenetics literature and construction methods based upon characters pre-
sume monomorphism (one state per character per species), yet polymorphism (multiple states per
character per species) is well documented in both biology and historical linguistics. In this paper we
consider the problem of inferring evolutionary trees for polymorphic characters. We show efficient
algorithms for the construction of perfect phylogenies from polymorphic data. These methods have
been used to help construct the evolutionary tree proposed by Warnow, Ringe, and Taylor for the
Indo-European family of languages and presented by invitation at the National Academy of Sciences
in November 1995.
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1. Introduction. Determining the evolutionary history of a set S of objects
(taxa or species) is a problem with applications in a number of domains such as biol-
ogy, comparative linguistics, and literature. Primary data used to compare different
taxa (whether biological species, populations, or languages) can be described using
characters, where a character is a function α : S → Z, where Z denotes the integers
and thus represents the set of possible states of α. In this paper we consider tree
construction when characters are permitted to have more than one state on a given
object. We call this the polymorphism problem. A character that is permitted to have
more than one state on a given object will be called a polymorphic character, and
one that can have only one state for every object is referred to as a monomorphic
character.

Polymorphism is well documented in both the molecular genetics and comparative
linguistics domains [8, 33]. For example, the population geneticist Masatoshi Nei
writes: “The study of protein polymorphism has indicated that the extent of genetic
variation in natural populations is enormous. However, the total amount of genetic
variation cannot be known unless it is studied at the DNA level. The study of DNA
polymorphism is still in its infancy, but the results so far obtained indicate that
the extent of DNA polymorphism is far greater than that of protein polymorphism”
[28, p. 254]. Polymorphism also arises in the comparison of languages. The Indo-
Europeanist Donald Ringe writes: “In choosing lexical characters we try to work with
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basic meanings (semantic slots), choosing from each language the word that most
usually expresses each basic meaning. Languages typically have one word for each
basic semantic slot, but instances of two (or even more) words apparently filling the
same basic slot are not rare” [30].

Thus polymorphic data is a reality when working with evolutionary tree construc-
tion for both linguistic analysis and biological taxa, and methods appropriate for such
construction must be devised. In the phylogenetics literature and programs (such as
Phylip, PAUP, and MacClade), algorithms and software to evaluate fixed leaf-labeled
tree topologies for polymorphic data have explicitly required that the number of states
be kept quite small because the evaluation requires time exponential in the number of
states. This is the first algorithmic study of this problem to go beyond fixed topology
problems for bounded number of states.

The concept of an idealized evolutionary tree was introduced by LeQuesne in a
series of articles (see, for example, [24, 25]), and later termed “Perfect Phylogenies”
by Gusfield in [18], and studied in several papers (see, for example, [13, 14]). The
major contribution of this paper is a methodology for inferring perfect phylogenies
from monomorphic and polymorphic characters. Recent work in historical linguistics
[39] has shown that perfect phylogenies should be obtainable from properly selected
and encoded linguistic characters. Algorithms for constructing perfect phylogenies
from monomorphic characters were used in [39] to analyze the Indo-European family
of languages, whose first-order subgrouping had been argued for decades without
resolution. The methodology we propose here significantly extends the range of the
data that can be analyzed in historical linguistics. We have applied this methodology
to the data set studied by Warnow, Ringe, and Taylor. Detection and resolution
of polymorphism led to a modification of their initially proposed phylogeny, which
was based only on monomorphic characters. Our methodology and its results were
presented at the Symposium on the Frontiers of Science at the National Academy of
Sciences in November 1995 [38].

The structure of the rest of the paper is as follows. In section 2 we discuss the
causes of polymorphism in linguistics and biology and define the problem of inferring
trees from polymorphic characters in these two domains. We show that a perfect
phylogeny is an appropriate objective when working with linguistic data as well as
some biological data. In section 3 we present two algorithms, one graph theoretic and
one combinatorial, for the problem of inferring perfect phylogenies from polymorphic
data. In section 4.3 we present a methodology for inferring perfect phylogenies from
data which combine monomorphic and polymorphic data. In section 5 we present our
analysis of the Indo-European data studied by Warnow, Ringe, and Taylor [39]. In
section 6 we consider the problem of inferring evolutionary trees from polymorphic
data when a perfect phylogeny is an unlikely outcome. We conclude in section 7.

2. Foundations. The causes of polymorphism in biology and linguistics differ,
and within biology, polymorphism has more than one cause as well. In linguistics,
convergence of meanings over time, borrowing of synonyms from other languages, and
the inability of modern-day linguists to detect subtle differences of meaning in words
from ancient languages can all produce polymorphic characters. Some such cases, like
English little and small, arise by the convergence of meanings over time; others, like
American English stone and rock (to describe a small chunk of the substance that
can be thrown), are instances of replacement in progress (rock is replacing stone in
that basic meaning in America). It can be shown that the different manifestations of
polymorphism in linguistics each can be described by the conflation of two or more
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distinct linguistic characters. Often we are able to determine the precise number
of monomorphic characters that have merged into the polymorphic character. In
linguistics it has been observed that monomorphic characters are convex, by which
we mean that the nodes sharing any state of any character form a connected set in
the tree.

Definition 2.1. Given a set S of taxa defined by a set C of characters ( |C| = k),
where each αj ∈ C is a function αj : S → (2Z − {∅}), let T be a tree that is leaf-
labeled by the taxa in S and with each internal node v labeled with a vector from
(2Z − {∅})k such that the value of αj(v) is given by the jth component of this vector.
A character (polymorphic or monomorphic) αj ∈ C is convex on T if for all i ∈ Z
the set Xi,αj = {v ∈ V (T ) : i ∈ αj(v)} is connected. T is a perfect phylogeny if every
character is convex.

For polymorphism caused by convergence of convex monomorphic characters,
polymorphism can be considered a separation problem.

Definition 2.2. Let α be a character defined on a species set S and let i be a
character state of α. Then we define α−1(i) = {s ∈ S : i ∈ α(s)}.

Definition 2.3. Let β be a polymorphic character with character states 0, . . . , r−
1, and for each s ∈ S suppose |β(s)| ≤ l′. Then β is separated into l monomorphic
characters α1, . . . , αl, where l ≥ l′, if there is a function f : {0, . . . , r−1} → {1, . . . , l},
such that if f(i) = j then i is a character state of αj and in addition, for every
s ∈ α−1

j (i), we have i ∈ β(s).
Example. Let S = {A,B,C,D} and let β(A) = {0, 1}, β(B) = {2, 1}, β(C) = {0},

and β(D) = {2}. Then β is separated into two monomorphic characters α1 and α2

by setting f(0) = 1, f(1) = 2, f(2) = 1. Thus α1(A) = {0}, α1(B) = {2}, α1(C) =
{0}, α1(D) = {2}, α2(A) = {1}, and α2(B) = {1}. In addition, we set α2(C) = {4}
and α2(D) = {5}.

In the example note that α2(C) and α2(D) are set to previously unused values.
Thus if for some j′ ∈ {1, 2, . . . , l} αj′(s) is undetermined, then αj′(s) can be set to a
previously unused state.

Problem 1 (separation into l convex characters).
Input. Set S of taxa (defined by set C of characters) and an integer l.
Question. Can we separate each character into at most l monomorphic characters,

so that a perfect phylogeny exists for the derived set of monomorphic characters?
Due to inadequate historical evidence, input data may not reflect the actual de-

gree of polymorphism. Separation may be necessary to obtain convexity even if all
input characters appear monomorphic. For example, consider four languages with
three characters: A = (1, 2, 1), B = (1, 2, 2), C = (1, 2, 1), D = (1, 2, 2). Suppose
the first two characters convolve (meanings merge) and linguists detect only one of
these characters for each language. This polymorphic character appears monomor-
phic: A = (1, 1), B = (1, 2), C = (2, 1), D = (2, 2). There is no perfect phylogeny for
this set, but we can separate the first character into two such that there is a perfect
phylogeny: A = (1, a, 1), B = (1, b, 2), C = (c, 2, 1), and D = (d, 2, 2). Because of lost
information, we cannot completely determine the inferred characters αi (hence the
use of singletons or previously unused states).

We note that an r-state character can always be separated into r monomorphic
single state characters which are each convex on all phylogenies. Thus l = r is an
easy instance of Problem 1.

In biology, polymorphic characters can arise when dealing with allozyme data [26]
and morphological data [40]. In coding allozyme data, each locus is assumed to be a
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character (as opposed to a character being defined as the presence or absence of indi-
vidual alleles) and the set of character states can then be defined by the combination
of alleles present at the locus. When dealing with sequence data, alternative encod-
ings of the same amino acid sequence can also lead to the presence of polymorphic
characters. In each of these cases, the number of different forms that the character
can take on a given taxon may be bounded, in which case we may reasonably seek a
tree in which every node has no more than some prespecified bound of states for each
character. This bound may be character dependent.

Definition 2.4. Let T be a phylogeny. A character α is said to have load l if,
for every v ∈ V (T ), |α(v)| ≤ l. The load of T is defined to be the maximum load on
any character.

Problem 2 (l-load perfect phylogeny).
Input. Set S of taxa (defined by set C of polymorphic characters) and an integer l.
Question. Does an l-load perfect phylogeny exist?
For many morphological characters in biology, convexity is a reasonable assump-

tion (e.g., consider vertebrate-invertebrate). Although the causes of polymorphism in
biology and linguistics differ, when convexity can be assumed the different problem
formulations are equivalent.

Theorem 2.5. Given a set of taxa defined by a set C of polymorphic characters,
T is an l-load perfect phylogeny for C iff we can separate each polymorphic character
into at most l monomorphic characters such that T is also a perfect phylogeny for the
derived set C ′.

Proof. One direction is easy. For the converse, let T be a perfect phylogeny
with load l, let α ∈ C be given, and assume α has r states present on S. Let Ti
be the subgraph of T induced by the vertices labeled i by α. Since T is a perfect
phylogeny, each Ti is a subtree. Define Gα to be the graph whose vertices are in one-
to-one correspondence with the subtrees Ti, i = 1, 2, . . . , r, and where (Ti, Tj) ∈ E iff
Ti ∩ Tj 6= ∅. Note that since T has load l, Gα has max clique size at most l. Gα is
triangulated since it is the intersection graph of subtrees of a tree [7], and hence Gα is
perfect [17]. Since Gα is perfect, the chromatic number of Gα equals the max clique
size and hence is bounded by l. Hence we can partition the nodes of Gα into at most l
independent sets, V1, V2, . . . , Vl. Each Vi thus defines a monomorphic character (filled
in with singletons), and hence T is a perfect phylogeny for each of these monomorphic
characters.

Polymorphism in characters that are based upon columns of molecular sequences
behaves differently than polymorphism in morphological characters; for these charac-
ters, variations on the parsimony criterion are more appropriate optimization criteria.
We discuss the computational complexity of these problems in section 6.

3. Inferring perfect phylogenies from polymorphic characters. When
the maximum permissible load for each character is not given, the problem of inferring
perfect phylogenies is best stated as a minimum load problem. This is addressed in
section 3.1. When the maximum permissible load for each character is given, we have
two algorithms which can construct perfect phylogenies; both are efficient when the
number of characters is small. These algorithms are presented in section 4. When the
character set includes a sufficient number of monomorphic characters, we have a third
algorithm which combines techniques for monomorphic and polymorphic characters.
This algorithm is presented in section 4.3.

The various parameters to the problem are n (the number of species), k (the num-
ber of characters), r (the maximum number of states per character), and l (maximum
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load for each character).

3.1. Minimum load problems. When convexity of the monomorphic con-
stituents of the polymorphic characters is a reasonable request, we may seek a tree
with a prespecified load bound, or else we may seek a tree with a minimum possible
load bound. We call the latter problem the minimum (or min) load problem.

We note that the min load problem is NP-hard since the question of whether a
1-load perfect phylogeny exists is NP-complete [4, 36]. However, although the 1-load
perfect phylogony problem is NP-complete, the natural fixed parameter versions of
the problem are solvable in polynomial time; see [1, 2, 5, 12, 19, 21, 22, 23, 37]. The
2-load perfect phylogeny problem is the next question to consider.

Theorem 3.1.
(i) The min load problem can be solved in polynomial time for all fixed n.
(ii) The min load problem can be solved in polynomial time when r = 2.
(iii) The min load problem is NP-hard for all fixed k.
(iv) The min load problem is NP-hard for all fixed r ≥ 3.
(v) Determining whether a 2-load perfect phylogeny exists is solvable in

polynomial time for all fixed n.
(vi) Determining whether a 2-load perfect phylogeny exists is solvable in

polynomial time for r = 2.
(vii) Determining whether a 2-load perfect phylogeny exists is solvable in

polynomial time for all fixed k.
(viii) Determining whether a 2-load perfect phylogeny exists is NP-complete

for all fixed r ≥ 3.
Proof. Parts (i) and (v): When n is fixed, the number of possible leaf-labeled

topologies is bounded, so we need only consider the min load problem on a fixed
topology. Determining the minimum load on a fixed leaf-labeled topology is trivial,
since for each internal node v ∈ V (T ) and each character α ∈ C we simply set
α(v) = {i : ∃x, y leaves of T with v on the path from x to y, and i ∈ α(x) ∩ α(y)}.
This determines the minimum load for the topology. The same argument can be used
to show that 2-load perfect phylogeny is solvable in polynomial time when n is fixed.

Parts (ii) and (vi): If r = 2, then clearly the min load problem and thus the 2-load
perfect phylogeny problem can be solved in polynomial time by observing that 1-load
perfect phylogeny on binary characters is solvable in polynomial time [18] and that
there is always an r-load perfect phylogeny on any input set containing characters
with at most r states.

Part (iii): We now show that the min load problem is NP-hard for all fixed k by
showing that the l-load perfect phylogeny problem with fixed number of characters
k ≥ 1, where each character has input load 2 (i.e., two states for every species),
is NP-complete. The reduction is from the following problem involving partial t-
tree recognition. See section 4.2.3 for definitions of t-trees and partition intersection
graphs.

Problem 3 (partial t-tree recognition).
Input. A graph G = (V,E) and an integer t ≤ (n− 1), where |V | = n.
Question. Is G a partial t-tree, i.e., does there exist G′ = (V,E′) such that E ⊆ E′

and G′ is a t-tree?
The above problem was shown to be NP-complete by Arnborg, Corneil, and

Proskurowski [3].
The reduction is as follows. Let (G = (V,E), t) be an instance of the partial t-tree

problem. The corresponding instance of the load problem consists of the species set
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S = {se|e ∈ E} and one character α, with α(se) = {i, j}, where e = (i, j). Also, set
l = t + 1. We claim that the instance to the partial t-tree problem has a solution
iff the corresponding instance to the load problem has a solution. This can be seen
by observing that G is the partition intersection graph of the instance of the load
problem and thus we can use Theorems 4.8 and 4.9.

Parts (iv) and (viii): Next we show that the 2-load perfect phylogeny problem,
where each of the input characters is monomorphic, is NP-complete for fixed r ≥ 3.
This will also imply that the min load problem is NP-hard for fixed r ≥ 3. The
reduction is from the partial binary characters problem (PBCP), which is defined as
follows.

Problem 4 (partial binary character perfect phylogeny).
Input. An n× k matrix M , of n species and k characters, in which each entry of

M is an element of the set {0, 1, ∗}.
Question. Can each ∗ entry be set to 0 or 1 so that there exists a 1-load perfect

phylogeny with the new matrix ?
The above problem is just a reformulation of the quartet consistency problem,

which was shown to be NP-complete by [36].
Given an instance I of PBCP, the instance of the 2-load problem is constructed

as follows. Replace each ∗ entry in the matrix defined by I with a 2. Let C be the
set of k characters and let S be the set of n species defined by this new matrix. We
will add 2k new characters and 9k new species as follows (siα = (x, y, z) indicates that
α(siα) = x, α1(siα) = y, α2(siα) = z):

1. Initialize S′ = S and C ′ = C.
2. For each α ∈ C, do the following:

a. Define two new characters α1 and α2 and nine new species s1
α, . . . , s

9
α as

follows:
i. For each β ∈ C ′ (where β 6= α) set β(siα) = 2, where 1 ≤ i ≤ 9.
ii. For each s ∈ S′ set α1(s) = 2 and α2(s) = 2.

iii. Set s1
α = (0, 0, 2), s2

α = (0, 1, 2), s3
α = (0, 2, 2), s4

α = (2, 0, 0), s5
α =

(2, 1, 1), s6
α = (2, 2, 2), s7

α = (1, 2, 0), s8
α = (1, 2, 1), s9

α = (1, 2, 2).
b. Update S′ = S′ ∪ {s1

α, . . . , s
9
α} and C ′ = C ′ ∪ {α1, α2}.

I ′ = (S′, C ′) is the instance of the load problem. We claim that I has a solution
iff I ′ has a perfect phylogeny with load 2. The proof follows. Let T be a perfect
phylogeny which is a solution to instance I of PBCP. Each vertex in T is a k-tuple
binary vector. We will first construct the solution for the load problem when restricted
to the initial species set S. Identify the species which initially had a ∗ entry for that
character and replace the state for that character by a 2. It can be verified that by
doing this for every character in C and then relabeling the internal vertices so that
the convexity property still holds, we get a solution to the load problem for the initial
species S and character set C. Extend the character set C to C ′ by adding the new
characters, which consist entirely of character state 2. This is still a solution to the
load problem for S with C ′. Let T ′ be the tree obtained as a result of the above
modifications. We will now show how to add the additional 9k species. We define
α−1(i) = {s : α(s) = i}. For each α ∈ C note that there is some edge in T ′ which
separates α−1(0) from α−1(1). For each character α ∈ C, identify an edge e which
separates α−1(0) from α−1(1). Attach the 9 new species, associated with α, as shown
in Figure 3.1. We note that α−1(0) ⊆ A and α−1(1) ⊆ B.

Let T ′′ be the tree finally obtained after the addition of the 9k new species as
described above. It can be easily verified that T ′′ is a solution to instance I ′ of the
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Fig. 3.1. Adding the 9 new species associated with α.

2-load problem.
For the other direction of the proof, let T be a solution to instance I ′ of the

load problem. We first observe that in any solution to an instance of the 2-load
problem involving 3-state monomorphic characters in the input, every character α
has associated with it an edge, which splits α−1(0) from α−1(1), or α−1(0) from
α−1(2), or α−1(1) from α−1(2). Observe that in I ′, for each α ∈ C, the only partition
possible is α−1(0) from α−1(1). This follows as a result of the constraints imposed by
α1 and α2. Thus, to get a solution to the PBCP for instance I, we restrict T to the
original set of species S and characters C, and then for each character in C we replace
the 2’s that appear on the 0’s side of the partition by 0’s and the 2’s that appear on
the 1’s side of the partition by 1’s.

This completes the proof.
Part (vii): If k is fixed, then the 2-load perfect phylogeny problem can be solved

in polynomial time using the algorithms from section 4.
This theorem shows that any polynomial time algorithm requires both k and l

bounded (under P 6= NP assumption).

4. Algorithms for perfect phylogenies from polymorphic characters. In
this section we present the two algorithms for inferring perfect phylogenies from poly-
morphic data when we know the load bound. Although the algorithms we will present
assume a universal load bound, these algorithms can be easily modified to allow in-
dividual load bounds for each character and will achieve comparable running times.
For the sake of clarity, we will present these algorithms as though the load bound is
the same for each character; the run times of these algorithms when implemented to
handle variable constraints are given within their respective sections.

4.1. A combinatorial algorithm for fixed k and l. The algorithm we present
is an extension and simplification of the algorithm of Agarwala and Fernández-Baca
[2]. For the remainder of this section the term perfect phylogeny refers to an l-load
perfect phylogeny.

Because each character has only r states and each node can choose at most l of
these in an l-load perfect phylogeny, the number of possible labels for nodes in the
tree is O(rlk). Let us call this set S∗ and note that S ⊆ S∗ (since otherwise some
node in S has load greater than l). In contrast to the algorithm in [2], we do not
require that the internal nodes be labeled distinctly from the species in S, and instead
we will permit species in S to be internal nodes because we can transform any perfect
phylogeny in which some species in S label internal nodes into a perfect phylogeny in
which all species label leaves by attaching a leaf for s to the internal node labeled by
s.

We need some preliminary definitions and facts.
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Definition 4.1.
∑
α∈C |α(x)4α(y)| is the extended Hamming distance of e =

(x, y), where 4 denotes the symmetric difference. However, we will call this the
Hamming distance, understanding this to refer to the extended Hamming distance.

We note that if a perfect phylogeny exists for S, then one exists where the Ham-
ming distance on any edge is exactly one. We will seek a perfect phylogeny with this
property. Working with such perfect phylogenies allows us to quickly solve subprob-
lems because it limits the number of ways a (maximally refined) perfect phylogeny
can be constructed.

Definition 4.2 (see [23]). Given x ∈ S∗, the equivalence relation Ex is the
transitive closure of the following relation E′x on S−{x}: aE′xb if there exists character
α such that (α(a) ∩ α(b)) − α(x) 6= ∅. We denote this set of equivalence classes by
(S − {x})/x.

An observation that follows immediately from this definition is that if T is a
perfect phylogeny on S and x an internal node in T , then two species in S which
are in the same equivalence class of (S − {x})/x must be in the same component of
T − {x}. We also make the following observation.

Lemma 4.3. Let T be a perfect phylogeny on S and x be an internal node in
T . Consider T as rooted at x. Let G be an equivalence class of (S − {x})/x and let
y = lcaT (G). Let v be a node of T on the path from x and y (thus v = x or v = y is
also possible). Then there exist H1, . . . , Ht in (S−{v})/v such that H1∪· · ·∪Ht = G.

Proof. Let T be a perfect phylogeny for S, and x, G, y, and v are as stated. Let
H1, . . . , Ht be equivalence classes of (S − {v})/v containing species from G. Clearly,
to prove the lemma it will suffice to prove that all Hi are either disjoint from G or
contained in G.

Suppose, by way of contradiction, that for some i, 1 ≤ i ≤ t, Hi contains species
from G and from S −G. We will show that this implies the existence of a character
α ∈ C and a state a of α such that a 6∈ α(v), yet a ∈ α(x) ∩ α(z) for some leaf z
below v; such a character is not convex on T , contradicting our assumption that T is
a perfect phylogeny. This will show that all equivalence classes Hi are either disjoint
from or contained in G and will establish our claim.

Since Hi contains species in G and in S − G, and is an equivalence class of
(S−{v})/v, there are species z1 ∈ Hi ∩G and z2 ∈ Hi−G and character α such that
(α(z1)∩ α(z2))− α(v) 6= ∅ (this follows from (S − {v})/v being the transitive closure
of Ev). Let a ∈ α(z1) ∩ α(z2) − α(v). Since z1 and z2 are in different equivalence
classes of (S − {x})/x, a ∈ α(x). Now let z = lcaT (z1, z2). This node z is in the
subtree rooted at v and satisfies a ∈ α(z) because T is a perfect phylogeny and z is on
the path between z1 and z2. This is the character α and state a we stated we would
demonstrate, proving our claim.

We now present a dynamic programming algorithm for constructing perfect phy-
logenies from polymorphic data. We define the search graph SG = (V,E) as follows.
Each vertex in V is associated with a pair [G, x], where G = S or G ∈ (S − {x})/x,
and represents the question, Does G∪{x} have a perfect phylogeny? The edges of the
search graph are of the form ([G, x][S, x]), and all pairs of the form ([G1, x1], [G2, x2])
where G1 ⊆ G2 and x1 and x2 satisfy

∑
α∈C |α(x1)4α(x2)| = 1. There are O(rlk)

nodes of type [S, x], and O(nrlk) of type [G, x] (because there are at most n equiva-
lence classes in (S − {x})/x). Also, there are O(nrlk) edges of type ([G, x][S, x]) and
O(nlkrlk+1) of type ([G1, x1], [G2, x2]), since the outdegree of every node is at most
lkr.

Definition 4.4. Given a node [G, x], a set of nodes [H1, y], [H2, y], . . . , [Hp, y]
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such that (a) Hamming(x,y)= 1 and (b) ∪iHi = G is called a bundle.
There can be multiple bundles going into [G, x], corresponding to the maximally

refined perfect phylogenies of G ∪ {x}. If [H1, y], [H2, y], . . . , [Hp, y] is a bundle for
[G, x], and all the subproblems have perfect phylogenies, then there is a perfect phy-
logeny for G ∪ {x} with subtrees Ti labeled by Hi. We can also have a bundle of
just one edge (i.e., ([G,y],[G,x])); such a bundle indicates the existence of a perfect
phylogeny T for G ∪ {y} in which the node corresponding to y has only one child.
This is necessary if we require all edges to have Hamming distance 1.

Algorithm PHYLOGENY(S). First create the search graph GS. For each node
[G, x], determine its bundles. Note that some incoming edges ([G1, x1], [G, x]) may not
correspond to any bundle because (S − {x1})/x1 does not have the proper form (i.e.,
G may not be the union of a subset of the components of (S − {x1})/x1). Remove
such edges. Now for each bundle compute the size of the bundle (number of edges)
bi and set a counter counti equal to bi. Each node [G1, x1] that is a predecessor of
node [G2, x2] is given a pointer to the counter for its bundle. We initialize a queue of
“true” nodes as empty.

We locate each node [G, x] with |G| = 1, mark it as true, and place it in the queue.
We then pull a node [G1, x1] out of the queue and process it as follows. For each edge
in the search graph ([G1, x1], [G2, x2]) we decrement the counter for the appropriate
bundle into [G2, x2]. If the counter is decremented to 0, then all edges of the bundle
have been set to true and node [G2, x2] is added to the queue. When we have processed
all edges out of node [G1, x1] we choose another node from the queue and continue.
If we ever try to enqueue a node of the form [S, x], then the instance has a perfect
phylogeny. If the queue is emptied without ever labeling a node of this form as true,
then there is no perfect phylogeny.

As we enqueue true nodes, we build a topology for a perfect phylogeny for the
subproblem represented by that node, ultimately building one for the whole problem if
it exists. We denote the topology of the perfect phylogeny for [G, x] by T [G, x]. We
enqueue [G, x] when a bundle [H1, y], [H2, y], . . . , [Hp, y] is found such that each [Hi, y]
has been determined to be true, and hence a topology T [Hi, y] for each subproblem has
already been determined. We create a new node v. If x ∈ S, then we label the node x.
Otherwise it remains unlabeled for now. A method for labeling these nodes is given in
the proof of Theorem 4.6. We take each of the trees T [H1, y], T [H2, y], . . . , T [Hp, y],
merge the roots into a single node, and make this node a child of node v. Once [G, x]
has been enqueued, we construct the tree T [G, x] and we do not consider any more
edges entering [G, x]. Thus we compute only one topology per true subproblem.

Lemma 4.5. If there exists a perfect phylogeny for S ∪ {x}, then the algorithm
PHYLOGENY(S) assigns true to [G, x], for each G ∈ (S − {x})/x.

Proof. The proof is by induction on |G|. The base case is trivial. Suppose that
the claim holds for all nodes [G′, x′] where |G′| < k. Consider now the node [G, x]
where |G| = k. Let T be a perfect phylogeny for S ∪ {x}. Assume that T is a perfect
phylogeny where the Hamming distance between every pair of adjacent nodes in the
tree is one. Consider T as rooted at x, and let y = lcaT (G). From Lemma 4.3, for each
node v in the path between x and y, there is a set of equivalence classes of (S−{v})/v
whose union equals G. Because y = lcaT (G), y is the first node below x for which
there are classes H1, H2, . . . , Hp, p > 1, of (S − {y})/y such that ∪Hi = G. For all i,
Hi ∪ {y} has a perfect phylogeny. Since |Hi| < |G| it follows that the algorithm has
already determined (correctly) that [Hi, y] is true for each i = 1, 2, . . . , p.

We now need to show that for every node z on the path from y to x, [G, z] is set
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to true. This will prove that [G, x] is true.
Consider the node z = parent(y). We have two cases to consider, depending

upon whether z and x are distinct. We consider the first case, where z = x. The
edges ([Hj , y], [G, x]), j = 1, 2, . . . , p constitute a bundle for [G, x] = [G, z] so that
[G, x] = [G, z] is also set to true. We now consider the second case, where z 6= x. In
this case, G is an equivalence class of (S−{z})/z, so that [G, z] is also a subproblem,
and ([G, y], [G, z]) is an edge in the search graph. Since [G, y] is set to true (by the
above analysis) the algorithm also sets [G,w] to true for all w such that [G,w] is a
vertex in the search graph. Thus, for each node w on the path from y to x, [G,w] is
set to true; setting w = x yields the result.

Theorem 4.6. The algorithm PHYLOGENY(S) runs in time O(rlk+1lkn) and
returns “yes” iff S has a perfect phylogeny.

Proof. If S has a perfect phylogeny, then there is some species x that can be an
internal node of the tree. By Lemma 4.5 the algorithm will return “yes.” Suppose
now that the algorithm returns the answer yes, and suppose the leaf-labeled tree
produced is D. We now show that the internal nodes of this tree can be labeled so
as to create a perfect phylogeny T with load l. Given a character α and an unlabeled
node v, we assign α(v) to be the states i such that for some pair of leaves x and
y in different subtrees of D − {v}, i ∈ α(x) ∩ α(y). This clearly creates a perfect
phylogeny, and we now need to show that the load is bounded by l. Suppose for some
node v the load exceeds l, so that (without loss of generality) for each of the first
l + 1 states, 1, 2, . . . , l + 1, of α, there are at least two subtrees of v with that state.
The node v represents a node [G, y] in the search graph, and since it appears in D
there is a bundle [G1, z], [G2, z], . . . , [Gt, z] such that all nodes in the bundle are set
to true and z and y have distance one. By the construction of D, the subtrees of v
have leaf sets G1, G2, . . . , Gt, S −G, where Gi ∈ (S − {z})/z for i = 1, 2, . . . , t (from
which it also follows that S − G is the union of the remaining equivalence classes of
(S − {z})/z). Also by construction, z had load at most l, so that z is labeled with
at most l α-states. Thus at least one of the states 1, 2, 3, . . . , l + 1 is missing from z;
without loss of generality let it be l+ 1. It is easy to see that if Gi and Gj (for i 6= j)
both have leaves with state l+ 1, then they would not be separate equivalence classes
in (S − {z})/z, and similarly if some Gi and S −G both have leaves with state l+ 1.
Hence, this labeling has load bounded by l.

The search graph can be constructed in time O(nlkrlk+1) by noting that there
are O(rkl) nodes in the graph, and for each node the maximum number of incoming
edges is O(nrlk) and the maximum number of outgoing edges is O(rlk). The rest of
the algorithm can be made to run in (O(nlkrlk+1)) time, which is linear in the size
of the graph. This can be done by sorting the nodes [G, x] according to the size of G
and then processing the nodes [G, x] in terms of increasing |G| values.

Comment. When individual load bounds lα are given, the algorithm can be
modified to run in O(rL+1Ln), where L =

∑
α∈C lα.

4.2. A graph-theoretic algorithm for fixed k and l. In this section we give
a graph-theoretic algorithm for the l-load perfect phylogeny problem. The algorithm
we present is based upon a characterization of intersection graphs derived from l-load
perfect phylogenies as a particular kind of vertex-colored triangulated (i.e., chordal)
graphs. On the basis of this characterization we will derive an efficient algorithm for
the l-load perfect phylogeny problem when we can fix both l and k.

4.2.1. Preliminary definitions. Let G = (V,E) be a graph. A vertex coloring
of G is a function color: V → Z. We do not require that color be a proper coloring
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(a coloring function is proper iff ∀(v, u) ∈ E, color(v) 6= color(u)).
The neighbor set Γ(v) of a vertex v is the set of all vertices in the graph adjacent

to v. A vertex v is simplicial if Γ(v) is a clique.
Given a graph G = (V,E) and a vertex coloring c : V → Z, a monochromatic

clique in G is a clique with vertex set V0 ⊂ V such that color(v)=color(w) for all
v, w ∈ V0. A graph G = (V,E) is triangulated if it has no induced cycles of size four
or greater. Given a vertex-colored graph G = (V,E), we say that G is l-triangulated
if G is both triangulated and has no monochromatic cliques of size greater than l. We
say that G has an l-triangulation G′ = (V,E′) if E ⊆ E′ and G′ is l-triangulated.

Let I = (S,C) be an input to the phylogeny problem. For α ∈ C we define
αi = {s ∈ S : i ∈ α(s)}. The partition intersection graph of I is the vertex-colored
graph (GI = (V,E), color) defined by V = {αi : α ∈ C}, E = {(αi, βj) : αi ∩ βj 6= ∅,
where i 6= j if α = β} and for α 6= β, color(αi) = color(αj) 6= color(βs). Note that
because the input I can have load greater than one, the coloring function color may
not be proper.

The main results leading to the algorithm can be paraphrased as follows:

• Let I be an input to the l-load perfect phylogeny problem. Then there is an
l-load perfect phylogeny for I iff the partition intersection graph GI has an
l-triangulation.

• Given a graph G which is vertex-colored using k colors (not necessarily prop-
erly colored) we can determine in time polynomial in fixed k and l whether
G has an l-triangulation and construct the l-triangulation when it does.

• Given an l-triangulationG′ ofGI we can construct an l-load perfect phylogeny
in polynomial time.

As a consequence, we will provide an algorithm for determining if an l-load perfect
phylogeny exists for k polymorphic characters defined on n species in O((rk3l2)kl+1 +
n(kl)2) time.

4.2.2. Characterization of l-triangulated graphs. There is a well-known
characterization of triangulated graphs as intersection graphs of subtrees of a tree
[7]. In this section we will look at an extension of this particular characterization for
l-triangulated graphs.

The following lemma will be useful in the proof of the characterization and also in
later theorems. It describes the number of simplicial vertices in a triangulated graph.
The proof is simple and is discussed in [17].

Lemma 4.7. Let G be a triangulated graph which is not a clique. Then G has at
least two nonadjacent simplicial vertices.

We can make a similar statement about l-triangulated graphs since these graphs
are, by definition, also triangulated.

We now present the characterization of l-triangulated graphs.
Theorem 4.8. Let G = (V (G), E(G)) be a vertex-colored graph. Then G is

l-triangulated iff ∃ a tree T = (V (T ), E(T )) together with functions ϕ : V (G) →
{subtrees of T} and φ : V (T )

bijection→ {maximal cliques of G} such that
1. (v, w) ∈ E(G) iff ϕ(v) ∩ ϕ(w) 6= ∅,
2. ϕ(v) = {u ∈ V (T ) : v ∈ φ(u)},
3. ∀v ∈ V (T ), φ(v) has at most l vertices of the same color.

Proof. Suppose a tree T exists together with the functions ϕ and φ. We will first
show that this, together with conditions 1 and 2, implies that G is triangulated. Let
Λ = a1a2 · · · aia1, i ≥ 4, be a simple cycle in G. We will show that Λ has a chord.
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Working in mod i arithmetic, it can be seen that ϕ(aj) ∩ ϕ(aj+1) 6= ∅ ∀1 ≤ j ≤ i.
Let ϕ(aj) = Tj . Thus V (Tj) ∩ V (Tj+1) 6= ∅ ∀1 ≤ j ≤ i. It can be seen that
∃j such that V (Tj−1) ∩ V (Tj) ∩ V (Tj+1) 6= ∅, as otherwise T will contain a cycle.
Let u ∈ V (Tj−1) ∩ V (Tj) ∩ V (Tj+1). Thus φ(u) contains aj−1, aj and aj+1 and so
(aj−1, aj+1) ∈ E(G). Hence Λ contains a chord and so G is triangulated.

From condition 3, G can have maximum monochromatic clique size l. Thus G is
l-triangulated.

We now prove the converse by induction on |V (G)|. Suppose the statement is true
for all graphs having less than n vertices. Let G be a connected graph with n vertices
and suppose G is l-triangulated. Now if G is complete, then T is a single vertex
and the result is trivial. Assume that G is connected but not complete. Since G is
l-triangulated, from Lemma 4.7, it contains a simplicial vertex v. Let A = {v}∪Γ(v).
Note that A is a maximal clique of G and contains monochromatic cliques of size at
most l. LetB = {u ∈ A : Γ(u) ⊂ A} and letX = A−B. Note thatB,X, and V (G)−A
are nonempty since G is connected but not complete. Observe that G′ = G|(V (G)−B)
is l-triangulated and has fewer vertices than G. Applying the induction hypothesis,
let T ′ be the tree and ϕ′ and φ′ be the functions satisfying the conditions of the
theorem for G′. There are two cases to handle here. Case 1 is when X is a maximal
clique in G′ and Case 2 is when it is not (note that X is a clique in both G and G′):

Case 1. We can obtain T , φ, and ϕ from T ′, φ′, and ϕ′ as follows: Identify that
vertex v′ ∈ V (T ′) such that φ′(v′) = X. Define φ(w) = φ′(w) ∀w 6= v′ and φ(v′) = A.
Define ϕ(y) = ϕ′(y) ∀y /∈ B and ϕ(y) = {v′} ∀y ∈ B.

Case 2. Identify that vertex v′ ∈ V (T ′) such that φ′(v′) ⊃ X. Create a new
vertex v and connect it to v′. Define φ(w) = φ′(w) ∀w 6= v and φ(v) = A. Define
ϕ(y) = {v} ∪ ϕ′(y) ∀y ∈ X and ϕ(y) = {v} ∀y ∈ B.

Note that in both cases A contains at most l vertices from the same color class
and that T , φ, and ϕ satisfy the stated conditions.

Theorem 4.9. Given an instance I of the l-load perfect phylogeny problem, let
GI be the corresponding partition intersection graph. Then I has a solution iff GI has
an l-triangulation.

Proof. Let T be the solution to the instance I of the l-load perfect phylogeny
problem. By Theorem 4.8 there is a graph G which is l-triangulated and is related to
T as mentioned in that theorem. It can be seen that G is a supergraph of GI . Thus
GI can be l-triangulated.

Suppose GI can be l-triangulated. Let G be the l-triangulation of GI . Then there
is a tree T associated with G satisfying the conditions of Theorem 4.8. It can be seen
that in T all the character states are convex and each vertex in T has a label set
containing at most l vertices of the same color. Thus T is a solution to the instance
I of the l-load perfect phylogeny problem.

4.2.3. l-triangulating a vertex-colored graph. In this section we turn to
the problem of l-triangulating a vertex-colored graph. The solution to this problem
makes use of several properties of triangulated graphs and also of a particular class
of triangulated graphs called k-trees.

Further definitions. Triangulated graphs admit orderings v1, v2, . . . , vn on the
vertex set such that for each i, Ni = Γ(vi)∩{vi+1, vi+2, . . . , vn} is a clique [17]. These
orderings are called perfect elimination schemes.

Consider a graph G = (V,E) with |V | = n ≥ k that contains at least one k-clique.
Such a graph G is a k-tree if the nodes of G can be ordered v1, v2, . . . , vn, whereby
ΓG(vi) ∩ {vi+1, vi+2, . . . , vn} is a k-clique for all i with 1 ≤ i ≤ n − k. A k-tree also
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has the following recursive definition: The complete graph on k vertices is a k-tree; if
G = (V,E) is a k-tree, and S ⊂ V is a k-clique, then the graph formed by adding a
new vertex v and attaching it to each vertex in S is also a k-tree. Each k-tree may
be constructed using several different sequences of these operations. The initial set
S ⊂ V is called a basis for the k-tree.

For a graph G = (V,E) and vertex-separator S ⊂ V with C a component of
G − S, we define C ∪ cl(S) to be the graph formed by adding to the subgraph of
G induced by C ∪ S sufficient edges to make S into a clique. Let G = (V,E) be
a k-colored graph. We say that G is a (k,l)-partition intersection graph if (a) the
maximum monochromatic clique size is l, and (b) G is edge covered by kl-cliques.
Note that the maximum clique size in a (k, l)-partition intersection graph is kl.

The algorithm we present for l-triangulating a vertex-colored graph is based on
dynamic programming. We will need the following lemmas in our algorithm.

Lemma 4.10. Let G = (V,E) be a connected graph which is vertex-colored (not
necessarily properly colored) using k colors with |V | ≥ kl, where l is the maximum
monochromatic clique size in G. Let the maximum clique size in G be kl. Then G
has an l-triangulation iff it has an l-triangulation that is a (kl − 1)-tree.

Proof. Clearly, if G has an l-triangulation that is a (kl − 1)-tree, then G has an
l-triangulation.

Now suppose that G has an l-triangulation. We will use induction to show that
G has an l-triangulation that is a (kl − 1)-tree. Base case is when |V (G)| = kl, i.e.,
G is a clique. This is already a (kl − 1)-tree and it is l-triangulated.

Suppose the statement is true for all graphs with less than n vertices (n > kl)
and containing maximum monochromatic clique size l and maximum clique size kl.

Let G be a graph with |V (G)| = n. Since G can be l-triangulated, let G′ be the
l-triangulation of G. From Lemma 4.7 there are at least two nonadjacent simplicial
vertices in G′. Pick that simplicial vertex v ∈ V (G′) such that G′ − {v} still has
maximum clique size kl. Let ΓG′(v) denote the neighbor set of v in G′. Observe that
G′−{v} is an l-triangulation of G−{v}. Thus, by the induction hypothesis, G′−{v}
can be l-triangulated into a (kl−1)-tree. Let G′′ be the (kl−1)-tree. Let σ be a perfect
elimination scheme for G′′. Look at x which is the first vertex in ΓG′(v) to appear in
σ. There are two cases to handle here. Case 1 is when x is within the sequence of
last kl vertices appearing in σ. In this case make v adjacent to all vertices in the last
kl positions of σ, except with some vertex u /∈ ΓG′(v) and color(u) = color(v). The
resulting graph is an l-triangulated (kl − 1)-tree. Case 2 is when x is not within the
sequence of the last kl vertices appearing in σ. Let A be the set of vertices following
x which are neighbors of x. Clearly, (ΓG′(v)−x) ⊂ A. Make v adjacent to all vertices
in ΓG′(v) and also to all except the one vertex u appearing in A − ΓG′(v) such that
color(v) = color(u). The resulting graph is an l-triangulated (kl − 1)-tree.

Thus we have that if G has an l-triangulation then it has an l-triangulation which
is a (kl − 1)-tree.

Lemma 4.11. Let G be a (k, l)-partition intersection graph. Then G can be l-
triangulated iff there exists a set K ⊆ V of size (kl − 1) which is a separator for G
such that for all components C of G−K, C ∪ cl(K) can be l-triangulated.

Proof. In Lemma 4.10 it was shown that G has an l-triangulation iff it has an
l-triangulation G′ which is a (kl−1)-tree. If such a G′ exists, then G′ has a separator
of size kl − 1 which is a clique by [31]. The converse is straightforward.

We are thus motivated to make the following definition.
Definition 4.12. Let G = (V,E) be a vertex-colored graph with k colors and with



116 BONET, PHILLIPS, WARNOW, AND YOOSEPH

maximum monochromatic clique size l. A potential basis for G′, the l-triangulation of
G, is a subset V0 ⊆ V such that (a) |V0| = kl− 1 and (b) V0 is a vertex separator for
G. If V0 ⊂ V satisfies both these conditions then we say that V0 is a potential basis
for G, and call V0 a pb-set.

Our dynamic programming algorithm will solve the l-load problem when the
input is a (k, l)-partition intersection graph. Because our input graphs may not be
(k, l)-partition intersection graphs, we need the following result.

Lemma 4.13. Let G = (V,E) be vertex-colored with a coloring function color
(using k colors) and assume that the maximum monochromatic clique size is l. Then
there exists a (k, l)-partition intersection graph G′ = (V ′, E′) such that the following
is true:

• For every pb-set S ⊆ V ′ containing (k − 1) colors and every component C of
G′ − S, C ∪ S has all k colors present.
• G can be l-triangulated iff G′ can be l-triangulated.
• The number of vertices in G′ is |V |+ |E|(kl − 2).

Proof. For each edge e = (v, w) in E, add kl − 2 vertices and sufficient edges
so that the kl vertices together form a clique with k color classes of size l. Call the
resultant graph G′.

Clearly, |V (G′)| = |V | + |E|(kl − 2). Also, since G′ is now a (k, l)-partition
intersection graph, every edge in G′ is part of some kl-clique. Thus, for every pb-set
S of G′ containing (k − 1) colors and for every component C of G′ − S, C ∪ S will
have all k colors present.

Finally, suppose G′ has an l-triangulation G′1. Then the subgraph of G′1 induced
by the vertex set V (G) is also l-triangulated [17]. Thus G can be l-triangulated.
For the other direction, suppose G has an l-triangulation G1. Identify the edges in
G1 which were present in G and make each of the edges a part of a new kl-clique.
This defines a graph G∗1 which can be verified to be a supergraph of G∗ and is also
l-triangulated. Thus G can be l-triangulated iff G′ can be l-triangulated.

We now have the basis for an algorithm for computing l-triangulations of vertex-
colored graphs:

Algorithm B (l-triangulating k-colored graphs).
Step 1. Embed G in a (k, l)-partition intersection graph, G′.
Step 2. Compute all pb-sets V0 ⊆ V (G′) and all components C of G′ − V0. The

subproblems C ∪ cl(V0) are then bucket sorted by size.
Step 3. Use dynamic programming to determine the answers for each subprob-

lem in turn.
Step 4. If there is a pb-set V0 such that for all components C of G′−V0, C∪cl(V0)

is has an l-triangulation, then return (Yes), else return (No).
It is clear that we need to indicate how we implement Step 3.
Solving subproblems using dynamic programming. We have thus reduced

the problem of determining whether the graph G can be l-triangulated to looking at
graphs of the form C∪cl(S), where S is a pb-set, C is one of the components of G′−S,
and we presume G′ to be a (k, l)-partition intersection graph.

Rose, Tarjan, and Lueker [32] proved the following lemma about triangulated
graphs.

Lemma 4.14. Let G be a triangulated graph, σ a perfect elimination scheme for
G, and a, b vertices in G. If there is a path P from a to b in G such that every vertex
in P − {a, b} comes before a and b in the ordering σ, then (a, b) is an edge in G.

We also observe the following lemma about (kl − 1)-trees.



EVOLUTIONARY TREES OF POLYMORPHIC CHARACTERS 117

Lemma 4.15. If G can be l-triangulated into a (kl−1)-tree G′, then any (kl−1)-
clique in G′ can be a basis for G′.

We now prove the following theorem. The proof for this theorem is along the
same lines as the proof for Theorem 1 appearing in [27].

Theorem 4.16. Let G = (V,E) be a (k, l)-partition intersection graph containing
at least kl+1 vertices, S0 pb-set of G, and C a component of G−S0. Then C∪cl(S0)
can be l-triangulated iff there exists a family F of l-triangulated (kl − 1)-trees and a
vertex v ∈ C such that

1. For every F ∈ F there exists a vertex x ∈ S0 such that V (F ) = C ′ ∪ cl(S),
where S = S0 ∪ {v} − {x} and C ′ is a component of both G − S and C ∪
cl(S0)− S.

2. |V (F )| < |V (C ∪ cl(S0))|, for every F ∈ F .
3. Every two graphs in F intersect only on S0 ∪ {v}.
4. G|(C ∪ S0) is contained in

⋃
F∈F F .

Proof. It is easy to see that if these conditions hold we can combine the l-
triangulated (kl−1)-trees in F into one l-triangulated (kl−1)-tree covering C∪cl(S0)
since they intersect only on S0 ∪ {v}.

For the converse, suppose that G1 = C ∪ cl(S0) can be l-triangulated. Let G′

be an l-triangulation of C ∪ cl(S0). By Lemma 4.15 the (kl − 1)-clique S0 can be a
basis for G′. Let v be the vertex added to the basis S0 in the construction of G′ and
let S′ = S0 ∪ {v}. Thus there is a perfect elimination scheme for G′ in which the
vertices of S′ occur at the end. We will show that we can decompose C ∪ cl(S0) into
the union of l-triangulated (kl− 1)-trees, TK , each of which is based upon a (kl− 1)-
clique subset K ⊂ S′. We will then show that each such K forming the basis of one
of these l-triangulated (kl − 1)-trees will be a separator for G, so that TK − K has
components C1, . . . , Cr. We can then in turn write each TK as the union of possibly
smaller (kl − 1)-trees, T iK = TK |(Ci ∪K). These l-triangulated (kl − 1)-trees are the
ones of interest.

G′ is built by adding vertices, one at a time, and making each new vertex adjacent
to every vertex in some (kl − 1)-clique. We will define Gi to be the subgraph of G′

induced by the vertex set {vi, vi+1, . . . , v|V |}. Thus G|V |−kl+2 is a (kl−1)-clique, and
to form Gi we make vertex vi adjacent to every vertex in some (kl−1)-clique in Gi+1.
We will show that we can assign to each added vertex vi (with i < (|V | − kl + 1)) a
label L(vi) the name of a (kl−1)-clique K ⊂ S′, so that for each K ⊂ S′ the subgraph
TK = G|VK , where VK = {v : L(v) = K or v ∈ K}, is an l-triangulated (kl− 1)-tree.
We will also show that every edge e in G|(C−{v}) is in one of these (kl−1)-trees and
that the (kl−1)-cliques K forming the basis of the (kl−1)-trees TK are separators of
G. We will also need to show that the component C ′ of C ∪ cl(S0)−L(v) containing
v is a component of G− L(v). This will prove our assertions.

We first need to show how we assign vertices to (kl− 1)-clique subsets of S′. Let
L be the assignment function we wish to define for every vertex not in S′. Suppose
we have constructed the graph Gi+1 and are now adding vi to the graph and making
it adjacent to every vertex in some (kl− 1)-clique, R. If R ⊂ S′, then we set L(vi) =
R. Otherwise, the vertices in R will consist of (perhaps) some unlabeled vertices
(these will be in S′) and at least one labeled vertex. If all of the labels in R agree,
then this is the label that we will assign to vi. On the other hand, suppose for our
construction that when we make vi adjacent to every vertex in the (kl − 1)-clique R
not all the labels are the same and that this is the first vertex in this construction
for which this happens. In this case, for some vertices vj and vk in R, L(vj) = X
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and L(vk) = Y , for distinct subsets X,Y ⊂ S′. Without loss of generality we can
assume that i < j < k. In constructing Gj we made vj adjacent to every vertex in
some (kl − 1)-clique C ⊂ Gj+1. Note that vk ∈ C since vj and vk are adjacent and
k > j. Since we were able to set L(vj) = X unambiguously, this means that either
every vertex in C was unlabeled, and thus X = C, or that the labeled vertices were
all labeled X. Since we have assumed vk was labeled, we can infer that L(vk) = X
and hence X = Y . Thus this assignment of vertices to (kl − 1)-clique bases is well
defined, and each label denotes a subset K of S′. It is easy to see that the subgraph
TK = G′|VK (for VK = {v : L(v) = K or v ∈ K}) is an l-triangulated (kl − 1)-tree
and that TK is based upon the set K.

By our construction of the labeling function, it is also clear that no edge in G has
different labels at its endpoints, so that every edge in G|(C − {v}) is in exactly one
l-triangulated (kl − 1)-tree, TK .

We now show that each (kl − 1)-clique K ⊂ S′ forming the basis of an l-
triangulated (kl − 1)-tree in F is a separator for C ∪ cl(S0) and for G. We first
show that K is a separator for C ∪ cl(S0). Suppose to the contrary, so that for some
set K ⊂ S forming the basis of an l-triangulated (kl − 1)-tree TK , C ∪ cl(S0)−K is
connected. Let K = S−{x}. We will show that there is no path from x to any vertex
in C ∪ cl(S0)−K. Let σ′ be a perfect elimination scheme for TK ∪ {x}. Clearly, we
can assume that x is the last vertex in σ′ to occur before the vertices of K. Let a be
the vertex immediately preceding x. If there is a path from x to a in C ∪ cl(S)−K,
then the edge (a, x) is in G by Lemma 4.14. But then S ∪ {a} is a (kl + 1)-clique,
contradicting that G has a supergraph which is a (kl − 1)-tree. The proof can be
modified to show that K is a separator for G as well. Hence the (kl − 1)-trees T iK
each contain fewer vertices than G.

We now complete our proof by showing that the components of C ∪ cl(S0) −K
are also components of G−K, where K is the basis of a (kl − 1)-tree F ∈ F . Recall
that by our construction each such basis K is a set L(a) for some a ∈ V (F )−K. So
let C ′ be a component of C ∪ cl(S0) − L(a), for some a ∈ C. It is easy to see that
L(a) = S0 ∪ {v} − {x} is a separator for C ∪ cl(S0) and that every component X of
C ∪ cl(S0) − L(a), such that x 6∈ X, is also a component of G − L(a). Thus we will
show that x 6∈ C ′, so that C ′ is a component of G− L(a).

Suppose x ∈ C ′. Then x is adjacent to at least one vertex z of C ′ − {x}. When
we labeled the vertex z we labeled it with L(a) implying that x ∈ L(a), and yet, by
our construction, x 6∈ L(a). Hence the component C′ of C ∪ cl(S0)−L(a) containing
a is a component of G− L(a). This completes our proof.

We can now state the following theorem.
Theorem 4.17. Let G = (V,E) be a (k, l)-partition intersection graph with

|V | ≥ kl+ 1. Let S0 be a pb-set and let C be a component of G−S0. Then C ∪ cl(S0)
can be l-triangulated iff there exists some vertex v in C and a family of pb-sets M
such that the following is true:

1. For each M ∈M, M ⊂ S0 ∪{v} and M is a separator for C ∪ cl(S0) and for
G.

2. For each vertex x ∈ S0 there is an Mx ∈M and a component Cx of G−Mx

and of C ∪ cl(S0) − Mx such that |Cx| < |C| and Cx ∪ cl(Mx) can be l-
triangulated.

3. Every edge in C is in exactly one Cx given above.
Proof. Suppose that C∪cl(S0) can be l-triangulated and letG′ be a l-triangulation

of C ∪ cl(S0). From Theorem 4.16 we infer that there is a vertex v ∈ C such that the
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subgraph of G′ induced by the vertices of C ∪ cl(S0) can be written as the union of
the l-triangulated (kl − 1)-trees TK based upon pb-sets K ⊂ S′ = S0 ∪ {v}. We will
letM consist of these subsets K, which form the bases of the (kl−1)-trees TK . From
Theorem 4.16 it can be seen that M satisfies the conditions above.

For the converse, if such a family M = {Mi : i ∈ I} of pb-sets exists, then there
exists v ∈ C such that the graph C∪cl(S0) is contained in the union of l-triangulatable
graphs of the form Cx∪cl(M), where each M ∈M is a pb-set and a subset of S0∪{v}
and Cx is a component of G−M and a proper subset of C. Since G is a (k, l)-partition
intersection graph, these graphs each have all k colors and have monochromatic
cliques of maximum size l and also have cliques of maximum size kl. Hence they can
be completed to l-triangulated (kl − 1)-trees Tx, where V (Tx) = V (Cx ∪M). This
family of (kl − 1)-trees F = {Tx : x ∈ C − {v}} shows that C ∪ cl(S0) can be
l-triangulated.

Theorem 4.18. Let G = (V,E) be a (k, l)-partition intersection graph, S ⊂ V be
a pb-set, and C be a component of G− S. Then we can determine whether C ∪ cl(S)
can be l-triangulated simply by knowing the “answer” for each smaller graph of the
form C ′ ∪ cl(S′), where S′ is a pb-set and C ′ is a component of G− S′.

Implementation details of the dynamic programming algorithm (Step 3
of Algorithm B). Data structure: A family X = {Mi} of pb-sets. For each set Mi in
X , and for each of the ri components Cj of G−Mi, we denote by M j

i , j = 1, 2, . . . , ri,
the subgraph of G induced by Cj ∪Mi with the addition of edges required to make

Mi into a clique. Each such M j
i either can be l-triangulated or cannot be. This will

be determined during the algorithm, in order of increasing size of the M j
i ’s, and an

appropriate answer (yes or no) will be stored for each.
Recall that Step 2 of Algorithm B sorts the subproblems Cj ∪Mi using bucket

sort.
ALGORITHM. (the statements in italics denote comments).

(* Examine the M j
i in turn by order of number of vertices,

and determine whether each can be l-triangulated.
Any graph containing all k colors with
l vertices per color class can be l-triangulated *)

IF M j
i has kl vertices with l vertices per color

class, THEN set its answer to Yes.

IF M j
i has kl vertices such that there is one color

class with more than l vertices, THEN set its answer to No.

(* We will now apply Theorem 4.17 to each graph M j
i

and search for a vertex v ∈M j
i −Mi

and family M satisfying the conditions of Theorem 4.17

to determine whether M j
i can be l-triangulated *)

FOR EACH graph M j
i in order of size h > kl DO

FOR EACH v ∈M j
i −Mi such that

Mi ∪ {v} has no color class containing more than
l vertices, DO
(* We now check whether for vertex v there is a
family M satisfying the conditions of Theorem 4.17*)

Examine all sets Mm of vertices in Mi ∪ {v} which are pb-sets for G
FOR EACH such Mm, let Lm be the
union of the M j

m which can be
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l-triangulated
IF the union of the Lm (for each

Mm above) contains M j
i −Mi − {v}

THEN set the answer of M j
i to

Yes and EXIT-DO
END-DO

IF no answer was set for M j
i

THEN set the answer for M j
i to No

(*Applying Lemma 4.11 now*)
IF G has a vertex-separator Mi such that

all M j
i graphs have the answer Yes,

THEN (G can be l-triangulated)
RETURN (Yes)

ELSE RETURN (No)
END-DO

end of algorithm.
The above algorithm can be modified easily to give back an l-triangulation, if it

exists.
Run time analysis of Algorithm B. Let G = (V,E) be the (k, l)-partition

intersection graph which is given as input to Step 2 of Algorithm B. Then, in Step
2, in the worst case the algorithm checks all subsets of size kl − 1 of which there are
O(|V |kl−1). Each of these is checked for being a pb-set, which involves checking the
set to see if it is a vertex separator. This takes O(|V |2) for each subset. Bucket sorting
the subproblems takes a total of O(|V |kl). Step 3, which involves checking to see if a
subgraph satisfies the conditions of Theorem 4.17, takes time linear in the number of
vertices in the subgraph. Thus the overall complexity is O(|V |kl+1).

We summarize with the following.
Theorem 4.19. Let G = (V,E) be a (k, l)-partition intersection graph. We

can in O(|V |kl+1) time determine whether G can be l-triangulated and produce the
l-triangulation when it exists.

4.2.4. Summary of the algorithm to solve the l-load perfect phylogeny
problem. Given I, compute the partition intersection graph, GI , and embed GI in
a (k, l)-partition intersection graph G′I . Use Algorithm B to determine if G′I can be
l-triangulated, and compute the triangulation G = (V,E) if it exists. If there is no
l-triangulation, return No. Else, use G to compute the l-load perfect phylogeny T .

We now briefly discuss how T can be constructed from the l-triangulated graph
G = (V,E). Recall that T is related to G by Theorem 4.8.

Let σ = v1v2 . . . v|V | be a perfect elimination scheme for G. We will construct
the tree inductively where Ti is the tree corresponding to G|{vi, vi+1, . . . , v|V |}. Thus
T1 = T is the tree we seek.

Let Ap = Γ(vp) ∩ {vp+1, vp+2, . . . , v|V |}. Inductively, assume we are at vertex vj
in σ and assume we have the tree Tj+1. Let vi be the first vertex following vj (i.e.,
j < i) in σ which is in Γ(vj). Note that (Ai∪{vi}) ⊇ Aj . Since vj and vi are simplicial
in G|{vj , vj+1, vj+2, . . . , v|V |} and G|{vi, vi+1, vi+2, . . . , v|V |}, respectively, it follows
that |{vi} ∪ Ai| > |Aj | iff, in G|{vj , vj+1, vj+2, . . . , v|V |}, the subgraph induced by
{vi} ∪Ai is a maximal clique.

Case 1. If the subgraph induced by {vi} ∪ Ai is a maximal clique then it follows
that {vj} ∪ Aj also induces a maximal clique in G|{vj , vj+1, vj+2, . . . , v|V |}. Thus
from Theorem 4.8 in Tj there will be a vertex which corresponds to {vj} ∪ Aj . To
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get Tj from Tj+1, we add a new vertex u to V (Tj+1) and add an edge from u to the
vertex u′ ∈ V (Tj+1) which corresponds to the maximal clique {vi} ∪Ai.

Case 2. If |{vi} ∪ Ai| = |Aj |, then the subgraph induced by {vi} ∪ Ai in
G|{vj , vj+1, vj+2, . . . , v|V |} is not a maximal clique. Let vq (j ≤ q) be the first vertex
to the left of vi in σ such that vi ∈ Γ(vq) and |{vi} ∪Ai| = |Aq|. If q = j, then to get
Tj we relabel the vertex u ∈ V (Tj+1) corresponding to the maximal clique {vi} ∪ Ai
to now correspond to {vj} ∪ Aj . If q 6= j, then to get Tj from Tj+1 we create a new
vertex corresponding to {vj} ∪ Aj and connect it to the vertex u′ ∈ V (Tj+1) which
corresponds to {vq} ∪Aq.

It can be seen that the above operations of obtaining Tj from Tj+1 can be imple-
mented in O(deg(vj)), where deg(v) is the degree of vertex v. This can be achieved
by associating two variables with every vertex vr ∈ σ (j < r), one that corresponds
to the vertex u ∈ V (Tr) such that u represents the maximal clique {vr} ∪ Ar in
G|{vr, vr+1, . . . , v|V |} and one that corresponds to a vertex vs in σ such that vs is the
first vertex to the left of vr for which vs ∈ Γ(vr) and |{vr} ∪Ar| = |As|.

The time taken for producing a perfect elimination scheme for G is O(|V |+ |E|)
[17]. From the discussion above, it can be seen that T can then be constructed in
O(|V |+ |E|). Hence we have the following theorem.

Theorem 4.20. Let G = (V,E) be a vertex-colored graph which is l-triangulated.
Then the tree T which satisfies the conditions in Theorem 4.8 can be constructed in
O(|V |+ |E|).

Theorem 4.21. The l-load perfect phylogeny problem for n species and k poly-
morphic characters can be solved and the l-load perfect phylogeny constructed (when
it exists) in O(nk2l2 + (rk3l2)kl+1) time.

Proof. Let I be the input to the l-load perfect phylogeny problem and GI =
(V,E) be the partition intersection graph. Then |V | = rk, and it can be shown
that if |E| > kl|V | then there is no l-triangulation [27]. Hence |E| ≤ k2lr. Let
G′I = (V ′, E′) be the (k, l)-partition intersection graph embedding of GI , and note
that |V ′| = |V |+ |E|(kl − 2) ≤ rk + k3l2r. The rest follows.

Comment. In the case where individual load bounds lα are given, the algorithm
can be modified to run in O(nL2 + (rkL2)L+1), where L =

∑
α∈C lα.

4.3. Inferring perfect phylogenies from mixed data. In the previous sec-
tion we presented two algorithms for inferring perfect phylogenies from polymorphic
character data; these algorithms had running times which were exponential in L,
where L =

∑
α∈C lα and lα is the load bound for the character α. We can use these

algorithms directly for sets of characters when some of the characters are monomor-
phic and some are polymorphic, but the expense would be too large. This follows
since in typical data sets the number of characters k is the largest parameter, often
in the hundreds or thousands; since L > k, algorithms that are exponential in L are
prohibitively costly. Instead, we propose a method that should be efficient when the
number of monomorphic characters is sufficient to reduce the number of minimal per-
fect phylogenies to a small number. In practice, as the majority of the characters will
be monomorphic, this is likely to be very efficient. The method we propose involves
two steps and is efficient when the number of minimal perfect phylogenies generated
from the monomorphic characters is small.

Algorithm C.
Step 1. Infer all minimal perfect phylogenies from the monomorphic characters,

using [23].
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Step 2. Determine whether any of the minimal perfect phylogenies obtained in
Step 1 can be refined so that each polymorphic character is convex on it within the
specified load bound.

Discussion of Step 1. The algorithm by Kannan and Warnow [23] has running

time of O(22r+r2

kr+3
m +Mkmn), whereM is the number of minimal perfect phylogenies

and km is the number of monomorphic characters. This is theoretically expensive if
r, the number of states, is too large; however, in practice the algorithm works quickly
as long as not too many of the characters have a large number of states. Also, in
practice, as long as the monomorphic characters are independent of each other and
comprise a suitably large set, there will be very few perfect phylogenies. Thus we
expect Step 1 to be very fast and to produce very few minimal perfect phylogenies.

Discussion of Step 2. We consider the following problem.
Problem. Refining a tree.
Input. Leaf-labeled tree T and set C of polymorphic characters, each with an

individual load bound.
Question. Does a perfect phylogeny T ′ exist for the polymorphic characters,

subject to the constraint that T ′ is a refinement of T?
Algorithm D.
For each internal v ∈ T which has degree greater than 3, do
1. Let Γ(v) = Γ1(v) ∪ Γ2(v), where Γ1(v) consists of all the neighbors of v

which are leaves and Γ2(v) consists of all the nonleaf neighbors of v. For each
uj ∈ Γ2(v) add a new node wj on the edge (v, uj). Compute the labeling of
wj so as to make every character convex (each character must contain every
state that appears on both sides of wj).

2. If some new node has a load for a character that exceeds the stated load
bound for that character, RETURN(NO). Let Sv = Γ1(v) ∪ {wj |wj is a new
node and wj is a neighbor of v}. Use any of the algorithms from section 3
to determine if there is a perfect phylogeny for (Sv, C) satisfying the load
bounds. If any (Sv, C) fails to have a perfect phylogeny meeting the load
bounds then RETURN(NO), else RETURN(YES).

Example. Consider S = {a, b, c, d, e, f, g} and C = {α, β}. Let α be a monomor-
phic character and β be a polymorphic character with load bounded by three. Also, let
α(a) = {0}, α(b) = {0}, α(c) = {1}, α(d) = {1}, α(e) = {1}, α(f) = {1}, and α(g) =
{1}. In addition, let β(a) = {0}, β(b) = {3}, β(c) = {2, 4}, β(d) = {2, 3}, β(e) =
{1, 4}, β(f) = {1, 3}, and β(g) = {0, 4}. Figure 4.1(i) shows the phylogeny T ob-
tained by applying the perfect phylogeny algorithm to the monomorphic character α.
Let S′ = {h, c, d, e, f, g} be the species set obtained at the end of step 1 of Algorithm
D. Then β(h) = {0, 3}. The instance (S′, {β}) has a perfect phylogeny with load
bounded by three. This is shown in Figure 4.1. From this phylogeny it is possible to
obtain the solution to the instance (S,C), and this is shown in Figure 4.1(iii).

Theorem 4.22. Algorithm D correctly determines whether a perfect phylogeny
T ′ exists refining T within the stated load bounds, and it can be modified to produce
the perfect phylogeny T ′ in time min{O(rL+1Ln2), O(n2L2 + n(rkL2)L+1)}.

Proof. If the algorithm returns NO, it is clear that no perfect phylogeny within
the constraints of the problem exists. If it returns YES, then the perfect phylogenies
refining each of the stars can be hooked up via the new nodes. The refinement can be
done by using the algorithms in section 4. It can be shown that the algorithm takes
min{O(rL+1Ln2), O(n2L2 + n(rkL2)L+1)}.

In Algorithm D, if |Sv| is small then it may be cheaper in practice to look at all
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f

(iii)

Fig. 4.1. Example for Algorithm D.

possible leaf-labeled topologies on Sv rather than use the algorithms of section 4 to
determine the existence of perfect phylogenies on Sv.

5. Polymorphism in linguistics. Properly chosen and encoded characters in
linguistics have been shown to be convex on the true tree, so that with proper schol-
arship we should be able to infer a perfect phylogeny. In recent work on an Indo-
European data set, Warnow, Ringe, and Taylor [39] found that there was extensive
presence of polymorphic characters. The degree of polymorphism for each polymor-
phic character could be determined from the data with high confidence, so that the
question of inferring the correct tree amounted to determining if a perfect phylogeny
existed in which each character was permitted a maximum degree of polymorphism
(i.e., load) on the tree. Figure 5.1 shows the tree that they now posit. This was
obtained using Algorithm D. This tree is in fact different from their earlier hypothesis
and from the tree that was presented in [6]. This tree has been obtained as a result of
using more data. This tree shows a limited support for Indo-Hittite, moderate sup-
port for the Italo-Celtic hypothesis, and significant support for a subgroup of Greek
and Armenian.

6. Polymorphism in biology. The evolution of biological polymorphic char-
acters can be modeled using the following operations [28]. A mutation changes one
state into another. A loss drops a state from a polymorphic character from parent
to child. A duplication replicates a state which subsequently mutates. This allows
children to have higher load on a polymorphic character than their parents. We con-
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HITTITE

GREEK      ARMENIAN

GERMANIC

LITHUANIAN VEDIC        AVESTAN

TOCHARIAN B

OLD  CHURCH
SLAVIC

ITALIC      CELTIC

ALBANIAN

Fig. 5.1. The tree on the Indo-European data set. Albanian can be on any of the thick edges.
The tree indicates only a rooted topology without any edge lengths.

sider two types of costs: (a) state-independent costs, in which any loss costs cost`,
any mutation costs costm, any duplication costs costd, and any match costs 0; and
(b) state-dependent costs, in which the costs are dependent on the states involved.

Parsimony is a popular criterion for evaluating evolutionary trees from biomolec-
ular data. A most parsimonious tree T minimizes

∑
e∈E(T ) cost(e). Traditionally,

for monomorphic characters cost(e) is the Hamming distance of the labels at the two
endpoints of e. For unknown topology, the traditional parsimony problem is NP-hard
[9, 10], but for fixed topology it is in P [16].

Consider the case where costs cost`, costm, and costd are not state-dependent.
Let (u, v) be an edge in T with u above v. We define the cost cost(α, (u, v)) of α ∈ C
on (u, v) as follows: Let X = α(u)− α(v), Y = α(v)− α(u), and Z = α(u) ∩ α(v).

• If |X| = |Y | then cost(α, (u, v)) = costm|X| (all events are mutations, but
shared states do not change).
• If |X| > |Y | then cost(α, (u, v)) = cost`[|X| − |Y |] + costm|Y |.
• If |X| < |Y | then cost(α, (u, v)) = costd[|Y | − |X|] + costm|X|.

The cost of the edge (u, v) is then
∑
α∈C cost(α, (u, v)). For state-dependent costs

we must also match states in the parents to states in the child for mutation and
duplication events.
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We consider the following problem: Given a fixed leaf-labeled topology and a
maximum load l, what is the most parsimonious labeling of the internal nodes?

The problem is NP-complete for arbitrary loss, mutation, and duplication cost
functions. If cost` = 0, such as when we wish to maximize convexity, the problem
becomes even harder.

Theorem 6.1. The following problems are NP-complete:
• Given a tree with leaves labeled by species each with load at most l and a value
P , determine if the internal nodes can be labeled to create a phylogeny with
load at most l and parsimony cost at most P for arbitrary cost` < costm <
costd.
• If cost` = 0 and costm ≤ costd are arbitrary then given a tree with leaves

labeled by species and values l and P , determine if the internal nodes can be
labeled to create a phylogeny with load at most l and parsimony cost at most
P . This problem remains NP-complete even if the tree is binary, no edges of
weight 0 are allowed, and the input load is 1 ≤ li ≤ l.

Proof. In the fixed-topology setting, characters are independent. Therefore we
consider only the case of a single character with r states.

Clearly the problem is in NP. We now show it is NP-hard. Our reduction is
from the three-dimensional matching problem (3DM), known to be NP-complete [20],
which is defined as follows. We are given three disjoint sets, A,B, and C, each with
n elements, and a set X of m triples, X = {(ai, bj , ck) : ai ∈ A, bj ∈ B, and ck ∈ C}.
We say that triple (ai, bj , ck) covers ai, bj , and ck. We wish to find a set of n triples
that covers every element of A,B, and C exactly once. This set of n triples is called
a perfect matching.

Given an instance of 3DM, we construct a tree T with leaves labeled by species
each with load at most m−n. The internal nodes of T can be labeled with load m−n
and parsimony (3mn− 3n2)costm iff the instance of 3DM has a perfect matching.

We construct the tree T as follows. We begin by creating an internal root node.
This root has 3n children, a1, . . . , an, b1, . . . , bn, and c1, . . . , cn, which are all internal
nodes. Let n(ai) for 1 ≤ i ≤ n be the number of triples that contain ai. We have
the following states for our character: m states x1, x2, . . . , xm corresponding to the
m triples xj ∈ X, and d(ai) ≡ m − n − n(ai) + 1 dummy states associated with
each ai (similarly we have d(bj) ≡ m − n − n(bj) + 1 dummy states for each bj and
d(ck) ≡ m−n−n(ck) + 1 dummy states for each ck). Let D(ai) be the set of dummy
states associated with ai (|D(ai)| = d(ai)). Let X(ai) be the set of triples that contain
ai (|X(ai)| = n(ai)). For the remainder of this discussion we will concentrate on nodes
ai. The nodes bj and ck are treated symmetrically.

Node ai has n(ai) leaf children. Let x1, x2, . . . , xn(ai) be the states associated
with the triples that contain ai. The ith leaf under node ai has all the dummy states
D(ai) associated with ai and all of x1, x2, . . . , xn(ai) except for state xi. Each child
thus has load m− n.

It can be shown that we can label the internal nodes of this tree with load at
most m−n and cost at most (3mn− 3n2)costm iff the instance of 3DM has a perfect
matching.

First suppose that Xs ⊂ X is a set of n triples that forms a perfect matching.
Label the root with states from the set X −Xs and label ai with all the leaves below
it except xq, where xq ∈ Xs and ai ∈ xq. Each internal node has load m − n as
required. The edge from the root to node ai has cost d(ai)costm since none of the
dummy states in D(ai) are in the root, all of the remaining states in ai’s label are
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in the root and the root has the same load as ai (thus we have mutation rather than
duplication or loss). Since

∑n
i=1 d(ai) = mn− n2 + n−m, we have (since the edges

from the root to the bj and ck nodes are of similar cost) that the total cost of the
edges from the root to its 3n children is 3mn− 3n2 + 3n− 3m. Now consider the cost
of the edges from node ai to its n(ai) children. If xq is the triple in Xs that contains
ai, then the edge to the child missing xq will have cost 0. All other edges have cost
costm. Summing over all edges from ai, bj , or ck nodes to their children, we have a
cost of (3m−3n)costm. Thus the total cost is (3mn−3n2) and the parsimony bound
is met.

Suppose instead that there is a labeling of the internal nodes of T so that the
maximum load is m− n and the total cost is at most 3mn− 3n2.

We need the following lemma.
Lemma 6.2. If costm < costd, then in any optimal solution an internal node will

always have load at least as high as the minimum load of any of its children.
Proof. Consider a node p that is the parent of k children. Suppose there is a

labeling of the nodes such that node p has a load smaller than all of its children.
Thus in the cost of the tree there are at least k duplications associated with edges
from p to its children. If we add to the label of p another state found in at least one of
its children (such a state always exists since all children have more labels than p), then
regardless of the labeling of p’s parent we will decrease the cost of the tree. Adding
the label costs at most costd along the edge from node p to its parent. However, it
saves at least costd + (k − 1)(costd − costm). Since costd > costm, adding the label
always results in a net savings. Therefore we can assume that in the labeling we are
given all internal nodes have load m−n, or we can add labels to these internal nodes
and only reduce the cost.

Thus from Lemma 6.2 all internal nodes of the input tree will have load m − n.
Looking at the root, each state xi is contained in the leaves of exactly three children.
Each dummy state is contained in the leaves of only one child. Therefore a lowest-cost
labeling of the root will have m− n states xi. If all the ai, bj , and ck are also labeled
by the states chosen by the root, then the minimum possible cost of the edges from
the root to its children is 3mn − 3n2 − 3m + 3n. This is because each child ai must
mismatch on at least m − n − n(ai) labels. Summing over all children of the root,
this give 3mn − 3n2 − 3m, but since n triples could not be in the label of the root,
there is an additional cost of 3n. Looking at the parsimony bound, even if the cost
of the edges from the root to its children is minimum, the total cost of the ai, bj ,
and ck nodes to their children can be at most 3m − 3n. Consider a node ai and its
children. The minimum possible cost of the edges between these nodes is n(ai) − 1,
which comes from labeling ai with all its dummy states and all but one of the triple
states associated with it. If ai is instead labeled with all of its triple states and all
but one of its dummy states, the cost is n(ai). To achieve a total remaining cost
of 3m − 3n, however, the cost of each ai to its children must be the minimum and
therefore one of the triple states is missing from each ai, bj , and ck. These must be
the n triple states missing in the root or there will be higher cost associated with the
edges from the root to its children and the parsimony bound will be exceeded. Thus
the n triple states missing from the label of the root cover each of the ai, bj , and ck
and correspond to a perfect matching for the 3DM instance.

We now prove the second part of Theorem 6.1. Clearly the problem is in NP.
We now show it is NP-hard. We again use a reduction from 3DM as in the proof
of the first part of Theorem 6.1. We construct the tree as above with the following
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modifications. Each node ai now has two children. For the case of load-1 input, each
child is the root of a binary tree. Each of these trees has all the dummies in D(ai)
represented in the leaf set and the states of X(ai) are arbitrarily divided among the
children, appearing as a leaf just once in the subtree rooted at ai. For other input
loads, the labels of the leaves vary. For instance, for load L there are only two leaf
children of ai, one labeled with all the dummies in D(ai) and all but one state in
X(ai), the other labeled with all the dummy states and the single state xq ∈ X(ai)
missing in the label of its sibling. For other loads, the children of ai can also be made
into binary trees where the input load is met by at least one leaf, all dummy states
are represented in each child of ai, and each state in X(ai) is represented exactly
once. To make the whole tree binary, we form an arbitrary binary tree with the ai
as “leaves.” (The two children of ai will be attached.) We call this tree (without the
children of ai) the A tree. We make the root of the A tree a child of the global root.
Similarly we form a B tree and a C tree and make them children of the global root.

Again, it can be shown that we can find labels for the internal nodes of this tree
with load at most m−n and cost at most (3mn+6n−3n2−3m)costm iff the instance
of 3DM has a perfect matching.

First suppose that Xs ⊂ X is a set of n triples that forms a perfect matching.
Label the root with states from the set X −Xs and label ai with all the leaves below
it except xq where xq ∈ Xs and ai ∈ xq. Each internal node in the A tree is labeled
with all of the xq states appearing in the labels of its two children. It then picks an
arbitrary set of the dummy states appearing in its two children so that its final load
is m − n. Thus each internal node has load at most m − n. We now calculate the
cost of this labeling. Each dummy state associated with ai arises once in the A tree
by mutation since all internal nodes in the A tree have load m−n, as does the global
root, and the global root is not labeled with any dummy states. The total cost of all
dummies is (3mn+ 3n− 3n2 − 3m)costm. In addition each of the n triple states not
represented in the root arise three times in the tree by mutation for a total cost of
3ncostm. Thus the tree costs (3mn+ 6n− 3n2− 3m)costm and the parsimony bound
is met.

Suppose instead that there is a labeling of the internal nodes of the tree so that
the maximum load is m−n and the total cost is at most (3mn−+6n−3n2−3m)costm.

We need the following lemma.
Lemma 6.3. If cost` = 0, then there exists an optimal solution where each

internal node contains all the states in the subtree rooted at it or has maximum load.
Proof. Suppose we are given a labeling where a node p has load lp which is not

the maximum load but its label does not contain a state r represented in the label
of one of its children. Let P be the set of all nodes on the path from p to its first
ancestor with load at least lp + 1 or up to the root if no such ancestor exists. Add
state r to the label of p. Choose some state that is in node p that is not in its parent
(one always exists if the parent has load at most lp) and add it to the label of its
parent, and so on so that each node in set P has its load increased by 1. This increase
in labeling costs at most costm on the label from the highest node in P to its parent
(nothing if the highest node in P is the root), and it saves costm on the edge (p, c).
Thus we have not increased the cost of the tree. Starting this process with internal
nodes lowest in the tree gives us the above claim.

Therefore we can assume that every internal node is labeled with all states in
its subtree or has maximum load. In particular, we can assume that the root has
maximum load m − n. Since each triple state xq is represented in the leaves of
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all three children and the dummy states in only one child each, then the minimum
possible cost associated with dropping states at the root is (3mn+6n−3n2−3m)costm
(all the dummy states must arise somewhere in the tree and the n triple states not
present in the root label must arise three times in the tree). Therefore, to meet the
parsimony bounds, there can be no additional cost throughout the remainder of the
tree. Considering a single node ai, there are m − n + 1 states in the subtree rooted
at ai. Since it can have load at most m−n, one of these states must be missing from
the label at ai. If one of the dummy states is dropped, then there will be an extra
cost of costm beyond what is forced by the root (the root allowed each dummy state
to arise once and each dummy state appears in the subtrees rooted in both children
of node ai). Therefore node ai must be labeled with all its dummy states and all
but one of the xq ∈ X(ai). These triple states must be passed up the A tree to the
root, but there is sufficient capacity to do so (the states that are dropped at internal
nodes of the A tree of dummy states, which ultimately had to be dropped anyway).
To achieve the parsimony bound, this xq missing from the label of node ai must be
one of the triples not represented at the root. Therefore the n triple states missing
from the root label correspond to the perfect matching in the 3DM instance.

We now consider algorithms for fixed load l. Since the topology is given, characters
can be solved independently. We first give the algorithm for the most general possible
cost function and then consider special cases which can be solved more efficiently. All
the algorithms are standard bottom-up dynamic programming. A final pass downward
from the root produces an optimal labeling of the tree in time O(nlk).

Theorem 6.4. Given a tree on n species with k characters where r is the maxi-
mum number of states for any character,

1. there exists an O(nkr2l)-time algorithm to compute the most parsimonious
load-l labeling for the tree for arbitrary state-dependent costs;

2. there exists an O(nkl(2r)l)-time algorithm to compute the most parsimonious
load-l labeling for the tree for arbitrary fixed costs cost` ≤ costm ≤ costd;

3. there exists an O(nk(2r)l)-time algorithm to compute the most parsimonious
load-l labeling for the given tree when cost` = 0.

Proof. When the cost function is state-dependent, we convert our input to a
weighted monomorphic parsimony problem. We define a new set of O(rl) states, one
for each possible label of a node. Given two labels lp and lc, we can determine the cost
of a parent-child edge with labels lp and lc. We must match states for mutations and
duplications. We thus compute a matrix of edge costs. Because loss and duplication
costs are not the same, this matrix is not symmetric in general. We then use the
algorithm of Sankoff and Cedergren [34] for weighted parsimony which runs in time
O(nkj2) for n species, k characters, and j states/characters. In our case we have rl

states, where r was the original number of states in the polymorphic character. Thus
this algorithm has time O(nkr2l).

The bottom-up dynamic programming algorithm for weighted parsimony proceeds
as follows. For an internal node v, let c(v, lv) be cost of the best labeling of the
subtree rooted at v provided that node v is labeled lv. Then we have c(v, lv) =∑
v′child of v(minlv′ c(v

′, lv′) + w(lv, lv′)), where w(lv, lv′) is the cost of the edge with
parent label lv and child label lv′ . Thus we consider every possible label for an internal
node and compare it against every possible label for its children. For arbitrary weight
function w, this will cost r2l for each parent-child interaction.

For the case of arbitrary cost` ≤ costm ≤ costd (not state-dependent), we can
reduce the overall time to O(nkl(2r)l). Again, we wish to consider every possible label
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for node v but we need not consider every possible label for its children. Suppose that
for each child we know the best choice of label for each of load 1, 2, . . . , l, where some
specific subset (possibly empty) of the label is specified. For example, we know the
best load-3 labeling of the child where a and b are two of the three states. This is
O(lrl) information. To find the best labeling of the subtree rooted at v provided v is
labeled by lv, the only labels we need to consider for the children of v are the best
ones for each possible subset of lv and each possible load. For example, if lv = {a, b},
l = 3, and ∗ can be any state, then the only labels that must be considered for a child
are ∗ (best tree with load-1 label), ∗∗, ∗ ∗ ∗, a, a∗, a ∗ ∗, b, b∗, b ∗ ∗, ab, and ab∗. More
formally, let c(v, L, x) be the cost of the best subtree rooted at v where the label of v
contains state set L and x other states. Then the cost of label lv and node v is

c(v, lv) =
∑

children v′
min
L⊆lv

min
0≤l′≤l−|L|

(c(v′, L, l′) + w(lv, L, l
′)),

where

w(lv, L, l
′) =

{
l′costm + (|lv| − |L| − l′)cost` if |L|+ l′ ≤ |lv|
(|lv| − L)costm + (|L|+ l′ − |lv|)costd otherwise.

Thus to compute the cost of a label, each parent must check O(l2l) labels in each
child. Once the label lv is computed, it contributes to O(2l) minimizations used by
its parent (each subset of lv with load |lv|). Since each of the O(n) edges is checked
O(l2l) times for each of the rl possible parent labels, the overall cost is O(nkl(2r)l).

To prove the final part of the theorem, when cost` = 0 (for example when we
wish to maximize convexity), we note that whenever we have cost` = 0 there exists
an optimal solution where each internal node contains all the states in the subtree
rooted at it or has maximum load. We begin by locating the highest internal nodes v
with at most l states in the subtree rooted at them. We label node v by these states
and make it a leaf by removing all its children. Now we can assume all internal nodes
have load l. This saves a factor of l using the preceding algorithm since there is now
only one value of l′.

7. Discussion. In this paper we introduced an algorithmic study of the problem
of inferring the evolutionary tree in the presence of polymorphic data. We considered
parsimony analysis for polymorphic data on fixed topologies and presented algorithms
as well as hardness results. We also presented algorithms for inferring perfect phylo-
genies from such data, and we note that it is reasonable to seek perfect phylogenies for
certain types of data. The results of our analysis of the an expanded Indo-European
data set studied by Warnow, Ringe, and Taylor has led to a new hypothesis for the
evolution of Indo-European languages.
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Abstract. The complexity of testing nonemptiness of finite state automata on infinite trees is
investigated. It is shown that for tree automata with the pairs (or complemented pairs) acceptance
condition having m states and n pairs, nonemptiness can be tested in deterministic time (mn)O(n);
however, it is shown that the problem is in general NP-complete (or co-NP-complete, respectively).
The new nonemptiness algorithm yields exponentially improved, essentially tight upper bounds for
numerous important modal logics of programs, interpreted with the usual semantics over structures
generated by binary relations. For example, it follows that satisfiability for the full branching time
logic CTL∗ can be tested in deterministic double exponential time. Another consequence is that
satisfiability for propositional dynamic logic (PDL) with a repetition construct (PDL-delta) and for
the propositional Mu-calculus (Lµ) can be tested in deterministic single exponential time.
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1. Introduction. There has been a resurgence of interest in automata on infinite
objects [1] due to their intimate relation with temporal and modal logics of programs.
They provide an important and uniform approach to the development of decision
procedures for testing satisfiability of the propositional versions of these logics [43,
33]. Such logics and their corresponding decision procedures are not only of inherent
mathematical interest, but are also potentially useful in the specification, verification,
and synthesis of concurrent programs (cf. [27, 8, 25, 21]).

In the case of branching time temporal logic, the standard paradigm nowadays for
testing satisfiability is the reduction to the nonemptiness problem for finite state au-
tomata on infinite trees; i.e., one builds a tree automaton which accepts essentially all
models of the candidate formula and then tests nonemptiness of the tree automaton.
Thus in order to improve the complexity there are two issues: (1) the size of the tree
automaton and (2) the complexity of testing nonemptiness of the tree automaton.

In this paper we obtain new, improved, and essentially tight bounds on testing
nonemptiness of tree automata that allow us to close an exponential gap which has
existed between the upper and lower bounds of the satisfiability problem of numerous
important modal logics of programs. These logics include CTL∗ (the full branch-
ing time logic [9]), PDL-delta (propositional dynamic logic with an infinite repetition
construct [33]), and the propositional Mu-calculus (Lµ) (a language for characterizing
temporal correctness properties in terms of extremal fixpoints of predicate transform-
ers [19] (cf. [7, 2])).
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To obtain these improvements, we focus on the complexity of testing nonemptiness
of tree automata. We first note, however, that the size of an automaton has two
parameters: the number of states in the automaton’s transition diagram and the
number of pairs in its acceptance condition. We next make the following important
observation: for most logics of programs, the number of pairs is logarithmic in the
number of states.

We go on to analyze the complexity of testing nonemptiness of pairs tree automata
[30] and show that it is NP-complete. However, a multiparameter analysis shows that
there is an algorithm that runs in time (mn)O(n) which is polynomial in the number
of states m and exponential in the number of pairs n in the acceptance condition
of the automaton. The algorithm is based on a type of “pseudomodel checking” for
certain restricted Mu-calculus formulae. Moreover, since the problem is NP-complete,
it is unlikely to have a better algorithm which is polynomial in both parameters. The
previous best known algorithm was in NP [6, 41].

The above nonemptiness algorithm now permits us to obtain a deterministic dou-
ble exponential time decision procedure for CTL∗, by using the reduction from CTL∗

to tree automata obtained in [13], in which the size of the automaton is double ex-
ponential in the length of the formula and the number of pairs is only exponential in
the length of the formula. The bound follows by simple arithmetic, since a double
exponential raised to a single exponential power is still a double exponential.

This amounts to an exponential improvement over the best previously known
algorithm which was in nondeterministic double exponential time [6, 41], i.e., three
exponentials when determinized. It is also essentially tight, since CTL∗ was shown to
be double exponential time hard [41]; thus CTL∗ is deterministic double exponential
time complete.

The above result has been obtained using only the classical pairs tree automata
of Rabin [30]. However, we also consider the complemented pairs tree automata of
Streett [33], which were specifically introduced to facilitate formulation of tempo-
ral decision procedures. We show that the nonemptiness problem of complemented
pairs automata is co-NP-complete by reducing the complement of the problem to
nonemptiness of the pairs automata and vice versa. The reduction employs the fact
that infinite Borel games are determinate (Martin’s theorem [22]). This reduction
also gives a deterministic algorithm which is polynomial in the number of states and
exponential in the number of pairs. We can thus reestablish the above upper bound
for CTL∗ using complemented pairs automata as well.

Using the recent single exponential general McNaughton [23] construction of Safra
[32] (i.e., construction for determinizing a Büchi finite automaton on infinite strings),
our new nonemptiness algorithm also gives us a deterministic single exponential time
decision procedure for both PDL-delta and the Mu-calculus, since the Safra construc-
tion allows us to reduce satisfiability of these logics to testing nonemptiness of a tree
automaton with exponentially many states and polynomially many pairs. This rep-
resents an exponential improvement over the best known deterministic algorithms for
these logics, which took deterministic double exponential time, corresponding to the
nondeterministic exponential time upper bounds of [41]. The bounds are essentially
tight also, since the exponential time lower bound follows from that established for
ordinary PDL by Fischer and Ladner [14].

It is interesting to note that for most logics (including PDL-delta and the Mu-
calculus but excluding CTL∗), our nonemptiness algorithm(s) and Safra’s construc-
tion both play a crucial role. Each is independent of the other. Moreover, each is
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needed and neither alone suffices. Our algorithm improves the complexity of testing
nonemptiness by an exponential factor, while Safra’s construction independently ap-
plies to reduce the size of the automaton by an exponential factor. For example, the
“traditional” result of Streett [33] gave a deterministic triple exponential algorithm
for PDL-delta. Our algorithm alone improves it to deterministic double exponential
time. Alternatively, Safra’s construction alone improves it to deterministic double
exponential time. As shown in this paper, the constructions can be applied together
to get a cumulative double exponential speedup for PDL-delta. In the case of CTL∗,
we already had the effect of Safra’s construction, because [13] gave a way to determine
with only a single exponential blowup the Büchi string automaton corresponding to a
linear temporal logic formula by using the special structure of such automata (unique
accepting run). Thus Safra’s construction provides no help for the complexity of the
CTL∗ logic.

The remainder of the paper is organized as follows. In section 2 we give prelimi-
nary definitions and terminology. In section 3 we establish a “small model theorem”
for (pairs) tree automata. In section 4 we give the main technical results on test-
ing nonemptiness of pairs tree automata. In section 5 we give the main results on
nonemptiness of complemented pairs tree automata. Applications of the algorithms
to testing satisfiability of modal logics of programs, including CTL∗, PDL-delta, and
the Mu-calculus, are described in section 6. Some concluding remarks are given in
section 7.

2. Preliminaries.

2.1. Logics of programs.

2.1.1. Full branching time logic. The full branching time logic CTL∗ [9] de-
rives its expressive power from the freedom of combining modalities which quantify
over paths and modalities which quantify states along a particular path. These modal-
ities are A,E, F,G,Xs, and Uw (“for all futures,” “for some future,” “sometime,”
“always,” “strong nexttime,” and “weak until,” respectively), and they are allowed
to appear in virtually arbitrary combinations. Formally, we inductively define a class
of state formulae (true or false of states) and a class of path formulae (true or false
of paths):

(S1) Any atomic proposition P is a state formula.
(S2) If p, q are state formulae, then so are p∧q, ¬p.
(S3) If p is a path formula, then Ep is a state formula.
(P1) Any state formula p is also a path formula.
(P2) If p, q are path formulae, then so are p∧q, ¬p.
(P3) If p, q are path formulae, then so are Xsp and pUwq.

The semantics of a formula are defined with respect to a structure M = (S,R,L),
where S is a nonempty set of states, R is a nonempty binary relation on S, and L is
a labeling which assigns to each state a set of atomic propositions true in the state.
A fullpath (s1, s2, . . .) is a maximal sequence of states such that (si, si+1) ∈ R for all
i. A fullpath is infinite unless for some sk there is no sk+1 such that (sk, sk+1) ∈ R.
We write M, s |= p (M,x |= p) to mean that state formula p (path formula p) is true
in structure M at state s (of fullpath x, respectively). When M is understood, we
write simply s |= p (x |= p). We define |= inductively using the convention that
x = (s1, s2, . . .) denotes a fullpath and xi denotes the suffix fullpath (si, si+1, . . .),
provided i ≤ |x|, where |x|, the length of x, is ω when x is infinite and k when x is
finite and of the form (s1, . . . , sk); otherwise xi is undefined.
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For a state s,
(S1) s |= P iff P ∈ L(s) for atomic proposition P ,
(S2) s |= p ∧ q iff s |= p and s |= q,

s |= ¬p iff not (s |= p),
(S3) s |= Ep iff for some fullpath x starting at s, x |= p.

For a fullpath x = (s1, s2, . . .),
(P1) x |= p iff s1 |= p for any state formula p,
(P2) x |= p ∧ q iff x |= p and x |= q,

x |= ¬p iff not (x |= p),
(P3) x |= Xsp iff x2 is defined and x2 |= p,

x |= (p Uw q) iff for all i ∈ [1 : |x|], if for all j ∈ [1 : i] xj |= ¬q, then xi |= p.
We say that state formula p is valid , and write |= p, if for every structure M

and every state s in M , M, s |= p. We say that state formula p is satisfiable iff for
some structure M and some state s in M , M, s |= p. In this case we also say that M
defines a model of p. We define validity and satisfiability for path formulae similarly.

We write f
.
= g to mean that formula f abbreviates formula g. Other connectives

can then be defined as abbreviations in the usual way: p∨q .
= ¬(¬p∧¬q), p ⇒ q

.
=

¬p∨q, p⇔ q
.
= (p⇒ q)∧(q ⇒ p), Ap

.
= ¬E ¬ p, Gp .

= p Uw false, and Fp
.
= ¬G¬ p.

Further operators may also be defined as follows:
Xwp

.
= ¬Xs¬p is the weak nexttime,

pUsq
.
= (pUwq)∧Fq is the strong until,

∞
Fp

.
= GFXsp means infinitely often p,

∞
Gp

.
= FGXsp means almost everywhere p,

inf
.
= GXstrue means the path is infinite, and

fin
.
= FXwfalse means the path is finite.

2.1.2. Propositional dynamic logic plus repeat. As opposed to CTL∗, in
which the models represent behaviors of the programs, in PDL-delta the programs are
explicit in the models. The modalities in PDL-delta quantify the states reachable by
programs explicitly stated in the modality. Thus, for a program B (which is obtained
from atomic programs and tests using regular expressions), 〈B〉p ([B]p) states that
there is an execution of B leading to p (after all executions of B, p holds). Also
included is the infinite repetition construct delta (4) which makes PDL-delta much
more expressive than PDL. 4B states that it is possible to execute B repetitively
infinitely many times. PDL-delta formulae are interpreted over structures M =
(S,R,L), where S is a set of states, R : Prog → 2S×S is a transition relation, Prog
is the set of atomic programs, and L is a labeling of S with propositions in Prop. For
more details see [33].

2.1.3. Propositional Mu-calculus. A least fixpoint construct can be used to
increase the power of simple modal logics. Thus, by adding this construct to PDL,
we get Lµ, the propositional Mu-calculus [19], a logic which subsumes PDL-delta. A
variant formulation of the Mu-calculus, which we use here, adds the least fixpoint
construct to a simple subset of CTL∗, including just nexttime (AXs), the boolean
connectives, and propositions (cf. [7]). The least fixpoint construct has the syntax
µY.f(Y ), where f(Y ) is any formula syntactically monotone in the propositional vari-
able Y , i.e., all occurrences of Y in f(Y ) fall under an even number of negations. It
is interpreted as the smallest set S of states such that S = f(S). By the well-known
Tarski–Knaster theorem, µY. f(Y ) =

⋃
i f

i(false), where i ranges over all ordinals
and f i (intuitively) denotes the i-fold composition of f with itself; when the domain
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is finite we may take i as ranging over just the natural numbers. Its dual, the greatest
fixpoint, is denoted νY.f(Y ) (≡ ¬µY.¬f(¬Y )). Thus, e.g., µY.[B]Y is equivalent to
¬ 4 B of PDL-delta. Similarly, using temporal logic, µY.P ∨ AXsY is equivalent to
AFP (i.e., along all paths P eventually holds). Many correctness properties of con-
current programs can be characterized in terms of the Mu-calculus, including all those
expressible in CTL∗ and PDL-delta. For more details, see, for example, [7, 19, 35, 12].

The formulae of the (propositional) Mu-calculus are
(1) propositional constants P,Q, . . . ,
(2) propositional variables Y, Z, . . . ,
(3) ¬p, p ∨ q, and p ∧ q, where p and q are any formulae,
(4) EXsp and AXsp, where p is any formula,
(5) µY.f(Y ) and νY.f(Y ), where f(Y ) is any formula syntactically monotone in

the propositional variable Y , i.e., all occurrences of Y in f(Y ) fall under even number
of negations.

In what follows, we will use σ as a generic symbol for µ or ν. In a fixed point
expression σY.f(Y ), we say that each occurrence of Y is bound to σY . If an occurrence
of Y is not bound, then it is free. A sentence (or closed formula) is a formula containing
no free propositional variables, i.e., no variables unbound by a µ or a ν operator.

Sentences are interpreted over structures M = (S,R,L) as for CTL∗. As usual
we will write M, s |= p to mean that in structure M at state s sentence p holds true.
To give the technical definition of |= we need some preliminaries.

The power set of S, 2S , may be viewed as the complete lattice (2S , S, φ,⊆,∪,∩).
Intuitively, we identify a proposition with the set of states which make it true. Thus,
false, which corresponds to the empty set, is the bottom element, true, which cor-
responds to S, is the top element, ∪ is join, ∩ is meet, and implication (for all
s ∈ S(P (s)⇒Q(s))), which corresponds to simple set-theoretic containment (P ⊆ Q),
provides the partial ordering on the lattice.

Let τ : 2S→2S be given; then we say that τ is monotonic provided P ⊆ Q implies
τ(P ) ⊆ τ(Q). A monotonic functional τ always has both a least fixpoint µX.τ(X)
and a greatest fixpoint νX.τ(X).

For a formula or function p(Y ), we write p0(Y ) = false, p1(Y ) = p(Y ),
pi+1(Y ) = p(pi)(Y ) for successor ordinal i + 1, and pj(Y ) =

⋃
k<j p

k(Y ) for limit
ordinal j.

Theorem 2.1 (Tarski–Knaster). Let τ : 2S→2S be a given monotonic functional.
Then

(a) µY.τ(Y ) =
⋂{Y : τ(Y ) = Y } =

⋂{Y : τ(Y ) ⊆ Y },
(b) νY.τ(Y ) =

⋃{Y : τ(Y ) = Y } =
⋃{Y : τ(Y ) ⊇ Y },

(c) µY.τ(Y ) =
⋃
i≤|S| τ

i(false), and

(d) νY.τ(Y ) =
⋂
i≤|S| τ

i(true).
A formula p with free variables Y0, Y1, . . . , Yn is thus interpreted as a mapping

pM from (2S)n+1 to 2S , i.e., it is interpreted as a predicate transformer. We write
p(Y0, Y1, . . . , Yn) to denote that all free variables of p are among Y0, Y1, . . . , Yn. Let
V0, V1, . . . , Vn be subsets of S; then a valuation Υ = V0, V1, . . . , Vn is an assignment
of V0, V1, . . . , Vn to the free variables Y0, Y1, . . . , Yn, respectively. Υ[Yi ← V ′i ] denotes
the valuation identical to Υ, except that Yi is assigned V ′i . We use pM (Υ) to denote
the value of p in structure M on the arguments V0, V1, . . . , Vn. We drop M when it
is understood from context. We then let M, s |= p(Υ) iff s ∈ pM (Υ), and we define
|= inductively as follows:

(1) s |= P (Υ) iff P ∈ L(s),
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(2) s |= Y (Υ) iff s ∈ Υ(Y ),
(3) s |= (¬p)(Υ) iff s 6|= p(Υ),

s |= (p ∨ q)(Υ) iff s |= p(Υ) or s |= q(Υ),
s |= (p ∧ q)(Υ) iff s |= p(Υ) and s |= q(Υ),

(4) s |= (EXsp)(Υ) iff ∃t(s, t) ∈ R and t |= p(Υ),
s |= (AXsp)(Υ) iff (a) ∃u (s, u) ∈ R and u |= p and (b) for all t (s, t) ∈ R
implies t |= p(Υ),

(5) s |= (µY.f(Y ))(Υ) iff s ∈ ⋂{S′ ⊆ S|S′ = {t : t |= f(Y )(Υ[Y ← S′])}},
s |= (νY.f(Y ))(Υ) iff s ∈ ⋃{S′ ⊆ S|S′ = {t : t |= f(Y )(Υ[Y ← S′])}}.

2.1.4. Conventions. To avoid a proliferation of unnecessary parentheses, we
order the connectives from greatest to lowest binding power as follows: ¬ binds tighter

than F,G,Xw, Xs,
∞
F ,
∞
G, which bind tighter than ∧, which binds tighter than ∨, which

binds tighter than⇒, which binds tighter than Uw, Us, which bind tighter than A,E,
which bind tighter than µ, ν, which bind tighter than ⇔.

If we write M, s |= p, it is implicit that s is a state of M . That is, s ∈ S where
M = (S,R,L). A convenient abuse of notation is to write s ∈M in some places.

If p is a formula, then pM denotes {s : M, s |= p}, the set of states s in M at
which p is true.

We can write M, s1, . . . , sk |= p to abbreviate M, s1 |= p and . . . and M, sk |= p.
We write p ≡ q for |= p⇔ q. In the context of a structure M , we can also write

p ≡M q for pM = qM . If M is understood, then we can drop the M and write just
p ≡ q. It should be clear from context whether equivalence over all structures or
over M is meant. We use p1 ≡ p2 ≡ · · · ≡ pk as shorthand for p1 ≡ p2 and . . . and
pk−1 ≡ pk.

Technically, we distinguish between an atomic proposition symbol P and the
associated set, viz., PM , of states which are labeled with it in structure M . It is often
convenient notation to use the uppercase sans serif symbol P corresponding to P to
denote the set of states that are labeled with P .

Remark: We note the following identities:
EXwfalse ≡ AXwfalse and asserts that a state has no successors.
EXstrue ≡ AXstrue and asserts that a state has one or more successors.

2.2. Automata on infinite trees. We consider finite automata on labeled,
infinite binary trees.1 The set {0, 1}∗ may be viewed as an infinite binary tree, where
the empty string λ is the root node and each node u has two successors: the 0-
successor u0 and the 1-successor u1. A finite (infinite) path through the tree is a
finite (respectively, infinite) sequence x = u0, u1, u2, . . . such that each node ui+1 is
a successor of node ui. If Σ is an alphabet of symbols, an infinite binary Σ-tree is a
labeling L which maps {0, 1}∗ −→ Σ.

A finite automaton A on infinite binary Σ-trees consists of a tuple (Σ, Q, δ, q0,Φ),
where

Σ is the finite, nonempty input alphabet labeling the nodes of the input tree,
Q is the finite, nonempty set of states of the automaton,
δ : Q× Σ → 2Q×Q is the nondeterministic transition function,

1We consider here only binary trees to simplify the exposition and for consistency with the
classical theory of tree automata. CTL∗ and the other logics we study have the property that their
models can be unwound into an infinite tree. In particular, in [13] it was shown that a CTL∗ formula
of length k is satisfiable iff it has an infinite tree model with finite branching bounded by k, i.e., iff it
is satisfiable over a k-ary tree. Our results on tree automata apply to such k-ary trees as explained
at the end of the proof of Theorem 4.1.
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q0 ∈ Q is the start state of the automaton, and
Φ is an acceptance condition described subsequently.

A run of A on the input Σ-tree L is a function ρ : {0, 1}∗ → Q such that for
all v ∈ {0, 1}∗, (ρ(v0), ρ(v1)) ∈ δ(ρ(v), L(v)) and ρ(λ) = q0. We say that A accepts
input tree L iff there exists a run ρ of A on L such that for all infinite paths x starting
at the root of L if r = ρ ◦ x is the sequence of states A goes through along path x,
then the acceptance condition Φ holds along r.

For a pairs automaton (cf. [23, 30]) acceptance is defined in terms of a finite list
((RED1,GREEN1), . . . , (REDk,GREENk)) of pairs of sets of automaton states (which
may be thought of as pairs of colored lights where A flashes the red light of the first
pair upon entering any state of the set RED1, etc.): r satisfies the pairs condition
iff there exists a pair i ∈ [1..k] such that REDi flashes finitely often and GREENi

flashes infinitely often. We assume the pairs acceptance condition is given formally
by a temporal logic formula Φ =

∨
i∈[1..k] (GF GREENi ∧ ¬GF REDi).

2 Similarly, a

complemented pairs (cf. [33]) automaton has the negation of the pairs condition as its
acceptance condition; i.e., for all pairs i ∈ [1..k], GREENi flashes infinitely often implies
that REDi flashes infinitely often, too. The complemented pairs acceptance condition
is given formally by a temporal logic formula Φ =

∧
i∈[1:k]GF GREENi ⇒ GF REDi.

3. Small model theorems.

3.1. Tree automata running on graphs. Note that an infinite binary tree L′

may be viewed as a “binary” structure M = (S,R,L), where S = {0, 1}∗, R = R0∪R1

with R0 = {(s, s0) : s ∈ S} and R1 = {(s, s1) : s ∈ S}, and L = L′. We could
alternatively write M = (S,R0, R1, L).

We can also define a notion of a tree automaton running on certain appropriately
labeled binary, directed graphs that are not binary trees. Such graphs, if accepted, are
witnesses to the nonemptiness of tree automata. We make the following definitions.

A binary structure M = (S,R0, R1, L) consists of a state set S and labeling L as
before, plus a transition relation R0 ∪R1 decomposed into two partial functions: R0 :
S −→ S, where R0(s), when defined, specifies the 0-successor of s, and R1 : S −→ S,
where R1(s), when defined, specifies the 1-successor of s. We say that M is a full
binary structure iff R0 and R1 are total.

A run of automaton A on binary structure M = (S,R0, R1, L), if it exists, is a
mapping ρ : S → Q such that for all s ∈ S, (ρ(R0(s)), ρ(R1(s))) ∈ δ(ρ(s), L(s)),
and ρ(s0) = q0. Intuitively, a run is a labeling of M with states of A consistent with
the local structure of A’s transition diagram. It will turn out that if an automaton
accepts some binary tree, there does exist some finite binary graph on which there is
a run that is accepting: all of the paths through the graph define state sequences of
the automaton meeting its acceptance condition.

3.2. The transition diagram of a tree automaton. The transition diagram
of A can be viewed as an AND/OR-graph, where the set Q of states of A comprises the
set of OR-nodes, while the AND-nodes define the allowable moves of the automaton.
Intuitively, OR-nodes indicate that a nondeterministic choice has to be made (depend-
ing on the input label), while the AND-nodes force the automaton along all directions.
For example, suppose that for automaton A, δ(s, a) = {(t1, u1), . . . , (tm, um)} and
δ(s, b) = {(v1, w1), . . . , (vn, wn)}; then the transition diagram contains the portion
shown in Figure 3.1.

2We are assuming that each proposition symbol, such as GREENi, of formula Φ is associated
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Fig. 3.1.

Formally, given a tree automaton A = (Σ, Q, δ, q0,Φ) with transition function
δ : Q × Σ −→ 2Q×Q : (q, a) 7−→ {(r1, s1), . . . , (rk, sk)}, we may view it as defining
a transition diagram T , which is an AND/OR-graph (D,C,RDC , RCD0, RCD1, L),
where

D = Q is the set of OR-nodes;
C =

⋃
q∈D

⋃
a∈Σ{((q, a), (r, s)) : (r, s) ∈ δ(q, a)} is the set of AND-nodes. Each

AND-node corresponds to a transition. If δ(q, a) = {(r1, s1), . . . , (rk, sk)}, then
the corresponding AND-nodes are essentially the pairs (r1, s1), . . . , (rk, sk). How-
ever, since each transition is associated with a unique current state/input symbol
pair (q, a), we formally define the corresponding AND-nodes to be pairs of pairs:
((q, a), (r1, s1)), . . . , ((q, a), (rk, sk)).

RDC ⊆ D × C specifies the AND-node successors of each OR-node. For each
q ∈ D as above, RDC(q) =

⋃
a∈Σ{((q, a), (r, s)) : (r, s) ∈ δ(q, a)};3

RCD0, RCD1 : C −→ D are partial4 functions giving the 0-successor and 1-
successor states, respectively:

RCD0(((q, a), (r, s))) = r and RCD1(((q, a), (r, s))) = s;

L is a labeling of nodes. For an AND-node L(((q, a), (r, s))) = {a}, where a ∈ Σ.
For an OR-node, the labeling assigns propositions associated with the acceptance
condition Φ so that all OR-nodes in the set GREENi (respectively, REDi) are labeled
with the corresponding proposition GREENi (respectively, REDi).

with exactly the set of states of the corresponding name, in this case GREENi.
3We identify a relation such as RDC ⊆ D×C with the corresponding function R′DC : D −→ 2C

defined by R′DC(d) = {c ∈ C : (d, c) ∈ RDC} for each d ∈ D.
4For classically defined tree automata, the functions RCD0, RCD1 are total so that there is

always a 0-successor and 1-successor automaton state. For technical reasons it is convenient to allow
RCD0, RCD1 to be partial.
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Thus, we may write a tree automaton A in the form (T, d0,Φ), where T is the
diagram, d0 is the start state, and Φ is an acceptance condition.

3.3. One symbol alphabets. For purposes of testing nonemptiness, without
loss of generality, we can restrict our attention to tree automata over a single letter al-
phabet and, thereby, subsequently ignore the input alphabet. Let A = (Q,Σ, δ, q0,Φ)
be a tree automaton over input alphabet Σ. Let A′ = (Q,Σ′, δ′, q0,Φ) be the tree
automaton over one letter input alphabet Σ′ = {c} obtained from A by, intuitively,
taking the same transition diagram but now making all transitions on symbol c. For-
mally, A′ is identical to A except that the input alphabet is Σ′ and the transition
function δ′ is defined by δ′(q, c) =

⋃
a∈Σ δ(q, a).

Observation 3.1. The set accepted by A is nonempty iff the set accepted by A′
is nonempty.

Henceforth, we shall therefore assume that we are dealing with tree automata
over a one symbol alphabet.

3.4. Generation and containment. It is helpful to reformulate the notion of
run to take advantage of the AND/OR-graph organization of the transition diagram
of an automaton. Intuitively, there is a run of diagram T on structure M provided
M is “generated” from T by unwinding T so that each state of M is a copy of an
OR-node of T .

Formally, we say that a binary structure M = (S,R0, R1, L) is generated by a
transition diagram T = (D,C,RDC , RCD0, RCD1, LT ) (starting at s0 ∈ S and d0 ∈ D)
iff ∃ is a total function h : S −→ D such that for all s ∈ S

if s has any successors in M , then
∃c ∈ RDC(h(s))

for all i ∈ {0, 1} RCDi(c) is defined iff Ri(s) is defined and
RCDi(c) = h(Ri(s)) when both are defined

and L(s) = LT (h(s))
(such that h(s0) = d0).

We say that a binary structure M = (S,R0, R1, L) is contained in transition
diagram T (starting at s0 ∈ M and q0 ∈ T ) provided M is generated by T (starting
at s0 ∈ M and q0 ∈ T ), where the generation function h is the natural injection
h : S −→ D : s ∈ S 7−→ s ∈ D, so that all states of M are OR-nodes of T .

Note that if M is a structure generated by (respectively, contained in) T , there
is an associated AND/OR-graph H generated by (respectively, contained in) T ob-
tained from M by inserting between each state and its successors in M a copy of the
AND-node that determines the successors of state via the generation function for M .
We write H = ao(M). Conversely, if H is an AND/OR-graph generated by (respec-
tively, contained in) T , there is an associated structure M generated by (respectively,
contained in) T obtained from H by eliding AND-nodes. Here we write M = o(H).

3.5. Linear size model theorems. The following theorem (cf. [6]) is the basis
of our method of testing nonemptiness of pairs automata. It shows that there is
a small binary structure contained in the transition diagram and accepted by the
automaton.

Theorem 3.2 (linear size model theorem). Let A be a tree automaton over a

one symbol alphabet with pairs acceptance condition Φ =
∨
i∈[1:k](

∞
FQi ∧

∞
GPi). Then

automaton A accepts some tree T iff A accepts some binary model M of size linear
in the size of A, which is a structure contained in the transition diagram of A.
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Proof. (⇒) For Φ a pairs condition, by the Hossley–Rackoff [18] finite model
theorem, if A accepts some tree M0, then it accepts some finite binary model M1

starting at some state s0 ∈M1. Thus, M1, s0 |= AΦ and M1 is a structure generated
by A.

Given any such finite structure M1 of AΦ generated by A, we can obtain a finite
structure M contained in A as follows. Let h be the generation function. If two
distinct nodes s and t of M1 have the same labeling with states of A, i.e., h(s) = h(t),
then we can eliminate one of them as follows. Attempt to delete s by redirecting all
its predecessors u to have t as a successor instead. More precisely, delete all edges of
the form (u, s) and replace them by edges of the form (u, t). If the resulting structure,
call it M t, is a model of AΦ, we have reduced the number of “duplicates,” such as s
and t, by one. If not, try replacing t by s instead. If Ms, the resulting structure is a
model of AΦ and we are done.

However, if both of these replacements fail to yield a model of AΦ, each must
introduce a (not necessarily simple) bad cycle where the acceptance condition Φ fails.
In M t the bad cycle is of the form (where u is a predecessor of s in M1) u→t→· · ·→u,
where except for the first transition (u, t) the suffix path from t to u is in the orig-
inal M1. In Ms the bad cycle is of the form (where v is a predecessor of t in M1)
v→s→· · ·→v, where except for the first transition (v, s) the suffix path from s to v
is in the original M1.

However, these two suffix paths in M1 together with the edges (u, s) and (v, t)
in M1 form a bad cycle in M1: u→s→· · ·→v→t→· · ·→u. This contradicts that M1

was a model of AΦ.
By repeatedly eliminating duplicates in this way we eventually get the desired

model M contained in A.
(⇐) Any model M contained in A such that M, s0 |= AΦ can plainly be unwound

into a tree that is accepted by A.
A helpful generalization follows.
Theorem 3.3 (generalized linear sized model theorem). Let s0, s1, . . . , sk (k ≥ 0)

be distinct elements of T and formula g = P ∧A(Φ ∨ FR), where Φ =
∨
i∈[1:k](

∞
FQi∧

∞
GPi) is a pairs acceptance condition and P,R are atomic propositions. Then,
∃M ′ generated by T such that M ′, s0, s1, . . . , sk |= g

iff
∃M contained in T such that M, s0, s1, . . . , sk |= g.
Proof. (⇒) Assume the existence of M ′. We first show that this implies the

existence of M ′′ generated by T such that

M ′′, s0, s1, . . . , sk |= P ∧ A(Φ ∨ FR)and for all s ∈M ′′, M ′′, s |= A(Φ ∨ FR)

.
Intuitively, M ′′ is obtained by deleting spurious nodes from M ′, retaining just

those nodes which are in the “cone” from some si until some R-node, if any, is
encountered. Technically, let S = {t ∈ M ′: there exists a path from some si to t in
M ′, all of whose nodes except (possibly) t itself satisfy ¬R}. Let S′ = M ′ \ S.

Thus, S′ consists of all nodes that can be reached only from any si by going
through some R-node. Now, delete all successor arcs of R-nodes, and then delete all
nodes no longer reachable from some si. Note that the deleted nodes are exactly S′.
Call the resulting substructure of M ′ so obtained M ′′. Note that the nodes retained
in M ′′ are exactly S and that M ′′ is still generated by T .
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Now observe that A(Φ ∨ FR) ≡ A(A(Φ ∨ FR) Uw R). Therefore, for all t ∈ S,
M ′, t |= A(Φ ∨ FR). Hence, for all t ∈ S, M ′′, t |= A(Φ ∨ FR), as the only nodes
deleted in M ′′ are the ones which are reached from any si by going through some
R-node. Thus, M ′′, s0, s1, . . . , sk |= A(Φ ∨ FR) ∧ P , and for all s ∈ M ′′, M ′′, s |=
A(Φ ∨ FR).

Any fullpath starting at any node in M ′′ either
(i) is infinite and satisfies Φ, or
(ii) is finite, terminating in an R-node.
We can now argue, just as in the linear size model theorem, that duplicates can

be eliminated. If u and v are duplicates, we can attempt to replace u by v. The
only problem is that it may introduce a “bad” cycle satisfying ¬Φ. In that case, it
must be possible to replace v by u, for otherwise there would be a bad cycle, i.e., an
infinite fullpath satisfying ¬Φ in the original M ′′. Continuing in this fashion, we get
a structure M with no duplicates. It is isomorphic to a structure contained in T with
the desired properties, i.e., M, s0, s1, . . . , sk |= P ∧ A(Φ ∨ FR).

(⇐) By definition, any model M contained in T is also generated by T .

3.6. Pseudomodels. The linear size model theorem also suggests the following.
Definition 3.4. Let T = (D,C,RDC , RCD0, RCD1, LT ) be the transition dia-

gram of a tree automaton A, let s be a state of A, and let p be a formula.
• We say that diagram T at state s is a pseudomodel of p (or that p is satisfiable

in T at s) and write T, s ‖ −con p iff there exists a structure M contained in
T such that M, s |= p. We also write pT,con for {s ∈ T : T, s|| −con p}.
• We say p is generable in T at s and write T, s|| −gen p iff there exists a

structure M generated by T such that M, s |= p. We also write pT,gen for
{s ∈ T : T, s|| −gen p}.
• We say p is true (or modeled) in T at s, considered simply as a structure with

state set D ∪C and transition relation RCD ∪RDC0 ∪RDC1 iff T, s |= p. We
also write pT,mod for {s ∈ T : T, s |= p}.

Remark. For a proposition symbol P we have PT,mod = PT,con = PT,gen.
Our overall approach to testing nonemptiness can now be summarized in the

following rephrasing of the linear size model theorem.
Theorem 3.5. Automaton A with diagram T and pairs acceptance condition Φ

is nonempty iff q0 ∈ AΦT,con.
We will check nonemptiness by calculating AΦT,con by a process of “pseudomodel

checking” (cf. [4]).

4. Complexity of pairs tree automata. In this section we prove that nonemp-
tiness of pairs tree automata can be tested in time polynomial in the number of states
and exponential in the number of pairs, even though, as we show, the problem is
NP-complete in general.

Theorem 4.1. Nonemptiness of a pairs automaton A having m states and n
pairs can be tested in deterministic time (mn)O(n).

Proof. Let A be a tree automaton with transition diagram T of size m states and
pairs acceptance condition ΦΓ =

∨
γ∈Γ (GFQγ ∧ FGPγ), where Γ is the index set

[1 : n] of pairs. Here, Qγ and Pγ stand for greenγ and ¬redγ , respectively. When Γ
is understood from context we can drop it and write just Φ for ΦΓ. We also let Φ−γ
denote ΦΓ\{γ}.

The basic idea of the algorithm is to inductively compute the set of states in T at
which AΦ is satisfiable, viz., AΦT,con = {s ∈ T : T, s||−conAΦ}. For this purpose, we
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use the fixpoint characterization µY.τ(Y ) of AΦ from Lemma 4.2 below and evaluate
it iteratively using the Tarski–Knaster theorem specialized to pseudomodel checking
in Lemma 4.3 below. To compute each Y i+1 = τ(Y i) we evaluate the body τ(Y ) com-
positionally,5 using Lemmas 4.2–4.9 as appropriate. This in turn entails the recursive
calculation of (essentially) AΦ−γ with one fewer pair. The recursion terminates when
Φ−γ ≡ false has 0 pairs, in which case Lemma 4.4 is used instead of Lemma 4.3. For
technical reasons, we actually pseudomodel check a modified pairs condition of the
form A(Φ ∨ FR), which specializes to the ordinary pairs conditions when R ≡ false.

If each OR-node in T had a unique successor, then the pseudomodel checking of
A(Φ ∨ FR) would simply amount to model checking in the Mu-calculus [12]. But in
general, each OR-node has more than one successor. Therefore, our algorithm must
simultaneously exhaust the search space of all structures contained in T and check
if one of these structures is a model of the pairs condition. Lemmas 4.2–4.9 below
permit both steps to be done together, thereby performing the desired pseudomodel
checking. The proofs of the lemmas are given in Appendix A.

Lemma 4.2 (fixpoint characterization for modified pairs condition). Let Φ =

∨γ(
∞
GPγ ∧

∞
FQγ) denote the pairs condition where Γ = [1 : n]; let R be propositional.

Then A(Φ∨FR) ≡ µY.τ(Y ), where τ(Y ) = R∨∨γAXsA(gγUwR) and gγ = A(Φ−γ ∨
F (R ∨Qγ)) ∧ (Pγ ∨ Y ) ∧AXstrue.

Lemma 4.3 (pseudomodel checking via Tarski–Knaster approximation6). Set
Y0 := falseT,con; set Yi+1 := τ(Y i)T,con. Then A(Φ ∨ FR)T,con = µY.τ(Y )T,con =⋃
i≤|T | Y

i.

Lemma 4.4 (pseudomodel checking inevitability).

AFRT,con = (µV.R ∨ EXsAXsV )T,mod.

Observation 4.5 (pseudomodel checking of disjunctions).

(R ∨
∨
γ

(AXsA[gγUwR]))T,con = RT,con ∪
⋃
γ

(AXsA[gγUwR])T,con.

Observation 4.6 (pseudomodel checking of nexttime).

(AXsA[gγUwR])T,con = {s ∈ T : T, s |= EXsAXsW},whereW = A[gγUwR]T,con.

Definition 4.7. Let U be a transition diagram for an automaton, and let Z be a
set of OR-nodes of U . We define the AND/OR-graph denoted U |Z, called U restricted
to Z, to be the result of deleting from U all OR-nodes not in Z and incident arcs, and
then deleting all AND-nodes, which do not have all successors in Z, along with all
incident arcs. By a convenient abuse of notation, we shall write Z for U |Z when it is
clear that an AND/OR-subgraph of U is intended. In particular, if f is a temporal
formula, we write fZ,con for fU |Z,con.

Lemma 4.8 (pseudomodel checking of weak until). Set Z0 := trueT,con; set

Zi+1 := ((gγ ∧ AXsZ
i) ∨ R)Zi,con. Then for some least k, Zk = Zk+1 is the fixpoint

of the descending chain Zi ⊇ Zi+1 and A[gγUwR]T,con = Zk.

5That is, by induction on formula structure.
6It is to be understood below that “set Yi+1 := τ(Y i)T,con,” for example, means to assign to the

set Yi+1 exactly the set of states in τ(Y i)T,con and label the resulting states in the set Yi+1 with
the symbol Y i+1
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Lemma 4.9 (pseudomodel checking of conjunctions in gγ). gT,conγ = A(Φ−γ ∨
F (R ∨Qγ))T,con ∩ (Pγ ∨ Y )T,con ∩AXstrue

T,con.
Finally, we analyze the complexity as follows. Let Com(T, f) stand for the com-

plexity of computing {s|T, s ‖− f}. For size of the transition diagram |T | = m, and
number of pairs |Γ| = n, let C(m,n) denote Com(T,A(ΦΓ ∨ R)).

Com(T,A(ΦΓ ∨ FR)) ≤ O(m) · Com(T, Y i),

Com(T, Y i) ≤ n · Com(T,R ∨AXsA(gγUwR)),

Com(T,R ∨AXsA(gγUwR)) ≤ O(m) +O(m) · Com(Zi, gγ ∧ AXsZ
i),

Com(Zi, gγ ∧ AXsZ
i) ≤ O(m) + Com(U,A(ΦΓ\{γ} ∨ FR′)),

where |Zi|, |U | ≤ |T |. Thus, for some constant k > 0 we have

C(m,n) ≤ kmn(km+ km(km+ C(m,n− 1)))

= kmn(km+ k2m2 + kmC(m,n− 1))

= k2m2n+ k3m3n+ k2m2nC(m,n− 1)

≤ 2k3m3n+ k2m2nC(m,n− 1).

The above accounts for the cost for 1 or more pairs (n > 0). Lemma 4.4 implies
n = 0 pairs can be handled in O(m) time. Hence, for some sufficiently large constant
c ≥ 2k3 we have

C(m,n) ≤ cm3n+ cm2nC(m,n− 1),

C(m, 0) ≤ cm.
We must thus solve a recurrence of the form

C(m,n) = x+ yC(m,n− 1),

C(m, 0) = z,

which is readily expanded to show that its solution is x(yn− 1) + ynz ≤ yn(x+ z). It
follows that C(m,n) is at most

= (cm+ cm3n)(cm2n)n

≤ (dm3n)(dm2n)n for some constant d > 2c
= dn+1m2n+3nn+1

≤ nn+1m2n+3nn+1 for all n ≥ d
≤ (mn)2n+3

= (mn)O(n) for all n,m ≥ 1.
Note that m is the size of the transition diagram, which for an automaton on

binary trees can be cubic in the number of states, m0, i.e., m = O(m3
0). As a

function of the number of states, however, we still get the same order of growth, i.e.,
(mn)O(n) = (m3

0n)O(n) = (m0n)3·O(n) = (m0n)O(n). In general, for k-ary trees, the
size of the transition diagram m can be O(mk+1

0 ). Thus we get time (m0n)(k+1)O(n).
This is still (m0n)O(n) for fixed k. Moreover, if k grows linearly with n, the bound is

still (m0n)O(n2), which is sufficient for obtaining the complexity bounds on logics of
programs of section 6.

Theorem 4.10. Pairs tree automaton nonemptiness is NP-complete.
Proof. Pairs automaton nonemptiness was shown to be in NP in [6]: a nondeter-

ministic Turing machine can guess a linear size model M contained in the automaton
diagram and verify that it satisfies the acceptance condition using the model checking
algorithm for fairness of [11b] (cf. [41]).
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To show NP-hardness we reduce from 3-SAT. Let f be a 3-CNF formula with m
clauses C1, C2, . . . , Cm over n variables v1, . . . , vn. We will reduce satisfiability of f
to the nonemptiness problem of a pairs tree automaton A with number of states and
pairs polynomial in |f |.

We will describe A in terms of its AND/OR-graph transition diagram as usual
and pairs acceptance condition.7 Since we are only concerned about the nonemptiness
problem, A is assumed to have a one symbol alphabet. Corresponding to each clause
Ci of f , A will have an OR-node of the same name, Ci. For each possible literal
x, i.e., for each variable vj and its negation ¬vj , there is an AND-node of the same
name, x. If clause Ci contains literal x, then there is an edge Ci → x in the diagram.
If clause Ci contains the literal ¬x, then there is an edge x → Ci in the diagram.
Here we identify ¬¬x with x. We also let S0 be the start state OR-node with a single
AND-node successor which has as its successors C1, . . . , Cm. Finally, for each literal
x there is a pair of lights (GREENx, REDx) such that GREENx colors AND-node x
and REDx colors AND-node ¬x. Let Φ be the corresponding pairs condition.

The basic idea is that a structure M contained in (the diagram of) A specifies a
choice of literal for each clause. From these literals we can try to recover a satisfying
truth assignment for f and vice versa. However, there may be conflicts with one
clause using x, another ¬x. The following argument shows that there is a conflict-free
choice of literals when there is an M satisfying AΦ.

The following claims are equivalent:

(i) A is nonempty.
(ii) There is a structure M contained in A, accepted by A so that M,S0 |= AΦ.

(iii) There exists H = ao(M), where M is contained in A, such that in H, each
Cj has an edge to some xl and no other Ck has an edge to the negation of xl.

(iv) f is satisfiable.

Claims (i) and (ii) are equivalent by the linear size model theorem. The equiv-
alence of (iii) and (iv) is immediate from the construction of A. The equivalence of
(ii) and (iii) follows from a slightly sharper equivalence. Let H = ao(M), where M is
contained in A. Then the following are equivalent:

(ii)′ M,S0 |= AΦ.
(iii)′ In H, each Cj has an edge to some xl and no other Ck has an edge to the

negation of xl.

Condition (iii)′ implies that for every green light labeling a node in H, its corre-
sponding red light does not occur in H. Hence, along every infinite path some green
light appears infinitely often but its corresponding red light never appears, and Φ
holds along the path. Condition (ii)′ follows. Now assume (ii)′. Then M is total
as is H. It must be that (iii)′ holds of H. Otherwise, there is a Cj with an edge
to xl and a Ck with an edge to ¬xl. Then we have the following subgraph in H.

7We will actually describe the diagram of an automaton on trees of arity at most m, where, more-
over, the propositions (or “colors”) defining acceptance label AND-nodes rather than OR-nodes. It
is not difficult to show that it can be converted into an “equivalent, ordinary” automaton. Here
“equivalent” means that the original automaton accepts iff the derived automaton accepts. Conver-
sion to a binary tree automaton is effected by inserting “dummy” nodes in the transition diagram
to reduce fan-in m to fan-in 2. This causes a linear blowup in size. The acceptance condition colors
can be moved to the OR-nodes by having each derived node be of the form (OR-node, AND-node
predecessor causing transition). This can cause a quadratic blowup in size.
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Here (G, R) and (G′, R′) are the pairs corresponding to the literals xl and ¬xl,
respectively. The arcs xl → Ck and ¬xl → Cj exist by definition of A, considering
that ¬xl is in Ck and xl is in Cj . The above subgraph generates a path which has for
all green lights flashing infinitely often its corresponding red light flashing infinitely
often, too. But then there would be a “bad” path in M violating Φ, contrary to
our assumption of (ii)′. The equivalence of (ii) and (iii) follows. This completes the
reduction.

5. Complexity of complemented pairs tree automata. In this section, we
will show that there is also a deterministic algorithm to test nonemptiness of a com-
plemented pairs tree automaton (cf. [33]) which runs in time (mn)O(n), where m is
the number of states of the automaton and n is the number of pairs in its acceptance
condition. Moreover, we will show that testing nonemptiness of such automata is
co-NP-complete.

The key idea is that for a tree automaton A over a one symbol alphabet we can
define its dual tree automaton Ã such that A is nonempty iff Ã is empty. The dual
is essentially obtained by swapping AND-nodes with OR-nodes and complementing
the acceptance condition. Since we view the transition diagram of a nondeterministic
tree automaton as a bipartite AND/OR graph, the dual is also a bipartite AND/OR
graph and hence can be viewed as a nondeterministic automaton. Moreover, the dual
of a pairs automaton is a complemented pairs automaton and vice versa. Muller and
Schupp also define a dual automaton in [24], but for a nondeterministic automaton
their dual automaton is in general an alternating automaton. For the purpose of
checking nonemptiness of automata over one symbol alphabets, the dual defined in
this new way suffices.

For an automaton A and its dual Ã, we are interested in showing that A is
nonempty iff Ã is empty. In other words, we must show that

∃ Run ρ of A for all paths in ρ ΦA(5.1)

≡ ¬ ∃ Run ρ of Ã for all paths in ρ ΦÃ,(5.2)

where ΦA is the acceptance condition of A and ΦÃ ≡ ¬ΦA is the acceptance condition

of Ã. We can argue this informally as follows. By expanding (1) we get that

(1) ≡ ∀!d0∃c0∀d1∃c1∀d2∃c2 . . . d0c0d1c1d2c2 . . . |= ΦA,

meaning that for the unique start OR-node d0 ofA there exists an AND-node successor
c0 such that for all OR-node successors d1 of c0 there exists an AND-node successor
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c1, etc., ad infinitum such that d0c0d1c1d2c2 . . . |= ΦA. Similarly, by expanding (2),
we get that

(2) ≡ ¬∀!e0∃!d0∀c0∃d1∀c1∃d2∀c2 . . . e0d0c0d1c1d2c2 . . . |= ¬ΦA,

where e0 is the unique “dummy” start state of Ã, all of whose successors are d0. (This
is explained in more detail below.) Applying the well-known quantifier negation law
to the infinite string of quantifiers for (2), we get after driving the negation inside
that

(2) ≡ ∃!e0∀!d0∃c0∀d1∃c1∀d2∃c2 . . . e0d0c0d1c1d2c2 . . . |= ΦA.

Since the truth of ΦA is oblivious to the initial e0 we should be able to conclude that
(1) ≡ (2) as desired. But the quantifier negation law for infinite strings of quantifiers
is known to contradict the axiom of choice in general. Therefore to formally prove the
above, we show that the set of paths ΦA and its complement are “nice” in the sense
that they are finite automaton definable (and hence Borel) and conclude the desired
equivalence using Martin’s theorem on determinacy of infinite Borel games (cf. [22]).8

The above notions are formalized in what follows.
Definition 5.1. Let λ denote the empty sequence. For an infinite sequence

x0x1 . . . , let xi be the suffix xixi+1 . . . . In particular, tail(x) stands for x1. If x =
x0x1 . . . and y = y0y1 . . . are two infinite sequences, then let x^y (“zip”) denote the
sequence x0y0x1y1 . . . . We let λω = λn = λ and xλ = x. Then we can define zip of
two finite/infinite sequences by appending finite sequences with λω.

We are given an automaton A over a one symbol alphabet with acceptance con-
dition ΦA. Without loss of generality we may stipulate that each node of its tran-
sition diagram has exactly two successors.9 Thus we may assume A is of the form
(D,C,R, d0, L) with OR-node set D, AND-node set C, start OR-node d0, labeling L,
and transition relation R = RDC ∪ RCD0 ∪ RCD1. Since each node has exactly two
successors we may view R as a function so that R(d, i) = c indicates that c is the
AND-node successor of OR-node d of index i ∈ {0, 1} and R(c, j) = d indicates that d
is the OR-node successor of AND-node c in direction j ∈ {0, 1}. We also assume that
the labeling L assigning “colors” associated with ΦA to each node has been extended
to AND-nodes so that each AND-node is colored exactly as is its unique OR-node
parent.10

We shall define the dual automaton Ã essentially by swapping OR-nodes and
AND-nodes in A. However, we shall have to do a bit more to ensure that the result
meets the technical definition of being an automaton as we have defined them to be.

Definition 5.2. We first define Â with diagram of the form (D̂, Ĉ, R̂, d̂0, L̂),
where D̂ = C ∪ {e0}, Ĉ = D, R̂(e0, 0) = R̂(e0, 1) = d0 with R̂(b, i) = R(b, i) for all
b ∈ C ∪ D and i ∈ [0, 1], and L̂ is the same as L but it includes e0 in its domain,
assigning it the empty set of color propositions. We see that Â is the result of swapping
OR-nodes and AND-nodes from A and adding a new dummy start state e0 both of
whose successors are d0, start state of A. Â is almost what we want for the dual
except that its AND-nodes, which were OR-nodes of A, are not guaranteed to have
unique predecessors. Technically, this violates the definition of an automaton.

8Since ΦA is finite automaton definable, a weaker result of Büchi–Landweber [3], showing deter-
minacy of such games, will do.

9The argument generalizes in a straightforward way to k successors.
10Thus, if x is a path through A, we have x |= ΦA iff x|D |= ΦA iff x|C |= ΦA.
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Therefore, to get Ã from Â we must create duplicates of the AND-nodes in Ĉ. In
other words, we locally unravel Â: if d̂ → ĉ and ĉ → d̂′ appear in Â, then d̂ → (d̂, ĉ)

and (d̂, ĉ) → d̂′ appear in Ã with the AND-node (d̂, ĉ) of Ã labeled exactly as is
AND-node ĉ of ĉa. The result is the underlying diagram of Ã. Formally, we let Ã
have diagram (D̃, C̃, R̃, d̃0, L̃). Here D̃ = D̂ and d̃0 = d̂0. We define C̃ ⊆ D̂ × Ĉ
such that if AND-node ĉ has OR-node predecessors d̂1, . . . , d̂k in Â, then AND-nodes
(d̂1, ĉ), . . . , (d̂k, ĉ) are in C̃. If R̂(d̂, i) = ĉ, then R̃(d̂, i) = (d̂, ĉ) for i ∈ {0, 1}. If

R̂(ĉ, j) = d̂, then R̃((d̂l, ĉ), j) = d̂ for j ∈ {0, 1} and where d̂l is any predecessor of ĉ

in Â. Finally, L̃(d̂) = L̂(d̂) and L̃((d̂l, ĉ)) = L̂(ĉ). This transformation of Â into Ã
can cause at worst a quadratic blowup in size.

Definition 5.3. Given an infinite string z ∈ {0, 1}ω and automaton A with
diagram (D,C,R, d0, L), we can associate with z, by starting at d0 and following the
arc labels spelling out z, a unique infinite path through the diagram of A and vice
versa.

Formally, we define pathA : {0, 1}ω→(DC)ω such that for z = x^y, pathA(z) =
s^ t, where x = x0x1 . . ., y = y0y1 . . ., s = s0s1 . . ., t = t0t1 . . ., s0 = d0 is the start
node in D, tn = R(sn, xn), and sn+1 = R(tn, yn).

Observation 5.4. π̃ = pathÃ(z) is the same as π̂ = pathÂ(z), except that each
AND-node c̃ along π̃ is a duplicate of the corresponding AND-node ĉ along π̂ of the
form (d̂, ĉ), where d̂ is the predecessor of ĉ along π̂. Therefore, π̃ |= ΦA iff π̂ |= ΦA.

Observation 5.5. pathÃ(x^y) = e0 · pathA(y^tail(x)).
This follows because, all successors of e0 are d0, and hence x0 is redundant.
Definition 5.6. We now define a two player infinite game G associated with

A. There are two players I and II. I goes first and picks x0 ∈ {0, 1}, then II picks
some y0 ∈ {0, 1}, then I picks some x1 ∈ {0, 1}, and so on alternatively. The resulting
infinite string z = x0y0x1y1 . . . is a play of the game. Player I wins this particular play
z if z is in the winning set Γ, which is defined by letting Γ={x : x ∈ {0, 1}ω pathG(x)
satisfies ΦA}; otherwise II wins the play.

A strategy for I is a function fI {0, 1}∗ → {0, 1}, and a strategy for II is a function
fII : {0, 1}+ → {0, 1}. The family of all such strategy function will be denoted Strat
I and Strat II, respectively, with typical elements denoted fI and fII, respectively.

Any function f {0, 1}∗→Σ induces a map f : {0, 1}ω→Σω. If z = z0z1 . . . and
x = x0x1 . . ., f(x) = z such that, for all n, zn = f(x0x1 . . . xn−1) and z0 = f(λ).
Similarly, a function f : {0, 1}+→Σ induces a map f : {0, 1}ω→Σω such that zn =
f(x0x1 . . . xn).

We say that Player I follows strategy fI if it chooses fI(y0y1 . . . yn−1) when II has
chosen y0y1 . . . yn−1. Similarly for Player II. If II builds up y during a play, and I
follows fI, then the resulting play is fI(y)^y. Similarly, if I builds up x, and II follows
fII, the resulting play is x^fII(x).

We say that fI is a winning strategy for I if for all y ∈ {0, 1}ω fI(y)^y ∈ Γ.
Similarly, fII is a winning strategy for II if for all y ∈ {0, 1}ω y^fII(y) 6∈ Γ.

Remark. When the transition diagram is presented as in this section, the defini-
tion of a run ρ is formulated as

ρ(λ) = d0

for all y ∈ {0, 1}∗ ∃i ∈ {0, 1} ∃c ∈ C c = R(ρ(y), i) and for all j ∈
{0, 1} ρ(yj) = R(b, j).

The first condition asserts that ρ annotates the root node with the start state.
The second condition asserts that each node y of the tree has its successors y0, y1
annotated in a manner consistent with the diagram because there is an AND-node
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c from OR-node ρ(y) to OR-nodes ρ(y0), ρ(y1) in the diagram. Note also that the
condition that “along all paths of a run ρ, ΦA holds,” is now formulated as “for all
y ∈ {0, 1}ω ρ(y) satisfies ΦA,” since y here is spelling out a path through the tree in
terms of edge labels.

Lemma 5.7. Let A be an automaton with acceptance condition ΦA. Then,

∃ run ρ of A for all y ∈ {0, 1}ω ρ(y) satisfies ΦA
iff

∃fI for all y ∈ {0, 1}ω pathA(fI(y)^y) satisfies ΦA.
This lemma says that an accepting run defines a corresponding winning strategy

and vice versa. Intuitively, given a run as shown in Figure 5.1 (a) we can extend it to
indicate the intermediate AND-nodes and edges, indexed by 0 or 1, between nodes, as
shown in Figure 5.1 (b). These edges indicating that cn is the xn-successor of dn, that
dn+1 is the yn+1-successor of cn, and so forth constitute an edge-labeled tree defining
the strategy, as shown in Figure 5.1 (c). Conversely, given the strategy we can view
it as an edge-labeled tree, and given the start node d0, infer the corresponding run.
This argument is formalized below.

Proof. Given ρ, let fI(y) = min{i : ∃b b = R(ρ(y), i) and for all j ρ(yj) = R(b, j)}
so that fI picks, for the sake of definiteness, the AND-node successor of least index.
The above definition is well defined by the definition of a run.

We show that ρ(y) is exactly s, where s^t= pathA(fI(y)^x). By the definition of
pathA, sn+1 = R(tn, yn) and tn = R(sn, xn), where x = fI(y). We show by induction
that ρ(y0y1 . . . yn) = sn+1.

The base case is trivial because ρ(λ) = s0. By induction hypothesis, ρ(y0y1 . . .
yn−1) = sn. By definition of fI, tn = g(ρ(y0y1 . . . yn−1), xn) = b and ρ(y0y1 . . . yn) =
g(b, yn) = g(tn, yn) = sn+1.

For the other direction, given fI we define ρ:

ρ(λ) = s0,

ρ(yj) = R(R(ρ(y), fI(y)), j).

It follows from this definition of ρ and the definition of pathA that, if s^t =
pathA(fI(y)^y), then s = ρ(y).

In the definition of Ã, we required that the proposition labels be the same on the
OR-nodes and their AND-node successors. For the dual automaton, it follows that
the labels on the OR-nodes are the same as on their predecessor AND-nodes. Thus,
pathA(fI(y)^x) satisfies ΦA iff ρ(y) satisfies ΦA.

Lemma 5.8. Let Ã be the dual automaton which has acceptance condition ¬ΦA.
Then,

∃ run ρ of Ã for all y ∈ {0, 1}ω ρ(y) satisfies ¬ΦA
iff

∃fII for all x ∈ {0, 1}ω pathÃ(x^fII(x)) satisfies ¬ΦA.

Proof. We argue as follows:

∃fII for all x ∈ {0, 1}ω pathA(x^fII(x)) satisfies ¬ΦA
iff (since ΦA is oblivious to finite prefixes being altered)

∃fII for all x ∈ {0, 1}ω e0 · pathA(x^fII(x)) satisfies ¬ΦA
iff (taking fI to be the same as fII, except fI(λ) is defined arbitrarily)

∃fI for all x ∈ {0, 1}ω e0 · pathA(x^tail(fI(x))) satisfies ¬ΦA
iff (by Observation 5.4)

∃fI for all x ∈ {0, 1}ω pathÂ(fI(x)^x) satisfies ¬ΦA
iff (by Observation 5.5)
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∃fI for all x ∈ {0, 1}ω pathÃ(fI(x)^x) satisfies ¬ΦA
iff (by Lemma 5.7)
∃ run ρ of Ã for all x ∈ {0, 1}ω ρ(x) satisfies ¬ΦA.

This completes the proof.
Lemma 5.9. Γ is Borel.
Proof. We show that Γ is accepted by a deterministic string automata Ā with

acceptance condition ΦA. Ā has as its alphabet {0, 1}. Let the states of Ā be from
S ∪T . The transition function δ is g itself, i.e., δ(u, i) = R(u, i). A routine inspection
shows that Ā accepts Γ.

Landweber [20] showed that every set accepted by a deterministic Muller string
automaton is in the Borel class Gδω ∩ Fωδ with the usual product topology on the
set of all infinite binary sequences. Since we are interested in ΦA being either pairs
or complemented pairs acceptance condition, the ω-string automaton with such ΦA
are well known to be equivalent to deterministic Muller string automaton (see, e.g.,
[20]).

Now, we are ready to prove the main lemma.
Lemma 5.10. A is nonempty iff Ã is empty.
Proof. By Lemma 5.9, the acceptance condition of A, Γ, is Borel, and hence

the game G associated with Γ is determined by Martin’s theorem [22]. Thus, I has
a winning strategy iff II does not have a winning strategy. By Lemma 5.7, Player I
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has a winning strategy iff A is nonempty. By Lemma 5.8, Player II has a winning
strategy iff Ã is nonempty. It immediately follows then that A is nonempty iff Ã is
empty.

Given a complemented pairs automaton A, we can construct with at most a
quadratic blowup its pairs dual automaton Ã such that A is nonempty iff Ã. Since
by Theorem 4.10 of the previous section testing nonemptiness of pairs automata is
NP-complete, we immediately get the following corollary.

Corollary 5.11. Testing nonemptiness of complemented pairs automata is co-
NP-complete.

Since the quadratic reduction is deterministic, we also get the following.

Corollary 5.12. There is a deterministic algorithm to test nonemptiness of
complemented pairs automata with m states and n pairs that runs in time (mn)O(n).

6. Applications to logics of programs. Using existing reductions and our
new algorithms for tree automata, we give essentially optimal algorithms for CTL∗,
PDL-delta, and the Mu-calculus. The “standard” algorithms for each of these log-
ics are of triple exponential complexity (cf. [13, 33, 35]). The existing reductions to
which we appeal reduce satisfiability of these logics to nonemptiness of tree automata.
These reductions employ determinization of a nondeterministic Büchi automaton on
ω-strings. With preexisting algorithms for testing nonemptiness of (pairs) tree au-
tomata of [6] (cf. [41]) and the McNaughton determinization construction [23],11 we
can get a nondeterministic double exponential algorithm for testing (un)satisfiability
of PDL-delta and the Mu-calculus. Using the new ω-string automaton determiniza-
tion construct of Safra [32], we can get a nondeterministic single exponential time
algorithm for these two logics. As described below, using our new nonemptiness test-
ing algorithms we get a deterministic single exponential time algorithm. The best
previously existing upper bounds for these logics, viz., nondeterministic single expo-
nential time (which amounts to deterministic double exponential time in practice),
employed “hybrid automata” (cf. [41]). The Safra construction alone does not help
reduce the complexity using the hybrid automata. For CTL∗, the existing reduc-
tions [13], which use a special structure of the ω-string automata associated with the
logic, viz., uniqueness of accepting runs, to determinize with only a single exponential
blowup, Safra’s construction provides no additional help. The previous nonempti-
ness algorithms give a nondeterministic double exponential time algorithm. Our new
nonemptiness algorithm reduces the upper bound to deterministic double exponential
time. In what follows exp(n) denotes the class of functions bounded above by 2q(n)

for some polynomial q(n).

Theorem 6.1. There is an exp(exp(|p|)) time reduction of a CTL∗ formula p
into a pairs automaton Ap on infinite trees with exp(exp(|p|)) states and exp(|p|) pairs
such that p is satisfiable iff Ap is nonempty.

Theorem 6.2. The satisfiability problem for CTL∗ is complete for deterministic
double exponential time.

Proof. Applying the nonemptiness algorithm (Theorem 4.1) to the pairs tree
automaton obtained by Theorem 6.1, it follows directly that CTL∗ can be decided in
deterministic double exponential time. CTL∗ was shown hard for double exponential
time in [41].

Theorem 6.3. Satisfiability of the Mu-calculus is in deterministic exponential
time.

11Here we also use our Lemma 5.10.
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Proof. For a Mu-calculus formula p a complemented pairs automaton Ap of size
exp(|p|) and number of pairs polynomial in |p| can be constructed in time exp(|p|)
such that p is satisfiable iff Ap is nonempty. This reduction follows by the technique
described in [35], but by using Safra’s construction instead of McNaughton’s construc-
tion. The upper bound follows by using the nonemptiness algorithm for complemented
pairs automata (Corollary 5.12).

PDL-delta has a linear blowup translation into the Mu-calculus [12, 19] (pro-
vided we allow consolidation of common subformulae). Hence, we have the following
theorem.

Theorem 6.4. Satisfiability of PDL-delta is in deterministic exponential time.
Remark. A direct algorithm, similar to the one mentioned for the Mu-calculus,

can also be given (see [33, 41]).
Because of the known deterministic exponential time lower bound for PDL [14],

it follows that the above algorithms for the Mu-calculus and PDL-delta are essentially
optimal (i.e., up to polynomial blowup). Moreover, we have the next corollary.

Corollary 6.5. Satisfiability of the Mu-calculus and PDL-delta are complete
for deterministic exponential time.

7. Conclusion. We have investigated the complexity of testing nonemptiness of
finite state automata on infinite trees. For the classical pairs acceptance condition of
Rabin [30] we show the problem is NP-complete, while for the complemented pairs
condition of Streett [33] we show the problem is co-NP-complete. In both cases, we
are still able to give a deterministic algorithm that runs in time polynomial in the
number of states but exponential in the number of pairs. These nonemptiness algo-
rithms improve previous results in the literature and permit us to give exponentially
improved, essentially tight, upper bounds on the complexity of testing satisfiability for
a number of important modal logics of programs including CTL∗, PDL-delta, and the
propositional Mu-calculus. Moreover, we believe that the technique of pseudomodel
checking may be useful in connection with other types of automata (cf. [11]).

Among related work we mention the following. Historically, Rabin [30] gave
an exponential time algorithm for pairs tree automaton nonemptiness but did not
perform a multiparameter analysis or provide a lower bound. Hossley and Rackoff [18]
gave an elegant reduction to the nonemptiness problem for automata on finite trees,
but the complexity stated for their algorithm was triple exponential. More recently,
subsequent to the appearance of the preliminary version of this work in [10], Pnueli
and Rosner [28] independently developed a different nonemptiness algorithm for pairs
tree automata providing essentially the same upper bound as ours and intended for
program synthesis applications; however, they did not consider lower bounds. Their
work was extended to a corresponding upper bound for complemented pairs tree
automata in [29]. A control-theoretic view of tree automata is given in [36] and [37],
while an authoritative survey of automata on infinite objects is presented in [38].

Appendix A.
Proof of Lemma 4.2. We will establish the dual claim. Note that given a pairs

condition Φ =
∨
γ(
∞
GPγ ∧

∞
FQγ), the corresponding “complemented” pairs condition

Φ̂ = ∧γ(
∞
FPγ ∨

∞
GQγ) is intended to capture the dual property. Interpreted over

fullpaths in total structures, which must be infinite paths, Φ̂ ≡ Φ̃, the actual dual of
Φ, i.e., ¬Φ(¬P1, . . . ,¬Pγ ,¬Q1, . . . ,¬Qγ). However, over partial structures, as we are
permitting, finite fullpaths are allowed and we do not necessarily have the equivalence
of Φ̂ and Φ̃. Rather, Φ ≡ Φ∧ inf ≡ ∨γ(FGPγ ∧GFQγ)∧ inf. Thus, Φ̃ ≡ ∧γ(GFPγ ∨
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FGQγ) ∨ fin ≡ (∧γ(GFPγ ∨ FGQγ) ∧ inf) ∨ fin ≡ Φ̂ ∨ fin. We thus have that

A(Φ ∨ FR) ≡ A((Φ ∧ inf) ∨ FR) so that the dual E(Φ̃ ∧GR) ≡ E((Φ̂ ∨ fin) ∧GR).
We must show that E(Φ̃ ∧GR) ≡ νY.τ̃(Y ), where

τ̃(Y ) = R ∧ ∧γEXwE[RUsR ∧ (E(Φ̃−γ ∧G(R ∧Qγ)) ∨ (Pγ ∧ Y ) ∨AXwfalse)].

In the following, let M be an arbitrary structure, which is understood but not explic-
itly mentioned.

We first show that E(Φ̃∧GR) is a fixpoint of τ̃(Y ), i.e., E(Φ̃∧GR) ≡ τ̃(E(Φ̃∧GR))
is valid. For the forward (⇒) direction, assume s0 |= E(Φ̃ ∧ GR). Then there is a
fullpath x starting at s0 satisfying Φ̃∧GR, which is equivalent to (Φ̂∨fin)∧GR. By
virtue of x and by definition of Φ̃, for each γ we also have s0 |= R ∧ EXwE[RUsR ∧
(AXwfalse∨ (Pγ∧E(Φ̃∧GR))∨ E(Φ̃−γ∧G(R∧Qγ)))], where the AXwfalse disjunct

ultimately obtains if the fullpath x is finite, the (Pγ ∧E(Φ̃∧GR)) disjunct ultimately

obtains if Pγ occurs along the fullpath x, and the E(Φ̃−γ ∧ G(R ∧ Qγ)) disjunct
ultimately obtains otherwise, since if Pγ never occurs, then eventually Qγ must always

hold. Hence, s0 satisfies all conjuncts of τ̃(E(Φ̃ ∧ R)), and s0 |= τ̃(E(Φ̃ ∧GR)). For
the converse (⇐) direction, assume s0 |= τ̃(E(Φ̃ ∧ GR)). Pick an arbitrary γ. We
have by definition of τ̃(Y ) that s0 |= R ∧EXwE[RUsR ∧ (AXwfalse∨ (Pγ ∧E(Φ̃∧
GR)) ∨ E(Φ̃−γ ∧ G(R ∧ Qγ)))]. Whichever disjunct ultimately obtains, it follows

that s0 |= E(Φ̃ ∧GR). Thus E(Φ̃ ∧GR) is a fixpoint of τ̃(Y ) as desired.
We now show that E(Φ̃∧GR) is the greatest fixpoint of τ̃(Y ). Suppose Z ≡ τ̃(Z)

is an arbitrary fixpoint. We will show that Z ⇒ E(Φ̃ ∧GR) is valid.
For any state s such that s |= Z, since Z is a fixpoint, we have two cases by

analyzing Z ≡ τ̃(Z).
(a) For some index γ,

s |= R ∧ EXwE[RUsR ∧ (E(Φ−γ ∧G(R ∧Qγ)) ∨AXwfalse)],

or
(b) for all indices γ, s |= R ∧ EXwE[RUsR ∧ (Pγ ∧ Z)].
If (b) holds, then we either have the strengthened
(b)′ for all indices γ, s |= R ∧ EXsE[RUsR ∧ (Pγ ∧ Z)], or
(b)′′ for some index γ, s |= R ∧ EXwfalse.
But case (b)′′ implies case (a). Thus either (a) or (b)′ must obtain.
Observation A.1. If state s can reach state t by a finite path y where R holds

everywhere along y, then if case (a) applies to t, it applies to s, also.
Now let s0 be an arbitrary state such that s0 |= Z. If case (a) applies to s0, then

s0 |= E((Φ̂∨ fin)∧GR) and we are done. Otherwise, case (b)′ applies. We will show
how to use the recursion Z ≡ τ̃(Z) infinitely many times to construct an infinite path
satisfying E(Φ̃ ∧GR).

Since (b)′ applies to s0, there exists a path from s0 to some state s1 of the form
s0 = t0, t1, . . . , tk = s1 (k ≥ 0) such that s1 |= P1 ∧ Z and for all i ∈ [0 : k], ti |= R.

We now do case analysis on s1. By Observation A.1, we see that case (a) cannot
apply to s1, for if it did, it would apply to s0 also. So case (b)′ applies to s1, and
there exists a path from s1 to some state s2 of the form s1 = u0, u1, . . . , ul (l ≥ 0)
such that s2 |= P2 ∧ Z and for all j ∈ [0 : l], uj |= R.

Continuing in this fashion, we construct an infinite path x of the form

s0 . . . s1 . . . s2 . . . si . . .
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along which R always holds and which successively visits states where P1, P2, . . . , Pm,
P1, P2, . . . , Pm, . . ., etc. hold in succession. Technically, we have x |= GR, and for
each i, si |= Pi modd m, where i modd m is defined to be i mod m (the remainder of i
on division by m) if i mod m 6= 0 and to be m if i mod m = 0.

Proof of Lemma 4.3. We have
⋃
i τ
i(false)T,con = A(Φ ∨ FR)T,con = A(Φ ∨

FR)T,gen =
⋃
i τ
i(false)T,gen, where the first and third equalities follow from the

Tarski–Knaster theorem together with the disjunctivity of con and gen, while the
second equality follows from the generalized linear size model theorem.

It will thus be sufficient to show that for all i,

(∗) τ i(false)T,con ⊆ Yi ⊆ τ i(false)T,gen.
We do this by induction on i.
The base case i = 0 is immediate since Y0 = falseT,con.
For the induction step, we assume that (*) holds for i and argue that it holds for

i+ 1.
To establish the first containment τ i+1(false)T,con ⊆ Yi+1, assume that s ∈

τ(τ i(false))T,con. Then M, s |= τ(τ i(false)) for some M contained in T . It follows,
as justified below, that M, s |= τ(Y i), from which we conclude that s ∈ τ(Y i)T,con =
Yi+1.

The key step to be justified is that τ i(false)M ⊆ (Y i)M . Note that for any
temporal formula f and for any M contained in T , fM ⊆ fT,con ∩M . And we have
by induction hypothesis that τ i(false)T,con ⊆ (Y i)T,con. Thus

τ i(false)M ⊆ τ i(false)T,con ∩M ⊆ (Y i)T,con ∩M = (Y i)M

. To establish the second containment Yi+1 ⊆ τ i+1(false)T,gen, assume s ∈ Yi+1 =
τ(Y i)T,con. There exists M contained in T such that M, s |= τ(Y i). We will construct
from M a new structure M ′ that will be generated by T and will satisfy τ i+1(false)
at s.

For each state y ∈ M ∩ Yi, let My be a structure generated by T rooted at ŷ (a
copy of y) such that My, ŷ |= τ i(false). Such an My is guaranteed to exist by the
induction hypothesis. Let M ′ be the structure obtained from M by replacing each y
by My, i.e., redirecting edges from predecessors of y into ŷ.

It follows that M ′ is generated by T by virtue of its construction from structures
generated by T . It is also the case that M ′, s |= τ(Y i) since each ŷ has the same
labeling with Y i as y. Moreover, each ŷ is the root of My, so M ′, s |= τ i+1(false)
and s ∈ τ i+1(false)T,gen. Hence, s ∈ τ i+1(false)T,gen, establishing the second con-
tainment.

Remark. In the construction above, there may be multiple copies of nodes from
T in M ′; since we do not have a generalized linear size model theorem for τ j(false)
for j ≥ 2, it is not, in general, possible to get a structure contained in T . For this
reason Y i 6= τ i(false)T,con. However, a more involved argument than that above can
be given to show that Y i = τ i(false)T,gen.

Proof of Lemma 4.4. We use the fixpoint characterization µV.(R ∨ AXsV ) for
AFR. Let q(V ) = R ∨AXsV and q′(V ) = R ∨ EXsAXsV .

Now, T, s ‖−AFR iff ∃ a structure M contained in T such that M, s |= AFR iff
∃j > 0 ∃ a structure M contained in T such that M, s |= qj(false).

We will argue by induction on j that
∃ a structure M contained in T such that M, s |= qj(false) iff T, s |=
(q′)j(false) (*),
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which will, by taking the disjunction over j, establish the lemma.

The base case j = 1 is immediate since R is a proposition. Therefore assume (*)
holds for j and show that it holds for j + 1.

(⇒) Assume ∃ a structure M contained in T such that M, s |= qj+1(false). Then
M, s |= R ∨ AXsq

j(false). If M, s |= R, we are done, since R is propositional. If
M, s |= AXsq

j(false), then all successors ti of s in M (there is at least one) are
such that M, ti |= qj(false). Hence, T, ti|| − qj(false) as M is contained in T , and
T, ti |= (q′)j(false) by induction hypothesis. Also, there exists an AND-node cs from
s to the ti’s in T . So T, s |= EXsAXs(q

′)j(false) and T, s |= (q′)j+1(false) as desired.

(⇐) Suppose T, s |= (q′)j+1(false). Then T, s |= R ∨ EXsAXs(q
′)j(false). If

T, s |= R, then because R is propositional, T, s|| − R, and we are done. If T, s |=
EXsAXs(q

′)j(false), then there is an AND-node successor cs from s to OR-nodes
t0, t1 such that each T, ti |= (q′)j(false). By induction hypothesis, for each ti, T, ti||−
qj(false), and ∃ a structure Mi contained in T such that Mi, ti |= qj(false).

We let M ′0,M
′
1 be copies12 of M0,M1, respectively, and graft them onto s by let-

ting t′0, t
′
1 (the copies of t0, t1, respectively) be the successors of s. Then the resulting

M ′ is a structure generated by T such that M ′, s |= qj+1(false). Now we can get a
structure M̂ contained in T such that M̂, s |= qj+1(false), as follows.

Suppose nodes u, u′ of M ′ are copies of the same OR-node of T , i.e., map to the
same OR-node under the generation function. There is a smallest k ≤ j and a smallest
k′ ≤ j such that M ′, u |= qk(false) and M ′, u′ |= qk

′
(false), respectively. If k ≤ k′,

then let u replace u′ by redirecting all arcs going from predecessors of u′ into u′ so
that they go from predecessors of u′ into u instead. Thus u′ is no longer accessible and
may be deleted. Similarly, if k > k′, then let u′ replace u. Call the resulting structure,
which has one of u, u′ “chopped out,” M ′′. Note that for every node v common to
M ′ and M ′′, if M ′, v |= ql(false), then M ′′, v |= ql(false). Accordingly, we have that
the “q-rank” of nodes does not increase in going from M ′ to M ′′. Moreover, M ′′ is
still a structure generated by T with one fewer pair of duplicates than M ′ such that
M ′′, s |= qj(false). This process can be repeated until all duplicates are eliminated.
Call the resulting final structure M̂ . Then M̂, s |= qj+1(false) and is (a copy of) a
structure contained in T .

Proof of Lemma 4.8. The argument depends on the following.

Merging property. If for all s ∈ Zk there exists M contained in Zk such that
M, s |= gγ ∧AXsZ

k ∨R, then there exists a single M0 contained in Zk such that for
all s ∈ Zk, M0, s |= gγ ∧AXsZ

k ∨R.

Proof of property. Let s1, . . . , sn be an enumeration without repetitions of Zk \R.
We will show that we can repeatedly apply the generalized linear size model theorem
to get M contained in Zk such that M, s1, . . . , sn |= gγ ∧AXsZ

k.

For s1 there exists M1 contained in Zk such that M1, s1 |= gγ ∧AXsZ
k. A similar

M2 for s2 exists. Let M ′1 be a copy of M1 that is disjoint from M1 except that the
original node s1 is retained. Similarly, let M ′2 be a copy of M2 that is also disjoint
from M ′1. Then, defining the union of two disjoint structures in the obvious way, the
structure M ′12 = M ′1∪M ′2 is generated by Zk, and we have M ′12, s1, s2 |= gγ ∧AXsZ

k.

By the generalized linear size model theorem, we can collapse out duplicates
yielding M ′′12 contained in Zk such that M ′′12, s

′′
1 , s
′′
2 |= gγ , where M ′′12 contains no

duplicates and s′′1 , s
′′
2 are (possibly copies of) s1, s2, respectively.

12We say M ′ is a copy of M if it is an isomorphic structure, i.e., labeled graph, with a fresh set
of nodes disjoint from those of M .
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Note that for any node t in M ′′12, if t had successors in M ′12, it also has successors
in M ′′12 by the nature of the method of chopping out duplicates. Hence, M ′′12, s

′′
1 , s
′′
2 |=

gγ ∧ AXsZ
k. Of course, M ′′12 is isomorphic to a structure M12 contained in Zk with

s′′1 , s
′′
2 corresponding to s1, s2, respectively, and M12, s1, s2 |= gγ ∧AXsZ

k.
We now continue with s3 and use M12, M3 to get M123 contained in Zk such

that M123, s1, s2, s3 |= gγ ∧ AXsZ
k. Continue this process until Zk \ R is exhausted,

yielding M1,...,k contained in Z such that M1,...,k, s1, . . . , sk |= gγ ∧ AXsZ
k. Now let

M0 = M1,...,k ∪N , where N is the structure formed by just those single nodes t in Zk

satisfying R such that a copy of t does not appear in M1...k. Then M0 is contained
in Zk and for all s ∈ Zk we have M0, s |= gγ ∧AXsZ

k ∨R.
This completes the proof of the merging property.
To establish soundness of the calculation, i.e., Zk ⊆ A(gγUwR)T,con, we first note

that Zk = (g∧AXsZ
k∨R)Zk implies, by definition of the fZk notation, for each s ∈ Zk

that Zk, s ‖− cong ∧ AXsZ
k ∨ R. By the merging property, this in turn implies that

there exists a single M0 contained in Zk such that for every s ∈ Zk \R, M0, s |= g. It
follows that for each s0 ∈M0, M0, s0 |= A(gγUwR). To see this, let x = s0, s1, s2, . . .
be a fullpath in M0. For each si, M0, si |= g or M0, si |= R. So M0, x |= (gγUwR) as
desired.

By virtue of M0, for every s0 ∈ Zk \R, we now have that Zk, s0 ‖− conA(gγUwR).
Since M0 is contained in Zk and Zk ⊆ T , we also have that M0 is contained in T ,
and for each s0 ∈ Zk \R, we get T, s0 ‖− conA(gγUwR). Since for all s0 ∈ RT,con, we
have T, s0 ‖− conA(gγUwR), we get for all s0 ∈ Zk that T, s0 ‖− conA(gγUwR). Thus,
Zk ⊆ A(gγUwR)T,con.

In order to show completeness, i.e., A(gγUwR)T,con ⊆ Zk, we argue that for any
i and for any state s0

(∗) Zi, s0 ‖− conA(gγUwR) implies Zi+1, s0 ‖− conA(gγUwR).

Assume that Zi, s0 ‖− conA(gγUwR). Thus for some M contained in Zi we have
M, s0 |= A(gγUwR). Without loss of generality, we may assume that every state t of
M is reachable from s0 and M, t |= A(gγUwR).

We claim that M is contained in Zi+1. For all t ∈M , since M, t |= A(gγUwR), it
follows that M, t |= (g ∧ AXsZ

i) ∨ R, and thus t ∈ Zi+1 = {u ∈ Zi : Zi, u ‖− con(g ∧
AXsZ

i) ∨ R}. Hence, M ⊆ Zi+1. Since M is contained in Zi and M ⊆ Zi+1 ⊆ Zi, it
follows by the definition of containment that M is contained in Zi+1.

Thus, M, s0 |= A(gγUwR) andM is contained in Zi+1, so Zi+1, s0 ‖− conA(gγUwR)
as desired. (Note that by definition of the ‖− con notation, Zi+1, s0 ‖− conA(gγUwR)
implies s0 ∈ Zi+1 and the above argument guarantees this.)

Since Z0 = T , for any s ∈ A(gγUwR)T,con, Z0, s ‖− conA(gγUwR) and by in-
duction on i using (∗), we have that for all i, Zi, s ‖− conA(gγUwR). In particular,
Zk, s ‖− conA(gγUwR). Since s was an arbitrary member of A(gγUwR)T,con, we con-
clude A(gγUwR)T,con ⊆ Zk, as desired.

To implement the calculation, we see by using disjunctivity of con that ((gγ ∧
AXsZ

i) ∨R)Zi,con = (gγ ∧AXsZ
i)Zi,con ∪RZi,con. Now

(gγ ∧AXsZ
i)Zi,con = (gγ ∧AXstrue)

Zi,con

within the scope of Zi, con = gZi,con
γ , since gγ already has AXstrue as a conjunct.

Now apply Lemma 4.9.
Proof of Lemma 4.9. The ⊆ direction is immediate.
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For the ⊇ direction, pick an arbitrary element s of the right-hand side. Because
s is in the first term, it must be that there exists an M contained in T such that
M, s |= A(Φ−γ ∨ F (R ∨ Qγ)). Since s is also in the second term, it follows that
M, s |= A(Φ−γ∨F (R∨Qγ))∧(Pγ∨Y ). If s has successors in M , then M, s |= A(Φ−γ∨
F (R∨Qγ))∧ (Pγ ∨Y )∧AXstrue, and we are done. If s has no successors in M , then
since we still have M, s |= A(Φ−γ∨F (R∨Qγ)) it must be that M, s |= R∨Qγ . Attach
to s the successors t, u it must have by virtue of membership in the third term and call
the resulting structure M ′. We have M ′, s |= A(Φ−γ∨F (R∨Qγ))∧(Pγ∨Y )∧AXstrue,
the first conjunct holding because s satisfies R∨Qγ in M and M ′, the second conjunct
holding because s satisfies Pγ ∨ Y in M and M ′, and the third conjunct holding by
virtue of t, u. Again, s ∈ gT,conγ and we are done.
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Abstract. A factor 2 approximation algorithm for the problem of finding a minimum-cost b-
balanced cut in planar graphs is presented, for b ≤ 1

3
. We assume that the vertex weights are given

in unary; for the case of binary vertex weights, a pseudoapproximation algorithm is presented. This
problem is of considerable practical significance, especially in VLSI design.

The natural algorithm for this problem accumulates sparsest cuts iteratively. One of our main
ideas is to give a definition of sparsity, called net-sparsity, that reflects precisely the cost of the cuts
accumulated by this algorithm. However, this definition is too precise: we believe it is NP-hard
to compute a minimum–net-sparsity cut, even in planar graphs. The rest of our machinery is built
to work with this definition and still make it computationally feasible. Toward this end, we use
several ideas from the works of Rao [Proceedings, 28th Annual IEEE Symposium on Foundations
of Computer Science, 1987, pp. 225–237; Proceedings, 24th Annual ACM Symposium on Theory of
Computing, 1992, pp. 229–240] and Park and Phillips [Proceedings, 25th Annual ACM Symposium
on Theory of Computing, 1993, pp. 766–775].

Key words. separators, planar graphs, approximation algorithms

AMS subject classifications. 68Q25, 68Q35, 90C27, 05C85

PII. S0097539794271692

1. Introduction. Given an undirected graph with edge costs and vertex weights,
the balance of a cut is the ratio of the weight of vertices on the smaller side to the
total weight in the graph. For 0 < b ≤ 1

2 , a cut having a balance of at least b is called
a b-balanced cut; a 1

3 -balanced cut is given the special name separator . In this paper,
we present a factor 2 approximation algorithm for finding a minimum-cost b-balanced
cut in planar graphs, for b ≤ 1

3 , assuming that vertex weights are given in unary. We
also give examples to show that our analysis is tight. For the case of binary vertex
weights, we use scaling to give a pseudoapproximation algorithm: for each α > 2/b, it
finds a (b− 2/α)-balanced cut of cost within twice the cost of an optimal b-balanced
cut, for b ≤ 1/3, in time polynomial in n and α. The previous best approximation
guarantee known for b-balanced cuts in planar graphs was O(logn), due to Rao [8, 9];
for general graphs, no approximation algorithms are known.

The problem of breaking a graph into “small”-sized pieces by removal of a “small”
set of edges or vertices has attracted much attention since the seminal work of Lipton
and Tarjan [5], because this opens up the possibility of a divide-and-conquer strategy
for the solution of several problems on the graph. Small balanced cuts have numerous
applications; see, for example, [1, 3, 4, 6]. Several of these applications pertain to
planar graphs, the most important one being circuit partitioning in VLSI design.

The sparsity of a cut is defined to be the ratio of the cost of the cut and the
weight on its smaller side, and a cut having minimum sparsity in the graph is called
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the sparsest cut . Rao [9] gave a 3
2 -approximation algorithm for the problem of finding

a sparsest cut in planar graphs, and recently Park and Phillips [7] showed that this
problem is polynomial time–solvable. A sparsest cut limits multicommodity flow
in the same way that a min-cut limits max-flow. Leighton and Rao [3] derived an
approximate max-flow min-cut theorem for uniform multicommodity flow and in the
process gave an O(logn)-approximation algorithm for finding a sparsest cut in general
graphs. By finding and removing these cuts iteratively, one can show how to find in
planar (general) graphs a b-balanced cut that is within an O(1) factor (O(logn) factor)
of the optimal b′-balanced cut for b < b′, and b ≤ 1

3 [8, 9, 3]. For instance, using the
Park–Phillips algorithm for sparsest cut in planar graphs, this approach gives a 1

3 -
balanced cut that is within 7.1 times the cost of the best 1

2 -balanced cut in planar
graphs. Notice, however, that these are not true approximation algorithms, since the
best 1

2 -balanced cut may have a much higher cost than the best 1
3 -balanced cut.

This iterative algorithm has shortcomings which prevent it from leading to a good
true approximation algorithm; these are illustrated via an example in section 3. One
of our main ideas is to give a definition of sparsity, called net-sparsity, that overcomes
these shortcomings. The notion of net-cost, on which this definition of net-sparsity is
based, reflects precisely the cost of the cuts accumulated iteratively. Indeed, it is too
precise to be directly useful computationally—we believe that computing the sparsest
cut under this definition is NP-hard even in planar graphs. The rest of our machinery
is built to work with this definition and still make it computationally feasible, and we
manage to scrape by narrowly!

Planarity is exploited in several ways: First, a cut in a planar graph corresponds
to a set of cycles in the dual. Second, the notion of a transfer function turns out
to be very useful. Given a planar graph with weights on faces, this notion can be
used to define a function on the edges of the graph so that on any cycle it evaluates
to the sum of the weights of the faces enclosed by the cycle. Such an idea has been
used in the past by Kasteleyn [2] for computing the number of perfect matchings in
a planar graph in polynomial time. Kasteleyn defined his function over GF [2]. Park
and Phillips [7] first defined the function over reals, thereby demonstrating the full
power of this notion.

Park and Phillips [7] have shown that the problems of finding a sparsest cut
and a minimum b-balanced cut in planar graphs are weakly NP-hard; i.e., these
problems are NP-hard if the vertex weights are given in binary. Indeed, the algorithm
they give for finding the sparsest cut in planar graphs is a pseudopolynomial time
algorithm. As a consequence of this algorithm, it follows that if P 6= NP, finding
sparsest cuts in planar graphs is not strongly NP-hard. On the other hand it is
not known if the b-balanced cut problem in planar graphs is strongly NP-hard or
if there is a pseudopolynomial time algorithm for it. (The present paper gives only
a pseudopolynomial approximation algorithm.) Park and Phillips leave open the
question of finding a fully polynomial approximation scheme for sparsest cuts in planar
graphs, i.e., if the vertex weights are given in binary. We give such an algorithm using
a scaling technique.

2. Preliminaries. Let G = (V,E) be a connected undirected graph with an
edge cost function c : E → R+ and a vertex weight function wt : V → Z+. Any
function that we define on the elements of a universe extends to sets of elements in
the obvious manner; the value of the function on a set is the sum of its values on the
elements in the set. Let W be the sum of weights of all vertices in G. A partition
(S, S) of V defines a cut in G; the cut consists of all edges that have one end point in
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S and the other in S. A set of vertices, S, is said to be connected when the subgraph
induced on it is connected. If either S or S is connected then cut (S, S) will be called
a simple cut , and when both S and S are connected then the cut (S, S) is called a
bond.

Given a set of vertices S ⊂ V , we define the cost of this set, cost(S), as the sum
of the costs of all edges in the cut (S, S). The weight of the set S, wt(S), is the sum
of the weights of the vertices included in S.

A cut (S, S) is a separator if W
3 ≤ wt(S),wt(S) ≤ 2W

3 . The cost of a separator is
the sum of the costs of the edges in the separator.

Lemma 2.1. For any connected graph G there exists a minimum-cost separator,
(S, S), which is a simple cut. Further, if S is the side that is not connected, then each
connected component of S has weight strictly less than W

3 .

Proof. Let (S, S) be a minimum-cost separator in G. Consider the connected
components obtained on removing the edges of this separator. Clearly, no component
has weight strictly larger than 2W

3 . If all components have weight strictly less than W
3

then both S and S are not connected and we can arrive at a contradiction as follows.
We first pick two components that have an edge between them and then pick the
remaining, one by one, in an arbitrary order until we accumulate a weight of at least
W
3 . The accumulated weight cannot exceed 2W

3 since each component has weight at

most W
3 . Thus we obtain a separator of cost strictly less than the cost of the separator

(S, S), a contradiction. Hence, at least one component has weight between W
3 and

2W
3 . If there are two such components then these are the only components since by

switching the side of a third component we obtain a cheaper separator. If there is only
one component of weight between W

3 and 2W
3 then this separator is optimum iff this

component forms one side of the cut and the remaining components the other side.
Thus (S, S) is a bond and if some side of the cut is not connected then all components
on that side have weight strictly less than W

3 .
Hence there always exists a minimum-cost separator that is a simple cut. Let

OPT denote the set of vertices on the side of this separator that is not connected.

3. Overview of the algorithm. Let S be a set of vertices such that wt(S) ≤
wt(S). The sparsity of S is usually defined as the quotient of the cost and the weight
of this set, i.e.,

sparsity(S) =
cost(S)

wt(S)
.

A natural approach to finding good separators is to repeatedly find a set of minimum
sparsity and remove it from the graph, eventually reporting the union of the removed
vertices. It is easy to concoct “bad” examples for this approach by ensuring that the
picked vertices always come from the smaller side of the optimal separator, thereby
ensuring that the minimum sparsity available in the remaining graph keeps increasing.
This is illustrated in Figure 3.1; here the first cut picked has a sparsity of 1

m , whereas
the last cut has a sparsity of 1

2 .
This approach has two shortcomings: it removes the vertices picked in each itera-

tion and deals only with the remaining graph in subsequent iterations, and it assumes
that edges of the cuts found in each iteration are picked permanently, even though
they may not be needed in the final cut. One of our main ideas is to give a defi-
nition of “sparsity” under which this algorithm does not suffer from either of these
shortcomings.
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Fig. 3.1. Graph with vertex weights and edge costs showing how minimum sparsity increases.
Here m = n

3
.

Let S, T ⊂ V be two sets of vertices. Define the net-cost of S with respect to T
as

net-costT (S) = cost(T ∪ S)− cost(T )

and the net-weight of S with respect to T as

net-weightT (S) = wt(T ∪ S)− wt(T ).

Thus, if we have already picked the set of vertices T , then net-costT (S) measures the
extra cost incurred and net-weightT (S) the weight added in picking the set S ∪ T .
Finally, define the net-sparsity of S with respect to T as

net-sparsityT (S) =
net-costT (S)

net-weightT (S)
.

For any algorithm that picks a cut by accumulating sets of vertices, the notion of
net-cost gives precisely the extra cost incurred in each iteration. But is it so precise
that computing the sparsest cut under this definition turns out to be NP-hard even
in planar graphs? Although we do not have an answer to this question, we believe
that it is “yes”! Indeed, the rest of our machinery is built to work with this definition
and still make it computationally feasible, and we manage to scrape by narrowly!

Let us first show that it is not sufficient to just keep picking sets of minimum
net-sparsity. Consider the following example: Suppose OPT = S1 ∪ S2, where S1 is
a very sparse set of weight W

3 − ε and S2 is a set of high sparsity and weight ε for a
small ε. Having picked S1, we might pick another set, S3 of sparsity almost that of
S2, and weight W

3 − ε; hence, the cost incurred would be arbitrarily high compared
to the optimum.

We get around this difficulty by ensuring that in each iteration the set of vertices
we pick is such that the total weight accumulated is strictly under W

3 . More formally,
let Ti−1 be the set of vertices picked by the end of the (i − 1)th iteration (T0 = φ).
In the ith iteration we pick a set Di such that
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[weight] wt(Ti−1 ∪Di) <
W
3 .

[net-sparsity] ∀S : wt(Ti−1 ∪ S) < W
3 , net-sparsityTi−1(Di) ≤

net-sparsityTi−1(S).
[minimality] Di has minimum net-weight among all sets satisfying the

above conditions.

We call set Di a dot and denote it by •. Thus, at the end of the ith iteration the
set of vertices we have picked is given by Ti = Ti−1 ∪Di. This is how we augment the
“partial solution” (T1, T2, . . . , Ti) in each iteration.

How do we ever obtain a “complete solution” (a separator)? In the ith iteration,
besides augmenting the partial solution Ti−1 to the partial solution Ti we also augment
it to a complete solution, i.e., we pick a set of vertices Bi such that

[weight] W
3 ≤ wt(Ti−1 ∪Bi) ≤ 2W

3 .

[cost] ∀S : W3 ≤ wt(Ti−1 ∪ S) ≤ 2W
3 , cost(Bi) ≤ cost(S).

Since T0 = φ, finding the set B1 corresponds to finding the minimum-cost sepa-
rator. To avoid this circularity in the argument we restrict Bi to a smaller class of
sets:

[cost] ∀S : (S, S) is a bond and W
3 ≤ wt(Ti−1 ∪ S) ≤ 2W

3 , cost(Bi) ≤
cost(S).

We call the set Bi a box and denote it by �. Notice that a box set need not be a
bond and that we count a � at its cost rather than its net-cost. This is done only to
simplify the algorithm and its analysis. The example which shows that the analysis of
our algorithm is tight also shows that counting the � at its net-cost would not have
led to any improvement in the approximation guarantee.

Thus, in each iteration we obtain a separator. The solution reported by the
algorithm is the one of minimum cost from among all these separators. The algorithm,
which we call the dot-box algorithm, is the following.

Dot-Box Algorithm.
1. minsol←∞, i← 0, T0 ← φ
2. while wt(Ti) <

W
3 do

2.1. i← i+ 1
2.2. Find • and � sets, Di and Bi, respectively.

If there is no • set, exit.
2.3. minsol← min(minsol, cost(Ti−1) + cost(Bi))
2.4. Ti ← Ti−1 ∪Di

end.

We make two remarks regarding step (2.2). First, we conjecture that finding the
• set is NP-hard. Our procedure to find • sets may not always succeed; however,
we will prove that if it fails, then the � set found in the current iteration gives a
separator within twice OPT. Second, at some iteration it might be the case that no
subset of vertices satisfies the weight criterion for a •, since each set takes the total
weight accumulated to W/3 or more. In this case, the dot-box algorithm halts and
outputs the best separator found so far.
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Fig. 4.1. Computation of net-costT (S) and net-costS∩T (S). A +/− on an edge signifies that
the edge is counted in the positive/negative term in the net-cost computation.

Fig. 4.2. Computation of net-costT (S1 ∪ S2) and net-costT (S1)+net-costT (S2).

4. Analysis of the dot-box algorithm. We first prove some properties of net-
cost and net-weight which will be useful for the analysis. From the definition of net-
cost and net-weight we have that net-costT (S) = net-costT (S − T ) and net-weightT (S)
= net-weightT (S − T ) = wt(S − T ). The following property also follows from the def-
initions

Property 4.1. Let S1, S2 be two sets of vertices not necessarily disjoint. Then

net-costT (S1 ∪ S2) = net-costT (S1) + net-costT∪S1(S2),

net-weightT (S1 ∪ S2) = net-weightT (S1) + net-weightT∪S1(S2).

Property 4.2. net-costT (S) ≤ net-costS∩T (S).
Proof. Figure 4.1 shows the edges between the sets S ∩ T , S − T , T − S, and

S ∪ T from which the above property is immediate. The net-cost of S with respect to
S ∩ T may be higher because it includes the cost of edges from S − T to T − S.

The following property is immediate from Figure 4.2.
Property 4.3. Let S1, S2 be two disjoint sets of vertices with no edges between

them. Then

net-costT (S1 ∪ S2) = net-costT (S1) + net-costT (S2).

Remark 4.1. For positive real numbers a, b, c, d,

min
(a
b
,
c

d

)
≤ a+ c

b+ d
≤ max

(a
b
,
c

d

)
.
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Further, let ai, bi, 1 ≤ i ≤ k, be positive real numbers. Then, ∃i, 1 ≤ i ≤ k, such that

ai
bi
≤
∑k
j=1 aj∑k
j=1 bj

.

Lemma 4.1. The net-sparsity of the •’s is increasing, i.e.,

∀i : i ≥ 1, net-sparsityTi−1
(Di) ≤ net-sparsityTi(Di+1).

Proof. Since the set Di ∪Di+1 satisfies the weight requirement for a • at the ith
iteration,

net-sparsityTi−1(Di) ≤ net-sparsityTi−1(Di ∪Di+1).

By Property 4.1,

net-costTi−1
(Di ∪Di+1) = net-costTi−1

(Di) + net-costTi(Di+1),

net-weightTi−1
(Di ∪Di+1) = net-weightTi−1

(Di) + net-weightTi(Di+1),

which, using Remark 4.1, gives us

min(net-sparsityTi−1
(Di),net-sparsityTi(Di+1)) ≤ net-sparsityTi−1

(Di ∪Di+1)

≤ max(net-sparsityTi−1
(Di),

net-sparsityTi(Di+1)).

Now, by the first inequality, it must be the case that

max(net-sparsityTi−1(Di),net-sparsityTi(Di+1)) = net-sparsityTi(Di+1).

The lemma follows.
Let k be the first iteration at which some connected component of OPT meets

the weight requirement of a �.
Lemma 4.2. ∀i : 1 ≤ i ≤ k − 1, net-sparsityTi−1

(Di) ≤ net-sparsityTi−1
(OPT).

Proof. Since OPT 6⊆ Ti−1 there are connected components of OPT which are
not completely contained in Ti−1. By assumption, none of these components satisfies
the weight requirement for a �; hence each of these components meets the weight
requirement for a •. Hence the • picked in this iteration should have net-sparsity at
most that of any of these components.

By Property 4.3, the net-cost of OPT is the sum of the net-costs of these com-
ponents of OPT. The same is true for net-weight; hence the component of OPT
with minimum net-sparsity has net-sparsity less than that of OPT. The lemma fol-
lows.

The above two lemmas imply that the net-sparsity at which the •’s are picked is
increasing and that for any iteration before the kth, this net-sparsity is less than the
net-sparsity of OPT in that iteration.

Lemma 4.3. ∀i : 1 ≤ i ≤ k − 1, cost(Ti) < cost(OPT).
Proof. To establish this inequality for i we consider two processes.
1. The first process is our algorithm which picks the set of vertices Dj at the
jth step, 1 ≤ j ≤ i.

2. The second process picks the vertices Dj ∩ OPT at the jth step, 1 ≤ j < i.
At the ith step it picks the remaining vertices of OPT.
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Let Pj be the set of vertices picked by the second process in the first j steps. Then
Pj = OPT ∩ Tj , 1 ≤ j < i and Pi = OPT. At the jth step the second process picks
an additional weight of net-weightPj−1

(Pj) at a cost of net-costPj−1
(Pj). By the fact

that the second process picks a subset of what the first process picks at each step we
have the following.

Claim 4.1. For 1 ≤ j ≤ i− 1, net-weightTj−1
(Dj) ≥ net-weightPj−1

(Pj).
Claim 4.2. For 1 ≤ j ≤ i, net-sparsityTj−1

(Dj) ≤ net-sparsityPj−1
(Pj).

Proof. Since Pj ∩ Tj−1 = Pj−1, by Property 4.2 we have

net-costTj−1(Pj) ≤ net-costPj−1(Pj).

Further,

net-weightTj−1
(Pj) = net-weightPj−1

(Pj)

and hence net-sparsityTj−1(Pj) ≤ net-sparsityPj−1(Pj).
For j < i, the claim follows since Pj satisfies the weight requirement for a •

and Dj was picked as the •. For j = i, Pj = OPT and the claim follows from
Lemma 4.2.

The above claims imply that in each iteration (1 through i) the first process picks
vertices at a lower net-sparsity than the second process. If both these processes were
picking the same additional weight in each iteration then this fact alone would have
implied that the cost of the vertices picked by the first process is less than the cost
of the vertices picked by the second. But this is not the case. What is true, however,
is the fact that in iterations 1 through i − 1 the first process picks a larger addi-
tional weight than the second process. In the ith iteration, the second process picks
enough additional weight so that it now has accumulated a total weight strictly larger
than that picked by the first process (since wt(OPT) ≥ W

3 > wt(Ti)). But the net-
sparsity at which the second process picks vertices in the ith iteration is more than the
maximum (over iterations 1 through i) net-sparsity at which the first process picks
vertices. So it follows that the cost of the vertices picked by the first process is
strictly less than the cost of the vertices picked by the second, i.e., cost(Ti) <
cost(OPT).

Consider the separator found in the kth iteration, i.e., the cut (Tk−1 ∪Bk,
Tk−1 ∪Bk). This solution is formed by picking •’s in the first k − 1 steps and a
� in the kth step.

Lemma 4.4. cost(Tk−1 ∪Bk) ≤ 2 · cost(OPT).
Proof. Any connected component of OPT is a bond. In the kth iteration there

exists a connected component of OPT, say OPTj , such that W
3 ≤ wt(Tk−1 ∪OPTj) ≤

2W
3 . Hence the� at the kth step should have cost at most cost(OPTj), i.e., cost(Bk) ≤

cost(OPTj) ≤ cost(OPT).
From Lemma 4.3 we know that cost(Tk−1) < cost(OPT). Hence

cost(Tk−1 ∪Bk) < cost(Tk−1) + cost(Bk) < 2 · cost(OPT).

Since the dot-box algorithm outputs the best separator found, we have the fol-
lowing theorem.

Theorem 4.5. The cost of the separator found by the dot-box algorithm is at
most twice the cost of OPT.

Our analysis of the dot-box algorithm is tight; when run on the example in Fig-
ure 4.3, it picks a separator of cost almost twice the optimum. In this example,
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Fig. 4.3. A tight example for our analysis. Vertex weights and edge costs are given and ε = 3/n.

OPT = A ∪ B and so cost(OPT) = 1 + ε. For ε > 3/n, the • in the first iteration is
the set C and the � is the set A. This separator, which is also the one returned by
the dot-box algorithm, has cost 2− 2ε and hence the approximation ratio is 2(n−3

n+3 ).

5. Structural properties of our solution, and a computationally easier
definition of net-cost. In this section we prove some structural properties of the
solution found by the dot-box algorithm. This allows us to redefine net-cost in such a
manner that it becomes computationally easier and yet the analysis from the previous
section continues to hold.

Lemma 5.1. For 1 ≤ i ≤ k − 1, Ti is connected.

Proof. For contradiction assume that Ti is not connected. Let A be a connected
component of Ti. There are three cases.

wt(Ti ∪A) < W/3: The set A satisfies the weight requirement for a • at the
(i + 1)th iteration. Since A has edges only to vertices in Ti, the net-cost
of A with respect to Ti is negative. Hence net-sparsityTi(A) is negative,
contradicting Lemma 4.1.

W/3 ≤ wt(Ti ∪A) ≤ 2W/3: The cut (Ti ∪A, Ti ∪A) is a separator of cost,
cost(Ti ∪A) < cost(Ti) < cost(OPT), a contradiction.

wt(Ti ∪A) > 2W/3: Since wt(Ti) < W/3, the condition of this case implies
that wt(A) > W/3. If wt(A) ≤ 2W/3 then once again we have a contradic-
tion since now the cut (A,A) is a separator of cost, cost(A) < cost(Ti) <
cost(OPT). Thus it must be the case that wt(A) > 2W/3.

Since the above argument implies that each connected component of Ti has weight
greater than 2W/3, Ti must have only one connected component.

Lemma 5.2. For 1 ≤ i ≤ k − 1, the set Ti − Ti−1 is connected.

Proof. For contradiction assume that Ti − Ti−1 is not connected. Let A be a
connected component of Ti − Ti−1 and B be the rest of Ti − Ti−1. (We also denote
by A,B the corresponding sets of vertices.)

If Di is the • at the ith iteration then net-costTi−1(Di) = net-costTi−1(A ∪B).
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Since A and B are disjoint set of vertices with no edges between them, by Property 4.3

net-costTi−1(Di) = net-costTi−1(A) + net-costTi−1(B).

Further,

net-weightTi−1
(Di) = net-weightTi−1

(A) + net-weightTi−1
(B).

Thus it is the case that either A or B has smaller net-sparsity than Di, which con-
tradicts the assumption that Di is a •, or both A and B have the same net-sparsity
as Di, but this contradicts the minimality requirement on Di.

Lemma 5.3. For every iteration i : 1 ≤ i ≤ k − 1, there exists a •, Di, satisfying
the following:

1. (Di, Di) is a bond.
2. Each connected component of Ti−1 is contained in Di or Di and there is no

edge between Di and components of Ti−1 in Di.
Proof. The set Ti − Ti−1 together with any subset of Ti−1 is also a • for the ith

iteration. We form a new •, Di, by merging with Ti−Ti−1 all connected components
of Ti−1 which have an edge to Ti−Ti−1. Since Ti−Ti−1 is connected, so is Di. Further,
since the graph is connected, every remaining component of Ti−1 has an edge to Ti
so that Di is also connected. Thus (Di, Di) is a bond. It follows from the definition
of Di that there is no edge between Di and components of Ti−1 in Di.

Since every • in iterations 1 through k− 1 satisfies the conditions in Lemma 5.3,
we can restrict our search for the • at the ith iteration to sets that satisfy these
conditions as additional requirements.

(Di, Di) is a bond.
Each connected component of Ti−1 is contained in Di or Di and there is no

edge between Di and components of Ti−1 in Di.

Let Gi = (Vi, Ei) be the graph obtained by shrinking each connected component
of Ti−1 into a single vertex, removing the self-loops formed and replacing each set of
parallel edges by one edge of cost equal to the sum of the cost of the edges in the
set. For finding a • at the ith iteration we consider only such sets, S, such that no
connected component of Ti−1 is split across (S, S) and (S, S) is a bond. Therefore,
we need to look only at subsets of Vi that correspond to bonds in Gi.

Let S be a subset of vertices in Gi. The trapped cost of S with respect to Ti−1,
denoted by trapped-costTi−1

(S), is the sum of the costs of the components of Ti−1

that are contained in S. We now redefine the net-cost of S with respect to Ti−1 as

net-costTi−1
(S) = cost(S)− trapped-costTi−1

(S).

Note that for any subset of vertices in Gi, the net-cost under this new definition is at
least as large as that under the previous definition. However, and this is crucial, the
net-cost of the • set Di remains unchanged. This is so because by Lemma 5.3 there
are no edges between Di and the components of Ti−1 not in Di. Therefore, a • under
this new definition of net-cost will also be a • under the previous definition, and so
our analysis of the dot-box algorithm continues to hold.

6. Onto planar graphs. We do not know the complexity of computing • sets;
we suspect that it is NP-hard even in planar graphs. Yet, we can implement the
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dot-box algorithm for planar graphs—using properties of cuts in planar graphs, and
by showing that if in any iteration, the algorithm does not find the • set, then in
fact, the separator found (using the � set found in this iteration) is within twice the
optimal. (This is proven in Theorem 7.1.)

6.1. Associating cycles with sets. We let GD be the planar dual of G and
fix an embedding of GD.

Proposition 6.1. There is a one-to-one correspondence between bonds in G and
simple cycles in GD.

Proof. Let (S, S) be a bond in G. Since S is connected, the faces corresponding
to S in GD are adjacent, so the edges of GD corresponding to (S, S) form a simple
cycle.

For the converse, let C be a simple cycle in GD which corresponds to the cut
(S, S) in G. Let u, v be two vertices in G that are on the same side of the cut (S, S).
To prove that (S, S) is a bond it suffices to show a path between u and v in G that
does not use any edge of (S, S).

Embed G and GD in R × R, and consider the two faces of GD corresponding
to vertices u and v. Pick an arbitrary point in each face, for instance, the points
corresponding to u and v. Since C is a simple cycle in GD (and hence in R×R) there
is a continuous curve (in R ×R) that connects the two points without intersecting
C. By considering the faces of GD that this curve visits, and the edges of GD that
the curve intersects, we obtain a path in G that connects vertices u, v without using
any edge of (S, S).

Since for finding a • and � we need to consider only sets, S, such that (S, S)
is a bond, we can restrict ourselves to simple cycles in GD. Furthermore, the two
orientations of a simple cycle can be used to distinguish between the two sides of the
cut to which this cycle corresponds. The notation we adopt is the following: with
a cycle C directed clockwise we associate the set of faces in GD (and hence vertices
in G) enclosed by C. (The side that does not include the infinite face is said to be
enclosed by C and the side containing the infinite face is said to be outside C.)

Let ~GD be the graph obtained from GD by replacing each undirected edge (u, v)
by two directed edges (u→ v) and (v → u). By the preceding discussion, there exists
a correspondence between sets of vertices, S, in G such that (S, S) is a bond and

directed simple cycles in ~GD.

6.2. Transfer function. We associate a cost function, c, with the edges of ~GD

in the obvious manner; an edge in ~GD is assigned the same cost as the corresponding
dual edge in G. Thus, for a directed cycle, C, c(C), denotes the sum of the costs
of the edges along the cycle. We would also like to associate functions, ti, wi with

the edges of ~GD so that if S is the set corresponding to a directed simple cycle C,
then ti(C) = trapped-costTi−1(S) and wi(C) = net-weightTi−1(S). We achieve this
by means of a transfer function.

The notion of a transfer function was introduced by Park and Phillips [7] and can
be viewed as an extension of a function given by Kasteleyn [2]. A function g defined

on the edges of ~GD is antisymmetric if g(u → v) = −g(v → u). (Notice that the
function c defined above is symmetric.) Let f : V → R be a function on the vertices
of G. The transfer function corresponding to f is an antisymmetric function, ft, on

the edges of ~GD such that the sum of the values that ft takes on the edges of any

clockwise (anticlockwise) simple cycle in ~GD is equal to the (negative of the) sum of
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the values that f takes on the vertices corresponding to the faces enclosed by this
cycle.

That a transfer function exists for every function defined on the vertices of G
and that it can be computed efficiently from the following simple argument. Pick a

spanning tree in GD, and set ft to zero for the corresponding edges in ~GD. Now,
add the remaining edges of GD in an order so that with each edge added, one face of
this graph is completed. Note that before the edge e is added, all other edges of the
face that e completes have been assigned a value under ft. One of the two directed
edges corresponding to e is used in the clockwise traversal of this face, and the other
in the anticlockwise traversal. Since the value of f for this face is known and since
ft should sum to this value (the negative of this value) in a clockwise (anticlockwise)
traversal of this face, the value of ft for the two directed edges corresponding to e can
be determined. Note that the function ft obtained in this manner is antisymmetric,
and this together with the fact that the edges of any simple cycle in GD can be written
as a GF [2] sum of the edges belonging to the faces contained in the cycle implies that
ft has the desired property.

7. Finding • sets. Recall that a • at the ith iteration is a bond in the graph
Gi = (Vi, Ei); hence we can restrict our search for a • at the ith iteration to directed

simple cycles in ~GDi .

7.1. Obtaining net-weight and net-cost from transfer functions. Let w̃i :
Vi → Z+, t̃i : Vi → R+ be two functions defined on the vertices of Gi as follows. The
vertices in Vi obtained by shrinking connected components of Ti−1 have w̃i = 0 and
t̃i equal to the cost of the corresponding component of Ti−1. The remaining vertices
have w̃i = wt and t̃i = 0. Let wi, ti denote the transfer functions corresponding
to functions w̃i, t̃i. We now relate the values of the functions c, wi, ti on a directed
simple cycle to the net-cost, net-weight, and net-sparsity of the set corresponding to
the cycle.

Let C be a directed simple cycle in ~GDi and S ⊂ V the set corresponding to it. If
C is clockwise then the net-weight and trapped cost of S are given by the values of
the transfer functions on C, i.e.,

net-weightTi−1
(S) = wi(C),

trapped-costTi−1
(S) = ti(C).

If C is anticlockwise then the values of the transfer functions wi, ti on C equal the
negative of the net-weight and the trapped cost of the set enclosed by C (which is S
in our notation). Hence

net-weightTi−1
(S) = W − wt(Ti−1)− net-weightTi−1

(S) = W − wt(Ti−1) + wi(C),

trapped-costTi−1(S) = cost(Ti−1)− trapped-costTi−1(S) = cost(Ti−1) + ti(C).

Recalling our new definition of net-cost,

net-costTi−1(S) = cost(S)− trapped-costTi−1(S).

We conclude that if C is clockwise

net-sparsityTi−1(S) =
c(C)− ti(C)

wi(C)
,
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and for anticlockwise C,

net-sparsityTi−1
(S) =

c(C)− (ti(C) + cost(Ti−1))

wi(C) +W − wt(Ti−1)
.

Hence, for a simple directed cycle C, once we know the values of the transfer functions
wi, ti it is easy to determine the net-weight and net-sparsity of the corresponding set
S. Note that the orientation of C can be determined by the sign of wi(C) since
wi(C) > 0 (wi(C) < 0) implies that C is clockwise (anticlockwise).

7.2. The approach to finding a •. For a fixed value of wi(C), net-spars-
ityTi−1(S) is minimized when c(C) − ti(C) is minimum. This suggests the following

approach for finding a •: For each w in the range (0 ≤ w ≤ W
3 − wt(Ti−1)) ∪

(−W + wt(Ti−1) ≤ w ≤ −2W
3 ), compute min-cycle(w), a directed simple cycle with

minimum c(C) − ti(C) among all directed cycles C with wi(C) = w. Find the net-
sparsity of the set corresponding to each of these cycles. The set with the minimum
net-sparsity is the • for this iteration.

However, we can implement only a weaker version of procedure min-cycle. Fol-
lowing [7], we construct a graph Hi whose vertices are 2-tuples of the kind (v, j)

where v is a vertex in ~GDi and j is an integer between −nW and nW . For an edge

e = u→ v in ~GDi we have, for all possible choices of j, edge (u, j)→ (v, j + wi(e)) of
length c(e)− ti(e). The shortest path between (v, 0) and (v, w) in Hi gives the short-

est cycle among all directed cycles in ~GDi which contain v and for which wi(C) = w.
By doing this computation for all choices of v, we can find the shortest cycle with
wi(C) = w.

Two questions arise.

1. Is Hi free of negative cycles? This is essential for computing shortest paths
efficiently.

2. Is the cycle obtained in ~GDi simple?

The answer to both questions is “no.” Interestingly enough, things still work out. We
will tackle first the second question (in Theorem 7.1) and then the first (in Lemma 7.2).

7.3. Overcoming nonsimple cycles. Before we discuss how to get over this
problem, we need to have a better understanding of the structure of a nonsimple

cycle, C. If C is not a simple cycle in ~GDi , decompose it arbitrarily into a collection of
edge-disjoint directed simple cycles, C. Let (Sj , Sj) be the cut (in Gi) corresponding
to a cycle Cj ∈ C and Sj be the side of the cut that has smaller net-weight. Further,
let S be the collection of sets Sj , one for each Cj ∈ C.

The value of the transfer functions wi, ti over C is the sum of their values over
the cycles Cj in the collection C. Also,

c(C) =
∑
Sj∈S

cost(Sj).

For each cycle Cj ∈ C we need to relate the net-weight, trapped cost of Sj
to the value of the transfer functions wi, ti on Cj . Cj might be either clockwise or
anticlockwise. Further, Sj might be either inside Cj or outside Cj . This gives us a total
of four different cases. The relationship between net-weightTi−1(Sj) and wi(Cj), and
trapped-costTi−1(Sj) and ti(Cj) is given in Figure 7.1 and can be captured succinctly



172 NAVEEN GARG, HUZUR SARAN, AND VIJAY V. VAZIRANI

Fig. 7.1. Relationship between net-weightTi−1
(S) and wi(C) for the four cases.

as

wi(Cj) = xj(W − wt(Ti−1)) + yj · net-weightTi−1(Sj),

ti(Cj) = xj · cost(Ti−1) + yj · trapped-costTi−1(Sj),

where xj ∈ {+1, 0,−1} and yj ∈ {+1,−1}.
Hence we get a decomposition rule relating the value of the functions wi, ti on

a nonsimple cycle C to the net-weight and trapped cost of the sets induced by this
cycle:

wi(C) = x(W − wt(Ti−1)) +
∑
Sj∈S

yj · net-weightTi−1(Sj),

ti(C) = x · cost(Ti−1) +
∑
Sj∈S

yj · trapped-costTi−1
(Sj),

where x =
∑
j xj is an integer.

7.4. A key theorem. Let Di be a • at the ith iteration (i ≤ k − 1) and C∗ be

the directed simple cycle in ~GDi corresponding to it. Further, let C be the directed
cycle reported by min-cycle(wi(C

∗)).
Theorem 7.1. If C is not simple then the separator found in this iteration has

cost at most 2 · cost(OPT), i.e.,

cost(Ti−1 ∪Bi) ≤ 2 · cost(OPT).

Proof. Since C is the directed cycle for which c(C)− ti(C) is minimum among all
cycles with wi(C) = wi(C

∗) we can claim the following.
If C∗ is clockwise, i.e., wi(C

∗) > 0, then

wi(C) = net-weightTi−1(Di),

c(C)− ti(C) ≤ net-costTi−1(Di),

and if C∗ is anticlockwise, i.e., wi(C
∗) < 0, then

W − wt(Ti−1) + wi(C) = net-weightTi−1(Di),

c(C)− ti(C)− cost(Ti−1) ≤ net-costTi−1(Di).



EDGE SEPARATOR IN PLANAR GRAPHS 173

Substituting for wi(C) and ti(C) by the decomposition rule we get

z(W − wt(Ti−1)) +
∑
Sj∈S

yj · net-weightTi−1
(Sj) = net-weightTi−1

(Di),(7.1)

−z · cost(Ti−1) +
∑
Sj∈S

(cost(Sj)− yj · trapped-costTi−1(Sj)) ≤ net-costTi−1(Di),

(7.2)

where z is x if C∗ is clockwise and x+ 1 if C∗ is anticlockwise.
We now prove that there exists Sj ∈ S which meets the weight requirement for a

� and has cost no more than the cost of Ti, i.e.,
1. W

3 ≤ wt(Ti−1 ∪ Sj) ≤ 2W
3 ,

2. cost(Sj) ≤ cost(Ti−1) + net-costTi−1(Di).
Assume for contradiction that no such Sj exists. The following observations about

the cost/net-cost of a set Sj ∈ S are immediate.
Observation 7.1. If net-weightTi−1

(Sj) ≥W/3− wt(Ti−1) then

cost(Sj) > cost(Ti−1) + net-costTi−1(Di),

which implies

net-costTi−1
(Sj) > net-costTi−1

(Di).

Observation 7.2. If net-weightTi−1(Sj) < W/3− wt(Ti−1) then

net-sparsityTi−1
(Sj) ≥ net-sparsityTi−1

(Di)

and hence

net-costTi−1(Sj) ≥ net-sparsityTi−1(Di) · net-weightTi−1(Sj).

The next observation follows from the above two observations.
Observation 7.3. All sets Sj ∈S have nonnegative net-cost, i.e., net-costTi−1(Sj)

≥ 0.
The idea behind obtaining a contradiction is as follows. For every integral choice

of z we use (7.1) to provide a lower bound on the total net-weight of the sets Sj ∈ S
and (7.2) to provide an upper bound on the total net-cost of the sets Sj ∈ S. We then
use the above observations on the cost/net-cost of sets Sj ∈ S to argue that there is
no way of having sets with so large a total net-weight at so little a total net-cost.

We shall consider three cases depending upon whether z is positive, negative, or
zero.

z = 0. Equation (7.2) implies

net-costTi−1
(Di) ≥

∑
Sj∈S

(cost(Sj)− yj · trapped-costTi−1
(Sj))

≥
∑
Sj∈S

net-costTi−1(Sj),

and from (7.1) we have∑
Sj∈S

net-weightTi−1
(Sj) ≥

∑
Sj∈S

yj · net-weightTi−1
(Sj)

= net-weightTi−1
(Di).
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Since the net-cost of each set is nonnegative (Observation 7.3) each set in S
has net-cost no more than net-costTi−1

(Di). This in turn implies that every
set in S has net-weight strictly less than W/3− wt(Ti−1) (Observation 7.1).
Thus every set in S meets the weight requirement for a •. Since the net-
cost of every set in S is nonnegative, Remark 4.1 applied to the above two
inequalities implies that either there exists Sj ∈ S of lower net-sparsity than
Di or every set in S has the same net-sparsity as Di and the sum of the net-
weight of the sets in S is equal to the net-weight of Di. The first setting leads
to a contradiction since every set in S satisfies the weight requirement for a
• and Di is the • at this iteration. The second setting in turn contradicts the
minimality requirement on Di.

z > 0. Let S− denote the collection of sets Sj ∈ S with yj = −1. Equation (7.2)
now yields

net-costTi−1(Di) + z · cost(Ti−1) ≥
∑
Sj∈S

(cost(Sj)− yj · trapped-costTi−1(Sj))

≥
∑

Sj∈S−
(cost(Sj) + trapped-costTi−1

(Sj))

≥
∑

Sj∈S−
cost(Sj),

where the second inequality follows from the fact that all sets in S −S− have
nonnegative net-cost. We shall develop a contradiction by showing that the
costs of the sets in S− is more than the left-hand side of the above inequality.
A lower bound on the total net-weight of the sets in S− can be obtained from
(7.1) as follows:

z(W − wt(Ti−1))− net-weightTi−1(Di) = −
∑
Sj∈S

yj · net-weightTi−1(Sj)

≤
∑

Sj∈S−
net-weightTi−1

(Sj).

What is the cheapest way of picking sets so that their net-weight is at least
z(W −wt(Ti−1))−net-weightTi−1(Di)? By Observation 7.2 a set Sj such that
net-weightTi−1(Sj) < W/3 − wt(Ti−1) can be picked only at a net-sparsity
of at least net-sparsityTi−1

(Di). On the other hand Observation 7.1 says
that we could be picking sets with large net-weight for cost little more than
cost(Ti−1) + net-costTi−1

(Di). Since any set in S has net-weight at most
W−wt(Ti−1)

2 the unit cost of picking these large sets could be as small as

cost(Ti−1) + net-costTi−1(Di)
W−wt(Ti−1)

2

<
cost(Ti−1) + net-costTi−1(Di)

wt(Ti−1) + net-weightTi−1
(Di)

≤ max

{
cost(Ti−1)

wt(Ti−1)
,

net-costTi−1
(Di)

net-weightTi−1
(Di)

}
≤ net-sparsityTi−1

(Di),

where the last inequality follows from the fact that sparsity(Ti−1) ≤ net-
sparsityTi−1(Di) which in turn is a consequence of Lemma 4.1.
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Thus the cheapest possible way of picking sets is to pick sets of net-weight
W−wt(Ti−1)

2 , incurring a cost of little more than cost(Ti−1) + net-costTi−1(Di)
for each set picked. Since we need to pick a net-weight of at least z(W −
wt(Ti−1)) − net-weightTi−1

(Di), we would have to pick at least 2z − 1 such
sets and so the cost incurred is at least∑

Sj∈S−
cost(Sj) > (2z − 1)(cost(Ti−1) + net-costTi−1(Di))

≥ z · cost(Ti−1) + net-costTi−1
(Di),

where the last inequality follows from the fact that z ≥ 1 (hence 2z − 1 ≥ z
and 2z − 1 ≥ 1). This, however, contradicts the upper bound on the sum of
the costs of the sets in S−, which we derived at the beginning of this case.

z < 0. Let S+ denote the collection of sets Sj ∈ S with yj = 1. Equation (7.2)
now yields

net-costTi−1
(Di) ≥

∑
Sj∈S

(cost(Sj)− yj · trapped-costTi−1
(Sj))

≥
∑

Sj∈S+

net-costTi−1(Sj).

The total net-weight of the sets in S+ can be bounded using (7.1) as follows:∑
Sj∈S+

net-weightTi−1(Sj) ≥
∑
Sj∈S

yj · net-weightTi−1(Sj)

= net-weightTi−1
(Di)− z(W − wt(Ti−1))

≥ −z(W − wt(Ti−1)),

where the last inequality follows from the fact that the net-weight of Di is
nonnegative.

What is the cheapest way of picking sets so that their net-weight is at
least −z(W − wt(Ti−1))? Once again by Observation 7.2 a set Sj of net-
weight less than W

3 −wt(Ti−1) can be picked only at a net-sparsity of at least
net-sparsityTi−1

(Di). On the other hand Observation 7.1 says that we could
be picking a set of net-weight as large as (W −wt(Ti−1))/2 for a net-cost that
is only strictly larger than net-costTi−1(Di). Since

net-costTi−1(Di)

(W − wt(Ti−1))/2
<

net-costTi−1(Di)

net-weightTi−1
(Di)

= net-sparsityTi−1
(Di),

the cheapest possible way of picking sets is to pick sets of net-weight
W−wt(Ti−1)

2 and incur a net-cost strictly larger than net-costTi−1
(Di) for

each set picked. Since we need to pick a net-weight of at least −z(W−
wt(Ti−1)), we should pick at least −2z such sets. Since z ≤ −1, the total
net-cost of these sets is strictly larger than net-costTi−1(Di) contradicting the
upper bound derived at the beginning of this case.

We have thus established that there exists a set Sj ∈ S which meets the weight
requirement for a � and has cost no more than cost(Ti). Further, Sj corresponds to
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a directed simple cycle in ~GDi . Our procedure for finding a � returns a set of cost less
than the cost of any set that meets the weight requirement for a � and corresponds

to a directed simple cycle in ~GD. Hence

cost(Bi) ≤ cost(Sj) ≤ cost(Ti).

Therefore,

cost(Ti−1 ∪Bi) ≤ cost(Ti−1) + cost(Bi) ≤ cost(Ti−1) + cost(Ti) ≤ 2 · cost(OPT),

where the last inequality follows from Lemma 4.3 and the fact that i ≤ k − 1.

For each w in the range [0..W3 −wt(Ti−1)]∪ [−W + wt(Ti−1)..−2W
3 ], it suffices to

find in Gi a directed cycle (not necessarily simple) with minimum c(C)− ti(C) among
all directed cycles C with wi(C) = w. If for some w the shortest cycle is not simple we
discard the cycle and do not consider that w for the purpose of computing the •. If in
the process we discard the cycle with wi(C) = wi(C

∗) then by the above theorem the
separator found in this iteration is within twice the optimum. Otherwise, we obtain
a simple cycle C with wi(C) = wi(C

∗) and the set corresponding to this cycle is a •.
Finally, we have to deal with the case that there are negative cycles in Hi. A

negative cycle in Hi corresponds to a cycle C in ~GDi such that wi(C) = 0 and c(C)−
ti(C) < 0.

Lemma 7.2. If C is a cycle in ~GDi such that wi(C) = 0 and c(C) − ti(C) < 0
then the separator found in this iteration has cost at most 2 · cost(OPT).

Proof. The proof of this lemma is along the lines of Theorem 7.1. We decompose
C into a collection C of directed simple cycles. For Cj ∈ C let Sj be the side of
the cycle with smaller net-weight and let S be the collection of sets Sj , one for each
Cj ∈ C. Using the decomposition rule, we have

z(W − wt(Ti−1)) +
∑
Sj∈S

yj · net-weightTi−1
(Sj) = 0,(7.3)

−z · cost(Ti−1) +
∑
Sj∈S

(cost(Sj)− yj · trapped-costTi−1
(Sj)) < 0.(7.4)

For contradiction we assume that every Sj ∈ S which satisfies the weight require-
ment for a � has cost more than cost(Ti). By Observation 7.3 every set Sj ∈ S has
nonnegative net-cost. Hence (7.4) yields

z · cost(Ti−1) >
∑
Sj∈S

(cost(Sj)− yj · trapped-costTi−1
(Sj))

≥
∑

Sj∈S−
(cost(Sj) + trapped-costTi−1

(Sj))

≥
∑

Sj∈S−
cost(Sj),

which implies that z > 0.
A lower bound on the total net-weight of sets in S− can be obtained using (7.3):

z(W − wt(Ti−1)) = −
∑
Sj∈S

yj · net-weightTi−1
(Sj)

≤
∑

Sj∈S−
net-weightTi−1(Sj).
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Beyond this point the argument is almost identical to that for the case when
z > 0 in the proof of Theorem 7.1. This contradicts our assumption that every set
Sj ∈ S which meets the weight requirement of a � has cost more than cost(Ti). As
in the proof of Theorem 7.1, the � picked in this iteration has cost at most cost(Ti)
and hence the cost of the separator output is at most 2 · cost(OPT).

By Lemma 7.2, we need to compute shortest paths in graph Hi only if it has no
negative cycles.

8. Finding � sets. We will use Rao’s algorithm [8, 9] to find a � set. Let
w : V → Z+ be a weight function on the vertices of G such that w(v) = 0 if v ∈ Ti−1

and wt(v) otherwise. If Bi is a � in the ith iteration, then (Bi, Bi) is a b-balanced

bond in G when the weights on the vertices are given by w and b = W/3−wt(Ti−1)
W−wt(Ti−1) .

Thus, to find the � we need to find the minimum-cost simple cycle in GD which
corresponds to a b-balanced bond in G.

Rao [8, 9] gives an algorithm for finding a minimum-cost b-balanced connected
circuit in GD. A connected circuit in GD is a set of cycles in GD connected by an
acyclic set of paths. Intuitively, a connected circuit can be viewed as a simple cycle
with “pinched” portions corresponding to the paths. The cost of a connected circuit
is defined to be the cost of the closed walk that goes through each pinched portion
twice and each cycle once. A connected circuit in GD defines a simple cut in G; the
vertices corresponding to faces included in the cycles of the connected circuit form
one side of the cut. A connected circuit is b-balanced if the cut corresponding to it
is b-balanced. Note that the cost of the cut defined by a connected circuit is just
the sum of the costs of the cycles in it. Hence, the definition of cost of a connected
circuit is an upper bound on the cost of the underlying cut; the two are equal if the
connected circuit is a simple cycle.

Notice that for a � we do not really need to find a minimum-cost b-balanced
bond in G; any cut that is b-balanced and has cost no more than the minimum-cost
b-balanced bond will serve our purpose. Hence we can use Rao’s algorithm to find a �.
The total time taken by Rao’s algorithm to obtain an optimal b-balanced connected
circuit cut is O(n2W ).

9. Running time. Clearly, the algorithm terminates in at most n iterations.
The running time of each iteration is dominated by the time to find a •. In each
iteration, computing a • involves O(n) single source shortest path computations in a
graph with O(n2W ) vertices and O(n2W ) edges; the edge-lengths may be negative.
This can be done in O(n4W 2) time by preprocessing the network so that all edge-
lengths are negative and then applying Dijkstra’s algorithm n times. Hence, the
total running time of the dot-box algorithm is O(n5W 2). This is polynomial if W is
polynomially bounded.

Theorem 9.1. The dot-box algorithm finds an edge-separator in a planar graph
of cost within twice the optimum and runs in time O(n5W 2), where W is the sum of
weights of the vertices.

10. Dealing with binary weights. The size of the graph in which we compute
shortest paths (and hence the running time of the dot-box algorithm) depends on
the sum of the vertex weights. Using scaling we can make our algorithm strongly
polynomial; however, the resulting algorithm is a pseudoapproximation algorithm
in the sense that it compares the cut obtained with an optimal cut having a better
balance. Finally, we use our scaling ideas to extend the algorithm of Park and Phillips
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into a fully polynomial approximation scheme for finding sparsest cuts in planar graphs
with vertex weights given in binary, thereby settling their open problem.

10.1. b-balanced cut. Let us scale the vertex weights so that the sum of the
weights is no more than αn (α > 1). This can be done by defining a new weight
function ŵt : V → Z+ as

ŵt(v) =

⌊
wt(v)

W
· αn

⌋
.

The process of obtaining the new weights can be viewed as a two-step process: first
we scale the weights by a constant factor αn

W and then we truncate. The first step
does not affect the balance of any cut since all vertex weights are scaled by the same
factor. However, the second step could affect the balance of a cut. Thus a cut (S, S)
with balance b under the weight function wt might have a worse balance under ŵt
since all vertices on the side with smaller weight might have their weights truncated.
However, the total loss in weight due to truncations is at most n (1 for each vertex).
The balance would be worst when the total weight stays at αn (not drop by the
truncations) and then the loss of weight of the smaller side is a 1/α fraction of the
total weight. Thus the balance of the cut (S, S) under ŵt might be b − 1/α but no
worse.

Similarly, a cut (S, S) with balance b̂ under ŵt might have a worse balance under
wt. It is easy to show by a similar argument that under wt, (S, S) has a balance no

worse than b̂− 1/α.
Let OPT denote the cost of the optimum b-balanced cut under the weight assign-

ment wt. Since this cut might be (b − 1/α)-balanced under ŵt, we use the dot-box
algorithm to find a (b − 1/α)-balanced cut of cost within 2OPT. The cut returned
by our algorithm, while being (b− 1/α)-balanced under ŵt, might only be (b− 2/α)-
balanced under wt. Thus we obtain a (b− 2/α)-balanced cut of cost within twice the
optimum b-balanced cut.

Theorem 10.1. For α > 2/b, the dot-box algorithm, with weight scaling, finds a
(b− 2/α)-balanced cut in a planar graph of cost within twice the cost of an optimum
b-balanced cut for b ≤ 1

3 in O(α2n7) time.

10.2. Sparsest cut. Assume that vertex weights in planar graph G are given
in binary. Let 2p be the least power of 2 that bounds the weight of each vertex
and W be the sum of weights of all vertices. We will construct p + 1 copies of G,
Gi, 0 ≤ i ≤ p, each having the same edge costs as G. In Gi, vertex weights are assigned
as follows: Let α be a positive integer; α determines the approximation guarantee as
described below. Vertices having weights in the range [2i, 2i+2 log n+α+2] are assigned
their original weight; those having weight < 2i are assigned weight 0, i.e., they can
be deleted from the graph; and those having weight > 2i+2 log n+α+2 are assigned
weight 2i+2 log n+α+2. The sparsest cut is computed in each of these graphs using the
algorithm of Park and Phillips. For the purpose of this computation, the weights of
all vertices in Gi are divided by 2i; notice that this leaves the weights integral, and the
total weight of vertices is at most O(2αn3). The running time of [7] is O(n2w lognw),
where w is the total weight of vertices in the graph. Thus, this computation takes
time O(α2αn5 logW logn), which is polynomial in the size of the input, for fixed α.
The sparsity of the p+ 1 cuts so obtained is computed in the original graph, and the
sparsest one is chosen.

Let (S, S) be an optimal sparsest cut in G, and let S be its lighter side. Let the



EDGE SEPARATOR IN PLANAR GRAPHS 179

weight of S be t, and let q be the weight of the heaviest vertex in S. Pick the smallest
integer i such that 2i+log n+α+1 ≥ q.

Lemma 10.2. The cut found in Gi has cost at most that of (S, S), and weight at
least (1− 1

2α )t. Therefore, this cut has sparsity within a factor of 1
1− 1

2α
of the sparsity

of (S, S).
Proof. The algorithm of Park and Phillips searches for the cheapest cut of each

weight, for all choices of weight between 0 and half the weight of the given graph. It
then outputs the sparsest of these cuts.

First notice that for the choice of i given above, the weight of S in Gi, say t′,
satisfies (1 − 1

2α )t ≤ t′ ≤ t. Indeed, any set of vertices whose weights are at most
2i+2 log n+α+2 in G satisfies that its weight drops by a factor of at most (1 − 1

2α )
in Gi. On the other hand, any set of vertices containing a vertex having weight
> 2i+2 log n+α+2 in G has weight exceeding t in Gi. Therefore, the cut found in Gi for
the target weight of t′ satisfies the conditions of the lemma.

For a given choice of δ > 0, pick the smallest positive integer α so that 1 + δ ≥
1

(1− 1
2α )

. Then we get the following.

Theorem 10.3. The above algorithm gives a fully polynomial time approximation
scheme for the minimum-sparsity cut problem in planar graphs. For each δ > 0,
this algorithm finds a cut of sparsity within a factor of (1 + δ) of the optimal in
O( 1

δ log( 1
δ )n5 logW logn) time.

11. Open problems. Several open problems remain.
1. Is the problem of finding the cheapest b-balanced cut in planar graphs strongly

NP-hard, or is there a pseudo–polynomial time algorithm for it?
2. What is the complexity of finding a minimum net-sparsity cut in planar

graphs, assuming that the vertex weights are given in unary?
3. What is the complexity of finding • sets in planar graphs, assuming that the

vertex weights are given in unary?
4. Can the algorithm given in this paper be extended to other submodular func-

tions?
5. Can it be extended to other classes of graphs? In particular, can the notion

of transfer function be extended to other classes of graphs?
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Abstract. Suppose that we sequentially place n balls into n boxes by putting each ball into
a randomly chosen box. It is well known that when we are done, the fullest box has with high
probability (1 + o(1)) lnn/ ln lnn balls in it. Suppose instead that for each ball we choose two boxes
at random and place the ball into the one which is less full at the time of placement. We show that
with high probability, the fullest box contains only ln lnn/ ln 2 +O(1) balls—exponentially less than
before. Furthermore, we show that a similar gap exists in the infinite process, where at each step one
ball, chosen uniformly at random, is deleted, and one ball is added in the manner above. We discuss
consequences of this and related theorems for dynamic resource allocation, hashing, and on-line load
balancing.
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1. Introduction. Suppose that we sequentially place n balls into n boxes by
putting each ball into a randomly chosen box. Properties of this random allocation
process have been extensively studied in the probability and statistics literature. (See,
e.g., [20, 17].) One of the classical results in this area is that, asymptotically, when
the process has terminated, with high probability (that is, with probability 1− o(1))
the fullest box contains (1 + o(1)) lnn/ ln lnn balls. (G. Gonnet [16] has proven a
more accurate result, Γ−1(n)− 3/2 + o(1).)

Consider a variant of the process above whereby each ball comes with d possible
destinations, chosen independently and uniformly at random. (Hence the d destina-
tions are not necessarily distinct.) The ball is placed in the least full box among the
d possible locations. Surprisingly, even for d = 2, when the process terminates the
fullest box has only ln lnn/ ln 2+O(1) balls in it. Thus, this apparently minor change
in the random allocation process results in an exponential decrease in the maximum
occupancy per location. The analysis of this process is summarized as follows

Theorem 1.1. Suppose that m balls are sequentially placed into n boxes. Each
ball is placed in the least full box, at the time of the placement, among d boxes, d ≥ 2,
chosen independently and uniformly at random. Then after all the balls are placed,

• with high probability, as n→∞ and m ≥ n, the number of balls in the fullest
box is (1 + o(1)) ln lnn/ ln d+ Θ(m/n);
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• in particular, with high probability, as n→∞ and m = n, the number of balls
in the fullest box is ln lnn/ ln d+ Θ(1);

• any other on-line strategy that places each ball into one of d randomly chosen
boxes results in stochastically more balls1 in the fullest box.

It is also interesting to study the infinite version of the random allocation process.
There, at each step a ball is chosen uniformly at random and removed from the
system, and a new ball appears. The new ball comes with d possible destinations,
chosen independently at random, and it is placed into the least full box among these
d possible destinations.

The analysis of the case d = 1 in this infinite stochastic process is simple since
the location of any ball does not depend on the locations of other balls in the system.
Thus, for d = 1, in the stationary distribution, with high probability the fullest box
has Θ(logn/ log logn) balls. The analysis of the case d ≥ 2 is significantly harder,
since the locations of the current n balls might depend on the locations of balls that
are no longer in the system. We prove that when d ≥ 2, in the stationary distribution,
the fullest box has ln lnn/ ln d + O(1) balls, with high probability. Thus, the same
exponential gap holds in the infinite process. Theorem 1.2 is proven in section 4.

Theorem 1.2. Consider the infinite process with d ≥ 2, starting at time 0 in an
arbitrary state. There is a constant c such that for any fixed T > cn2 log logn, the
fullest box at time T contains, with high probability, less than ln lnn/ ln d+O(1) balls.
Thus, in the stationary distribution, with high probability, no box contains more than
ln lnn/ ln d+O(1) balls.

Karp, Luby, and Meyer auf der Heide [18] were the first to notice a dramatic
improvement when switching from one hash function to two in the context of PRAM
simulations. In fact, it is possible to use a result from [18] to derive a weaker form of
our static upper bound. (For details see [7].)

A preliminary version of this paper has appeared in [7]. Subsequently, Adler et
al. [1] analyzed parallel implementation of the balanced allocation mechanism and
obtained interesting communication vs. load tradeoffs.

A related question was considered by Broder et al. [10]. In their model the set of
choices is such that there is a placement that results in maximum load equal to one.
The question they analyze is, what is the expected maximum load under a random
order of insertion under the greedy strategy?

More recent results, based on the balanced allocation paradigm, have appeared
in [23, 24, 25, 12].

1.1. Applications. Our results have a number of interesting applications to
computing problems. We elaborate here on three of them.

1.1.1. Dynamic resource allocation. Consider a scenario in which a user or
a process has to choose between a number of identical resources on-line (choosing a
server to use among the servers in a network, choosing a disk to store a directory, etc.).
To find the least loaded resource, users may check the load on all resources before
placing their requests. This process is expensive, since it requires sending an interrupt
to each of the resources. A second approach is to send the task to a random resource.
This approach has minimum overhead, but if all users follow it, the difference in load
between different servers will vary by up to a logarithmic factor. Our analysis suggests

1By this we mean that for any other strategy and any k the probability that the number of balls
in the fullest box is greater than k is at least the probability that the number of balls in the fullest
box is greater than k under the greedy strategy. See Corollary 3.6.
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a more efficient solution. If each user samples the load of two resources and sends
his request to the least loaded, the total overhead is small, and the load on the n
resources varies by only a O(log logn) factor.

1.1.2. Hashing. The efficiency of a hashing technique is measured by two pa-
rameters: the expected and the maximum access time. Our approach suggests a
simple hashing technique, similar to hashing with chaining. We call it 2-way chain-
ing. It has O(1) expected and O(log logn) maximum access time. We use two random
hash functions. The two hash functions define two possible entries in the table for each
key. The key is inserted to the least full location, at the time of the insertion. Keys in
each entry of the table are stored in a linked list. Assume that n keys are sequentially
inserted by this process into a table of size n. As shown in section 5, the expected
insertion and look-up time is O(1), and our analysis summarized above immediately
implies that with high probability the maximum access time is ln lnn/ ln 2+O(1), vs.
the Θ(logn/ log logn) time when only one random hash function is used.

An advantage of our scheme over some other known techniques for reducing worst-
case behavior of hashing (e.g., [14, 13, 11]) is, that it uses only two hash functions,
it is easy to parallelize, and it does not involve rehashing of data. Other commonly
used schemes partition the available memory into multiple tables, and use a different
hash function in each table. For example, the Fredman, Komlos, Szemeredi scheme
for perfect hashing [14] uses up to n different hash functions to get O(1) worst-case
access time (not on-line however), and the algorithm of Broder and Karlin [11] uses
O(log logn) hash functions to achieve O(log logn) maximum access time on-line but
using rehashings.

Karp, Luby, and Meyer auf der Heide [18] studied the use of two hash functions
in the context of PRAM simulations. Other PRAM simulations using multiple hash
functions were developed and analyzed in [21].

1.1.3. Competitive on-line load balancing. Consider the following on-line
load balancing problem: We are given a set of n servers and a sequence of arrivals
and departures of tasks. Each task comes with a list of servers on which it can be ex-
ecuted. The load balancing algorithm has to assign each task to a server on-line, with
no information on future arrivals and departures of tasks. The goal of the algorithm
is to minimize the maximum load on any server. The quality of an on-line algo-
rithm is measured by the competitive ratio: the ratio between the maximum load it
achieves and the maximum load achieved by the optimal off-line algorithm that knows
the whole sequence in advance. This load balancing problem models, for example,
communication in heterogeneous networks containing workstations, I/O devices, etc.
Servers correspond to communication channels and tasks correspond to requests for
communication links between devices. A network controller must coordinate the chan-
nels so that no channel is too heavily loaded.

On-line load balancing has been studied extensively against worst-case adversaries
[9, 6, 5, 3, 8, 4]. For permanent tasks (tasks that arrive but never depart), Azar, Naor
and Rom [9] showed that the competitive ratio of the greedy algorithm is logn and
that no algorithm can do better. For temporary tasks (tasks that depart at unpre-
dictable times), the works of Azar, Broder, and Karlin [6] and Azar et al. [8] show
that there is an algorithm with competitive ratio Θ(

√
n) and that no algorithm can

do better.
It is interesting to compare these high competitive ratios, obtained from inputs

generated by an adversary, to the competitive ratio against randomly generated in-
puts. Our results show that under reasonable probabilistic assumptions the compet-
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itive ratios for both permanent and temporary tasks are significantly better. In the
case of permanent tasks, if the set of servers on which a task can be executed is a small
set (that is, constant size ≥ 2) chosen at random, the competitive ratio decreases from
Θ(logn) to Θ(log logn). In the case of temporary tasks, if we further assume that
at each time step a randomly chosen existent task is replaced by a new task, then at
any fixed time the ratio between the maximum on-line load and the maximum off-line
load is Θ(log logn) with high probability. Further details are presented in section 6.

2. Definitions and notation. We consider two stochastic processes: the finite
process and the infinite process.

The finite process. There are n boxes, initially empty, and m balls. Each ball
is allowed to go into d ≥ 1 boxes chosen independently and uniformly at random.
The balls arrive one by one, and a placement algorithm must decide on-line (that is,
without knowing what choices are available to future balls) in which box to put each
ball as it comes. Decisions are irrevocable. We will subsequently refer to this setup
as a (m,n, d)-problem.

The infinite process. There are n boxes, initially containing n balls in an ar-
bitrary state. (For example, all the balls could be in one box.) At each step, one
random ball is removed, and one new ball is added; the new ball is allowed to go into
d ≥ 1 boxes chosen independently and uniformly at random. Once again, a placement
algorithm must decide on-line (that is, without knowing what choices are available to
future balls and without knowing which ball will be removed at any future time) in
which box to put each arriving ball. Decisions are irrevocable.

We use the following notations for the random variables associated with a place-
ment algorithm A. Note that the state at time t refers to the state immediately after
the placement of the tth ball.

λAj (t) called the load of box j, is the number of balls in box j at time t, resulting
from algorithm A.

νAk (t) is the number of boxes that have load k at time t.
νA≥k(t) is the number of boxes that have load ≥ k at time t, that is, νA≥k(t) =∑

i≥k ν
A
i (t).

hAt called the height of ball t (= the ball that arrives at time t), is the number
of balls at time t in the box where ball t is placed. In other words, the first
ball to be placed in a particular box has height 1, the second ball has height
2, etc.

µAk (t) is the number of balls that have height k at time t.
µA≥k(t) is the number of balls that have height ≥ k at time t, that is, µA≥k(t) =∑

i≥k µ
A
i (t).

We omit the superscript A when it is clear which algorithm we are considering.
Constants were chosen for convenience, and we made no attempts to optimize them.

Algorithm greedy assigns ball j to the box that has the lowest load among the
d random choices that j has. We use the superscript G for greedy.

The basic intuition behind the proofs that follow is simple: Let pi = µ≥i/n.
Since the available choices for each ball are independent and ν≥i ≤ µ≥i, we roughly
have (“on average” and disregarding conditioning) pi+1 ≤ pdi , which implies a doubly
exponential decrease in pi, once µ≥i < n/2. Of course the truth is that µ≥i+1 is
strongly dependent on µ≥i and a rather complex machinery is required to construct
a correct proof.
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3. The finite process. We use the notation B(n, p) to denote a binomially
distributed random variable with parameters n and p, and start with the following
standard lemma, whose proof is omitted.

Lemma 3.1. Let X1, X2, . . . , Xn be a sequence of random variables with values in
an arbitrary domain, and let Y1, Y2, . . . , Yn be a sequence of binary random variables,
with the property that Yi = Yi(X1, . . . , Xi). If

Pr(Yi = 1 | X1, . . . , Xi−1) ≤ p,
then

Pr
(∑

Yi ≥ k
)
≤ Pr(B(n, p) ≥ k),

and similarly if

Pr(Yi = 1 | X1, . . . , Xi−1) ≥ p,
then

Pr
(∑

Yi ≤ k
)
≤ Pr(B(n, p) ≤ k).

We now turn to the analysis of the finite process. In what follows, we omit the
argument t when t = m, that is, when the process terminates. In the interest of a
clearer exposition, we start with the case m = n, although the general case (Theorem
3.7) subsumes it.

Theorem 3.2. The maximum load achieved by the greedy algorithm on a
random (n, n, d)-problem is less than ln lnn/ ln d+O(1) with high probability.

Proof. Since the d choices for a ball are independent, we have

Pr(ht ≥ i+ 1 | ν≥i(t− 1)) =

(
ν≥i(t− 1)

)d
nd

.

Let Ei be the event that ν≥i(n) ≤ βi where βi will be exposed later. (Clearly, Ei
implies that ν≥i(t) ≤ βi for t = 1, . . . , n.) Now fix i ≥ 1 and consider a series of
binary random variables Yt for t = 2, . . . , n, where

Yt = 1 iff ht ≥ i+ 1 and ν≥i(t− 1) ≤ βi.
(Yt is 1 if the height of the ball t is ≥ i+ 1 despite the fact that the number of boxes
that have load ≥ i is less than βi.)

Let ωj represent the choices available to the jth ball. Clearly,

Pr(Yt = 1 | ω1, . . . , ωt−1) ≤ βdi
nd

def
= pi.

Thus we can apply Lemma 3.1 to conclude that

Pr
(∑

Yt ≥ k
)
≤ Pr(B(n, pi) ≥ k).(3.1)

Observe that conditioned on Ei, we have µ≥i+1 =
∑
Yt. Therefore

Pr(µ≥i+1 ≥ k | Ei) = Pr
(∑

Yt ≥ k | Ei
)
≤ Pr (

∑
Yt ≥ k)

Pr(Ei) .(3.2)
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Combining (3.1) and (3.2) we obtain that

Pr(ν≥i+1 ≥ k | Ei) ≤ Pr(µ≥i+1 ≥ k | Ei) ≤ Pr(B(n, pi) ≥ k)

Pr(Ei) .(3.3)

We can bound large deviations in the binomial distribution with the formula (see,
for instance, [2, Appendix A])

Pr(B(n, pi) ≥ epin) ≤ e−pin,(3.4)

which inspires us to set

βi =



n, i = 1, 2, . . . , 5;

n

2e
, i = 6;

eβdi−1

nd−1
, i > 6.

With these choices E≥6 = {ν6 ≤ n/(2e)} holds with certainty, and from (3.3) and
(3.4), for i ≥ 6

Pr(¬Ei+1 | Ei) ≤ 1

n2Pr(Ei) ,

provided that pin ≥ 2 lnn. Since

Pr(¬Ei+1) ≤ Pr(¬Ei+1 | Ei)Pr(Ei) + Pr(¬Ei),
it follows that for pin ≥ 2 lnn

Pr(¬Ei+1) ≤ 1

n2
+ Pr(¬Ei).(3.5)

To finish the proof let i∗ be the smallest i such that βdi∗/n
d ≤ 2 lnn/n. Notice

that i∗ ≤ ln lnn/ ln d+O(1) since

βi+6 =
ne(di−1)/(d−1)

(2e)di
≤ n

2di
.

As before,

Pr(ν≥i∗+1 ≥ 6 lnn | Ei∗) ≤ Pr(B(n, 2 lnn/n) ≥ 6 lnn)

Pr(Ei∗) ≤ 1

n2Pr(Ei∗) ,

and thus

Pr(ν≥i∗+1 ≥ 6 lnn) ≤ 1

n2
+ Pr(¬Ei∗).(3.6)

Finally,

Pr(µ≥i∗+2 ≥ 1 | ν≥i∗+1 ≤ 6 lnn) ≤ Pr(B(n, (6 lnn/n)d) ≥ 1)

Pr(ν≥i∗+1 ≤ 6 lnn)

≤ n(6 lnn/n)d

Pr(ν≥i∗+1 ≤ 6 lnn)
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by the Markov inequality, and thus

Pr(µ≥i∗+2 ≥ 1) ≤ (6 lnn)d

nd−1
+ Pr(ν≥i∗+1 ≥ 6 lnn).(3.7)

Combining (3.7), (3.6), and (3.5), we obtain that

Pr(ν≥i∗+2 ≥ 1) ≤ (6 lnn)d

nd−1
+
i∗ + 1

n2
= o(1),

which implies that with high probability the maximum load achieved by greedy is
less than i∗ + 2 = ln lnn/ ln d+O(1).

We now prove a matching lower bound.
Theorem 3.3. The maximum load achieved by the greedy algorithm on a

random (n, n, d)-problem is at least ln lnn/ ln d−O(1) with high probability.
Proof. Let Fi be the event that ν≥i(n(1 − 1/2i)) ≥ γi where γi will be exposed

later. For the time being, it suffices to say that γi+1 < γi/2. We want to compute
Pr(¬Fi+1 | Fi). To this aim, for t in the range R = {n(1−1/2i)+1, . . . , n(1−1/2i+1)},
let Zt be defined by

Zt = 1 iff ht = i+ 1 or ν≥i+1(t− 1) ≥ γi+1,

and observe that while ν≥i+1(t− 1) < γi+1, if Zt = 1, then the box where the tth ball
is placed had load exactly i at time t− 1. This means that all the d choices that ball
t had pointed to boxes with load ≥ i and at least one choice pointed to a box with
load exactly i.

Now let ωj represent the choices available to the jth ball. Using

Pr(A ∨B | C) = Pr(A ∧ B̄ | C) + Pr(B | C)

= Pr(A | B̄ ∧ C)Pr(B̄ | C) + Pr(B | C) ≥ Pr(A | B̄ ∧ C),

and in view of the observation above, we derive that

Pr(Zt = 1 | ω1, . . . , ωt−1,Fi) ≥
(γi
n

)d
−
(γi+1

n

)d
≥ 1

2

(γi
n

)d def
= pi.(3.8)

Applying Lemma 3.1 we get

Pr

(∑
t∈R

Zt ≤ k
∣∣∣ Fi) ≤ Pr(B(n/2i+1, pi) ≤ k).

We now choose

γ0 = n;

γi+1 =
γdi

2i+3nd−1
=

n

2i+3

(γi
n

)d
=

1

2

n

2i+1
pi.

Since Pr(B(N, p) < Np/2) < e−Np/8 (see, for instance, [2, Appendix A]), it follows
that

Pr(B(n/2i+1, pi) ≤ γi+1) = o(1/n2),(3.9)

provided that pin/2
i+1 ≥ 17 lnn. Let i∗ be the largest integer for which this holds.

Clearly i∗ = ln lnn/ ln d−O(1).
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Now observe that by the definition of F and Zt, the event {∑t∈R Zt ≥ γi+1}
implies Fi+1. Thus in view of (3.8) and (3.9)

Pr(¬Fi+1 | Fi) ≤ Pr

(∑
t∈R

Zt ≤ γi+1

∣∣∣ Fi) = o(1/n2),

and therefore

Pr(Fi∗) ≥ Pr(Fi∗ | Fi∗−1)×Pr(Fi∗−1 | Fi∗−2)× · · · ×Pr(F1 | F0)×Pr(F0)

≥ (1− 1/n2)i
∗

= 1− o(1/n),

which completes the proof.
We now turn to showing that the greedy algorithm is stochastically optimal

under our model, that is, we assume that each ball has d destinations chosen uniformly
at random and that all balls have equal weight. (The optimality is not preserved if
either condition is violated.) It suffices to consider only deterministic algorithms
since randomized algorithms can be considered as a distribution over deterministic
algorithms.

We say that a vector v̄ = (v1, v2, . . . , vn) majorizes a vector ū, written v̄ � ū, if
for 1 ≤ i ≤ n, we have

∑
1≤j≤i vπ(j) ≥

∑
1≤j≤i uσ(j), where π and σ are permutations

of 1, . . . , n such that vπ(1) ≥ vπ(2) ≥ · · · ≥ vπ(n) and uσ(1) ≥ uσ(2) ≥ · · · ≥ uσ(n).
Lemma 3.4. Let v̄ and ū be two positive integer vectors such that v1 ≥ v2 ≥ · · · ≥

vn and u1 ≥ u2 ≥ · · · ≥ un. If v̄ � ū then also v̄+ ēi � ū+ ēi, where ēi is the ith unit
vector, that is ēi,j = δi,j.

Proof. Let Sj(x̄) be the sum of the j largest components of the vector x̄. Notice
first that for all j

Sj(x̄) ≤ Sj(x̄+ ēi) ≤ Sj(x̄) + 1.(3.10)

By hypothesis, for all j, we have Sj(v̄) ≥ Sj(ū). To prove the lemma we show that
for all j, we also have Sj(v̄ + ēi) ≥ Sj(ū + ēi). Fix j. By (3.10) if Sj(v̄) > Sj(ū),
then Sj(v̄ + ēi) ≥ Sj(ū + ēi). Now assume Sj(v̄) = Sj(ū). There are three cases to
consider:

Case 1. i ≤ j. Then

Sj(v̄ + ēi) = Sj(v̄) + 1 = Sj(ū) + 1 = Sj(ū+ ēi).

Case 2. i > j and uj > ui. Since uj ≥ ui + 1, it follows that Sj(ū) = Sj(ū + ēi)
and therefore

Sj(v̄ + ēi) ≥ Sj(v̄) = Sj(ū) = Sj(ū+ ēi).

Case 3. i > j and uj = uj+1 = · · · = ui. Observe first that since Sj−1(v̄) ≥
Sj−1(ū), Sj(v̄) = Sj(ū), and Sj+1(v̄) ≥ Sj+1(ū), we have

vj ≤ uj and vj+1 ≥ uj+1.

Hence

vj ≥ vj+1 ≥ uj+1 = uj ≥ vj .
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We conclude that vj = uj = vj+1 = uj+1, and thus Sj+1(v̄) = Sj+1(ū). Repeating
the argument, we obtain that

vj = uj = vj+1 = uj+1 = · · · = vi = ui,

and therefore

Sj(v̄ + ēi) = Sj(v̄) + 1 = Sj(ū) + 1 = Sj(ū+ ēi).

Let Ω be the set of all possible nd choices for each ball and Ωt be the set of
sequences of choices for the first t balls.

Theorem 3.5. For any on-line deterministic algorithm A, and t ≥ 0, there is
1-1 correspondence f : Ωt → Ωt such that for any ωt ∈ Ωt the vector of box loads
associated with greedy acting on ωt, written

λ̄G(ωt) = (λG1 (ωt), λ
G
2 (ωt), . . . , λ

G
n (ωt)),

is majorized by the vector of box loads associated with A acting on f(ωt), that is

λ̄G(ωt) � λ̄A(f(ωt)).

Proof. To simplify notation we assume d = 2. The proof for larger d is analogous.
The proof proceeds by induction on t, the length of the sequence. The base case
(t = 0) is obvious. Assume the theorem valid for t and let ft be the mapping on
Ωt. Fix a sequence ωt ∈ Ωt. It suffices to show that we can refine ft to obtain a
1-1 correspondence for all possible 1-step extensions of ωt. Without loss of generality,
renumber the boxes such that

λG1 (ωt) ≥ λG2 (ωt) ≥ · · · ≥ λGn (ωt),

and let π be a permutation of 1, . . . , n such that

λAπ(1)(ft(ωt)) ≥ λAπ(2)(ft(ωt)) ≥ · · · ≥ λAπ(n)(ft(ωt)).

Let (i, j) be two choices for the t+ 1 ball. For every i, j we define

ft+1(ωt � (i, j)) = ft(ωt) � (π(i), π(j)),

where “�” represents extension of sequences.
Clearly ft+1 is 1-1. We need to show that

λ̄G(ωt � (i, j)) � λ̄A(ft(ωt) � (π(i), π(j))
)
.

Notice that when the sequence ωt is extended by the step (i, j) for any algorithm,
exactly one component of the vector λ̄(ωt) changes, namely either λi(ωt) or λj(ωt)
increases by one. Assume that i ≥ j; then

λ̄G(ωt � (i, j)) = λ̄G(ωt) + ēi � λ̄A(ft(ωt)) + ēπ(i) � λ̄A
(
ft(ωt) � (π(i), π(j))

)
,

where the first inequality follows from Lemma 3.4 and the second is due to the fact
that

λ̄A(ft(ωt)) + ēπ(i) � λ̄A(ft(ωt)) + ēπ(j).
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Corollary 3.6. For any fixed k and any t

Pr(max
i
λAi (t) > k) ≥ Pr(max

i
λGi (t) > k).

We are now ready to discuss the general case of the finite process.
Theorem 3.7. The maximum load achieved by the greedy algorithm on a

random (m,n, d)-problem, with d ≥ 2 and m ≥ n, is, with high probability, less than
(1 + o(1)) ln lnn/ ln d+O(m/n).

Proof. We start by replaying the proof of Theorem 3.2, taking into account the
fact that there are now m balls. So let Ei be the event that ν≥i(m) ≤ βi, and define
pi = βdi /n

d. Following the proof of Theorem 3.2 we derive that

Pr(ν≥i+1 ≥ k | Ei) ≤ Pr(B(m, pi) ≥ k)

Pr(Ei) .

Suppose that for some value x we set βx = n2/(2em) and show that Ex holds with
high probability, that is,

Pr

(
νx ≥ n2

2em

)
= o(1).(3.11)

Then

βi+x =
n

2di

(me
n

)(di−1)/(d−1)−di
≤ n

2di
,

and continuing as before, we obtain that

Pr(µ ≥ x+ ln lnn/ ln d+ 2) = o(1).

It remains to be shown that x can be taken to be O(m/n) + o(ln lnn/ ln d). First
assume that m/n ≥ w(n) where w(n) is an increasing function of n, but w(n) =
o(ln lnn/ ln d). Then we claim that we can take x = dem/ne.

Consider a placement algorithm, denoted R, that always puts a ball in the box
corresponding to the first choice offered. This is entirely equivalent with the case
d = 1, the classical occupancy problem. The load within a box under this process is
a binomial random variable B(m, 1/n), and therefore (via (3.4)), the probability that
the load within a box exceeds em/n is bounded by e−m/n. Now consider the height
of the tth ball, denoted hRt . The probability that the box into which the tth ball is
placed has load greater than em/n is less than e−m/n, and therefore the expected
number of balls of height ≥ em/n satisfies

E(µR≥em/n) ≤ me−m/n.
Hence by Markov’s inequality

Pr

(
µR≥em/n ≥

n2

2em

)
≤ 2em2

n2
e−m/n = o(1),

since m/n→∞.
We claim that Theorem 3.5 implies

Pr
(
µG≥k ≥ r

)≤ Pr
(
µR≥k ≥ r

)
.(3.12)
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Indeed, suppose that there is an outcome ωt for which greedy has exactly i boxes
with load greater than or equal to k. As in the proof of Theorem 3.5, renumber the
boxes such that

λG1 (ωt) ≥ λG2 (ωt) ≥ · · · ≥ λGn (ωt).

Let ft(ωt) be the corresponding outcome for algorithm R and let π be a permutation
of 1, . . . , n such that

λRπ(1)(ft(ωt)) ≥ λRπ(2)(ft(ωt)) ≥ · · · ≥ λRπ(n)(ft(ωt)).

Then

µG≥k(ωt) =
∑

1≤j≤i
(λGj (ωt)− (k − 1))

and

µR≥k(ft(ωt)) ≥
∑

1≤j≤i
(λRπ(j)(ft(ωt))− (k − 1)).

But Theorem 3.5 implies that∑
1≤j≤i

λRj (f(ωt)) ≥
∑

1≤j≤i
λGj (ωt),

and by considering all outcomes we obtain (3.12). Therefore,

Pr

(
µG≥em/n ≥

n2

2em

)
≤ Pr

(
µR≥em/n ≥

n2

2em

)
,

and since

Pr

(
νG≥em/n ≥

n2

2em

)
≤ Pr

(
µG≥em/n ≥

n2

2em

)
,

we have that for x = dem/ne (3.11) is satisfied.
To remove the assumption m/n ≥ w(n), we can simply imagine that the number

of balls is increased to max(m,nw(n)). Then the corresponding value of x becomes
O(max(m,nw(n))/n) = O(m/n) + o(ln lnn/ ln d).

4. The infinite process. In this section we consider the infinite process. Anal-
ogously to Theorem 3.5 it is possible to show that the greedy algorithm minimizes
the expected maximum load on any box. We analyze its performance below. The
main theorem of this section is the following.

Theorem 4.1. Assume that the infinite process starts in an arbitrary state. Un-
der greedy, with d ≥ 2, there is a constant c such that for any fixed T ≥ cn2 log logn,

Pr(∃j, λj(T ) ≥ ln lnn/ ln d+O(1)) = o(1).

Thus in the stationary distribution the maximum load is ln lnn/ ln d+O(1) with high
probability.

Proof. For simplicity of presentation we state and prove the results only for d = 2.
The proof assumes that at time T − cn2 log logn the process is in an arbitrary state
and therefore we can let T = cn2 log logn with no loss of generality.
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By the definition of the process, the number of balls of height at least i cannot
change by more than 1 in a time step, that is |µ≥i(t+ 1)− µ≥i(t)| ≤ 1. The random
variable µ≥i(t) can be viewed as a random walk on the integers l, 0 ≤ l ≤ n. The
proof is based on bounding the maximum values taken by the variables µ≥i(t) by
studying the underlying process.

We define an integer i∗ and a decreasing sequence αi, for 200 ≤ i ≤ i∗ + 1 as
follows:

α200 =
n

200
,

αi =
100α2

i−1

n
for i > 200 and αi−1 ≥

√
n log2 n,

αi∗ = 100 log2 n, i∗ = the smallest i for which

αi−1 <
√
n log2 n,

αi∗+1 = 100.

Clearly i∗ ≤ ln lnn/ ln 2 +O(1). For future reference, observe also that for 200 < i ≤
i∗ + 1

αi ≥
100α2

i−1

n
.(4.1)

We also define an increasing sequence of times: t200 = 0 and ti = ti−1 + n2 for
i > 200. Thus ti∗+1 = O(n2 log logn) = O(T ).

Let {µ≥i[t−, t+] ≤ α} denote the event that µ≥i(t) ≤ α for all t, such that
t− < t ≤ t+, and similarly, let {µ≥i[t−, t+] > α} denote the event that µ≥i(t) > α for
all t, such that t− < t ≤ t+. We define the events Ci as follows:

C200 = {ν≥200[t200, T ] ≤ 2α200} ≡ {ν≥200[0, T ] ≤ n/100};
Ci = {µ≥i[ti, T ] ≤ 2αi} for i > 200.

Note that C200 always holds, and for i > 200, the event C− i implies that ν≥i[ti, T ] ≤
2αi.

We shall prove inductively that for all i = 200, . . . , i∗ + 1

Pr(¬Ci) ≤ 2i

n2
.(4.2)

This implies that the event {µ≥i∗+1[ti∗+1, T ] ≤ 200} occurs with probability 1− o(1),
and therefore with high probability, for every j, λj(T ) ≤ i∗+201 = ln lnn/ ln 2+O(1),
which completes the proof of the main part of the theorem.

Finally, we show that in the stationary distribution

Pr(∀j, λj ≤ log logn+O(1)) = 1− o(1).

Indeed, let S be the set of states such that for all j, λj(t) ≤ log logn+O(1). Let s(t)
be the state of the chain at time t. Then the previous observation implies that

Pr(s(t+ T ) /∈ S | s(t)) = o(1).

Let π be the stationary distribution; then∑
i/∈S

πi =
∑
j

Pr(s(t+ T ) /∈ S | s(t) = j) · πj =
∑
j

πjo(1) = o(1),
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which completes the proof of the theorem assuming (4.2). To prove it, we show that
conditioned on Ci−1:

a. With high probability µ≥i(t) becomes less than αi before time ti. (This is
shown in Lemma 4.2.)

b. If µ≥i(t) becomes less than αi at any time before T , from then until T , with
high probability, it does not become larger than 2αi. (This is shown in Lemma
4.3.)

The two facts above imply that if Ci−1 holds, then with high probability µ≥i[ti, T ] ≤
2αi, that is, Ci holds as well.

Base case. The base case is straightforward since Pr(¬C200) = Pr(¬{ν≥200[0, T ] ≤
n/100}) = 0.

Induction. Suppose that

Pr(¬Ci−1) ≤ 2(i− 1)

n2
,(4.3)

where 200 < i ≤ i∗ + 1.
Let s(t) be the state at time t. It is easy to verify the following bounds on the

underlying transition probabilities. For any t,

Pr(µ≥i(t+ 1) > µ≥i(t) | s(t)) ≤
(
ν≥(i−1)(t)

n

)2

≤
(
µ≥(i−1)(t)

n

)2

(4.4)

and

Pr(µ≥i(t+ 1) < µ≥i(t) | s(t)) ≥ µ≥i(t)
n

(
1−

(
ν≥(i−1)(t)

n

)2
)
≥ µ≥i(t)

2n
.(4.5)

From (4.4) and (4.5) we obtain that the transition probabilities satisfy

Pr(µ≥i(t+ 1) > µ≥i(t) | µ≥i−1(t) ≤ 2αi−1)≤
(

2αi−1

n

)2
def
= q+

i

and

Pr(µ≥i(t+ 1) < µ≥i(t) | µ≥i(t) ≥ αi) ≥ αi
2n

def
= q−i .

Thus in view of (4.1)

q+
i ≤

αi
25n

.

We define two new binary random variables for 0 < t ≤ T as follows:

Xt = 1 iff µ≥i(t) > µ≥i(t− 1) and µ≥i−1(t− 1) ≤ 2αi−1,

and

Yt = 1 iff µ≥i(t) < µ≥i(t− 1) or µ≥i(t− 1) ≤ αi.
Clearly

Pr(Xt = 1) ≤ q+
i and Pr(Yt = 1) ≥ q−i .(4.6)
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We also define Fi to be the event

Fi
def
= {∃t∗ ∈ [ti−1, ti] s.t. µ≥i(t∗) ≤ αi};

thus ¬Fi is the event

¬Fi = {µ≥i[ti−1, ti] > αi}.

Two lemmas are necessary in order to conclude that Pr(¬Ci) ≤ 2i/n2.
Lemma 4.2. Under the inductive hypothesis

Pr(¬Fi | Ci−1) ≤ 1

n2
.

Proof. Notice that conditioned on Ci−1, the sum
∑
t∈[ti−1,ti]

Xt is the number of

times µ≥i(t) increased in the interval [ti−1, ti]; similarly, if within this interval µ≥i
did not become less than αi, then

∑
t∈[ti−1,ti]

Yt equals the number of times µ≥i(t)
decreased in this interval. We conclude that

Pr(¬Fi | Ci−1) ≤ Pr

( ∑
t∈[ti−1,ti]

Yt −
∑

t∈[ti−1,ti]

Xt ≤ n
∣∣∣ Ci−1

)

≤ 1

Pr(Ci−1)
Pr

( ∑
t∈[ti−1,ti]

Yt −
∑

t∈[ti−1,ti]

Xt ≤ n
)
.

In view of (4.6) and Lemma 3.1, Chernoff-type bounds imply that for every i ≤
i∗ + 1

Pr

( ∑
t∈[ti−1,ti]

Xt > 2n2q+
i

)
≤ Pr

(
B(n2, q+

i ) ≥ 2n2q+
i

) ≤ e−Ω(n2q+
i

) = o(1/nc)

and

Pr

( ∑
t∈[ti−1,ti]

Yt <
1
2n

2q−i

)
≤ Pr

(
B(n2, q−i ) ≤ 1

2n
2q−i

) ≤ e−Ω(n2q−
i

) = o(1/nc)

for any constant c. On the other hand, in view of (4.1),

1

2
n2q−i − 2n2q+

i ≥
1

4
nαi − 2

25
nαi ≥ nαi

10
≥ n,

and therefore we conclude that

Pr(¬Fi | Ci−1) ≤ 1

ncPr(Ci−1)

for any constant c. Taking c = 3 and using the inductive hypothesis on Ci−1 (4.3)
completes the proof.

Lemma 4.3. Under the inductive hypothesis

Pr(¬Ci | Ci−1, Fi) ≤ 1

n2
.
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Proof. Since Pr(A | B ∧ C) ≤ Pr(A ∧B|C) we get that

Pr(¬Ci | Ci−1, Fi)

≤ Pr(¬Ci ∧ Fi | Ci−1)

≤ Pr(∃t1, t2 ∈ [ti−1, T ]

s.t. µ≥i(t1) = αi, µ≥i(t2) = 2αi, µ≥i[t1, t2] ≥ αi | Ci−1)

≤
∑

ti−1≤t1<t2≤T
Pr(µ≥i(t1) = αi, µ≥i(t2) = 2αi, µ≥i[t1, t2] ≥ αi | Ci−1)

≤
∑

ti−1≤t1<t2≤T
Pr

( ∑
t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi | Ci−1

)

≤ 1

Pr(Ci−1)

∑
ti−1≤t1<t2≤T

Pr(
∑

t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi).

Fix t1 and t2 and let ∆ = t2 − t1. We now consider four cases.
A. ∆ ≤ n and i ≤ i∗:

Pr
( ∑
t∈[t1,t2]

Xt ≥ αi
)
≤
(

∆

αi

)
(q+)αi ≤

(
e∆

αi
· αi

25n

)αi
≤ n−100.

B. ∆ ≤ n logn and i = i∗ + 1:

Pr
( ∑
t∈[t1,t2]

Xt ≥ αi∗+1

)
≤
(

∆

αi∗+1

)
(q+)αi∗+1 ≤

(
e∆

αi∗+1
· 4α2

i∗

n2

)αi∗+1

≤
(
en logn

100
· 4 · 1002 log2 n

n2

)100

≤ n−100.

C. ∆ ≥ n and i ≤ i∗: Again using large deviation bounds and the fact that
αi∆ ≥ 100 logn we obtain that

Pr

( ∑
t∈[t1,t2]

Yt ≤ 1

2
q−∆

)
≤ e−q−∆/8 = e−αi∆/(16n) ≤ n−6.1

and that

Pr

( ∑
t∈[t1,t2]

Xt ≥ 1

2
q−∆

)
≤
(

2eq+∆

q−∆

)q−∆/2

≤
(

4e

25

)αi∆/(4n)

≤ n−25.

D. ∆ ≥ n logn and i = i∗ + 1: We use the same proof as case C using the fact
that αi∗+1∆ ≥ 100 logn.
Thus in all four cases,

Pr

( ∑
t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi
)
≤ 1

n6.1
,
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therefore, under the induction hypothesis,

1

Pr(Ci−1)

∑
ti−1≤t1<t2≤T

Pr
( ∑
t∈[t1,t2]

Xt −
∑

t∈[t1,t2]

Yt ≥ αi
)
≤ 2T 2

n6.1
≤ 1

n2
.

Returning to the proof of (4.2), by using the induction hypothesis, Lemmas 4.2
and 4.3, and the law of total probability, we can complete the induction as follows:

Pr(¬Ci) = Pr(¬Ci | Ci−1) ·Pr(Ci−1)

+ Pr(¬Ci | ¬Ci−1) ·Pr(¬Ci−1) Now apply IH

≤ Pr(¬Ci | Ci−1) + 2(i− 1)/n2

= Pr(¬Ci | Ci−1, Fi) ·Pr(Fi | Ci−1) Now apply Lemma 4.3

+ Pr(¬Ci | Ci−1,¬Fi) ·Pr(¬Fi | Ci−1) Now apply Lemma 4.2

+ 2(i− 1)/n2

≤ 1/n2 + 1/n2 + 2(i− 1)/n2 = 2i/n2.

5. Hashing. We define a simple hashing algorithm, called 2-way chaining, by
analogy with the popular direct chaining method. We use two random hash functions.
For each key, the two hash functions define two indices in a table. Each table location
contains a pointer to a linked list. When a new key arrives, we compare the current
length of the two lists associated to the key, and the key is inserted at the end of the
shortest list. (The direct chaining method corresponds to having only one associated
random index.)

For searching, the two hash values are computed, and two linked lists are searched
in alternate order. (That is, after checking the ith element of the first list, we check
the ith element of the second list, then element i+1 of the first list, and so on.) When
the shorter list is exhausted, we continue searching the longer list until it is exhausted
as well. (In fact, if no deletions are allowed, we can stop after checking only one more
element in the longer list. For the analysis below, this is immaterial.)

Assume that n keys are sequentially inserted by this process to a table of size n.
Theorem 1.1 analysis implies that with high probability the maximum access time,
which is bounded by twice the length of the longest list, is 2 lnn lnn/ ln 2 + O(1),
versus the Θ(logn/ log logn) time when one random hash function is used. More
generally, if m keys are stored in the table with d hash functions, then the maximum
access time under this scheme is 2(1 + o(1)) ln lnn/ ln d+ Θ(m/n).

Next we show that the average access time of 2-way chaining is no more than
twice the average access time of the standard direct chaining method. As customary,
we discuss the average access time separately for successful searches and unsuccessful
searches. The latter, denoted C′G, is bounded by twice the expected cost of checking
a list chosen uniformly at random. Therefore

C ′G(m,n) ≤ 2 +
2m

n
.

For successful searches, the cost CG, is given by

CG(m,n) ≤ 2

m

∑
1≤i≤m

hi =
2

m

∑
1≤j≤n

(
λj + 1

2

)
,
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where all the notations are as in section 2. Since we know that νk eventually decreases
doubly exponentially, we can bound CG via the inequality

CG(m,n) ≤ 2

m

∑
k>0

kν≥k.

However, we can achieve better bounds, using the majorization Theorem 3.5. We
start from the following.

Lemma 5.1. Let v̄ = (v1, v2, . . . , vn) and ū = (u1, v2, . . . , un) be two positive
integer vectors. If v̄ � ū, then ∑

1≤i≤n
v2
i ≥

∑
1≤i≤n

u2
i .

This lemma is a special case of a well-known theorem from majorization (see, e.g.,
[22]), but for completeness we present a proof.

Proof. Let x̄ be a n-vector and let (x̄, ū) denote the inner product of x̄ and ū.
Consider the linear program

Maximize (x̄, ū) subject to x̄ � v̄ and x̄ ≥ 0.

It is easy to check that x̄ = ū is a feasible point and that the optimal solution is x̄ = v̄.
Hence (ū, ū) ≤ (v̄, ū). Now consider the same program with the objective function
(x̄, v̄). Then again x̄ = ū is a feasible point and the optimal solution is x̄ = v̄. Hence
(ū, ū) ≤ (ū, v̄) ≤ (v̄, v̄).

Consider now the standard direct chaining method. In our terminology it corre-
sponds to the random placement algorithm R and it therefore majorizes G. It is well
known that the cost for successful search for direct chaining is [19, Ex. 6.4.34]

CR(m,n) =
1

m

∑
1≤j≤n

(
λRj + 1

2

)
= 1 +

m− 1

2n
.

Applying the lemma above we obtain that the cost of successful search in 2-way
chaining satisfies

CG(m,n) ≤ 2 +
m− 1

n
.

6. Competitive on-line load balancing.

6.1. Preliminaries. The on-line load balancing problem is defined as follows.
Let M be a set of servers (or machines) that is supposed to run a set of tasks that
arrive and depart in time. Each task j has associated with it a weight, or load,
w(j) ≥ 0, an arrival time τ(j), and a set M(j) ⊂ M of servers capable of running
it. We distinguish among two variants of this problem: the case of permanent tasks,
tasks that arrive but never depart, and the case of temporary tasks, tasks that depart
the system at a time unknown in advance.

As soon as each task arrives, it must be assigned to exactly one of the servers
capable of running it, and once assigned, it can not be transferred to a different server.
The assigned server starts to run the task immediately, and continues to run it until
the task departs.
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When task j arrives, an assignment algorithm must select a server i ∈M(j), and
assign task j to it.

The load on server i at time t, denoted LAi (t), is the sum of the weights of all the
tasks running on server i at time t under assignment algorithm A.

Let σ be a sequence of task arrivals and departures, and let |σ| be the time of the
last arrival. Then the cost, CA(σ), of an assignment algorithm A on the sequence σ
is defined as

CA(σ) = max
0≤t≤|σ|;i∈M

LAi (t).

An on-line assignment algorithm must assign an arriving task j at time τ(j)
to a server in M(j) knowing only w(j), M(j), and the past and current state of
the servers—the decision is made without any knowledge about future arrivals or
departures. The optimal off-line assignment algorithm, denoted opt, assigns arriving
tasks knowing the entire sequence of task arrivals and departures and does so in a
way that minimizes cost.

The worst-case behavior of an on-line algorithm A is characterized by the compet-
itive ratio, defined as the supremum over all sequences σ of the ratio CA(σ)/Copt(σ).

To characterize the average behavior of A, let CA(P) (resp., Copt(P)) be the
expected cost of algorithm A (resp., opt) on sequences σ generated by the distribution
P. The competitive ratio of an on-line algorithm, A against distribution P, is defined
as the ratio CA(P)/Copt(P).

Finally, the greedy algorithm is formally defined as follows.

Algorithm greedy. Upon arrival of a task j, assign it to the server in M(j)
with the current minimum load (ties are broken arbitrarily).

6.1.1. Permanent tasks. For permanent tasks, Azar, Naor, and Rom [9] have
shown that the competitive ratio of the greedy algorithm is Θ(logn) and that no
algorithm can do better.

To bring this problem into our framework, we present our results for the case
where for each task j the set of servers that can run it, M(j), consists of d ≥ 2 servers
chosen uniformly at random (with replacement), the number of requests |σ| equals n,
and all weights are equal. Let Pd be the associated probability distribution on request
sequences.

Lemma 6.1. With probability 1−O(1/n), Copt(Pd) = O(1).

Proof. We show that with high probability there is an assignment with cost 10
for the case d = 2. A fortiori the result is true for d > 2.

The problem can be reduced to showing that in a random n-by-n bipartite graph
(U, V,E) where each node in U has two random edges to V , there is an assignment
of value 10. Arbitrarily break U into 10 pieces of size n/10 each. We show that each
of these pieces contains a perfect matching. By Hall’s theorem, the probability that
there is no such assignment is bounded by the probability that there is a set of size
k in one of the pieces of U whose neighborhood has size less than k. Ipso facto, this
probability is at most

10
∑

k≤n/10

(
n

k − 1

)(
n/10

k

)((
k − 1

n

)2
)k

.
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Using standard approximations to the binomial coefficients, this is at most

10
∑

k≤n/10

(
en

k − 1

)k−1 ( en
10k

)k((k − 1

n

)2
)k

.

Finally, rewriting and simplifying yield

10

n

∑
k≤n/10

k − 1

e

(
e2n2(k − 1)2

10k(k − 1)n2

)k
=

10

n

∑
k≤n/10

k − 1

e

(
e2

10

)k
= O

(
1

n

)
.

(A more delicate analysis [15] shows that the maximum load achieved by the
off-line case is 2 with high probability, for d ≥ 2 and m ≤ 1.6n.)

Lemma 6.2. With high probability, Cgreedy(Pd) = O(log logn/ log d)
Proof. The proof follows immediately from Theorem 3.2.
Thus, we obtain the following theorem.
Theorem 6.3. The competitive ratio of the greedy algorithm against the dis-

tribution Pd is O(log logn/ log d), and no algorithm can do better.
Proof. The proof follows from Lemmas 6.1 and 6.2 and Corollary 3.6.

6.1.2. Temporary tasks. For temporary tasks, the results of Azar, Broder,
and Karlin [6] and Azar et al. [8] showed that there is an algorithm with competitive
ratio Θ(

√
n) and that no algorithm can do better.

It is difficult to construct a natural distribution of task arrivals and departures.
As an approximation, we consider the following stochastic process S: First, n tasks
arrive; for each task, the set of servers that can run it consists of d ≥ 2 servers
chosen uniformly at random (with replacement). Then the following repeats forever:
a random task among those present departs and a random task arrives, which again
may be served by any one of d random servers. Clearly, in such an infinite sequence,
eventually there will be n tasks which can only be served by one server, and so for
trivial reasons the competitive ratio for long enough sequences is 1. However, we can
state a competitiveness result in the following way:

Theorem 6.4. Let LA[t] be the maximum load on any server at time t, for tasks
arriving according to the stochastic process S, and assigned using algorithm A, that
is, LA[t] = maxi∈M LAi (t). Then for any fixed t > 0, with high probability,

Lgreedy[t]

Lopt[t]
= O(log logn).

Proof. The proof follows from Lemma 6.1 and Theorem 4.1.

7. Experimental results. The bound proven in Theorem 3.2 for the O(1) term
in the formula for the upper bound on the maximum load is rather weak (≈ 8), so
it might be the case that for practical values of n, the constant term dominates the
ln lnn/ ln d term. However, experiments seem to indicate that this is not the case,
and in fact even for small values of n, the maximum load achieved with d = 2 is
substantially smaller than the maximum load achieved with d = 1. For the values
we considered, 256 ≤ n ≤ 16777216, increasing d beyond 2 has only limited further
effect. For each value of n and d we ran 100 experiments. The results are summarized
in Table 7.1.
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Table 7.1
Experimental maximum load (m = n).

n d = 1 d = 2 d = 3 d = 4

28

3 . . . . . . 1%
4 . . . . . . 40%
5 . . . . . . 41%
6 . . . . . . 15%
7 . . . . . . 3%

2 . . . . . . 10%
3 . . . . . . 90%

2 . . . . . . 84%
3 . . . . . . 16%

2 . . . . . . 99%
3 . . . . . . 1%

212

5 . . . . . . 12%
6 . . . . . . 66%
7 . . . . . . 17%
8 . . . . . . 4%
9 . . . . . . 1%

3 . . . . . . 99%
4 . . . . . . 1%

2 . . . . . . 12%
3 . . . . . . 88%

2 . . . . . . 91%
3 . . . . . . 9%

216
7 . . . . . . 48%
8 . . . . . . 43%
9 . . . . . . 9%

3 . . . . . . 64%
4 . . . . . . 36%

3 . . . . . . 100%
2 . . . . . . 23%
3 . . . . . . 77%

220

8 . . . . . . 28%
9 . . . . . . 61%

10 . . . . . . 10%
13 . . . . . . 1%

4 . . . . . . 100% 3 . . . . . . 100% 3 . . . . . . 100%

224

9 . . . . . . 12%
10 . . . . . . 73%
11 . . . . . . 13%
12 . . . . . . 2%

4 . . . . . . 100% 3 . . . . . . 100% 3 . . . . . . 100%
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[14] M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with O(1) worst case
access time, J. Assoc. Comput. Mach., 31 (1984), pp. 538–544.

[15] A. M. Frieze, Personal communication. 1994.
[16] G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc.

Comput. Mach., 28 (1981), pp. 289–304.
[17] N. L. Johnson and S. Kotz, Urn Models and Their Application, John Wiley & Sons, New

York, 1977.
[18] R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a

distributed memory machine, in Proc. 24th Annual ACM Symposium on the Theory of
Computing, Victoria, British Columbia, Canada, 1992, pp. 318–326.

[19] D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching, Addison-
Wesley, Reading, MA, 1973.

[20] V. F. Kolchin, B. A. Sevastyanov, and V. P. Chistyakov, Random Allocations, John Wiley
& Sons, New York, 1978.

[21] P. D. Mackenzie, C. G. Plaxton, and R. Rajaraman, On contention resolution protocols
and associated probabilistic phenomena, in Proc. 26th Annual ACM Symposium on the
Theory of Computing, Montreal, Quebec, Canada, 1994, pp. 153–162.

[22] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications,
Academic Press, New York, 1979.

[23] M. Mitzenmacher, Load balancing and density dependent jump Markov processes, in Proc.
37th Annual Symposium on Foundations of Computer Science, Burlington, VT, 1996,
pp. 213–222.

[24] M. Mitzenmacher, The Power of Two Choices in Randomized Load Balancing, Ph.D. thesis,
University of California, Berkeley, 1996.

[25] V. Stemann, Parallel balanced allocations, in Proc. 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, Padua, Italy, 1996, pp. 261–269.



THE ALGORITHMIC ASPECTS OF UNCROWDED HYPERGRAPHS∗

CLAUDIA BERTRAM-KRETZBERG† AND HANNO LEFMANN†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 201–230

Abstract. We consider the problem of finding deterministically a large independent set of
guaranteed size in a hypergraph on n vertices and with m edges. With respect to the Turán bound,
the quality of our solutions is better for hypergraphs with not too many small cycles by a logarithmic
factor in the input size. The algorithms are fast; they often have a running time of O(m) + o(n3).
Indeed, the denser the hypergraphs are the closer the running times are to the linear times. For
the first time, this gives for some combinatorial problems algorithmic solutions with state-of-the-art
quality, solutions of which only the existence was known to date. In some cases, the corresponding
upper bounds match the lower bounds up to constant factors. The involved concepts are uncrowded
hypergraphs.
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1. Introduction. A fundamental problem in computer science and mathematics
is to find a large independent set in an arbitrary graph [6], [16], [22]. Recall that for
a graph G = (V,E) with vertex set V and edge set E ⊆ [V ]2, a subset I ⊆ V of
the vertex set is called independent if the subgraph induced on I contains no edges
e ∈ E, i.e., E ∩ [I]2 = ∅. The maximum cardinality of an independent set I is called
the independence number α(G) of G. It is well known that finding an independent
set of size α(G) in a graph G is an NP-hard problem, even for graphs with bounded
maximum degree.

This suggests that we should look for approximation algorithms with guaranteed
performance ratio, which is the quotient of the sizes of the optimal and the found
solution in the worst case. The results of Arora et al. [10] on interactive proof systems
show that with respect to polynomial time algorithms there is no constant performance
ratio for the independent set problem for graphs on n vertices, indeed no ratio of n1/4

unless P = NP ; cf. the work of Bellare, Goldreich, and Sudan [13]. Recently, H̊astad
[28] showed that there is no performance ratio of n1/2−ε unless NP = P and no
such ratio of n1−ε unless NP = coR. With respect to polynomial time algorithms
for triangle-free graphs with maximum degree ∆, a performance ratio of O(∆/ ln ∆)
was given in [25] and [29] (see [45], [46]), and moreover, if they contain no complete
subgraph Kl, l ≥ 4, then a performance ratio of O(∆/ ln ln ∆) is known; cf. [25],
[26], [1]. Recently it was shown by Brandt [17] that the independence number of
triangle-free graphs with minimum degree δ > n/3 can be computed as fast as matrix
multiplication in time O(n2.376), while within the class of graphs with minimum degree
δ > (1− ε)n/4, where ε > 0, the problem is NP-hard.

For hypergraphs, the corresponding problem has been studied less; some papers
are concerned with finding in parallel a maximal independent set; cf. [30] and [39].
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However, the size of a maximal independent set might be far off the size of a maximum
independent set. Here we consider the problem of finding a large independent set in a
hypergraph. Hypergraphs are important because many problems can be formulated
in terms of them. A hypergraph G = (V, E) is given by a set V of vertices and a set E of
edges (hyperedges), where each edge E ∈ E is a nonempty subset of V . A hypergraph
G = (V, E) is called (k + 1)-uniform if E ⊆ [V ]k+1, i.e., each edge E ∈ E contains
exactly (k + 1) vertices. If the hypergraph G = (V, E) is (k + 1)-uniform, then

t(G) = t =

(
(k + 1) · |E|
|V |

)1/k

is the kth root of the average degree of G. Similarly to the graph case, the independence
number α(G) of a hypergraph G = (V, E) is defined as the maximum size of a subset
I ⊆ V which contains no edges E ∈ E , i.e., there is no edge E ∈ E with E ⊆ I.

We give a general approximation strategy which has a performance ratio of
O(t/(ln t)1/k) for (k + 1)-uniform hypergraphs with average degree tk and not too
many small cycles. For random hypergraphs, no algorithm has a better performance
ratio. The idea for doing this originates in a powerful result of Ajtai et al. [2] on un-
crowded hypergraphs. These have the property that they contain no small cycles. We
remark that derandomizing a probabilistic argument of Spencer [48] yields a perfor-
mance ratio of O(t) for arbitrary hypergraphs. We apply our approximation strategy
to some combinatorial and graph problems for which only the existence of solutions
of a certain quality was known to date. Our algorithms match these qualities and
yield for these problems algorithmic solutions of state-of-the-art quality.

2. Uncrowded hypergraphs. Turán’s theorem for hypergraphs G gives a lower
bound for the independence number α(G); cf. Spencer [48].

Theorem 2.1 (see [48]). Let G = (V, E) be a (k+ 1)-uniform hypergraph, k ≥ 1,
with average degree tk ≥ 1 and |V | = n. Then,

α(G) ≥ ck · n
t
.(2.1)

Moreover, an independent set of size at least ck · n/t can be found in time O(|E|).
We remark that for (k+1)-uniform hypergraphs on n vertices with average degree

tk < 1, one can simply use a Greedy strategy to obtain in time O(n) an independent
set of size at least c′k · n; more simply, in an arbitrary way we add a few edges to the
hypergraph to achieve in the resulting hypergraph that 1 ≤ tk < (k+ 1), and then we
apply Theorem 2.1.

For completeness we give the algorithmic proof of (2.1).
Proof. Let V = {v1, v2, . . . , vn} be the set of vertices of G. The existence of

an independent set of size as guaranteed in (2.1) can be shown by picking vertices
of V independently of each other at random with probability p = 1/t. The set of
picked vertices will yield the independent set. For the algorithm we imitate this
approach by using the method of conditional probabilities; cf. [9], [42]. To give a
deterministic algorithm, we start by generalizing the probabilistic experiment. For
i = 1, 2, . . . , n vertex vi will be assigned a weight (probability) pi ∈ [0, 1]. Define a
potential V (p1, p2, . . . , pn) by

V (p1, p2, . . . , pn) =
n∑
i=1

pi −
∑
E∈E

∏
vi∈E

pi.
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Note that in the corresponding random experiment,
∑n
i=1 pi is the expected num-

ber of picked vertices and
∑
E∈E

∏
vi∈E pi is the expected number of edges in the

induced random hypergraph.
Now, for i = 1, 2, . . . , n in each step i we choose either pi = 0 or pi = 1 in order

to maximize the value of the potential V (p1, p2, . . . , pn). As V (p1, p2, . . . , pn) is linear
in each pi, i.e., for i = 1

V (p1, p2, . . . , pn) = p1 · V (1, p2, . . . , pn) + (1− p1) · V (0, p2, . . . , pn),

either V (1, p2, . . . , pn) ≥ V (p1, p2, . . . , pn) or V (0, p2, . . . , pn) ≥ V (p1, p2, . . . , pn). We
take vertex v1 for the independent set if V (1, p2, . . . , pn) > V (p1, p2, . . . , pn); otherwise
we discard it. Doing this one after the other for i = 1, 2, . . . , n, finally, each vertex vi
is assigned a weight pi ∈ {0, 1}, i = 1, 2, . . . , n.

Choosing in the beginning p1 = p2 = · · · = pn = p, we have

V (p, . . . , p) = p · n− pk+1 · n · t
k

k + 1
,

which is maximal (taking the derivative) for p = 1/t, i.e., with this choice of p we
have

V (p, . . . , p) =
k

k + 1
· n
t
.(2.2)

By our strategy we finally obtain V (p1, p2, . . . , pn) ≥ V (p, . . . , p). Let V ′ = {vi ∈
V | pi = 1}. By (2.2), and using that pi ≥ 0 for i = 1, 2, . . . , n, we infer

|V ′| =
n∑
i=1

pi = V (p1, . . . , pn) +
∑
E∈E

∏
vi∈E

pi ≥ V (p, . . . , p) +
∑
E∈E

∏
vi∈E

pi ≥ k

k + 1
· n
t
.

We claim that V ′ is an independent set in G. Suppose for contradiction that this is
not the case, and let E = {vi1 , vi2 , . . . , vik+1

} ∈ E ∩ [V ′]k+1, where i1 < i2 < · · · <
ik+1 = s. Consider step s. Because we had chosen ps = 1 in this step, we have

V (p1, . . . , ps−1, 1, ps+1, . . . , pn) > V (p1, . . . , pn) .(2.3)

However, as edge E came in in step s, we infer

V (p1, . . . , ps−1, 1, ps+1, . . . , pn)− V (p1, . . . , pn) ≤ (1− ps)− (1− ps) = 0,

which contradicts (2.3). Thus V ′ is an independent set in G of size at least k
k+1 · nt ,

i.e., α(G) ≥ k
k+1 · nt .

During the algorithm each vertex and each edge is considered only a constant
number of times; hence, with tk ≥ 1 the running time is O(|E|).

For fixed integers k ≥ 1, there are examples of (k+1)-uniform hypergraphs whose
independence numbers match the lower bound (2.1) up to constant factors. Simply
take n/x vertex disjoint copies of complete (k+ 1)-uniform hypergraphs on x vertices
each where tk = (x−1

k ). However, quite often the hypergraphs under consideration are
in some sense sparse, and for these the general lower bound (2.1) can be improved, as
can be seen in the following.

A cycle of length i in a (k+1)-uniform hypergraph G = (V, E) is a set of i pairwise
distinct edges from E whose union contains at most i ·k vertices. An i-cycle is a cycle
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of length i which does not contain any cycles of length 2, 3, . . . , i− 1. To specify the
notion of “sparse” mentioned above, we define a hypergraph G to be uncrowded if it
does not contain any 2-, 3-, or 4-cycles. For a vertex v ∈ V let d(v) denote its degree,
i.e., the number of edges E ∈ E which contain v. Let ∆(G) = maxv∈V {d(v)} be the
maximum degree of G. For a subset V ′ ⊆ V let G′ = (V ′, E ′) with E ′ = E ∩ [V ′]k+1 be
on the V ′ induced subhypergraph of G.

For uncrowded hypergraphs, the lower bound (2.1) was improved by the following
powerful result of Ajtai et al. [2].

Theorem 2.2 (see [2]). Let k ≥ 2 be a fixed integer. Let G be a (k + 1)-uniform
hypergraph on n vertices. Assume that

(i) G is uncrowded, i.e., contains no 2-, 3-, or 4-cycles,
(ii) the maximum degree ∆(G) satisfies ∆(G) ≤ tk where t ≥ t0(k), and

(iii) n ≥ n0(k, t).
Then the independence number α(G) satisfies

α(G) ≥ 0.98

e
· 10−5/k · n

t
· (ln t)1/k.(2.4)

Various applications of Theorem 2.2 have been found, including the disproof of
Heilbronn’s conjecture [32], results on Sidon sets [4], Steiner systems [44], [18], com-
plexity theory [41], Ramsey numbers [3], geometric selection problems [37], Turán
numbers for random graphs [31], and graph coloring problems [8], [36].

Indeed, for a certain range of the involved parameters k, n, t, inequality (2.4)
is best possible up to constant factors, as a random hypergraph argument shows.
Namely, for a fixed integer k ≥ 2 consider a random (k + 1)-uniform hypergraph
on n vertices, where the edges are chosen independently at random with probability
p = (t/n)

k
, where n� t� k. Let l = C ·n/t · (ln t)1/k, where C > 0 is a large enough

constant. For a fixed l-element subset I ⊆ V of the vertex set, the probability that I
is an independent set is equal to

(1− p)( l
k+1) ≤ exp

{
−p ·

(
l

k + 1

)}
≤ exp

{
−p · l

k+1 · (1− o(1))

(k + 1)!

}
,

where we used the inequality 1 − x ≤ exp{−x} := e−x. Using the inequality (nl ) ≤
(e · n/l)l, the expected number of independent sets of size l is at most(

n

l

)
· exp

{
−p · l

k+1 · (1− o(1))

(k + 1)!

}
≤
(
e · n
l
· exp

{
−p · l

k · (1− o(1))

(k + 1)!

})l
≤
(
e

C
· t

(ln t)1/k
· exp

{
−C

k · (1− o(1)) · ln t
(k + 1)!

})l
≤
(
e

C
· exp

{
ln t− ln ln t

k
− Ck · (1− o(1)) · ln t

(k + 1)!

})l
<

1

5

for Ck ≥ 2 · (k + 1)! and t large enough. However, the expected number of cycles of
length i ≤ 4 in the random hypergraph is at most

nik · pi = tik ≤ t4k.
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By Markov’s inequality there exists a hypergraph G on n vertices with at most

5 · p ·
(

n

k + 1

)
≤ 5 · n · tk

(k + 1)!

edges which contains no independent set of size 5 ·C · n/t · (ln t)1/k and with at most
15 · t4k cycles of length at most 4. Note that for each induced subhypergraph G′ of
G we have α(G′) ≤ α(G). Now, omitting one vertex from each cycle of length at
most 4 gives a (k + 1)-uniform uncrowded hypergraph on n− 15 · t4k = (1− o(1)) · n
vertices with average degree at most 5/k! · tk and with independence number at most
5 · C · n/t · (ln t)1/k, provided t4k = o(n). Hence, for many hypergraphs, inequality
(2.4) is best possible up to constant factors.

Notice that in (2.4) we gain a logarithmic factor if we compare it to Turán’s
lower bound (2.1). This additional logarithmic factor is of interest because in some
applications one can use Theorem 2.2 to prove lower bounds which, with respect to
the corresponding applications, asymptotically match the upper bounds.

We remark that recently ÃLuczak and Szymańska [39] gave a randomized paral-
lel algorithm with polylogarithmic running time to find a maximal (not necessarily
maximum) independent set in hypergraphs without 2-cycles.

Fundia [21] gave a polynomial time algorithm for uncrowded hypergraphs, which
finds an independent set of size asymptotically at least as guaranteed by inequality
(2.4).

Theorem 2.3 (see [21]). Let k ≥ 2 be a fixed integer. Let G be an uncrowded
(k + 1)-uniform hypergraph on n vertices with average degree tk, where k4 · t4k < n
and k < t. Then, one can find in time O

(
n3 · t6k · ln t) an independent set of size at

least Ω(n/t · (ln t)1/k).
Notice that in uncrowded (k + 1)-uniform hypergraphs G = (V, E) with |V | = n,

two distinct edges have at most one vertex in common; hence |E| ≤ (n2 )/(k+1
2 ) and

t = O(n1/k).
We remark that in Theorem 2.3 the condition k4 · t4k < n is not that important

(cf. [8]) if we ignore for the moment the algorithmic aspects. Namely, if k4 · t4k ≥ n,
then we set

N =

⌈
k4 · t4k + 1

n

⌉
and we form a new hypergraph H = (V ′, E ′) by taking N vertex disjoint copies of
G. Clearly, |V ′| = N · n and |E ′| = N · |E|; thus G and H have the same average
degree. However, H fulfills the assumptions of Theorem 2.3, and we obtain in time
O((N ·n)3 · t6k · ln t) an independent set of size Ω(N ·n/t · (ln t)1/k). Then, restricting
the independent set to one copy of G yields the desired result, i.e., an independent set
of size Ω(n/t · (ln t)1/k). We have in uncrowded hypergraphs t = O(n1/k); hence, we
infer for the running time O((N · n)3 · t6k · ln t) = O(t18k · ln t) = O(n18 · lnn), i.e.,
polynomial running time for fixed k.

Contrary to our considerations of blowing up the hypergraph, i.e., taking copies,
we will work on small subhypergraphs of G to keep the running times of the corre-
sponding algorithms small; cf. Kortsarz and Peleg [33]. Throughout this paper, k will
always be a fixed integer with k ≥ 2 and tk, the average degree, will always be an
increasing function of n, the number of vertices of the hypergraph, i.e., t = t(n)→∞
with n→∞.
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Theorem 2.3 does not seem to be applicable to many hypergraphs. In general,
the hypergraphs under consideration are not uncrowded and have quite a lot of 2-, 3-,
or 4-cycles. However, as we will see, in several cases the trick is to choose at random
an appropriate small subhypergraph, which turns out to be “nearly” uncrowded, i.e.,
has only a few small cycles. After deleting these cycles one can apply Theorem
2.3. Indeed, seemingly against the intuition, one chooses vertices with a probability
p = t−1+ε for some ε > 0, which is a little bigger than that which one would usually
take, i.e., p = t−1. But this gives the improvement by a logarithmic factor.

In the following we state our main results. First, we improve Theorem 2.3 as
follows.

Theorem 2.4. Let k ≥ 2 be a fixed integer. Let G be an uncrowded (k + 1)-
uniform hypergraph on n vertices with average degree tk and t → ∞ with n → ∞.
Then, for each fixed δ > 0, one can find in time

O

(
n · tk +

n3

t3−δ

)
(2.5)

an independent set in G of size at least Ω(n/t · (ln t)1/k).
The parameter δ > 0 can be chosen to be small. Thus, the more edges the

hypergraph has, the closer the running time is to the linear one, O(n · tk). However,
as t = O(n1/k) for k ≥ 3 and δ > 0, the time bound is always O(|E| + n3−3/k+δ) =
O(n3−3/k+δ).

The proof of Theorem 2.4 shows that with the factor tδ, 0 < δ < 1, in the running
time there comes a factor (δ/(6k + 4))1/k in the quality of the solution. Hence, for
k ≥ 3, dropping the running time from O(n3/t3−δ) to O(n3/t3−δ/2), i.e., by the factor
tδ/2, means that we lose in the guaranteed quality the factor 21/k.

Corollary 2.5. Let k ≥ 2 be a fixed integer. Let G be an uncrowded (k + 1)-
uniform hypergraph on n vertices with average degree at most tk and t → ∞ with
n→∞. Then, for each fixed δ > 0, one can find in time

O

(
n · tk +

n3

t3−δ

)
(2.6)

an independent set in G of size at least Ω(n/t · (ln t)1/k).
Proof. If the average degree t(G)k of G satisfies t(G)k ≤ tk/ ln t, then by Theorem

2.1 we find in time O(n · t(G)k) = O(n · tk) an independent set of size

Ω

(
n

t(G)

)
= Ω

(n
t
· (ln t)1/k

)
.

Otherwise, if tk ≥ t(G)k > tk/ ln t, then we apply Theorem 2.4 with δ′ = δ/2 and we
obtain in time

O

(
n · t(G)k +

n3

t(G)3−δ′

)
= O

(
n · tk +

n3

t3−δ′
· (ln t)(3−δ′)/k

)
= O

(
n · tk +

n3

t3−δ

)
an independent set of size at least Ω(n/t(G) · (ln t(G))1/k) = Ω(n/t · (ln t)1/k). Here
we used that the function f(t) = (ln t)1/k/t is decreasing for t ≥ 2.

It turns out that the 2-cycles are important. For a hypergraph G = (V, E), a
2-cycle {E1, E2} with E1, E2 ∈ E is called (2, j)-cycle if |E1 ∩ E2| = j. Let s2,j(G)
denote the number of (2, j)-cycles in G.
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The next theorem yields an algorithmic version of the existence result which was
proved by Duke, Lefmann, and Rödl [18]. Corollary 2.8 gives an algorithmic solution
of a conjecture of Spencer [49].

Theorem 2.6. Let k ≥ 2 be a fixed integer. Let G = (V, E) be a (k + 1)-uniform
hypergraph on n vertices with average degree tk, where t → ∞ with n → ∞. If the
(2, j)-cycles satisfy

s2,j(G) ≤ c · n · t2k+1−j−γ

for j = 2, 3, . . . , k and some constants c, γ > 0, then one can find for every fixed δ > 0
in time O(n · tk +

∑k
j=2 s2,j(G) + n3/t3−δ) an independent set of size at least

C(k, γ, δ, c) · n
t
· (ln t)1/k .

Corollary 2.7. Let k ≥ 2 be a fixed integer. Let G = (V, E) be a (k+1)-uniform
hypergraph on n vertices with average degree at most tk, where t → ∞ with n → ∞.
If the (2, j)-cycles satisfy

s2,j(G) ≤ c · n · t2k+1−j−γ

for j = 2, 3, . . . , k and some constants c, γ > 0, then one can find for every fixed
δ > 0 in time O(n · tk +

∑k
j=2 s2,j(G) + n3/t3−δ) an independent set of size at least

Ω(n/t · (ln t)1/k).
Proof. If the average degree t(G)k of G satisfies tk ≥ t(G)k ≥ tk/ ln t, then the

(2, j)-cycles satisfy

s2,j(G) ≤ c · n · t2k+1−j−γ ≤ c · n · t(G)2k+1−j−γ/2

for t large. Thus, the assumptions of Theorem 2.6 are fulfilled, and we obtain for
every fixed δ > 0 in time O(n · tk +

∑k
j=2 s2,j(G)+n3/t3−δ) an independent set of size

at least Ω(n/t · (ln t)1/k). Otherwise, if t(G)k < tk/ ln t, we apply Theorem 2.1 and
obtain in time O(n · tk) an independent set of size at least Ω(n/t · (ln t)1/k).

As an immediate consequence of Corollary 2.7 we have the following.
Corollary 2.8. Let k ≥ 2 be a fixed integer. Let G = (V, E) be a (k+1)-uniform

hypergraph on n vertices with average degree at most tk, where t → ∞ with n → ∞.
If G does not contain any 2-cycles, then one can find for every fixed δ > 0 in time
O(n · tk + n3/t3−δ), an independent set of size at least Ω(n/t · (ln t)1/k).

3. Choosing small subhypergraphs. For proving our results, we use the idea
of choosing small subhypergraphs on which we control certain parameters such as the
number of vertices, edges, or cycles. The control on the small subhypergraphs reflects
a probabilistic approach.

Lemma 3.1. Let k ≥ 2 be a fixed integer. Let G = (V, E) be a (k + 1)-uniform
hypergraph with s2,j(G) many (2, j)-cycles, j = 2, 3, . . . , k. For every p with 0 ≤ p ≤ 1,

one can find in time O(|V |+|E|+∑k
j=2 s2,j(G)) an induced subhypergraph H = (V ′, E ′)

such that for j = 2, 3, . . . , k it holds

|V ′| ≥ p/3 · |V | and |E ′| ≤ 3 · pk+1 · |E| and s2,j(H) ≤ 3 · (k − 1) · p2k+2−j · s2,j(G).

Proof. By inspecting each two-element subset which is contained in an edge E ∈ E ,
we obtain for each two-element set {x, y} all edges E ∈ E with {x, y} ⊂ E. This can be
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done in time O(|E|). Then, the sets Cj , which contain the vertex sets of all (2, j)-cycles

in G, j = 2, 3, . . . , k, can be constructed in time O(|V |+ |E|+∑k
j=2 s2,j(G)).

Let V = {v1, v2, . . . , vn}. Every vertex vi will be assigned a weight pi ∈ [0, 1],
i = 1, 2, . . . , n. Define a potential V (p1, p2, . . . , pn) by

V (p1, p2, . . . , pn) = 3pn/3 ·
n∏
i=1

(
1− 2

3
· pi
)

+

∑
E∈E

∏
vi∈E pi

3 · pk+1 · |E|

+

k∑
j=2

∑
C∈Cj

∏
vi∈C pi

3 · (k − 1) · p2k+2−j · |Cj | .

If pn < 6, any two vertices will do since they do not yield an edge. Hence, we
assume that pn ≥ 6. With p1 = · · · = pn = p in the beginning, and using 1−x ≤ e−x,
we infer

V (p, . . . , p) = 3pn/3 ·
(

1− 2

3
· p
)n

+
pk+1 · |E|

3 · pk+1 · |E| +
k∑
j=2

p2k+2−j · sj(G)

3 · (k − 1) · p2k+2−j · s2,j(G)

≤
(

3

e2

)pn/3
+

2

3
< 1 .

The potential V (p1, p2, . . . , pn) is linear in each pi. As in the algorithmic argument
for proving Theorem 2.1 step by step, we decide which choice of pi, either pi = 0 or
pi = 1, minimizes the current value of V (p1, p2, . . . , pn). We put vertex v1 in V ′

iff V (1, p2, . . . , pn) ≤ V (0, p2, . . . , pn). Doing this for all vertices v1, v2, . . . , vn yields
the desired set V ′ = {vi ∈ V | pi = 1}. We always choose the value of pi ∈ {0, 1}
to minimize the value of the potential, i.e., finally, we have V (p1, p2, . . . , pn) < 1,
too. All summands in V (p1, p2, . . . , pn) are nonnegative. If the chosen subhypergraph
H = (V ′, E ′) with E ′ = E ∩ [V ′]k+1 violated one of the desired properties, then the
corresponding summand would be bigger than 1, which is not possible by our strategy.

The computation of V (p, p, . . . , p) in the beginning can be done in time O(|V |+
|E|+∑k

j=2 s2,j(G)), and updating all the potentials V (p1, . . . , pn) during the algorithm
can be done in the same time.

For a hypergraph G, let µi(G), i = 3, 4, denote the number of i-cycles in G.

Lemma 3.2. Let k ≥ 2 be a fixed integer. Let G = (V, E) be a (k + 1)-uniform
hypergraph on |V | = n vertices with average degree tk. If G does not contain any 2-
cycles, then one can find in time O(n+n · tk) an induced subhypergraph G′ = (V ′, E ′)
with |V ′| ≥ |V |/2 and

µi(G) ≤ ci(k) · n · t(i−1)k(3.1)

for i = 3, 4. The sets Ci of i-cycles, i = 3, 4, can be computed in time O(n + n ·
t(i−1)k) = O(n+ n · t3k).

Proof. For each edge E ∈ E we mark in time O(|E|) all two-element subsets which
are contained in E by “E.” Then, in time O(1) we can decide whether a two-element
set is contained in some edge E ∈ E .

First we discard all vertices v ∈ V with degree d(v) > 2(k + 1) · tk =: ∆ and
all edges incident with such vertices v. This can be done in time O(n + n · tk). The
resulting induced hypergraph G′ = (V ′, E ′) of G has |V ′| ≥ n/2 vertices. As G contains
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no 2-cycles for each two distinct vertices x, y ∈ V ′, there exists at most one edge which
contains both x and y. The maximum degree of G′ is at most ∆; hence

µ3(G′) ≤ 1

3
· n ·

(
∆

2

)
· k2 ≤ c3(k) · n · t2k,

µ4(G′) ≤ 1

4
· n ·

(
∆

2

)
· k ·∆ · k2 ≤ c4(k) · n · t3k.

To determine the set C3 of all 3-cycles in G′, we consider each vertex v ∈ V0 and
all pairs {E1, E2} ∈ [E ′]2 of edges with v ∈ E1 and v ∈ E2. This can be done in time
O(n ·∆2). Then, for each two vertices x ∈ E1 \ {v} and y ∈ E2 \ {v}, we test in time
O(1) whether there exists an edge E ∈ E ′ with x, y ∈ E. Thus, determining the set
C3 of 3-cycles in G′ can be done in time O(n+ n · t2k). Similarly, one can determine
the set C4 of 4-cycles in G′ in time O(n+ n · t3k).

Lemma 3.3. Let k ≥ 2 be a fixed integer. Let G = (V, E) be a (k + 1)-uniform
hypergraph on |V | = n vertices with average degree tk, where G contains no 2-cycles.
For every p with 0 ≤ p ≤ 1, one can find in time O(n+n·t3k) an induced subhypergraph
H = (V ′, E ′) of G such that

|V ′| ≥ p/6 · |V |,
|E ′| ≤ 3 · pk+1 · |E|,(3.2)

µi(H) ≤ 6 · pik · ci(k) · n · t(i−1)k for i = 3, 4.

Proof. By Lemma 3.2, we find in G in time O(n+n·tk) an induced subhypergraph
G′ = (V ′, E ′) with V ′ = {v1, v2, . . . , vl} and |V ′| ≥ |V |/2, which contains at most
ci(k) · n · t(i−1)k i-cycles. The sets C ′i of i-cycles in G′, i = 3, 4, can be computed in
time O(n + n · t3k). Then we apply to G′ the same derandomization technique as in
the proof of Lemma 3.1 using the potential

V (p1, p2, . . . , pl) = 3pn/6
∏
vi∈V ′

(
1− 2

3
· pi
)

+

∑
E∈E′

∏
vi∈E pi

3 · pk+1 · |E|

+
4∑
j=3

∑
C∈C′

j

∏
vi∈C pi

6 · pjk · cj(k) · n · t(j−1)k
,

and we obtain in time O(n + n · t3k) an induced subhypergraph fulfilling all three
properties (3.2).

Similarly, one can show the following.
Lemma 3.4. Let G = (V, E) be a (k + 1)-uniform hypergraph with |V | = n. For

every p with 0 ≤ p ≤ 1, one can find in time O(n + |E|) an induced subhypergraph
H = (V ′, E ′) of G such that

|V ′| ≥ p/2 · |V | and |E ′| ≤ 2 · pk+1 · |E| .

Proof. We apply the same derandomization technique as in the proof of Lemma
3.1 by using the potential

V (p1, p2, . . . , pn) = 2pn/2 ·
n∏
i=1

(
1− pi

2

)
+

∑
E∈E

∏
vi∈E pi

2 · pk+1 · |E| .



210 CLAUDIA BERTRAM-KRETZBERG AND HANNO LEFMANN

4. Avoiding 2-cycles. Here we will give the proof of Theorem 2.4.
Proof. Let G be an uncrowded (k+1)-uniform hypergraph on n vertices with aver-

age degree tk; thus t = O(n1/k). The idea is to choose a small induced subhypergraph
G0 of G to which we apply Theorem 2.3.

First, we apply Lemma 3.4 to G with p = t−1+ε, where ε = min{ δ
6k+4 ,

k−1
4k }, and

we obtain in time O(n · tk) an induced subhypergraph G0 = (V0, E0) of G with

|V0| ≥ p/2 · |V | and |E0| ≤ 2 · pk+1 · |E| .
Notice that if we had chosen the probability to be p = 1/t, then the resulting subhy-
pergraph would only have n/t vertices, but our aim is to find an independent set of
size at least Ω(n/t · (ln t)1/k).

The hypergraph G0 has average degree

t(G0)k ≤ tk0 := 4 · (p · t)k .
If t(G0) ≤ p · t/(ln(p · t))1/k, then we apply Theorem 2.1 and we obtain in time
O(p · n+ pk+1 · |E|) an independent set of size

Ω

(
p · n
t(G0)

)
= Ω

(
p · n
p · t · (ln(p · t))1/k

)
= Ω

(n
t
· (ln t)1/k

)
.

Otherwise, let t(G0) > p · t/(ln(p · t))1/k. We have tε/(ε · ln t)1/k > k, as k, ε are
constants and t→∞ with n→∞. With t = O(n1/k) and ε ≤ (k − 1)/(4k), we infer

p/2 · n = n/2 · t−1+ε > k4 · 44 · t4kε = k4 · t4k0 ;

hence the assumptions of Theorem 2.3 are fulfilled and we apply it to the hypergraph
G0. By omitting some more vertices we can assume without loss of generality (w.l.o.g.)
that |V0| = p/2 · n. As ε ≤ δ/(6k + 4), we obtain in time

O
(
(p · n)3 · (p · t)6k · ln t) = O

(
n3

t3−3ε−6kε
· ln t

)
= O

(
n3

t3−δ

)
an independent set of size at least

Ω

(
p · n
t0
· (ln t0)1/k

)
= Ω

(
p · n
p · t · (ln(p · t))1/k

)
= Ω

(n
t
· (ln tε)1/k

)
= Ω

(n
t
· (ln t)1/k

)
as ε > 0 is a constant. Here, we used that the function f(t) = (ln t)1/k/t is decreasing
for t ≥ 2. The algorithm has the desired running time O(n · tk + n3/t3−δ).

Indeed, provided an algorithm does not require any assumptions on the mutual
growth of k, t, n, we have the following Meta-Algorithm.

Let k ≥ 2 be a fixed integer. Let G be an uncrowded (k + 1)-uniform hypergraph
on n vertices with average degree tk and t→∞ with n→∞. Let δ > 0 be any fixed
real number.

If one can find in time f(n, t) an independent set in G of size Ω(n/t · (ln t)1/k),
then one can find in time O(f(n/t1−δ, tδ) + n · tk) an independent set in G of size at
least Ω(n/t · (ln t)1/k).

Now we come to the proof of Theorem 2.6.
Proof. Let the (2, j)-cycles of G satisfy s2,j(G) ≤ c ·n ·t2k+1−j−γ for j = 2, 3, . . . , k

and constants c, γ > 0. Set

p = t−1+ε,(4.1)
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where

ε = min

{
γ

2k
,

1

3k + 2

}
.

By Lemma 3.1, we obtain in time

O

|V |+ |E|+ k∑
j=2

s2,j(G)

(4.2)

an induced subhypergraph G0 = (V0, E0) of G such that, possibly after omitting some
more vertices, we have

|V0| = p/3 · |V | , and

|E0| ≤ 3 · pk+1 · |E| , and

s2,j(G0) ≤ 3 · (k − 1) · p2k+2−j · s2,j(G) for j = 2, 3, . . . , k.

With (4.1) for tε ≥ 2, i.e., t ≥ t0(ε), we have for j = 2, 3, . . . , k that

p2k+2−j · n · t2k+1−j−γ ≥ 2 · p2k+2−j−1 · n · t2k+1−j−1−γ .

Hence, since ε ≤ γ/2k and t ≥ t0(k, γ), i.e., tγ ≥ (36 · c · (k − 1))2k, we have

k∑
j=2

s2,j(G0) ≤
k∑
j=2

3 · (k − 1) · p2k+2−j · s2,j(G)

≤ 6 · (k − 1) · c · p2k · n · t2k−1−γ

≤ 6 · (k − 1) · c · n · t−1−γ+2kε

≤ 36 · (k − 1) · c · t− γ
2k · (p · n/6)

≤ p · n/6;

thus,

|V0| ≥ 2 ·
k∑
j=2

s2,j(G0) .(4.3)

The sets of (2, j)-cycles in G0 can be constructed in time O(p·n+|E0|+
∑k
j=2 s2,j(G0)).

By losing at most half of the vertices, cf. (4.3), we delete in G0 in time

O

p · n+ pk+1 · |E|+
k∑
j=2

s2,j(G) · p2k+2−j

 = O
( n

t1−ε
+

n

t1−(k+1)ε
+

n

t1+γ−2kε

)
= o(n)

for ε ≤ 1/(k + 2) and ε ≤ γ/(2k) one vertex from each 2-cycle. By deleting possibly
more vertices, we obtain an induced subhypergraph G1 = (V1, E1) of G0 with

|V1| = p · n/6 and |E1| ≤ 3 · pk+1 · |E|
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such that G1 no longer contains any 2-cycles and we have

t(G1)k ≤ (k + 1) · |E1|
p · n/6 = 18 · (p · t)k .(4.4)

Next we apply Lemma 3.3 to the hypergraph G1 with

p1 =

(
1

p · t
)1−ε1

= t−ε(1−ε1),

where ε1 = (k − 1)/(4k), and we obtain a subhypergraph G2 = (V2, E2) of G1, which,
after possibly deleting more vertices, satisfies

|V2| = p1p · n/36,

|E2| ≤ 3 · pk+1
1 · |E1| ≤ 9 · (p1p)

k+1 · |E|
and, by (3.2), (4.4), for i = 3, 4 also fulfills

µi(G2) ≤ 6 · pik1 · ci(k) · p · n
6
· t(G1)(i−1)k ≤ ci(k) · pik1 · p · n · (18 · pk · tk)i−1.

This can be done in time O(p · n + p · n · (p · t)3k) = O(n · t−1+ε(3k+1)) = o(n). We
claim that

|V2| ≥ 4 · (µ3(G2) + µ4(G2)).(4.5)

Namely, by our choice of p and p1, i.e., p = t−1+ε and p1 = t−ε(1−ε1), we have

p1p · n
36

≥ 8 · ci(k) · pik1 · pn · (18 · pk · tk)i−1

⇐⇒ 1 ≥ 288 · ci(k) · pik−1
1 · (18 · pk · tk)i−1

⇐⇒ 1 ≥ 288 · 18i−1 · ci(k) · t−ε(k−1)+εε1(ik−1).

Thus, for ε1 < (k − 1)/(4k − 1) and t large enough, (4.5) holds and G2 contains at
least four times as many vertices as 3- and 4-cycles. Moreover, the average degree of
G2 satisfies t(G2)k = O((p1p · t)k). We omit in G2 all vertices of degree bigger than
2 · (k + 1) · t(G2)k; hence losing at most p1p · n/72 vertices, and then we determine in
the resulting induced subhypergraph G′2 of G2 the sets of 3- and 4-cycles in time

O(p1p · n+ p1p · n · t(G2)3k) = O(p1p · n · (p1p · t)3k) = O(n · t−1+εε1(3k+1)) = o(n)

for εε1 < 1/(3k+ 1). By deleting in time o(n) one vertex from each 3- or 4-cycle from
G′2, we obtain a subhypergraph G3 = (V3, E3) of G2, which does not contain any 2-, 3-,
or 4-cycles, i.e., G3 is uncrowded and satisfies w.l.o.g.

|V3| = |V2|/2 = p1p · n/144 and |E3| ≤ 9 · (p1p)
k+1 · |E|;

thus,

t(G3)k ≤ (k + 1) · 9 · (p1p)
k+1 · |E|

p1p · n/144
= 1296 · (p1p)

k · tk.

To the hypergraph G3 we apply Corollary 2.5, and for fixed δ > 0 we obtain in
time

O

(
n · t(G3)k +

(p1p · n)3

(p1p · t)3−δ

)
= O

(
n3

t3−δ

)
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an independent set in G3, and hence in G, of size at least

Ω

(
p1p · n
p1p · t · (ln (p1p · t))1/k

)
= Ω

(n
t
· (ln t)1/k

)
as desired. The overall running time is given by (4.2).

5. Applications. In this section, we give applications of our results to some
combinatorial problems. Our arguments are guided by the probabilistic existence
proofs. However, for computational reasons additional ideas are required.

Definition 5.1. Let X be a set. A triple system F ⊆ [X]3 is called a partial
Steiner triple system if for any two vertices x1, x2 ∈ X there is at most one set F ∈ F
with {x1, x2} ⊂ F .

Hence, every partial Steiner triple system F is nothing else than a 3-uniform
hypergraph which contains no 2-cycles, i.e., |F| ≤ 1/3 · (n2 ).

The next result is essentially a reformulation of Corollary 2.8.
Corollary 5.2. Let X be an n-element set, and let F ⊂ [X]3 be a partial

Steiner triple system.
Then, one can find in time O(n2) an independent set I ⊆ X with

|I| ≥ c ·
√
n · lnn.(5.1)

We remark that the existence of an independence set of size as in (5.1) was shown
first by Phelps and Rödl [40].

Proof. Since t2 = O(n), by Corollary 2.8 we find such an independent set of size
at least Ω(

√
n · lnn) in time O(n2).

Next we consider a generalization of partial Steiner triple systems.
Definition 5.3. Let h, k be positive integers with h ≤ k. Let X be an n-element

set. A family F ⊆ [X]k+1 of (k + 1)-element subsets is called (n, k + 1, h)-Steiner
system if for any two distinct sets F1, F2 ∈ F , it holds that |F1 ∩ F2| < h.

In an (n, k+1, h)-Steiner system F on X, each h-element subset of X is contained
in at most one set F ∈ F ; hence, |F| ≤ (nh )/(k+1

h ). Note that an (n, 3, 2)-Steiner
system is a partial Steiner triple system. In every (n, k + 1, 1)-Steiner system, F
distinct sets F, F ′ ∈ F are disjoint; hence, |F| = O(n) and α(F) ≥ k

k+1 · n, and such
an independent set can be found easily in time O(n). For values h ≥ 2, we have the
following result.

Theorem 5.4. Let X be an n-element set, and let F ⊂ [X]k+1 be an (n, k+1, h)-
Steiner system where h ≥ 2. Then, for every δ > 0, one can find in time O(nh +
n3−3·(h−1)/k+δ + n2h−3−(h−1)/k+δ) an independent set I ⊆ X with

|I| ≥ c · n k−h+1
k · (lnn)

1
k .(5.2)

The existence of an independent set of size at least as given in (5.2) was proved
by Rödl and Sin̆ajová [44]. By using the local lemma of Lovász (cf. [5]), they also
showed that there exists an (n, k+ 1, h)-Steiner system F with independence number
bounded from above by C · n(k−h+1)/k · (lnn)1/k for some constant C > 0. Hence in
general, for |F| = Θ(nh) one cannot expect, up to constant factors, any better bound
than (5.2).

Concerning the running times in Theorem 5.4, we have O(n2) for h = k = 2
and O(n3−3/k+δ) for h = 2 and k ≥ 3. For h ≥ 3 we have the time bound
O(n2h−3−(h−1)/k+δ).
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Proof. Let F be an (n, k + 1, h)-Steiner system on X. The corresponding hyper-
graph (X,F) is (k + 1)-uniform with |F| ≤ (nh )/(k+1

h ) edges and has average degree

t(F)k ≤ tk =
(k + 1) · (nh)(

k+1
h

) · n ≤ c1 · nh−1.

First, we consider the (2, j)-cycles in G = (X,F). For each set F ∈ F , we take a
j-element subset S ⊂ F and try to extend it to a set F ′ ∈ F . This can be done in at
most O(nh−j) ways. Thus,

s2,j(G) ≤ cj · |F| · nh−j ≤ c2,j · n2h−j

for j = 2, 3, . . . , h − 1. Moreover, constructing the set of (2, j)-cycles can be done in
time

O

(
|F| ·

( |V |
h− j

))
.

Also for every subset X ′ ⊆ X, the induced subsystem G′ = (X ′,F ′) with F ′ =
F ∩ [X ′]k+1 satisfies

s2,j(G′) ≤ c′2,j · |F ′| ·
( |X ′|
h− j

)
for j = 2, 3, . . . , h − 1, and the set of (2, j)-cycles in G′ can be determined in time
O(|F ′| · |X ′|h−j).

Given δ > 0, by Lemma 3.4 for p = n−1/k+ε with 0 < ε ≤ min {1/k, δ/(k+h−1)},
we select in time O(nh) an induced subsystem (X0,F0) of (X,F) which satisfies, after
possibly omitting more vertices,

|X0| = p/2 · |X| and |F0| ≤ 2 · pk+1 · |F|.

Then

t(F0)k ≤ tk0 = 4 · (p · t)k .

For sequences an, bn, n = 1, 2, . . ., let an � bn if an/bn → 0 with n → ∞. To apply
Corollary 2.7, we want to have for some constant γ > 0 that

pk+1 · |F| ·
(
p · n
h− j

)
� p · n · (t0)2k+1−j−γ

⇐⇒ p−(k−h+1)+γ · n−(j−1)· k−h+1
k +γ·h−1

k � 1

⇐⇒ n−(j−2)· k−h+1
k −ε·(k−h+1)+γ·h−2+εk

k � 1,

and the last inequality holds since j ≥ 2 for γ < (ε · (k − h+ 1))/((h− 2)/k + ε). By
Corollary 2.7 we obtain an independent set in F0; hence in F , of size at least

Ω

(
p · n
t0
· (ln t0)

1
k

)
= Ω

(
p · n
p · t · (ln(p · t)) 1

k

)
= Ω

(
n
k−h+1
k · (lnn)

1
k

)
.
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The time for doing this is for any δ, δ∗ > 0 and δ∗ · h−1
k < δ,

O

p · n+ pk+1 · nh +
h−1∑
j=2

pk+1 · nh · (p · n)h−j +
(p · n)3

(t0)3−δ∗


= O

(
pk+1 · nh · (p · n)h−2 + n3−(3−δ∗)·h−1

k

)
= O

(
n2h−3−h−1

k +ε(k+h−1) + n3−3(h−1)/k+δ
)

= O
(
n2h−3−h−1

k +δ + n3−3(h−1)/k+δ
)
.

Thus, the total running time is O(nh + n3−3(h−1)/k+δ + n2h−3−(h−1)/k+δ) for each
given δ > 0.

The following problem was considered for the first time by Erdös and Guy [20]:
Determine the maximum cardinality of a subset X of the n × n-grid such that all
mutual Euclidean distances between distinct points of X are distinct. By a Greedy-
type argument it was shown in [20] that for every ε > 0, such a set X with |X| ≥
c1 · n2/3−ε exists. By a probabilistic argument, this lower bound was improved by
Thiele [50] to |X| ≥ c2 ·n2/3/(lnn)1/3. Subsequently, in [37] the existence of such a set
X with |X| ≥ c3 ·n2/3 was shown. The problem of how to achieve this nonconstructive
lower bound remained open. Here we will give such an algorithm. Such problems are
related to problems arising from measuring distances using sonar signals, cf. [19], [23],
and [24].

Theorem 5.5. One can determine in time O(n6 ·lnn) a subset X of the n×n-grid
such that the distances between distinct points of X are mutually distinct and

|X| ≥ c · n2/3.(5.3)

We remark that by results from number theory, currently one can show only the
upper bound |X| ≤ c · n/(lnn)1/4, cf. [20].

Proof. Let Gn = {1, 2, . . . , n} × {1, 2, . . . , n} denote the vertex set of the n × n-
grid. We form a (nonuniform) hypergraph G = (V, E3∪E4) on V = Gn with E3 ⊆ [V ]3

and E4 ⊆ [V ]4 as follows. Let d(x, y) denote the Euclidean distance between x and
y, i.e., d(x, y) =

√
(x1 − x2)2 + (y1 − y2)2 for x = (x1, x2) and y = (y1, y2). For

pairwise distinct vertices x, y, z ∈ V we form a three-element edge E = {x, y, z} ∈ E3
iff d(x, y) = d(x, z). Moreover, for pairwise distinct vertices x1, x2, x3, x4 ∈ V we form
a four-element edge E = {x1, x2, x3, x4} ∈ E4 iff d(x1, x2) = d(x3, x4).

Our strategy will be to find a large independent set I ⊆ V in the hypergraph G.
Clearly, an independent set I ⊆ V is (in the grid) a set with mutual distinct distances.
We will find this independent set I ⊆ V again by picking vertices at random and using
derandomization. The usual process of choosing a subhypergraph and controlling the
number of (2, 2)-cycles right from the beginning would result in a running time of
O
(
n8+ c

ln lnn

)
. Therefore, some additional ideas are involved here to get the time

bound O(n6 · lnn). To achieve this, we will control the (2, 2)-cycles at a later stage.
We remark that |E3 ∪ E4| = O(n6 · lnn), as will be seen later. Thus, our algorithm
will be linear in the size of G.

In a preprocessing, we compute and store the sets Sd of all solutions of the
diophantine equation x2 + y2 = d for d = 1, 2, . . . , 2(n − 1)2 with integers x and
y. For a fixed value of d this can be done in time O(

√
d) by simply inserting
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x = −b√dc,−b√dc+ 1, . . . , b√dc in x2 + y2 = d and solving this for y. This prepro-
cessing can be done in time

O

2(n−1)2∑
d=1

√
d

 = O
(
n3
)
.

For positive integers d, let r2(d) denote the number of solutions of the equation x2 +
y2 = d within the integers. By a result of Wigert (cf. [27]), we have

max {r2(d) | d = 1, 2, . . . , n} ≤ n c′
ln lnn(5.4)

for some constant c′ > 0; hence,

|Sd| = r2(d) ≤ n c′
ln lnn

for d = 1, 2, . . . , 2(n− 1)2. We will use the following identity by Ramanujan [43]:

m∑
d=1

(r2(d))2 = Θ(m · lnm).(5.5)

Given the n × n grid, we first construct the sets E3 and E4 of edges. For d =
1, 2, . . . , 2(n−1)2 and for each vertex x0 ∈ V , there are at most |Sd| vertices x1, x2, . . . ,
xl ∈ V with d(x0, x

j)2 = d, j = 1, 2, . . . , l, and all these vertices can easily be deter-
mined in time O(r2(d)). Then, {x0, x

i, xj}, 1 ≤ i < j ≤ l yields a 3-element edge in
E3. Hence, using (5.5) the set E3 of 3-element edges can be constructed in time

O

n2 ·
2(n−1)2∑
d=1

(
r2(d)

2

) = O

n2 ·
2(n−1)2∑
d=1

(r2(d))2

 = O
(
n4 · lnn) ,

and we also infer that

|E3| ≤ c3 · n4 · lnn.(5.6)

In a similar fashion we construct the set E4 of 4-element edges. Namely, we pick
two distinct vertices x, y ∈ V and consider the sets A = {z ∈ V | d(x, z)2 = d} and
B = {w ∈ V | d(y, w)2 = d} for d = 1, 2, . . . , 2(n− 1)2. Then, {x, y, z, w} with z ∈ A,
w ∈ B, and z 6= w yields a 4-element edge E ∈ E4. Using (5.5), this can be done in
time

O

n2 · n2 ·
2(n−1)2∑
d=1

(r2(d))2

 = O
(
n6 · lnn) ,

and also

|E4| ≤ c4 · n6 · lnn.(5.7)

We want to find again a small, but large enough, uncrowded induced subhyper-
graph in G. The running time will depend essentially on the number of (2, j)-cycles,
which we have to handle and which are determined by pairs of distinct edges from E4.
Consider only the 4-element edges in G, i.e., G|E4 = (V, E4). We show how to construct
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the sets C2,2 and C2,3 of (2, 2)- and (2, 3)-cycles in G|E4, j = 2, 3. Fix an integer d with
1 ≤ d ≤ 2(n − 1)2. For an edge E = {x1, x2, x3, x4} ∈ E4 with d(x1, x2) = d(x3, x4)
and distinct vertices xi, xj ∈ E and y, z ∈ V \ E with d(xi, xj) = d(y, z) or with
d(xi, y) = d(xj , z), a pair {{x1, x2, x3, x4}, {xi, xj , y, z}} yields a (2, 2)-cycle. Hence,
using (5.4) and (5.7) the time to construct the set C2,2 of (2, 2)-cycles is given by

O
(|E4| · n2 ·max{r2(d) | 1 ≤ d ≤ 2(n− 1)2})(5.8)

= O
(
n8+

c1
ln lnn · lnn

)
= O

(
n8+ c

ln lnn

)
for some constant c > 0. Thus, for some constant c2,2 > 0 we have

s2,2(G|E4) ≤ c2,2 · n8+ c
ln lnn .

To construct the set C2,3 of (2, 3)-cycles in G|E4, we pick an edge E ∈ E4 and a
3-element subset S ⊂ E, which determines a constant number of distances. Then S
can be extended in at most O(max {r2(d) | 1 ≤ d ≤ 2(n − 1)2}) ways to an edge
E′ ∈ E4 with S ⊂ E′. Thus, we can construct the set C2,3 in G|E4 in time

O(|E4| · max {r2(d) | 1 ≤ d ≤ 2(n− 1)2}),(5.9)

and also for some constant c2,3 > 0, we have

s2,3(G|E4) ≤ c′2,3 · n6 · lnn · n c1
ln ln ≤ c2,3 · n6+ c

ln lnn .

However, we do not construct the sets C2,j of (2, j)-cycles right from the begin-
ning. We first determine a small, but big enough, induced subhypergraph, where we
only control the number of vertices and edges, and in this we will construct the sets
of (2, j)-cycles, j = 2, 3.

From the considerations leading to (5.8) we infer that every induced subhyper-
graph G′ = (V ′, E ′) of the hypergraph G|E4 = (V, E4), consisting only of the 4-element
edges, satisfies

s2,2(G′) = O
(
|E ′ | · |V ′ | · max {r2(d) | 1 ≤ d ≤ 2(n− 1)2}

)
(5.10)

= O
(
|E ′ | · |V ′ | · n c

ln lnn

)
.

Similarly, with the consideration before (5.9) we infer that

s2,3(G′) = O
(|E ′| · n c

ln lnn

)
.(5.11)

Also, the set of (2, 2)-cycles in G′ can be determined in time O(|E ′ | · |V ′ | ·n c
ln lnn ),

and the set of (2, 3)-cycles can be constructed in time O(|E ′| · n c
ln lnn ).

Lemma 5.6. Let p be a real number, 0 ≤ p ≤ 1. Then, one can construct in
time O(|V |+ |E3|+ |E4|) a subhypergraph G0 = (V0, E0

3 ∪ E0
4 ) of G = (V, E3 ∪ E4) with

E0
i ⊆ Ei, i = 3, 4, such that |V0| = p/3 · |V | and |E0

3 | ≤ 3 ·p3 · |E3| and |E0
4 | ≤ 3 ·p4 · |E4|.

Proof. The proof follows earlier arguments; cf. Lemma 3.4. For V = {v1, v2, . . . ,
vm}, we use the potential

V (p1, p2, . . . , pm) = 3pm/3 ·
m∏
i=1

(
1− 2

3
· pi
)

+

∑
E∈E3

∏
vi∈E pi

3 · p3 · |E3| +

∑
E∈E4

∏
vi∈E pi

3 · p4 · |E4| .



218 CLAUDIA BERTRAM-KRETZBERG AND HANNO LEFMANN

We obtain in time O(|V | + |E3| + |E4|) a subhypergraph G0 = (V0, E0
3 ∪ E0

4 ) of G =
(V, E3 ∪ E4) with |V0| ≥ p/3 · |V | and |E0

3 | ≤ 3 · p3 · |E3| and |E0
4 | ≤ 3 · p4 · |E4|. By

possibly omitting more vertices we get |V0| = p/3 · |V |.
In time O(|V |+ |E3|+ |E4|) = O(n6 · lnn) we apply Lemma 5.6 to the hypergraph

G with

p = n−2/3+ε,(5.12)

where 0 < ε < 2/3, and we obtain a subhypergraph G0 = (V0, E0
3 ∪ E0

4 ) of G with

|V0| = p · n2/3, |E0
3 | ≤ 3 · p3 · |E3|, |E0

4 | ≤ 3 · p4 · |E4|.(5.13)

We did not control the number s2,j(G0|E0
4 ) of (2, j)-cycles, j = 2, 3, in G0|E0

4 . However,
by (5.11) we know for ε < 4/15 that

s2,2(G0|E0
4 ) ≤ c′2,2 · |E0

4 | · |V0| · n c
ln lnn

≤ c∗2,2 · p4 · n6 · lnn · p · n2 · n c
ln lnn

= c∗2,2 · p5 · n8+ c
ln lnn · lnn

≤ c∗2,2 · n14/3+5ε+ c
ln lnn · lnn

= o(n6 · lnn).(5.14)

Moreover, for ε < 2/3 we infer from (5.11) that

s2,3(G0, E0
4 ) ≤ c′2,3 · |E0

4 | · n
c

ln lnn

≤ c∗2,3 · p4 · n6+ c
ln lnn · lnn

≤ c∗2,3 · n10/3+4ε+ c
ln lnn · lnn

= o(n6 · lnn).(5.15)

The value p is chosen in (5.12) such that the assumptions of Corollary 2.7 are
fulfilled for the hypergraph G0|E0

4 , i.e., we choose for p that minimal value for which
the following two conditions hold for some constants c, γ > 0:

s2,2(G0|E0
4 ) ≤ c · p · n2 · t(G0|E0

4 )5−γ ,
s2,3(G0|E0

4 ) ≤ c · p · n2 · t(G0|E0
4 )4−γ .

We proceed similarly to the proof of Theorem 2.6. Namely, we use the following
lemma, whose proof is along the lines of former statements.

Lemma 5.7. For every p1 with 0 ≤ p1 ≤ 1, one can construct in time

O
(|V0|+ |E0

3 |+ |E0
4 |+ s2,3(G|E0

4 ) + s2,2(G0|E0
4 )
)

a subhypergraph G1 = (V1, E1
3 ∪ E1

4 ) of G0 = (V0, E0
3 ∪ E0

4 ) with E1
i ⊆ E0

i , i = 3, 4, such
that

|V1| = p1/5·|V0| , |E1
3 | ≤ 5·p3

1·|E0
3 | , |E1

4 | ≤ 5·p4
1·|E0

4 | , s2,3(G1|E1
4 ) ≤ 5·p5

1·s2,3

(G0|E0
4

)
,

and s2,2(G1|E1
4 ) ≤ 5 · p6

1 · s2,2(G0|E1
4 ).

Before applying Lemma 5.7, we estimate the corresponding running time, namely,
using (5.6), (5.7), (5.12), (5.13), (5.14), and (5.15) we obtain

O
(|V0|+ |E0

3 |+ |E0
4 |+ s2,3(G|E0

4 ) + s2,2(G0|E0
4 )
)

= o(n6 · lnn).
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Let

p1 =

(
(lnn)1/3

p · t
)1−ε1

=

(
1

n2/3+ε

)1−ε1
,

where

ε1 =
ε

5ε+ 11/3
.(5.16)

By Lemma 5.7 we obtain in time o(n6 · lnn) a subhypergraph G1 = (V1, E1
3 ∪ E1

4 ) of
G0 with E1

i ⊆ E0
i , i = 3, 4, where

|V1| = p1

5
· |V0| = p1p

15
· n2 =

1

15
· n2/3+2ε1/3+εε1

and

|E1
3 | ≤ 5 · p3

1 · |E0
3 | ≤ 15 · p3

1 · p3 · |E3| ≤ 15 · c3 · n2ε1+3εε1 · lnn = o(|V1|) .
For the number of (2, 3)-cycles, we have using (5.15) that

s2,3

(G1|E1
4

) ≤ 5 · p5
1 · s2,3

(G0|E0
4

)
≤ 15 · c2,3 · p5

1 · n10/3+4ε+ c
ln lnn · lnn

≤ 15 · c2,3 · n−ε+10ε1/3+5εε1+ c
ln lnn · lnn

= o(|V1|).
Finally, using (5.14) we obtain for the number of (2, 2)-cycles that

s2,2

(G1|E1
4

) ≤ 5 · p6
1 · s2,2(G0|E0

4 )

≤ 5 · c∗2,2 · p6
1 · n14/3+5ε+ c

ln lnn · lnn
≤ 5 · c∗2,2 · n2/3−ε+4ε1+6εε1+ c

ln lnn · lnn
= o(|V1|).

Summarizing, we have |E1
3 |+s2,3(G1|E1

4 )+s2,2(G1|E1
4 ) = o(|V1|). We delete from G1 one

vertex from each 3-element edge E ∈ E1
3 and from each (2, 2)- or (2, 3)-cycle in G1|E0

4 ,
and, possibly deleting more vertices, we obtain a 4-uniform induced subhypergraph
G2 = (V2, E2

4 ) of G1 with

|V2| = |V1|
2

=
p1p

30
· n2

and

|E2
4 | ≤ 15 · c4 · (p1p)

4 · n6 · lnn,
and G2 no longer contains any 2-cycles. By Corollary 2.8 we obtain an independent
set in G2, and hence in G, of size

Ω

(
p1p · n2

p1p · t · (ln(p1p · t))1/3

)
= Ω

(
n2

t
·
(

ln
(
n2ε1/3+εε1 · lnn

))1/3
)

= Ω

(
n2

n4/3 · (lnn)1/3
· (lnn)1/3

)
= Ω

(
n2/3

)
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as ε, ε1 > 0 are fixed.
The time for doing this is for any given δ with 0 < δ < 1

O

(
p1p · n2 · (p1p · t)3 +

(p1p · n2)3

(p1p · t)3−δ

)
= O

(
(p1p)

4 · n2 · t3 +
n6

t3−δ

)
= O

(
(p1p)

4 · n6 · lnn+ n2+4δ/3
)

= O
(
n2/3+8ε1/3+4εε1 · lnn+ n2+4δ/3

)
= o

(
n6 · lnn) .

Hence, we have an overall running time of O(n6 · logn).
The next result gives a k-dimensional version of Theorem 5.5.
Theorem 5.8. Let k ≥ 3 be a fixed integer. For every fixed δ > 0, one can find

in time O(n6k−22/3+δ) a subset X of the k-dimensional n× · · · × n grid such that the
distances between distinct points of X are mutually distinct and for some constant
c = c(k, δ) > 0 it is

|X| ≥ c · n2/3 · (lnn)1/3.(5.17)

The existence of such a set X which satisfies (5.17) was shown in [37]. We remark
that here only the upper bound |X| ≤ c ·√k ·n is known, as shown by Erdös and Guy
[20].

Proof. Let V = {1, 2, . . . , n}k be the set of vertices of the k-dimensional grid.
As in the proof of Theorem 5.5, we form a nonuniform hypergraph G = (V, E3 ∪ E4)
with E3 ⊆ [V ]3 and E4 ⊆ [V ]4 as follows. For vertices x = (x1, x2, . . . , xk) ∈ V

and y = (y1, y2, . . . , yk) ∈ V let d(x, y) =
√∑k

i=1(xi − yi)2 denote the Euclidean

distance between x and y. For pairwise distinct vertices x, y, z ∈ V let {x, y, z} ∈
E3 iff d(x, y) = d(x, z). Also, for pairwise distinct vertices x1, x2, x3, x4 ∈ V let
{x1, x2, x3, x4} ∈ E4 iff d(x1, x2) = d(x3, x4). Again our strategy will be to find a
large independent set in G. In a preprocessing we compute and store the sets Skd of all
solutions of the diophantine equation x2

1 +x2
2 + · · ·+x2

k = d for d = 1, 2, . . . , k(n−1)2.

By inserting integers x1, x2, . . . , xk−1 with |xi| ≤
√
d and solving for xk, this can be

done in time

O

k(n−1)2∑
d=1

(2 ·
√
d)k−1

 = O

(∫ k·n2

1

x
k−1

2 dx

)
= O

(
nk+1

)
.

For positive integers d, let rk(d) denote the number of solutions of x2
1+x2

2+· · ·+x2
k = d

within the integers. Rewriting this as x2
1 +x2

2 = d−∑k
i=3 x

2
i , we infer with (5.4) that

rk(n) ≤ (2 · √n)k−2 · max1≤d≤√n r2(d) = O
(
n
k
2−1+ c′

ln lnn

)
.

Hence, for fixed integers k ≥ 3, we have

max{rk(d) | d = 1, 2, . . . , k(n− 1)2} ≤ nk−2+ c
ln lnn(5.18)

for some constant c > 0, and therefore,

|Skd | = rk(d) ≤ nk−2+ c
ln lnn .
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For fixed k ≥ 3, we have by results from [37] that

n∑
d=1

(rk(d))2 = Θ
(
nk−1

)
.(5.19)

First we construct the sets E3 and E4. For d = 1, 2, . . . , k(n − 1)2 and for each
vertex x0 ∈ V , there are at most |Skd | vertices x1, x2, . . . , xl ∈ V with d(x0, x

j)2 =
d, j = 1, 2, . . . , l, and all these vertices can easily be determined by a coordinate
transformation in time O(rk(d)). Then, {x0, x

i, xj}, 1 ≤ i < j ≤ l yields a 3-element
edge E ∈ E3. Using (5.19), the set E3 of 3-element edges can be constructed in time

O

nk · k(n−1)2∑
d=1

(
rk(d)

2

) = O
(
nk · (k · n2)k−1

)
= O

(
n3k−2

)
and also

|E3| ≤ c3 · n3k−2.

In a similar fashion, we construct the set E4 of 4-element edges. We pick two distinct
vertices x, y ∈ V and consider the sets Ad = {z ∈ V | d(x, z)2 = d} and Bd = {w ∈
V | d(y, w)2 = d} for d = 1, 2, . . . , k(n− 1)2. Then, {x, y, z, w} with z ∈ A and w ∈ B
yields a 4-element edge E ∈ E4 if x, y, z, w are pairwise distinct. Using (5.19), this
can be done in time

O

nk · nk · k(n−1)2∑
d=1

(rk(d))2

 = O
(
n4k−2

)
and also

|E4| ≤ c4 · n4k−2.(5.20)

As in the proof of Theorem 5.5, and using (5.18), the set C2,3 of (2, 3)-cycles in the
4-uniform subhypergraph G|E4 = (V, E4) can be constructed in time

O(|E4| ·max{rk(d) | 1 ≤ d ≤ k(n− 1)2}) = O
(
n5k−4+ c

ln lnn

)
,

and, for some constant c2,3 > 0, we have

s2,3(G|E4) ≤ c2,3 · n5k−4+ c
ln lnn .

This shows that for each induced subhypergraph G′ = (V ′, E ′4) of G|E4 = (V, E4), the
set of (2, 3)-cycles can be constructed in time

O
(|E ′4| · nk−2+ c

ln lnn

)
and

s2,3(G′) = O
(|E ′4| · nk−2+ c

ln lnn

)
.(5.21)

Again, as in the proof of Theorem 5.5, using (5.18) and (5.20) the construction of the
set C2,2 of (2, 2)-cycles in G|E4 can be done in time

O
(
|E4| · |V | · nk−2+ c

log logn

)
= O

(
n6k−4+ c

ln lnn

)
,
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and, for some constant c2,2 > 0, we have

s2,2(G|E4) ≤ c2,2 · n6k−4+ c
ln lnn .

Moreover, for every subhypergraph G′ = (V ′, E ′4) of G|E4 = (V, E4), we have

s2,2(G′) = O
(|E ′4| · |V ′| · nk−2+ c

ln lnn

)
.(5.22)

By Lemma 5.6 with p = n−2/3+ε, where 0 < ε < 2/3, we obtain in time O(|V |+ |E3|+
|E4|) = O(n4k−2) a subhypergraph G0 = (V0, E0

3 ∪ E0
4 ) of G with E0

3 ⊆ E3 and E0
4 ⊆ E4

such that

|V0| = p/3 · |V |, |E0
3 | ≤ 3 · p3 · |E3|, |E0

4 | ≤ 3 · p4 · |E4|.

The value of p is chosen such that the assumptions of Corollary 2.7 are fulfilled for
some constants c, γ > 0:

s2,2(G0|E0
4 ) ≤ c · p · nk · (p · t)5−γ ,

s2,3(G0|E0
4 ) ≤ c · p · nk · (p · t)4−γ ,

where

s2,2(G0|E0
4 ) = O(p4 · |E4| · p · nk · nk−2+ c

log logn )

= O(n6k−22/3+5ε+ c
log logn )

and

s2,3(G0|E0
4 ) = O(p4 · |E4| · nk−2+ c

log logn )

= O(n5k−20/3+4ε+ c
log logn ).

Let t3 be the average degree of G|E4. By (5.20) we have

t3 ≤ 4 · c4 · n4k−2

nk
≤ 4 · c4 · n3k−2.(5.23)

By Lemma 5.7 with p1 = (p · t)−1+ε1 , where ε1 = ε/(5k + 5ε), we obtain a subhyper-
graph G1 = (V1, E1

3 ∪ E1
4 ) of G0 with E1

i ⊆ E0
i for i = 3, 4 such that |V1| = p1/5 · |V0|,

|E1
3 | ≤ 5 ·p3

1 · |E0
3 |, |E1

4 | ≤ 5 ·p4
1 · |E0

4 |, s2,3(G1|E1
4 ) ≤ 5 ·p5

1 ·s2,3(G1|E1
4 ), and s2,2(G1|E1

4 ) ≤
5 · p6

1 · s2,2(G1|E1
4 ). This can be done in time

O(|V0|+ |E0
3 |+ |E0

4 |+ s2,3(G0|E0
4 ) + s2,2(G0|E0

4 ))

= O
(
p · nk + p3 · |E3|+ p4 · |E4|

+p4 · |E4| · nk−2+ c
ln lnn + p4 · |E4| · p · nk · nk−2+ c

ln lnn

)
= O

(
nk−2/3+ε + n3k−4+3ε + n6k−22/3+5ε+ c

ln lnn

)
= O

(
n6k−22/3+5ε+ c

ln lnn

)
.(5.24)

Since p1p = c · n−k+2/3+ε1(k−4/3+ε), we have by choice of ε1 that

|E1
3 | ≤ 15 · (p1p)

3 · |E3| = O(n3ε1(k−4/3+ε)) = o(|V1|).
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Also, by choice of ε1 we have

s2,2(G1|E1
4 ) = O(p6

1 · s2,2(G0|E0
4 ) = O(n2/3−ε+6ε1(k−4/3+ε)+ c

ln lnn ) = o(|V1|),
s2,3(G1|E1

4 ) = O(p5
1 · s2,3(G0|E0

4 ) = O(n−ε+5ε1(k−4/3+ε)+ c
ln lnn ) = o(|V1|).

In the resulting subhypergraph G1 = (V1, E1
3 ∪ E1

4 ), we delete in time O(|V1|) one
vertex from each 3-element edge and from all (2, 2)- and (2, 3)-cycles in G1|E1

4 . In
losing o(|V1|) vertices, we obtain a subhypergraph G2 = (V2, E2

4 ), which no longer
contains any 2-cycles and, possibly after deleting more vertices, satisfies

|V2| = |V1|/2 = 1/30 · p1p · nk

and

|E2
4 | ≤ 15 · c4 · (p1p)

4 · n4k−2.

We apply Corollary 2.8 to G2, and we obtain an independent set in G2; hence in G of
size at least

Ω

(
p1p · nk
p1p · t · (ln(p1p · t))1/3

)
= Ω

(
nk

nk−2/3
· (lnn)1/3

)
= Ω

(
n2/3 · (lnn)1/3

)
.

The time for doing this is for 0 < δ1 < 1 and δ2 = (k − 2/3) · δ1 given by

O

(
p1p · nk · (p1p · t)3 +

(p1p · nk)3

(p1p · t)3−δ1

)
= O

(
(p1p)

4 · nk · t3 + n2+δ2
)

= o
(
n6k−22/3+5ε+ c

ln lnn

)
.

By (5.24), for ε < δ/5 the overall running time is

O
(
n6k−22/3+5ε+ c

ln lnn

)
= O

(
n6k−22/3+δ

)
.

The next problem that we consider concerns colorings of the edges of a complete
graph. The colorings are such that each color class is a matching ; that is, edges of
the same color have no vertex in common.

Theorem 5.9. Let the edges of the complete graph Kn be colored such that every
color class is a matching. Then, one can determine in time O(n3) a complete subgraph
Kl of Kn such that the edges of Kl are totally multicolored (injectively colored) and

l ≥ c · (n · lnn)1/3.(5.25)

The existence of such a totally multicolored subgraph satisfying (5.25) was shown
in [8]. Moreover, Babai [11] showed the existence of colorings of the complete graph
Kn, where every color class is a matching, such that every totally multicolored com-
plete subgraph Kl satisfies l ≤ C · (n · lnn)1/3, where C ≈ 7.3. The value of the
constant C was improved in [36] to C = 2.21. Hence, up to a constant factor we
cannot do better in Theorem 5.9 with respect to the size of l.

Proof. Let ∆:E(Kn) −→ N be a coloring of the edges of the complete graph Kn

with n-element vertex set V , where every color class is a matching.
We form a 4-uniform hypergraph G = (V, E) on the same vertex set as Kn by

collecting pairs of edges of the same color. For distinct edges e1 = {v1, w1} ∈ E(Kn)
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and e2 = {v2, w2} ∈ E(Kn), we have E = e1 ∪ e2 ∈ E ∈ [V ]4 iff ∆(e1) = ∆(e2),
i.e., ∆(e1) = ∆(e2) implies e1 ∩ e2 = ∅, as every color class is a matching. With
|∆−1(i)| ≤ n/2 for i ∈ N we infer that

|E| =
∑
i∈N

(|∆−1(i)|
2

)
≤
(
n
2

)
n
2

·
(n

2

2

)
<

1

8
· n3.(5.26)

By first sorting the edges in E(Kn) according to their color, the hypergraph G can be
constructed in time O(n3). The average degree t(G)3 of G satisfies

t(G)3 =
4 · |E|
|V | ≤

n2

2
= t3.

First, we construct the (2, 3)-cycles in G. For each edge E ∈ E and each 3-element
subset S ⊂ E, the set S can be extended in at most a constant number of ways to an
edge E′ ∈ E , i.e., S ⊂ E′, as every color class is a matching. Thus the set of (2, 3)-
cycles can be constructed in time O(|E|) = O(n3), and for some constant c2,3 > 0 we
have

s2,3(G) ≤ c2,3 · n3.(5.27)

We do not construct the set of (2, 2)-cycles right now. To do this, observe that
for each edge E ∈ E and each 2-element subset e ∈ [E]2 there are less than n edges
e′ ∈ E(Kn) with ∆(e) = ∆(e′). Also for distinct vertices v, w ∈ E and z ∈ V \ E,
there is at most one edge e′ ∈ E(Kn) with w ∈ e′ and ∆({v, z}) = ∆(e′). Thus the
set of (2, 2)-cycles can be constructed in time O(|E| · n) = O(n4). Similarly, for each
subhypergraph G′ = (V ′, E ′) of G, its set of (2, 2)-cycles can be constructed in time
O(|E ′| · |V ′|), and also

s2,2(G′) ≤ c′2,2 · |E ′| · |V ′|.(5.28)

By Lemma 5.6, for p = n−1/3+ε with 0 < ε < 1/3, using (5.26) and (5.27) we find in
time O(|V |+ |E|+ s2,3(G)) = O(n3) a subhypergraph G0 = (V0, E0) of G = (V, E) with

|V0| = p/3 · |V | , |E0| ≤ 3 · p4 · |E| , and s2,3(G0) ≤ 3 · p5 · s2,3(G).(5.29)

Then, t(G0)3 ≤ 9 · (p · t)3. We claim that for γ = ε/(1 + ε) the following holds:

s2,2(G0)� p · n · (p · t)5−γ .

To see this, observe, using (5.28), that

p4 · |E| · p · n� p · n · (p · t)5−γ

⇐⇒ p−1+γ · n−1/3+2γ/3 � 1

⇐⇒ n−ε+γ(ε+1/3) � 1,

and the last inequality holds. Moreover, by (5.27) and (5.29), we have

s2,3(G0) ≤ 3 · p5 · s2,3(G) ≤ c′2,3 · p5 · n3 � p · n · (p · t)4−γ .

The assumptions of Corollary 2.7 are fulfilled, and we obtain an independent set of
size at least

Ω

(
p · n
p · t · (ln(p · t))1/3

)
= Ω

(
(n · lnn)1/3

)
.
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The time for doing this is by (5.28) and (5.29) for 0 < δ < 1 and ε < 2/15 given by

O

(
p · n+ p4 · n3 + s2,2(G0) + s2,3(G0) +

(p · n)3

(p · t)3−δ

)
= O

(
p · n+ p4 · n3 + p5 · |E| · n+ p5 · n3 +

n3

t3−δ

)
= O

(
n7/3+5ε +

n3

n2−2δ/3

)
= O

(
n7/3+5ε + n1+2δ/3

)
= o(n3).

The overall running time is O(n3).
Closely related to the problem just considered is that of finding large Sidon sets

in Abelian groups [11].
Definition 5.10. Let (G,+) be an Abelian group. A subset S ⊂ G is called a

Sidon set if all pairwise sums s1 + s2 with s1, s2 ∈ S and s1 6= s2 are distinct.
In the following we will assume that each addition g+ h of elements g, h ∈ G can

be done in constant time.
Corollary 5.11. Let (G,+) be an Abelian group. Let W ⊆ G be an n-element

subset of G. Then one can compute in time O(n3) a Sidon set S ⊆W with

|S| ≥ c · (n · lnn)1/3.(5.30)

Note that if W = G, where |W | = n, each Sidon set S satisfies ( |S|2 ) ≤ n, i.e.,

|S| ≤ 1 +
√

2 · n. The existence of a Sidon set with size as in (5.30) follows from
results in [8].

We remark that within the set of integers, finding a Sidon set S ⊆ {1, 2, . . . , n}
with |S| ≥ c · √n can easily be done in time O(n) using Singer sets; cf. [47].

Proof. Given the set W ⊆ G with |W | = n, we form a complete graph Kn with
vertex set W . Then we color the edges {v, w} of Kn by color v+w. This can be done
in time O(n2). As (G,+) is Abelian, every color class is a matching. Then, we apply
Theorem 5.9 to our colored Kn, and we obtain in time O(n3) a totally multicolored
complete subgraph Kl with l ≥ c · (n · lnn)1/3. As Kl is totally multicolored, the
vertices of Kl yield in W a Sidon set.

The next problem—Sidon sets within the set {12, 22, . . . , n2} of squares of integers—
was considered for the first time by Alon and Erdös [7], where for any ε > 0 the lower
bound |S| ≥ c · n2/3−ε was proved by a Turán strategy.

Theorem 5.12. For every fixed δ > 0, one can find in time O(n2+δ) a Sidon set
S ⊂ {12, 22, . . . , n2} with

|S| ≥ cδ · n2/3.(5.31)

The existence of an independent set of size at least as in (5.31) was proved in [37].
By a result of Landau [34], one has the upper bound |S| ≤ c · n/(lnn)1/4 for every
Sidon set S ⊆ {12, 22, . . . , n2}.

Proof. We consider a 4-uniform hypergraph G = (V, E) with vertex set V =
{12, 22, . . . , n2} and edge set E ⊆ [V ]4. Let {i21, i22, i23, i24} ∈ E iff i21 + i22 = i23 + i24. To
construct G, we consider all pairs (i2, j2), 1 ≤ i < j ≤ n, and sort them according
to the value of their sums i2 + j2 in time O(n2 · lnn). Then, we collect pairwise
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the pairs with the same value of the sum. Recall, that r2(d) denotes the number of
representations of d as a sum of two squares, i.e., x2 + y2 = d for integers x, y. By
(5.4), we have

r2(n) ≤ n c′
ln lnn .

Using (5.5), we infer that

|E| ≤
2n2∑
d=1

(
r2(d)

2

)
≤ c4 · n2 · lnn,(5.32)

and E can be constructed in time O(n2 · lnn).
Now we consider the 2-cycles in the hypergraph G. To count the number s2,2(G′) of

(2, 2)-cycles in any subhypergraph G′ = (V ′, E ′), consider a fixed edge {i21, i22, i23, i24} ∈
E ′. The number of edges {i21, i22, x2, y2} ∈ E ′ with i21 + i22 = x2 + y2 is at most

r2(i21 + i22) ≤ n c1
ln lnn . Moreover, the number of edges {i21, i22, x2, y2} ∈ E ′ with i21 +x2 =

i22 + y2 is given by a constant times the number of divisors of i21 − i22 and hence is at

most n
c2

ln lnn ; cf. [27], [37]. Thus, we have for constants c3, c2,2 > 0 that

s2,2(G′) ≤ c2,2 · |E ′| · n
c3

ln lnn ,

and the set of (2, 2)-cycles in G′ can be constructed in time O(|E ′| · n c3
ln lnn ).

As every 3-element subset S ⊂ V can be extended only in a constant number of
ways to an edge E ∈ E , i.e., S ⊂ E, every subhypergraph G′ = (V ′, E ′) of G satisfies
for some constant c2,3 > 0 that

s2,3(G′) ≤ c2,3 · |E ′|,
and the set of (2, 3)-cycles in G′ can be constructed in time O (|E ′|).

Now, for the average degree t(G)3 of G we have by (5.32) that

t(G)3 ≤ t3 =
4 · c4 · n2 · lnn

n
= c5 · n · lnn.

Then, for 0 < γ < 1/3, some constant c > 0, and n large we have

s2,2(G) ≤ c2,2 · n2 · lnn · n c3
ln lnn � n8/3−γ/3 ≤ c · n · t5−γ ,

s2,3(G) ≤ c2,3 · n2 · lnn� n7/3−γ/3 ≤ c · n · t4−γ ;

hence, the assumptions of Corollary 2.7 are fulfilled, and we obtain for any fixed δ′ > 0
with δ′ < 3δ in time

O

(
n2 · lnn · n c3

ln lnn +
n3

t3−δ′

)
= O

(
n2+δ′/3 · (lnn)δ

′/3
)

= O
(
n2+δ

)
an independent set of size at least

Ω

(
n

(n · (lnn))1/3
· (lnn)1/3

)
= Ω

(
n2/3

)
.

Sidon sets in arbitrary groups were considered by Babai and Sós [12]. They
distinguish two types, as shown in the following.
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Definition 5.13. Let (G, ·) be a group, and let S be a subset of G. The set S is
a Sidon set of the first kind if for all x, y, z, w ∈ S, where at least three are distinct,
it is

x · y 6= z · w.
The set S is a Sidon set of the second kind if

x · y−1 6= z · w−1.

Theorem 5.14. Let (G, ·) be an arbitrary group. Then for every subset W ⊆ G
with |W | = n, one can determine in time O(n3) a subset S ⊆ W , which is a Sidon
set of both kinds, first and second, and satisfies

|S| ≥ c · (n · lnn)1/3.(5.33)

The existence of a Sidon set with |S| ≥ c · n1/3 was first shown by Babai and Sós
[12]. In [36] the existence of a Sidon set S satisfying (5.33) was shown.

Proof. We sketch the arguments for Sidon sets of the second kind. The arguments
for Sidon sets of the first kind are similar (also for Sidon sets of both kinds). By results
from [12], a subset S ⊆ G is a Sidon set of the second kind if for pairwise distinct
elements x, y, z ∈ S it is

(i) x · y−1 6= y · z−1

and for all pairwise distinct elements x, y, z, w ∈ S it is

(ii) x · y−1 6= z · w−1.

Given a subset W ⊆ G, we form a hypergraph G = (W, E3∪E4) by collecting triples and
quadruples of W , which violate conditions (i) or (ii). For pairwise distinct elements
x, y, z ∈ W let {x, y, z} ∈ E3 iff x · y−1 = y · z−1. Moreover, for pairwise distinct
elements x, y, z, w ∈ W , let {x, y, z, w} ∈ E4 iff x · y−1 = z · w−1. Constructing the
sets E3, E4 can be done in time O(n3). Again, we want to find a large independent set
in G.

Let G|E4 = (W, E4). It is easy to see (cf. [36]) that

|E3| ≤ c3 · n2, |E4| ≤ c4 · n3, s2,3(G|E4) ≤ c2,3 · n3, and s2,2(G|E4) ≤ c2,2 · n4

and the sets of (2, 3)-cycles can be constructed in time O(s2,3(G|E4)). Moreover, for

every subhypergraph G′ = (W ′, E ′4) of G|E4, we have

s2,2(G′) ≤ c′2,2 · |E ′| · |W ′|.
The situation is similar to that in the proof of Theorem 5.9. We first choose with
p = n−1/3+ε, where 0 < ε < 1/3, in time O(n3) a small subhypergraph G0 of G, where
we control the number of vertices, edges, and (2, 3)-cycles in G|E4. In the resulting
hypergraph G0, the number of (2, 2)-cycles is only O(p4 ·|E4|·p·n) = o(n3) for ε < 2/15.
Then, on this small subhypergraph we again choose in time o(n3) with p = n−1/3+ε1 a
small subhypergraph G1, where we control the number of vertices, edges, and, among
the 4-element edges, the (2, 3)-cycles and now also the (2, 2)-cycles. In the resulting
hypergraph G1, we delete in time o(n) one vertex from each 3-element edge, each
(2, 2)-cycle, and each (2, 3)-cycle, and we obtain a 4-uniform hypergraph without any
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2-cycles, to which we apply Corollary 2.8 in time o(n3), and we get a desired Sidon
set.

Definition 5.15. Let (G, ·) be a group. Let C ⊂ G be a subset of G with 1 6∈ C,
where C is invariant under taking inverses, i.e., with C = C−1 = {c−1 | c ∈ C}. The
Cayley graph Γ(G,C) has vertex set G and edge set {{g, h} | g · h−1 ∈ C and g, h ∈
G}.

Corollary 5.16. Let (G, ·) be a group. There exists a constant c > 0 such that
the following holds. Let H be a graph on n vertices. Then, for every subset W ⊆ G
with |W | ≥ c ·n3/ lnn, one can construct in time O(n9/(lnn)3) some Cayley subgraph
of G and find in it an induced subgraph, which is isomorphic to H.

The existence of such a subset W with |W | ≥ c ·n3 was shown first by Babai and
Sós [12]. This was improved to |W | ≥ c · n3/ logn in [36].

Proof. The arguments follow [12]. Let H = (V,E) be a graph on n vertices, and
let W ⊆ G be a subset of G with |W | ≥ c · n3/ lnn, where c > 0 is a large enough
constant. By Theorem 5.14 we obtain in time

O

((
n3

lnn

)3
)

= O

(
n9

(lnn)3

)
a subset S ⊆ W with |S| = n, where S is a Sidon set of the second kind. Now,
we identify S with the vertex set V of H. Set C = {s · t−1 | {s, t} ∈ E}. Then
1 6∈ C and C = C−1. Moreover, the Cayley graph Γ(S,C) is an induced copy of the
graph H.

In connection with the study of random Turán numbers the existence of graphs
with many edges and without cycles of small lengths was shown by Kohayakawa,
Kreuter, and Steger [31]. We mention without detailed proof that along the lines
discussed in this paper the following can be shown.

Proposition 5.17. Let k ≥ 2 be a fixed integer. Then, one can compute in time
O(n4k−3) a graph G on n vertices, which does not contain any cycle C3, C4, . . . , C2k,
and the number of edges in G is at least

Ω
(
n1+ 1

2k−1 · (lnn)
1

2k−1

)
.

Although there are better constructions known, for example, Ramanujan graphs
arising from the work of Lubotzky, Phillips, and Sarnak [38], i.e., graphs with at

least Ω(n1+ 2
3k+3 ) edges which do not contain any cycle C3, C4, . . . , C2k, the method

used in [31] is interesting to gain a logarithmic factor. Namely, seemingly against the

intuition they delete edges in a complete graph Kn with probability p = n−1+ 1
2k−1 +ε,

where ε > 0, which is above the usual choice p0 = Θ(n−1+ 1
2k−1 ). Then they form

a hypergraph with vertices being the edges of the resulting random graph Gn and
(hyper-)edges consisting of the cycles C3, C4, . . . , C2k in Gn. The resulting hypergraph

contains an independent set of size Ω(n1+ 1
2k−1 · (lnn)

1
2k−1 ), i.e., the corresponding

edges in the graph form no cycles C3, C4, . . . , C2k.
For algorithmic reasons, we do not use the probabilistic argument from [31].

We consider the complete graph Kn on n vertices. We form a hypergraph G with
vertices being the edges of Kn. The (hyper-)edges in G are determined by the edges
of cycles of length at most 2k in Kn. Thus, the hypergraph G has (n2 ) vertices and
Θ(ni) edges of cardinality i, where i = 3, 4, . . . , 2k. Then we determine all 2-cycles
among the 2k-element edges of G. The number of (2, j)-cycles, j = 2, 3, . . . , 2k − 1,



THE ALGORITHMIC ASPECTS OF UNCROWDED HYPERGRAPHS 229

among the 2k-element edges of G is Θ(n4k−j−1). Hence, the assumptions of Corollary
2.7 are fulfilled. We get rid of those (hyper-)edges with cardinality less than 2k by

choosing vertices of G with probability p = n−
2k−2
2k−1 +ε for some ε > 0, i.e., using the

derandomized argument, and we obtain a 2k-uniform subhypergraph to which we
apply Corollary 2.7. The running time of this algorithm is given by the number of
(2, 2)-cycles, i.e., is at most O(n4k−3).

We remark that Proposition 5.17 was recently generalized in [15]; see also [35].
Moreover, an algorithm for Heilbronn’s problem (cf. [32]) was given in [14].
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[18] R. A. Duke, H. Lefmann, and V. Rödl, On uncrowded hypergraphs, Random Structures
Algorithms, 6 (1995), pp. 209–212.

[19] P. Erdös, R. L. Graham, I. Rusza, and H. Taylor, Bounds for arrays of dots with distinct
slopes or lengths, Combinatorica, 12 (1992), pp. 39–44.

[20] P. Erdös and R. Guy, Distinct distances between lattice points, Elem. Math., 25 (1970), pp.
121–123.

[21] A. Fundia, Derandomizing Chebychev’s inequality to find independent sets in uncrowded hy-
pergraphs, Random Structures Algorithms, 8 (1996), pp. 131–147.

[22] M. Goldberg and T. Spencer, An efficient parallel algorithm that finds independent sets of
guaranteed size, SIAM J. Discrete Math., 6 (1993), pp. 443–459.

[23] S. W. Golomb, Construction of signals with favourable correlation properties, in Surveys in
Combinatorics, London Mathematical Soc. Lecture Note Ser. 166, 1991, pp. 1–39.



230 CLAUDIA BERTRAM-KRETZBERG AND HANNO LEFMANN

[24] S. W. Golomb and H. Taylor, Two-dimensional synchronization patterns for minimum am-
biguity, IEEE Trans. Inform. Theory, IT-28 (1982), pp. 600–604.
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Abstract. DATALOG is the language of logic programs without function symbols. It is consid-
ered to be the paradigmatic database query language. If it is possible to eliminate recursion from a
DATALOG program then it is bounded. Since bounded programs can be executed in parallel constant
time, the possibility of automatized boundedness detecting is believed to be an important issue and
has been studied in many papers. Boundedness was proved to be undecidable for different kinds of
semantical assumptions and syntactical restrictions. Many different proof techniques were used.

In this paper we propose a uniform proof method based on the discovery of, as we call it, the
Achilles–Turtle machine, and make strong improvements on most of the known undecidability results.
In particular we solve the famous open problem of Kanellakis showing that uniform boundedness is
undecidable for single rule programs (called also sirups).
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1. Introduction.

1.1. Introduction. Consider the query relation R, which answers for a given
directed graph and for two given nodes A and B of the graph, whether it is possible to
reach B from A in an odd number of steps. It turns out that R is not expressible in first
order logic. That is due to lack of recursion in the first order logic. This observation led
to the study of DATALOG (DATAbase LOGic) programs which combine existential
positive first order logic with recursion. For example, the relation R can be defined
by an “odd-distance” DATALOG program:

(i) R(X,Y ):– E(X,Y ),
(ii) R(X,Y ):– R(X,Z), R(Z,W ), E(W,Y ),

where E is the edge relation of the graph. E is the so-called extensional predicate
(EDB): we treat it as an input and are not able to prove new facts about it. R is
the output, or intensional predicate (IDB). The program proves facts about it. The
first rule is an initialization rule: it has only the extensional predicate in the body.
But the second rule contains the intensional predicate within its premises; it can be
used recursively and deep proofs can be constructed. It is clear that if in some graph
there is a path from an element A to B of an odd length n, then to prove R(A,B) for
such elements, a proof of a depth about log n may be needed. Thus in huge databases
arbitrarily deep proofs are necessary to evaluate the program.

On the other hand, consider a program which computes the “has 3-tail” query:
(iii) 1TAIL(Z):– E(Z,X),
(iv) 2TAIL(Z):– 1TAIL(Y ), E(Z, Y ),
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(v) 3TAIL(Z):– 2TAIL(Y ), E(Z, Y ).
If 3TAIL(A) is provable for some A, then there exists a proof of the fact which

is not deeper than 3, regardless of the number of elements in the database. 1TAIL,
2TAIL, and 3TAIL are IDB and the second and third rules are recursive. But in
fact, the recursion can be eliminated completely from the last program. It is possible
to write an equivalent one where only proofs of depth 1 will be necessary:

3TAIL(X):– E(T,W ), E(W,Z), E(Z,X).
The recursion can be eliminated from a given program, and the program is equiv-

alent to a first order query if and only if there is an a priori upper bound on the
depth of the proofs needed to evaluate queries. Every fact that can be derived by
the program can be derived in constant time (in parallel, with polynomially many
processors) independent of the size of the database (this equivalence was proved in
[3]; the “if” direction is nontrivial). Such programs are called bounded.

1.2. Previous works and our contribution. The problem of distinction,
meaning whether a given DATALOG program is bounded or not, is important for
DATALOG queries optimization, but is, in general, undecidable. Sufficient conditions
for boundedness were given in [17], [10], [18], and [19]. The decidability-undecidability
border, for cases of different syntactical restrictions and semantical assumptions, has
been studied in [20], [5], [2], [6], [8], [9], [24], [23].

The syntactical restrictions considered were the number of rules or the number of
recursive rules in the program, maximal arity of the IDB symbols, and the linearity
of rules.

The semantical assumptions concern the status of the IDB relations before the
execution of the program. If they are empty, then we deal with weak (program)
boundedness. While arbitrary relations must be considered as possible IDB inputs,
strong (uniform) boundedness is studied.

Undecidability of uniform boundedness implies undecidability of program bound-
edness for fixed syntactical restrictions (with possibly some additional initialization
rules; see section 1.7 for a discussion). The survey of previously known results ((i)-(v)
below) illustrates the difference in the level of difficulty of undecidability proofs for
uniform and program boundedness.

Decidability has been proved for monadic programs program boundedness (so also
for the uniform) [6], [5] and for typed single rule programs [20]. It is also known that
the program (and uniform) boundedness is decidable for programs with a single linear
recursive rule if the IDB is binary [24]. Moreover, program boundedness is decidable
for binary programs if each IDB is defined by only one recursive rule [23].

Undecidability has been proved for
(i) program boundedness of linear binary programs [9],
(ii) program boundedness of programs with one recursive rule and two initializa-

tions [2],
(iii) program boundedness of programs consisting of two linear recursive rules and

one initialization [9],
(iv) uniform boundedness of ternary programs [9],
(v) uniform boundedness of arity 5 linear programs [8].
Decidability of the uniform boundedness for programs consisting of only one rule

was stated as an open problem in [11], where NP-hardness of the problem was proved,
and then in [2] and [12]. No undecidability results for uniform boundedness of pro-
grams with a small number of rules have been proved since then.

In this paper we give strong improvements of the results (ii)–(v) showing that
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(vi) uniform boundedness is undecidable for ternary linear programs (section 3.1)
(which improves the results (iv) and (v)).

(vii) uniform boundedness is undecidable for single recursive rule ternary pro-
grams (section 3.3) (which improves (iv)).

The additional improvement is that our program is syntactically simpler: the
recursive rule is quasi-linear, which means that, generally speaking, it has the form
I(tuple1):– J(tuple2), I(tuple3), where I and J are intensional predicates. Since it is
the only recursive rule, the proof from the program is a tree with only one (possibly)
long branch.

Notice that in (vi) and (vii) we still allow a number of initializations so the results
hold also for program boundedness.

(viii) Uniform and program boundedness are undecidable for programs consisting
of one linear recursive rule and one initialization (section 4.3).

Since program boundedness is clearly decidable for programs consisting of one
rule, the result (viii) closes the number/linearity of rules classification for program
boundedness. It is a strong improvement of (ii) and (iii).

Finally, in section 4.5 we solve the problem of Kanellakis showing that

(ix) uniform boundedness of single rule programs is undecidable.

1.3. The method. While different techniques were used in the proofs of the
results (i)–(v) (reduction to the halting and mortality problems of a Turing machine,
reduction from the halting problem of a two counters machine, syntactical reduction
of an arbitrary DATALOG program to a single recursive rule program), we develop
for all our results a universal method, based on an encoding of Conway functions. We
have learned about Conway functions from the paper of Philippe Devienne, Patrick
Lebègue and Jean-Christophe Routier [7], who used them to prove undecidability of
the so-called cycle unification. We feel that our paper would not have been written
without their previous work. Our encoding is nevertheless quite different from the
one in [7]: the first difference is that a language with functions was used there.

We construct, as we call it, the Achilles-Turtle machine, a variant of the Tur-
ing machine. Next, we use a version of the Conway theorem to prove that what we
constructed is really a universal machine. Then we encode the Achilles-Turtle ma-
chine with DATALOG programs. Due to the particular simplicity of Achilles-Turtle
machine (one is really tempted to claim that it is the simplest known universal ma-
chine), it is possible to encode it with syntactically very small DATALOG programs.
We believe that this is not the last time that the Achilles-Turtle machine is used in
undecidability proofs.

We combine the Conway functions method with the technique of using a binary
EDB relation as an order: if there is a chain long enough in the relation, then we can
think that it represents a tape of the machine. If there is no such chain then proofs
are not too long. This method goes back to [9] and [8].

1.4. Open problems. While the classification is finished for program bound-
edness, the following syntactical restrictions still give interesting open problems con-
cerning decidability of uniform boundedness:

(i) binary programs,

(ii) linear binary programs,

(iii) programs consisting of a single linear rule.

We do not know any example of syntactical restrictions for which uniform bound-
edness would be decidable and program boundedness not. It seems that the most
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likely candidate for the example is the class of linear binary programs. Program
boundedness is known to be undecidable for the class.

1.5. Preliminaries. A DATALOG program is a finite set of Horn clauses (called
rules) in the language of first order logic without equality and without functions.
The predicates, used in the program, but only in the bodies of the rules, are called
extensional predicates or EDB. A predicate which occurs in a head of some rule is
called intensional or IDB. A rule is called recursive if an IDB occurs in its body. A
rule which is not recursive is an initialization rule. A recursive rule is linear if it
has only one occurrence of an IDB in the body. A program is linear if each of its
recursive clauses is linear. Arity of a DATALOG program is the highest arity of the
IDB predicates used.

So, for example, in the two programs of section 1.1 the predicate E is extensional,
and all the other predicates are intensional. The rules (i) and (iii) are initializations.
Rules (ii), (iv), and (v) are recursive. Rules (iv) and (v) are linear and so the “has
3-tail” program is linear. It is also monadic, while the “odd-distance” program is
binary.

A database is a finite set of ground atomic formulas. A derivation (or a proof) of
a ground atomic formula A, from the program P and the database D, is a finite tree
such that (i) each of its nodes is labeled with a ground atomic formula; (ii) each leaf
is labeled with an atom from D; (iii) for each nonleaf node there exists a rule R in
the program P and a substitution σ, such that σ of the head of R is the label of the
node and the substitutions of the body of R are the labels of its children; (iv) A is
the label of the root of the tree. The depth of the proof is the depth of the derivation
tree.

Instead of writing proof from the program P in the database D we use the expres-
sion P −D-proof, or simply proof if the context is clear.

Notice that if P is a linear program, then a P-proof is a sequence of ground atomic
formulas. In such a case we use the word length for the depth of the proof.

In general, a program P is bounded if for every database D, if an atom can be
proved from P and D, then it has a proof not deeper than a fixed constant c.

Different conventions concerning the input and output of a DATALOG program
correspond to different definitions of boundedness: predicate, program, and uniform
boundedness are studied. A program is predicate bounded, with respect to a fixed
predicate PRE, if there is a constant c such that for every database D, such that
there are no facts about IDBs in D; for every ground atom A = PRE(tuple), if the
atom has a proof from P and D, then it has a proof not deeper than c. This definition
reflects the situation when the EDBs are the input and only one predicate is the
output of the program. A program P is program bounded if it is predicate bounded
for all IDBs.

A program is uniformly bounded if there is a constant c such that for every
database D (here we do not suppose that the IDB predicates do not occur in D),
and for every ground atom A, if the atom has a proof from P and D, then it has a
proof not deeper then c. Here all the predicates are viewed as the input and as the
output of a program.

1.6. Example: Program boundedness vs. uniform boundedness. To make
the difference between program boundedness and uniform boundedness clear to the
reader, we give an example of a program which is bounded but not uniformly bounded.

The signature of the program consists of one extensional predicate E and one
intensional predicate I. Both predicates are binary.
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The rules are

(i) I(X,X) : −E(X,Y ), E(Y, Z),

(ii) I(W,R) : −I(Z,Z), E(X,Y ), E(Y, Z),

(iii) I(X,Y ) : −I(Y,X),

(iv) I(X,Y ) : −I(Z, Y ), E(X,Z),

(v) I(X,Y ) : −I(Z, Y ), E(Z,X).

It is convenient to think that E is a graph, and I is a kind of a pebble game: by
the initialization rule (i) we can start the game by placing both the pebbles in any
node which has a tail of length at least 2. By rule (iii) we do not need to distinguish
between the pebbles. By rules (iv) and (v) we can always move one of the pebbles to
a neighboring node, and finally, if the two pebbles meet in the node that is the end
of a tail of length at least two, then by rule (ii) we can move the pebbles to any two
nodes.

We prove that the program is program bounded but not uniformly bounded.

Lemma 1.1. For a database D such that the input predicate I is empty, either
there are no proofs in D or for each pair D,E of elements of D, the fact I(D,E) can
be proved in no more than 7 derivation steps.

Proof. We consider two cases.

Case 1. There are elements A,B,C in D such that E(A,B) and E(B,C) hold.
Then, in the first step, we use rule (i) to prove I(A,A). Then, using rule (v) twice we
get I(C,A). Then we use rule (iii) to get I(A,C) and rule (v) twice to get I(C,C).
Finally, rule (ii) can be used to derive I(D,E).

Case 2. There are no such elements A,B,C in the database D. Then, since I is
given as empty, no proofs at all are possible.

The structure of the proof of the Lemma 1.1 above, as well as the structure of
the program itself, is a good illustration of one of the ideas of the proofs in sections
3 and 4. The program contains some initialization rules which allows us to start a
kind of game, or computation, if only there exists a substructure of required form in
the database. Then, if there is enough facts in the database, we can proceed with
the computation and, when it terminates, use an analogue of rule (ii) to “flood” the
database. Otherwise, if there are not enough facts, then only short proofs are possible
(or no proofs at all, as in the example).

Lemma 1.2. For each constant c there exist a database D with nonempty input
predicate I, and elements A,B of D such that I(A,B) is P-provable, but the shortest
proof of the fact requires more than c steps.

Proof. The database contains the elements C1, C2, . . . C2c and the following facts:
E(C2k−1, C2k) for all 1 ≤ k ≤ c, E(C2k+1, C2k) for all 1 ≤ k ≤ c − 1, and I(C1, C1).
We will show that the fact I(C2c, C1) is provable, and the shortest proof has exactly
2c− 1 steps. First we show that such a proof exists: in the kth step use the already
proved fact I(Ck, C1) to derive I(Ck+1, C1). The rule used in the kth derivation step
is (v) if k is odd and (iv) if k is even.

To see that shorter proofs are not possible, notice that only the bodies of the
rules (iii)–(v) can be satisfied in D, and so only those rules can be used.

Define the distance between nodes of D as follows: the distance between A and A
is 0, and the distance between A and B is less than or equal to k if and only if there
exists a node C such that either E(B,C) or E(C,B) and the distance between A and
B is at most k − 1. The distance between a pair of nodes A,B in D and a pair of
nodes C,D in D is defined as a sum of distances from A to C and from B to D. Now,
notice that if a fact of the form I(A,B) is derived in k steps from the fact I(C,D),
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and if only rules (iii)–(v) are used in the proof, then the distance between A,B and
C,D is not greater than k. Finally, observe that the distance in D between C2c, C1

and C1, C1 is 2c− 1.

1.7. Program boundedness vs. uniform boundedness. Discussion. The
notions of uniform and program boundedness formalize, on the technical level, the
informal notion of boundedness. Uniform boundedness is what we need when the
program under consideration is a subprogram of a bigger one. Then it can happen
that the predicates that are supposed to be the output of the program are also a part
of the input. Program boundedness, on the other hand, corresponds to the view of an
entire DATALOG program as a definition of possibly many output predicates. This
is similar to the distinction between program and uniform equivalence of DATALOG
programs (see [21]), where again the first notion applies to entire programs, while
the second one to subprograms equivalence. It is known that program equivalence is
undecidable, while uniform equivalence is decidable [5], [21], [22]. We can observe that
also for the case of boundedness, the uniform version, for given syntactical restrictions,
is a priori “more decidable.” Suppose that program boundedness is decidable for
some syntactical restrictions and that the restrictions allow an arbitrary number of
initializations. Then uniform boundedness is also decidable for the restrictions. To
see that, consider a program P over a signature with IDB symbols Ii, where 1 ≤ i ≤ k.
Let Q be the program P with its signature enriched with new EDB symbols Ei, where
1 ≤ i ≤ k and for each i the arity of Ei is equal to the arity of Ii, and with k new
rules: Ii(X1, X2, . . . , Xai) : −Ei(X1, X2, . . . , Xai).

It is easy to see that Q is program bounded if and only if P is uniformly bounded.
So we reduced the decision problem of the uniform boundedness of P to the problem
of program boundedness of the program Q.

The survey of results gives evidence that it is more difficult to prove undecidability
of uniform boundedness than undecidability of program boundedness; the argument
above shows that there are reasons for that. But on the other hand we do not know any
example of syntactical restrictions for which uniform boundedness would be decidable
and program boundedness not. The most likely candidate for the example is the class
of linear binary programs. Program boundedness is undecidable for the class and
decidability of uniform boundedness is open.

2. Achilles-Turtle machine.

2.1. The tool: Conway functions.
Definition 2.1. A Conway function is a function g with natural arguments

defined by a system of equations:

g(n) =


a0n/q0 (n ≡ 0 (mod p)),
· · · · · ·
ain/qi (n ≡ i (mod p)),
· · · · · ·
ap−1n/qp−1 (n ≡ p− 1 (mod p)),

where ai,qi are natural numbers, qi|i (which means that i/qi is a natural number),
and qi|p for each i and (ai/qi) ≤ p for each i.

For a Conway function g and a given natural number N let C(g,N) be a statement
asserting that there exists a natural number i such that gi(N) = 1.

See section 2.3 to find a nice example giving an idea of what a Conway function
is. Proof of the following theorem can be found in [4], [14], or [7].
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Theorem 2.2 (Conway). The following problem is undecidable given a Conway
function g and a natural number N , does C(g,N) hold?

Our main tool is the following refined version of Theorem 2.2.

Theorem 2.3.

1. There exists a computable sequence {gn} of Conway functions such that

(i) {n : C(gn, 2)} is not recursive (is r.e. complete);

(ii) for each gn, if ai and qi are coefficients from the definition of the function
gn, then (ai/qi) ≤ 2;

(iii) for each gn, if there are such i, k that k ≡ 1 (mod p) and gin(2) = k,
then k = 1.

2. There exists a universal Conway function g, such that

(i) the set {N : C(g, 2N )} is not recursive (is r.e. complete);

(ii) if ai and qi are coefficients from the definition of the function g, then
(ai/qi) ≤ 2;

(iii) for each N , if there are such i, k that k ≡ 1 (mod p) and gi(2N ) = k
then k = 1.

Proof. 1. It is known that the problem: given a finite automaton with 2 counters,
does the computation starting from fixed beginning state, and from empty counters
reach some fixed final state is undecidable, even if we require that the final state can
be reached only if the both counters are empty (read the remark in the end of this
section to see what precisely we mean by a finite automaton with 2 counters).

For a given automaton A of this kind we will construct a Conway function gA
which satisfies conditions (ii) and (iii) of the theorem and such that C(gA, 2) holds if
and only if the computation of A reaches the final state. First we need to modify A a
little bit: we construct an automaton B which terminates if and only if A terminates
and which satisfies the following conditions:

(iv) the second counter of B can be increased only if the first counter is decreased
in the same computation step,

(v) the states of B are numbered. If any of the counters is increased in the
computation step when the state si is being changed into sj then j < i.

The details of the construction of B are left as an easy exercise. The hint is that
all what must be done is adding a couple of new states. For example if there is an
instruction of A which increases the second counter and keeps the first unchanged, it
must be substituted by two instructions: first of them only increases the first counter
and changes the state into a new one, the second increases the second counter and
decreases the first.

Now, suppose that the states of the automaton B are s1, s2, . . . sk, where sb is the
beginning state. Let p1, p2, . . . pk be an increasing sequence of primes such that p1 > 4
and 2p1 > pk (such a sequence can be found for each k, since the density of primes
around n is c/ logn). We encode the configuration of B: state is si, the first counter
contains the number n and the second counter contains m, as the natural number
2n3mpi. It is easy to notice that, if x and y are codes of two subsequent configurations
of B then y/x depends only of the remainder x (mod p) where p = 6p1p2 . . . pk and
that y/x ≤ 2. So we can define the required Conway function. To define the first step
properly we put a2 = pb and q2 = 2, so g(2) = pb which is the code of the beginning
configuration. We put also apf = 1 and qpf = pf to reach 1 in the iteration of the
function next to the one when the code of the final configuration is reached.

2. We use the well known fact that there exists a particular finite automaton with
two counters for which the problem does the computation starting from a fixed begin-
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ning state sb, given first counter, and empty second counter, reaches the configuration
of some fixed final state sf , and empty counters is undecidable. Then the proof is
similar as of (i). To start the computation properly we put ai = pb and qi = 1 for all
such even i that pj |i does not hold for any j = 1, 2 . . . k. So for each N it holds that
g(2N ) = pb2

N . The last is the code of the beginning configuration.
Remark (automata with counters). Our notion of a finite automaton with two

counters is similar to the one in Kozen’s book [13], with the difference that we assume
that the automaton has no input tape. Since two counter automata (with read-
only input tape) are as powerful as Turing machines, the problem whether a given
automaton of this kind will terminate for given input is undecidable. But, for each
input, separately, we can hide the input in the finite control of the automaton (in fact
the input tape is a finite object for each input). So also the problem whether a given
automaton without input tape will terminate when started from a fixed beginning
state and from empty counters is undecidable. Now we show, as it is needed in
the proof of the second claim of Theorem 2.3, that there exists a particular finite
automaton with two counters for which the problem does the computation starting
from a fixed beginning state sb, given first counter, and empty second counter, reach
the configuration of some fixed final state sf and empty counters is undecidable. First
observe that there exists an automaton as required but with three counters: it is a
universal Turing machine with the contents of the part of the tape left of the head
remembered on one counter, right on the head on the second counter, and with an
auxiliary third counter needed for operating the first two. Then use the standard
techniques to encode the three counters as two. See [13] for details.

Convention 2.4. Now we consider only Conway functions gn (for n = 1, 2 . . .),
whose existence was proved in Theorem 2.3(1). In particular we assume that the
claims (ii) and (iii) from Theorem 2.3(1) hold.

2.2. Achilles-Turtle machine. For a given Conway function g and given input
N we will construct an Achilles-Turtle machine, which will compute the subsequent
iterations of g(N).

It is a variant of a multihead Turing Machine, with read-only tape. Each cell
of the tape is colored with one of the colors K0, K1,. . .Kp−1, (where p is as in the
definition of the function g). If the cell X is colored with the color Ki (we denote the
fact as Ki(X)) and the cell S(X) (S is a successor function on the tape) is coloured
with Kj then j − i ≡ 1 (mod p). The color K0 will be called white and K1 will be
called red.

There are three heads. The first is called Achilles, the second is called the Turtle,
and the third is called Guide. The transition rules will be designed in such a way,
that the heads will never go left. Achilles and Guide will move right in each step of
the computation. Achilles will try to catch the Turtle.

The configuration of the machine is described by the positions of the heads.
In the beginning of the computation, Achilles is in some arbitrary white cell X on
the tape. The Turtle and Guide are both in the cell SN (X). So the beginning
configuration is CON(X,SN (X), SN (X)), where again S is the successor function
on the tape. The idea is that the computation can reach a configuration of a form
CON(Y, Sk(Y ), Sk(Y )) or Achilles can be exactly k cells behind the Turtle, if gi(N) =
k for some i.

In each computation step the heads of the machine move according to one of the
following transition rules (i = 0, 1, . . . , p− 1):
(Ri) CON(Sp(A), T, Sp(ai/qi)(G))⇐ CON(A, T,G),Ki(T ),
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(Ji) CON(Sp(A), Sdi(G), Sdi(G))⇐ CON(A,Si(A), G).

where di = i(ai/qi) + p− i. Notice that, since ai/qi < 2 and i < p also 0 < di < 2p.

Rules (Ri) are run rules and rules (Ji) are jump rules. Configurations of the form
CON(A, T, T ) are called special.

See section 2.3 for a nice example of the Achilles-Turtle machine. The following
easy lemma gives an intuition of how the computation of the machine proceeds.

Lemma 2.5. (i) If, in some configuration of the machine, the Turtle is in the cell
X and the Guide is in Y , then Y = Sk(X) for some k ≥ 0.

(ii) If, in some configuration of the machine, the Turtle is in the cell X and
Achilles is in some Sk(X), where 0 < k, then none of the jump rules will be used later
in the computation.

(iii) Suppose that in some configuration of the machine, Achilles is in some cell
X, Turtle is in some St(X), and the Guide is in Sr(X). If one of the jump rules can
be used later, then 0 ≤ t ≤ r.

(iv) A special configuration can only be a result of a transition done according to
one of the jump rules.

(v) Achilles is always in a white cell.

(vi) If in some configuration of the machine the Guide is in the cell X, then in
the next configuration he will be in Sr(X) for some 0 < r ≤ 2p

Proof. (i) The claim is true for the beginning configuration and for every config-
uration being a result of a use of a jump rule. The run rules move the Guide right
and keep the Turtle in his cell.

(ii) If Achilles is right of the Turtle, then the jump rule cannot be used. But the
run rules move Achilles only right.

(iii) This rule follows from (i) and (ii).

(iv) By (i) the Guide can never be left of the Turtle. The run rules move him
right, so after the execution of a run rule he is right of the Turtle.

(v) He starts in a white cell and moves p cells right in each step.

(vi) Since 0 < p(ai/qi) < 2p and 0 < di < 2p hold for every i (see Convention
2.4).

Now we will formulate and prove some lemmas about the equivalence between the
behavior of the Conway function and the result of the computation of the Achilles-
Turtle machine. Our goal is as follows.

Lemma 2.6. The following conditions are equivalent:

(i) C(g,N) holds.

(ii) The Achilles-Turtle machine can reach a configuration of form CON(A, T, T ),
where K1(T ).

(iii) The Achilles-Turtle machine can reach a configuration of form
CON(A,S(A), S(A)).

(iv) The Achilles-Turtle machine can reach a configuration of form CON(A, T,G),
where K1(T ).

Lemma 2.7. Suppose in some special configuration of the machine, Achilles is in
some cell A, and Turtle and Guide are in some T = Skp+i(A), where 0 < i < p (so
Ki(T )). Then

(i) after k steps the configuration will be CON(S−i(T ), T, Skp(ai/qi)(T )),

(ii) there are exactly two configurations that can be reached after k + 1 steps:

CON(Sp−i(T ), T, S(k+1)p(ai/qi)(T )) and CON(Sp−i(T ), Sdi+kp(ai/qi)(T ), Sdi+kp(ai/qi)(T )).
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Proof. (i) Each of the k steps will be done according to the rule Ri. So after k
steps Achilles will be in the cell Skp(A) = S−i(T ), Guide will be in Skp(ai/qi)(T ), and
the Turtle in T .

(ii) By (i), CON(S−i(T ), T, Skp(ai/qi)(T )) is reached after k steps. Then rule Ri
may be used once again, which leads to CON(Sp−i(T ), T, S(k+1)p(ai/qi)(T )). Also the
rule Ji may be used, which leads to CON(Sp−i(T ), Sdi+kp(ai/qi)(T ),
Sdi+kp(ai/qi)(T )).

Lemma 2.8. Suppose in some special configuration of the machine Achilles is
in the cell A, and Turtle and Guide are in some T = Sm(A), where m = kp + i,
0 ≤ i < p. Then the following two conditions are equivalent:

(i) it is possible to reach a special configuration CON(X,Sl(X), Sl(X)) as the
next special configuration,

(ii) l = g(m).
Proof. By Lemma 2.7(ii) the configuration after k + 1 steps will be either

CON(Sp−i(T ), T, S(k+1)p(ai/qi)(T )) or CON(Sp−i(T ), Sdi+kp(ai/qi)(T ), Sdi+kp(ai/qi)(T )).
In the first case Achilles will be already right of the Turtle and, by Lemma 2.5

(ii), (iv), a special configuration will no longer be reached.
To prove the equivalence we show that the configuration reached in the second

case is just of the form CON(X,Sg(m)(X), Sg(m)(X)).
In fact,

CON(Sp−i(T ), Sdi+kp(ai/qi)(T ), Sdi+kp(ai/qi)(T ))

= CON(Sp−i(T ), Sdi+kp(ai/qi)−p+iSp−i(T ), Sdi+kp(ai/qi)−p+iSp−i(T ))

= CON(X,Sdi+kp(ai/qi)−p+i(X), Sdi+kp(ai/qi)−p+i(X))

= CON(X,Si(ai/qi)+p−i+kp(ai/qi)−p+i(X), Si(ai/qi)+p−i+kp(ai/qi)−i+p(X))

= CON(X,S(i+kp)(ai/qi)(X), S(i+kp)(ai/qi)(X))

= CON(X,Sg(m)(X), Sg(m)(X)).

Lemma 2.9. The following two conditions are equivalent:
(i) The Achilles-Turtle machine can reach a configuration of the form

CON(X,Sl(X), Sl(X)).
(ii) There exists a natural number j such that gj(N) = l.
Proof. The (i)⇒(ii) implication is proved by induction on the number of special

configurations reached during the computation.
The (ii)⇒(i) implication is proved by induction on j.
In both cases Lemma 2.8 is used for the induction step.
Proof of Lemma 2.6. (i), (ii), and (iii) are equivalent by Lemma 2.9 and Conven-

tion 2.4 (claim (iii) of Theorem 2.3(i)). Clearly, (ii) implies (iv). Also (iv) implies (ii):
if a configuration CON(A, T,G) is reached after some number of steps, and K1(T )
holds, then consider the configuration after the last step of the computation which
was done according to a jump rule (the last step when the Turtle was moved). This
configuration is CON(A′, T, T ) for some A′.

2.3. Achilles-Turtle machine. An example. In order to give the reader an
idea of how the machine works we are going to provide a nice example of a Conway
function (or rather Conway-like function) and of the Achilles-Turtle machine built
for this function. The function g that we start from will be the well-known Collatz
function. Take a natural number: if it is even then divide it by two, if it is odd then
multiply it by three and add one. The problem if the iterations of the procedure give
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finally the result 1, regardless of the natural number that we start from, is open. More
formally, in the spirit of Definition 2.1 we can define function g as

g(n) =

{
n/2 (n ≡ 0 (mod 2)),
3n+ 1 (n ≡ 1 (mod 2)),

and the open problem is then whether

{N : C(g,N)} = N .
We do not only multiply the number, but also add 1, so this is not really a Conway
function in the sense of Definition 2.1, but we find this example to be interesting
nonetheless. We can and will construct our Achilles-Turtle machine for the following
function.

The rules of the Example Achilles-Turtle machine
initial configuration: CON(X,SN (X), SN (X)) : −WHITE(X).

transition rules:

run rules:

CON(S2(A), T, S6(G)) : −CON(A, T,G), RED(T ).

CON(S2(A), T, S(G)) : −CON(A, T,G),WHITE(T ).

jump rules:

CON(S2(A), S5(G), S5(G)) : −CON(A,S(A), G), RED(S(A)).

CON(S2(A), S2(G), S2(G)) : −CON(A,A,G),WHITE(A).

final configuration: CON(X,S(X), S(X)).

The coefficients in run rules and in the white jump rule are here calculated ac-
cording to the definitions of (Ri) and (Ji) from the beginning of section 2.2. The
left-hand side of the red jump rule is not CON(S2(A), S4(G), S4(G)), as would follow
from the definition: this is the place where we add 1 to form the 3n+ 1.

Now suppose, for concreteness of the example, that N is 5. Then the subsequent
iterations of g are 5, 16, 8, 4, 2, 1. The beginning configuration of the machine will
be then CON(A,S5(A), S5(A)) for some white cell A and the computation sequence
of the machine is as follows:
CON(S2(X), S5(X), S11(X)) (RR?), CON(S24(X), S32(X), S32(X)) (WJ),
CON(S4(X), S5(X), S17(X)) (RR?), CON(S26(X), S32(X), S33(X)) (WR),
CON(S6(X), S22(X), S22(X)) (RJ?), CON(S28(X), S32(X), S34(X)) (WR),
CON(S8(X), S22(X), S23(X)) (WR?), CON(S30(X), S32(X), S35(X)) (WR),
CON(S10(X), S22(X), S24(X)) (WR), CON(S32(X), S32(X), S36(X)) (WR),
CON(S12(X), S22(X), S25(X)) (WR), CON(S34(X), S38(X), S38(X)) (WJ),
CON(S14(X), S22(X), S26(X)) (WR), CON(S36(X), S38(X), S39(X)) (WR),
CON(S16(X), S22(X), S27(X)) (WR), CON(S38(X), S38(X), S40(X)) (WR),
CON(S18(X), S22(X), S28(X)) (WR), CON(S40(X), S42(X), S42(X)) (WJ),
CON(S20(X), S22(X), S29(X)) (WR), CON(S42(X), S42(X), S43(X)) (WR),
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Fig. 2.1. Subsequent configurations of the example Achilles-Turtle machine.

CON(S22(X), S22(X), S30(X)) (WR),

where RR means that red run rule was used to obtain the configuration, WR is white
run rule, RJ red jump rule, and WJ is white jump rule. The configurations marked
with ? are depicted below (see Figure 2.1).

3. Ternary programs.

3.1. The ternary linear program P.
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Theorem 3.1. For each Conway function gn from Theorem 2.3(i) there exists,
and can be efficiently constructed, an arity 3 linear DATALOG program P with one
IDB predicate which is uniformly bounded if and only if C(gn, 2) holds.

The signature of the program contains one binary EDB symbol S, which is going
to serve as a kind of order for us, p monadic EDB symbols which will play as the
colors and a ternary IDB symbol CON . The program P consists of the following.

Transition rules (for each i, 0 ≤ i ≤ p− 1):

CON(Sp(A), T, Sp(ai/qi)(G), ):– CON(A, T,G),Ki(T ),K0(A), . . . ,Kp−1(Sp−1(A)).

CON(Sp(A), Sdi(G), Sdi(G)):– CON(A,Si(A), G),K0(A), . . . ,Kp−1(Sp−1(A)).

Flooding rule: CON(X,Y, Z):–CON(S, T,R),K1(T ).

Initialization: CON(A,S2(A), S2(A)):–K0(A),K1(S(A)),K2(S2(A)).

Km is understood as Ki if m ≡ i (mod p). Since S is no longer a true successor we
must explain the meaning of the Sl symbols in the rules.

Notational Convention: (for example) a rule

CON(S2(X), S4(Y ), S(X)):–CON(X,S(X), Y )

should be understood as

CON(X2, Y 4, X1)

:–CON(X,X1, Y ),

S(Y, Y 1), S(Y 1, Y 2), S(Y 2, Y 3), S(Y 3, Y 4), S(X,X1), S(X1, X2).

Let us explain the meaning of the rules: The transition rules are the same as in the
Achilles-Turtle machine, with the exception that they check if the cells (nodes) that
Achilles runs over are painted properly. The flooding rule proves everything in one
step if Turtle is in a red node. The initialization allows us to start the computation
in each (white) node, if there is a properly colored piece of tape near the node.

Lemma 3.2. If C(gn, 2) does not hold, then for each c there exists a database D
and a tuple A, T,G of elements of D such that CON(A, T,G) can be proved in D with
P and the proof of CON(A, T,G) requires more than c steps.

Proof. D is just a long enough S-chain (see Definition 3.4 below) with empty IDB
relation. First we prove that the flooding rule can not be used in such a database,
provided that C(gn, 2) does not hold. Suppose it can be used. That means that
CON(A, T,G) can be proved for some red T . If we follow the proof of CON(A, T,G)
in D we will notice that it gives a legal computation of the Achilles-Turtle machine
and that the first fact in the proof is the beginning configuration of the machine.
That is a contradiction by Lemma 2.6. Now, take the first element Z of the order.
By initialization we have CON(Z, S2(Z), S2(Z)). Using 2c times the run rule 2 we
get the shortest proof of the fact CON(S2pc(Z), S2(Z), S2+2cp(a2/q2)(Z)).

Now we are going to prove the following lemma.

Lemma 3.3. If C(gn, 2) holds, then there exists c such that, in any database D,
for every tuple A,B,C of elements of D if CON(A,B,C) can be proved in D with
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the program P , then there exists a proof of CON(A,B,C) shorter than c steps.
Proof. Suppose C(gn, 2) holds. That means that if we start the computation

of the Achilles-Turtle machine in a configuration CON(X,S2(X), S2(X)), then it is
possible to reach a final configuration CON(A,S(A), S(A)).

Notice, that during the computation, none of the heads will move left of X or
right of S(A). Let K be the distance between X and S(A) and let K ′ be the number
of steps of the computation necessary to reach the final configuration. Clearly
pK ′ +1= K. We are going to prove that c = K ′ +2 is the proper constant.

We will need some definitions.
Definition 3.4. An S-chain of elements of a database D is a set X0, X1, . . . , Xk

such that S(Xm, Xm+1) and Km(Xm) for m = 0, 1, . . . , k. A decreasing S-chain
of elements of the database D is a set X0, X1, X2, . . . , Xk such that S(Xm+1, Xm)
and Km(Xm) for m = 0, 1, . . . , k (where Km should be understood as Ki if m ≡ i
(mod p)). In both cases we say that the chain begins in X0.

Definition 3.5. Let k be a natural number. We say that a node W of a database
D is not k-founded if there exists a decreasing S-chain which begins in W and consists
of more than k elements. W is k-founded if such a chain does not exist.

Definition 3.6. Let k be a natural number. We say that a database D is not
k-founded if there exists an S-chain consisting of more than k elements.

Obviously, D is k-founded if such a chain does not exist.
Now we consider 2 cases.
Lemma 3.7. If D is not K-founded, then for each tuple A,B,C of elements of

D the fact CON(A,B,C) can be proved and the proof requires no more than K′ + 2
steps.

Proof. Take X such that there exists an S-chain of length K beginning in X.
Thanks to the initialization rule CON(X,S2(X), S2(X)) is provable in D and has a
proof of length 1. Now we can pretend that the chain from X to SK(X) is a tape and
start a computation of the Achilles-Turtle machine. Since the transition rules of the
machine are rules of program P, each step of the computation can be encoded by one
step of proof. So there exists an element T of the chain such that S(T ) is red, and
CON(T, S(T ), S(T )) can be proved after K’+1 steps. One more step (using flooding)
is needed to prove CON of every tuple after that.

Lemma 3.8. Let D be a K-founded database.
(i) Suppose {CON(Ai, Ti, Bi)}mi=0 is a P-proof in D. If the flooding rule is not

used in the proof then m ≤ K ′.
(ii) Let {CON(Ai, Ti, Bi)}mi=0 be a P-proof in D, and suppose it is the shortest

possible proof of CON(Am, Bm, Cm). Then the flooding rule is used at most once, for
the last step of the proof.

(iii) If CON(A,B,C) can be P-proved in D for some tuple A,B,C, the proof
requires no more than K ′ + 1 steps.

Proof. (i) The set Ai, (i = 1 . . .m) is a subsequence of an S-chain of length pm.
(ii) Suppose that the step from CON(Ai, Ti, Bi) to CON(Ai+1, Ti+1, Bi+1) for

some i 6= m− 1 is done according to the flooding rule. Then
CON(A0, T0, B0), CON(A1, T1, B1), . . . CON(Ai, Ti, Bi), CON(Am, Tm, Bm)

is a shorter proof of CON(Am, Tm, Bm).
(iii) It follows from (i) and (ii).
This ends the proof of Lemma 3.3 and of Theorem 3.1.
Theorem 3.9. Uniform boundedness of ternary linear DATALOG programs is

undecidable.
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Proof. This follows from Theorems 2.2 and 3.1.

3.2. The arity 5 single recursive rule program R.

Theorem 3.10. For each Conway function gn from Theorem 2.3(i) there exists,
and can be efficiently constructed, an arity 5 DATALOG program R consisting of one
quasi-linear recursive rule and of some initializations, which is uniformly bounded if
and only if C(gn, 2) holds.

As in the previous subsection the signature of the program contains one binary
EDB symbol S, which is going to serve as a kind of order for us, p monadic EDB
symbols which will play as the colours and a ternary IDB symbol CON . There is also
additional IDB symbol STEER of arity 5. The program R consists of the following.

The recursive rule:

CON(Sp(A), T ′, G′):–
CON(A, T,G),

STEER(A, T,G, T ′, G′),
K0(A),K1(S(A)), . . .Kp−1(Sp−1(A)),K0(Sp(A)).

Initialization “transition” rules (for each i, 0 ≤ i ≤ p− 1):

STEER(A, T,G, T, Sp(ai/qi)(G)):–Ki(T ).

STEER(A,Si(A), G, Sdi(G), Sdi(G)):–Ki(S
i(A)).

The initialization “flooding” rule: STEER(X,T, Y,R, S):–K1(T ).

The initialization: CON(A,S2(A), S2(A)):–K0(A),K1(S(A)),K2(S2(A)).

Let us explain what is going on here: The triples (Achilles, Turtle, Guide) are
nodes of a graph defined on D3 by means of order and coloring. Each proof, either
from program P or from R, is a path in the graph. The graph is not given by
the EDB relations but can be defined from them by a DATALOG program without
recursion. If we want to define the vertices beginning in a node A, T,G “online,” when
the computation reaches the node (as in P), then we must use more than only one
rule, but the rules are linear: they read nothing more than the information about the
EDB situation around. If we define the graph in advance (by initializations), then one
recursive rule is enough: we have a “graph accessibility” program in this case. But
the rule is only “quasi-linear”: it makes use of the additional IDB (but not recursive)
predicate STEER. If I were the reader I would ask a question here: why is the
STEER predicate not of arity 6? Why do not we want to hide the rule for Achilles
in the initializations and have a simpler recursive clause? In fact, some additional
problems arise here, since we do not have a flooding rule for Achilles. We were forced
to design the recursive rule in this way because of the uniformity reasons. It is crucial
that Achilles goes down the chains. Thanks to that we can say: no long chains, no
long proofs (Lemmas 3.8 and 3.12, case 1). We could write the initializations of the
hypothetical 6-ary STEER in such a way that Achilles would move only down the
chains while running according to the STEER facts proved by the initializations.
But we would have no control of what is given as the STEER at the beginning.

Lemma 3.11. If C(gn, 2) does not hold, then for each c there exists a database
D and a tuple A,B,C of elements of D such that CON(A,B,C) can be proved in D
with a program R, and the proof of C(A,B,C) requires more than c steps.

Proof. The proof is the same as that for Lemma 3.2.
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Lemma 3.12. If C(gn, 2) holds, then there exists a c such that, in every database
D, for every tuple A,B,C of elements of D, if CON(A,B,C) can be proved in D with
R, then there exists a proof of CON(A,B,C) shorter than of c steps.

Definition 3.13. If A,B,C is a tuple of elements of the database D, then we
say that CON(A,B,C) is a fact about A.

Proof of Lemma 3.12. Suppose C(gn, 2) holds. Then there is a computation of
the Achilles-Turtle machine starting in some configuration CON(X,S2(X), S2(X))
and reaching CON(Y, S(Y ), S(Y )). The computation requires space kp (that is the
distance from X to Y is kp) for some natural k. We will consider two cases.

Case 1. A is (k + 1)p-founded. Then every proof of a fact about A is no longer
than k+1. That is because of the Achilles’ part in the recursive rule. This is analogous
to Lemma 3.8(i).

Case 2. C is not (k + 1)p-founded.
So take V such that A = S(k+1)p(V ) and there is a chain of length (k+ 1)p from

V to A. Because of the initialization rule CON(V, S2(V ), S2(V )) is provable in D and
has a proof of length 1. Now we can pretend that the chain from V to Skp+1(V ) is a
tape and let Achilles and Turtle play their game there. Among other rules possibly
given by the predicate STEER they have also the “standard” Achilles-Turtle ma-
chine rules. So, after k moves the configuration CON(Skp(V ), Skp+1(V ), Skp+1(V ))
will be reached and we will be allowed to use the flooding. Every fact of the form
CON(A,B,C) will be proved in one step. So no new facts about A can be proved
later. Of course nothing new about the IDB predicate STEER can be proved after
the first step.

This ends the proof of Lemma 3.12 and of Theorem 3.10.

3.3. The ternary single recursive rule program Q.
Theorem 3.14. For each Conway function gn from Theorem 2.3(i) there exists,

and can be efficiently constructed, an arity 3 DATALOG program Q consisting of one
quasi-linear recursive rule and of some initializations, which is uniformly bounded if
and only if C(gn, 2) holds.

Similarly, as in the previous subsection the signature of the program contains one
binary EDB symbol S, which is going to serve as a kind of order for us, p monadic
EDB symbols which will play as colors, and a ternary IDB symbol CON . The graph
which was defined by a arity 5 relation in the previous section will be defined here
as an intersection of four graphs defined by ternary constraints. So, we will have
four additional ternary IDB symbols EG,T,T ′ , EA,T,T ′ , ET,G,G′ , and ET,T ′,G′ in the
language of the program. The rules of the program Q are as follows.

The recursive rule:
CON(Sp(A), T ′, G′):–
CON(A, T,G),
EG,T,T ′(G,T, T

′), EA,T,T ′(A, T, T ′), ET,G,G′(T,G,G′), ET,T ′,G′(T, T ′, G′),
K0(A),K1(S(A)), . . .Kp−1(Sp−1(A)),K0(Sp(A)),K1(Sp+1(A)).

The initialization “constraints” rules:
EG,T,T ′(G,T, T ).

For each i (0 ≤ i ≤ p− 1) there is a rule : EG,T,T ′(G,T, S
di(G)):–Ki(T ).

EG,T,T ′(G,T, T
′):–K1(T ).
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EA,T,T ′(A, T, T ).

For each i (0 ≤ i ≤ p− 1) there is a rule : EA,T,T ′(A,S
i(A), T ′).

EA,T,T ′(A, T, T
′):–K1(T ).

For each i (0 ≤ i ≤ p− 1) there is a rule : ET ′,G,G′(S
di(G), G, Sdi(G)).

For each i (0 ≤ i ≤ p− 1) there is a rule : ET ′,G,G′(T
′, G, Sp(ai/qi)(G)):–Ki(T ).

ET ′,G,G′(T
′, G,G′):–K1(T ).

ET,T ′,G′(T, T,G
′).

ET,T ′,G′(T, T
′, T ′).

ET,T ′,G′(T, T
′, G′):–K1(T ).

The initialization:

CON(A,S2(A), S2(A)):– K0(A),K1(S(A))K2(S2(A)).

To prove the correctness of the construction we shall argue that the ternary re-
lations really define the same graph as the relation STEER of the last section. It
is easy to notice that if STEER(A, T,G, T ′, G′) can be proved by one of the ini-
tializations of R, then EG,T,T ′(G,T, T

′), EA,T,T ′(A, T, T ′), ET ′,G,G′(T ′, G,G′), and
ET,T ′,G′(T, T

′, G) can also be proved. For the opposite inclusion, suppose that T is
not red. We first consider the relation EG,T,T ′ . Since the Guide “does not see” how
far from each other Achilles and Guide are, the constraint allows the Turtle to stay
in the same place or to jump according to the proper jump rule. It is the relation
EA,T,T ′ that decides if the Turtle will be allowed to jump. If Achilles is far away,
then the Turtle can only wait. If Achilles is about to catch the Turtle, then the Tur-
tle is allowed to jump (see [1]) anywhere. But, because of the relation EG,T,T ′ , this
“anywhere” can be only Sdi(G) for the proper i. In this way, already the first two
relations force the Turtle to behave as he should.

The relation ET ′,G,G′ forces the Guide to move ahead. It allows the Guide to
execute his jump rule but only if the Turtle jumps together with him (this prevents
the danger that the Guide jumps while the Turtle runs). Whatever the Turtle is doing,
the Guide is allowed to use his proper run rule. There is a danger here that Turtle
will jump, and the Guide will only run, which is not allowed by the Achilles–Turtle
machine rules. That is prevented by the relation ET,T ′,G′ : if Turtle remains in the
same place then the Guide is allowed to go anywhere. But if he moves, then the Guide
must join him.

If T is red, then the constraints allow the Guide and Turtle to go anywhere.

Theorem 3.15. Uniform boundedness of single recursive rule ternary DATALOG
programs is undecidable.

Proof. It follows from Theorems 2.3(1) and 3.14.

Remark. We could use Theorem 2.3(2) instead of 2.3(1) and get more “universal”
DATALOG programs. For example Theorem 3.1 would then have the following form.
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There exists an arity 3 linear DATALOG program P with one IDB predicate and
a computable sequence {p(N)} of initialization rules, such that the program P ∪ p(N)
is uniformly bounded if and only if C(g, n) holds, where g is the universal Conway
function from Theorem 2.3(2).

In fact this is the form from [15]. It can not however be done in section 4, so we
decided not to present the results in the most general versions but to preserve the
notational uniformity instead.

4. Single rule programs.

4.1. Constants: Notational proviso. In sections 4.2–4.5 we are going to en-
code the computation of Achilles-Turtle machine into a very small number of rules
(one or two). We can no longer afford having a separate predicate for each color.
Instead, we are going to have one binary predicate COL, and understand COL(C,A)
as “the color of A is C.” So, instead of predicates we need to have constants to name
colors.

There are no constants in DATALOG. But in fact, if we want to use some (say,
k) constants we can simply increase the arity of all the IDB symbols with k and write
a sequence C1, C2, . . . , Ck of variables as the k last arguments in each occurrence of
each IDB predicate in the program. This is one of the reasons why the programs in
the following sections are of high arity.

Example. The program

P (X,Y ):– P (X,Z), P (Z, Y ), P (a,X), P (b, Z),

with constants a, b can be written as

P ′(X,Y,A,B):– P ′(X,Z,A,B), P ′(Z, Y,A,B), P ′(A,X,A,B), P ′(B,Z,A,B),

where P ′(X,Y,A,B) means ”P (X,Y ) if the constants are understood as A,B.”

Thanks to that we can suppose that there are constants in the language. We will
use the constants jump, run, joker and constants for colours colouri, for i = 1 . . . p−1.
The constant colour0 will be also called white, colour1 will be red, and colour2 will
be called pink.

4.2. The Achilles-Turtle game. In this section we will modify the description
of the Achilles-Turtle machine and define its equivalent version with only one transi-
tion rule. To make our notation compatible with the database notation we are going
to forget about the tape, and use a kind of infinite graph instead. To distinguish
between the two, the version of the machine will be called the Achilles-Turtle game.

The transition rules of the Achilles-Turtle machine are indexed with three param-
eters: the first is either jump or run, the remaining two are the colors of the Turtle’s
cell and the Guide’s cell before the transition. The idea of what follows is to treat
the parameters as arguments occurring in the goals of the body of the single rule.
While solving the first four goals of the body we will substitute proper parameters for
the variables COND, TCOLOR, and GCOLOR. Then the parameters will be used to
compute the positions of Achilles, Turtle, and Guide after the execution of the rule.

The following definition introduces the predicates that will be used in the con-
struction of the single rule. We do not expect that the reader will understand the
definition until he reads the proof of Lemma 4.2.
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Definition 4.1. For a given Conway function g, as in Theorem 2.3(1) the
Achilles–Turtle graph is the relational structure G with exactly the nodes and the
relations listed below:

(i) the nodes of G are: colour0, colour1, . . . colourp−1, jump, run, joker and an
infinite sequence of nodes c0, c1, c2, . . .;

(ii) S(ci, ci+1) holds for each node ci;
(iii) for each i if i ≡ j (mod p) (where j ≤ p− 1) then COL(colourj , ci) holds.

COL(red, joker) holds;
(iv) COND1(run, ci, joker) holds for each i;

COND1(jump, ci, ci+j) holds for each i ≡ 0 (mod p) and for each 0 ≤ j ≤ p− 1;
(v) COND2(run, joker, ci) holds for each i;

COND2(jump, ci, ci) holds for each i,
COND2(run, joker, joker) holds;

(vi) GRULE1(run, colourj , colourk, ci, ci+aj/qj ) holds if i ≡ k (mod p)
and p(aj/qj) < p− k,
GRULE1(run, colourj , colourk, ci, ci+p−k) holds if i ≡ k (mod p) and p(aj/qj)
≥ p− k,
GRULE1(jump, colourj , colourk, ci, ci+dj ) holds if i ≡ k (mod p) and dj < p− k,

GRULE1(jump, colourj , colourk, ci, ci+p−k) holds if i ≡ k (mod p) and dj
≥ p− k,
GRULE1(run, red, colourk, ci, joker) holds for all i ≡ k (mod p),
GRULE1(jump, red, colourk, ci, joker) holds for all i ≡ k (mod p),

(vii) GRULE2(run, colourj , colourk, ci, ci) holds if p(aj/qj) < p− k,
GRULE2(run, colourj , colourk, ci, ci+p(aj/qj)−p+k)
holds if i ≡ 0 (mod p), p(aj/qj ≥ p− k but p(aj/qj) < 2p− k,
GRULE2(run, colourj , colourk, ci, ci+p) holds if i ≡ 0 (mod p), p(aj/qj) ≥ 2p− k,
GRULE2(jump, colourj , colourk, ci, ci) holds if k + dj < p,
GRULE2(jump, colourj , colourk, ci, ci+dj−p+k) holds if i ≡ 0 (mod p), dj
≥ p− k but dj < 2p− k,
GRULE2(jump, colourj , colourk, ci, ci+p) holds if i ≡ 0 (mod p), dj ≥ 2p− k,
GRULE2(run, red, colourk, joker, joker) holds for all k,
GRULE2(jump, red, colourk, joker, joker) holds for all k,

(viii) GRULE3(run, colourj , colourk, ci, ci) holds if p(aj/qj) < 2p− k,
GRULE3(run, colourj , colourk, ci, ci+p(aj/qj)−2p+k)
holds if i ≡ 0 (mod p), p(aj/qj) ≥ 2p− k,
GRULE3(jump, colourj , colourk, ci, ci) holds if dj < 2p− k,
GRULE3(jump, colourj , colourk, ci, ci+dj−2p+k)
holds if i ≡ 0 (mod p), dj ≥ 2p− k,
GRULE3(run, red, colourk, joker, ci) holds for all i,
GRULE3(jump, red, colourk, joker, ci) holds for all i,

(ix) TRULE(run, colour, ci, ci) holds for each i and for each colour,
TRULE(run, red, ci, joker) holds for each i,
TRULE(jump, colour, ci, joker) holds for each i and for each colour,
TRULE(run, red, joker, joker) holds,

(x) GTRULE(jump, ci, ci) holds for each i,
GTRULE(run, ci, joker) holds for each i,
GTRULE(run, joker, joker) holds.

The set of the nodes ci, i = 0, 1, . . . of the graph can be in a natural way under-
stood as a tape of Achilles-Turtle machine. Notice that all the facts from the definition
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are “local” in the sense that if some elements ci and cj are directly connected by a
fact then |j − i| ≤ p and there is no white node between ci and cj .

Now we are going to use the relations of the Achilles-Turtle graph to encode all
the rules of the machine in only one transition rule:
CONF (Ap, T

′, G′):–
BODY ,
S(A,A1), S(A1, A2), . . . S(Ap−1, Ap),
CONF (A, T,G).

where BODY is the conjunction of the following facts:

COND1(COND,A,X0),
COND2(COND,X0, T ),
COL(TCOLOR, T ),
COL(GCOLOR,G)
GRULE1(COND,TCOLOR,GCOLOR,G,X1),
GRULE2(COND,TCOLOR,GCOLOR,X1, X2),
GRULE3(COND,TCOLOR,GCOLOR,X2, G

′),
TRULE(COND,TCOLOR, T,X3),
TRULE(COND,TCOLOR, T ′, X3),
GTRULE(COND,G′, X4),
GTRULE(COND,T ′, X4).

Lemma 4.2. Suppose T is not red. Then CON(A′, T ′, G′) can be computed from
CON(A, T,G) in a single computation step of the Achilles-Turtle machine if and
only if CONF (A′, T ′, G′) can be reached from CONF (A, T,G) in a single step of the
Achilles-Turtle graph game.

Proof. It is clear that the move of Achilles is performed in the same way by the
machine and the game (he simply moves p cells ahead). We should check that this is
also the case with the Turtle and the Guide.

The “only if” direction is easier: if the transition of the machine has been done
according to the run rule then substitute run for the variable COND. Otherwise
substitute jump. For the variable TCOLOR substitute the colour of the Turtle’s
cell. For the variable GCOLOR substitute the colour of the Guide’s cell. Now, if
there is no white node between G and G′, substitute X1 = X2 = G′. If there is
exactly one such white node, then substitute the node for X1 and X2 = G′. If there
are two such nodes, then substitute the first of them for X1 and the second for X2

(notice that by condition (ii) from Theorem 2.3(1) there are at most two white nodes
between G and G′). The “GRULE” goals in the lines (v)–(vii) of the BODY are
satisfied in this way. If COND is run, then substitute T for X3 (notice that in this
case T = T ′). If COND is jump, then substitute joker for X3. The two “TRULE”
goals of the BODY are satisfied in this way. To satisfy the last two goals substitute
joker for X4 if the COND is run, and if the COND is jump, then substitute G′ for
X4.

For the “if” direction first notice that if the conjunction of
COND1(jump,A,X0),
COND2(jump,X0, T ),
can be satisfied, then really the distance between Achilles and the Turtle, before the
transition, is smaller than p; jump is allowed according to the Achilles-Turtle machine
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rules. The rules for the Guide (defined by claims (vi), (vii), and (viii) of Definition
4.1) ensure that if only COND, TCOLOR, and GCOLOR are chosen in a fair way,
then the Guide of the game moves in the same way as the one from the machine.
As for the Turtle, if the COND is run, then he should not move, and in fact the
conjunction
TRULE(run, TCOLOR, T,X3),
TRULE(run, TCOLOR, T ′, X3)
can be satisfied only if T = T ′.

If the COND is jump then the Turtle should go to the same node where Guide
does. The conjunction
TRULE(jump, TCOLOR, T,X3),
TRULE(jump, TCOLOR, T ′, X3)
can be satisfied for every choice of T, T ′ then, if joker is substituted for X3, but the
conjunction
GTRULE(jump,G′, X4),
GTRULE(jump, T ′, X4)
is satisfied only if X4 = G′ = T ′.

The following lemma is much easier to prove than Lemma 4.2 and is left as an
exercise for the reader.

Lemma 4.3. If ct is red, then each configuration of the form CONF (ci+p, ct′ , cg′)
can be reached from CONF (ci, ct, cg) in a single step of the graph game.

Hint: Put COND equal to run and TCOLOR equal to red.

4.3. Single linear rule program with initialization. In this section we will
use the Achilles-Turtle game to construct a DATALOG program with one linear re-
cursive rule and one initialization, which is uniformly bounded if and only if C(g, 2)
holds.

The EDBs of the program will be the same as used in Definition 4.1.
It will be one ternary IDB CONFIG. The variables A, T,G in a fact of the form

CONFIG(A, T,G) should be, as usual, understood as Achilles, Turtle, and Guide.
Consider a database D. We suppose that colour0, colour1, . . . , colourp−1, jump,

run and joker occur in D. A Motorway will be a sequence of elements of the database
which can be used for playing the Achilles-Turtle game.

Definition 4.4. Suppose X0, X1, . . . , Xn are elements of D. We say that the
sequence X0, X1, . . . Xn is a Motorway if G∩ {jump, run, joker, colour0, colour1, . . . ,
colourp−1, c0, c1, . . . , cn} is a subgraph of D∩ {jump, run, joker, colour0, colour1, . . . ,
colourp−1, X0, X1, . . . , Xn},
where ordered sets of elements are considered. G is the database from Definition 4.1.

So, for example, we require that S(X3, X4) and COL(pink,X3) hold in D, if
X0, X1, . . . Xn is a Motorway.

Now we are ready to write the following.
Linear recursive rule of program T :

CONFIG(Ap, T
′, G′):–

CONFIG(A, T,G),
Motorway(A,A1 . . . Ap),
BODY ,
TRULE(run, red, T ′, joker),
GRULE3(run, red, colour0, joker,G

′),
GRULE3(run, red, colour1, joker,G

′),
. . .
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GRULE3(run, red, colourp−1, joker,G
′),

GTRULE(run,G′, joker),
GTRULE(run, T ′, joker),

where Motorway(A,A1, . . . , Ap) is the conjunction of facts needed for the sequence
(A,A1, . . . , Ap) to be a Motorway. Notice that the last p+ 3 lines the rule are exactly
the literals of BODY in which T ′ or G′ occurs, with run substituted for COND and
red substituted for TCOLOR.

Initialization of program T :

CONFIG(A0, A2, A2):–
COL(white, A0), S(A0, A1), S(A1, A2).

Thanks to the last p+ 3 lines of the recursive rule, we can be sure that if the fact
CONFIG(Ap, T

′, G′) can be proved in one step from CONFIG(A, T,G), then it can
also be proved in one step from each fact of the form CONFIG(A, T ′′, G′′) where T ′′

is red (see the proof of Lemma 4.8, case 1).
Our next goal is to show that if a long proof using the recursive rule is possible

in some database D, then there is a long Motorway in D.
Lemma 4.5. Consider a sequence: A0, A1, A2, . . . , Axp of elements of a database.

If, for each 0 ≤ k ≤ x − 1 the subsequence Akp, Akp+1, . . . , A(k+1)p is a Motorway,
then also the whole sequence is a Motorway.

Proof. Conditions (i)–(x) of Definition 4.1 are “local”: if some elements ci and
cj occur in a condition, then |j − i| ≤ p and there is no white node between ci and
cj .

Lemma 4.6. Suppose that
CONFIG(A0, T 0, G0),
CONFIG(A1, T 1, G1),
CONFIG(A2, T 2, G2),
. . .

CONFIG(Al, T l, Gl)
is a sequence of facts, such that if 0 ≤ i ≤ l − 1, then
CONFIG(Ai+1, T i+1, Gi+1)

can be derived from CONFIG(Ai, T i, Gi) by a single use of the recursive rule. Then
there exists a sequence
A0, A0

1, . . . A
0
p−1,

A1, A1
1, . . . A

1
p−1,

A2, A2
1, . . . A

2
p−1,

. . .
Al−1, Al−1

1 , . . . Al−1
p−1, A

l

of elements of the database which is a Motorway.
Proof. That follows from Lemma 4.5 and from the construction of the recursive

rule.
Definition 4.7. If A, T,G is a tuple of nodes of the database D, then we say

that CONFIG(A, T,G) is a fact about A.
Now we are ready to prove that if C(g, 2) holds then the program T is uniformly

bounded.
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Lemma 4.8. If C(g, 2) holds then there exists a constant C such that in every
database D if the program T proves some fact, then the fact can be proved in no more
than C derivation steps.

Proof. If C(g, 2) holds then the Achilles-Turtle game can reach the configuration
CONF (X,S(X), S(X)) for some white X. S(X) is red then. Suppose the K moves
are needed to reach this configuration. X = SpK(Y ) for some Y then, and the nodes
of the machine graph left of Y or right of S(X) are not visited during the computation.
We are going to prove that K+2 is a good candidate to be C.

Consider an element A of D. There are two possibilities.
Case 1. There is a Motorway of length (K + 1)p in the database, such that A is

its last node.
Suppose

A−(K+1)p, A−(K+1)p+1, . . . , A

is the Motorway. By the initialization rule

CONFIG(A−(K+1)p, A−(K+1)p+2, A−(K+1)p+2)

can be proved in one derivation step. During the next K derivation steps one can
simulate K steps of Achilles-Turtle game, and so after K+1 steps we derive

CONFIG(A−p, A−p+1, A−p+1).

Since A−p+1 is red one can argue as in the proof of Lemma 4.3, to see that in the
next derivation step we can prove

CONFIG(A, T ′, G′)

for each T ′ and each G′ such that

TRULE(run, red, T ′, joker),
GRULE3(run, red, colour0, joker,G

′),
GRULE3(run, red, colour1, joker,G),
. . .
GRULE3(run, red, colourp−1, joker,G

′),
GTRULE(run,G′, joker),
GTRULE(run, T ′, joker).

Because of the last p+ 3 lines of the recursive rule, no other facts can be proved
about A.

Case 2. There is no such Motorway. Then, by Lemma 4.6, every proof has less
than K+3 steps.

We still need to show that if C(g, 2) does not hold, then the program is unbounded.
Lemma 4.9. If C(g, 2) does not hold, then for each constant C there exists a

database D, with empty input IDB relation, and a fact

CONFIG(A, T,G)
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which can be proved in the database but the proof requires more than C steps.
Proof. It’s enough to show that arbitrarily long proofs are needed in the Achilles-

Turtle game graph (we suppose that there are no IDB input facts). So start with

CONFIG(c0, c2, c2)

(which can be done by initialization) and use 2C times the run rule for Turtle in a
pink-colored cell. Notice that the position of the Turtle will remain unchanged during
the computation and the final configuration will be

CONFIG(c2C , c2, c2+2C(a2/q2)).

The shortest proof of the fact requires 2C+1 steps (including initialization).
To summarize, we have the following.
Theorem 4.10. Uniform boundedness and program boundedness are undecidable

for programs consisting of one linear rule and one initialization.
Proof. The problem for given Conway function g, does C(g, 2) hold? is undecid-

able, even for functions satisfying conditions (ii) and (iii) of Theorem 2.3(1). For each
such function we can construct a DATALOG program, with one linear rule and one
initialization which is not program bounded if C(g, 2) does not hold (Lemma 4.9) and
which is uniformly bounded if C(g, 2) holds (Lemma 4.8).

4.4. Single rule program: How one cannot construct it. Now we would
like to modify the construction of the previous section and get a single rule program.
The only problem is how to initialize the predicate CONFIG. The simplest solution
would be not to initialize it at all, but just check, in the same way as we use the
“Motorway” goal in the body of the rule, that the needed EDB facts hold. So the
rule should look like this:
CONFIG(Ap, T

′, G′):–
CONFIG(A, T,G),
Motorway(A,A1 . . . Ap, Ap),
CONFIG(A,A2, A2),
BODY ,
TRULE(run, red, T ′, joker),
GRULE3(run, red, colour0, joker,G

′),
GRULE3(run, red, colour1, joker,G

′),
. . .
GRULE3(run, red, colourp−1, joker,G

′),
GTRULE(run,G′, joker),
GTRULE(run, T ′, joker).

In this way, one could think, we secure that it is possible to start the computation
of the Achilles-Turtle machine in each place, where any derivation step is made. But it
is not enough to go in the footsteps of the proof of Lemma 4.8. We there require that
the initial configuration is not only provable—which is really secured by the would-be
rule above—but that it is provable in a bounded number of steps (in fact, just one
step, in the previous section). We are to think of a new trick to ensure that.

4.5. Single rule program: How to construct it. The single recursive rule
S is
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CONFIG(run, Z,Ap, T
′, G′):–

CONFIG(W, run,A, T,G),
main
premise

CONFIG(jump, run,A,A2, A2),
initialization
premise

CONFIG(jump, jump, joker, joker, joker),
jump=run
premise

Motorway(A,A1, . . . Ap),
Motorway(joker, joker, . . . joker,Ap),

BODY ,
TRULE(run, red, T ′, joker),
GRULE3(run, red, colour0, joker,G

′),
GRULE3(run, red, colour1, joker,G

′),
. . .
GRULE3(run, red, colourp−1, joker,G

′),
GTRULE(run,G′, joker),
GTRULE(run, T ′, joker),

where the constant joker occurs p times in the “predicate” Motorway. We have
added two additional arguments to the recursive predicate here. The rule asserts that
if something can be derived then its first argument is run. Thus, if only the constants
run and jump are not interpreted in the same way in the database, then the fact

CONFIG(jump, run,A,A2, A2)

cannot be proved by the program; if it is provable, then it is provable in 0 steps (is
given as a part of the input).
Also the fact

CONFIG(jump, jump, joker, joker, joker)

does not require a deep proof: if any proof at all is possible, then the fact is given in
the input.

The “jump=run premise” is normally useless as the main or the initialization
premise of a derivation step: it has “jump” as the second argument. But if run
and jump are equal in the database, then we use it to show that if anything can be
proved about A, then everything can be proved about it in one step. That is why
Motorway(joker, joker, . . . , joker,Ap) must hold and why joker is red.

We use the methods of section 4.3 to prove that the constructed single rule pro-
gram is uniformly bounded if and only if C(g, 2) holds.

Lemma 4.11. If C(g, 2) holds, then there exists a constant C such that in every
database D if some fact can be proved with the rule S, then it has a proof no deeper
than C.

Proof. Let K be like in the proof of Lemma 4.8. We need to consider two cases.
Case 1. jump and run are different elements of the database.
Suppose that for some A there is a fact about it which has a proof of length at

least K+2. Then, we follow the proof of Lemma 4.8: we use the fact that the needed
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initialization has been given in the input, so it has a short (0-step) proof, and show
that everything can be proved about A in no more than K+2 derivation steps.

Case 2. jump and run are interpreted as the same element of the database.

Suppose that anything can be proved about some Ap. Then

CONFIG(jump, jump, joker, joker, joker)

holds in the database. Since Motorway(joker, joker, . . . , joker,Ap) holds and since
joker is red, every fact of the form

CONFIG(run, Z,Ap, T
′, G′)

can be proved in one derivation step if only

TRULE(run, red, T ′, joker),
GRULE3(run, red, colour0, joker,G

′),
GRULE3(run, red, colour1, joker,G

′),
. . .

GRULE3(run, red, colourp−1, joker,G
′),

GTRULE(run,G′, joker),
GTRULE(run, T ′, joker).

Lemma 4.12. If C(g, 2) does not hold, then for each constant C there exist a
database D, and a fact

CONFIG(run, run,A0, T,G)

which can be proved, with the rule S, in the database D, but the proof requires more
than C steps.

Proof. We proceed in a similar way as in the proof of Lemma 4.9, with the
following differences:

(i) We no longer assume that the IDB input is empty. Instead, we require that
there are the following CONFIG facts in the input:

CONFIG(jump, jump, joker, joker, joker),

and, for each x ≤ C,

CONFIG(jump, run, cpx, cpx+2, cpx+2).

(ii) We require that for each x ≤ C,

Motorway(joker, joker, . . . , joker,Apx)

holds. This ends the proof of the following.

Theorem 4.13. Uniform boundedness of single rule DATALOG programs is
undecidable.



ACHILLES, TURTLE, AND SMALL DATALOG PROGRAMS 257

REFERENCES

[1] Aristotle, Physics, VI, 239 b 5-240 a 18.
[2] S. Abiteboul, Boundedness is undecidable for datalog programs with a single recursive rule,

Inform. Process. Lett., 32 (1989) pp. 281–287.
[3] M. Ajtai and Y. Gurevich, DATALOG versus First Order Logic, in Proceedings of 30th

FOCS, 1989.
[4] J.H. Conway, Unpredictable Iterations, in Proceedings of 1972 Number Theory Conference,

University of Colorado, 1972, pp. 49–52.
[5] S.S. Cosmadakis and P. C. Kanellakis, Parallel evaluation of recursive rule queries, in

Proceedings of 5th ACM PODS, ACM, New York, 1986, pp. 280–293.
[6] S.S. Cosmadakis, H. Gaifman, P.C. Kanellakis, and M.Y. Vardi, Decidable optimization

problems for database logic programs, in Proceedings of 20th ACM STOC, 1988, pp. 477–
490.
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TIGHT BOUNDS ON THE SIZE OF FAULT-TOLERANT MERGING
AND SORTING NETWORKS WITH DESTRUCTIVE FAULTS∗
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Abstract. We study networks that can sort n items even when a large number of the com-
parators in the network are faulty. We restrict our attention to networks that consist of registers,
comparators, and replicators. (Replicators are used to copy an item from one register to another,
and they are assumed to be fault free.) We consider the scenario of both random and worst-case
comparator faults, and we follow the general model of destructive comparator failure proposed by
Assaf and Upfal [Proc. 31st IEEE Symposium on Foundations of Computer Science, St. Louis, MO,
1990, pp. 275–284] in which the two outputs of a faulty comparator can fail independently of each
other.

In the case of random faults, Assaf and Upfal showed how to construct a network with O(n log2 n)
comparators that (with high probability) can sort n items even if a constant fraction of the com-
parators are faulty. Whether the bound on the number of comparators can be improved (to, say,
O(n logn)) for sorting (or merging) has remained an interesting open question. We resolve this
question in this paper by proving that any n-item sorting or merging network which can tolerate a
constant fraction of random failures has Ω(n log2 n) comparators.

In the case of worst-case faults, we show that Ω(kn logn) comparators are necessary to construct
a sorting or merging network that can tolerate up to k worst-case faults. We also show that this
bound is tight for k = O(logn). The lower bound is particularly significant since it formally proves
that the cost of being tolerant to worst-case failures is very high.

Both the lower bound for random faults and the lower bound for worst-case faults are the first
nontrivial lower bounds on the size of a fault-tolerant sorting or merging network.

Key words. merging, sorting, circuits, comparator networks, fault-tolerance, lower bounds,
probabilistic analysis of algorithms
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1. Introduction. In the classic model of a sorting circuit analyzed by Knuth [6],
Batcher [3], and Ajtai, Komlós, and Szemerédi [1], the circuit consists of n registers
and a collection of comparators, where n is the number of items to be sorted. Each
register holds one of the items to be sorted, and each comparator is a 2-input, 2-
output device that outputs the two input items in sorted order. The comparators are
partitioned into levels so that each register is involved in at most one comparison in
each level. The depth of the circuit is defined to be the number of levels in the circuit,
and the size of the circuit is defined to be the number of comparators in the circuit.
For example, a 4-item sorting circuit with depth 5 and size 6 is shown in Figure 1.1.

Sorting circuits have numerous applications in the context of message routing and
switching [9] and they have been intensively studied for several decades. In the past
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Fig. 1.1. (a) A comparator. (b) A sorting circuit.

several years, issues involving the fault-tolerance properties of sorting circuits have
gained increased importance and attention (see [2, 4, 7, 10, 11, 12, 13, 14, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25]).

Thus far, the work on developing sorting circuits that are tolerant to faults has
focussed on three basic types of failures: passive comparator faults, reversal com-
parator faults, and destructive comparator faults. In the passive fault model , a faulty
comparator outputs its two input items in the same order in which they are input
(i.e., without comparison). In the reversal fault model , a faulty comparator always
outputs its input items in the wrong order but never loses any of the items.

In this paper, we consider the stronger “destructive” model of comparator failure
proposed by Assaf and Upfal [2]. In the destructive fault model , a faulty comparator
with inputs x and y can output f(x, y) and g(x, y), where f and g can be any of the
following functions: x, y, min(x, y), or max(x, y). The destructive model of failure
allows for any form of miswiring or short circuit. The only restriction is that each
output be one of the inputs. (Without this constraint, it would not be possible to
sort with high probability since for any circuit a single fault immediately before an
output could make the output incorrect.)

In the destructive model of comparator failure, it is possible for one of the two
inputs to a faulty comparator to be destroyed during the comparison. (For example,
this happens to input y when f(x, y) = g(x, y) = x.) Hence, Assaf and Upfal made use
of replicators when constructing networks that are tolerant to destructive faults. A
replicator simply copies the content of one register to another. For example, a 2-item
sorting network with replicators that is tolerant to any single fault is illustrated in
Figure 1.2. In this paper (as in [2]), we will assume that the replicators are fault free.
This is not a particularly unreasonable assumption since replicators can be hardwired
and they do not contain any logic elements.

In [2], Assaf and Upfal described a general method for converting any sorting
circuit into a sorting network (with replicators) that (with high probability) is tol-
erant to random faults in the comparators. In particular, given an n-item sorting
circuit with depth d and size s, the fault-tolerant network produced by the Assaf–
Upfal transformation has depth O(d) and size O(s logn), and it is able to sort (with
probability at least 1− 1

n ) even if each comparator independently suffers a destructive
failure with some constant probability.1 (The size of a network is defined to be the
number of comparators. Asymptotically it makes no difference whether the replica-

1In this paper, all the logarithms are base 2 unless specified otherwise.
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Fig. 1.2. (a) A replicator. (b) A 2-item sorting network that tolerates any single fault.

tors are counted since an optimal network should make copies of an item only if that
item will be input to a comparator.) The network will also have width O(n logn),
where the width of a network is defined to be the number of registers it contains.
When used in conjunction with the AKS sorting circuit of [1], this provides a sorting
network with depth O(logn), width O(n logn), and size O(n log2 n) that is tolerant
to random destructive comparator failures.

The Assaf–Upfal method proceeds by making Θ(logn) copies of each item and re-
placing each comparator with Θ(logn) comparators, followed by a majority-enhancing
device that is constructed from an expander. As a consequence, the width and size of
the resulting network are increased by a factor of Θ(logn). Whether there is an alter-
native approach to fault tolerance that can avoid the Θ(logn) factor blowup in width
and/or size has remained an interesting open question. We resolve this question by
showing that the width in the Assaf–Upfal network can be decreased, but only at the
expense of a proportional increase in depth. In particular, for any n ≤ w ≤ n logn,
we show how to construct an n-item sorting network with width O(w) and depth

O(n log2 n
w ) that can tolerate random destructive faults with high probability. More

important, we show that any n-item sorting network that can tolerate random de-
structive faults (with any reasonable probability) has size Ω(n log2 n). (Somewhat
surprisingly, we also show that the same lower bound holds for fault-tolerant merging
networks.) These results provide tight bounds on the size and width of fault-tolerant
sorting (and merging) networks, and they provide the first nontrivial lower bounds on
the size of fault-tolerant sorting (and merging) networks. Compared with the recent
results on passive and reversal faults [10, 13], our Ω(n log2 n) lower bound separates
the size complexity of sorting and merging networks with destructive faults from those
with passive or reversal faults.

We also consider the scenario of worst-case destructive faults. In particular, we

prove a (k+1)n log n
4 lower bound on the size of sorting and merging networks that can

tolerate up to k worst-case destructive faults. This is the first nontrivial lower bound
on sorting or merging networks that can tolerate worst-case faults, and it is tight (up
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to constant factors) for k = O(logn). Unfortunately, the lower bound means that
building sorting and merging networks that are tolerant to worst-case faults is very
costly. In particular, we must build the equivalent (in terms of size) of Ω(k) copies of
an optimal sorting network in order to withstand k worst-case faults.

The remainder of the paper is organized into sections as follows. We start in
section 2 by proving the Ω(kn logn) lower bound on the size of merging networks
that can tolerate up to k worst-case faults. We then extend this result in section 3 to
prove the Ω(n log2 n) lower bound on the size of merging networks that are tolerant to
random faults. The material in section 3 represents the most difficult and important
contribution of the paper. The upper bound result on the width of fault-tolerant
sorting networks is presented in section 4.

2. The lower bound on size for worst-case faults. In this section, we prove
a lower bound on the size of merging and sorting networks that are tolerant to worst-
case faults. For ease of reference, we define a k-destructive-fault-tolerant sorting (or
merging) network to be a network that is still a sorting (or merging) network even if
any k (or fewer) comparators suffer any form of destructive failure. Our main result
in this section is a proof of the following theorem.

Theorem 2.1. The size of any k-destructive-fault-tolerant merging (or sorting)

network is at least (k+1)n log n
4 .

We will prove Theorem 2.1 by showing a lower bound for merging networks.
Without loss of generality, we will assume that n is an exact power of two. In what
follows, we will use M to denote a k-destructive-fault-tolerant merging network that
takes two sorted lists X = (x1 ≤ x2 ≤ · · · ≤ xn/2) and Y = (y1 ≤ y2 ≤ · · · ≤ yn/2) as
input and that outputs the merged list. Without loss of generality, this means that
M sorts lists of the form (x1, y1, x2, y2, . . . , xn/2, yn/2) where x1 ≤ x2 ≤ · · · ≤ xn/2
and y1 ≤ y2 ≤ · · · ≤ yn/2.

To show that M has (k+1)n log n
4 comparators, we need the following definitions

and lemmas, some of which are extensions of those used by Floyd to prove that a
fault-free merging network needs Ω(n logn) comparators (see pages 230–232 of [6]).

Given a merging network M with fault pattern F (i.e., F specifies which com-
parators, if any, are faulty and how they fail) and a list of integer inputs Π =
(π1, π2, . . . , πn) to M, we denote the content of a register r immediately after level
t by C(r, t). For example, C(3, 1) = 0 and C(3, 2) = C(3, 3) = 1 in Figure 1.2. We
define the history ofM given F and Π to be the collection of register contents C(r, t)
taken over all registers and all levels. The following lemma shows how the history of a
network computation can be influenced by a fault at a single output of a comparator.

Lemma 2.2. Given anyM, Π, F , and F ′, let C(r, t) denote the content of register
r immediately after level t for M given F and Π, and let C′(r, t) denote the content
of register r immediately after level t for M given F ′ and Π. If F ′ is identical to F
except that one comparator C on level l with output registers p and q is modified in
F ′ so that C′(q, l) = C(q, l) and C′(p, l) 6= C(p, l), then for all r and t

(1) if C(r, t) < C(p, l), then C′(r, t) ≤ C(r, t),
(2) if C(r, t) > C(p, l), then C′(r, t) ≥ C(r, t).
Proof. For simplicity, let s = C(p, l) and s′ = C′(p, l). We will only prove the

lemma for the case in which s′ < s. The case in which s′ > s can be proved similarly.
We will think of F ′ as the result of modifying C in F and prove that some prop-

erties hold when such a modification is made. The network can be divided into two
parts: the part before (and including) level l and the part after level l. The former
part clearly remains unchanged after C is modified, and the latter part is changed
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as if one input item to that part were modified. Hence, it suffices to show that the
following properties (a) and (b) hold when some input item is changed from s to some
s′ < s but no comparator is modified. (We will use the term register segment to
denote the part of a register that is between two consecutive levels.)

(a) The content of each register segment whose content was less than s before the
modification is not increased.

(b) The content of each register segment whose content was greater than s before
the modification remains unchanged.

In a given history, if an input item is changed from s to s− 1 (but no comparator
is modified), then all the input items that are neither s nor s−1 move in the network
as they did before. Hence, all the register segments containing neither s nor s −
1 before the modification now contain the same values as before. All the register
segments containing s − 1 before the modification now contain s − 1, while some
register segments containing s before the modification may contain s − 1 now. This
means that properties (a) and (b) hold when an input s is changed to s − 1. If the
new input item s− 1 (the one that was s before) is further changed to s− 2, then the
only new change in the history is that some register segments containing s− 1 before
the modification may contain s − 2 now. Overall, an input item has been changed
from s to s− 2 and properties (a) and (b) still hold. Since both s and s′ are integers,
this process can be continued until an input has been changed from s to s′. During
the whole process, properties (a) and (b) are never violated.

Consider the history of M on a particular 0–1 input sequence π. A crossing
comparator ofM with respect to π is defined to be a comparator whose input contents
are {0, 1} (i.e., they are not both 0 or both 1).2 M0(π), a subnetwork of M with
respect to π, is constructed as follows. (The subscript 0 is used to denote thatM0(π)
is the part ofM that contains 0 on input sequence π.) Take all the register segments
and replicators that contain 0 and all the comparators with both inputs containing
0. Replace each crossing comparator of M with respect to π by connecting directly
its (unique) input containing 0 and its (unique) output containing 0. M1(π) can
be constructed in a similar fashion. For example, when M and π are as shown in
Figure 1.2(b), M0(π) and M1(π) are as illustrated in Figure 2.1.

Unless specified otherwise, we will be particularly interested in the history of M
(when there is no fault) on the input sequence

(0, 0, . . . , 0︸ ︷︷ ︸
n/2

, 1, 1, . . . , 1︸ ︷︷ ︸
n/2

).(2.1)

Therefore, when we talk about crossing comparators,M0, andM1 without specifying
π, π should be interpreted as the 0–1 sequence given in (2.1). In particular, to
construct M0 and M1, we input the smallest n

2 items to the top half of M and the
largest n

2 items to the bottom half of M. Hence, when there is no fault, the smallest
n
2 items should be contained in M0 and the largest n

2 items should be contained in
M1. The motivation for defining crossing comparators, M0, and M1 can be found
in the following lemmas.

Lemma 2.3. If M is an n-input k-destructive-fault-tolerant merging network,
then both M0 and M1 are n

2 -input k-destructive-fault-tolerant merging networks.

2Here, the notion of a crossing comparator has nothing to do with any fault pattern. In the
next section, however, the notion of a crossing comparator will be slightly modified so that it will be
dependent on a fault pattern.



FAULT-TOLERANT MERGING AND SORTING NETWORKS 263

Fig. 2.1. The decomposition of the networkM in Figure 1.2, with respect to the input sequence
therein, intoM0(π) andM1(π). The sloping lines represent direct connections that replace crossing
comparators.

Proof. If we input to M any sequence

(x1, y1, x2, y2, . . . , xn/4, yn/4,+∞, . . . ,+∞︸ ︷︷ ︸
n/2

)

such that x1 ≤ x2 ≤ · · · ≤ xn/4 and y1 ≤ y2 ≤ · · · ≤ yn/4 and if none of the crossing
comparators of M are faulty, then, by the definition of M0, the x’s and y’s should
move withinM0 only andM1 has no impact on them. Hence,M0 is a k-destructive-
fault-tolerant merging network. (Note that an adversary can put no faults at crossing
comparators and put up to k faults into M0.) By a similar argument, we can show
M1 is also a k-destructive-fault-tolerant merging network.

Lemma 2.4. If M is a k-destructive-fault-tolerant merging network, then M has

at least (k+1)n
4 crossing comparators.

Proof. We will focus on the history of M on input sequence

(1,+∞, 2,+∞, . . . , n/2,+∞).

According to the definition of M0, 1, 2, . . . , n2 should all be output in the outputs of
M0. In particular, n

4 + 1, . . . , n2 should be moved from M1 to M0. By definition,
each crossing comparator has exactly one M0-input and one M1-input. (If an input
(output) of a comparator is inM0, then we call it anM0-input (output); if an input
(output) of a comparator is in M1, then we call it an M1-input (output).) Label
each crossing comparator by its M1-input.

Assume for the purposes of contradiction thatM contains less than (k+1)n
4 cross-

ing comparators. Then there exists an integer s such that n
4 + 1 ≤ s ≤ n

2 and the
total number of crossing comparators labeled by s is at most k.

Let C1 be a crossing comparator labeled by s that is at the lowest level in M.
Since s cannot have gotten into M0 without using a crossing comparator labeled by
s, we know that the M0-input to C1 does not contain s. Moreover, since C1 is not
faulty in the fault-free networkM, one of its outputs contains s and the other output
does not contain s. Hence, if we make C1 be faulty by forcing the M0-input of C1

to appear in both outputs of C1, this will have the effect of replacing the value of s
in one of the output registers with a value other than s, which is exactly the scenario
described by Lemma 2.2. In addition, C1 can no longer be used to move s from M1

to M0.
For any r and t, by Lemma 2.2 we know that if C(r, t) 6= s before C1 is made

faulty, then C(r, t) 6= s after C1 is made faulty. Hence, the number of working crossing
comparators labeled by s decreases by at least 1 when C1 is made faulty.

We next relabel crossing comparators based on the new history when C1 is faulty
and proceed inductively (i.e., we select the next crossing comparator labeled by s,
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make it faulty, and so forth). The proceeding process terminates when there are no
longer any functioning crossing comparators labeled by s. This is accomplished by
making at most k crossing comparators faulty. Since there are no longer any crossing
comparators that can move s from M1 to M0, the network does not successfully

complete the merge. Hence, we can conclude that M has at least (k+1)n
4 crossing

comparators.
Proof of Theorem 2.1. For any fixed k, let S(n) denote the size of the smallest

n-input k-destructive-fault-tolerant merging network. From the definition of crossing
comparators, the construction of M0 and M1, and the fact that no crossing com-
parator in M appears as a comparator in either M0 or M1, we know that

size(M) ≥ size(M0) + size(M1)

+|{crossing comparators in M}|.
By Lemmas 2.3 and 2.4, this means that

S(n) ≥ 2S(
n

2
) +

(k + 1)n

4

for n ≥ 4. Solving the recurrence, we find that

S(n) ≥ n

2
· S(2) +

(k + 1)n log(n/2)

4
.

Since S(2) ≥ k + 1, this means that S(n) ≥ (k+1)n log n
4 , as claimed.

3. The lower bound on size for random faults. In this section, we prove a
lower bound on the size of merging and sorting networks that are tolerant to random
faults. For ease of reference, we define a (ρ, ε)-destructive-fault-tolerant sorting (or
merging) network to be a network that is still a sorting (or merging) network with
probability at least 1− ε even if each comparator independently suffers a destructive
failure with fixed probability ρ. When a destructive fault does occur, we will assume
that each form of failure is equally likely. In other words, the probability that a
particular form of failure appears at a comparator is ρ0 = ρ

α , where the constant α
denotes the total number of possible ways that a comparator can fail. The main result
in this section, which is also the main result in this paper, is a proof of the following
theorem.

Theorem 3.1. The size of any (ρ, ε)-destructive-fault-tolerant merging (or sort-
ing) network is

Ω

(
n logn

log 1
ε + log

√
n− log loge

1
1−ε

1− log ρ

)
.(3.1)

This theorem gives a good lower bound for a large range of ρ and ε and it does
not require either ρ or ε to be a constant. The most interesting case, which people
have studied most often, is that ρ is a nonzero constant and ε = 1/poly(n). In this
case, the theorem gives a lower bound of Ω(n log2 n), which is tight [2]. Somewhat
surprisingly, however, the theorem gives the same Ω(n log2 n) lower bound even when
ε is not small. In particular, when ρ is a nonzero constant, the theorem implies
the Ω(n log2 n) lower bound even for some extremely small success probability like

1 − ε = e−n
1
4 . Hence, even networks that have a tiny chance of surviving the faults

have Ω(n log2 n) comparators.
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In fact, we will show a lower bound of the form

Ω

(
n logn

log 1
ε + log

√
n− log loge

1
1−ε

log 1
ρ0

)
,(3.2)

where ρ0 is the probability that a comparator suffers a particular form of destructive
failure. (One can easily check that lower bound (3.2) implies lower bound (3.1). The
term “1” in the denominator of (3.1) prevents the lower bound from going to +∞
when ρ goes to 1.) We will prove lower bound (3.2) by showing a lower bound of

n logn log ε

4 log ρ0
(3.3)

and a lower bound of

n logn(log
√
n− log loge

1
1−ε )

4 log 1
ρ0

.(3.4)

When ε = o(1/poly(n)), lower bound 3.4 is stronger, and when ε = Ω(1/poly(n)),
lower bound 3.3 is stronger.

For worst-case faults, we have shown that a factor of Ω(k) in redundancy is nec-
essary to tolerate k faults. In fact, if the size of the network is not large enough, then
there exists a set of at most k comparators that are critical. If all these comparators
fail in a particular way (and all other comparators work correctly), then the network
will not work correctly. At first glance, one might think that this immediately implies
that a factor of Ω( log ε

log ρ0
) in redundancy is required for the random fault case, since

any set of Ω( log ε
log ρ0

) comparators will all fail in the necessary way with probability ε. If
this were true, lower bound 3.3 would follow immediately. However, the problem for
random faults is that we cannot assume that all “other” comparators work correctly.
Indeed, it is likely that a large fraction of those “other” comparators will be faulty,
and these faulty comparators might inadvertently help the network work correctly.
One such interesting example is the butterfly-based fault-tolerant sorting circuit de-
signed in [11] in which a fixed fraction of the comparator failures are crucial for the
circuit to work! (To understand why fixed failure probability can be helpful, one can
imagine that each comparator flips a coin to decide its behavior. Then the failures
can be used as a source of randomness, which might be exploited in the network.)

In general, there are two types of lower bound results for random-fault-tolerant
computation: one for the case of fixed failure probability and the other one for the
case that only an upper bound is enforced on the failure probability. As argued by
Pippenger [15] in the context of fault-tolerant Boolean circuits, the first type of lower
bound is always stronger than the second type. Our proof technique for worst-case
faults implies a lower bound of the second type for random faults. In order to get the
stronger lower bound (of the first type) stated in Theorem 3.1, we need to do much
more work.

As a direct application of the proof technique for worst-case faults, if the size of
M does not satisfy lower bound 3.3, then, for any faulty M, we can always produce
another faulty network that does not work correctly by forcing at most logρ0

ε = log ε
logρ0

comparators to be faulty in a particular way. It is natural to ask if this property is
strong enough to show that there is a large fraction of faulty networks that do not
work correctly. This can be formulated as the following question. Let S be the set of
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all sequences with fixed length l and S0 be a subset of S. (S will correspond to all
fault patterns for a network M, and S0 will correspond to those fault patterns that
keep M from being a merging network.) If the union of all the hamming balls with

origins in S0 and radius logρ0
ε covers S, can we prove |S0|

|S| = Ω(ε)? That is, if every

fault pattern is within logρ0
ε faults of a bad fault pattern, is the density of bad fault

patterns Ω(ε)? Unfortunately, the answer to this question is in general “No.” Hence,
to prove our lower bound, we need a better understanding of the structure of the bad
fault patterns.

Before proving the theorem, we first clarify some terminology to be used in the
proof. We will use the terms fault pattern and history as defined in section 2. The
notation M(F ) will be used to denote the faulty network derived fromM by setting
the behavior of each comparator in M according to fault pattern F . In the proof,
we will focus on a particular merging network M only. Hence there is a one-to-one
correspondence between each fault pattern F and the faulty networkM(F ). We call
a fault pattern F good ifM(F ) functions correctly as a merging network, and we call
F bad otherwise. As in section 2, we want to decomposeM into smaller networks and
analyze the behavior of the comparators that connect these small networks. However,
unlike in section 2, where we use the fault-free M to define these terminologies, we
need to deal with different decompositions and different sets of crossing comparators
for different fault patterns. We will use the history of M(F ) on input sequence

(0, 0, . . . , 0︸ ︷︷ ︸
n/2

, 1, 1, . . . , 1︸ ︷︷ ︸
n/2

)

to redefine these terminologies as follows. A crossing comparator of M(F ) is defined
to be a comparator whose input contents are {0, 1} (i.e., they are not both 0 or both 1).
M(F )0 is constructed as follows. Take all the register segments and replicators that
contain 0 and all the comparators with both inputs containing 0. For each crossing
comparator with one output containing 0 and the other output containing 1, replace
it in M(F )0 by directly connecting the (unique) input containing 0 to the (unique)
output containing 0. For each crossing comparator with both outputs containing 0
(because of a fault), replace it inM(F )0 by a replicator that copies from the (unique)
input register containing 0 to the other (output) register. (We do not include anything
inM(F )0 to represent crossing comparators with both outputs containing 1.) M(F )1

can be constructed in a similar fashion.
GivenM(F )0, we can constructM(F )00 andM(F )01, and givenM(F )1, we can

construct M(F )10 and M(F )11. Working recursively, we can construct M(F )i in a
similar way for any binary number i with less than log n bits.

For a fixed M, we can define a partial order on the set of all the comparators in
M by the following rule:

C1 ≺ C2 if and only if depth(C1) < depth(C2).

We can extend this partial order into a total order. It does not matter how we extend,
but we will stick to a fixed extension in the proof.

Proof of Theorem 3.1. We start by showing that for any (ρ, ε)-fault-tolerant merg-
ing network M,

size(M) ≥ n logn log ε

4 log ρ0
.(3.5)
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Assume for the purposes of contradiction that (3.5) is not true for M. Then we will
prove that

Prob[F is bad for M] > ε,(3.6)

where F denotes a randomly generated fault pattern for M. We will prove (3.6) by
partitioning the space of all possible fault patterns into small groups and then showing
that, within each group, a bad fault pattern will be generated with probability more
than ε.

Now we will do the most difficult part of the proof, which is to find an appropriate
partitioning of the space of the fault patterns. On any fault pattern F , we will use
the following 3-step procedure to choose a characteristic set of F , which is denoted
as Char(F ). The set consists of comparators and it will be the basis for us to define
the partition.

Step 1. List all the M(F )i’s as follows:

M(F ),M(F )0,M(F )1,M(F )00,M(F )01,M(F )10,M(F )11, . . . .(3.7)

That is, for any binary numbers i and j with strictly less than logn bits, we list
M(F )i beforeM(F )j if i has fewer bits than j or if i and j have the same number of
bits and i < j. Take the first network M(F )i in list (3.7) that has strictly less than
1
4ni

log ε
log ρ0

crossing comparators where ni = n
2l(i)

(where l(i) is the length of i) is the

total number of input items to M(F )i. (Such an integer i does exist since we have
assumed that (3.5) is not true.)

By the way we create list (3.7) and the definition of ni, we know that ni ≥ 2. In
what follows, we will assume ni ≥ 4. The case when ni = 2 is easily handled as a
special case (or it can be ignored by replacing logn with logn−1 in the lower bound).

Step 2. Compute the history of M(F )i on input

(1,+∞, 2,+∞, . . . , i,+∞, . . . , ni/2,+∞),

and label each crossing comparator by its (unique)M(F )i1-input item (i.e., the item
that is input from the subnetwork M(F )i1). Let S(j) be the set of the crossing
comparators labeled by j. Go through the list

S
(ni

4
+ 1
)
, S
(ni

4
+ 2
)
, . . . , S

(ni
2

)
and choose the first set S(s) such that∑

ni
4 +1≤j≤s

|S(j)| <
(
s− ni

4

) log ε

log ρ0
.(3.8)

(Here, our assumption that ni ≥ 4 ensures that ni
4 is an integer.) Such an s does exist,

since, by the choice of i,M(F )i contains less than 1
4ni

log ε
log ρ0

crossing comparators, and

therefore s = ni
2 satisfies (3.8). (Note that our assumption ni ≥ 4 implies ni

4 +1 ≤ ni
2 .)

By the minimality of s, we can conclude the following.
Claim 1. |S(s)| < log ε

log ρ0
.

Step 3. We will continue to work on the history of M(F )i on input

(1,+∞, 2,+∞, . . . , i,+∞, . . . , ni/2,+∞),



268 TOM LEIGHTON AND YUAN MA

and we will choose a characteristic set for F , Char(F ), from S(s). List all the com-
parators in S(s) as follows:

C1 ≺ C2 ≺ · · · ≺ Ct,(3.9)

where ≺ is the depth-respecting total order described earlier. We first put comparator
C1 into Char(F ). Then we modify the behavior of C1 (thereby making it faulty in
a particular way) so as to make C1 directly output its M(F )i0-input item to all its
M(F )i0-outputs (if any), without changing any M(F )i1-output of C1.

Before this modification, the M(F )i1-input of C1 contained s and the M(F )i0-
input of C1 did not contain s since s could not have moved into M(F )i0 without
using a comparator labeled by s. Moreover, if an M(F )i0-output of C1 did not
contain s (which is the M(F )i1-input content of C1), it had to contain the M(F )i0-
input content of C1. Therefore, this modification has the effect of changing some
output content of C1 from s to non-s. By Lemma 2.2, this modification cannot cause
any new crossing comparator to be labeled by s. Now C1 is no longer capable of
moving s from M(F )i1 to M(F )i0. Then we update the history accordingly. In the
new history, C2, C3, . . . , Ct are the only remaining comparators that might move s
from M(F )i1 to M(F )i0. In this remaining part of list (3.9), we choose the first
comparator labeled by s in the new history. We put this comparator into Char(F )
and modify its behavior as we did for C1. We then update the history again and
continue in this fashion until all comparators in list (3.9) have been dealt with.

This completes the 3-step procedure and the construction of Char(F ). The final
history, in which s is never moved intoM(F )i0, corresponds to another fault pattern,
and we will call this fault pattern F̃ .

Lemma 3.2. For any fault pattern F , (1) Char(F ) = Char(F̃ ), (2) F̃ is bad, and
(3)|Char(F )| < log ε

log ρ0
.

Proof. To prove (1), we use the 3-step procedure to determine Char(F̃ ) and to
show that it is the same as Char(F ).

We first note that M(F̃ ) and M(F ) have the same history on the input list

Π = (0, . . . , 0︸ ︷︷ ︸
n/2

, 1, . . . , 1︸ ︷︷ ︸
n/2

).

This is because the changes made in comparators to produce F̃ from F do not affect
the performance of M(F ) on Π. In particular, the only changes from F to F̃ are
made in Step 3 and they do not affect the history ofM(F ) on input Π, although they
do affect the history of M(F ) on input (1,+∞, 2,+∞, . . . , i,+∞, . . . , ni/2,+∞), as
designed. (Recall that Step 3 lets an M(F )i0-output (or M(F )i1-output) remain so
after the changes.) Hence, for all j such that M(F )j is listed before or at M(F )i in

list (3.7), the structure of M(F̃ )j is the same as the structure of M(F )j , although
the functionality of some individual comparators may differ.3 In addition, for all j
such that M(F )j is listed before or at M(F )i in list (3.7), the crossing comparators

forM(F̃ )j are the same as the crossing comparators for M(F )j . Hence, the value of

i for M(F̃ ) selected in Step 1 is equal to that for M(F ).

3To be precise, we say two networks have the same structure if and only if they look identical
when they are drawn out in a picture like Figure 1.1(b), where we do not really care how the
comparators work in presence of faults. That is, we care only about the topology of the network,
not the functionalities of individual comparators.
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Next, we show that we pick the same value of s forM(F̃ )i andM(F )i in Step 2.
From the construction of F̃ , we know that F̃ differs from F (at most) only in com-
parators that are labeled s in the history of M(F )i. More precisely, some outputs of
these comparators (i.e., the M(F )i0-outputs) that contain s in the history of M(F )i
may contain non-s values in the history ofM(F̃ )i. By Lemma 2.2, the effect of these
changes is to make (possibly) some values that were s or less in the history ofM(F )i
be smaller in the history ofM(F̃ )i and to make (possibly) some values that were s or
greater in the history of M(F )i be larger in the history of M(F̃ )i. Hence, the same
value of s will be chosen in Step 2 for F̃ as for F . (The reason that we have used the
cumulative threshold in Step 2 instead of simply selecting the smallest S(s) should
now be apparent.)

According to the description of the 3-step procedure, we can see that the starting
history for F̃ at the beginning of the 3-step procedure is the same as the final history
at the termination of Step 3 for F . (This can be shown inductively from the lowest
level to the highest level.) Since the first two steps do not change any comparators, at
the beginning of Step 3 for F̃ we have all the comparators in Char(F ) to start with.
As we move along in the history ofM(F̃ )i on input (1,+∞, 2,+∞, . . . , ni/2,+∞), we
will not make any real change on any comparator in Char(F ) since, at the termination
of the 3-step procedure for F , all the comparators in Char(F ) have already output
their Mi0-inputs directly to their Mi0-outputs. Furthermore, these comparators are
all labeled by s in the history for F̃ . Therefore, we have to put all the comparators
in Char(F ) into the characteristic set for F̃ . Hence, Char(F ) = Char(F̃ ), as claimed.

To prove (2), we assume for the purposes of contradiction that F̃ is good. Then
the proof technique of Lemma 2.3 implies thatM(F̃ )i functions correctly as a merging
network. In particular, it should work correctly on both input

(0, . . . , 0︸ ︷︷ ︸
n/2

, 1, . . . , 1︸ ︷︷ ︸
n/2

)

and input (1,+∞, 2,+∞, . . . , ni/2,+∞). Hence, M(F̃ )i successfully moves s from
M(F̃ )i1 to M(F̃ )i0. However, in the history for F̃ , no s can be moved from M(F̃ )i1
to M(F̃ )i0. This is a contradiction, which means that F̃ is bad.

The correctness of (3) follows from Claim 1.
We are now ready to describe the partition of the space of fault patterns. We

group all the fault patterns by the following rule. We put F and F ′ in the same
group if and only if (1) Char(F ) = Char(F ′) and (2) the fault patterns F and F ′ are
identical on all the comparators not in Char(F ).

For any group G, take a fault pattern F ∈ G. By (1) in Lemma 3.2 and the
construction of F̃ , we know that F̃ ∈ G. By (2) in Lemma 3.2, we know that F̃ is
bad. By (1) and (3) in Lemma 3.2, we know that the probability that F̃ occurs is

greater than ρ0

log ε
log ρ0 = ε times the probability that a fault pattern in G occurs. In

other words, if a fault pattern in G occurs, there is a better than ε chance that it is
F̃ . Since this is true for all groups, we can thus conclude that the probability that a
random fault pattern is bad is greater than ε.

This completes the proof of lower bound (3.5). We next show that

size(M) ≥ n logn
log
√
n− log loge

1
1−ε

8 log 1
ρ0

.(3.10)

We will divide the network into blocks of size
√
n and “pump up” the failure proba-

bility by showing that most of the blocks behave well in order for the overall circuit
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to work. In particular, we will partition the space of fault patterns into groups and
use a conditional probabilistic argument.

For each fault pattern F , we can decompose M(F ) into
√
n networks such that

each of them has
√
n inputs and is of the form

M(F )i,

where i ≤ √n is a binary number with log n
2 bits. By doing so, we have removed

many comparators from M. These comparators that we have removed are crossing
comparators of many different networks that are larger than the networks with

√
n

inputs that we are currently interested in. We use Cross(F ) to denote the set of all
these removed crossing comparators. We put F and F ′ in the same group if and only
if (1) Cross(F ) = Cross(F ′) and (2) F and F ′ are the same on all the comparators in
Cross(F ).

If, within each group G, the probability that a fault pattern F ∈ G is good is less
than 1− ε, then a randomly generated fault pattern will be good with probability less
than 1 − ε. This is a contradiction to the fact that a randomly generated F is good
with probability at least 1− ε. Therefore, there exists a group G0 such that

Prob[F is good | F ∈ G0] ≥ 1− ε.
Notice that the decomposition of M(F ) is determined by the information about

F in Cross(F ) only. Hence, the fault patterns in the same group have the same
decomposition. In particular, we can assume that, for any fault pattern F ∈ G0 and
any i ≤ √n,

size(M(F )i) =

√
n log

√
nxi

4 log 1
ρ0

,(3.11)

where xi depends on the group G0 only (it does not depend on the individual F ). By
the proof technique of Lemma 2.3, we can see that each M(F )i functions correctly
as a merging network if F is good. Using lower bound (3.5) and (3.11), we have

Prob[M(F )i is good | F ∈ G0] ≤ 1− 1

2xi
for i ≤ √n.

On the other hand, for a fault pattern F in group G0, the behaviors of the Mi’s
(i ≤ √n) are mutually independent. Hence,

1− ε ≤ Prob[F is good | F ∈ G0]

≤ Prob[M(F )i is good ∀i | F ∈ G0]

≤
∏
i≤√n

(
1− 1

2xi

)
≤ e−

∑
i≤√n( 1

2 )xi
.

Therefore,

− loge(1− ε) ≥
∑
i≤√n

(
1

2

)xi

≥ √n
(

1

2

)∑i≤√n xi√
n

,



FAULT-TOLERANT MERGING AND SORTING NETWORKS 271

where the last inequality holds due to the concavity of function ( 1
2 )x. Hence

∑
i

xi ≥
√
n

(
log
√
n− log loge

1

1− ε
)
.

Finally, we have

size(M) ≥
∑
i≤√n

size(M(F )i)

≥
√
n log

√
n
∑
i≤√n xi

4 log 1
ρ0

=
n logn(log

√
n− log loge

1
1−ε )

8 log 1
ρ0

.

This proves (3.10) and completes the proof of Theorem 3.1.

4. Trading depth for width. In this section, we show that there is a nice
trade-off between the width and depth of fault-tolerant sorting networks. As in [2],
we need to assume in this section that ρ is less than a constant strictly less than
1
2 . The proofs combine the Column-Sort algorithm in [8] with the fault-tolerant
sorting networks in [2].

Theorem 4.1. For any n ≤ w ≤ n logn and any ρ less than a constant strictly
less than 1

2 , there exists an explicit construction of a (ρ, 1/poly(n))-destructive-fault-

tolerant sorting network with width O(w) and depth O(n log2 n
w ).

Proof. The Column-Sort algorithm in [8] arranges all the items in an r × s
matrix, where r ≥ 2s2, and it consists of 8 phases. Phases 1, 3, 5, 7 sort each column
of the matrix and phases 2, 4, 6, 8 permute the matrix in a fixed manner. The only
property of Column-Sort that we need here is the fact that if we can sort all the
columns of the matrix in T steps, then by applying Column-Sort we can sort all
the items in the matrix in O(T ) steps.

Assaf and Upfal [2] have shown how to build a (ρ, 1/poly(n))-destructive-fault-
tolerant sorting network with width O(n logn) and depth O(logn). Hence, for a given
w between n and n logn, we can use a network with width w and depth O(log( w

log n )) =

O(logn) to sort w
log n items first. (At the same time, we need to keep all other items in

some other registers. This can be done as long as we keep enough, say, 2n, registers.)
Then keep this sorted list of w

log n items in some registers and work on the next group of
w

log n items, etc. We will have worked on all the groups after O( n
w/ log n ) = O(n log n

w )

rounds. This finishes the first phase of Column-Sort with depth O(n log2 n
w ). To

implement the second phase of Column-Sort, we can hardwire in a permutation.

We similarly finish the remaining phases. The overall depth is O(n log2 n
w ).

Theorem 4.2. For any n ≤ w ≤ nk and k = O(logn), there exists an explicit
construction of a k-destructive-fault-tolerant sorting network with width O(w) and
depth O(nk log n

w ).
Proof sketch. In [2], Assaf and Upfal did not address the issue of worst-case faults.

However, by following their method it is possible to construct a k-destructive-fault-
tolerant sorting network with width O(kn) and depth O(logn) when k = O(logn).
Therefore we can use Column-Sort, as we did in the proof of Theorem 4.1, to prove
the theorem.
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5. Concluding remarks. We have shown lower bounds for merging and sorting
networks that can tolerate destructive faults. Our lower bound for random faults is
tight in the most interesting case where ρ is a constant and 1/ε is a nonzero constant or
a polynomial in n. Our lower bound for worst-case faults is tight when k = O(logn).
In joint work with Kleitman [5], we have shown that there are better lower bounds
for worst-case faults when k is very large, say, exponential in n.

Acknowledgment. We thank the anonymous referee for an outstanding job.
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ROUTING WITH MINIMUM WIRE LENGTH IN THE
DOGLEG-FREE MANHATTAN MODEL IS NP-COMPLETE∗
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Abstract. The present article concentrates on the dogleg-free Manhattan model where hori-
zontal and vertical wire segments are positioned on different sides of the board and each net (wire)
has at most one horizontal segment. While the minimum width can be found in linear time in the
single row routing, apparently there was no efficient algorithm to find the minimum wire length. We
show that there is no hope to find such an algorithm because this problem is NP-complete even if
each net has only two terminals. The results on dogleg-free Manhattan routing can be connected
with other application areas related to interval graphs. In this paper we define the minimum value
interval placement problem. There is given a set of weighted intervals and w rows and the intervals
have to be placed without overlapping into rows so that the sum of the interval values, which is the
value of a function of the weight and the row number assigned to the interval, is minimum. We show
that this problem is NP-complete. This implies the NP-completeness of other problems including
the minimum wire length routing and the sum coloring on interval graphs.

Key words. single row routing, VLSI, NP-complete problems, minimum wire length, interval
graph
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1. Introduction. The routing problem is to decide whether the problem instance
is routable under specified restrictions and, if yes, to determine the routes of the wires
that optimize certain criteria. The points to be interconnected are called terminals.
Routing within a rectangle is a basic problem of the VLSI design. In case of single
row routing all terminals appear only on one side of the rectangle. This is a special
case of the channel routing where all terminals are located either at the upper or
the lower boundary of the routing region. A net is a collection of terminals. An
instance of the problem is a set of pairwise disjoint nets. The solution of a routing
problem is a set of subgraphs (wires) where each subgraph connects all the terminals
of the corresponding net under the conditions of the wiring model. In the Manhattan
model wires run on a rectangular grid and horizontal and vertical wire segments are
positioned on different sides of the board. In a restricted version of the Manhattan
model each wire could occupy only one horizontal row (track). This model is called
the dogleg-free model. We are interested in the complexity of finding the minimum
wire length solution of the given routing problem in the dogleg-free model. Lengauer
[5] presents a detailed exposition of the routing in the Manhattan model.

The minimum width can be found in linear time in the single row routing in the
Manhattan model (Gallai [1]; see also Recski [7]). Szkaliczki [8] found an algorithm
for the minimum wire length whose running time is linear in the length and super-
polynomial in the width of the channel even in case of the channel routing. LaPaugh
[4] proved that the channel routing problem is NP-complete. We shall prove that
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Fig. 1. An instance of the interval placement problem: (a) interval representation, (b) rectangle
representation.

the minimum wire length single row routing in the dogleg-free Manhattan model is
NP-complete so there is no hope to find an algorithm which is polynomial both in
length and width. This holds even if each net has only two terminals. Our result is
that the minimum wire length routing is computationally difficult even in one of the
simplest cases.

In this paper we define the minimum value interval placement problem. We prove
that it is NP-complete. We use this result to prove that finding the minimum wire
length is NP-complete in the single row routing in the dogleg-free Manhattan model.
The minimum value interval placement can be applied to other areas such as graph
coloring.

2. Interval placement problem. The interval placement problem is as follows.
Assume a finite set of intervals on a line and w rows. Each interval has to be placed
into one of the rows in such a way that two intervals can be placed into the same row
if and only if they have no common point. Several intervals can have the same end
point. Figure 1(a) depicts an instance of the interval placement problem (w = 4).
This figure not only gives the specification of the problem instance but also shows one
of the solutions.

We often need an optimum solution. The minimum width, that is, the minimum
number of necessary rows, can be found in linear time (Gallai [1]; see also Recski [7]).
We define the value of a solution of an interval placement problem in the following
way. A weight is assigned to each interval. The interval j has the weight lj and in a
solution it is placed into row rj . The value of an interval is rj · lj . The value (v) of a
solution of the interval placement problem is the sum of the values of all intervals:

(1) v =
∑

rj · lj .

If l′i is the sum of the weights of the intervals in the ith row, then v =
∑w
i=1 i · l′i.
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The minimum value interval placement problem is as follows: Is there a solution
for the interval placement problem for which the value is at most k?

For simplicity, we assume that each interval is open, that is, two intervals placed
into the same row can have common end points.

Figure 1(b) depicts the weighted version of the interval placement problem shown
in Figure 1(a) using another notation. A rectangle corresponds to an interval. There
are w rows and they have width in contrast with the notation in Figure 1(a). The
height of each rectangle is equal to the width of the rows and their length is equal to
the length of the corresponding interval. The rectangle is placed into the row assigned
to the interval. The weights are denoted by the numbers written in the rectangles.
We will use this notation because it is clear and it is suitable for the description of
the solution as well as the specification of the interval placement problem.

We will deal with the saturated interval placement problem. We call an interval
placement problem saturated if each point except the boundaries of intervals is inside
either none of the intervals or exactly w intervals. Thus the intervals have to be
placed continuously, without an empty place in each row. Therefore two intervals can
be placed into the same row if and only if at the end of one of them is the starting
point of the other or the section between them can be filled up with other intervals
without an empty place.

3. Construction. We will reduce an NP-complete problem to the minimum
value interval placement problem in order to prove that this problem is NP-complete
as well. We shall show a transformation that translates an instance of a satisfiability
problem of Boolean formulas (SAT; see Garey and Johnson [2]) into a saturated
instance of the interval placement problem which has a solution with value k if and
only if the original instance is satisfiable. The instance of SAT consists of n variables
and m clauses. Without loss of generality, we assume that no clause contains the
same variable more than once.

In this section, we consider each of the construction elements that correspond to
the constituents of Boolean formulas (occurrence of a Boolean variable in a clause,
Boolean variable, and clause). Using these elements we make a construction corre-
sponding to the whole Boolean formula. We determine the proper weights of some
additional intervals and the threshold value k for the instance of the minimum value
interval placement problem. At last, we prove the NP-completeness of the problem.

3.1. Occurrence of a variable. Figure 2 shows the part of the construction
corresponding to an occurrence of a variable. Let us call it the variable-occurrence
element. There are four different ways to place the intervals in four rows, as shown
in Figure 2. If the rows in each of these figures are permuted, we do not consider the
new solution to be essentially different. Obviously, in the optimal realization the sums
of the weights of intervals in the same row are in decreasing order. Figure 2 depicts
the four different realizations. The sum of the weights of the intervals in the rows and
the value of the realization can be seen beside the realization. A variable-occurrence
element has two different realizations with the minimum value. Let the realization
Figure 2(a) (A) correspond to true and Figure 2(b) (A) correspond to false.

3.2. Variable. Four adjacent rows correspond to a variable. Let us call them the
variable element . They contain as many variable-occurrence elements as the number
of occurrences of the variable in clauses. The variable in Figure 3 occurs in two clauses.
We will determine the weights of the first intervals of the rows in section 3.5. The
intervals with weight 2 located between two adjacent variable-occurrence elements
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Fig. 2. Element corresponding to an occurrence of a variable.

and at the end of the rows are called variable-connecting intervals. An interval with
weight 2 in the variable-occurrence element is lengthened because its exchange with
an interval belonging to a clause will be permitted (see section 3.3 below), but further
exchanges should be prevented. All the intervals with weight 8 belonging to the same
variable and the variable-connecting intervals between them are merged into one long
interval.

Lemma 1. The value of the variable element is minimum if and only if either
realization A or A occurs at each element corresponding to an occurrence of the same
variable.

Proof . The realizations A and A of a variable-occurrence element are its minimum
value realizations. The merged interval forces each element belonging to the same
variable to have the same minimum value realization.

3.3. Clause. The element corresponding to a clause is called the clause element .
A specific example of a clause element is shown in Figure 4. The lower two rows are
the clause rows and the rows above them are the variable rows. The intervals with
weight t1 and t2 are placed between clause elements. They are called clause-connecting
intervals. Notice that the two clause rows cannot be exchanged on a section within
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Fig. 3. An element corresponding to a variable.
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Fig. 4. An element corresponding to the clause x3 ∨ x2 ∨ x1.

a clause element because the intervals in different rows have no common end point.
There are two types of intervals in clause rows that can be exchanged with the intervals
in variable rows: B corresponds to a nonnegated variable and B to a negated variable.
These intervals are marked with a thick border in the figure. The weight of B is 6
and its length is 2. The weight of B is 4 and its length is 3. There are as many
variable-occurrence elements on the section of a clause element as there are variables
included in the clause: each interval B and B is inside the section of exactly one
variable-occurrence element corresponding to the variable included in the clause.
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Fig. 5. Weights of the intervals of a clause element.

Lemma 2. If the clause-connecting intervals are in the lowest two rows, then
among the intervals belonging to clauses only the intervals B and B can be placed
into a higher row.

Proof. Each interval belonging to a clause except B and B has a section where a
variable-connecting interval is situated in each variable row. If one of these intervals
is placed into a variable row, then a variable-connecting interval has to be placed into
one of the clause rows. Each variable-connecting interval overlaps clause-connecting
intervals. Thus at least one of the clause-connecting intervals has to be placed into a
variable row, a contradiction.

Figure 5 shows the clause element in the general case. ai and bi denote weights
whose values depend on the concrete clause. We know that ai (the weight of B or B)
is 4 or 6. Let

bi =

{
ai + 2 if i > 1,
ai − 1 if i = 1.

There are two kinds of clause-connecting intervals. Let the longer interval with
weight t1 be placed into the lowest row and the shorter one with weight t2 be placed
into the second row from below. The clause rows can be exchanged with one another
within a section containing clause elements together with clause-connecting intervals.
The sum of weights of the intervals of a clause element in the first clause row is three
plus that in the second row. Thus if t1 = t2+4, then the sum of weights of the intervals
in the first row is greater than one in the second row, so it is not worth changing these
rows in the minimum value solution. This is true even if some intervals of the clause
rows are exchanged with intervals of the variable rows. The value of t2 = t will be
determined in section 3.6.

Depending on the realization of the variable-occurrence element overlapping the
intervals B and B, we may say that realization A or A belongs to the intervals B
and B.

Lemma 3. Let us assume that the clause-connecting intervals are placed into
the lowest two rows and the variable-occurrence elements together with the variable-
connecting intervals belonging to the same variable are placed into adjacent rows.
Then the placement of intervals belonging to them has the minimum value if and only
if realization A belongs to interval B or realization A belongs to B at least at one
occurrence of a variable at each clause.

Proof . Let us suppose that each interval belonging to the clause is in the lowest
two rows and each interval belonging to the occurrences of variables is in the corre-
sponding variable rows, as Figure 4 shows. Now we examine how the value of this
placement can be reduced. By Lemma 2, only intervals B or B can be placed into
variable rows from clause rows.

Let us consider the minimum value placement if an interval B or B is placed into
a variable row. If A is the realization of the variable, then the intervals with weight
2 and 4 can be exchanged with B in the clause row; however, there is no exchange
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Fig. 6. Outline of the construction corresponding to the formula (x4 ∨ x3 ∨ x2) ∧ (x4 ∨ x3 ∨
x1) ∧ (x4 ∨ x2 ∨ x1).

with B. If A is the realization of the variable, then two intervals with weight 2 can
be exchanged with B. The interval with weight 5 can be exchanged with B, but
this is not worth doing because the total value increases and this exchange does not
enable an additional exchange. The exchange of B or B with the appropriate intervals
belonging to variables does not modify the total value of the placement but it enables
the exchange of the two clause rows on a section, which reduces the total value by
one. Let us call this exchange of clause rows an improving exchange. It does not
matter whether one or more intervals belonging to the same clause are exchanged
with intervals of variable rows because the total value can be reduced by one in each
case.

It can easily be proved that this is the only way to reduce the value. For this
reason, the value of a clause element cannot be reduced by more than one. Thus the
value of a clause element can be reduced by one if and only if realization A belongs
to interval B or realization A belongs to B at one or more occurrences of variables.
The total value is minimum if this holds at each clause.

3.4. Boolean formula. Now we know all the necessary elements to construct
an instance of the interval placement problem that can be realized with a certain
value if and only if the original Boolean formula is satisfiable. The structure of the
whole construction is essentially the repetition of the block shown in Figure 4. Figure
6 depicts a construction in outline.

Lemma 4. If the clause-connecting intervals are in the lowest two rows and if the
first intervals belonging to variables are in the corresponding variable rows, then none
of the intervals belonging to variables are in rows belonging to other variables.

Proof . The proof is indirect. Assume that some of the intervals belonging to
variables are placed into rows belonging to other variables. A variable-connecting
interval has to be moved in any case because each interval of a variable-occurrence
element overlaps a variable-connecting interval or a fixed first interval in each row
belonging to other variables. Let i denote the variable-connecting interval which is
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placed into a row belonging to another variable v, and its first point is the leftmost
among the points of such variable-connecting intervals. Interval i cannot be placed
into a clause row because each variable-connecting interval overlaps clause-connecting
intervals fixed in the lowest two rows. There is an interval j which overlaps the
beginning of interval i, belongs to variable v, and is placed into a row belonging
to another variable. Notice that the beginning of each variable-connecting interval
is overlapped only by variable-connecting intervals or by fixed first intervals in the
rows belonging to other variables. If j is a variable-connecting interval, then this
contradicts the assumption that i is the leftmost variable-connecting interval which
is placed into a row belonging to another variable. If j is a first interval, then this
contradicts the fact that the first intervals are fixed.

3.5. The weight of the first interval of a row. Let si be the weight of the
first intervals belonging to the ith variable (1 ≤ i ≤ n) and let s0 belong to the clause
rows. Let the weights of the first intervals belonging to the same variable be the same.
Let lia (1 ≤ i ≤ n, a = 1, 2, 3, 4) be the sum of the weights of the intervals in the ath
row of the ith variable and l0a (a = 1, 2) be the sum of the weights of the intervals in
the ath clause row. Let l′ia = lia − si. Let l′ be greater than any l′ia, i ≥ 1.

Lemma 5. If si = (n+1−i) ·12m (0 ≤ i ≤ n) and the clause-connecting intervals
are in the lowest two rows, then the first intervals belonging to the clauses are in the
lowest two rows and the first intervals belonging to the ith variable are in the rows
4k − 1, 4k, 4k + 1, 4k + 2 in the minimum value solution. (m is the number of the
clauses and n is the number of the variables in the Boolean formula.)

Proof . The sum of the weights of the intervals of a variable-occurrence element
in one row and the weight of a variable-connecting interval is at most 12. By Lemma
2, if the clause-connecting intervals are in the lowest two rows, then only intervals B
and B can be placed from the clause rows into the variable rows and these intervals
do not increase the maximum sum of weights of a variable row. Thus the value 12m
is appropriate for l′.

Let now si = (n+1−i) ·12m. In this case if j < i, then sj > l′+si and so lja > lib
for each a and b. Thus the first interval with weight si is assigned to a higher row
than that with weight sj in the minimum value solution. Therefore the first intervals
are placed into rows in decreasing order of their weights.

3.6. The weights of the clause-connecting intervals. Let the total value of
the first intervals in all rows be v1, the total value of the variable-occurrence elements
be v2, the total value of the variable-connecting intervals be v3, the total value of the
clause elements be v4, and the total value of the clause-connecting intervals be v5.

v′i (i = 1, 2, 3, 4, 5) denotes the corresponding values belonging to minimum value
placement assuming that each clause-connecting interval is placed into the lowest two
rows; v′′i (i = 1, 2, 3, 4, 5) denotes the same values assuming that at least one of the
clause-connecting intervals is not placed into the lowest two rows.

Lemma 6. If the weights (t1 = t + 4, t2 = t) of the clause-connecting intervals
are at least v′2 + v′3 + v′4, then there is a minimum value solution where these intervals
are placed into the lowest two rows.

Proof . If an interval is placed higher by one or more rows, then the value is
increasing by at least the weight of the interval. Thus v′′5 ≥ v′5 + t. By Lemma 5, if
the clause-connecting intervals are in the lowest two rows, then the first intervals are
placed into rows in decreasing order of their weights. The value of their placement
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cannot be reduced; thus v′1 ≤ v′′1 . Since v′′i > 0,

v′′ = v′′1 + v′′2 + v′′3 + v′′4 + v′′5 ≥ v′′1 + v′′5 ≥ v′1 + v′5 + t ≥ v′1 + v′5 + v′2 + v′3 + v′4 = v′.

Thus if the clause-connecting intervals are placed into the lowest two rows, then
the minimum value of the placement is not greater than the value of any placement
containing at least one clause-connecting interval in the third or higher rows.

3.7. Minimum value and NP-completeness. We have shown a construction
to assign a weighted interval set to each instance of SAT. We have to calculate an
appropriate value for k which is contained by the instance of the minimum value
interval placement problem as well and it is equal to the minimum value which can be
achieved if and only if an improving exchange can be realized at each clause. Details
are omitted, but it is necessary to note that k can be determined in polynomial time,
because each weight and the value of each component of the optimum solution can be
calculated in polynomial time. The equation for k is quite complicated:

k = 36(n+ 1)m+ 4mn(n+ 1)(8n+ 19) +

n∑
i=1

ji · 95(2)

+

n∑
i=1

ji(4i− 2) · 40 + 24

m∑
i=1

pi + 18

m∑
i=1

qi − 4m+ (m+ 1)(600mn2 + 4).

Theorem 1. The saturated minimum value interval placement problem is NP-
complete.

Proof . The instance of SAT consists of n variables and m clauses, and o is the
total number of occurrences of the variables. The dimensions of the instance of the
interval placement problem are the following:

The number of rows: 4n+ 2.
The number of variable-occurrence elements: o.
The number of clause elements: m.
The number of intervals: 12o+ 2m+ 5n+ 4.
The number of different interval boundaries: 5o+m+ 2.
The maximum weight: 200mn2 + 4.
k < c(n3m+ n2m2), where c is an appropriate constant.
Each element of the construction can be determined in polynomial time in the size

of the Boolean formula, and the whole construction applies a polynomial number of
building elements. We can conclude that each instance of SAT can be translated into
an instance of the minimum value interval placement problem in polynomial time.

We shall prove that the interval placement problem has a solution with value k
if and only if the Boolean formula is satisfiable. By Lemma 6, the clause-connecting
intervals are placed into the lowest two rows in the minimum value solution. By
Lemma 5, the first intervals belonging to the variables are placed into fixed adjacent
rows in the minimum value solution. Thus Lemmas 2 and 4 guarantee that each
interval belonging to a variable except the intervals interchanged with B or B is placed
into the corresponding variable row. By Lemma 1, the same realization belongs to
each element corresponding to the occurrence of the same variable in the minimum
value solution. By Lemma 3, the solution of the instance of the interval placement
problem has the least value if and only if realization A belongs to interval B or
realization A belongs to interval B at least at one occurrence of a variable in each
clause element.
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Suppose first that the placement of intervals can be realized with value k. If the
variable element has a realization A or A, let the corresponding Boolean variable be
true or false, respectively. In this case each clause and the entire Boolean formula is
satisfiable. Conversely, if the Boolean formula is satisfiable, apply realization A or A
to the variable element depending on the value of the Boolean variable. In this case
we can make an improving exchange in each clause element and we can achieve the
placement value k.

4. Extensions and further results.

4.1. Unweighted case. The problem remains NP-complete in the unweighted
case, when the weight of each interval is 1 so the value of the interval j placed into
the row rj is simply rj and the value of the solution is v =

∑
j rj .

The saturated weighted case can be reduced to the unweighted case in the fol-
lowing way. Each interval with weight lj has to be divided by lj − 1 new points into
lj intervals in such a way that none of the new points coincides with an interval end
point in the original problem instance and none of the new points coincides with an-
other. In this case, all the intervals derived from the same weighted interval must be
placed into the same row. Using this it can be shown that the unweighted interval
placement problem is NP-complete, too.

We still have to show that the transformation can be done in polynomial time.
The only critical point is the number of divisions to be done. This is less than
the product of the number of intervals in the original instance and the maximum
weight. Unfortunately, the value of a weight is exponential in its length. However,
the minimum value interval placement problem remains NP-complete if all weights
can be bounded from above by a polynomial in the number of intervals (see the
expressions for the maximum weight and for the number of intervals in the proof of
Theorem 1). For this, the number of divisions to be done can be bounded from above
by a polynomial in the input length.

4.2. Maximization. Obviously, if we exchange the order of the rows of the
minimum value solution, then we get the maximum value solution. Hence, this latter
problem is NP-complete, too.

4.3. Arbitrary width. We have assumed that the number w of the rows is
given. We distinguish two new variants of the minimum value interval placement
problem.

Let Π(S, x) be the problem of deciding whether the weighted intervals in set S can
be placed without overlapping with the total value at most x and with the minimum
width.

Let Π0(S, x) be the problem of deciding whether the weighted intervals in set S
can be placed without overlapping with the total value at most x and with arbitrary
width.

Since the width in the construction in the proof of Theorem 1 is equal to the
minimum width, Π(S, x) is NP-complete. Π0(S, x) is obviously in the class NP. We
shall prove that Π0(S, x) is NP-complete, too. For this, we reduce Π(S, x) to Π0(S, x)
in polynomial time. We show that for each instant S, x there exists an instance S′, x′

so that Π(S, x) is true if and only if Π0(S
′, x′) is true.

This is not trivial because the minimum value placement may use more rows
than the necessary minimum (see Figure 7). The minimum value is at most the value
belonging to the situation when each interval would be placed into the highest row.
Thus the total value v of a placement can be bounded from above by k = y · w + 1,
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Fig. 7. The minimum value and the minimum width placement problems are different. (a) A
minimum value placement. (b) A minimum width placement.

where y is the sum of the weights and w is the number of the rows (width). Therefore
v < k. We get S′ from S by adding k intervals with weight 1 which cover all the
intervals in S. Let v′ be v + k · (2w + 1 + k)/2.

Lemma 7. The minimum value interval placement problem Π0 with arbitrary
width is NP-complete.

Proof . We have shown how to translate an instance of Π into an instance of Π0.
Now we show that the intervals in S′ can be placed with the total value at most v′

in any number of rows if and only if the intervals in S can be placed with the total
value at most v and with minimum width w.

(if) The intervals from S are placed into the first w rows with the total value at
most v. The new intervals are placed into the rows w + 1 through w + k. The total
value of the new intervals is k · (2w + 1 + k)/2.

(only if) Let us suppose that the intervals in S′ can be placed with the total value
at most v′. Let us note that the new intervals with weight 1 are placed into separate
rows and these rows are the weakest ones; thus they are the highest rows. Let us
suppose that the other intervals occupy at least w + 1 rows. Then the total value of
the additional intervals with weight 1 is at least k·(2w+3+k)/2 = k+k·(2w+1+k)/2 >
v + k · (2w + 1 + k)/2 = v′. Consequently, the intervals from S use only the first w
rows if the value is at most v′ and the new intervals use the rows w+1 through w+k.
In this case the total value of the new intervals is k · (2w + 1 + k)/2. Since the total
value of the intervals in S′ is at most v′ = v + k · (2w + 1 + k)/2, the total value of
the original intervals from S is at most v.

We have to check that this reduction can be done in polynomial time. For this,
we show that k can be bounded from above by a polynomial in the length of the
instance of Π. This length is proportional to the number i of the intervals. Clearly,
w ≤ i. Let us notice that our NP-completeness result for problem Π holds even if all
weights can be bounded from above by a polynomial in the number of the intervals.
In this case, the sum y of all weights and k, which is calculated from the product of
y and w, are less than a polynomial in the length of the problem instance.

4.4. Graph coloring. The interval placement problem can be associated with
interval graphs in the following way. The vertices of the interval graph correspond to
the intervals and there is an edge between two vertices exactly if the corresponding
intervals overlap. The weights of the intervals are assigned to the vertices.
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Fig. 8. Single row routing corresponding to the interval placement in Figure 1.

The coloring of the graph corresponds to the placement of the intervals if the
colors correspond to the rows. The colors are numbered from 1 to w. The value of
a vertex is the product of the color number and the weight of the vertex. We define
the minimum value graph coloring problem to be the minimization of the sum of the
values of each vertex. The minimum value coloring of an interval graph is tantamount
to the minimum value interval placement problem, so it is also NP-complete while
the original coloring problem of an interval graph is polynomial.

We can apply our result to the chromatic sum problem. The chromatic sum of
a graph is the minimum sum of the color numbers. The problem of determining the
chromatic sum is known as the chromatic sum problem and the problem of producing
a coloring where the sum of color numbers is equal to the chromatic sum is known
as the sum coloring problem. These problems on arbitrary graphs are NP-complete
[3]. There is an approximation result on interval graphs [6]. Now, we can determine
the complexity of these problems on interval graphs. The chromatic sum problem can
be regarded as an unweighted version of the minimum value graph coloring problem.
Similarly to the weighted case, the NP-completeness of the chromatic sum problem
and the sum coloring problem on interval graphs follows from the NP-completeness
of the unweighted version of the minimum value interval placement problem. If the
number of colors is not fixed in the chromatic sum problem, first we reduce the
unweighted version to the minimum value interval placement problem with arbitrary
width, then the later problem is reduced to the chromatic sum problem.

5. Application to VLSI routing. The previous result implies the NP-comp-
leteness of other problems. The constraint graph of an instance of the single row
routing problem in the Manhattan model is an undirected graph such that its vertices
correspond to the nets and two vertices are adjacent if and only if the nets overlap.
This is an interval graph and can be used to describe the single row routing problems
in the dogleg-free Manhattan model. An assignment of tracks to nets that represents
a legal routing is a coloring of the constraint graph. The colors are track numbers
and the vertices represent nets. Each instance of the coloring problem of the interval
graphs can be transformed into an instance of the single row routing problem in the
dogleg-free Manhattan model and vice versa. Lengauer [5] shows a transformation
of a coloring problem into a routing problem. Figure 8 shows the routing problem
constructed by translating the instance of the interval placement problem in Figure 1.

The minimum width (w) can be determined in linear time. Now we are interested
in the minimum wire length. The total length of the horizontal segments is the same in
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any realization of the routing. Thus the minimization of the wire length is equivalent
to the minimization of the vertical segment length.

How can the total vertical segment length be determined? If net j is placed into
track rj and it has lj terminals (lj ≥ 2), then the vertical wire length of this net is
rj · lj . If there are t nets, then the total vertical wire length is

(3) v =

t∑
i=1

rj · lj .

If altogether l′i terminals belong to the nets in the ith track, then v =
∑w
i=1 i · l′i.

The minimum wire length single row routing problem is equivalent to the fol-
lowing: Is there a realization of the given single row routing with width w in the
dogleg-free Manhattan model for which the value defined in (3) is at most k?

Using this it is easy to see that each instance of the minimum value coloring
problem of the interval graphs can be transformed into an instance of the minimum
wire length single row routing in the dogleg-free Manhattan model if the weights of the
vertices are integers greater than 1. The minimum value interval placement problem
can be reduced to the minimum value coloring problem and it remains NP-complete
even if each weight is greater than 1 because the construction shown in the proof of the
NP-completeness uses such weights. Thus we managed to reduce an NP-complete
problem to the minimum wire length single row routing problem in the dogleg-free
Manhattan model so it is NP-complete.

Theorem 2. Single row routing with minimum wire length is NP-complete in
the dogleg-free Manhattan model.

If each net has the same number of terminals, then the number of terminals can be
eliminated from the expression in (3). Thus, the unweighted minimum value interval
placement problem can be reduced to the restricted version of the minimum wire
length single row routing problem when each net has the same number of terminals.
Consequently, the minimum wire length single row routing problem is NP-complete
even if each net has only two terminals.

Similarly, an obvious consequence of Lemma 7 is NP-completeness of the mini-
mum wire length single row routing problem with arbitrary width in the dogleg-free
Manhattan model.

Theorem 2 implies that routing with minimum wire length is NP-complete in
the dogleg-free Manhattan model in case of any shape of the routing region. This has
been proved previously in cases of channel and switchbox routing [4]. However, this
is a new result in cases of routing around a rectangle as well as in cases of gamma
routing where terminals appear on two adjacent sides of a rectangular. For example,
LaPaugh [4] presented a polynomial algorithm which finds a layout with minimum
area in the Manhattan model if terminals are on four sides of a rectangular and the
wires lie on the outside of the rectangle. However, there is no polynomial algorithm
for optimizing the wire length. By Theorem 2, this problem is NP-complete and thus
there is no hope to find such an algorithm.

6. Conclusions. In this paper we assigned a value to a placement of intervals
and proved that the minimum value interval placement problem is NP-complete.
This result could be applied to the interval graphs which are among the most useful
mathematical structures for modeling real-world problems. Thus we proved that the
minimum value coloring of interval graphs is NP-complete. The routing problem is
known to be NP-complete in many cases. In this paper we have shown that finding
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the minimum wire length is computationally difficult even in one of the simplest
cases—single row routing in the dogleg-free Manhattan model. This completes the
previous results on complexity of routing with minimum wire length in the dogleg-free
Manhattan model.
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Abstract. Regular trees are a natural extension of finite trees, which have many applications.
The path-embedding problem is to determine whether a regular tree S can be obtained from another
regular tree T by deleting (probably infinitely many) subtrees of T . This paper explores efficient
algorithms for the path-embedding problem in ordered and unordered trees. Given two regular trees
S and T represented by rational graphs, our algorithms solve the ordered version of path-embedding
problem in O(|ES ||ET |) time and the unordered version in O(|ES ||ET |DSDT ) time. Here |ES |
denotes the number of edges in the rational graph for S, and DS denotes the maximum outdegree of
a vertex in S. We also demonstrate that our approach can be applied to pattern matching problems
for regular trees recently studied by Fu [J. Algorithms, 22 (1997), pp. 372–391].

Key words. regular trees, directed graph pattern matching, embedding, boolean equations
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1. Introduction. A labeled infinite tree is a directed tree in which each node is
assigned a unique label and each node has a finite number of children but the number
of nodes in the tree may be infinite. Given a node v in a labeled infinite tree T , a
subtree of T rooted at v is the tree induced by v and its descendants in T . A labeled
infinite tree is called regular if it contains only finitely many distinct subtrees (two
trees are regarded as distinct if they are not isomorphic). Further, a regular tree
is called ordered (unordered) if the left-to-right order among siblings at each node is
significant (insignificant, resp.). Figure 1 shows two examples of regular trees.

Regular trees are the basic tools for investigating tree automata, flow graphs [4],
and type systems [2, 5]. In this paper we pose the following problem with respect to
regular trees:

Given two regular trees S and T , can we obtain S from T by deleting
(finitely or infinitely many) subtrees of T?

We call this problem the ordered (unordered) regular tree path-embedding problem if
the regular trees S and T are ordered (unordered, resp.). The regular tree path-
embedding problems are an extension of the finite tree path-embedding problems
[7]. For ordered finite tree path-embedding problem, there is a simple O(|S||T |) time
algorithm [7], where S and T are the ordered finite trees. For the unordered finite
tree path-embedding problem, efficient algorithms can be found in [8, 9, 11]. These
algorithms run in O(|S|3/2|T |) time, where S and T both are unordered finite trees.

This paper explores efficient algorithms for the ordered and unordered regular tree
embedding problems. The main idea of our approach is to treat the path-embedding
algorithms as optimized procedures for finding a special solution of systems of boolean
equations. By representing each regular tree as a finite rational graph [4], we solve
the ordered version of the path-embedding in O(|ES ||ET |) time, and the unordered
version in O(|ES ||ET |DSDT ) time. Here, |ES | denotes the number of edges in the
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Fig. 1. Two regular trees.

rational graph for S, and DS denotes the maximum outdegree of a vertex in S.
This paper is organized as follows. In section 2 we formally define the regular

tree path-embedding problems and describe the data structure to represent regular
trees. In sections 3 and 4, resp., we describe the ordered and unordered versions of
our algorithms. Section 5 contains a comparison with related work. Finally, section
6 gives a short conclusion.

2. Basic definitions and rational graphs. We give a formal definition for the
path-embedding of ordered and unordered regular trees.

Definition 2.1. Let S and T be ordered regular trees. An injection f : S −→ T
is called an ordered path-embedding from S to T if

(a) f preserves roots, i.e., if r is the root of S, then f(r) is the root of T ;
(b) f preserves labels, i.e., label(s) = label(f(s)) for any node s of S;
(c) f preserves parents, i.e., if sp is the parent of s, then f(sp) is the parent of

f(s);
(d) f preserves the order among siblings, i.e., if s1 is a left sibling of s2, then

f(s1) is a left sibling of f(s2).
Let S �f T denote the fact that f is an ordered path-embedding of S into T .

For unordered regular trees S and T , an injective function f : S −→ T is called
an unordered path-embedding of S into T if the above conditions (a)–(c) are satisfied.
Let S �fu T denote the fact that f is an unordered path-embedding of S into T .

Further, let S � T and S �u T , resp., denote that there exists a path-embedding
f such that S �f T and S �fu T .

In this paper we only consider the path-embedding problem and simply refer to
it as the “embedding” problem.

Our first question is how to represent regular trees? Infinite regular trees can be
expressed by finite systems. The natural approach is by means of rational graphs [4],
defined as follows.

Definition 2.2. A rational graph G = (V,E, r) is a finite directed graph, where
V is the set of vertices, E is the set of edges, and r ∈ V is the root such that

(a) all vertices of G are labeled over some alphabet;
(b) G may contain multiedges and loops;
(c) every vertex of G can be reached from the root r along a path of edges of G.

A rational graph is called ordered (unordered), if the order of out-going edges at each
vertex is significant (insignificant, resp.).

Rational graphs are connected graphs. For completeness we show that an ordered
regular tree can be expressed as an ordered rational graph, and vice versa. Let T be



290 WEIMIN CHEN AND VOLKER TURAU

a

b

a

b a

Fig. 2. Rational graphs for regular trees in Figure 1 (top nodes are the roots).
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Fig. 3. Rational graphs with multiedges for a full binary tree.

an ordered regular tree and S = {T1, . . . , Ts} be the set of all distinct subtrees of T .
The ordered rational graph G = (V,E, r) of T can be constructed as follows. Let
V = {v1, . . . , vs}, and let label(vi) equal to the label of the root of Ti. If Ti1 , . . . , Til
(in S) are the directed subtrees of Ti from left to right, then vi1 , . . . , vil are the
successors of vi from left to right. The root r is a vertex vi such that Ti is equal to T .
Conversely, given a rational graph G = (V,E, r), a regular tree T can be constructed,
level by level, by unfolding G starting at the root r (so T contains at most |V | distinct
subtrees). For example, the rational graphs in Figure 2 represent the regular trees in
Figure 1.

Similarly, an unordered regular tree can be expressed as an unordered rational
graph, and vice versa.

Note that a rational graph always represents a unique regular tree, but a regular
tree may be represented by different rational graphs. Figure 3 depicts three different
rational graphs (with multiedges) for the same regular tree.

We adopt the following notation to represent intervals of integers: Given integers
a and b, let [a..b] denote the set of integers n with a ≤ n ≤ b, and let (a..b] = [a+1..b],
[a..b) = [a..b− 1], and (a..b) = [a+ 1..b− 1].

3. Ordered embedding. Let S and T be ordered regular trees. Throughout
this section let GS = (VS , ES , rS) and GT = (VT , ET , rT ) denote the rational graphs
for S and T . Given GS and GT , the task of the algorithm is to determine whether
the relationship S � T holds.

For (s, t) ∈ VS × VT , let s � t denote the following relation:

label(s) = label(t) ∧ d(s) ≤ d(t),(1)

where d(s) denotes the outdegree of vertex s. Furthermore, let s �̇ t be the abbrevi-
ation for

s � t ∧ 0 < d(s).

The ith successor of s is denoted by s[i]. Let B = {0,1} denote the set of boolean
values (represented in bold font).

Given a vertex v in rational graph G, let tree(v) denote the regular tree obtained
by unfolding G starting at v.

Before discussing the algorithm for the ordered regular tree embedding problem,
let us look at the ordered finite tree embedding problem, which is also called the
ordered path inclusion problem [7]. Suppose S and T both are ordered finite trees



ON REGULAR TREE EMBEDDINGS 291

with roots rS and rT (so S and T can also be regarded as rational graphs). Let s and
t be internal nodes in S and T (thus tree(s) and tree(t) are the subtrees rooted at s
and t). To check whether tree(s) can be embedded in tree(t), the main idea behind the
algorithm in [7] is to find a sequence of numbers 1 ≤ j1 < j2 < · · · < jd(s) ≤ d(t) such
that tree(s[i]) can be embedded into tree(t[ji]) for all i ∈ [1..d(s)]. Such a sequence
can be found by scanning the children of s and t from left to right and thereby trying
to find an embedding of the corresponding subtrees in a bottom-up fashion. The
following function, emb, performs this operation, and a call of emb(s, t) returns the
value of the expression tree(s) � tree(t).

(e1) function emb(s, t) returns B
{ if s �� t then return 0
i← j ← 1
while i ≤ d(s) ∧ j ≤ d(t) do

(e2) { if emb(s[i], t[j]) then i← i+ 1
j ← j + 1

}
return (i = d(s) + 1)

}

Let tree(s, i) denote the tree obtained from tree(s) by removing subtrees tree(s[k]),
for k ∈ (i..d(s)]. Thus, tree(s, d(s)) = tree(s). To check the correctness of the above
function emb, notice that the invariant of the while-loop is

tree(s, i− 1) � tree(t, j − 1) ∧ tree(s, i) �� tree(t, j − 1).

We attempt to extend the above algorithm to general rational graphs. The main
obstacle is that in rational graphs the ancestorship of vertices does not form a par-
tial order due to the cycles in the graphs, and, consequently, the above bottom-up
matching approach cannot be applied to rational graphs.

For the pattern matching problem presented in [5], a similar obstacle occurs.
However, pattern matching preserves degrees; the path-embedding problem relaxing
this constraint further complicates the algorithm. A detailed comparison is given in
section 5.

3.1. Transformation. The main idea of our approach is to transform the tree
embedding problem into the problem of finding a specific solution in a system of
boolean equations. First, it is easy to derive the following lemma.

Lemma 3.1. For (s, t) ∈ VS × VT , tree(s) � tree(t) iff s � t and at least one of
the following conditions holds:

(a) d(s) = 0.
(b) There exists a sequence of numbers 1 ≤ l1 < l2 < · · · < ld(s) ≤ d(t) such that

tree(s[i]) � tree(t[li]) for i ∈ [1..d(s)].
Let xts be a boolean variable for each (s, t) ∈ VS × VT . Consider the following

system of boolean equations: ∀(s, t) ∈ VS × VT ,

xts = s � t ∧

⎛
⎝(d(s) = 0) ∨

∨
1≤l1<···<ld(s)≤d(t)

d(s)∧
i=1

x
t[li]
s[i]

⎞
⎠ .(2)

Lemma 3.1 guarantees that

xts = (tree(s) � tree(t)), (s, t) ∈ VS × VT(3)
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Fig. 4. Two rational graphs.

is a solution of (2). Hence we can ask how to find the solution (3) from (2). Note that
(2) may have multiple solutions. For example, (2) corresponding to rational graphs
shown in Figure 4 are xts = xts ∨ xts, for which there are two different solutions xts = 0
and xts = 1.

To obtain solution (3) from (2), we need the following concepts. Let x1, . . . , xn
be boolean variables and fi : Bn −→ B for i ∈ [1..n] boolean functions. Consider the
following system of equations:

xi = fi(x1, . . . , xn), i ∈ [1..n].(4)

Definition 3.2. A solution (a1, . . . , an) for (4) is called the maximum solution
if for any other solution (b1, . . . , bn), ai ≥ bi for all i ∈ [1..n].

Note that the maximum solution of (4) may not exist, but it is unique if it exists.
Note that the above definition can be applied to (2) since they have the required form.
This leads to the following result.

Lemma 3.3. The values of xts given by expression (3) are the maximum solution
of (2).

Proof. Lemma 3.1 proves that the values given in (3) are a solution of (2). Now
we prove that they are the maximal solution. Let ats with (s, t) ∈ VS × VT be any
solution of (2). It suffices to show that ats ≤ (tree(s) � tree(t)), i.e., if ats = 1 then
tree(s) � tree(t). We prove this by constructing a mapping f from tree(s) to tree(t)
as follows. Let f(s) = t. The condition ats = 1 implies that s � t. If d(s) = 0,
then tree(s) � tree(t). Now let d(s) > 0. Equations (2) guarantee the existence of

numbers 1 ≤ l1 < l2 < · · · < ld(s) ≤ d(t) such that a
t[li]
s[i] = 1 for i ∈ [1..d(s)]. Applying

the above argument with s and t replaced with s[i] and t[li], we define f(s[i]) = t[li]
for each i ∈ [1..d(s)]. Repeating this procedure level by level results in a mapping f
from tree(s) to tree(t). Clearly, f satisfies all the conditions of Definition 2.1. Hence
tree(s) � tree(t).

The question is how to find the maximum solution of (2). It turns out that the
answer to this question can be found by considering a more general problem. Consider
the following definition.

Definition 3.4. A boolean function f : Bn −→ B is called monotonic, if
f(x1, . . . , xn) ≤ f(y1, . . . , yn) for all (x1, . . . , xn) and (y1, . . . , yn) ∈ Bn with xi ≤ yi,
i ∈ [i..n]. Equations (4) are called monotonic, if all functions fi are monotonic.

The following theorem provides a key foundation of our algorithms for the ordered
and unordered embedding problems.

Theorem 3.5. For monotonic (4), the maximum solution exists and can be
effectively found.

Proof. We show that the maximum solution can be constructed by the following
algorithm.

algorithm R

{ foreach i ∈ [1..n] do xi ← 1
while ∃i ∈ [1..n] such that xi > fi(x1, . . . , xn) do xi ← 0

}
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Suppose that the above while-loop takes k iterations; as each iteration of the
while-loop changes the value of one variable xi from 1 to 0, it follows that k ≤ n.
Below we show that R generates the maximum solution of (4). Without loss of
generality, assume the while-loop sequentially updates the variables x1, x2, . . . , xk in
that order to 0. For simplicity, let x̄ denote the vector (x1, . . . , xn), fi(x̄) denote the
function fi(x1, . . . , xn), and ēi denote the vector (0, . . . ,0,1, . . . ,1) of length n (the
i leading entries are 0, and the remaining n− i entries are 1). Thus, x̄ = ēk when R
terminates.

First we show that x̄ = ēk is a solution of (4). Algorithm R guarantees that

fi(ēi−1) = 0, i ∈ [1..k].(5)

As fi is monotonic, it follows that fi(ēk) ≤ fi(ēi−1) = 0 for i ∈ [1..k] and hence
xi = fi(ēk) = 0. On the other hand, for i ∈ (k..n] we have xi = fi(ēk) = 1.

Next it is shown that x̄ = ēk is the maximum solution. Suppose that ā =
(a1, . . . , an) is another solution of (4). Let i be the minimal subscript of ā with ai = 1
(i.e., ā ≤ ēi−1). It suffices to prove that k < i. This can be inferred from relations (5)
and fi(ēi−1) ≥ fi(a1, . . . , an) = ai = 1.

3.2. Algorithms. It is easy to verify that (2) are monotonic. Thus, algorithm
R can be applied to (2) for finding the maximum solution (3). The cost for this
application is as follows. Let F (s, t) denote the function expressing the right-hand side
of (2). Using an approach similar to function emb, F (s, t) can be computed in O(d(t))
time (more exactly, the procedure to compute F (s, t) can be obtained from function
emb by changing the term emb(s, t) at line (e1) into F (s, t) and term emb(s[i], t[j])

at line (e2) into x
t[j]
s[i]). As the while-loop of R iterates at most |VS ||VT | times, the

total time-cost of R is thus O(|VS ||VT |
∑

(s,t)∈VS×VT
d(t)) = O(|VS |2|VT ||ET |) and

the required space is bounded by O(|VS ||VT |).
This section gives a refinement of R specifically for (2). The algorithm runs

in O(|ES ||ET |) time and requires O(|ES ||VT | + |ET |) space. First we introduce the
following concepts.

Definition 3.6. Let xts be boolean variables for (s, t) ∈ VS × VT . Given (s, t) ∈
VS × VT with s � t, a list (l1, . . . , ld(s)) is called a positive list for (s, t), if

• 1 ≤ l1 < · · · < ld(s) ≤ d(t);

• x
t[j]
s[i] = 0 for i ∈ [1..d(s)] and j ∈ (li−1..li) with l0 = 0.

A list (l1, . . . , lk) with k ∈ [1..d(s)] is called a negative list for (s, t), if
• 1 ≤ l1 < · · · < lk = d(t) + 1;

• x
t[j]
s[i] = 0 for i ∈ [1..k] and j ∈ (li−1..li) with l0 = 0.

Clearly, for s �̇ t, F (s, t) = 1 implies the existence of a positive list, but the

converse is not true, because we don’t make any assumption on the values x
t[li]
s[i] of the

positive list. For negative lists we have the following result.
Lemma 3.7. Let (s, t) ∈ VS × VT with s �̇ t. If there exists a negative list for

(s, t) then F (s, t) = 0.
Proof. Assume F (s, t) = 1. Then there exists a list (a1, . . . , ad(s)) such that

1 ≤ a1 < · · · < ad(s) ≤ d(t) and x
t[ai]
s[i] = 1 for i ∈ [1..d(s)]. Let (l1, . . . , lk) be a negative

list for (s, t) and i ∈ [1..k] minimal such that ai < li (the relation ak ≤ d(t) < lk
implies the existence of such i). Thus, ai > ai−1 ≥ li−1, where a0 = l0 = 0. Therefore,

ai ∈ (li−1..li) and hence x
t[ai]
s[i] = 0, which leads to a contradiction.
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The new algorithm Ro for ordered tree embeddings uses the following variables:
• xts of type B for each (s, t) ∈ VS × VT , to indicate the truth value for relation

tree(s) � tree(t).
• pred[s] of type set of (VS × N) for each s ∈ VS , to represent the set of

predecessors of s in S.
• pred[t] of type set of (VT × N) for each t ∈ VT , to represent the set of

predecessors of t in T .
• lts of type array[1..d(s)] of N for each (s, t) ∈ VS × VT , storing a positive list

(if any existed) for (s, t).
The above variables are initialized by the following routine:

routine init()
{ foreach s ∈ VS do pred[s] ← {(u, i) | u[i] = s}

foreach t ∈ VT do pred[t] ← {(v, j) | v[j] = t}
foreach (s, t) ∈ VS × VT do

{ xts ← 1
(i1) if s �̇ t then (lts[1], . . . , lts[d(s)]) ← (1, . . . , d(s))

}
}

The main body of algorithm Ro is as follows:

algorithm Ro

{ init()
foreach (s, t) ∈ VS × VT such that s �� t ∧ xts = 1 do set zero(s, t)

}

The above algorithm needs to invoke the subroutine set zero(s, t) that assigns xts to
0 and recursively propagates this change of this value.

routine set zero(s, t)
(s1) { xts ← 0

foreach ((u, i), (v, j)) ∈ pred[s] × pred[t] such that

(s2) u � v ∧ xvu = 1 ∧ lvu[i] = j do

(s3) if find(u, i, v) = 0 then set zero(u, v)
}

The routine set zero needs to call function find(u, i, v), which attempts to find a

new positive list for (u, v) to reflect the change of the value of xts (i.e., x
v[li]
u[i] ) and to

store this list in lvu. The function returns 1 if this task can be accomplished or returns
0 otherwise; in the latter case there exists a negative list for (u, v).

In the body of function find(u, i, v), for simplicity, let lj be the short-hand for the
variable lvu[j].

function find(u, i, v) returns B
{ while 1 do

{ repeat li ← li + 1 until li > d(v) ∨ xv[li]u[i] = 1

if li > d(v) then return 0

if i < d(u) ∧ li ≥ li+1 then {li ← li+1; i← i+ 1}
else return 1

}
}
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Below we prove the correctness of algorithm Ro. For convenience let 〈lvu,+〉 denote
the fact that (l1, . . . , ld(u)) is a positive list (recall that lj is the short-hand for lvu[j]),
and let 〈lvu,−〉 denote that there exists j ∈ [1..d(u)] such that (l1, . . . , lj) is a negative
list. Furthermore, we introduce global boolean variables ρts for (s, t) ∈ VS×VT , which
are only used in the proofs. Initially, assume ρts = 1 for all (s, t) ∈ VS × VT . The
value of ρvu is set in line (s3) to the value of find(u, i, v). The following lemma analyzes
function find.

Lemma 3.8. Let (u, v) ∈ VS × VT with u �̇ v. Consider the call of function
find(u, i, v) for some i ∈ [1..d(u)]. Assume that before the call 〈lvu,+〉 holds. The call
of the function causes the following effect to the list (l1, . . . , ld(s)): (I) The values of
li0 , . . . , li1 are increased, where i0 and i1 denote the initial and final values of variable
i; (II) the values of lj , j �∈ [i0..i1] are not changed; (III) one of the following properties
holds:

(a) ρvu = 1, 〈lvu,+〉, and x
v[lj ]

u[j] = 1 for all increased lj;

(b) ρvu = 0 and 〈lvu,−〉.
Proof. Notice that the function find is invoked only at line (s3), where the value

of x
v[li]
u[i] is set to 0 at line (s1).

The following invariant of the while-loop in the function find is easy to prove.
When i > i0,

• the values of li0 , . . . , li−1 are increased and the value of li is not decreased;
• the values of lj , j �∈ [i0..i1] are not changed;
• li0 < · · · < li−1 = li ≤ d(v);

• ∀j ∈ [i0..i) : x
v[p]
u[j] equals 1 if p = lj and equals 0 if p ∈ (li−1..li).

The last round of the loop always increases the value of li. Properties (I)
and (II) are obvious. For property (III), if the function returns 1, then (a) holds;
if the function returns 0 then (b) holds and in this case (l1, . . . , li) forms a negative
list.

For the next lemma suppose that the execution of Ro produces a series of time-
stamps ω1, ω2, . . . , ωn, each of which corresponds either to the end of an invocation
of function find or to the end of an execution of line (s1). Furthermore, let ω0 denote
the timestamp produced at the beginning of Ro.

Lemma 3.9. At time ωk, k ∈ [0..n], for each (u, v) ∈ VS × VT with u �̇ v one of
the following properties holds:

(a) ρvu = 1 and 〈lvu,+〉;
(b) ρvu = 0 and 〈lvu,−〉.
Proof. The proof is by induction on k. Property (a) holds in the initial case

k = 0. Now let k > 0. If ωk is related to the execution of line (s1), then in the
time interval between ωk−1 and ωk, nothing is changed except that xvu is set to 0.
However, the change of the value of xvu does not affect properties (a) and (b) in
this time interval. Now assume ωk is related to the invocation of find(s, i, t). If
(s, t) �= (u, v), then ρvu and lvu are not changed during the time interval between ωk−1

and ωk. Now let (s, t) = (u, v). By Lemma 3.8 it suffices to show that 〈lvu,+〉 at
time ωk−1. By induction hypothesis it is enough to show that ρvu = 1 at time ωk−1.
Assume contrapositively that this is not true. Then ρvu must be assigned to 0 by a
call of find(u, i′, v) which terminates at time ωk′ with k′ < k. Consequently, xvu is set
to 0 at time ωk′+1. Note that k′ + 1 = k is impossible as ωk is related to function
find(u, i, v). Thus, k′ +1 < k. Hence, xvu = 0 after ωk−1, and by line (s2) the function
find(u, i, v) cannot be invoked after ωk−1. This leads to a contradiction.

Now we are in a position to prove the correctness of algorithm Ro.
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Theorem 3.10. Algorithm Ro is correct. That is, once Ro terminates, xts =
(tree(s) � tree(t)) for each (s, t) ∈ VS × VT .

Proof. By Lemma 3.3 and Theorem 3.5, it suffices to prove the equivalence of
algorithms R and Ro for (2). Recall that F (s, t) denotes the right-hand side of (2).
Thus we need to prove

(a) the precondition to the call of set zero(s, t) is xts > F (s, t);
(b) at time ωn there exists no (s, t) such that xts > F (s, t).
Proof of (a). The routine set zero(s, t) must be invoked either by the main routine

or by another invocation of set zero. In any case xts = 1 holds before the call of
set zero(s, t). Below we show that F (s, t) = 0 before the call of set zero(s, t). If
set zero(s, t) is invoked by the main routine, then F (s, t) = 0 is obvious as s �� t.
Now assume that set zero(s, t) is invoked by another invocation of set zero and that
set zero(s, t) is invoked at time between ωk−1 and ωk. Thus, time ωk−1 is related to
an invocation of find(s, i, t) that returns 0, i.e., ρts = 0 at time ωk−1. Lemma 3.9
shows that at time ωk−1, 〈lts,−〉 and hence, by Lemma 3.7, F (s, t) = 0.

Proof of (b). Let xts = 1 at time ωn. It suffices to show that F (s, t) = 1 at ωn.
Notice that in the course of Ro the following condition always holds:

s � t and ρts = 1,(6)

as otherwise set zero(s, t) would be invoked either at line (r1) or line (s3), and hence
xts = 0 at time ωn.

In condition (6), if s � t and d(s) = 0, then F (s, t) = 1 is obvious. Below we
assume d(s) > 0 (i.e., replace � by �̇ in (6)).

Now Lemma 3.9 with condition (6) guarantees that 〈lts,+〉 at ωn. To derive
F (s, t) = 1 it suffices to further prove that for each i ∈ [1..d(s)],

x
t[li]
s[i] = 1 at time ωn,(7)

where lts[i] is abbreviated by li. Now fix i ∈ [1..d(s)]. Assume ωk is the earliest
timestamp such that li is not updated since ωk. Surely set zero(s[i], t[li]) is never
called since ωk, as otherwise the call of it would lead to a call of find(s, i, t) (due to
condition (6)), in which the value of li would be increased again, by property (I) of
Lemma 3.8. Thus, to prove (7) it suffices to prove that

x
t[li]
s[i] = 1 at time ωk.(8)

If k = 0 (i.e., li is not updated since the initialization) then (8) is obvious. Now let
k > 0. Surely ωk is related to an invocation of find(s, i′, t) in which the value of li
is increased. By condition (6), Lemma 3.9 ensures that 〈lts,+〉 holds at any time ωp.
Thus at time ωk the property (a) of Lemma 3.8 holds and hence (8) holds (as li is
increased).

Theorem 3.11. Algorithm Ro runs in O(|ES ||ET |) time and requires O(|ES ||VT |
+ |ET |) space.

Proof. We express all set-typed variables pred[s], pred[t] by lists that take total
O(|ES |+|ET |) space. On the other hand, all arrays lts use O(|ES ||VT |) space. Further,
notice that the depth of the stack for (recursive) routine invocations set zero never
exceeds |VS ||VT |.

For the time-cost, the routine init is accomplished in O(|ES ||ET |) time. Not
counting the time for the invocations of set zero, the main routine of Ro runs in
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time O(|ES ||ET |). Excluding the cost for the invocations of find, all invocations of
set zero(s, t) for all (s, t) ∈ VS × VT need time O(

∑
(s,t)∈VS×VT

(d−(s)d−(t) + 1)) =

O(|ES ||ET |), where d−(v) denotes the indegree of a vertex v.
It remains to count the cost for all invocations of the function find. Note that

a call find(u, i, v) is performed at most once for a fixed triple (u, i, v). On the other
hand, the function find(u, i, v) runs in time O(δ), where δ is the overall increment of
entries lvu[k], for k ∈ [1..d(u)], caused by the function itself. Notice that during the
course of the algorithm, every entry lvu[k] is never decreased and its upper bound is
d(v)+1. Thus, for a fixed pair (u, v), all calls of find(u, i, v) run in overall O(d(u)d(v))
time (here d(u)d(v) > 0 as u �̇ v). Consequently the total cost of all invocations of
find(u, i, v) is again O(|ES ||ET |).

4. Unordered embedding. Having presented the algorithm for ordered embed-
ding, we present in this section an algorithm for the unordered embedding problem.
Analogous to the approach developed in the previous section, the unordered embed-
ding problem is transformed into the problem of how to find the maximum solution
of a system of boolean equations.

For every (s, t) ∈ VS × VT , let

� t
s =

{
(l1, . . . , ld(s)) ∈ [1..d(t)]d(s)

∣∣ ∀i, j ∈ [1..d(s)] : i = j ∨ li �= lj
}
.

The following lemma is analogous to Lemma 3.1 and can be easily derived from
Definition 2.1.

Lemma 4.1. Let (s, t) ∈ VS × VT . Then tree(s) �u tree(t) iff s � t and at least
one of the following conditions holds:

(a) d(s) = 0.
(b) There exists a sequence (l1, . . . , ld(s)) ∈ � t

s such that tree(s[i]) �u tree(t[li])
for i ∈ [1..d(s)].

Now take into account the system of the following monotonic equations: ∀(s, t) ∈
VS × VT ,

xts = s � t ∧

⎛
⎝(d(s) = 0) ∨

∨
(l1,...,ld(s))∈�t

s

d(s)∧
i=1

x
t[li]
s[i]

⎞
⎠ .(9)

Lemma 4.1 shows that

xts = (tree(s) �u tree(t)), (s, t) ∈ VS × VT(10)

is a solution of (9). Furthermore, the following lemma can be proved along the same
lines as in Lemma 3.3.

Lemma 4.2. The values of xts given by expression (10) are the maximum solution
of (9).

Similar to the previous section, we present a refinement of algorithm R for mono-
tonic (9). This refinement also benefits from the idea of unordered finite tree embed-
ding algorithms [9, 11] that use an efficient algorithm to compute maximum matching
in bipartite graphs to achieve a good efficiency. More concretely, a matching in a
graph G = (V,E) is a subset of E with no two edges incident upon the same vertex
in V . A maximum matching is a matching with the maximum number of edges. A
graph G = (V,E) is bipartite if V can be partitioned into two disjoint sets X and
Y such that E ⊆ X × Y . Given a bipartite graph G = (V,E), the Hopcroft–Karp
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algorithm [6] finds a maximum matching of G in O(s1/2|E|) time, where s is the size
of maximum matching. Assume S and T both are unordered finite trees. The un-
ordered finite tree embedding problem is to determine the relation S �u T as defined
in Definition 2.1. By the use of the above bipartite matching algorithm the unordered
finite tree embedding problem can be solved in O(|S|3/2|T |) time [9, 11].

For the unordered regular tree embedding problem, however, the direct use of
Hopcroft–Karp algorithm is not very efficient, as under our circumstance all bipartite
graphs and their maximum matchings are incrementally maintained. For our problem
it suffices to adopt a simple incremental algorithm. Detailed ideas will be presented
later.

The following algorithm Ru is a refinement of R for (9) that uses the following
variables:

• xts of type B for each (s, t) ∈ VS × VT ;
• pred[s] and pred[t], resp., of type set of (VS×N) and set of (VT ×N) for each
s ∈ VS and t ∈ VT .

The above variables are initialized by the following routine:

routine init()
{ foreach s ∈ VS do pred[s] ←

{
(u, i) | u[i] = s

}
foreach t ∈ VT do pred[t] ← {(v, j) | v[j] = t}
foreach (s, t) ∈ VS × VT do xts ← 1
foreach (s, t) ∈ VS × VT such that s �̇ t do

create a complete bipartite graph Gts = (V ts , E
t
s), where

V ts =
{
(s, 1), . . . , (s, d(s)), (t, 1), . . . , (t, d(t))

}
Ets =

{
(s, i) → (t, j) | i ∈ [1..d(s)], j ∈ [1..d(t)]

}
}

The main body of algorithm Ru is as follows:

algorithm Ru

{ init()
foreach (s, t) ∈ VS × VT such that s �� t ∧ xts = 1 do set zero(s, t)

}

routine set zero(s, t)
{ xts ← 0

foreach
(
(u, i), (v, j)

)
∈ pred[s] × pred[t] do

{ remove edge (u, i) → (v, j) from Gvu
if xvu = 1 then

(s) { compute k, the size of maximum matching on Gvu
if k < d(u) then set zero(u, v)

}
}

}

For the proof of the correctness of algorithm Ru, assume the execution of Ru

produces a series of timestamps ω1, . . . , ωn, where ωi corresponds to the start time
for the ith call of routine set zero. Also, let ωn+1 denote the timestamps produced at
the end of algorithm Ru.
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Lemma 4.3. Let (u, v) ∈ VS × VT , u �̇ v, and (i, j) ∈ [1..d(u)] × [1..d(v)]. At

every time ωk, x
v[j]
u[i] = 0 iff there exists no edge connecting (u, i) and (v, j) in Gvu.

Proof. It can be directly derived from routine set zero.
Theorem 4.4. Algorithm Ru is correct. That is, once Ru terminates, xts =

(tree(s) �u tree(t)) for each (s, t) ∈ VS × VT .
Proof. By Theorem 3.5 and Lemma 4.2, it suffices to prove the equivalence of

algorithms R and Ru for (9). Let E(s, t) denote the expression at the right-hand side
of (9). Now we must prove that

(a) the precondition to the call of set zero(u, v) is xvu > E(u, v);
(b) at time ωn+1 there exists no (u, v) ∈ VS × VT with xvu > E(u, v).
Proof of (a). The routine set zero(u, v) is invoked either by the main routine or

recursively by itself. In the first case condition (a) is clearly satisfied. If set zero(u, v)
is called by another invocation of set zero, then xvu = 1 and a maximum matching for
bipartite graph Gvu has less than d(u) edges. Lemma 4.3 shows that E(u, v) = 0.

Proof of (b). Assume contrapositively that there exists (u, v) such that xvu = 1 and
E(u, v) = 0 at time ωn+1. Surely set zero(u, v) is never called, so we have u �̇ v and
E(u, v) = 1 at time ω1. Consider the smallest k > 1 such that E(u, v) = 0 at ωk. Thus
E(u, v) = 1 at ωk−1. In the time interval between ωk−1 and ωk, set zero(u[i], v[j]), for

some i and j, must be called, and in this routine setting x
v[j]
u[i] to 0 causes E(u, v) = 0

at time ωk. By Lemma 4.3, the relation E(u, v) = 0 implies that the maximum
matching of Gvu has size less than d(u). Consequently, set zero(u, v) must be invoked
in the call of set zero(u[i], v[j]). This induces a contradiction.

The algorithm Ru needs to incrementally compute the size of maximum matching
on bipartite graphs Gvu (line (s)). Kilpeläinen uses a similar incremental approach for
the unordered finite tree region inclusion problem [7]. The basic idea in our context
is as follows. After the routine init constructs the complete bipartite graphs Gvu for
(u, v) ∈ VS ×VT , some edges in these graphs are removed by routine set zero. During
the course of the algorithm, we keep a maximum matching Mv

u for each bipartite
graph Gvu. If an edge, say e, is removed from Gvu, then the size of maximum matching
of Gvu\e, the graph Gvu after removing e, is reduced at most by one. With this property
the maximum matching of Gvu\e can be computed as follows. If e /∈ Mv

u , then Mv
u is

still the maximum matching of Gvu\e. If e ∈ Mv
u , then Mv

u − {e} is a matching (but
probably not the maximum one) of Gvu, and it suffices to check the existence of an
augmenting path1 with respect to matching Mv

u − {e} in Gvu\e, as each augmenting
path extends the matching by one edge. It is known that an augmenting path can be
computed in time linear to the size of the graph [10]. Thus, the maximum matching
of graph Gvu\e can be computed in O(|Evu|) time, based on old matching Mv

u . Taking
this strategy to compute maximum matching we obtain the following result.

Theorem 4.5. Algorithm Ru runs in O(|ES ||ET |DS DT ) time and requires
O(|ES ||ET |) space, where DS and DT denote the maximum outdegrees in GS and
GT .

Proof. We represent the set-typed variables pred[s], pred[t] by lists, and represent
the edges in each bipartite graph Gts by a d(s) × d(t) adjacency matrix.

The space requirement is dominated by the space needed to store the bipartite
graphs. Each graph Gts requires d(s)d(t) space. Hence the total space required is
O(|ES ||ET |).

1An augmenting path with respect to a matching M in a bipartite graph G = (V,E) is a simple
path consisting of edges alternatively in M and E −M , while both endpoints of the path are not
incident upon any edge in M .
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To count the time-cost of Ru, we first measure the cost for all repeated compu-
tations of bipartite maximum matchings. Afterwards, it is easy to see that this cost
dominates the cost for the other steps in Ru.

Assume after the routine init we construct a maximum matching M t
s for each

complete bipartite graph Gts in time O(d(s)). As there are at most d(s)d(t) edges to
be removed in Gts, the total time-cost of computing maximum matchings (and their
sizes) in Gts is O(d(s)2 d(t)2). Thus, the time-cost for all repeated computations of
bipartite maximum matching is

∑
(s,t)∈VS×VT

O
(
d(s)2d(t)2

)
= O

(
|ES ||ET |DSDT

)
.(11)

It is easy to check that the time-cost for other steps in Ru is dominated by (11).
Especially, the routine init runs in O(|ES ||ET |) time.

5. Comparisons with related work. Aside from previous work on the path-
embedding for finite trees, there exists other related work on pattern matching for
regular trees and graphs. Closely related work is due to Fu, who considers two kinds
of problems for regular trees [5]. The first one, denoted M, is a pattern matching
problem. We say that an ordered regular tree S matches another one T if there is a
injection f : S −→ T that preserves roots, labels, degrees (except for the leaves of S),
parents, and order of siblings. In other words, S matches T iff

S �f T ∧ (∀s ∈ S : d(s) = 0 ∨ d(s) = d(f(s))).

Given two ordered rational graphs GS = (ES , VS , rS) and GT = (VT , ET , rT ), the
ordered version of the problem M, denoted Mo, is to determine if tree(rS) matches
tree(t) for each t ∈ VT . The unordered version of M is denoted Mu; here the order
among siblings is not necessarily preserved.

The difference between problem M and the path-embedding problem considered
in this paper is the preservation of the degrees of the vertices. In problem Mo, the
relation of whether s matches t can be checked recursively by the following condition:

label(s) = label(t) ∧ (d(s) = 0 ∨ d(s) = d(t) ∧ ∀i ∈ [1..d(s)] : s[i] matches t[i]) .

Using this property Fu gives an O(|ES ||VT | + |ET |) time and space algorithm for
problem Mo. Note that the algorithm for Mo does not need to search alternative
positive lists as required in algorithm Ro because of the condition to preserve degrees.

On the other hand, for problem Mu, the unordered version of M, Fu asserts that
it is NP-complete, but no proof is given. In fact, the problem Mu can be solved by
our algorithm Ru with a slight modification of the relation � (originally defined in
(1)) as follows: for (s, t) ∈ VS × VT , s � t is defined as

label(s) = label(t) ∧ (d(s) = 0 ∨ d(s) = d(t)) .(12)

Under this modification the proof of the correctness of algorithm Ru is still valid for
Mu. Also this modification does not alter the time and space complexities of the
algorithm. As a result, the problem Mu can be solved in polynomial time and space
by the above variant of algorithm Ru and Theorem 4.5.

Fu also considers another problem, denoted E, that tests regular tree topological
embedding. A regular tree S is topological embeddable in T if there is an injection
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f : S −→ T that preserves roots, labels, degrees (except for the leaves of S), and the
following condition:

∀s ∈ S ∧ i ∈ [1..d(s)] : f(s[i]) ∈ tree(f(s)[i]).

The ordered version of E, denoted Eo, is to test whether tree(rS) is topological em-
beddable in tree(t) for each t ∈ VT . A similar argumentation can be applied to
problem Eu, the unordered version of E. Fu presents an O(|VS ||ET | + |ES |) time
and O(|VS ||VT | + |ES | + |ET |) space algorithm for problem Eo and asserts the NP-
completeness of problem Eu. Note that our algorithms Ro and Ru cannot be applied
to problems Eo and Eu with trivial extensions.

Another related problem is the directed subgraph isomorphism problem, which
tests whether a given unordered digraph is a subgraph (under isomorphism) of another
one. This problem is NP-complete [3, 8]. The subgraph isomorphism problem takes a
stronger condition than that in the unordered path-embedding problem. Concretely,
if GS is subgraph of GT and s isomorphically corresponds to t, then tree(s) �u tree(t),
but the converse is not true. For example, in Figure 3 all graphs represent the same
regular tree but none of them is a subgraph of any of the others.

6. Conclusion. We presented two algorithms for the ordered and unordered
regular tree path-embedding problems by treating the algorithms as optimized pro-
cedures to find the maximal solution of a system of boolean equations that describe
the pairwise matches between the vertices in pattern and target trees. As a result,
the ordered version of our algorithm runs in quadratic time (Theorem 3.11) and the
unordered version in quartic time (Theorem 4.5).

Acknowledgment. Rimli Sengupta and the anonymous referees made helpful
comments on a draft of this paper.
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Abstract. The resource-bounded measures of complexity classes are shown to be robust with
respect to certain changes in the underlying probability measure. Specifically, for any real number
δ > 0, any uniformly polynomial-time computable sequence �β = (β0, β1, β2, . . . ) of real numbers
(biases) βi ∈ [δ, 1− δ], and for any complexity class C (such as P, NP, BPP, P/Poly, PH, PSPACE,
etc.) that is closed under positive, polynomial-time, truth-table reductions with queries of at most
linear length, it is shown that the following two conditions are equivalent.

(1) C has p-measure 0 (respectively, measure 0 in E, measure 0 in E2) relative to the coin-toss

probability measure given by the sequence �β.
(2) C has p-measure 0 (respectively, measure 0 in E, measure 0 in E2) relative to the uniform

probability measure.
The proof introduces three techniques that may be useful in other contexts, namely, (i) the

transformation of an efficient martingale for one probability measure into an efficient martingale
for a “nearby” probability measure; (ii) the construction of a positive bias reduction, a truth-table
reduction that encodes a positive, efficient, approximate simulation of one bias sequence by another;
and (iii) the use of such a reduction to dilate an efficient martingale for the simulated probability
measure into an efficient martingale for the simulating probability measure.

Key words. complexity classes, martingales, resource-bounded measure
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1. Introduction. In the 1990s, the measure-theoretic study of complexity
classes has yielded a growing body of new, quantitative insights into various much-
studied aspects of computational complexity. Benefits of this study to date include
improved bounds on the densities of hard languages [15]; newly discovered relation-
ships among circuit-size complexity, pseudorandom generators, and natural proofs
[21]; strong new hypotheses that may have sufficient explanatory power (in terms of
provable, plausible consequences) to help unify our present plethora of unsolved fun-
damental problems [18, 15, 7, 17, 14]; and a new generalization of the completeness
phenomenon that dramatically enlarges the set of computational problems that are
provably strongly intractable [13, 6, 2, 7, 8, 1]. See [12] for a survey of these and
related developments.

Intuitively, suppose that a language A ⊆ {0, 1}∗ is chosen according to a random
experiment in which an independent toss of a fair coin is used to decide whether
each string is in A. Then classical Lebesgue measure theory (described in [5, 20], for
example) identifies certain measure 0 sets X of languages, for which the probability
that A ∈ X in this experiment is 0. Effective measure theory, which says what it
means for a set of decidable languages to have measure 0 as a subset of the set of all
such languages, has been investigated by Freidzon [4], Mehlhorn [19], and others. The
resource-bounded measure theory introduced by Lutz [11] is a powerful generalization
of Lebesgue measure. Special cases of resource-bounded measure include classical
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Lebesgue measure; a strengthened version of effective measure; and most importantly,
measures in E = DTIME(2linear), E2 = DTIME(2polynomial), and other complexity
classes. The small subsets of such a complexity class are then the measure 0 sets;
the large subsets are the measure 1 sets (complements of measure 0 sets). We say
that almost every language in a complexity class C has a given property if the set of
languages in C that exhibit the property has measure 1 in C.

All work to date on the measure-theoretic structure of complexity classes has em-
ployed the resource-bounded measure that is described briefly and intuitively above.
This resource-bounded measure is based on the uniform probability measure, cor-
responding to the fact that the coin tosses are fair and independent in the above-
described random experiment. The uniform probability measure has been a natural
and fruitful starting point for the investigation of resource-bounded measure (just
as it was for the investigation of classical measure), but there are good reasons to
also investigate resource-bounded measures that are based on other probability mea-
sures. For example, the study of such alternative resource-bounded measures may be
expected to have the following benefits.

(i) The study will enable us to determine which results of resource-bounded
measure are particular to the uniform probability measure and which are
not. This, in turn, will provide some criteria for identifying contexts in which
the uniform probability measure is, or is not, the natural choice.

(ii) The study is likely to help us understand how the complexity of the underlying
probability measure interacts with other complexity parameters, especially
in such areas as algorithmic information theory, average case complexity,
cryptography, and computational learning, where the variety of probability
measures already plays a major role.

(iii) The study will provide new tools for proving results concerning resource-
bounded measure based on the uniform probability measure.

The present paper initiates the study of resource-bounded measures that are based
on nonuniform probability measures.

Let C be the set of all languages A ⊆ {0, 1}∗. (The set C is often called Cantor
space.) Given a probability measure ν on C (a term defined precisely below), section
3 of this paper describes the basic ideas of resource-bounded ν-measure, generalizing
definitions and results from [11, 13, 12] to ν in a natural way. In particular, section 3
specifies what it means for a set X ⊆ C to have p-ν-measure 0 (written νp(X) = 0),
p-ν-measure 1, ν-measure 0 in E (written ν(X|E) = 0), ν-measure 1 in E, ν-measure
0 in E2, or ν-measure 1 in E2. Intuitively, for example, a set X ⊆ C has p-ν-measure
0 if, when a language A ∈ C is chosen probabilistically according to the probability
measure ν, the event “A ∈ X” has probability 0 in a strong sense that can be exploited
by a polynomial-time betting algorithm.

Most of the results in the present paper concern a restricted (but broad) class of
probability measures on C, namely, coin-toss probability measures that are given by
P-computable, strongly positive sequences of biases. These probability measures are
described intuitively in the following paragraphs (and precisely in section 3).

Given a sequence �β = (β0, β1, β2, . . . ) of real numbers (biases) βi ∈ [0, 1], the

coin-toss probability measure (also call the product probability measure) given by �β

is the probability measure μ
�β on C that corresponds to the random experiment in

which a language A ∈ C is chosen probabilistically as follows. For each string si
in the standard enumeration s0, s1, s2, . . . of {0, 1}∗, we toss a special coin, whose
probability is βi of coming up heads, in which case si ∈ A, and 1 − βi of coming up
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tails, in which case si �∈ A. The coin tosses are independent of one another.
In the special case where �β = (β, β, β, . . . ), i.e., the biases in the sequence �β are

all β, we write μβ for μ
�β . In particular, μ

1
2 is the uniform probability measure, which,

in the literature of resource-bounded measure, is denoted simply by μ.
A sequence �β = (β0, β1, β2, . . . ) of biases is strongly positive if there is a real

number δ > 0 such that each βi ∈ [δ, 1 − δ]. The sequence �β is P-computable (and we
call it a P-sequences of biases) if there is a polynomial-time algorithm that, on input
(si, 0

r), computes a rational approximation of βi to within 2−r.
In section 4, we prove the summable equivalence theorem, which implies that, if

�α and �β are strongly positive P-sequences of biases that are “close” to one another,
in the sense that

∑∞
i=0 |αi − βi| <∞, then for every set X ⊆ C,

μ�αp (X) = 0 ⇐⇒ μ
�β
p(X) = 0.

That is, the p-measure based on �α and the p-measure based on �β are in absolute
agreement as to which sets of languages are small.

In general, if �α and �β are not in some sense close to one another, then the p-
measures based on �α and �β need not agree in the above manner. For example, if
α, β ∈ [0, 1], α �= β, and

Xα =
{
A ∈ C

∣∣ lim
n→∞

2−n|A ∩ {0, 1}n| = α
}
,

then a routine extension of the weak stochasticity theorem of [15] shows that μαp (Xα)

= 1, while μβp(Xα) = 0.
Notwithstanding this example, many applications of resource-bounded measure

do not involve arbitrary sets X ⊆ C, but rather are concerned with the measures of
complexity classes and other closely related classes of languages. Many such classes
of interest, including P, NP, co-NP, R, BPP, AM, P/Poly, PH, PSPACE, etc., are
closed under positive, polynomial-time truth-table reductions (≤P

pos−tt-reductions),

and their intersections with E are closed under ≤P
pos−tt-reductions with linear bounds

on the lengths of the queries (≤P,lin
pos−tt-reductions).

The main theorem of this paper is the bias equivalence theorem. This result,
proven in section 8, says that, for every class C of languages that is closed under
≤P,lin

pos−tt-reductions, the p-measure of C is somewhat robust with respect to changes

in the underlying probability measure. Specifically, if �α and �β are strongly positive
P-sequences of biases and C is a class of languages that is closed under ≤P,lin

pos−tt-
reductions, then the bias equivalence theorem says that

μ�αp (C) = 0 ⇐⇒ μ
�β
p(C) = 0.

To put the matter differently, for every strongly positive P-sequence �β of biases and
for every class C that is closed under ≤P,lin

pos−tt-reductions,

μ
�β
p(C) = 0 ⇐⇒ μp(C) = 0.

This result implies that most applications of resource-bounded measure to date can
be immediately generalized from the uniform probability measure (in which they were
developed) to arbitrary coin-toss probability measures given by strongly positive P-
sequences of biases.
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The bias equivalence theorem also offers the following new technique for prov-
ing resource-bounded measure results. If C is a class that is closed under ≤P,lin

pos−tt-

reductions, then in order to prove that μp(C) = 0, it suffices to prove that μ
�β
p(C) = 0

for some conveniently chosen strongly positive P-sequence �β of biases. (The bias equiv-
alence theorem has already been put to this use in the forthcoming paper [16].)

The plausibility and consequences of the hypothesis μp(NP) �= 0 are subjects of
recent and ongoing research [18, 15, 7, 17, 14, 3, 16]. The bias equivalence theorem
immediately implies that the following three statements are equivalent.

(H1) μp(NP) �= 0.

(H2) For every strongly positive P-sequence �β of biases, μ
�β
p(NP) �= 0.

(H3) There exists a strongly positive P-sequence �β of biases such that μ
�β
p(NP) �= 0.

The statements (H2) and (H3) are thus new, equivalent formulations of the hypothesis
(H1).

The proof of the bias equivalence theorem uses three main tools. The first is
the summable equivalence theorem, which we have already discussed. The second is
the martingale dilation theorem, which is proven in section 6. This result concerns
martingales (defined in section 3), which are the betting algorithms on which resource-
bounded measure is based. Roughly speaking, the martingale dilation theorem gives
a method of transforming (“dilating”) a martingale for one coin-toss probability mea-
sure into a martingale for another, perhaps very different, coin-toss probability mea-
sure, provided that the former measure is obtained from the latter via an “orderly”
truth-table reduction.

The third tool used in the proof of our main theorem is the positive bias reduc-
tion theorem, which is presented in section 7. If �α and �β are two strongly positive
sequences of biases that are exactly P-computable (with no approximation), then the

positive bias reduction of �α to �β is a truth-table reduction (in fact, an orderly ≤P,lin
pos−tt-

reduction) that uses the sequence �β to “approximately simulate” the sequence �α. It is
especially crucial for our main result that this reduction is efficient and positive. (The
circuits constructed by the truth-table reduction contain AND gates and OR gates,
but no NOT gates.)

The summable equivalence theorem, the martingale dilation theorem, and the
positive bias reduction theorem are only developed and used here as tools to prove
our main result. Nevertheless, these three results are of independent interest, and are
likely to be useful in future investigations.

2. Preliminaries. In this paper, N denotes the set of all nonnegative integers,
Z denotes the set of all integers, Z

+ denotes the set of all positive integers, Q denotes
the set of all rational numbers, and R denotes the set of all real numbers.

We write {0, 1}∗ for the set of all (finite, binary) strings, and we write |x| for
the length of a string x. The empty string, λ, is the unique string of length 0. The
standard enumeration of {0, 1}∗ is the sequence s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . . ,
ordered first by length and then lexicographically. For x, y ∈ {0, 1}∗, we write x < y
if x precedes y in this standard enumeration. For n ∈ N, {0, 1}n denotes the set of all
strings of length n, and {0, 1}≤n denotes the set of all strings of length at most n.

If x is a string or an (infinite, binary) sequence, and if 0 ≤ i ≤ j < |x|, then x[i..j]
is the string consisting of the ith through jth bits of x. In particular, x[0..i− 1] is the
i-bit prefix of x. We write x[i] for x[i..i], the ith bit of x. (Note that the leftmost bit
of x is x[0], the 0th bit of x.)
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If w is a string and x is a string or sequence, then we write w 
 x if w is a prefix
of x, i.e., if there is a string or sequence y such that x = wy.

The Boolean value of a condition φ is [[φ]] = if φ then 1 else 0.
In this paper we use both the binary logarithm logα = log2 α and the natural

logarithm lnα = loge α.
Many of the functions in this paper are real-valued functions on discrete domains.

These typically have the form

f : N
m × {0, 1}∗ −→ R,(2.1)

where m ∈ N. (If m = 0, we interpret this to mean that f : {0, 1}∗ −→ R.) Such a
function f is defined to be p-computable if there is a function

f̂ : N × N
m × {0, 1}∗ −→ Q(2.2)

with the following two properties.
(i) For all r, k1, . . ., km ∈ N and w ∈ {0, 1}∗,

|f̂(r, k1, . . ., km, w) − f(k1, . . ., km, w)| ≤ 2−r.

(ii) There is an algorithm that, on input (r, k1, . . ., km, w), computes the value

f̂(r, k1, . . ., km, w) in (r + k1 + · · · + km + |w|)O(1) time.

Similarly, f is defined to be p2-computable if there is a function f̂ as in (2.2) that
satisfies condition (i) above and the following condition.

(ii′) There is an algorithm that, on input (r, k1, . . ., km, w), computes the value

f̂(r, k1, . . ., km, w) in 2log(r+k1+···+km+|w|)O(1)

time.
In this paper, functions of the form (2.1) always have the form

f : N
m × {0, 1}∗ −→ [0,∞)

or the form

f : N
m × {0, 1}∗ −→ [0, 1].

If such a function is p-computable or p2-computable, then we assume without loss of
generality that the approximating function f̂ of (2.2) actually has the form

f̂ : N × N
m × {0, 1}∗ −→ Q ∩ [0,∞)

or the form

f̂ : N × N
m × {0, 1}∗ −→ Q ∩ [0, 1],

respectively.

3. Resource-bounded ν-measure. In this section, we develop basic elements
of resource-bounded measure based on an arbitrary (Borel) probability measure ν. The
ideas here generalize the corresponding ideas of “ordinary” resource-bounded measure
(based on the uniform probability measure μ) in a straightforward and natural way,
so our presentation is relatively brief. The reader is referred to [11, 12] for additional
discussion.
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We work in the Cantor space C, consisting of all languages A ⊆ {0, 1}∗. We
identify each language A with its characteristic sequence, which is the infinite binary
sequence χA defined by

χA[n] = [[sn ∈ A]]

for each n ∈ N. Relying on this identification, we also consider C to be the set of all
infinite binary sequences.

For each string w ∈ {0, 1}∗, the cylinder generated by w is the set

Cw = {A ∈ C | w 
 χA} .

Note that Cλ = C.
We first review the well-known notion of a (Borel) probability measure on C.
Definition 3.1. A probability measure on C is a function

ν : {0, 1}∗ −→ [0, 1]

such that ν(λ) = 1, and for all w ∈ {0, 1}∗,

ν(w) = ν(w0) + ν(w1).

Intuitively, ν(w) is the probability that A ∈ Cw when we “choose a language
A ∈ C according to the probability measure ν.” We sometimes write ν(Cw) for ν(w).

Examples 3.2.

1. The uniform probability measure μ is defined by

μ(w) = 2−|w|

for all w ∈ {0, 1}∗.
2. A sequence of biases is a sequence �β = (β0, β1, β2, . . . ), where each βi ∈ [0, 1].

Given a sequence of biases �β, the �β-coin-toss probability measure (also called

the �β-product probability measure) is the probability measure μ
�β defined by

μ
�β(w) =

|w|−1∏
i=0

((1 − βi) · (1 − w[i]) + βi · w[i])

for all w ∈ {0, 1}∗.
3. If β = β0 = β1 = β2 = · · · , then we write μβ for μ

�β. In this case, we have
the simpler formula

μβ(w) = (1 − β)#(0,w) · β#(1,w),

where #(b, w) denotes the number of b’s in w. Note that μ
1
2 = μ.

Intuitively, μ
�β(w) is the probability that w 
 A when the language A ⊆ {0, 1}∗

is chosen probabilistically according to the following random experiment. For each
string si in the standard enumeration s0, s1, s2, . . . of {0, 1}∗, we (independently of
all other strings) toss a special coin, whose probability is βi of coming up heads, in
which case si ∈ A, and 1 − βi of coming up tails, in which case si �∈ A.

Definition 3.3. A probability measure ν on C is positive if, for all w ∈ {0, 1}∗,
ν(w) > 0.
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Definition 3.4. If ν is a positive probability measure and u, v ∈ {0, 1}∗, then
the conditional ν-measure of u given v is

ν(u|v) =

⎧⎨
⎩

1 if u 
 v,
ν(u)
ν(v) if v 
 u,

0 otherwise.

Note that ν(u|v) is the conditional probability that A ∈ Cu, given that A ∈ Cv,
when A ∈ C is chosen according to the probability measure ν.

Most of this paper concerns the following special type of probability measure.
Definition 3.5. A probability measure ν on C is strongly positive if (ν is posi-

tive and) there is a constant δ > 0 such that, for all w ∈ {0, 1}∗ and b ∈ {0, 1},
ν(wb|w) ≥ δ.

Definition 3.6. A sequence of biases �β = (β0, β1, β2, . . . ) is strongly positive if
there is a constant δ > 0 such that, for all i ∈ N, βi ∈ [δ, 1 − δ].

If �β is a sequence of biases, then the following two observations are clear.

1. μ
�β is positive if and only if βi ∈ (0, 1) for all i ∈ N.

2. If μ
�β is positive, then for each w ∈ {0, 1}∗,

μ
�β(w0|w) = 1 − β|w|

and

μ
�β(w1|w) = β|w|.

It follows immediately from these two things that the probability measure μ
�β is

strongly positive if and only if the sequence of biases �β is strongly positive.
In this paper, we are primarily interested in strongly positive probability measures

ν that are p-computable in the sense defined in section 2.
We next review the well-known notion of a martingale over a probability measure

ν. Computable martingales were used by Schnorr [23, 24, 25, 26] in his investigations
of randomness, and have more recently been used by Lutz [11] in the development of
resource-bounded measure.

Definition 3.7. Let ν be a probability measure on C. Then a ν-martingale is a
function d : {0, 1}∗ −→ [0,∞) such that, for all w ∈ {0, 1}∗,

d(w)ν(w) = d(w0)ν(w0) + d(w1)ν(w1).(3.1)

If �β is a sequence of biases, then a μ
�β-martingale is simply called a �β-martingale. A

μ-martingale is even more simply called a martingale. (That is, when the probability
measure is not specified, it is assumed to be the uniform probability measure μ.)

Intuitively, a ν-martingale d is a “strategy for betting” on the successive bits of
(the characteristic sequence of) a language A ∈ C. The real number d(λ) is regarded
as the amount of money that the strategy starts with. The real number d(w) is the
amount of money that the strategy has after betting on a prefix w of χA. The identity
(3.1) ensures that the betting is “fair” in the sense that, if A is chosen according to the
probability measure ν, then the expected amount of money is constant as the betting
proceeds. (See [23, 24, 25, 26, 27, 11, 13, 12] for further discussion.) Of course, the
“objective” of a strategy is to win a lot of money.
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Definition 3.8. A ν-martingale d succeeds on a language A ∈ C if

lim sup
n−→∞

d(χA[0..n− 1]) = ∞.

The success set of a ν-martingale d is the set

S∞[d] = {A ∈ C | d succeeds on A} .

We are especially interested in martingales that are computable within some
resource bound. (Recall that the p-computability and p2-computability of real valued
functions were defined in section 2.)

Definition 3.9. Let ν be a probability measure on C.
1. A p-ν-martingale is a ν-martingale that is p-computable.
2. A p2-ν-martingale is a ν-martingale that is p2-computable.

A p-μ
�β-martingale is called a p-�β-martingale, a p-μ-martingale is called a p-

martingale, and similarly for p2.
We now come to the fundamental ideas of resource-bounded ν-measure.
Definition 3.10. Let ν be a probability measure on C, and let X ⊆ C.
1. X has p-ν-measure 0, and we write νp(X) = 0, if there is a p-ν-martingale d

such that X ⊆ S∞[d].
2. X has p-ν-measure 1, and we write νp(X) = 1, if νp(Xc) = 0, where Xc =

C −X.
The conditions νp2(X) = 0 and νp2(X) = 1 are defined analogously.
Definition 3.11. Let ν be a probability measure on C, and let X ⊆ C.
1. X has ν-measure 0 in E, and we write ν(X|E) = 0, if νp(X ∩ E) = 0.
2. X has ν-measure 1 in E, and we write ν(X|E) = 1, if ν(Xc|E) = 0.
3. X has ν-measure 0 in E2, and we write ν(X|E2) = 0, if νp2(X ∩ E2) = 0.
4. X has ν-measure 1 in E2, and we write ν(X|E2) = 1, if ν(Xc|E2) = 0.

Just as in the uniform case [11], the resource bounds p and p2 of the above
definitions are only two possible values of a very general parameter. Other choices
of this parameter yield classical ν-measure [5], constructive ν-measure (as used in
algorithmic information theory [29, 27]), ν-measure in the set REC, consisting of all
decidable languages, ν-measure in ESPACE, etc.

The rest of this section is devoted to a very brief presentation of some of the
fundamental theorems of resource-bounded ν-measure. One of the main objectives of
these results is to justify the intuition that a set with ν-measure 0 in E contains only a
“negligibly small” part of E (with respect to ν). For the purpose of this paper, it suffices
to present these results for p-ν-measure and ν-measure in E. We note, however, that
all these results hold a fortiori for p2-ν-measure, rec-ν-measure, classical ν-measure,
ν-measure in E2, ν-measure in ESPACE, etc.

We first note that ν-measure 0 sets exhibit the set-theoretic behavior of small
sets.

Definition 3.12. Let X,X0, X1, X2, . . . ⊆ C.
1. X is a p-union of the p-ν-measure 0 sets X0, X1, X2, . . . if X = ∪∞

k=0Xk

and there is a sequence d0, d1, d2, . . . of ν-martingales with the following two
properties.
(i) For each k ∈ N, Xk ⊆ S∞[dk].
(ii) The function (k,w) �→ dk(w) is p-computable.



310 JOSEF M. BREUTZMANN AND JACK H. LUTZ

2. X is a p-union of the sets X0, X1, X2, . . . of ν-measure 0 in E if X = ∪∞
k=0Xk

and there is a sequence d0, d1, d2, . . . of ν-martingales with the following two
properties.

(i) For each k ∈ N, Xk ∩ E ⊆ S∞[dk].
(ii) The function (k,w) �→ dk(w) is p-computable.
Lemma 3.1. Let ν be a probability measure on C, and let I be either the collection

of all p-ν-measure 0 subsets of C, or the collection of all subsets of C that have ν-
measure 0 in E. Then I has the following three closure properties.

1. If X ⊆ Y ∈ I, then X ∈ I.
2. If X is a finite union of elements of I, then X ∈ I
3. If X is a p-union of elements of I, then X ∈ I.

Proof (sketch). Assume that X is a p-union of the p-ν-measure 0 sets X0, X1,
X2, . . . , and let d0, d1, d2, . . . be as in the definition of this condition. It suffices to
show that νp(X) = 0. (The remaining parts of the lemma are obvious or follow
directly from this.) The p-computability of the function (k,w) �→ dk(w) implies that
there is a nondecreasing polynomial q such that, for all k ∈ N and w ∈ {0, 1}∗,
dk(w) ≤ 2q(k+|w|). Define

d : {0, 1}∗ −→ [0,∞)

d(w) =

∞∑
k=0

2−q(2k)−kdk(w).

It is easily checked that d is a p-ν-martingale and that X ⊆ S∞[d], so νp(X) =
0.

We next note that, if ν is strongly positive and p-computable, then every singleton
subset of E has p-ν-measure 0.

Lemma 3.2. If ν is a strongly positive, p-computable probability measure on C,
then for every A ∈ E,

νp({A}) = ν({A}|E) = 0.

Proof (sketch). Assume the hypothesis, and fix δ > 0 such that, for all w ∈ {0, 1}∗
and b ∈ {0, 1}, ν(wb|w) ≥ δ. Define

d : {0, 1}∗ −→ [0,∞)

d(λ) = 1,

d(wb) =
d(w)

ν(wb|w)
· [[b = [[s|w| ∈ A]]]].

It is easily checked that d is a p-ν-martingale and that, for all n ∈ N, d(χA[0..n−1]) ≥
(1 − δ)−n, whence A ∈ S∞[d].

Note that, for A ∈ E, the “point-mass” probability measure

πA : {0, 1}∗ −→ [0, 1]

πA(w) =

{
1 if w 
 χA,
0 if w �
 χA

is p-computable, and {A} does not have p-πA-measure 0. Thus, the strong positivity
hypothesis cannot be removed from Lemma 3.2.

We now come to the most crucial issue in the development of resource-bounded
measure. If a set X has ν-measure 0 in E, then we want to say that X contains only
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a “negligible small” part of E. In particular, then, it is critical that E itself not have
ν-measure 0 in E. The following theorem establishes this and more.

Theorem 3.3. Let ν be a probability measure on C, and let w ∈ {0, 1}∗. If
ν(w) > 0, then Cw does not have ν-measure 0 in E.

Proof (sketch). Assume the hypothesis, and let d be a p-ν-martingale. It suffices
to show that Cw ∩ E �⊆ S∞[d].

Since d is p-computable, there is a function d̂ : N × {0, 1}∗ −→ Q ∩ [0,∞) with
the following two properties.

(i) For all r ∈ N and w ∈ {0, 1}∗, |d̂(r, w) − d(w)| ≤ 2−r.

(ii) There is an algorithm that computes d̂(r, w) in time polynomial in r + |w|.
Define a language A recursively as follows. First, for 0 ≤ i < |w|, [[si ∈ A]] = w[i].
Next assume that the string xi = χA[0..i− 1] has been defined, where i ≥ |w|. Then

[[si ∈ A]] = [[d̂(i+ 1, xi1) ≤ d̂(i+ 1, xi0)]].

With the language A so defined, it is easy to check that A ∈ Cw ∩ E. It is also
routine to check that, for all i ≥ |w|,

d(xi+1) ≤ d̂(i+ 1, xi+1) + 2−(i+1)

= min
{
d̂(i+ 1, xi0), d̂(i+ 1, xi1)

}
+ 2−(i+1)

≤ min {d(xi0), d(xi1)} + 2−i

≤ d(xi) + 2−i.

It follows inductively that, for all n ≥ |w|,

d(xn) ≤ d(w) +

n−1∑
i=|w|

2−i

< d(w) +

∞∑
i=|w|

2−i = d(w) + 21−|w|.

This implies that

lim sup
n−→∞

d(χA[0..n− 1]) ≤ d(w) + 21−|w| <∞,

whence A �∈ S∞[d].
As in the case of the uniform probability measure [11], more quantitative results

on resource-bounded ν-measure can be obtained by considering the unitary success
set

S1[d] =
⋃
w

d(w) ≥ 1

Cw

and the initial value d(λ) of a p-ν-martingale d. For example, generalizing the ar-
guments in [11] in a straightforward manner, this approach yields a measure con-
servation theorem for ν-measure (a quantitative extension of Theorem 3.3) and a
uniform, resource-bounded extension of the classical first Borel–Cantelli lemma. As
these results are not used in the present paper, we refrain from elaborating here.
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4. Summable equivalence. If two probability measures on C are sufficiently
“close” to one another, then the summable equivalence theorem says that the two
probability measures are in absolute agreement as to which sets of languages have
p-measure 0 and which do not. In this section, we define this notion of “close” and
prove this result.

Definition 4.1. Let ν be a positive probability measure on C, let A ⊆ {0, 1}∗,
and let i ∈ N. Then the ith conditional ν-probability along A is

νA(i+ 1|i) = ν(χA[0..i] | χA[0..i− 1]).

Definition 4.2. Two positive probability measures ν and ν′ on C are summably
equivalent, and we write ν ≈ ν′, if for every A ⊆ {0, 1}∗,

∞∑
i=0

|νA(i+ 1|i) − ν′A(i+ 1|i)| <∞.

It is clear that summable equivalence is an equivalence relation on the collection
of all positive probability measures on C. The following fact is also easily verified.

Lemma 4.1. Let ν and ν′ be positive probability measures on C. If ν ≈ ν′, then
ν is strongly positive if and only if ν′ is strongly positive.

The following definition gives the most obvious way to transform a martingale for
one probability measure into a martingale for another.

Definition 4.3. Let ν and ν′ be probability measures on C with ν′ positive, and
let d be a ν-martingale. Then the canonical adjustment of d to ν′ is the ν′-martingale
d′ defined by

d′(w) =
ν(w)

ν′(w)
d(w)

for all w ∈ {0, 1}∗.
It is trivial to check that the above function d′ is indeed a ν′-martingale. The

following lemma shows that, for strongly positive probability measures, summable
equivalence is a sufficient condition for d′ to succeed whenever d succeeds.

Lemma 4.2. Let ν and ν′ be strongly positive probability measures on C, let d
be a ν-martingale, and let d′ be the canonical adjustment of d to ν′. If ν ≈ ν′, then
S∞[d] ⊆ S∞[d′].

Proof. Assume the hypothesis, and let A ∈ S∞[d]. For each i ∈ N, let

νi = νA(i+ 1|i), ν′i = ν′A(i+ 1|i), τi = νi − ν′i.

The hypothesis ν ≈ ν′ says that
∑∞
i=0 |τi| < ∞. In particular, this implies that

τi −→ 0 as i −→ ∞, so we have the Taylor approximation

ln
νi
ν′i

= ln

(
1 +

τi
ν′i

)
=
τi
ν′i

+ o

(
τi
ν′i

)

as i −→ ∞. Thus | ln νi
ν′
i
| is asymptotically equivalent to |τi|

ν′
i

as i −→ ∞. Since ν′ is

strongly positive, it follows that
∑∞
i=0 | ln νi

ν′
i
| <∞. Thus, if we let wk = χA[0..k − 1],

then there is a positive constant c such that, for all k ∈ N,

c ≥
k−1∑
i=0

(
− ln

νi
ν′i

)
= − ln

k−1∏
i=0

νi
ν′i

= − ln
ν(wk)

ν′(wk)
,
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whence

d′(wk) =
ν(wk)

ν′(wk)
d(wk) ≥ e−cd(wk).

Since A ∈ S∞[d], we thus have

lim sup
k−→∞

d′(wk) ≥ lim sup
k−→∞

e−cd(wk) = ∞,

so A ∈ S∞[d′].

The following useful result is now easily established.

Theorem 4.3 (summable equivalence theorem). If ν and ν′ are strongly positive,
p-computable probability measures on C such that ν ≈ ν′, then for every set X ⊆ C,

νp(X) = 0 ⇐⇒ ν′p(X) = 0.

Proof. Assume the hypothesis, and assume that νp(X) = 0. By symmetry, it suf-
fices to show that ν′p(X) = 0. Since νp(X) = 0, there is a p-computable ν-martingale d
such that X ⊆ S∞[d]. Let d′ be the canonical adjustment of d to ν′. Since d, ν, and ν′

are all p-computable, it is easy to see that d′ is p-computable. Since ν ≈ ν′, Lemma
4.2 tells us that

X ⊆ S∞[d] ⊆ S∞[d′].

Thus ν′p(X) = 0.

5. Exact computation. It is sometimes useful or convenient to work with prob-
ability measures that are rational-valued and efficiently computable in an exact sense,
with no approximation. This section presents two very easy results identifying situa-
tions in which such probability measures are available.

Definition 5.1. A probability measure ν on C is exactly p-computable if ν :
{0, 1}∗ −→ Q∩ [0, 1] and there is an algorithm that computes ν(w) in time polynomial
in |w|.

Lemma 5.1. For every strongly positive, p-computable probability measure ν on
C, there is an exactly p-computable probability measure ν′ on C such that ν ≈ ν′.

Proof. Let ν be a p-computable probability measure on C, and fix a function
ν̂ : N × {0, 1}∗ −→ Q ∩ [0, 1] that testifies to the p-computability of ν. Since ν is
strongly positive, there is a constant c ∈ N such that, for all w ∈ {0, 1}∗, 2−c|w| ≤
ν(w) ≤ 1 − 2−c|w|. Fix such a c and, for all w ∈ {0, 1}∗, define

ν′(w0|w) = min

{
1,
ν̂((2c+ 1)|w| + 3, w0)

ν̂((2c+ 1)|w| + 3, w)

}
,

ν′(w1|w) = 1 − ν′(w0|w),

ν′(w) =

|w|−1∏
i=0

ν′(w[0..i]
∣∣w[0..i− 1]).

It is clear that ν′ is an exactly p-computable probability measure on C.
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Now let w ∈ {0, 1}∗ and b ∈ {0, 1}. For convenience, let

δ = 2−(1+c|w|),

ε = 2−(2c+1)|w|−3,

a1 = ν(wb),

a2 = ν(w).

Note that

ν̂((2c+ 1)|w| + 3, w) ≥ ν(w) − ε > ν(w) − δ ≥ δ.

It is clear by inspection that ν′(wb|w) can be written in the form

ν′(wb|w) =
a′1
a′2
,

where

|a′1 − a1| ≤ ε and |a′2 − a2| ≤ ε.

We thus have

|a′1a2 − a1a
′
2| ≤ |a′1a2 − a1a2| + |a1a2 − a1a

′
2|

≤ |a′1 − a1| + |a′2 − a2|
≤ 2ε,

whence

|ν′(wb|w) − ν(wb|w)| =

∣∣∣∣a
′
1

a′2
− a1

a2

∣∣∣∣
=

|a′1a2 − a1a
′
2|

a2a′2

≤ 2εδ−2

= 2−|w|.

For all A ⊆ {0, 1}∗, then, we have

∞∑
i=0

∣∣νA(i+ 1
∣∣i) − ν′A(i+ 1

∣∣i)∣∣ ≤
∞∑
i=0

2−i = 2,

so ν ≈ ν′.
For some purposes (including those of this paper), the p-computability require-

ment is too weak, because it allows ν(w) to be computed (or approximated) in time
polynomial in |w|, which is exponential in the length of the last string decided by
w when we regard w as a prefix of a language A. In such situations, the following
sort of requirement is often more useful. (We give only the definitions for sequences
of biases, i.e., coin-toss probability measures, because this suffices for our purposes in
this paper. It is clearly a routine matter to generalize further.)
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Definition 5.2.

1. A P-sequence of biases is a sequence �β = (β0, β1, β2, . . . ) of biases βi ∈ [0, 1]
for which there is a function

β̂ : N × N −→ Q ∩ [0, 1]

with the following two properties.
(i) For all i, r ∈ N, |β̂(i, r) − βi| ≤ 2−r.

(ii) There is an algorithm that, for all i, r ∈ N, computes β̂(i, r) in time
polynomial in |si| + r (i.e., in time polynomial in log(i+ 1) + r).

2. A P-exact sequence of biases is a sequence �β = (β0, β1, β2, . . . ) of (rational)
biases βi ∈ Q ∩ [0, 1] such that the function i �−→ βi is computable in time
polynomial in |si|.

Definition 5.3. If �α and �β are sequences of biases, then �α and �β are summably
equivalent, and we write �α ≈ �β, if

∑∞
i=0 |αi − βi| <∞.

It is clear that �α ≈ �β if and only if μ�α ≈ μ
�β .

Lemma 5.2. For every P-sequence of biases �β, there is a P-exact sequence of
biases �β′ such that �β ≈ �β′.

Proof. Let �β be a strongly positive P-sequence of biases, and let β̂ : N × N −→
Q ∩ [0, 1] be a function that testifies to this fact. For each i ∈ N, let

β′
i = β̂(i, 2|si|),

and let �β′ = (β′
0, β

′
1, β

′
2, . . . ). Then �β′ is a P-exact sequence of biases, and

∞∑
i=0

|βi − β′
i| ≤

∞∑
i=0

2−2|si|

≤
∞∑
i=0

2−2 log(i+1)

=

∞∑
i=0

1

(i+ 1)2
<∞,

so �β ≈ �β′.

6. Martingale dilation. In this section we show that certain truth-table reduc-
tions can be used to dilate martingales for one probability measure into martingales
for another, perhaps dissimilar, probability measure on C. We first present some ter-
minology and notation on truth-table reductions. (Most of this notation is standard
[22], but some is specialized to our purposes.)

A truth-table reduction is a pair (f, g) of algorithms that, given a language A, is
used to decide a language B = F(f,g)(A). Given a particular string x, the algorithm f
specifies a list of membership queries regarding A, and the algorithm g specifies how
the answers to these queries are to be used in deciding whether x ∈ B. The list of
queries given by f is nonadaptive, i.e., the entire list is specified prior to the knowing
of any of the answers to the queries. More formally, a truth-table reduction (briefly, a
≤tt-reduction) is an ordered pair (f, g) of total recursive functions such that for each
x ∈ {0, 1}∗, there exists n(x) ∈ Z

+ such that the following two conditions hold.
(i) f(x) is (the standard encoding of) an n(x)-tuple (f1(x), . . . , fn(x)(x)) of

strings fi(x) ∈ {0, 1}∗, which are called the queries of the reduction (f, g)



316 JOSEF M. BREUTZMANN AND JACK H. LUTZ

on input x. We use the notation Q(f,g)(x) = {f1(x), . . . , fn(x)(x)} for the set
of such queries.

(ii) g(x) is (the standard encoding of) an n(x)-input, 1-output Boolean circuit,
called the truth table of the reduction (f, g) on input x. We identify g(x) with
the Boolean function computed by this circuit, i.e.,

g(x) : {0, 1}n(x) −→ {0, 1} .

A truth-table reduction (f, g) induces the function

F(f,g) : C −→ C

F(f,g)(A) =
{
x ∈ {0, 1}∗ | g(x)

(
[[f1(x) ∈ A]] · · · [[fn(x)(x) ∈ A]]

)
= 1
}
.

If A and B are languages and (f, g) is a ≤tt-reduction, then (f, g) reduces B to
A, and we write

B ≤tt A via (f, g),

if B = F(f,g)(A). More generally, if A and B are languages, then B is truth-table
reducible (briefly, ≤tt-reducible) to A, and we write B ≤tt A, if there exists a ≤tt-
reduction (f, g) such that B ≤tt A via (f, g).

If (f, g) is a ≤tt-reduction, then the function F(f,g) : C −→ C defined above
induces a corresponding function

F(f,g) : {0, 1}∗ −→ {0, 1}∗ ∪ C

defined as follows. (It is standard practice to use the same notation for these two
functions, and no confusion will result from this practice here.) Intuitively, if A ∈ C
and w 
 A, then F(f,g)(w) is the largest prefix of F(f,g)(A) such that w answers all
queries in this prefix. Formally, let w ∈ {0, 1}∗, and let

Aw =
{
si
∣∣ 0 ≤ i < |w| and w[i] = 1

}
.

If Q(f,g)(x) ⊆ {s0, . . . s|w|−1} for all x ∈ {0, 1}∗, then

F(f,g)(w) = F(f,g)(Aw).

Otherwise,

F(f,g)(w) = χF(f,g)(Aw)[0..m− 1],

where m is the greatest nonnegative integer such that

m−1⋃
i=0

Q(f,g)(si) ⊆
{
s0, . . . , s|w|−1

}
.

Now let (f, g) be a ≤tt-reduction, and let z ∈ {0, 1}∗. Then the inverse image of
the cylinder Cz under the reduction (f, g) is

F−1
(f,g)(Cz) =

{
A ∈ C | F(f,g)(A) ∈ Cz

}
=
{
A ∈ C | z 
 F(f,g)(A)

}
.

We can write this set in the form

F−1
(f,g)(Cz) =

⋃
w∈I

Cw,

where I is the set of all strings w ∈ {0, 1}∗ with the following properties.
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(i) z 
 F(f,g)(w).
(ii) If w′ is a proper prefix of w, then z �
 F(f,g)(w

′).
Moreover, the cylinders Cw in this union are disjoint, so if ν is a probability measure
on C, then

ν(F−1
(f,g)(Cz)) =

∑
w∈I

ν(w).

The following well-known fact is easily verified.
Lemma 6.1. If ν is a probability measure on C and (f, g) is a ≤tt-reduction, then

the function

ν(f,g) : {0, 1}∗ −→ [0, 1],

ν(f,g)(z) = ν(F−1
(f,g)(Cz))

is also a probability measure on C.
The probability measure ν(f,g) of Lemma 6.1 is called the probability measure

induced by ν and (f, g).
In this paper, we only use the following special type of ≤tt-reduction.
Definition 6.1. A ≤tt-reduction (f, g) is orderly if, for all x, y, u, v ∈ {0, 1}∗,

if x < y, u ∈ Q(f,g)(x), and v ∈ Q(f,g)(y), then u < v. That is, if x precedes y (in
the standard ordering of {0, 1}∗), then every query of (f, g) on input x precedes every
query of (f, g) on input y.

The following is an obvious property of orderly ≤tt-reductions.
Lemma 6.2. If ν is a coin-toss probability measure on C and (f, g) is an orderly

≤tt-reduction, then ν(f,g) is also a coin-toss probability measure on C.
Note that, if (f, g) is an orderly ≤tt-reduction, then F(f,g)(w) ∈ {0, 1}∗ for all

w ∈ {0, 1}∗. Note also that the length of F(f,g)(w) depends only upon the length of
w (i.e., |w| = |w′| implies that |F(f,g)(w)| = |F(f,g)(w

′)|). Finally, note that for each

m ∈ N there exists l ∈ N such that |F(f,g)(0
l)| = m.

Definition 6.2. Let (f, g) be an orderly ≤tt-reduction.
1. An (f, g)-step is a positive integer l such that F(f,g)(0

l−1) �= F(f,g)(0
l).

2. For k ∈ N, we let step(k) be the least (f, g)-step l such that l ≥ k.
The following construction is crucial to the proof of our main theorem.
Definition 6.3. Let ν be a positive probability measure on C, let (f, g) be an

orderly ≤tt-reduction, and let d be a ν(f,g)-martingale. Then the (f, g)-dilation of d is
the function

(f, g)̂d : {0, 1}∗ −→ [0,∞)

(f, g)̂d(w) =
∑

u∈{0,1}l−k

d(F(f,g)(wu))ν(wu|w),

where k = |w| and l = step(k).
In other words, (f, g)̂d(w) is the conditional ν-expected value of d(F(f,g)(w

′)),
given that w 
 w′ and |w′| = step(|w|). We do not include the probability measure ν
in the notation (f, g)̂d because ν (being positive) is implicit in d.

Intuitively, the function (f, g)̂d is a strategy for betting on a language A, as-
suming that d itself is a strategy for betting on the language F(f,g)(A). The following
theorem makes this intuition precise.
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Theorem 6.3 (martingale dilation theorem). Assume that ν is a positive coin-
toss probability measure on C, (f, g) is an orderly ≤tt-reduction, and d is a ν(f,g)-
martingale. Then (f, g)̂d is a ν-martingale. Moreover, for every language A ⊆ {0, 1}∗,
if d succeeds on F(f,g)(A), then (f, g)̂d succeeds on A.

A very special case of the above result (for strictly increasing ≤P
m-reductions under

the uniform probability measure) was developed by Ambos-Spies, Terwijn, and Zheng
[2] and made explicit by Juedes and Lutz [8]. Our use of martingale dilation in the
present paper is very different from the simple padding arguments of [2, 8].

The following two technical lemmas are used in the proof of Theorem 6.3.
Lemma 6.4. Assume that ν is a positive coin-toss probability measure on C and

(f, g) is an orderly ≤tt-reduction. Let F = F(f,g), let w ∈ {0, 1}∗, and assume that
k = |w| is an (f, g)-step. Let l = step(k + 1). Then, for b ∈ {0, 1},

ν(f,g)(F (w)b|F (w)) =
∑

u ∈ {0, 1}l−k

F (wu) = F (w)b

ν(wu|w).

Proof. Assume the hypothesis. Then

ν(f,g)(F (w)b) =
∑

w′ ∈ {0, 1}k

F (w′) = F (w)

∑
u ∈ {0, 1}l−k

F (w′u) = F (w′)b

ν(w′u)

=
∑

w′ ∈ {0, 1}k

F (w′) = F (w)

ν(w′)
∑

u ∈ {0, 1}l−k

F (w′u) = F (w′)b

ν(w′u|w′).

Now, since ν is a coin-toss probability measure, we have ν(w′u|w′) = ν(wu|w) for
each w′ ∈ {0, 1}k such that F (w′) = F (w). Also, since (f, g) is orderly, the conditions
F (w′u) = F (w′)b and F (wu) = F (w)b are equivalent for each u ∈ {0, 1}l−k. Hence,

ν(f,g)(F (w)b) =
∑

w′ ∈ {0, 1}k

F (w′) = F (w)

ν(w′)
∑

u ∈ {0, 1}l−k

F (wu) = F (w)b

ν(wu|w)

= ν(f,g)(F (w))
∑

u ∈ {0, 1}l−k

F (wu) = F (w)b

ν(wu|w).

Lemma 6.5. Assume that ν is a positive coin-toss probability measure on C and
(f, g) is an orderly ≤tt-reduction. Let F = F(f,g), and assume that d is a ν(f,g)-
martingale. Let w ∈ {0, 1}∗, assume that k = |w| is an (f, g)-step, and let l = step(k+
1). Then

d(F (w)) =
∑

u∈{0,1}l−k

d(F (wu))ν(wu|w).

Proof. Assume the hypothesis. Since d is a ν(f,g)-martingale and ν(f,g)(F (w)) is
positive, we have

d(F (w)) =

1∑
b=0

d(F (w)b)ν(f,g)(F (w)b|F (w)).
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It follows by Lemma 6.4 that

d(F (w)) =

1∑
b=0

d(F (w)b)
∑

u ∈ {0, 1}l−k

F (wu) = F (w)b

ν(wu|w)

=

1∑
b=0

∑
u ∈ {0, 1}l−k

F (wu) = F (w)b

d(F (wu))ν(wu|w)

=
∑

u∈{0,1}l−k

d(F (wu))ν(wu|w).

Proof (Theorem 6.3). Assume the hypothesis, and let F = F(f,g).
To see that (f, g)̂d is a ν-martingale, let w ∈ {0, 1}∗, let k = |w|, and let

l = step(k + 1). We have two cases.
Case 1. step(k) = l. Then

1∑
b=0

(f, g)̂d(wb)ν(wb) =

1∑
b=0

∑
u∈{0,1}l−k−1

d(F (wbu))ν(wbu|wb)ν(wb)

=

1∑
b=0

∑
u∈{0,1}l−k−1

d(F (wbu))ν(wbu)

=
∑

u∈{0,1}l−k

d(F (wu))ν(wu)

= (f, g)̂d(w)ν(w).

Case 2. step(k) < l. Then k is an (f, g)-step, so (f, g)̂d(w) = d(F (w)), whence
by Lemma 6.5

(f, g)̂d(w)ν(w) =
∑

u∈{0,1}l−k

d(F (wu))ν(wu).

Calculating as in Case 1, it follows that

(f, g)̂d(w)ν(w) =

1∑
b=0

(f, g)̂d(wb)ν(wb).
This completes the proof that (f, g)̂d is a ν-martingale.

To complete the proof, let A ⊆ {0, 1}∗, and assume that d succeeds on F (A).
For each n ∈ N, let wn = χA[0..ln − 1], where ln is the unique (f, g)-step such that
|F (0ln)| = n. Then, for all n ∈ N,

(f, g)̂d(wn) = d(F (wn)) = d(χF (A)[0..n− 1]),

so

lim sup
k−→∞

(f, g)̂d(χA[0..k − 1]) ≥ lim sup
n−→∞

(f, g)̂d(wn)
= lim sup

n−→∞
d(χF (A)[0..n− 1])

= ∞.

Thus (f, g)̂d succeeds on A.
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Fig. 1. Schematic depiction of positive bias reduction.

7. Positive bias reduction. In this section, we define and analyze a positive
truth-table reduction that encodes an efficient, approximate simulation of one se-
quence of biases by another.

Intuitively, if �α and �β are strongly positive sequences of biases, then the positive
bias reduction of �α to �β is a ≤tt-reduction (f, g) that “tries to simulate” the sequence

�α with the sequence �β by causing μ�α to be the probability distribution induced by

μ
�β and (f, g). In general, this objective will only be approximately achieved, in the

sense that the probability distribution induced by μ
�β and (f, g) will actually be a

probability distribution μ�α
′
, where �α′ is a sequence of biases such that �α′ ≈ �α. This

situation is depicted schematically in Figure 1, where the broken arrow indicates that
(f, g) “tries” to reduce �α to �β, while the solid arrow indicates that (f, g) actually

reduces �α′ to �β.
The reduction (f, g) is constructed precisely as follows.

Construction 7.1 (positive bias reduction). Let �α and �β be strongly positive
sequences of biases. Let

δ = inf {αi, 1 − αi, βi, 1 − βi | i ∈ N} ,

c =

⌈
−4 log e

log(1 − δ2)

⌉
.

For each x ∈ {0, 1}∗ and 0 ≤ n < 2c|x|, let q(x, n) = xy, where y is the nth element of
{0, 1}c|x|, and let j(x, n) be the index of the string q(x, n), i.e., sj(x,n) = q(x, n). Then

the positive bias reduction of �α to �β is the ordered pair (f, g) of functions defined by the
procedure in Figure 2. (For convenience, the procedure defines additional parameters
that are useful in the subsequent analysis.)

The following general remarks will be helpful in understanding Construction 7.1.
(a) The boldface variables v0,v1, . . . denote Boolean inputs to the Boolean func-

tion g(x) being constructed. The Boolean function g(x) is an OR of k(x)
Boolean functions h(x, k), i.e.,

g(x) =

k(x)−1∨
k=0

h(x, k).

The Boolean functions g(x, 0), g(x, 1), . . . are preliminary approximations of
the Boolean function g(x). In particular,

g(x, k) =

k−1∨
j=0

h(x, j)
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begin
input x = si;
n := 0;
g(x, 0) := 0; α′

i(0) = 0;
k := 0;
while α′

i(k) < αi − (i+ 1)−2 do
begin
h(x, k, 0) := 1; γi,k(0) := 1;
l := 0;
while α′

i(k) + γi,k(l) − α′
i(k) · γi,k(l) > αi do

begin
h(x, k, l + 1) := h(x, k, l) AND vn;
γi,k(l + 1) := γi,k(l) · βj(x,n);
l := l + 1;
n := n+ 1;
end ;

l(x, k) := l;
h(x, k) := h(x, k, l(x, k));
γi,k := γi,k(l(x, k));
g(x, k + 1) := g(x, k) OR h(x, k);
α′
i(k + 1) := α′

i(k) + γi,k − α′
i(k) · γi,k;

k := k + 1
end ;

k(x) := k;
n(x) := n;
f(x) := (q(x, 0), . . . , q(x, n(x) − 1));
g(x) := g(x, k(x));
α′
i := α′

i(k(x))
end .

Fig. 2. Construction of positive bias reduction.

for all 0 ≤ k ≤ k(x). Thus g(x, 0) is the constant-0 Boolean function.
(b) The Boolean function h(x, k) is an AND of l(x, k) consecutive input variables.

The subscript n is incremented globally so that no input variable appears more
than once in g(x). Just as g(x, k) is the kth “partial OR” of g(x), h(x, k, l)
is the lth “partial AND” of h(x, k). Thus h(x, k, 0) is the constant-1 Boolean
function.

(c) The input variables v0, v1, . . . of g correspond to the respective queries
q(x, 0), q(x, 1), . . . of f . If A = F(f,g)(B), then we have [[x ∈ A]] = g(x)(v0 · · ·
vn(x)−1), where each vn = [[q(x, n) ∈ B]]. If B is chosen according to the

sequence of biases �β, then βj(x,n) is the probability that vn = 1, γi,k is the
probability that h(x, k) = 1, and α′

i is the probability that g(x) = 1. The
while-loops ensure that αi − (i+ 1)−2 ≤ α′

i ≤ αi.
The following lemmas provide some quantitative analysis of the behavior of Con-

struction 7.1.
Lemma 7.2. In Construction 7.1, for all x ∈ {0, 1}∗ and 0 ≤ k ≤ k(x),

l(x, k) ≤ 1 +
c|x|

2 log e
.
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Proof. Fix such x and k, and let l∗ = l(x, k). If l∗ = 0, the result is trivial, so
assume that l∗ > 0. Then, by the minimality of l∗,

α′
i(k) + γi,k(l

∗ − 1) > αi,

so

γi,k(l
∗ − 1) > αi − α′

i(k) > (i+ 1)−2,

so

(i+ 1)−2 < γi,k(l
∗ − 1) ≤ (1 − δ)l

∗−1.

It follows that

−2 log(i+ 1) ≤ (l∗ − 1) log(1 − δ),

whence

l∗ ≤ 1 − 2 log(i+ 1)

log(1 − δ)

≤ 1 − 2|x|
log(1 − δ2)

≤ 1 +
c|x|

2 log e
.

Lemma 7.3. In Construction 7.1, for all x ∈ {0, 1}∗, and 0 ≤ k ≤ k(x) − 1,

αi − α′
i(k) ≤ (1 − δ2)k.

Proof. Fix such x and k with k < k(x)−1, and let l∗ = l(x, k). Then γi,k(l
∗−1) >

αi − α′
i(k), so γi,k ≥ δ · γi,k(l∗ − 1) > δ · (αi − α′

i(k)), whence

αi − α′
i(k + 1)

αi − α′
i(k)

=
αi − (α′

i(k) + γi,k − α′
i(k) · γi,k)

αi − α′
i(k)

=
αi − α′

i(k) − γi,k(1 − α′
i(k))

αi − α′
i(k)

< 1 − δ · (1 − α′
i(k))

≤ 1 − δ · (1 − αi)

≤ 1 − δ2.

The lemma now follows immediately by induction.
Lemma 7.4. In Construction 7.1, for all x ∈ {0, 1}∗,

k(x) ≤ 1 +
c|x|

2 log e
.

Proof. Fix x ∈ {0, 1}∗. By Lemma 7.3 and the minimality of k(x),

αi − (1 − δ2)k(x)−1 ≤ α′
i(k(x) − 1) < αi − (i+ 1)−2,

so

(1 − δ2)k(x)−1 > (i+ 1)−2,
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so

k(x) < 1 − 2 log(i+ 1)

log(1 − δ2)
≤ 1 +

c|x|
2 log e

.

Lemma 7.5. In Construction 7.1, for all x ∈ {0, 1}∗,

n(x) ≤
(

1 +
c|x|

2 log e

)2

≤ 2c|x|.

Proof. Let x ∈ {0, 1}∗. Then

n(x) =

k(x)−1∑
k=0

l(x, k),

so by Lemmas 7.2 and 7.4, and the bound 1 + t ≤ et,

n(x) ≤
(

1 +
c|x|

2 log e

)2

≤ e
c|x|
log e = 2c|x|.

Definition 7.1. Let (f, g) be a ≤tt-reduction.

1. (f, g) is positive (briefly, a ≤pos−tt-reduction) if, for all A,B ⊆ {0, 1}∗, A ⊆
B impliesF(f,g)(A) ⊆ F(f,g)(B).

2. (f, g) is polynomial-time computable (briefly, a ≤P
tt-reduction) if the func-

tions f and g are computable in polynomial time.
3. (f, g) is polynomial-time computable with linear-bounded queries (briefly, a

≤P,lin
tt -reduction) if (f, g) is a ≤P

tt-reduction and there is a constant c ∈ N

such that, for all x ∈ {0, 1}∗, Q(f,g)(x) ⊆ {0, 1}≤c(1+|x|).

Of course, a ≤P,lin
pos−tt-reduction is a ≤tt-reduction with all the above properties.

The following result presents the properties of the positive bias reduction that
are used in the proof of our main theorem.

Theorem 7.6 (positive bias reduction theorem). Let �α and �β be strongly positive,

P-exact sequences of biases, and let (f, g) be the positive bias reduction of �α to �β. Then

(f, g) is an orderly ≤P,lin
pos−tt-reduction, and the probability measure induced by μ

�β and

(f, g) is a coin-toss probability measure μ
�α′
, where �α ≈ �α′.

Proof. Assume the hypothesis. By inspection and Lemma 7.5, the pair (f, g) is an

orderly ≤P,lin
pos−tt-reduction. (Lemma 7.5 also ensures that f(x) is well-defined.) The

reduction is also positive, since only AND’s and OR’s are used in the construction of
g(x). Thus (f, g) is an orderly ≤P,lin

pos−tt-reduction.

By remark (c) following Construction 7.1, the probability measure induced by μ
�β

and (f, g) is the coin-toss probability measure μ
�α′

, where �α′ = (α′
0, α

′
1, . . . ) is defined

in the construction. Moreover,

∞∑
i=0

|αi − α′
i| ≤

∞∑
i=0

(i+ 1)−2 <∞,

so �α ≈ �α′.
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Fig. 3. Scheme of proof of the bias equivalence theorem.

8. Equivalence for complexity classes. Many important complexity classes,
including P, NP, co-NP, R, BPP, AM, P/Poly, PH, PSPACE, etc., are known to

be closed under ≤P
pos−tt-reductions, hence certainly under ≤P,lin

pos−tt-reductions. The
following theorem, which is the main result of this paper, says that the p-measure of
such a class is somewhat insensitive to certain changes in the underlying probability
measure. The proof is now easy, given the machinery of the preceding sections.

Theorem 8.1 (bias equivalence theorem). Assume that �α and �β are strongly
positive P-sequences of biases, and let C be a class of languages that is closed under
≤P,lin

pos−tt-reductions. Then

μ�αp (C) = 0 ⇐⇒ μ
�β
p(C) = 0.

Proof. Assume the hypothesis, and assume that μ�αp (C) = 0. By symmetry, it

suffices to show that μ
�β
p(C) = 0.

The proof follows the scheme depicted in Figure 3. By Lemma 5.2, there exist P-
exact sequences �α′ and �β′ such that �α ≈ �α′ and �β ≈ �β′. Let (f, g) be the positive bias

reduction of �α′ to �β′. Then, by the positive bias reduction theorem (Theorem 7.6),

(f, g) is an orderly ≤P,lin
pos−tt-reduction, and the probability measure induced by μ

�β and

(f, g) is μ�α
′′
, where �α′ ≈ �α′′.

Since �α ≈ �α′ ≈ �α′′ and μ�αp (C) = 0, the summable equivalence theorem (Theo-
rem 4.3) tells us that there is a p-�α′′-martingale d such that C ⊆ S∞[d]. By the mar-

tingale dilation theorem (Theorem 6.3), the function (f, g)̂d is then a �β′-martingale.

In fact, it is easily checked that (f, g)̂d is a p-�β′-martingale.

Now let A ∈ C. Then, since C is closed under ≤P,lin
pos−tt-reductions, F(f,g)(A) ∈ C ⊆

S∞[d]. It follows by the martingale dilation theorem that A ∈ S∞[(f, g)̂d]. Thus

C ⊆ S∞[(f, g)̂d]. Since (f, g)̂d is a p-�β′-martingale, this shows that μ
�β′

p (C) = 0.

Finally, since �β ≈ �β′, it follows by the summable equivalence theorem that μ
�β
p(X) =

0.
It is clear that the bias equivalence theorem remains true if the resource bound on

the measure is relaxed. That is, the analogs of Theorem 8.1 for p2-measure, pspace-
measure, rec-measure, constructive measure, and classical measure all immediately
follow. We conclude by noting that the analogs of Theorem 8.1 for measure in E and
measure in E2 also immediately follow.

Corollary 8.2. Under the hypothesis of Theorem 8.1,

μ�α(C|E) = 0 ⇐⇒ μ
�β(C|E) = 0
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and

μ�α(C|E2) = 0 ⇐⇒ μ
�β(C|E2) = 0.

Proof. If C is closed under ≤P,lin
pos−tt-reductions, then so are the classes C ∩ E and

C ∩ E2.

9. Conclusion. Our main result, the bias equivalence theorem, says that every
strongly positive, P-computable, coin-toss probability measure ν is equivalent to the
uniform probability measure μ, in the sense that

νp(C) = 0 ⇐⇒ μp(C) = 0

for all classes C ∈ Γ, where Γ is a family that contains P, NP, co-NP, R, BPP, P/Poly,
PH and many other classes of interest. It would be illuminating to learn more about
which probability measures are, and which probability measures are not, equivalent
to μ in this sense.

It would also be of interest to know whether the summable equivalence theorem
can be strengthened. Specifically, say that two sequences of biases �α and �β are square-
summably equivalent, and write �α ≈2 �β, if

∑∞
i=0(αi−βi)2 <∞. A classical theorem of

Kakutani [9] says that, if �α and �β are strongly positive sequences of biases such that

�α ≈2 �β, then for every set C ⊆ C, X has (classical) �α-measure 0 if and only if X has
�β-measure 0. A constructive improvement of this theorem by Vovk [28] says that, if �α

and �β are strongly positive, computable sequences of biases such that �α ≈2 �β, then for
every set X ⊆ C, X has constructive �α-measure 0 if and only if X has constructive �β-
measure 0. (The Kakutani and Vovk theorems are more general than this, but for the
sake of brevity, we restrict the present discussion to coin-toss probability measures.)
The summable equivalence theorem is stronger than these results in one sense, but
weaker in another. It is stronger in that it holds for p-measure, but it is weaker in
that it requires the stronger hypothesis that �α ≈ �β. We thus ask whether there is
a “square-summable equivalence theorem” for p-measure. That is, if �α and �β are
strongly positive, p-computable sequences of biases such that �α ≈2 �β, is it necessarily
the case that, for every set X ⊆ C, X has p-�α-measure 0 if and only if X has p-�β-
measure 0? (Note: Kautz [10] has very recently answered this question affirmatively.)
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Abstract. We consider the problem of optimally swapping objects between N workstations,
which we refer to as nodes, located on a line. There are m types of objects, and the set of object-types
is denoted by S = {1, . . . ,m}. Object-type 0 is a dummy type, the null object. Each node v contains
one unit of a certain object-type av ∈ S ∪ {0} and requires one unit of object-type bv ∈ S ∪ {0}.
We assume that the total supply equals the total demand for each of the object-types separately. A
vehicle of unit capacity ships the objects so that the requirements of all nodes are satisfied. The set
of object-types is partitioned into two sets: objects that may be temporarily dropped at intermediate
nodes before reaching their destination and objects that have to be shipped directly from their origin
to their destination. The objective is to design a route that starts and ends at the depot and a
feasible assignment of object-types to the route’s arcs so that the total distance is minimized. We
propose an O(N2) algorithm to compute the optimal solution for this problem.
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1. Introduction. A set V of N workstations, which we refer to as nodes, is
located on a line. We are also given a set of m object-types S = {1, . . . ,m}. Object-
type 0 is the null object. Each workstation v contains one unit of a certain object
av ∈ S ∪ {0} and requires one unit of object bv ∈ S ∪ {0}. av = 0(bv = 0) means
that no object is currently (required) at node v. For each object-type separately, the
total supply (i.e., the number of nodes currently containing that object-type) equals
the total demand (the number of nodes requiring that object-type). A vehicle of unit
capacity that starts and ends at node vD ∈ V ships the objects from their initial
locations so that the requirements of the workstations are satisfied. The objective is
to design a feasible route of minimum length.

The set of object-types is partitioned into two sets S = Sd ∪ Sn. Objects in Sd
may be temporarily dropped at intermediate nodes before reaching their destination,
while objects in Sn have to be shipped directly from their origin to their destination.
One of these two sets may be empty. Clearly, the optimal solution when some of the
objects may be dropped cannot be worse than in the case that S = Sn.

The general swapping problem where the workstations are the nodes of an undi-
rected complete graph was studied by Anily and Hassin (1992). The authors show
that the problem is NP-hard and prove the existence of an optimal solution that
satisfies certain structural properties. They design two heuristics whose worst-case
bounds are 2.5. The proposed heuristics are based on the composition of the optimal
solutions to m + 1 matching problems, one for each object-type i ∈ S ∪ {0}, where
nodes v with av = i are matched with nodes w with bw = i. This step results in a set
of disjoint cycles that are then patched into a single Eulerian tour. Except for Anily
and Hassin (1992) and the current paper, the literature confines itself to systems con-
taining one unit of each object-type, and moreover, all objects are in either Sn or
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Sd. In the stacker-crane problem analyzed by Frederickson, Hecht, and Kim (1978)
(see also Johnson and Papadimitriou (1985)), some directed arcs are given and the
objective is to find a directed closed tour of minimum length containing these arcs.
The stacker-crane problem is a special case of the swapping problem, where S = Sn,
and there is one unit of each object-type. The authors propose a polynomial approxi-
mation for this problem whose worst-case bound is 9/5. Atallah and Kosaraju (1988)
analyze the swapping problem on a line and on a circular track when there exists ex-
actly one unit of each object-type in S. They consider the cases of S = Sn (no drops)
and S = Sd (with drops). Their motivation to study the problem arises from the
movement of a robot arm that is supposed to rearrange m objects among N stations.
The robot arm consists of a single link that rotates around a fixed pivot. The link’s
length is variable since it can be extended in and out. A gripper that can grasp any of
the objects is positioned at the end of the link. Minimizing the total distance traveled
by the gripper is NP-hard. Instead, the authors focus separately on minimizing the
total (a) telescoping motion, which corresponds to moving along a linear track, and
(b) angular motion, which corresponds to moving along a circular track. The paper
provides low polynomial algorithms for computing the optimal route: for the no-drop
case the algorithm runs in O(m+Nα(N)) (α() is the inverse of Ackerman’s function)
for the linear track and in O(m + N logN) for the circular track (this last bound is
further tightened in Frederickson (1993)). For the with-drop case the algorithm runs
in O(m + N) for both the linear and circular tracks. Frederickson and Guan (1992,
1993) studied the same problem as that of Atallah and Kosaraju (1988) when the
objects are located on the vertices of a tree and the vehicle travels along its edges.
For the with-drop case they present two algorithms that run in O(m + Nq), where
q ≤ min{m,N}. The no-drop case is shown to be NP-hard, and the authors provide
two heuristics that run in low polynomial time with worst-case ratios of 1.5 and 1.25,
respectively.

In this paper, we develop an O(N2)-step algorithm for the linear track allowing
no-drop and with-drop objects. Section 2 introduces the terminology, and section 3
establishes the necessary structural properties of any optimal solution. Finally, the
main algorithm and its analysis is presented in section 4.

2. Notations and preliminaries. V = {v1, v2, . . . , vN} is a set of N worksta-
tions. Vertex vD, 1 ≤ D ≤ N , is the depot where the vehicle starts and terminates the
tour. The vertices are indexed according to their location on the line from left to right.
S = {1, . . . ,m} is a set of m object-types. Object-type 0 denotes the null object. Each
vertex v is associated with a pair (av, bv) ∈ [S∪{0}]× [S∪{0}], where av is the object-
type currently at v and bv is the object-type desired at v. Without loss of generality
(w.l.o.g.) we assume that av �= bv. (If aD = bD = 0, then an equivalent problem can
be defined such that aD �= bD by introducing a new node at the depot’s location and
a new object-type m + 1. Associate the depot with (0,m + 1) and the new vertex
with (m + 1, 0).) The set S is partitioned into Sn, the set of no-drop objects-types,
and Sd, the set of object-types that can be dropped at intermediate vertices. d(u, v) is
the distance between vertices u and v. P i ⊆ V are the supply vertices of object-type
i(i = 0, 1, . . . ,m), i.e., P i = {v : av = i}. Let P i = {pi1, pi2, . . . , pik(i)}. Ri ⊆ V are
the vertices that require object-type i(i = 0, 1, . . . ,m), i.e., Ri = {v : bv = i}. Let
Ri = {ri1, ri2, . . . , rik(i)}. Let V i = P i ∪ Ri, and k(i) = |P i| = |Ri| is the number of
objects of type i in the system. Thus,

∑m
i=0 k(i) = N . The supply (demand) vertices

of object-type i are indexed according to their location from left to right.
If S = Sn, then once we know which supply vertex in P i serves each of the demand
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vertices in Ri for i = 1, . . . ,m, our problem reduces to the respective problem solved
by Atallah and Kosaraju (1988).

Definition 2.1. A path is a sequence of directed arcs where the tail of one arc is
the head of the preceding arc in the sequence, and all arcs in the sequence are assigned
the same object-type i, 0 ≤ i ≤ m.

Definition 2.2. If object-type i, 1 ≤ i ≤ m, that is initially located at vertex pih
is used to supply the requirement of vertex rih′ , then the path from pih to rih′ along
which the object is shipped is called a service path. (See below for an extension of the
definition for object-type 0.)

Assume w.l.o.g. that objects are never dropped in order to pick up objects of the
same type. Thus, in any feasible solution and any v ∈ V with av = i, there exists a
service path of object i initiating at v and ending at vertex u, u ∈ V with bu = i,
1 ≤ i ≤ m. If i ∈ Sn, then the arcs of this path appear consecutively in the solution;
i.e., the vehicle traverses the service path with no intermediate stops. If i ∈ Sd, then
the arcs of this path appear in the solution in the same order as in the path, but not
necessarily consecutively, meaning that the vehicle may drop the object and pick it
up later.

Definition 2.3. A segment of the solution that the vehicle traverses empty is
called a deadheading.

According to Anily and Hassin (1992), if av = 0 for v ∈ V , then any feasible
solution includes a path of deadheadings originating at v and ending at some vertex
u with bu = 0. Such a path is called a service path of the null object. Note that a
feasible solution consists of k(i) service paths for each object-type i, i ∈ S ∪ {0} and
possibly some additional deadheadings.

Definition 2.4. The end points of a path starting at u and ending at v, u, v ∈ V
are the vertices u and v.

Definition 2.5. A given arc is said to cover all points (not necessarily vertices)
on the track in between its tail and its head including its end points. A path covers
all points covered by its arcs.

Definition 2.6. A path is left-to-right (right-to-left) if each of its arcs is directed
to the right (left).

Definition 2.7. Two paths are intersecting in opposite directions if (a) one path
is left-to-right and other is right-to-left and (b) at least one end point of one path is
covered by the other path.

3. Structural properties of an optimal solution. In this section we prove
some theorems that ensure the existence of an optimal solution that satisfies some
specified properties. The theorems hold for all the problem’s variants discussed here.

Theorem 3.1. There exists an optimal solution that does not contain any pair
of service paths for the same object-type i, 0 ≤ i ≤ m, that are intersecting in opposite
directions.

Proof. The proof is by contradiction. Suppose the theorem is false, i.e., any
optimal routing contains service paths of the same object-type that are intersecting
in opposite directions. Consider an optimal solution and let SP1 and SP2 be two such
service paths for object-type i, 0 ≤ i ≤ m. Suppose SP1 connects pij(1) to rih(1)

and SP2 connects pij(2) to rih(2). W.l.o.g. let SP1 be a left-to-right path. We show
that there exists an alternative feasible solution that follows the same route and the
only difference is with respect to the assignment of object i to the arcs of SP1 and
SP2. Some arcs on these paths are assigned object i and the others are turned into
deadheadings. As a consequence, the two new service paths are no longer intersecting
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in opposite directions. For the null object, the new solution is identical to the given
one, but we distinguish differently between the service paths of object 0 and the
deadheadings.

According to our assumptions, there exists a segment (u, v) that is covered by
SP1 and SP2, where SP1 is directed from u to v and SP2 from v to u. The alternative
solution is defined such that rih(1)(rih(2)) is served from pij(2)(pij(1)). It is easy to
verify that the two new service paths consist of exactly those parts in SP1 and SP2 that
do not cover (u, v) and their directions are consistent with the respective directions of
SP1 and SP2. Also, the segment (u, v) on SP1 and SP2 is turned into a deadheading.

In the following, we derive additional properties satisfied by optimal paths.
Definition 3.2. V �(i) ⊆ V i is consecutive if it consists of V i nodes that appear

consecutively on the line.
Definition 3.3. A consecutive partition of V i is a partition of V i into consec-

utive disjoint subsets.
Definition 3.4. A subset of vertices V �(i) ⊆ V i is called balanced if it is consec-

utive and is of even cardinality, where half of its vertices are in P i and the remaining
are in Ri.

Definition 3.5. A subset is minimally balanced if it is balanced and there does
not exist any consecutive partition of the subset into two balanced subsets.

Definition 3.6. The consecutive minimally balanced partition (CMBP) of V i is
the consecutive partition of V i, where each of the subsets in the partition is minimally
balanced.

Note that any feasible solution is associated with m+ 1 sets of service paths, one
set for each object-type. The service paths of object i induce a consecutive balanced
partition of V i defined recursively as follows: (1) the two end points of a service path
belong to the same subset in the partition; (2) all vertices of V i covered by a certain
service path belong to the same subset as the end points of the path; and (3) the
subsets are minimal. It is easy to see that for a given solution the consecutive balanced
partition of V i induced by the service paths of object i is well defined. Moreover, if
the solution does not contain any intersecting in opposite directions service paths for
the same object-type, then all service paths within a set of this partition are in the
same direction.

Theorem 3.7. In any optimal solution that does not contain intersecting in op-
posite directions service paths of object i, the service paths of this object-type (1) induce
the CMBP of V i and (2) have constant total length.

Proof. Suppose Z is an optimal solution that satisfies the property of the theo-
rem. The service paths of object-type i that are associated with solution Z induce a
consecutive balanced partition of V i. We want to show first that the subsets of this
partition are minimally balanced. Assume w.l.o.g. that the leftmost vertex in V i is a
supply vertex s1 ∈ P i. Let Li1 ⊆ V i be the set induced by solution Z that contains s1.

The proof is by induction on the cardinality of V i. The minimum cardinality of
V i is two; i.e., V i consists of a supply vertex and a demand vertex and the theorem
is trivial. According to the inductive hypothesis, the theorem holds for any set of
cardinality less than |V i|. Suppose |V i| > 2. We distinguish between two cases:
(a) No consecutive partition of V i into two balanced subsets exists. Thus, Li1 = V i;
i.e., the partition of V i induced by the service paths of object-type i in Z is into a
single set, which is the CMBP of V i. (b) There exists a consecutive balanced partition
of V i into two subsets: let V i = Vi1 ∪ Vi2 be a consecutive partition of V i, where Vi1
is a minimally balanced subset that contains s1. We will show that Li1 = Vi1 and the
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rest will follow by the inductive hypothesis. Suppose that Vi1 ⊂ Li1 but Vi1 �= Li1.
Since s1 is the leftmost supply vertex of object i on the line, it must serve a demand
vertex to its right. As a consequence, all service paths within Li1 should be from left
to right, otherwise there would be intersecting paths in opposite directions within Li1,
in contradiction to our assumption about Z. Since Vi1 ⊂ Li1 but Vi1 �= Li1, there
should be in Z a supply vertex p ∈ Vi1 that serves a demand vertex r ∈ Li1 − Vi1.
In view of the fact that Vi1 is balanced, at least one of the demand vertices r′ in Vi1
should be served according to Z by a supply vertex s′ ∈ Li1 − Vi1. This contradicts
the assumption that Z does not contain any service paths for object-type i that are
intersecting in opposite directions.

In order to prove the second part of the theorem, we will show that the total
length of the service paths of object i within any subset of the CMBP of V i is constant.
Suppose w.l.o.g. that we are given a minimally balanced subset of the CMBP of V i

for which all service paths are from left to right. Also suppose that x and y are
consecutive vertices in V i, where x is strictly to the left of y. Let lpi(z)(lri(z)) denote
the number of supply (demand) vertices from V i within the subset that are located
to the left or at the location of z. Then, the number of service paths of object i
that cover the segment connecting x to y is lpi(x) − lri(x), which is strictly positive
according to our assumptions. Accordingly, a simple calculation that depends only
on the subset gives the total length of service paths within that subset.

4. The algorithm for the linear track case. In this section we present an
algorithm for finding an optimal policy for linear graphs. As a consequence of the
previous section, an optimal solution exists in which the service paths of each object-
type i, 0 ≤ i ≤ m, induce the CMBP of V i. Let {Vi�}�=1,...,L(i) denote the CMBP of
V i for i = 0, . . . ,m. We now propose an algorithm for computing an optimal routing
policy. The first step in the algorithm is to define a directed graph on V that consists
of those arcs that must appear in such an optimal solution. Each arc in the graph
connects two vertices in Vi� for some i = 0, . . . ,m and � = 1, . . . , L(i).

Definition 4.1. A set Vi� of the CMBP of V i is called a left-set (right-set) if
the number of supply vertices is no smaller (no larger) than the number of demand
vertices of object-type i in any consecutive subset of Vi� that contains the leftmost
vertex of Vi�.

The directed graph G on V is defined by the following algorithm, called Basic
Graph.

ALGORITHM BASIC GRAPH.
Step 0. For i = 0, . . . ,m and � = 1, . . . , L(i) do steps 1 and 2:
Step 1. Let k be the number of demand vertices in Vi�. If Vi� is a left-set

(right-set), then index the demand vertices in Vi� from left to right (right to left) as
{r1, r2, . . . , rk}. Let Gi� initially be a graph with no arcs. Add to Gi� a directed arc
from each supply vertex in P i ∩ Vi� toward the first demand vertex in Ri ∩ Vi� to its
right (left), i.e., the first demand vertex it may serve.

Step 2. If |Vi�| = 2, then stop (the graph Gi� contains a single arc). Otherwise,
set j = 1; while j < k do begin: Count the number of incoming arcs in Gi� to rj . Let
this number be in(j); add in(j) − 1 arcs to Gi� all from rj towards rj+1. endwhile;

Step 3. Let graph G be the composition of all subgraphs Gi� for i = 0, . . . ,m and
� = 1, . . . , L(i).

Remark. Note that in Step 2, Vi� is a subset of the CMBP of V i; thus in(j) > 1
for j ≤ k − 1 and in(k) = 1.

Lemma 4.1. The in-degree equals the out-degree for any of the vertices of graph G.
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Proof. We have to show that the number of incoming arcs equals the number
of outgoing arcs for any vertex v ∈ V . Let v ∈ V , and denote (av, bv) = (k, j) k,
j ∈ S ∪ {0}k �= j. Also suppose that v ∈ Vk� ∩ Vjh. The only arcs incident to v are
arcs in the subgraphs Gk� and Gjh. In Vk�, v is a supply vertex; thus exactly one
arc exits from v in Gk�. In Vjh, v is a demand vertex; thus in Gjh, the number of
outgoing arcs from v is one less than the number of incoming arcs to v. Thus overall,
G satisfies the lemma.

A directed graph may be partitioned into a collection of equivalence classes such
that vertices w and v are in the same class if and only if the graph contains directed
paths from v to w and from w to v. (See section 5.5 in Aho, Hopcroft, and Ullman
(1974).) The subgraph induced by a certain class consists of the vertices in the class
as well as all edges in the graph that connect a pair of vertices in the class. These
subgraphs are called the strongly connected components of the given graph. In light of
Lemma 4.1, the union of the strongly connected components of G results in G itself.

We first demonstrate the algorithm when G is strongly connected: Since G is
Eulerian, there exists an optimal solution that consists of G’s arcs and does not use
the drop option. This is observed by noting that if the number of incoming arcs to
vertex v is k, k > 1, then all incoming arcs to v carry item bv, where k − 1 outgoing
arcs carry item bv. Thus, in k − 1 of the k entrances to v the vehicle continues
with the same item; at one entrance item bv is unloaded and at one exit item av
is loaded. Any Euler tour in G produces an optimal solution by starting at the
depot. The complexity of finding such a tour is linear in the number of arcs of G. A
simple calculation demonstrates that the number of arcs in G carrying item i is at
most k(i)(k(i) + 1)/2. Thus, G contains at most

∑m
i=0 k(i)(k(i) + 1)/2 arcs. Since∑m

i=0 k(i) = N , the maximum number of arcs in G is of order O(N2).
We continue with the general case when G is not necessarily strongly connected,

i.e., G is the union of a number of strongly connected components where each is an
Eulerian subgraph. Up to now, we have not used the fact that the vehicle is empty
along arcs associated with the null object and we have not used the drop option. For
that sake, we extend the term “connectivity:” It is not necessarily the case that for
two different components of G none is reachable from the other, moreover it may well
be that each is reachable from the other. An arc in G may cover intermediate vertices,
thus it consists of a sequence of basic arcs, where a basic arc is defined as a directed arc
connecting two consecutive vertices of V . We distinguish between three types of arcs
in G: (1) arcs of object-type i, i ∈ Sn; (2) arcs of object-type i, i ∈ Sd; and (3) arcs
of the null object. Arcs of no-drop objects should be followed continuously from their
initial vertex to their terminal vertex; i.e., the respective sequence of basic arcs should
occur in the solution consecutively. Arcs of drop-objects should be followed from their
initial vertex to their terminal vertex with possible stops at intermediate vertices for
drops; i.e., the respective basic arcs should be followed at the order they occur in the
sequence, but not necessarily consecutively. The basic arcs of the null object occur in
the solution with no restriction on their order.

Definition 4.2. Let Cs� and Csk be different strongly connected components of
G. Csk is directly reachable from Cs� if at least one of the following conditions holds:
(1) There exists an arc of the null object in G that covers vertices v ∈ Cs� and w ∈ Csk
and is directed from v to w; or (2) there exists an arc in G of object i, i ∈ Sd, whose
tail is in Cs� ∩ V i, and at least one vertex in Csk is covered by this arc. G’s arcs
that allow direct reachability of strongly connected components are called reachability
arcs.
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Definition 4.3. Let Cs1 , C
s
2 , . . . , C

s
n be different strongly connected components

of G. We say that Csn is reachable from Cs1 if Csk is directly reachable from Csk−1 for
k = 2, . . . , n.

Definition 4.4. Two different strongly connected components of G, Cs1 and Cs2 ,
such that each is reachable from the other are said to be weakly connected.

For practical purposes, a maximal weakly connected component is a connected
component since starting at any vertex in the set there exists a closed tour that serves
all vertices in the set, possibly by using the drop option. Therefore, we repartition
V into rougher equivalence classes by grouping the strongly connected components
of G according to the weak connectivity relation. Let Cw1 , C

w
2 , . . . , C

w
k be the weakly

connected components of G, where the depot is assumed to be in Cw1 . In each of these
components identify a closed feasible tour that serves all its vertices: This tour is a
patching of the tours found in the strongly connected components, where the patching
is done along reachability arcs. For that sake, we extend the reachability definition
to weakly connected components.

Definition 4.5. Cwh is said to be reachable from Cw� if Cwh contains a strongly
connected component that is reachable from a strongly connected component contained
in Cw� , � �= h.

Definition 4.6. A weakly connected component of G that is not reachable from
any other weakly connected component is said to be an unreachable component. Let
Cw1 be an unreachable component independently of its reachability from other compo-
nents as the tour should start at the depot.

Definition 4.7. The reachable set of the unreachable component Cw� is the set
of weakly connected components of G that are reachable from Cw� . (Cw� is said to be
reachable from itself.) We note that a weakly connected component of G either may be
an unreachable component or belongs to at least one reachable set of some unreachable
component.

If Cwk is reachable from Cw� , then there exists a feasible closed tour that starts at
Cw� and serves all vertices in Cw� ∪Cwk : The vehicle, while either carrying a droppable
item loaded at Cw� or while being empty, traverses a reachability arc of G that connects
two vertices of Cw� and covers a vertex of Cwk ; in the first case, the item may be dropped
at such a vertex of Cwk . The vehicle may then serve all vertices of Cwk ; in the first
case the vehicle then reloads the droppable item. The vehicle then continues toward
its destination in Cw� . Thus, a closed feasible tour that starts at the unreachable
component (the tour starts in Cw1 at the depot) may be identified within each of the
reachable sets such that all vertices within the set are served. In order to execute this
step, no augmentation of the graph is needed, as it is a patching of the tours that
have been found separately in each of the weakly connected components contained
within the reachable set, where the patching is done along reachability arcs. Thus,
if Cw1 is the only unreachable component, no augmentation of G is required, i.e.,
there exists an optimal solution with total length identical to the total length of G’s
arcs. Otherwise, G must be augmented in order to reach each of the unreachable
components from Cw1 . Each augmentation arc added to G must be traversed twice,
once in each direction. We next propose a minimum cost augmentation technique for
G whose complexity time is O(N2 logN); then we show how the complexity may be
reduced to O(N logN) by using the fact that the vertices are located on a line.

Define a directed graph T on the set of vertices that correspond one-to-one to the
unreachable components of G. Let node � of T represent Cw� (node 1 of T corresponds
to Cw1 ). There exists a directed arc in T from node � to node k, k �= 1, if and only
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if there exists a pair of vertices vj and vh in V such that vj is in the reachable set
of Cw� and vh is in the unreachable component Cwk . The length of this arc, denoted
by δ(�, k), is defined as the length of the shortest arc connecting the reachable set
of Cw� and unreachable component Cwk . The minimum cost augmentation of G may
be found by solving a minimum directed spanning tree (MDST) on T rooted at node
1. The MDST was solved independently by Chu and Liu (1965), Edmonds (1967),
and Bock (1971). The complexity of their algorithm on a general directed graph with
N nodes and |E| edges is O(min{|E| logN,N2}). The number of nodes of T is the
number of unreachable components which is at most O(N). Thus, T contains at most
O(N2) edges. Therefore, the complexity of the MDST algorithm on T is O(N2 logN).
Below we show that due to the linearity of G, we may apply the MDST algorithm on
a subgraph of T that contains at most O(N) edges. As a result the complexity of this
step will be reduced to O(N logN).

Definition 4.8. A vertex vj ∈ V ∩ S, j > 1, is called extreme to the left in S if
and only if vj−1 �∈ S; a vertex vj ∈ V ∩ S, j < N , is called extreme to the right in S
if and only if vj+1 �∈ S. A vertex is called extreme if it is either extreme to the left or
extreme to the right.

Let vj be an extreme to the left (right) vertex in the reachable set of the unreachable
component Cw� . Let vh ∈ V , h < j(h > j), be the rightmost (leftmost) vertex that
belongs to some unreachable component Cwk , k �∈ {1, �}. If such a vertex h exists, then
we say that the extreme vertex vj and the reachable set of Cw� have a neighboring
unreachable component Cwk . Each extreme vertex may have at most two neighboring
unreachable components (one to its left and one to its right), but a reachable set
may have several neighboring unreachable components. Due to the linearity of the
track, there exists a minimum cost augmentation of G using only those edges of T
that connect reachable sets to their neighboring unreachable components. Indeed, it is
sufficient to include in T only edges connecting a vertex � to a vertex k if and only
if Cwk , k �∈ {1, �}, is a neighboring unreachable component of the reachable set of Cw� .
The length of such an edge is given by δ(�, k) = min{d(v, w): v is an extreme vertex
in the reachable set of Cw� and w ∈ Cwk }. According to the new procedure, T now
contains a subset of the arcs that were previously contained in T . An arc of T that is
eliminated is not needed in the augmentation of G as it is too expensive and can be
replaced by a cheaper sequence of those arcs that are left in T . It is easily verified that
any unreachable component Cwk can be reached from any reachable set Cw� , k �∈ {1, �},
via those arcs that are left in T . This property ensures that T contains a directed
spanning tree. The number of directed arcs in T is at most of size O(N), as each
extreme vertex may have at most two neighboring unreachable components.

Let MDST(T ) be the MDST length of T , and let A(T ) be its corresponding set
of arcs on the line. Along the arcs of A(T ) the vehicle travels empty twice, once
in each direction. There exists an optimal solution for the problem whose length is
L(G) + 2MDST(T ), where L(G) is the total length of all arcs in G. The complexity
of the whole procedure is O(N2). Below we summarize the complete algorithm.

THE SWAPPING ALGORITHM FOR THE LINEAR TRACK CASE.
Step 1. Apply the Basic Graph algorithm on V . Let G be the resulting graph,

and let L(G) be its total length.
Step 2. Identify the strongly connected components of G.
Step 3. If the system contains the null object or Sd �= ∅, then partition the strongly

connected components into equivalence classes according to the weak connectivity
relation. Let Cw1 , C

w
2 , . . . , C

w
k be the weakly connected components, with the depot
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at Cw1 . Within each of them find a closed feasible tour that serves all its vertices,
using only G’s arcs where some of them may be broken into basic arcs. Identify the
unreachable components, the reachable sets, and a corresponding set of reachability
arcs.

Step 4. Define a directed graph T on the set of nodes that corresponds one-to-one
to the unreachable components. A directed arc from node � to node k in T , k �= 1,
exists if and only if the unreachable component Cwk is a neighbor of some extreme
vertex in the reachable set of the unreachable component Cw� . The distance between
these nodes is determined by the minimum distance between an extreme vertex in the
reachable set of Cw� and an extreme vertex in its neighboring unreachable component
Cwk . Let MDST(T ) be the MDST length on T , and let A(T ) be the corresponding set
of arcs in the linear track.

Step 5. Use two copies of A(T )’s arcs and reachability arcs that connect weakly
connected components within the same reachable set to patch the closed tours asso-
ciated with the weakly connected components. Along A(T )’s arcs the vehicle travels
empty. Starting at the depot, follow a feasible closed tour that serves all vertices by
traversing G’s arcs and twice the arcs of A(T ) once in each direction. We conclude the
paper with a proof that the above algorithm solves the swapping problem optimally.

Theorem 4.9. The swapping algorithm for the linear track case solves the swap-
ping problem on a line optimally.

Proof. Any feasible solution is the union of service paths for each object-type
i ∈ {0, . . . ,m} and possibly some deadheadings; see Anily and Hassin (1992). As
shown in Theorems 3.1 and 3.7, any feasible solution can be transformed into a feasible
solution of the same cost, where the length of service paths of each object-type i ∈
{0, . . . ,m} is separately minimized and possibly some deadheadings. The minimum
cost service paths are obtained by algorithm BASIC GRAPH G. A minimum cost
set of deadheadings is found by applying the MDST procedure on T . Two copies of
each such deadheading is added to the BASIC GRAPH G in order to preserve the
final graph as Eulerian while making it connected.
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Abstract. The celebrated semidefinite programming algorithm for MAX CUT introduced by
Goemans and Williamson was known to have a performance ratio of at least α = 2

π
min0<θ≤π

θ
1−cos θ

(0.87856 < α < 0.87857); the exact performance ratio was unknown. We prove that the performance
ratio of their algorithm is exactly α. Furthermore, we show that it is impossible to add valid linear
constraints to improve the performance ratio.
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1. Introduction. The performance ratio of a randomized algorithm for a max-
imization problem is defined as follows. Let W (I) be the (random) weight of the
feasible solution it produces on instance I and let OPT (I) be the weight of the opti-
mal solution for instance I. The performance ratio is then

inf
E[W (I)]

OPT (I)
,

where the infimum is over instances with OPT (I) positive.
In 1994, M. X. Goemans and D. P. Williamson published a new approximation

algorithm for MAX CUT, the NP-complete problem of finding a maximum cut in a
nonnegatively weighted graph [GW]. (Readers unfamiliar with [GW] should read the
description of the algorithm in section 1.1 before continuing.) Much of the mathe-
matical programming community turned its attention to this new algorithm, not only
because it improved the performance ratio for MAX CUT from 0.5 to at least 0.87856,
but also because Goemans and Williamson’s paper was the first use of semidefinite
programming in the area of approximation algorithms. Naturally researchers asked
how far semidefinite programming could go.

In this paper, we analyze MAX CUT and the semidefinite programming algorithm
proposed by Goemans and Williamson, hereafter called Algorithm GW. Goemans and
Williamson proved a lower bound of α = 2

π min0<θ≤π
θ

1−cos θ (0.87856 < α < 0.87857)
on its performance ratio, a huge improvement over the 0.5 known before. But exactly
how good is Algorithm GW? At no point did they prove an upper bound on the
performance ratio of Algorithm GW. Conceivably the performance ratio of Algorithm
GW substantially exceeded α. We will prove, in fact, that its performance ratio is
exactly α.

In addition, we study the effect of the addition of linear constraints to the semidef-
inite program of [GW]. For example, several authors have proposed adding to the
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semidefinite program a family of 4
(
n
3

)
linear constraints, in the hope of narrowing the

gap between the optimal value of the semidefinite program and the weight of a maxi-
mum cut. These constraints, given in section 2 and called the triangle constraints, are
valid for all cuts (that is, when the vector variables are actually the integers ±1). It is
known [BM] that with the triangle constraints, the optimal value of the semidefinite
program is exactly the weight of a maximum cut if the input graph does not contain
K5 as a minor (in particular, if the input graph is planar).

We will prove that the addition of any family of constraints, which, like the
triangle constraints, are linear in the dot products and valid for all cuts, cannot
improve the performance ratio; it will be exactly α, even with those constraints.

A caveat to the reader: We analyze the performance ratio of Algorithm GW,
which randomly produces one cut. Should we instead run Algorithm GW many times
and output the best of the random cuts produced, the current analysis says nothing
about the performance ratio of the new algorithm.

In addition to the performance ratio, another interesting quantity to study is the
“integrality ratio”: the minimum, over all weighted graphs, of the ratio between the
weight of a maximum cut and the optimal value of the semidefinite relaxation for that
graph. Unlike the performance ratio, which is affected both by the relaxation and the
rounding procedures, the integrality ratio depends, of course, only on the relaxation.
Goemans and Williamson did study the integrality ratio for their semidefinite relax-
ation, noting that it is particularly bad for the cycle C5. We caution the reader that
the results in the present paper say nothing about the integrality ratio. In fact, for
the graphs we will construct, the weight of a maximum cut exactly equals the optimal
value of the semidefinite program.

1.1. A description of Algorithm GW. Here we describe the algorithm of
Goemans and Williamson. For more details, see [GW].

The Goemans and Williamson algorithm applies to MAX CUT, the problem of
partitioning the vertices of a weighted graph G = (V,E), V = {1, 2, . . . , n}, into two
sets, so as to maximize the total weight of the edges across the cut. Let us use wij ≥ 0
to denote the nonnegative weight of the edge between vertices i and j, with wij = 0
if {i, j} �∈ E.

This problem can be rephrased as follows. Assign an integer xi ∈ {−1,+1} to
each vertex i, −1 representing the left side of the cut and +1 the right side, so as
to maximize the sum, over all i < j, of wij(1 − xixj)/2. The reason this works is
that (1 − xixj)/2 is 1 if i and j are on opposite sides of the cut and 0 if they’re
on the same side. Since MAX CUT is NP-complete, clearly one cannot solve this
problem exactly in polynomial time (unless P = NP). However, one can relax this
program to a polynomial time-solvable one, as follows. Let vi be an n-dimensional
vector whose first component is xi and whose others are 0. Clearly ||vi|| = 1 (||v||
being the Euclidean norm of v) and the objective function

∑
i<j

wij
1 − xixj

2

can be rewritten as ∑
i<j

wij
1 − vi · vj

2

for these vectors, where the usual multiplication of integers xi and xj has been replaced
by the dot product of vectors vi and vj ∈ R

n. Now consider the problem (SD): Find
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vectors v1, v2, . . . , vn ∈ R
n to

max
∑
i<j

wij
1 − vi · vj

2

and such that ||vi|| = 1 for all i.
Since the vectors vi given above satisfy ||vi|| = 1, they are feasible for this pro-

gram. This makes (SD) a relaxation of MAX CUT and thus the optimal value of this
program is at least as large as the weight of a maximum cut in G.

Interestingly, (SD) can be (almost exactly) solved in polynomial time. Before we
sketch how, let us describe what we can do with the solution v1, v2, . . . , vn, which we
assume, for this summary, is the sequence of exactly optimal vectors. Somehow, we
want to convert the sequence of n vectors into a cut (or into a sequence of n −1’s
and +1’s); that is, we want to round the vectors to an integral solution, so that the
total weight of the edges across the cut is close to the value of the objective function
in (SD).

The rounding procedure proposed by Goemans and Williamson is remarkably
simple: just choose a random hyperplane through the origin, putting all the vertices
on one side of the hyperplane on the “left” side L of the cut and the remainder on
the “right” side R. More formally, choose a random unit vector r (the normal to the
random hyperplane) and define L = {i|r · vi ≤ 0} and R = {i|r · vi > 0}. What is the
expected weight of this cut? By linearity of expectation, the expected weight is the
sum, over all i < j, of wij times the probability that i and j are on opposite sides of
the cut. It is not hard to prove that the probability that i and j are on opposite sides
of the cut is proportional to the angle arccos(vi · vj) between vi and vj ; in fact, the
probability is exactly arccos(vi · vj)/π. Thus the expected value E[W ] of the weight
W of the random cut is exactly

∑
i<j

wij
arccos(vi · vj)

π
.

However, the optimal value z∗P of program (SD) (it does have an optimum) is exactly

∑
i<j

wij
1 − vi · vj

2
.

Thus, by a term-by-term analysis, we have

E[W ]

z∗P
=

∑
i<j wij arccos(vi · vj)/π∑
i<j wij(1 − vi · vj)/2

≥ min
i<j

arccos(vi · vj)/π
(1 − vi · vj)/2

.

Letting

α =
2

π
min

0<θ≤π

θ

1 − cos θ

(θ representing arccos(vi · vj)), we have

E[W ] ≥ α · z∗P ,
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and, since z∗P is at least as large as the weight OPT of a maximum cut, we have

E[W ] ≥ α ·OPT.

Fortunately, α ∈ (0.87856, 0.87857). It follows that Algorithm GW is an α-approximation
algorithm for MAX CUT.

Now we return to semidefinite programming. To understand semidefinite pro-
gramming, one must understand what it means for an n× n symmetric matrix Y to
be positive semidefinite. There are three equivalent definitions:

1. All the eigenvalues of Y are nonnegative. (Recall that the eigenvalues of any
symmetric matrix are real.)

2. For any x ∈ R
n, xTY x ≥ 0.

3. There is an n× n matrix B such that Y = BTB.
A semidefinite program is an optimization problem of the following sort. Find

reals y11, y12, . . . , ynn so as to maximize cT y (where y = (y11, y12, y13, . . . , ynn)
T )

subject to a finite number of linear constraints aTi y ≥ bi and such that the n × n
matrix Y = (yij) is symmetric and positive semidefinite. The only differences between
semidefinite programming and linear programming are the immaterial difference that
the number of variables is a perfect square and the crucial difference that the matrix
defined by the variables must be symmetric and positive semidefinite.

Semidefinite programs can be (almost exactly) solved in polynomial time; for
more details, see [GW]. How does this help us? By the third definition of “positive
semidefinite” we see that if Y is symmetric and positive semidefinite, then there is an
n× n B such that Y = BTB, and if B is an n× n matrix, then Y = BTB is positive
semidefinite. To solve program (SD) on variables v1, v2, . . . , vn ∈ R

n, we instead solve
the following problem: Find a symmetric positive semidefinite matrix Y = (yij) to

max
∑
i<j

wij
1 − yij

2

such that yii = 1 for all i.
Given Y , we can find a B such that Y = BTB in polynomial time. Letting vi

be the ith column of B, we have vi · vj = yij and ||vi|| = 1, exactly what we wanted.
Conversely, given vectors v1, v2, . . . , vn ∈ R

n, each of Euclidean length 1, we can build
a matrix B whose ith column is vi and then let Y = BTB; we will have Y symmetric
and positive semidefinite, vi · vj = yij and yii = 1 again. Thus, program (SD) can
be phrased as a semidefinite program and thus (almost exactly) solved in polynomial
time.

2. Bounds on the performance ratio. The troublesome graphs for the
Goemans–Williamson algorithm are the graphs J(m, t, b) defined as follows. The
vertex set of J(m, t, b) is the set of all

(
m
t

)
t-element subsets of {1, 2, . . . ,m}, two

t-subsets S, T being adjacent if and only if |S ∩ T | = b and S �= T . (These graphs are
similar to the Kneser graphs K(m, t, b) used in [KMS], which have the same vertex
set but with S and T adjacent if and only if |S ∩ T | ≤ b.) It will become clear that
the smallest eigenvalue of the adjacency matrix of J(m,m/2, b) plays a crucial role,
so we now study the eigenvalues of J(m, t, b). For s = 0, 1, 2, . . . , t, let

αs =
∑
r≥0

(−1)s−r
(
s

r

)(
t− r

b− r

)(
m− t− s+ r

t− b− s+ r

)

with the usual convention that
(
u
v

)
= 0 if v < 0.
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Theorem 2.1. Let 0 ≤ t ≤ m/2 and 0 ≤ b ≤ t. Then for s = 0, 1, 2, . . . , t, αs
occurs as an eigenvalue of J(m, t, b) with multiplicity

(
m
s

)
−
(
m
s−1

)
.

See [Knuth] for a beautiful proof of this theorem, or see [Delsarte]. Notice that
since

∑t
s=0[

(
m
s

)
−
(
m
s−1

)
] =

(
m
t

)
, these are all the eigenvalues of J(m, t, b).

In fact, we will need only J(m,m/2, b) for even positive m’s.
Corollary 2.2. If m is an even positive integer, 0 ≤ b ≤ m/2, then the

eigenvalues of J(m,m/2, b) are β0, β1, . . . , βm/2 (each with some positive multiplicity),
where

βs =
∑
r≥0

(−1)s−r
(
s

r

)(
m/2 − r

b− r

)(
m/2 − s+ r

b

)
.

The next theorem gives the exact value of the smallest eigenvalue of J(m,m/2, b).
Theorem 2.3. Let m be an even positive integer and let 0 ≤ b ≤ m/12. The

smallest eigenvalue of J(m,m/2, b) is

(
m/2

b

)2 [
4b

m
− 1

]
.

We defer the proof of Theorem 2.3. For now, let us say only that a simple

calculation gives β1 =
(
m/2
b

)2 [ 4b
m − 1

]
; thus proving Theorem 2.3 is the same as

proving that β1 is the smallest of all the βs’s.
The Goemans–Williamson semidefinite program to approximately solve the MAX

CUT instance with edge weight wij between edges i and j (wij = wji for all i, j and
wii = 0 for all i) is, as mentioned above, program (SD): Find reals yij to

max zP =
∑
i<j

wij
1 − yij

2
,

subject to yii = 1 for all i and Y = (yij) is n×n and symmetric positive semidefinite.
In our case, we use wij = 1 if the ith set S is adjacent in J(m,m/2, b) to the

jth set T (and i �= j), and 0 otherwise. Alternatively, wS,T = 1 if |S ∩ T | = b (and
S �= T ), and 0 otherwise. Thus the matrix of weights is exactly the adjacency matrix
of J(m,m/2, b).

Each vertex in J(m,m/2, b), being a subset S of {1, 2, . . . ,m} of weight m/2,
can be represented by an m-vector of +1’s and −1’s, with the ith component +1 if
i ∈ S and the ith component −1 if i �∈ S, then scaled by 1/

√
m, so that the resulting

m-vector vS has unit length. Now, from the vS ’s, build an m × n matrix B with
the column indexed by S being the vector vS ; then set Y = BTB. Y is symmetric
positive semidefinite, is n × n, and has yii = 1 for all i. Therefore Y is a feasible
solution to (SD).

In fact, Y is an optimal solution to (SD), if b ≤ m/12.
Theorem 2.4. If b ≤ m/12 and m is even, then Y = BTB is an optimal solution

to (SD).
Proof. To show that a feasible solution to a semidefinite program is optimal,

we use the dual of the semidefinite program [GW]. Let A = (wij) be the matrix of
weights on the edges of the n-vertex graph. Let Wtot =

∑
1≤i<j≤n wij . The dual to

the semidefinite program (SD) is the semidefinite program (D), as follows. Find reals
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γ1, γ2, . . . , γn to

min zD =
1

2
Wtot +

1

4

n∑
i=1

γi,

such that

A+ diag(γ1, γ2, . . . , γn)

is positive semidefinite, where diag(γ1, γ2, . . . , γn) is the diagonal matrix whose ith
diagonal entry is γi. It is known [GW] that zP ≤ zD for any pair of respectively
(primal, dual) feasible solutions. In fact, (SD) and (D) attain optimal values z∗P and
z∗D, respectively, and z∗P = z∗D.

Therefore, to prove that a particular feasible solution Y for (SD) is optimal,
it suffices to exhibit a feasible solution (γ1, γ2, . . . , γn) to (D) such that zP = zD.
Let γ be the negation of the smallest eigenvalue of J(m,m/2, b). By Theorem 2.3,

γ =
(
m/2
b

)2 [
1 − 4b

m

]
. A symmetric matrix being positive semidefinite if and only if

its eigenvalues are nonnegative, the choice of γ guarantees that γi = γ for all i is a
feasible solution to (D).

Let zP be the (primal) cost of the primal feasible Y given above and let zD be
the (dual) cost of dual feasible (γ, γ, γ, . . . , γ). We prove that zP = zD, so that both
are optimal.

In this formulation,

zP =
1

4

∑
|S|=|T |=m/2

wS,T (1 − vS · vT )

=
1

4

∑
|S|=|T |=m/2,|S∩T |=b

(1 − vS · vT ).

By symmetry, we can take S = {1, 2, . . . ,m/2} and infer that

zP =
1

4
n
∑

⎡
⎢⎣1 − 1√

m
(1, 1, . . . , 1︸ ︷︷ ︸

m/2

,−1,−1, . . . ,−1︸ ︷︷ ︸
m/2

) · vT

⎤
⎥⎦

=
1

4
n

⎡
⎢⎣
(
m/2

b

)2

− 1√
m

∑
(1, . . . , 1︸ ︷︷ ︸

m/2

,−1, . . . ,−1︸ ︷︷ ︸
m/2

) · vT

⎤
⎥⎦

(where both summations are over all T such that |T | = m/2 and |T∩{1, 2, . . . ,m/2}| =
b)

=
1

4
n

[(
m/2

b

)2

− 1√
m

(
m/2

b

)2
1√
m

(4b−m)

]

=
n

2

(
m/2

b

)2 [
1 − 2b

m

]
.

Also,

zD =
1

2
Wtot +

1

4

n∑
i=1

γi
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=
1

4
n

(
m/2

b

)2

+
1

4
nγ

=
n

4

(
m/2

b

)2

+
n

4

(
m/2

b

)2 [
1 − 4b

m

]

=
n

2

(
m/2

b

)2 [
1 − 2b

m

]
.

It follows that zP = zD and that, by the discussion earlier in this proof, both are
optimal.

Now let us study in more detail the optimal system of vectors vS given above.
Define yS = vS

√
m. Since the lth component of vS is ±1/

√
m, each component of yS

is ±1. Let us define a sequence of cuts Cl = (Sl, S̄l), 1 ≤ l ≤ m, with Sl = {S|S �
l, |S| = m/2}. Letting (yS)l denote the lth component of vector yS , notice that for
all S

S ∈ Sl ⇐⇒ l ∈ S ⇐⇒ (yS)l = +1.

When we solve the semidefinite program, we hope that the optimal vectors have
the following property: There is an l such that each vector is ±1 in component l,
and 0 elsewhere; such vectors correspond naturally to cuts, and any solution of that
form would be a maximum cut, since its weight would equal that of the optimum of
the semidefinite program. Of course, the vectors yS given above have ±1 in every
coordinate. This means that each vector vS is the sum, over l = 1, 2, 3, . . . ,m, of a
vector which is ±1 in component l and 0 elsewhere (and then scaled down to unit
length). The optimal family (vS) can be viewed as an “average” of families of vectors
representing the cuts C1, C2, . . . , Cm. This motivates the following.

Lemma 2.5. If b ≤ m/12, then the optimal value z∗P of the semidefinite program
is the average of the weights of cuts C1, C2, . . . , Cm.

Proof. Where (vS)l and (yS)l denote the lth coordinates of vS and yS , respectively,
we have

z∗P =
1

2

∑
S,T

wS,T
1 − vS · vT

2

=
1

2

∑
S,T

wS,T
1

m

m∑
l=1

[
1 −m(vS)l(vT )l

2

]

=
1

m

1

2

∑
S,T

wS,T

m∑
l=1

[
1 − (yS)l(yT )l

2

]

=
1

m

m∑
l=1

⎡
⎣1

2

∑
S,T

wS,T

[
1 − (yS)l(yT )l

2

]⎤
⎦ .

Since the weight of cut Cl is exactly

1

2

∑
S,T

wS,T

[
1 − (yS)l(yT )l

2

]
,

we are done.
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Lemma 2.6. Each cut Cl is a maximum cut (if b ≤ m/12).
Proof. Because (SD) is a relaxation of MAX CUT, z∗P is an upper bound on the

weight of any cut. If any cut Cl were not a maximum cut, its weight would be strictly
less than z∗P and so would the average weight of these cuts.

We have proven the following theorem.
Theorem 2.7. The weight of a maximum cut in J(m,m/2, b) is exactly

z∗P =
n

2

(
m/2

b

)2 [
1 − 2b

m

]

if m is even and b ≤ m/12.
Now we study what happens when additional constraints are added to the semidef-

inite program. The results on this subject were obtained in collaboration with Uri
Feige, who showed how the author’s original argument, which applied only to the
triangle constraints, could be generalized.

Where aij , 1 ≤ i < j ≤ n, and b are reals, let us call a constraint

∑
i<j

aij(zi · zj) ≥ b

valid if it is satisfied whenever each zi is the integer ±1. (Whether a linear constraint
is valid doesn’t depend, of course, on the wij ’s.)

If

b′ =
−b+

∑
i<j aij

2
,

then by a simple linear transformation,

∑
i<j

aij(zi · zj) ≥ b ⇐⇒
∑
i<j

aij
1 − zi · zj

2
≤ b′.

Now build a complete graph Ha on {1, 2, . . . , n} with the (possibly negative) weight
of edge {i, j} being aij . Validity of the constraint is equivalent to saying that the
weight of a maximum cut in Ha is at most b′ (where we are including the trivial cut
with one empty side as a cut).

Now suppose that n =
(
m
m/2

)
for some positive even m. Label the vectors vS

above as v1, v2, . . . , vn arbitrarily. Define yi = vi
√
m.

Theorem 2.8. Let aij, for all vertices 1 ≤ i < j ≤ n, and b be reals such that
the constraint ∑

i<j

aij(zi · zj) ≥ b

is valid. Then the constraint is necessarily satisfied when zi = vi for all i.
Proof.

∑
i<j

aij(vi · vj) =
∑
i<j

aij

m∑
l=1

(vi)l(vj)l

=
1

m

m∑
l=1

⎛
⎝∑
i<j

aij(yi)l(yj)l

⎞
⎠ .
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Clearly (yi)l ∈ {−1,+1} for all vertices i. Therefore∑
i<j

aij(yi)l(yj)l ≥ b.

Hence

1

m

m∑
l=1

∑
i<j

aij(yi)l(yj)l ≥
1

m

m∑
l=1

b = b.

Theorem 2.8 has the following consequence. Since the vectors v1, . . . , vn satisfy
all valid constraints and happen to be optimal for the semidefinite program (SD)
associated with J(m,m/2, b) (at least if 0 ≤ b ≤ m/12), they are obviously optimal
in the augmented program for J(m,m/2, b) (if b ≤ m/12). Of course, the procedure
that rounds the vi’s will proceed as before. However badly the algorithm rounded the
vectors (vi) beforehand, it will round them just as badly afterward.

For example, consider the triangle constraints (see [FG, GW] as well as [DL,
Chapter 27] and the references therein). For each triple (i, j, k) of vertices, 1 ≤ i <
j < k ≤ n,

+zi · zj + zi · zk + zj · zk ≥ −1,

−zi · zj − zi · zk + zj · zk ≥ −1,

−zi · zj + zi · zk − zj · zk ≥ −1,

+zi · zj − zi · zk − zj · zk ≥ −1.

The second, third, and fourth constraints in each block of four are obtained from the
first one by negating zi, zj , or zk, respectively. The reader can verify that these four
constraints are valid. (The key is that given any three integers in {−1,+1}, not all
three pairwise products can be −1.) It follows from Theorem 2.8, if n =

(
m
m/2

)
, that

the vectors zi = vi satisfy these vector constraints.
For another example, suppose we augment (SD) by adding all infinitely many

possible valid constraints. That is, for each a = (aij), 1 ≤ i < j ≤ n, we build a
weighted complete graph Ha on {1, 2, . . . , n}, with weight aij on edge {i, j}. We then
calculate the maximum weight b′ of a (possibly trivial) cut in Ha and add a constraint

∑
i<j

aij
1 − vi · vj

2
≤ b′.

This constraint is evidently valid, and furthermore, by looking at all a’s, we are includ-
ing all possible valid constraints (except that we are using the best possible right-hand
side for each a). By Theorem 2.8, if n =

(
m
m/2

)
, then the vectors v1, v2, . . . , vn will

satisfy all the infinitely many additional constraints (of which the triangle constraints
are but a subset) and, being optimal for (SD) for J(m,m/2, b), will still be optimal
afterward (if b ≤ m/12).

Now let us calculate just how badly Algorithm GW performs on J(m,m/2, b),
keeping in mind that the addition of more valid inequalities would not improve the
outcome.

Lemma 2.9. The expected value of the weight W of the random cut produced from
Y and the vS’s is exactly

n

2

(
m/2

b

)2
1

π
arccos

[
4b

m
− 1

]
.
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Proof. The expected weight of the cut is

E[W ] =
1

2

∑
S,T :|S|=|T |=m/2

wS,T · arccos(vS · vT )/π

=
1

2

∑
S,T :|S|=|T |=m/2,|S∩T |=b

arccos(vS · vT )/π.

By symmetry, we can take S = {1, 2, . . . ,m/2} and get

E[W ] =
1

2
n
∑ 1

π
arccos (vS · vT ) ,

where the summation is over all T such that |T | = m/2 and |T ∩{1, 2, . . . ,m/2}| = b.
Thus

E[W ] =
n

2

(
m/2

b

)2
1

π
arccos

[
4b−m

m

]
.

Since we know that a maximum cut has weight exactly

n

2

(
m/2

b

)2 [
1 − 2b

m

]

if b ≤ m/12, by Lemma 2.9 the ratio of E[W ] to the weight of a maximum cut is
exactly

1
π arccos

[
4b
m − 1

]
1 − 2b

m

.

Where θ = arccos[ 4bm − 1], the ratio is 2
π

θ
1−cos θ . But α = min0<θ≤π

2
π

θ
1−cos θ . By

choosing b, m, and hence θ auspiciously, we will approach the α of [GW].
Theorem 2.10. For each ε > 0, there are b and m, m even and positive and

0 ≤ b ≤ m/12, such that the expected weight of the cut produced by Algorithm GW
applied to J(m,m/2, b) is at most α+ ε times the weight of a maximum cut.

Proof. A simple calculation shows that the unique θ∗ that achieves the minimum
value in the right-hand side of α = min0<θ≤π

2
π

θ
1−cos θ corresponds to a value of b

which is less than m/12.5 and hence is safely away from m/12. Because 2
π

θ
1−cos θ is

continuous, we can find a δ > 0 so that if θ ∈ [θ∗ − δ, θ∗ + δ], then 2
π

θ
1−cos θ ≤ α+ ε.

We can certainly choose a rational γ < 1
12.5 such that θ = arccos(4γ − 1) lies in

[θ∗ − δ, θ∗ + δ]. Then we choose m even such that b = γm is an integer. But 2
π

θ
1−cos θ

is precisely the ratio between E[W ] and the weight of a maximum cut.
Last, we prove Theorem 2.3.
Proof. We must prove that the smallest eigenvalue of J(m,m/2, b) is

(
m/2

b

)2 [
4b

m
− 1

]
,

provided that m is even and that 0 ≤ b ≤ m/12. Recall from Corollary 2.2 that the
eigenvalues of J(m,m/2, b) are β0, β1, . . . , βm/2, where

βs =
∑
r

(−1)s−r
(
s

r

)(
m/2 − r

b− r

)(
m/2 − s+ r

b

)
.
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Since

β1 =

(
m/2

b

)2 [
4b

m
− 1

]
,

we must show that β1 ≤ βs for s = 0, 1, 2, . . . ,m/2.
Fix s, 0 ≤ s ≤ m/2. Given r, let

tr =

(
m/2 − r

b− r

)(
m/2 − s+ r

b

)
≥ 0

so that

βs = (−1)s
∑
r

(−1)r
(
s

r

)
tr.

If s is even, then

βs ≥ −
∑
r odd

(
s

r

)
tr,

and if s is odd, then

βs ≥ −
∑
r even

(
s

r

)
tr.

Let us assume that b ≤ m/2 − s+ r and that b ≥ r, for otherwise tr = 0. Then

tr(
m/2
b

)2 =
(m/2 − r)!

(m/2)!

(m/2 − s+ r)!

(m/2)!

b!

(b− r)!

(m/2 − b)!

(m/2 − s+ r − b)!
.(2.1)

The product of the first and third fractions equals
[

b(b− 1)(b− 2) · · · (b− r + 1)

(m2 )(m2 − 1)(m2 − 2) · · · (m2 − r + 1)

]
,(2.2)

while the product of the second and fourth equals
[
(m2 − b)(m2 − b− 1)(m2 − b− 2) · · · (m2 − s+ r − b+ 1)

(m2 )(m2 − 1)(m2 − 2) · · · (m2 − s+ r + 1)

]
.(2.3)

It is easy to verify that for 0 ≤ i < m/2,

b− i
m
2 − i

≤ b
m
2

and

m
2 − b− i
m
2 − i

≤
m
2 − b
m
2

.

Therefore

tr(
m/2
b

)2 ≤
(

2b

m

)r (
1 − 2b

m

)s−r
.
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This is true whether b ≤ m/2 − s+ r and b ≥ r or not. Let γ = b/m ≤ 1/12. Then

tr(
m/2
b

)2 ≤ (2γ)r(1 − 2γ)s−r.

For any p, let

x =
∑
odd r

(
s

r

)
pr(1 − p)s−r

and

y =
∑

even r

(
s

r

)
pr(1 − p)s−r.

Then x+ y = 1 and −x+ y = (−p+ (1 − p))s = (1 − 2p)s. It follows that

y = 1/2 + (1/2)(1 − 2p)s

and

x = 1/2 − (1/2)(1 − 2p)s.

Hence

∑
odd r

(
s

r

)
(2γ)r(1 − 2γ)s−r = 1/2 − (1/2)(1 − 4γ)s

and

∑
even r

(
s

r

)
(2γ)r(1 − 2γ)s−r = 1/2 + (1/2)(1 − 4γ)s.

Now

tr(
m/2
b

)2 ≤ (2γ)r(1 − 2γ)s−r.

So, if s is even,

βs ≥ −
[∑

odd r

(
s

r

)
(2γ)r(1 − 2γ)s−r

](
m/2

b

)2

= −
[
1

2
− 1

2
(1 − 4γ)s

](
m/2

b

)2

≥ −
[
1

2
+

1

2
(1 − 4γ)s

](
m/2

b

)2

;

if s is odd we have

βs ≥ −
[
1

2
+

1

2
(1 − 4γ)s

](
m/2

b

)2

.
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So, in either case,

βs ≥ −
[
1

2
+

1

2
(1 − 4γ)s

](
m/2

b

)2

.

Now we need a technical fact.
Fact 2.11. If p ∈ [0, 1/3] and s ≥ 4, then (1 − p)s ≤ 1 − 2p.
Proof (sketch). Let f(p) = (1 − p)s/(1 − 2p) for p ∈ [0, 1/3]. Clearly f(0) = 1.

It is not hard to see that f ′(p) ≤ 0 if and only if p ≤ s−2
2s−2 , and s ≥ 4 implies that

(s− 2)/(2s− 2) ≥ 1/3.
By the fact, because γ ≤ 1/12, (1 − 4γ)s ≤ 1 − 8γ if s ≥ 4. Thus

βs ≥ −
[
1

2
+

1

2
(1 − 8γ)

](
m/2

b

)2

= (4γ − 1)

(
m/2

b

)2

=

[
4b

m
− 1

](
m/2

b

)2

,

and we are finished, in the case s ≥ 4.

Now we must dispense with s = 0, 1, 2, 3 by showing that βs ≥ β1 =
(
m/2
b

)2 [ 4b
m − 1

]
for s = 0, 1, 2, 3. Notice that if b = 0, then for any even m, βs = (−1)s. This means
that the smallest eigenvalue is −1, as it should be. In what follows, we assume that
m ≥ 12, for otherwise b ≤ m/12 makes b = 0.

The s = 0 case is first. β0 =
(
m/2
b

)2
, the degree of a vertex in J(m,m/2, b). Since

this is positive and
(
m/2
b

)2 [ 4b
m − 1

]
is negative, this part is easy.

The s = 1 case is trivial.
The s = 2 case is still not hard.

β2(
m/2
b

)2 =
(m2 − b)

m
2

(m2 − b− 1)
m
2 − 1

− 2
b
m
2

(m2 − b)
m
2

+
b
m
2

(b− 1)

(m2 − 1)
.

Since β1 =
(
m/2
b

)2 [ 4b
m − 1

]
< 0, it suffices to prove that

(m2 − b)
m
2

(m2 − b− 1)
m
2 − 1

≥ 2
b
m
2

(m2 − b)
m
2

.

That
m
2 − b− 1
m
2 − 1

≥ 2b
m
2

holds follows from b ≤ m/12 and m ≥ 12. This means that

(m2 − b)
m
2

(m2 − b− 1)
m
2 − 1

≥ 2
b
m
2

(m2 − b)
m
2

,

and the proof of the case s = 2 is complete.
Now we attack s = 3. Since tr ≥ 0 for all r and

β3 = −
3∑
r=0

(−1)r
(

3

r

)
tr,
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the only possibly negative terms are the ones having r = 0 or r = 2. Using the formula

for tr/
(
m/2
b

)2
from (2.1) and using (2.2) and (2.3), it suffices to prove that

−
(m2 − b)

(m2 )

(m2 − b− 1)

(m2 − 1)

(m2 − b− 2)

(m2 − 2)
− 3

b
m
2

(b− 1)

(m2 − 1)

(m2 − b)
m
2

≥ 4b

m
− 1.

Simple calculations yield that

−
( m

2 − b
m
2

)3

≤ −
(m2 − b)

m
2

(m2 − b− 1)
m
2 − 1

(m2 − b− 2)
m
2 − 2

and that

−3
b
m
2

b
m
2

(m2 − b)
m
2

≤ −3
b
m
2

(b− 1)

(m2 − 1)

(m2 − b)
m
2

.

This means that it is sufficient to prove that

−
( m

2 − b
m
2

)3

− 3

(
b
m
2

)2 m
2 − b
m
2

≥ 4b

m
− 1.

Let γ = b/m. The left-hand side equals

−(1 − 2γ)3 − 3(2γ)2(1 − 2γ) = −1 + 4γ − 16γ2 + 2γ − 8γ2 + 32γ3.

Now

−1 + 6γ − 24γ2 + 32γ3 ≥ 4γ − 1 ⇐⇒ (2γ)(16γ2 − 12γ + 1) ≥ 0.

The roots of 16γ2 − 12γ + 1 = 0 are (3 ±
√

5)/8. Since (3 −
√

5)/8 > 1/12 ≥ γ ≥ 0,
we are finished.

Although we don’t need it, this paper wouldn’t be complete without the following
conjecture.

Conjecture 2.12. For all even m > 0, for all 0 ≤ b < m/4, the smallest
eigenvalue of J(m,m/2, b) is exactly

β1 =

(
m/2

b

)2 [
4b

m
− 1

]
.

Possibly this is already known.
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SOLVABILITY IN ASYNCHRONOUS ENVIRONMENTS II:
FINITE INTERACTIVE TASKS∗
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Abstract. Identifying what problems can be solved in a given distributed system is a central
question in distributed computing. In this series of works, we study this question in the context
of asynchronous fault tolerant systems that can execute consensus. These systems can be those
executing deterministic protocols with access to a consensus routine or those running randomized
error-free protocols. A previous work handled the class of distributed decision tasks. In these tasks,
each processor receives one local input and has to respond with one local output.

In an interactive distributed task each of n processors receives a sequence of local inputs and
has to respond on line with an output for every new input (before getting its next input). Different
processors can be at different stages concurrently, so that additional inputs are received by fast
processors while slow processors are still working on early inputs. An interactive task is called finite
if the number of local inputs (and outputs) is finite. Interactive tasks can neither be described as a
single huge decision task nor be decomposed into distinct, independent decision tasks.

The main result of this work is an exact characterization of the finite interactive tasks which can
be solved by t-resilient protocols in either of the above two models. The major tool we use in the
characterization is a directed acyclic graph that is associated with an interactive task. Properties of
this graph are used to determine the resiliency of the task and to devise a “generic” resilient algorithm
which solves such tasks. This generic algorithm can be viewed as a repeated, deterministic reduction
to a consensus subroutine. This implies that any finite interactive task is solvable by randomized
error-free protocols iff it is solvable by deterministic protocols with access to consensus.

Key words. solvability, asynchronous distributed systems, fault tolerance, randomized algo-
rithms, consensus, interactive tasks, decision tasks, adversary scheduler

AMS subject classifications. 68Q22, 90D06, 90D43

PII. S0097539795294979

1. Introduction.

1.1. Background. A central question in distributed computing is identifying
what problems can be solved by a given distributed system. In typical systems,
each one of n processors starts with some local input and communicates with other
processors in order to produce globally meaningful outputs. If the system is perfect,
in the sense that all processors are reliable and communication is error-free and is
instantaneously relayed, then every well-defined task can be solved (assuming, as
usual, that the processors are not computationally limited). However, perfect systems
are either rare or nonexistent. Communication links tend to introduce errors and
delays. Processors may become slow, stop operating, or even exhibit malevolent
behavior.

One of the more popular models of distributed computing is the asynchronous
crash failure model. Here, processors may crash without supplying any warning be-
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forehand. Asynchrony implies that there is no way to distinguish a failed processor
from a very slow one. An alternative way to describe this is that there is an adver-
sary scheduler that decides which processor moves when. Thus the scheduler controls
the pace and failure of processors. A task is called t-resilient if it is solvable by a
protocol, withstanding up to t processor crash failures. In addition to the important
fault-tolerance aspect, crash resilient protocols have other merits: the more resilient
the protocol, the less faster processors are delayed by waiting for slower ones. In par-
ticular, in a system with n processors, n − 1 resilient protocols are wait-free—every
processor can run at its maximum speed [19, 17].

A key result in this area was given by Fischer, Lynch, and Paterson [16], who have
shown that the consensus problem is not even 1-resilient in the message passing model
with respect to deterministic protocols. This result has been extended to the shared
memory model [15, 21, 11]. (The conference version of the last reference proves this
explicitly for a system of two processors.) This impossibility has motivated the study
of randomized consensus protocols. A host of consensus protocols for various types of
adversaries has been found for both the message passing model (e.g., [7, 24, 12, 6])
and the shared memory model (e.g., [11, 2, 1, 9, 3]). In particular, consensus has
efficient wait-free (i.e., n − 1 resilient) solutions in the shared memory model and⌊
n−1

2

⌋
-resilient solutions in the message-passing model, even in the presence of a

“strong adversary” [2, 6].
Consensus is an important problem, and in a certain sense it is a complete task,

as follows from our results. Still, in order to understand the power and limitations of
error-free randomization with respect to arbitrary distributed tasks, consensus alone
does not suffice. To clarify this point, it is helpful to compare consensus with the parity
task. In this latter task, each processor is required to output the XOR (parity) of all
n inputs. Error-free randomization is powerful enough to overcome the coordination
problems which prevent a deterministic solution to consensus, but it is of no help
when facing problems of missing information. In the parity task, any irrevocable
output by one processor (before knowing the inputs of all other n − 1 processors)
may later turn out to be inconsistent with additional inputs. Our work suggests
a formal framework to capture these notions of missing and consistent/inconsistent
inputs. Another aspect of fault tolerant models that is exemplified in this paper is
that it is important for the adversary to have adequate powers. In particular, the
adversary needs to be able to “resurrect” a processor, thereby turning a processor
that previously may have appeared faulty into a merely slow one. Also, the adversary
must be able to fail a processor that was previously active.

We study asynchronous fault tolerant systems that execute protocols of either of
the following two types:

• deterministic protocols with access to consensus,
• randomized error-free protocols.

While we present most of our results in terms of randomized error-free protocols, the
proof implies that in fact any finite interactive task is t-resilient in one model iff it
is t-resilient in the other. In terms of what can and cannot be solved, it suffices to
restrict the use of randomization to consensus. Thus if a consensus mechanism is built
in, no randomization at all is needed. (Of course, randomization might still be used
to speed up computations.)

This paper is the second in a series of three papers which study solvability by ran-
domized error-free protocols, operating in asynchronous crash failure environments.
The first paper in this series [13] deals with distributed decision tasks. The character-



SOLVABILITY OF FINITE INTERACTIVE TASKS 353

ization there (as well as in the present work) is of combinatorial nature. Despite the
added power of randomization, the characterizations and their proofs are fairly simple
and yield effective procedures for testing solvability. This stands in sharp contrast to
the recent works on deterministic solvability [8, 18, 27], which develop a methodol-
ogy for characterizing decision tasks that are t-resilient with respect to deterministic
protocols (without built-in consensus). These works are fairly complicated, use topo-
logical tools, and do not seem to yield effective characterization procedures. To the
best of our knowledge, solvability of interactive tasks has not been addressed in the
deterministic model.

A different line of research in deterministic solvability has dealt with initial faults.
In the initial faults model, each processor either is initially crashed or remains active
forever. Taubenfeld, Katz, and Moran [28] and Taubenfeld and Moran [29] have
characterized t-resilience of distributed decision tasks with respect to deterministic
protocols in the initial fault model. Interestingly, the characterization is the same
as t-resilience with respect to randomized error-free protocols in the regular crash
failure model [13]. This raises the question whether the two models have the same
capabilities when richer classes of tasks are considered. In this work, we demonstrate
a negative answer to this question. We describe a two-stage task that is solvable in
the initial fault model but not in the regular crash failure model. The initial fault
model enables the election of a “leader” who collects inputs and assigns outputs in
a centralized fashion (and is not allowed to fail while doing this). While for the one
round, decision tasks, randomization can be used to yield the effect of a leader, this
is no longer the case when two-stage interactive tasks are involved. Intuitively, the
models are different because in the initial faults model the adversary’s powers are
seriously limited.

1.2. Finite interactive tasks—motivation. Finite interactive tasks are an
extension of distributed decision tasks [22, 13] (where each processor gets a single
input and produces a single output). The number of rounds, namely the number of
inputs received by each processor, is specified as part of the task. While one round
corresponds to decision tasks, even tasks with two rounds constitute a nontrivial
generalization. What distinguishes interactive tasks is the on-line character of the
interaction. Each new local input is given only after the corresponding processor has
irrevocably produced its previous output. Fast processors can work on late inputs
while slower ones are still working on earlier inputs. For example, P1 can work on its
third input, P2 on its fifth input, and P3 on its first input concurrently. This implies
that interactive tasks can neither be described as a single huge decision task nor be
decomposed into distinct, independent decision tasks. Sequential systems as defined
by Herlihy [17] and by Plotkin [23], such as stacks and queues, can also be formulated
as interactive distributed tasks. (Finite interactive tasks will model such systems that
are restricted to a bounded number of accesses per processor.)

We give several examples that should help clarify the expressive power of finite
interactive tasks. Consider a multiround task where in each round the processors have
to select a unique leader among all candidates. We indicate a processor’s candidacy, in
a given round, by inputting 1, while 0 indicates that the processor is not a candidate.
The selected processor outputs 1 in the appropriate round, while all others output 0.
(If there are no candidates in a given round, then nobody is selected.) So far, this
leader selection problem can be viewed and solved as a collection of independent
decision tasks. However, it may be useful to prevent a fast processor from taking
permanent control of the system. Thus we add the requirement that no processor
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is selected twice. This gives rise to different finite interactive tasks, characterized
by the total number of “selection campaigns” (or, equivalently, rounds). In the kth
task in this list each processor has k inputs and k outputs. In this revised task, a
processor that was selected in some round will output 0 in all subsequent rounds,
even if there are no other candidates. It is not hard to see (and follows easily from
our characterization) that the k round task is (n − 1)-resilient for any k ≥ 1. (The
task is well defined for any k, although after everyone is selected, it becomes quite
boring.)

The second example is a variant of the first. Here, in every round every processor
receives as input a “priority,” which is a positive integer in case the processor is a can-
didate and 0 if it is not. A leader can be selected if there are at least ` other processors
with smaller priorities, among all processors that were not chosen already. (If nobody
is interested, then every relevant processor gets a 0 and all inputs are among the least
` priorities, and in this case everyone outputs a 0 to indicate nonleadership.) As be-
fore, the unique selection is indicated by a 1 in the appropriate output. The selection
process is repeated k times. How resilient is this task? For k = 1, a prospective leader
must see at least ` other inputs before “fighting” for candidacy. This argument can be
formalized to see that for k = 1, the task is (n− `− 1)-resilient. Now consider k = 2.
At the second round, the prospective candidate must still wait for ` other processors,
but now these could come from a pool of only n − 1 processors. This argument can
be formalized to see that the task now is (n− `− 2)-resilient. For general k and `, it
can be shown that this finite interactive task is (n− `−k)-resilient. This example can
be extended further to describe cases where the selection of the ith round leader may
depend on inputs from the (i + 1)st round (e.g., if future inputs of previous leaders
can act as tie breakers for the choice of the current leader), and so on.

As a final example, we now describe a different task, which can be viewed as a
resource allocation problem. There are m resources (m < n), denoted by 1 through m.
At each of k rounds, any number of no more than m of the n processors can announce
their interest in getting one of the resources (it does not matter which specific resource)
by receiving an input of 1 (otherwise the processor gets 0). If the processor is allocated
resource number j, then its output for that round is j. If no resource is allocated,
the processor’s output is 0. Once a resource is allocated, the processor can retain
it by continuing to get input 1. To release a resource, the processor must get input
0. The task specifies that no resource is allocated at the same round to more than
one processor. In addition, all requests should be granted. This task is related to
a continued renaming problem [5]. For k = 1, it is not hard to see that the task
is (n− 1)-resilient (notice the difference from the deterministic case where the name
range has to be larger than m). But this is no longer the case if k > 1. Consider a
fast processor who was not interested in a resource at round 1 but became interested
in one at round 2. This processor cannot simply grab a resource, despite the fact
that it is guaranteed that such resource will eventually be freed for round 2: up to
m tardy processors can wake up and ask for resources at the first round, and only
one of them may release its resource in the second round. Our fast processor must
wait until at least m− 1 of the first round users announce their input, and only then
can the processor grab a resource. This will be either one of the resources released
by one of the m− 1 processors or the remaining resource, in case all these processors
retained their resource. This implies that if m resources were claimed at round 1, the
processor may have to wait for the second round inputs of m−1 of them before giving
an output in the second round. This argument leads to realizing that for k ≥ 2, this
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resource allocation problem is 1-resilient but not 2-resilient.
The examples we give demonstrate the versatility of the finite interactive task for-

mulation. We conclude that this is a rich class of tasks which constitutes a meaningful
extension to the class of distributed decision tasks.

1.3. Highlights of the characterization. Denote by ISMt (resp., IMPt) the
class of finite distributed interactive tasks that are solvable in the asynchronous shared
memory (resp., message passing) model by a terminating t-resilient randomized pro-
tocol, which never errs and works in the presence of a strong adversary scheduler
[2, 6]. (A protocol is terminating if each processor stops participating and halts after
producing its last output.) Our main results are necessary and sufficient combina-
torial conditions which determine membership in ISMt (for 0 ≤ t < n) and IMPt
(for 0 ≤ t ≤ ⌊

n−1
2

⌋
). A similar characterization, for nonterminating protocols, is

also given. These results subsume the previous results of [13], which characterized
resiliency of distributed decision tasks. We remark that the proof methods in the
present work are substantially more involved than those in [13], due to the more
general nature of interactive tasks.

We show that what determines resiliency in the randomized error-free model is
the amount of information available (at every possible step) to the active processors
and whether this information suffices to make moves that are compatible with every
potential future development. In order to capture these properties, we associate every
finite interactive task T with a directed acyclic graph (DAG), whose nodes represent
states of the distributed system. It turns out that the DAG is a convenient tool with
which to express the properties we need. In this subsection we outline how the DAG
is defined and used for the characterization (while omitting some of the noncrucial
details).

The nodes in the DAG contain partial vectors of (multi) input and (multi) output
values that are globally known in the system. (For a concrete example, see section 4.)
The nodes are first examined according to their “legality” and “consistency.” Legality
depends only on the indices in the partial vectors (these are the “S vectors” of section
3) and not on the values themselves. It means that no processor has produced an
output in a given round before producing all the outputs of earlier rounds and getting
all the inputs of earlier and the current rounds. Consistency is related to the task
T and does depend on the values in the partial vector (these are the “Q vectors”
of section 3). It means that for every possible completion of input values there is a
corresponding completion of output values, such that the complete multi-input multi-
output vector belongs to the task T .

We put a directed edge from node v1 to node v2 in the graph if v2 extends the
values in v1 and contains exactly one additional input value. (It may contain one
additional output, several additional outputs, or none.) We partition the nodes in the
DAG into equivalence classes. Two nodes are called equivalent if they have the same
sets of indices of revealed inputs (output indices do not matter here). This definition
is useful in situations when there are directed edges from v to both u1 and u2 and the
latter two nodes are nonequivalent. This implies that u1 and u2 extend v in different
input indices, implying that two different processors have read an additional input in
the corresponding moves.

We further refine each equivalence class and say that two equivalent nodes are
input equal if the values of their revealed inputs are the same (output indices and
values may still differ). With these definitions, we can describe the notion of a t-
founded node (relative to the task T ). This notion is central to our characterization.
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Essentially, we think of a t-founded node as a “good” node from which there exists
a strategy to advance while facing up to t crashes without getting stuck or making
errors (relative to the task T ).

The definition of t-founded is recursive, and we will now briefly describe its main
points while omitting some special cases that correspond to the “boundaries” (where
at least n− t processors have already terminated). A node v in the DAG is t-founded
if it is either a complete multi-input multioutput vector that belongs to the task T
or a nonboundary partial vector which satisfies the following condition: there are
at least t + 1 nonequivalent nodes in the DAG, u1, . . . , ut, ut+1, such that there is a
directed edge from v to each uj , and all uj ’s are t-founded. In addition, for every u
with a directed edge from v to u there exists an input equal node u′ that also has
a directed edge from v to it, and u′ is t-founded. (The definition of t-founded for
boundary nodes is slightly modified, especially in the requirement for the number of
nonequivalent sons.)

Having t+ 1 nonequivalent sons of v essentially implies that even if an adversary
scheduler crashes t processors, the remaining ones can still make progress. The second
condition (regarding input equal sons) guarantees that the system can advance along
a path of consistent nodes (with respect to the task T ) no matter which processor is
active next. The main theorem states that a finite interactive task T has a t-resilient
protocol iff the root of the DAG (the partial vector with no inputs and no outputs)
is t-founded.1

We show that the condition is necessary by the following argument. Suppose T is
a task where the root of the DAG is not t-founded and A is an algorithm for the task
that is claimed to withstand t crashes. We demonstrate a strategy for an adversary
scheduler that enables it to force the system to advance (with positive probability)
along a path of nodes that are not t-founded. We show that such a path leads to an
inconsistent node. This means that the adversary can force the algorithm A to err
(with nonzero probability). Notice that in order to be able to force the processors
down this path, the adversary needs to be able to fail a previously active processor
as well as cause the processors to think that a slow processor may be faulty.

To show that the condition is sufficient, we design a generic protocol which guar-
antees that all processors take a coordinated walk along a path of t-founded nodes in
the DAG. When all processors terminate, this path must lead to a complete vector
that is in T . Such coordination is achieved by applying a consensus subroutine to
every step in the walk.

We use randomized consensus algorithms as given by [2, 1, 3, 9, 26] for the shared
memory model and by [6] for the message passing model. It is interesting to observe
that randomization is needed only for consensus and gives no extra power beyond
that. This follows from our generic algorithm, which can be viewed as a repeated
deterministic reduction of an arbitrary interactive task to consensus (which itself re-
quires randomized solutions). Therefore, our characterizations also can be applied to
deterministic systems that have a built-in consensus mechanism, and in this case no
randomization at all will be needed (see section 7 for additional discussion).

1.4. Organization. The remainder of this paper is organized as follows. Section
2 describes the computation models. In section 3 we formally define interactive tasks
and related notions used in this paper. In section 4 we describe the DAG associated

1As stated, the theorem holds for the shared memory model. A slight variation, which corre-
sponds mainly to the final stages of an execution, makes it applicable to the message passing model
(the variation is termed t-valid).
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with an interactive task. This graph plays a central role in section 5, where the
characterization theorem for the shared memory model is stated and proven. Section
6 contains the characterization for the message passing model. Finally, in section 7 we
present some concluding remarks, including the equivalence of error-free randomized
model and the deterministic model with access to consensus.

2. The models. In this section we define the models of asynchronous compu-
tation which we use in the sequel, as well as the class of appropriate schedulers (or
adversaries) that control our systems.

An asynchronous concurrent system is a collection of n processors. Each proces-
sor, P , is a (not necessarily finite) state automaton with an internal input register
inP and an internal output register outP . The set of all states of the processor P
is denoted by SP . The input register contains a value v taken from a set IN , while
the output register has initially the value ⊥. The value in the output register can be
changed to any value in the set OUT ( ⊥ /∈ OUT ). For every input value that the
processor gets, it must change the value of the output register (possibly to the same
value as before) exactly once before receiving the next input or terminating (after the
last input).

The two models we consider differ in the way that processors communicate among
themselves. In the shared memory model, processors communicate via shared registers.
Every shared register r is associated with a set of processors Rr, | Rr |> 0, that can
read from the register and a set of processors Wr, | Wr |> 0, that can write into the
register. These registers are atomic with respect to the read and write operations.
(Although our protocols use only the simpler, multireader single-writer registers, the
necessity of our conditions holds in the more general setting, presented here.)

In the second model, the message passing model, there is a communication link
between every two processors. Processors may send and receive messages via these
links. The links are atomic with respect to the send-message and receive-message
operations, but there is no guarantee on the order in which the messages are received
once they are sent.

Processors execute their programs by taking steps. An atomic step consists of
one of the following:

1. An internal operation, possibly involving coin tosses.
2. Getting information from other processors (reading from a shared register in

the shared memory model, or receiving a message from a link in the message
passing model).

3. Giving information to other processors (writing into a shared register in the
shared-memory model, or sending via a link in the message passing model).

4. Getting a new local input.
5. Giving a new local output.

Formally, every processor P takes steps according to its transition function, TP . In
case the step taken was a read (or receive), the new state of P depends not only on its
old state but also on the value read (received) by this action. The transition function
TP could be either deterministic or nondeterministic. In the latter case, the actual
step taken is decided via coin tosses (in a nondeterministic step the only difference
between the old and new states is the coin toss, and no communication occurs in such
a step). Given an asynchronous system as specified above, a protocol is a collection
of n transition functions T1, . . . , Tn, one per processor.

A configuration C of the system, in the shared memory (message passing) model,
consists of the state of each processor together with the contents of the shared registers
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(communication links). In an initial configuration, every processor is in an initial
state, and all shared registers and output registers contain the default value ⊥ (all
the links are empty). The set of all configurations will be denoted by C. A step takes
one configuration to another by activating a single processor P . A run of length `
is a sequence of ` steps. Each run has an associated schedule which is a sequence
of ` processors, numbered according to the order of processors that take steps in
that run. We denote schedules, finite or infinite, by a list of processor numbers, e.g.,
(2, 3, 3, 2, 1). We say that processor P is activated k times in a run if P appears
k times in the run’s schedule. The history H of a run is the sequence obtained by
interleaving the sequence of configurations with the steps in the run, starting with the
initial configuration. For a finite run, we refer to the last configuration in its history
as the current configuration.

A scheduler S is a mapping from H into the set of n processors. Given the
configuration of the system, the scheduler picks the next processor that is to take
a step. The scheduler could be either a deterministic mapping or a randomized
one. The scheduler can be viewed as an adversary which tries to prevent the system
from reaching its goal. Under this definition, the adversary is very strong: it has
complete knowledge of the state of every processor and of the contents of the shared
registers (communication links) during the entire history. In case the processors are
randomized, the scheduler could also base its choices on the outcome of past coin
flips as well as the current coin flip (if the next step is randomized). We do not
allow it, though, to be able to predict future randomized moves of the processors.
This is a necessary requirement if randomization is to be helpful at all, and it is used
in all algorithms where randomization is employed, e.g., [25, 20, 7]. In addition, the
scheduler picks the inputs to be given to the processors (from the possible legal inputs).

Finally, we note that both models are asynchronous, meaning that there is no
global clock in the system and each processor runs at its own pace. In the message
passing model this also means that messages can be delivered with arbitrary delays
(and possibly out of order).

In each one of these models there are two submodels according to the nature of
the processors. All the processors can be of one of two types:

1. Terminating processors that terminate and halt once their final output has
been given.

2. Nonterminating processors that continue to operate even after giving their
final output. These processors may help and coordinate among the slower
processors that have not yet finished their task.

The second type of processor yields a more robust system, which could solve any task
solvable by processors of the first type.

In this work we study the resiliency of tasks in these two models.2 There is a
resiliency parameter, t, that denotes the extent of resiliency required. The t-resiliency
requirement imposes restrictions both on the scheduler and on the protocol. In every
infinite schedule under the scheduler, S, at least n − t processors will be activated
infinitely many times. We will call such a scheduler a t-bounded scheduler. Intuitively,
this means that the scheduler may fail-stop at most t processors.

A round of a t-bounded schedule is a minimal schedule of the processors (starting
from any configuration) in which at least n− t processors are scheduled at least once.

2Most of our results are developed for terminating processors. Once these results are obtained,
the case of nonterminating processors is easy to handle. The results for the nonterminating model
are stated in section 7.
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Each processor which is scheduled in the round is said to be active in it. Notice
that after n − t processors have terminated, a schedule in which all the terminated
processors are scheduled (and thus no move will be made) is also a round.

Definition 1. We say that an algorithm, A, is a t-resilient algorithm for a task,
T , if the following conditions hold:

• Safety. For every legal input for T , for any t-bounded scheduler, S, and for
any execution of A, if all n processors terminate (or in the nonterminating
models, if all n processors have given their last output), then the resulting
output is correct with respect to the input for T (see Definition 2).

• Liveness. There is a constant, M , such that for every processor the expected
number of rounds in which it is active, before producing its final output, is
bounded by M . For terminating processors this requirement implies that after
n−t processors have terminated, the expected number of steps taken by each of
the remaining t processors in order to terminate is bounded by M (no matter
how the steps of this individual processor are interleaved with steps of other
processors).

It should be noticed that we require that protocols never err. Although there
could be a positive probability for very long nonterminating runs, this probability
should be very small (converging to 0 with the length of the run).

3. Basic definitions. In this section we define finite interactive tasks and what
it means for such a task to be t-resilient. We introduce the notation of partial vectors
and use this notation to express states of systems that implement interactive tasks
and transitions between such states.

Distributed interactive tasks are a generalization of distributed decision tasks. A
decision task is a collection of input-output pairs (each pair is an n-vector). Analo-
gously, we define an interactivek task as a collection of k pairs. Each element of every
pair is an n-vector. The first element represents an input vector and the second an
output vector. The following formulation turns out to be convenient for our purposes.

Definition 2. An interactivek task (or k-stage distributed interactive task), T ,
is a collection of 2k-tuples of the form 〈I1, . . . , Ik, O1, . . . , Ok〉. Each Ij and Oj is an
n-component vector over an arbitrary alphabet, corresponding to the n inputs and n
outputs of the jth stage, respectively. The legal inputs for T (denoted IN(T )) are all
the k-tuples of n-component vectors 〈I1, . . . , Ik〉 such that there exists 〈O1, . . . , Ok〉
for which 〈I1, . . . , Ik, O1, . . . , Ok〉 ∈ T .

When an execution of an interactivek task starts, a processor Pi gets the input
for the first stage. After it submits the output for this stage (which is irrevocable)
it receives the input for the second stage, and so on. In general, each processor,
Pj , gets its input for stage i + 1 only after submitting its output for stage i, for all
1 ≤ i ≤ k − 1. Different processors may be in different stages simultaneously. At a
certain point during an execution, it is possible that there will already be, for example,
seven outputs for the first stage, five for the second, two for the third, and none for
the fourth.

We will represent the states in an instance of an algorithm using partial vectors
which contain input and output values. If we take a vector ~V of length n over a
certain alpha-beth, Σ, and a set of indices, J , where J ⊆ {1, . . . , n}, then the partial

vector ~VJ is defined as follows:
• If i ∈ J , then VJ(i) = V (i), the ith coordinate of ~V .
• Otherwise VJ(i) = ⊥, where ⊥ is an agreed sign for “don’t know yet.”

This means that we know only the values of ~V at the indices indicated by J . Typically,
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~VJ is compatible with more than one vector ~V , namely, there may be a ~V ′ such that
~V ′ 6= ~V but still ~V ′J = ~VJ . For example, the partial vector ~Vφ is compatible with every
vector of the same length.

One property of a 2k-tuple, representing the state of an interactivek task, corre-
sponds to the temporal order in which input and output indices are revealed. This
property is formalized in the next definition, which uses the notion of corresponding
partial input and output. We say that a partial input and output
Q = 〈I1

A1
, . . . , IkAk , O1

B1
, . . . , OkBk〉 corresponds to the 2k-tuple S =

〈A1 , . . . , Ak , B1 , . . . , Bk〉 if the revealed indices in Q match the index-sets
in S.

Definition 3. Let S = 〈A1, . . . , Ak, B1, . . . , Bk〉 be a 2k-tuple of index-sets. S
will be called a legal 2k-tuple if the following conditions are satisfied:

• For all i, 1 ≤ i ≤ k, it holds that Bi ⊆ Ai and Ai, Bi ⊆ {1, ..., n}.
• For all i, 1 ≤ i ≤ k − 1, it holds that Ai+1 ⊆ Bi.

Let Q be a partial input and output vector, corresponding to S. We say that Q is a
legal partial input–output vector if S is a legal 2k-tuple.

The requirements ensure that S represents a possible state of revealed inputs and
outputs in an instance of an algorithm for an interactivek task. By demanding that
Bi ⊆ Ai we guarantee that no processor will produce its ith output before receiving
its ith input. By demanding that Ai+1 ⊆ Bi we guarantee that no processor will get
its (i+ 1)st input before producing its ith output. However, the legality requirement
does not suffice. We also want to guarantee that the “input output contents” matches
a state that can fit the requirements of the task itself. This property is stated in the
next definition.

Definition 4. Let Q = 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉 be a legal 2k-tuple of

partial vectors. Q will be called T-consistent if for every extension I1 to Ik, of I1
A1

to

IkAk such that 〈I1, . . . , Ik〉 ∈ IN(T ), there exist extensions O1 to Ok, of O1
B1

to OkBk
such that 〈I1 , . . . , Ik , O1 , . . . , Ok〉 ∈ T .

We will say that output oij is a consistent output for the 2k-tuple 〈I1
A1

, . . . , IkAk ,

O1
B1

, . . . , OkBk〉 if the 2k-tuple 〈I1
A1

, . . . , IkAk , O
1
B′1

, . . . , OkB′
k
〉, is T -consistent,

B′k = Bk for every k 6= i, B′i = Bi ∪ {j}, and the jth coordinate of OB′
i

equals oij.
An inconsistent 2k-tuple corresponds to a state where the scheduler, by giving

legal inputs, can force the algorithm to err. Thus, intuitively, consistency is a property
that the processors wish to maintain.

Let us now formalize the notion of a “one-step” advancement from a legal 2k-
tuple of partial input-output vectors to another legal one. Intuitively, a one-step
advancement corresponds to one additional input read by one processor and possibly
a resulting extension of one or more outputs. If the new input is from the ith stage
(i ≥ 2), then, by our convention, the reading processor has already given its (i− 1)st
output. There is an exception to this intuition, which occurs toward the end of a run,
when only t or fewer processors still have unrevealed inputs. In this case, a single
additional output is also considered an advancement, as the remaining t or fewer
processors might be faulty and thus we cannot insist on input extensions here. We
first formally define these early and late parts in a run.

Definition 5. The earlier parts of a run of an algorithm, where the set of
processors that have already read their last input, Ak, satisfies |Ak| < n− t, are called
the main phase. The final parts of a run of an algorithm, where |Ak| ≥ n − t, are
called the concluding phase.

The definition of a one-step advancement is as follows.
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Definition 6. Let

S = 〈A1, . . . , Ak, B1, . . . , Bk〉, S′ = 〈A′1, . . . , A′k, B′1, . . . , B′k〉
be two legal 2k-tuples and let

Q = 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉,

Q′ = 〈I1
A′1

, . . . , IkA′
k
, O1

B′1
, . . . , OkB′

k
〉

be partial inputs and outputs corresponding to S and S′, respectively. The pair [S′, Q′]
will be called a t-subsequent of the pair [S,Q] if the following three conditions hold:

• For all i, 1 ≤ i ≤ k it holds that Bi ⊆ B′i.
• Exactly one of the following is true:

1. There is exactly one i (1 ≤ i ≤ k) and one j (j ∈ {1, . . . , n}) such
that j 6∈ Ai, j ∈ Bi−1, A′i = Ai ∪ {j}, and for all m 6= i it holds that
A′m = Am.

2. The system is in the concluding phase (|Ak| ≥ n− t) and there is exactly
one i (1 ≤ i ≤ k) and one j (j ∈ {1, . . . , n}) such that j 6∈ Bi, B′i =
Bi ∪ {j}, for all m 6= i it holds that B′m = Bm, and for all 1 ≤ ` ≤ k it
holds that A` = A′`. This corresponds to a single new output, given by
Pj in the ith stage.

• Q′ is an extension of Q and there exists < I1 , . . . , Ik >∈ IN(T ) such that
< I1, . . . , Ik > is an extension of < I1

A′1
, . . . , IkA′

k
>.

When [S′, Q′] is a t-subsequent of [S,Q] and j is the unique index extending Ai (in
case 1) or Bi (in case 2), we say that Pj is the processor associated with the t-
advancement.

The number of possible failures, t, is a parameter in the definition. An additional
input is considered an advancement in both the main and the concluding phases, while
an additional output (on its own) is considered an advancement only in the concluding
phase. Notice that this definition can be used independently of consistency.

In [17], Herlihy studied concurrent implementations of sequential data objects.
Finite versions of such objects may be represented as interactivek tasks. This can be
done by taking the set of all possible sequences of correct operations on the object.
For example, consider a concurrent implementation of a stack. The processors in this
implementation are servers that receive in their input one of two possible requests:

• push(value): push the parameter value onto the top of the stack and return
(output) `, where ` is the level of the stack in which the value was put (1
when the stack contains one element, 2 when the stack contains two elements,
etc.). In our example the stack level is required as output mainly for didactic
reasons.
• pop: pop the top of the stack and return (output) its value (“empty” if the

stack is empty).
Obviously the outcome of a request given to a processor may depend on previous
requests to some of the other processors. We will use the example of a three-processor
stack as implemented by an interactive2 task (two requests per processor) to illustrate
the definitions. The resiliency parameter will be t = 2. Assume that in the first stage
P1 will be requested to push 5, P2 will be requested to pop, and P3 will be requested
to push 7. These will be the inputs (but the processors do not know them initially).
From the initial configuration, where no inputs and no outputs are known, we can
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advance in one step to a state where one input is known (e.g., P1 has “push 5” as
input) or to a state where one input and one output are known (for instance, P1

with the input “push 5” and with output “1,” or P2 with input “pop” and output
“empty”).

4. The corresponding DAG. In this section we define the DAG associated
with an interactivek task. A run of an algorithm can be viewed as a sequence of
2k-tuples of indices with their corresponding 2k-tuples of partial inputs and outputs.
We associate this sequence with a path in a DAG. There is a directed edge from v to
u if u is a possible state representing a one-step advancement from v (namely, u is a
t-subsequent of v). More formally, we have the following definition.

Definition 7. Let T be an interactivek task. The DAG associated with T , which
we denote by D(T ), has the set of nodes

V = {[S,Q]|S = 〈A1 , . . . , Ak , B1 , . . . , Bk〉, Q = 〈I1
A1
, . . . , IkAk , O

1
B1
, . . . , OkBk〉,

S is a legal 2k-tuple, Q corresponds to S, and there exists 〈I1, . . . , Ik〉 ∈ IN(T )
such that 〈I1, . . . , Ik〉 is an extension of 〈I1

A1
, . . . , IkAk〉}. The set of directed edges,

E, is the set of all (v1, v2) where v1 = [S1, Q1] and v2 = [S2, Q2], such that v2 is a
t-subsequent of v1 and v2 is T -consistent.

The root of the DAG is the node [〈φ, . . . , φ, φ, . . . , φ〉, 〈I1
φ, . . . , I

k
φ ,

O1
φ, . . . , O

k
φ〉]. The leaves (nodes from which there are no outgoing edges) are ei-

ther nodes containing a complete 2k-tuple of indices (A1 = · · · = Ak = B1 = · · ·Bk =
{1, . . . , n}) with the corresponding full inputs and outputs, or nodes whose 2k-tuple of
indices is incomplete but do not have T -consistent sons. In general, we think of a node
in the DAG as representing a possible state of the published input and agreed-upon
output values at some point during a possible execution. An edge represents a tran-
sition according to the t-subsequency relation. Notice that one can “label” an edge
from u to v according to the processor Pj which is associated with the t-advancement.

In our example of the stack, there will be an edge from the node representing
the initial state, [〈φ , φ , φ , φ〉, 〈I1

φ , I2
φ , O1

φ , O2
φ〉], to the node representing

the state where P1 has seen the input “push 5,” which is the node [〈{1} , φ, φ, φ〉,
〈{“push(5)”,⊥,⊥} , I2

φ, O
1
φ, O

2
φ〉]. There will also be an edge from the initial node to

the node representing the state where P2 has seen “pop” and returned “empty.” This
node is [〈{2} , φ, {2} , φ〉, 〈{⊥, “pop”,⊥} , I2

φ, {⊥, “empty”,⊥} , O2
φ〉].

The DAG represents all the possible advancements for all possible inputs. It
is useful to group the vertices into equivalence classes according to the amount of
information in them, disregarding the actual input and output values. This leads to
the definition of t-equivalent nodes in the DAG.

Definition 8. Let

v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉]

and

v′ = [〈A′1 , . . . , A′k , B′1 , . . . , B′k〉, 〈I1
A′1

, . . . , IkA′
k
, O1

B′1
, . . . , OkB′

k
〉]

be two nodes in the DAG corresponding to an interactivek task, T . These two nodes
will be called t-equivalent if the following two conditions are satisfied:

• For all i, 1 ≤ i ≤ k, it holds that Ai = A′i.
• If |Ak| ≥ n− t, then for all i, 1 ≤ i ≤ k, it holds that Bi = B′i.
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In the equivalence relation we are concerned only with the indices of the revealed
inputs/outputs, while the values in these indices do not matter. From the definition
it follows that two nodes are non-t-equivalent in one of two cases: either they do not
have the same indices of input revealed or they are both in the concluding phase,
and their revealed output indices are different (for some i it holds that Bi 6= B′i). As
with the definition of t-subsequents, we take the outputs into consideration only in
the concluding phase.

In our example, when examining whether the task is 2-resilient (t = 2), the nodes

v1 = [〈{1, 2, 3} , φ, {1, 2, 3} , φ〉,
〈{“push(17)”, “push(27)”, “push(37)”}, I2

φ, {1, 3, 2} , O2
φ〉]

and

v2 = [〈{1, 2, 3} , φ, {1, 3} , φ〉,
〈{“push(57)”, “push(67)”, “push(87)”}, I2

φ, {2,⊥, 1} , O2
φ〉]

are 2-equivalent (both nodes have A1 = {1, 2, 3} , A2 = φ). While the nodes

u1 = [〈{1, 2} , {2} , {1, 2} , φ〉,
〈{“push(17)”, “push(27)”,⊥} , {⊥, “pop”,⊥} , {2, 1,⊥} , O2

φ〉]

and

u2 = [〈{1, 2} , {2} , {1, 2} , {2}〉,
〈{“push(17)”, “push(27)”,⊥} , {⊥, “pop”,⊥} , {1, 2,⊥} , {⊥, 27,⊥}〉]

are non-2-equivalent. (These nodes have |A2| = 1 = 3 − 2, but their B2 sets are not
the same.)

Notice that two nodes (collections of partial vectors) with the same input indices
are revealed, but different values revealed in these indices are equivalent. The reason
they are defined as equivalent is that in a specific run we are interested only in the
input for this run, which cannot be compatible with both. We refine the t-equivalence
relation, thereby partitioning the equivalence classes into subclasses, such that all the
nodes in the same subclass will have the same input values (not just indices). The
nodes in this subclass will be called input-equal. Input-equal nodes may differ both in
their output indices and in their output values (provided they remain t-equivalent).

Definition 9. Let

v = [〈A1, . . . , Ak, B1, . . . , Bk〉, 〈I1
A1
, . . . , IkAk , O

1
B1
, . . . , OkBk〉]

and

v′ = [〈A′1 , . . . , A′k , B′1 , . . . , B′k〉, 〈I1
A′1

, . . . , IkA′
k
, O1

B′1
, . . . , OkB′

k
〉]

be two nodes of the DAG corresponding to an interactivek task, T . Let t be a resiliency
parameter. The nodes v and v′ will be called input-equal if the following conditions
hold:

• v and v′ are t-equivalent.
• For all i, 1 ≤ i ≤ k, it holds that IiAi = IiA′

i
(which implies Ai = A′i as well).
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In the example of the stack, assume that the inputs in the first stage are “push
21” for P1, “push 22” for P2, and “push 23” for P3. Now suppose that the input in
the second stage for all three processors is “pop.” In this situation, the nodes

v1 =[〈{1, 2, 3} , {1, 2, 3} , {1, 2, 3} , {2}〉, 〈{“push(21)”, “push(22)”, “push(23)”} ,
{“pop”, “pop” , “pop”} , {2, 1, 3} , {⊥, 23,⊥}〉]

and

v2 =[〉 {1, 2, 3} , {1, 2, 3} , {1, 2, 3} , {2}〉, 〈{“push(21)”,“push(22)”,

“push(23)”}, {“pop”, “pop” , “pop”} , {3, 2, 1} , {⊥, 21,⊥}〉]
(which correspond to two different schedulings of the same input values) are input-
equal.

5. Characterization for the shared memory model. In this section we state
and prove the characterization theorem for t-resilient interactivek tasks in the shared
memory model. The following claim will be useful in the proof of the main theorem
for this model.

Definition 10. We say that an algorithm A is an immediate-input algorithm if
the first step of every processor after writing an output in its private output register
(as long as this is not the last (kth) output) is reading the next input from its private
input register.

Claim 1. If a distributed interactivek task, T , is solvable by a t-resilient al-
gorithm, A, in the shared memory model, then T is also solvable by a t-resilient
immediate-input algorithm, A′.

Proof. We show how to construct such an immediate-input algorithm, A′, on the
basis of the given algorithm, A. The algorithm A′ will have all the shared registers
of A plus an array of k Boolean multireader single-writer registers per processor (one
bit for every input in T ). The bits in all n arrays are initialized to “false.” The state
of a processor will consist of a pair (sA, sadd), where sA is a state of the processor
in A and sadd reflects the additional parts, performed by A′. The algorithm A′ will
simulate algorithm A (changing sA according to algorithm A) except at the following
points:

• After a processor, P , writes the `th output (` < k), P ’s next step is to read
the next, (`+ 1)st, input. However, P will leave the indicator corresponding
to the (`+ 1)st input with the value “false,” meaning that it did not want to
read its input yet (in A). This will change only sadd, not sA.

• When P is supposed to read its input (according to algorithm A) it will,
instead, change the indicator corresponding to this input to “true.” It will
also change sA according to algorithm A (and the value of this input).

It is not hard to verify that if A is t-resilient, then so is A′.
We now define the notion of a t-founded node relative to a task T . Intuitively,

a t-founded node is a “good” node from which a t-resilient algorithm can progress
to correct outputs, regardless of the scheduling and of future revealed inputs. The
definition of t-foundedness will be recursive.

Definition 11. Let

v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉]
be a node in the DAG. The node v will be called t-founded relative to the interactivek
task T if
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• the node v is a “completed leaf” v = [〈{1, . . . , n}1 , . . . , {1, . . . , n}2k〉,
〈I1, . . . , Ik, O1, . . . , Ok〉] and 〈I1, . . . , Ik, O1, . . . , Ok〉 ∈ T ,

or
• the node
v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1

A1
, . . . , IkAk , O

1
B1

, . . . , OkBk〉] is
not a completed leaf (namely Bk 6= {1, . . . , n}), and the following conditions
hold:

1. The node v has at least α non-t-equivalent sons, where α = min (t +
1 , n− |Bk|).

2. For every possible t-subsequent, u, of v (u is not necessarily T -consistent),
there exists an input-equal node u′ that is a t-founded son of v.

As we mentioned earlier, t-equivalent nodes have the same input indices revealed.
Therefore, if two nodes are t-equivalent sons of some node, then the same processor
made the t-advancement to both sons. Since the scheduler may fail up to t processors,
t-resiliency necessitates, in the main phase, at least t+ 1 processors that can advance
from any given situation. However, during the concluding phase there may be fewer
than t active processors. (These are the processors that have not yet submitted their
final output.) The number of processors able to make a t-advancement surely cannot
exceed the number of active processors. This argument motivates the definition of
α. If we require that there be at least α processors that are able to advance (i.e., at
least α non-t-equivalent sons), some processor will always be able to advance from
this state, no matter what the scheduling sequence is.

In addition, we need to have a legal consistent step available no matter what the
input values are. This is embodied in the requirement for a t-founded input-equal son
for every possible t-subsequent. Notice that the specific input values in a run cannot
be chosen by the processors, while the output values are chosen by the processors. We
remark that by the definition of t-foundedness, every path in the DAG which starts
at the root, ends at some leaf, and proceeds only through t-founded nodes must end
in a leaf belonging to T .

We are now in position to state and prove the characterization theorem for the
shared memory model.

Theorem 1. In the terminating shared memory model, for 0 ≤ t ≤ n − 1, an
interactivek task T is t-resilient iff the root of its DAG is t-founded relative to T .

Proof. First we prove the ⇒ direction: if the root of the DAG, R0 = [〈φ, . . . , φ,
φ, . . . , φ〉, 〈I1

φ, . . . , I
k
φ , O

1
φ, . . . , O

k
φ〉] is non-t-founded relative to T , then T is not

t-resilient. A high-level description of the proof is as follows: Assume that the root
of the DAG is non-t-founded and yet there exists a t-resilient algorithm for the task
T . We will show how the scheduler can force the system to make transitions along
a sequence, s, of non-t-founded nodes in the DAG. Each node in s reflects the input
values that were read and the output values that were produced by the processors.
In every transition, at least one new input is read or one new output is produced.
Since the number of inputs and outputs is finite, 2nk, the number of such transitions
will also be finite. This process will terminate either at a leaf of the DAG that is
non-t-founded or in a state that is not represented by a node in the DAG. In the
latter case, the inputs and outputs represent an inconsistent state. In either case, the
scheduler has forced the algorithm to err.

A processor that had either terminated or read an input for which it has not yet
given an output will be called a nonreading processor. Let v be a node in the sequence
s. The scheduler’s strategy will preserve two invariants regarding v:
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1. The node v is non-t-founded, and every node in the DAG, u, that is input-
equal to v is either inconsistent or is both consistent and non-t-founded.
Notice that this invariant holds at the root, as we assume that the root
is non-t-founded and there are no other nodes that are input-equal to the
root.

2. The node, v, belongs to one of the following two categories:
(a) The state represented by v is in the main phase and the number of non-

reading processors in this state is smaller than n − t. (Notice that this
invariant holds at the root, as there are no nonreading processors at the
root.)

(b) The state represented by v is in the concluding phase and at least n− t
processors have terminated (given their final output).

The scheduler will allow the system to advance by making a t-advancement while
keeping these invariants. We will denote them as advancements from node R` to
node R`+1 (` = 0 at the root). In such an advancement there are two possibilities.

1. In the main phase, a t-advancement corresponds to an additional input and
possibly several additional outputs.

2. In the concluding phase an advancement can be either an additional single
input (only) or a single additional output.

We now present the detailed proof. Suppose, by way of contradiction, that T is
t-resilient, namely, there exists a t-resilient algorithm, A, which implements T . By
Claim 1 we can assume that this algorithm is an immediate-input algorithm. The
root of the DAG corresponding to T , R0, is non-t-founded. By Definition 11 there
are two possible reasons for a node R` to be non-t-founded:

(A) R` has less than α non-t-equivalent sons.
(B) R` has a t-subsequent, R′`+1, such that for every R`+1 which is input-equal

to R′`+1 and is a son of R` in the DAG, R`+1 is non-t-founded.
We describe an adversary scheduler which, as long as the system is at a node

that is non-t-founded due to possibility (B), will force the algorithm to advance by
choosing one of the non-t-founded input-equal sons. Notice that when the system
moves from R` to R`+1, the first invariant is maintained. (R`+1 is non-t-founded and
all of it’s input-equals are either inconsistent (not a node in the DAG) or consistent
(in the DAG) but non-t-founded.)

Let Pi be the processor associated with the t-advancement from R` to R′`+1 (Def-
inition 6). If the system is in the main phase, this advancement corresponds to Pi
reading an input. If the system is in the concluding phase, this advancement corre-
sponds to either Pi reading an input or Pi writing an output (case 2 of Definition 6).

In case Pi’s step is reading an input, in the concluding phase, the adversary
scheduler will activate Pi once and Pi will read this input, since A is an immediate-
input algorithm. The resulting configuration will be R`+1. In case Pi’s step is reading
an input in the main phase, the scheduler activates Pi (which reads its input) as
above, but then the scheduler may perform additional activations according to the
following cases.

If n−t or more inputs of the final stage are known, then the scheduler will activate
the n− t processors that have read their final input (say, in round-robin order) until
all of them give an output and terminate. By Definition 1, within a finite expected
number of steps all n−t processors will give outputs and terminate. The configuration
reached after all n − t processors have given their final output is R`+1. Notice that
this case preserves invariant 2(b), as we reach the concluding phase not only with
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n− t inputs of the final stage but also with n− t outputs and terminated processors.
If, however, there are fewer than n − t inputs of the final stage, then we know

that the system remains in the main phase. In this case, let Sp denote the set of
nonreading processors (after the read step of Pi). Notice that by invariant 2(a) it
holds that |Sp| ≤ n− t because before Pi read its input, there were fewer than n− t
nonreading processors. The scheduler will do one of the following:

1. If |Sp| < n − t, then the resulting configuration is R`+1 (no additional acti-
vations). In this case, the second invariant holds (R`+1 is in the main phase
and |Sp| < n− t).

2. If |Sp| = n − t, then the scheduler will activate the processors in Sp (say, in
round-robin order) until exactly one of them gives an output. By Definition
1, such an output will be given within a finite expected number of steps. The
resulting configuration will be R`+1. This configuration adheres to the second
invariant as now there are only n− t− 1 nonreading processors.

When examining R`+1 we see there are now two possibilities. The first is that the
outputs given were inconsistent, in which case the algorithm has erred. The second
possibility is that R`+1 is consistent. The configurations R`+1 and R′`+1 are input
equal. R`+1 is a son of R` in the DAG. Since we assumed R` is non-t-founded due to
(B), this implies that R`+1 is non-t-founded.

The other t-advancement possible is that Pi’s step in advancing from R` to R′`+1

is writing an output. In this case the system must be in the concluding phase, and
due to the second invariant we know that n − t processors have already terminated.
By Definition 1, since A is assumed to be a t-resilient algorithm, Pi will write an
output, with probability 1, after being scheduled a finite number of times. Thus,
the scheduler will activate Pi until it writes an output. In this case, the resulting
configuration is the desired R`+1. Again, if R`+1 is inconsistent the algorithm has
erred and otherwise, R`+1 is non-t-founded (since all the t-advancements made by
Pi in this case are input equal and thus non-t-founded). As the system was in the
concluding phase and the second invariant was true before the advancement, it will
also hold after the advancement.

Hence, in all cases, within a finite expected number of steps the scheduler can
force the system to reach R`+1 without failing any processor. The system is now at
a non-t-founded node, R`+1. The argument used for R` applies to R`+1 as well, and
can therefore be repeated.

Since the depth of the DAG is finite, after a finite number of such t-advancements
we will reach a node Rf that is non-t-founded due either to possibility (A) or to the
fact that it is a complete leaf which is not in T (〈I1, . . . , Ik, O1, . . . , Ok〉 66∈ T ).

In the main phase, a node v cannot be non-t-founded due to possibility (A): from
the second invariant, less than n − t processors are nonreading. Therefore, at least
t+ 1 processors can read an additional input and thus v must have at least α non-t-
equivalent sons. (Remember that α ≤ t+1 and that due to Definition 4 an additional
input preserves consistency.)

If Rf is a completed leaf not in T , then the algorithm has erred, contradicting the
assumption that algorithm A implements T without erring. Otherwise, Rf is non-t-
founded due to possibility (A). This means that Rf has less than α non-t-equivalent
sons. As α ≤ t + 1, we know that at most t processors can be associated with a
(consistent) t-advancement from Rf (Definitions 11 and 7). Denote the set of these
processors by Cf .

For every output that is consistent for Rf (Definition 4) there exists a consistent
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son of Rf which includes this output. Therefore, in the concluding phase when it
holds that n − t processors have already terminated (due to the second invariant),
the fact that there are fewer than α processors able to make a t-advancement implies
that the number of these processors is smaller than the number of active processors
(α = min (t + 1 , n − |Bk|), Definition 11). It follows that there exists at least one
additional active processor (not in Cf ) which cannot give a consistent output. Our
adversary scheduler will activate all the processors not in Cf . Since the algorithm is
t-resilient, one of the remaining (activated) processors must give an output within a
finite expected number of steps. However, this processor’s output is not consistent
(the processor is not in Cf ). This means that with this output, the system is at an
inconsistent state and therefore (by Definition 4) there is an input that the scheduler
can give the system for which it will err.

We have shown that the scheduler can force the system to advance along a se-
quence of non-t-founded nodes, and hence we have arrived at a contradiction in every
possible case. This proves the ⇒ direction of the theorem.

Now we will prove the⇐ direction; namely, if the root of the DAG corresponding
to T is t-founded, then T is a t-resilient task. This is proven by presenting a generic
t-resilient algorithm which implements T . In this algorithm, every processor will
publish (in a shared register that the rest of the processors can read) its input as
soon as it reads it and will also publish the output that it has chosen just before
writing it in the output register. The frame of this algorithm will be a walk along a
path in the DAG starting at its root, proceeding according to the inputs revealed and
the produced outputs, and ending at a legal leaf that represents a full 2k-tuple in T .
This walk is executed commonly by all processors, and the way to achieve this is by
applying consensus to every move.

There is a certain difference between the use of the DAG in this direction and its
use in the previous direction. While in the first direction the current node represented
the system’s current state, in this direction the node represents a state the system
“aspires” to. If a certain node, v, was agreed upon, it means that v represents input
values that were published. However, not all the output values in v have necessarily
been decided upon (and published) because they could belong to dormant processors.
Such outputs will be decided upon and published by the respective processors when
they are activated.

The algorithm we present uses as a subroutine an extended consensus proto-
col. This protocol allows consensus among processors when some of the participating
processors do not offer a value but rather adopt one of the values offered by other
processors. Processors that do not suggest values for the extended consensus protocol
are called passive processors while processors that do offer a value for the extended
consensus protocol are called agile processors. Given an n− 1 resilient consensus pro-
tocol, and allowing β passive processors, we can build a n− 1− β-resilient extended
consensus protocol as follows:

• An agile processor will publish its offered value in a shared register and then
proceed to execute the wait-free consensus protocol.
• A passive processor will wait until some agile processor suggests a value, adopt

that value as its own, and then join the execution of the wait-free consensus
protocol.

The algorithm will be carried out in “virtual rounds.” In round r+1 each processor
starts with node vr, the t-founded node (in the DAG) that was agreed upon in round
r (via consensus). Each processor then proceeds to pick, according to the DAG, a
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son of vr representing a 2k-tuple, Si+1. This node, ur, is a t-subsequent of vr, is
t-founded, and includes the processor’s new input, if such an input is available (i.e.,
Pi has not yet published its jth input even though it has given its (j − 1)st output).
If the system is in the concluding phase and no such node, ur, exists, the processor
P will look for a t-founded son of vr that includes an additional output for P . The
processor proposes the node it has found to the rest of the processors to agree upon.
Then, the processors run consensus to agree on one of the proposed options. Since
the option includes outputs (not necessarily outputs of the originating processor, i.e.,
the one whose option was chosen), each processor now checks the agreed node to see
if it is required to output a value. Each of the relevant processors will output its
required value immediately after receiving the result, vr+1, of the (r+ 1)st consensus.
The processor then proceeds to the next virtual round. Formally the algorithm for
processor Pi is as follows:

INIT:
vr ← root(DAG). /* vr is the current node in virtual round number r */
a← 1 /* a holds Pi’s current stage */
r ← 1 /* round counter */
ini ← input

VIRTUAL ROUNDS:
do while a ≤ k

denote vr’s components by < I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk >= vr
if there exists ur =< I1

A′1
, . . . , IkA′

k
, O1

B′1
, . . . , OkB′

k
> s.t.

ur is a son of vr and ur is t-founded
and

( either
IaA′a = IaAa ∪ {ini} /* main or concluding phase - ini is Pi’s input */

and A′j = Aj j 6= a
and Bj ⊆ B′j ∀j

or
B′a = Ba ∪ {i} /* concluding phase - only another output */
and B′j = Bj j 6= a
and A′j = Aj ∀j

)
then vr+1 ← extended-consensus(ur, r)
else vr+1 ← extended-consensus(passive, r)

if i ∈ B′a /* an additional output of Pi was decided upon */
then

output(Oa{i}) /* output the corresponding value */

if a = k
then terminate

a← a+ 1
ini ← input

r ← r + 1
end /* of while */

The different consensus rounds are separate and use separate sets of registers.
We will use a multivalue consensus protocol with the addition of “passive inputs”
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(belonging to passive processors). The requirement from the protocol is that its
output will be the input of one of the agile processors. Any known wait-free protocol
for consensus (e.g., [1, 2, 9, 26]) can easily be modified to comply with this requirement.
Notice that if up to β processors can be passive in a given round, then the modified
consensus protocol is (n−β− 1)-resilient. In the concluding phase, it is possible that
the processors that have missing inputs are faulty, and so every remaining processor
must be able to advance on its own (without waiting for values offered by other
processors).

Let us now prove that the given algorithm is correct and t-resilient. According
to the remark from the end of section 4, following a t-founded path leads to a leaf
in T . This means (by the definition of a t-founded leaf in Definition 11) that the
outputs given by the system match the inputs it received, according to the task T .
Hence the algorithm always gives correct outputs for any legal input. As every call
to the consensus subroutine takes bounded expected time, and the other operations
are finite, within bounded expected time the algorithm will terminate. Therefore the
algorithm is correct.

To show t-resiliency we will show that the system can always advance (even if t
processors have failed, as long as some processor is active), i.e., there will always be
an agile processor that can find a ur as required. Notice that vr is always t-founded
(the root is t-founded by the assumption, and only t-founded nodes are chosen by
the algorithm during the execution). Also, for a given node, the number of passive
processors is less than n− α as at least α processors can find a ur as required. Now
let us show that there are indeed enough agile processors. We will do this for two
different cases, according to the phase that the system is in:

• In the main phase and in the concluding phase when less than n−t processors
have terminated, α = t+ 1. Therefore, even if t processors have failed, there
exists at least one additional processor that can make a t-advancement from
this t-founded node. This processor will be agile in the consensus round for
vr and thus the extended consensus will be computed (in bounded expected
time) in this round.
• In the concluding phase when n − t processors have already terminated, α

equals the number of not-yet-terminated processors. Therefore, every proces-
sor that has not yet terminated and will be activated can find a ur as required.
Such a processor will be agile in the respective extended consensus round.

Altogether, we have shown that for every node on the path there are enough
processors that can make a t-advancement from it. Thus, the algorithm is t-resilient,
as claimed.

6. Characterization for message passing. In this section we will examine
the resiliency of interactive tasks in the message passing model, where it is possible to
perform t-resilient consensus only for t ≤ ⌊n−1

2

⌋
. In the terminating message passing

model a processor terminates after giving its final output. After n− t processors have
terminated, the remaining t processors could be disconnected from each other by
the scheduler, and thus will have no way of “coordinating” amongst themselves. The
disconnection is possible since all t processors might be faulty and so no processor can
wait for a message from another processor. (Recall that in an asynchronous system
the processors have no way of distinguishing between a slow and a faulty processor.)
Each of the t slow processors will know what the fast n−t processors have decided but
will have no way of knowing what any one of the other slow processors has decided.
In order for a task to be t-resilient, the slow processors must be able to decide on their



SOLVABILITY OF FINITE INTERACTIVE TASKS 371

value in a “consistent” manner, each without knowing the others’ decisions. Notice
that a particularly slow processor may be at the beginning of its work, i.e., it has
not yet read even its first input. Such a processor must be able to function correctly
through all the stages of the task. Following these considerations, we focus on nodes
in the DAG, D(T ), that have at least n − t outputs of the final stage revealed. We
call these nodes semiterminal nodes. In these nodes each additional input or output
is considered a t-advancement (by Definition 6). Notice that for semiterminal nodes
we require at least n − t outputs of the final stage, while in the concluding phase we
required only n− t inputs of the final stage.

Definition 12. A tree Ri that is a subgraph of D(T ) will be called terminal for
Pi if the following conditions hold:

• The root of Ri, v = [S,Q] where S = 〈A1 , . . . , Ak , B1 , . . . , Bk〉 and
Q = 〈I1

A1
, . . . , IkAk , O

1
B1
, . . . , OkBk〉, is a semiterminal node (|Bk| ≥ n − t)

such that i 6∈ Bk. (Processor Pi has not yet terminated.)
• Let ` denote the last stage for which Pi gave an output. When we look at the

inputs and outputs for processor Pi, the following condition holds: For every
input for the (` + 1)st stage there is an output for the (` + 1)st stage such
that for every input for the (`+ 2)nd stage there is . . . for every input for the
kth stage there is an output for the kth stage such that the t-advancements
corresponding to these inputs and outputs form a path in Ri. In the case that
the (` + 1)st input is already given in v, then the condition starts with the
existence of an output for the (`+ 1)st stage such that for every input for the
(`+ 2)nd stage, etc.

Intuitively, the tree Ri represents a possible strategy for Pi to react to every
possible sequence of inputs presented to it, when the system is at the state represented
by the root, v. The next definition captures the requirement that terminal trees of
different processors should be compatible.

Definition 13. Let v be a semiterminal node and let {i1, . . . , ij} = {1, . . . , n}\Bk
(i.e., the set of processors that have not yet terminated in v). Let Ri1 , . . . , Rij be
j terminal trees for processors Pi1 , . . . , Pij , respectively. These trees are called T-
compatible if the following conditions hold:

• Ri1 , . . . , Rij have the same semiterminal root v:
v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1

A1
, . . . , IkAk , O

1
B1

, . . . , OkBk〉].
• For every 〈I1, . . . , Ik〉 ∈ IN(T ) which is an extension of 〈I1

A1
, . . . , IkAk〉, the

outputs produced along the set of paths (one path per tree) that correspond
to this input give a full output vector 〈O1, . . . , Ok〉 such that 〈I1, . . . , Ik,
O1, . . . , Ok〉 ∈ T and 〈O1, . . . , Ok〉 is an extension of 〈O1

B1
, . . . , OkBk〉.

We use these definitions to describe our “building block,” t-validity. It will play
the role that t-foundedness played in the shared memory model (section 5).

Definition 14. Let

v = [〈A1 , . . . , Ak , B1 , . . . , Bk〉, 〈I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk〉]

be a node in the DAG D(T ), and let α = min (t + 1 , n − |Bk|). We say that v is
t-valid relative to the task T when

• The node v is a leaf (v = [〈{1, . . . , n}1 , . . . , {1, . . . , n}2k〉, 〈I1, . . . , Ik,
O1, . . . , Ok〉]), and 〈I1, . . . , Ik, O1, . . . , Ok〉 ∈ T ;

or
• The node v is an internal node (not a leaf) and the following conditions hold:

1. v has at least α non-t-equivalent sons.
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2. For every t-subsequent, u, of v there exists an input-equal node u′ that
is a t-valid son of v.

3. If v is semiterminal, then for every i 66∈ Bk there exists a terminal tree,
Ri, for Pi, such that the trees {Ri}i66∈Bk are T -compatible. We will call
one of these sets, say, the first in canonical order that complies with the
above condition, the chosen set for v, denoted by ch(v).

The characterization theorem is formulated in the same way as Theorem 1, but
the different definitions of t-foundedness versus t-validity make the difference between
the shared memory and the message passing models. The additional requirement (3)
explains why certain tasks, solvable in the shared memory model, cannot be solved
in the message passing model.

Theorem 2. Consider the terminating message passing model, and let t satisfy
t ≤ ⌊n−1

2

⌋
. An interactivek task, T , is t-resilient iff the root of its corresponding DAG

is t-valid relative to T .
Proof. The proof follows the proof of Theorem 1 closely. The differences between

these proofs are due to the nature of the communication model. For the ⇒ direction,
we use an algorithm which, starting at a t-valid node, proceeds along a path of t-valid
nodes until a semiterminal node is reached. The algorithm uses an extended consensus
subroutine (see proof of Theorem 1) which guarantees that all the processors agree on
the same nodes along the path. In the message passing model, the resiliency of the
extended consensus protocol is min(bn−1

2 c, n− 1− β), where β is an upper bound on
the number of passive processors (processors that take part in the consensus protocol
but do not suggest a value). In our algorithm, no processor terminates before a semi-
terminal node is reached. That is, no processor writes its final (kth) output before a
node which includes the final outputs of at least n−t processors has been agreed upon.
This precaution guarantees that at least n − t processors remain active throughout
the main phase of the algorithm. This number is large enough to enable each round of
the extended consensus algorithm to terminate, as there is at least one agile processor
in each round, and at least bn+1

2 c processors take part in the sequence of consensus
executions until a semiterminal node is reached and agreed upon.

We associate with every t-valid semiterminal node, v, its chosen set, ch(v) (the
existence of this set follows from Definition 14). Once the system reaches and agrees
upon such a semiterminal node, all processors Pi with i ∈ Bk can produce their final
output and terminate. Each remaining processor can now produce a local output as
a response to every new local input it receives by proceeding along the corresponding
path in its tree. This requires no communication and coordination with the remaining
processors. The compatibility of the terminal trees guarantees that this process leads
to a leaf satisfying the input-output relations of the task T . In order to simplify the
algorithm, we will use a pruned DAG, denoted by D′(T ). This DAG will be the same
as D(T) for all nodes that are not semiterminal. For semiterminal nodes, D′(T ) will
include only their chosen set. That is, for semiterminal node v, D′(T ) will include
only ch(v) (and not other alternative advancements from v). The algorithm will run
on D′(T ) rather than D(T ).

Formally, the algorithm for Pi is as follows.

INIT:
vr ← root(D′(T )). /* vr is the current node in virtual round number r */
a← 1 /* a holds Pi’s current stage */
r ← 1 /* round counter */
ini ← input
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VIRTUAL ROUNDS:
do while a ≤ k

denote vr’s components by < I1
A1

, . . . , IkAk , O
1
B1

, . . . , OkBk >= vr
if there exists ur =< I1

A′1
, . . . , IkA′

k
, O1

B′1
, . . . , OkB′

k
> s.t.

ur is a son of vr and ur is t-valid
and

( either
IaA′a = IaAa ∪ {ini} /* main phase - ini is the new input */

and A′j = Aj for all j, j 6= a
and Bj ⊆ B′j for all j

or
B′a = Ba ∪ {i} /* concluding phase - only another output */
and B′j = Bj for all j, j 6= a
and A′j = Aj for all j

)
then if |Bk| < n− t/* consensus is possible until n− t processors terminate */

then vr+1 ← extended− consensus(ur, r)
else vr+1 ← ur /* no consensus - proceed along terminal tree */

else vr+1 ← extended− consensus(passive, r) /* this case is only possible
in the main phase */

if i ∈ B′a /* an additional output of Pi was decided upon */
then (if a < k

then
output(Oa{i}) /* output the corresponding value */

a← a+ 1
ini ← input

elseif |B′k| ≥ n− t
then

output(Oa{i}) /* output the corresponding value */

terminate
r ← r + 1

end /* of while */

The consensus protocol used by the extended consensus must be
⌊
n−1

2

⌋
-resilient

and terminating. The different consensus rounds are separate and use separate mes-
sage numbers. (Any consensus protocol that complies with these requirements can be
used as a subroutine. Examples of such consensus protocols are [7, 6]). Notice that
passive processors are counted for the number of processors participating in the con-
sensus as they can “help out.” However, at least one agile processor must participate
in the consensus (to suggest the next value). There will always be such a processor for
the same reasons as in the shared memory model (in the main phase at least α = t+1
processors can find the required ur as the current node is always t-valid, and in the
concluding phase there is no need for consensus).

The ⇐ direction is also similar to the shared memory case. As in Claim 1, we
can assume that the algorithms used are immediate input algorithms. (The proof
for the message passing model is identical to that of the shared memory case.) We
present a scheduler that forces the system to always remain in a non-t-valid node. By
Definition 14, the possible cases at node v (which is non-t-valid) are
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0. v is a non-t-valid leaf;
1. v has less than α non-t-equivalent sons;
2. v has a t-subsequent, v1, such that for every u′ that is input-equal to v1 and

is a son of v, it holds that u′ is non-t-valid;
3. v is semiterminal and one of the following is true:

(a) There exists i 6∈ Bk for which there is no terminal tree rooted at v.
(b) Every collection of terminal trees {Ri}i6∈Bk rooted at v is not compatible.

As in the shared memory model, let us assume toward a contradiction that there
exists a t-resilient immediate-input algorithm for T . We will start at the root of the
DAG and the processors will follow this algorithm. As long as the node representing
the system’s current state, v, is non-t-valid due to possibility 2, the scheduler forces
the processors to advance to a state represented by u′ that is input-equal to v1. This
will continue until we reach a node vf that is non-t-valid either due to possibility 1 or
possibility 3 or because vf is a non-t-valid leaf. If vf is non-t-valid due to possibility
1 or is a leaf, then for exactly the same reasons as in the proof for the shared memory
model we have shown a contradiction.

It remains to show that the other alternative (non-t-validity due to possibility 3)
also leads to contradiction. The first case is when there exists an i for which there
is no terminal tree. By Definition 12, this means that there exists a strategy for the
scheduler (supplying inputs) such that every strategy for the processor Pi leads to a
partial 2k-tuple which is not a partial vector of any full 2k-tuple in T . This contradicts
the correctness of the algorithm.

The second case is when each selection of terminal trees is not compatible (i.e.,
every set of terminal trees, one for each active processor, is incompatible). In this case
the scheduler activates these active processors and withholds all messages sent between
them. Now each one must act on its own. Let us now show that there is a strategy for
the scheduler which causes the processors to err with positive probability. In order
to do that we will construct one set of terminal trees for all the remaining active
processors, using a “roll-back” technique. The construction starts with the system
at the state in which it arrived at the semiterminal node v. Now for every processor
Pi where i 6∈ Bk, the tree Ti is built recursively, as follows: For every node, u, in
the tree (starting the recursion at v), the scheduler determines the son by presenting
the processor Pi with a legal input at u and the grandson by activating Pi until it
produces an output (which must happen within bounded time, by the requirements
of t-resilient algorithms). The process is repeated in the next recursion level, with
respect to the grandson. To determine the continuation from u with respect to other
inputs, the scheduler “rolls back” the system to the same state it was in u and then
supplies another input. This process is done with respect to every legal input for Pi
at u. The end of the recursion along each path is when Pi supplies its last (kth)
output.

This process builds a set of terminal trees. Every branch along each tree represents
a strategy for the corresponding processor, which is used with positive probability.
Probabilities of different processors are independent, since their random inputs are
independent, and the processors cannot communicate. By our assumption, the termi-
nal trees are incompatible. Therefore, there exist input sequences (one per processor)
such that the output sequences resulting by following the corresponding trees yield a
full input-output 2k-tuple that is not in T . The scheduler will supply these inputs and
then the processors will give incorrect answers (due to the definition of incompatible
terminal trees) with positive probability. This contradicts the assumption that the
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algorithm implements T with no error. Therefore the condition in the theorem is
necessary.

7. Concluding remarks. Denote by REF the class of randomized error-free
protocols and by DC the class of deterministic protocols with access to consensus.
Since consensus has wait-free REF solution, it follows that any finite interactive task
solvable in the DC model is also solvable in the REF model. The proof of Theorems
1 (for the shared memory model) and 2 (for the message passing model) implies that
any finite interactive task solvable in the REF model is also solvable in the DC model.
Stated formally, we have the following theorem.

Theorem 3. Consider the following two families of protocols:
• deterministic protocols with access to consensus (DC),
• randomized error-free protocols (REF).

An interactivek task T is t-resilient in the DC family iff it is t-resilient in the REF
family, where the range of t is

• 0 ≤ t ≤ n− 1 in the terminating shared memory model,
• 0 ≤ t ≤ ⌊n−1

2

⌋
in the terminating message passing model.

Results concerning the structure of the “resiliency hierarchy” in both the shared
memory and the message passing models can easily be inferred from our characteri-
zations. They extend similar results for decision tasks, proven by Chor and Moscovici
in [13]. Some of these implications are as follows:

• Shared memory is strictly more powerful than message passing for the same

resiliency (except at the two lowest resiliencies): IMPt
⊂
6= ISMt (1 < t < n),

while IMP0 = ISM0 and IMP1 = ISM1.
• With respect to difference resiliencies, message passing and shared memory,

namely IMPt and ISMt+i, are incompatible for 0 < i < n− t. (The results
in [13] already prove this.)
• In the range of resiliency where network partition is not possible (t ≤ ⌊n−1

2

⌋
),

nonterminating protocols in the shared memory and message passing models
have the same capabilities: namely, nonterminating IMPt = nonterminating
ISMt = ISMt. For t in the range n

2 ≤ t ≤ n − 1, nonterminating ISMt =
ISMt.

7.1. Related work. Bar-Noy and Dolev [6], and consequently Attiya, Bar-Noy
and Dolev [4], have investigated emulation strategies of shared memory in nontermi-
nating message passing systems. One consequence of their work is that ISMn−1 ⊆
nonterminating IMPbn−1

2 c. In fact, their construction yields the stronger result

ISMbn−1
2 c ⊆ nonterminating IMPbn−1

2 c. However, no characterization can be de-

rived from their techniques. Also, it is not clear if their “local” approach can be
extended to yield the equality between these classes (which does follow from our
characterization).

Plotkin [23] and Herlihy [17] have studied the implementation of concurrent ob-
jects in the shared memory model. They have shown that every sequential system
has a concurrent wait-free implementation, given access to a wait-free consensus sub-
routine. We note that our results give a natural way to implement finite versions of
concurrent objects, and so they shed light on the use of randomization for wait-free
concurrent objects. In fact, the concurrent objects in [17] refer to t = n− 1 (wait-free
objects) while interactive tasks can implement a wider range of fault-tolerance.

Taubenfeld, Katz, and Moran [28] and Taubenfeld and Moran [29] have studied a
weaker type of crash failures—initial faults. In the initial faults model, each processor
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either is initially crashed or remains active forever. Taubenfeld, Katz, and Moran
found necessary and sufficient conditions for solvability of distributed decision tasks
with respect to deterministic protocols in the initial fault message passing and shared
memory models. Surprisingly, the characterization is the same as the one for general
crash faults using randomized protocols [13]. Indeed, these equalities no longer remain
valid when interactive, rather than decision, tasks are considered. This is due to the
scheduler’s limited powers in the initial faults model. Therefore, it is not surprising
that there are interactive tasks that are t-resilient in the initial fault model but are not
t-resilient for general crash faults. As an example, consider the following interactive2

task: Inputs for both stages are all binary n-vectors. The value in each component
of the first output equals the sum of the first inputs over some subset S of size n− t
(the subset is not predetermined). The value in each component of the second output
equals the sum of the second inputs over the same subset S. It is easily seen that
this task is resilient to t initial faults but is not in ISMt since in ISMt the scheduler
can fail a previously active processor, thus leaving the second input unknown. This
confirms the intuition that initial faults alone are not sufficient to represent a realistic
fault model. (In the other direction, every task in ISMt can be solved in a system
with at most t crashes that can implement a consensus subroutine. Since consensus is
solvable deterministically in the initial faults model, this implies that ISMt is strictly
contained in the class of t initial faults.)

The modular way in which consensus is used implies that our characterization
is also a sufficient condition for t-resilience in deterministic systems augmented with
stronger mechanisms that make consensus possible, for example, the failure detectors
of Chandra and Toueg [10]. However, the question whether our conditions are also
necessary requires a closer look. For example, suppose one has at his possession an
accurate and reliable failure detector. If the detector announces that a processor has
crashed, then we are guaranteed this processor will not become active later. In such
a case we may be able to solve a natural modification of, for example, the parity
task. We assign ⊥ as the input of processors that crashed before supplying an input,
and the ⊥ values do not influence the output. Under such conditions, the parity is
no longer unsolvable in the presence of one failure. This example implies that exact
characterization of resilience in the presence of failure detectors strongly depends on
the specific properties of the detector.

Despite substantial differences, there is a common feature to the initial faults
model and the one with strong failure detectors. In both, the power of the adversary
is severely restricted, further than what is “needed” to enable deterministic consensus.
Any task which satisfies our characterization for t-resilience will also be t-resilient
in these restricted adversary models. But whether the condition is also necessary
crucially depends on the strength (or weakness) of the adversary.
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Abstract. The class of weakly triangulated comparability graphs and their complements are
generalizations of interval graphs and chordal comparability graphs. We show that problems on these
classes of graphs can be solved efficiently by transforming them into problems on chordal bipartite
graphs. We show that recognition and independent set on weakly triangulated comparability graphs
can be solved in O(n2) time in this manner, and that the number of weakly triangulated comparability

graphs is 2Θ(nlog2n). We also give algorithms to compute transitive closure and transitive reduction in
O(n2loglogn) time if the underlying undirected graph of the transitive closure is a weakly triangulated
comparability graph.
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1. Introduction. A variety of interesting graph classes correspond to requiring
that the graph and/or its complement be a triangulated or a comparability graph.
For example, permutation graphs are equal to graphs which are both comparability
and cocomparability graphs, split graphs correspond to triangulated cotriangulated
graphs, and interval graphs are exactly the chordal cocomparability graphs. These two
properties are one of the themes which unify Golumbic’s book on perfect graph classes
[17]. We extend the study of the intersection of pairs of properties by generalizing from
triangulated graphs to weakly triangulated graphs.

Triangulated graphs [28], also known as chordal graphs, are those graphs which
contain no induced cycles of length greater than three. Weakly triangulated graphs
allow induced four-cycles but do not allow any induced cycles of length greater than
four in either the graph or its complement. We refer to an induced cycle of length
five or more as a hole. We refer to the complement of a hole as an antihole. Weakly
triangulated graphs properly contain chordal graphs and are a subclass of perfect
graphs [18]. The fastest known recognition algorithm for weakly triangulated graphs
takes O(n4) time [30]. The best algorithms for clique, independent set, chromatic
number, and clique cover on weakly triangulated graphs also take O(n4) time [19, 3].

Comparability graphs [16], also known as transitively orientable graphs, are undi-
rected graphs with the property that directions can be assigned to edges in such a
way that whenever there is an edge from x to y and from y to z in the directed graph,
there is also an edge from x to z. This assignment of direction to edges is called a
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transitive orientation. Comparability graphs are also a subset of perfect graphs. The
fastest known recognition algorithm for comparability graphs has two distinct stages.
It is possible to find an orientation which is transitive if and only if the input is a
comparability graph in O(n+m) time [25]. However, it is not known how to deter-
mine whether this orientation is actually transitive faster than performing a matrix
multiplication, for which the current asymptotically fastest algorithm takes O(n2.376)
time [7]. There are O(n+m) algorithms for clique and chromatic number [17, 25] on
comparability graphs, if a transitive orientation is given. Maximum independent set
on comparability graphs is essentially equivalent to bipartite matching [13], for which

the best known algorithms have complexities of O(n1.5
√
m/ logn) [2] and O( n

2.5

log n )

[11].

One of the most famous classes of intersection graphs is the class of interval graphs
[4, 5]. A graph G is an interval graph if and only if both G is a chordal graph and the
complement of G is a comparability graph [16]. Since weakly triangulated graphs are
a natural generalization of triangulated graphs, we are interested to see whether the
weakly triangulated cocomparability graphs are well behaved. Since weakly triangu-
lated graphs are closed under complementation, this class is exactly the complement
of weakly triangulated comparability graphs.

Weakly triangulated comparability graphs generalize the triangulated compara-
bility graphs, studied in [23]. We note that both triangulated comparability graphs
and triangulated cocomparability graphs can be recognized in linear time, which is
faster than the algorithm obtained by separately testing whether G is triangulated
and whether G is comparability/cocomparability. For weakly triangulated compara-
bility and weakly triangulated cocomparability graphs, we give recognition algorithms
which are faster than testing either whether G is weakly triangulated or whether G
is a comparability/cocomparability graph.

Another class contained in the weakly triangulated comparability graphs is the
class of permutation graphs [17]. This follows from the fact that cocomparability
graphs cannot contain induced cycles of length greater than four [15], and permutation
graphs are equal to graphs which are both comparability and cocomparability graphs.

Both the classes of comparability graphs and triangulated graphs contain 2Θ(n2)

graphs on n vertices, but the classes of triangulated comparability graphs and trian-
gulated cocomparability graphs contain 2Θ(nlogn) graphs on n vertices. We show that
the number of weakly triangulated comparability graphs on n vertices is 2Θ(nlog2n),
which makes this class much smaller, for example, than the triangulated cotriangu-
lated graph class, which has 2Θ(n2) members.

The primary method used here to design efficient algorithms for weakly trian-
gulated comparability graphs is to convert them into bipartite graphs and use the
property that this transformation yields a chordal bipartite graph. The ideas are sim-
ilar to those used in recognizing circular-arc graphs [10] and trapezoidal graphs [24]
efficiently. Chordal bipartite graphs, studied in [21], are bipartite graphs in which
every cycle of length greater than four has a chord. The bipartite adjacency matrix of
a graph is the 0/1 matrix formed by making one color class the rows, the other color
class the columns, and placing a 1 at row x column y if and only if (x,y) is an edge
of G. A 0/1 matrix has a Γ if there is some pair of rows r1 < r2 and columns c1 <
c2 such that (r1,c1) = (r1,c2) = (r2,c1) = 1, while (r2,c2) = 0. The crucial theorem
for this paper is that a graph is chordal bipartite if and only if the rows and columns
of the bipartite adjacency matrix can be permuted to form a Γ-free matrix, and this
ordering can be found in O(mlogn) or O(n2) time [21, 27, 32].
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2. Recognition. Let G be an arbitrary directed graph. Consider the undirected
bipartite graph G′ formed by making two copies x1, x2 of each vertex x and adding an
edge from u1 to v2 if and only if there is an edge from u to v in G. We will call G′ the
bipartite transformation of G. Identical constructions have been made frequently;
the most closely related work that uses this construction is due to Ford and Fulkerson
[13], who use it for solving the independent set problem on partially ordered sets.

Theorem 1. If G is a transitively oriented graph, then the underlying undirected
graph of G is weakly triangulated if and only if the bipartite transformation G′ of G
is chordal bipartite.

Proof. First, we note that complements of comparability graphs cannot have in-
duced cycles of length greater than four [15]. Thus, we do not have to be concerned
with long antiholes in the underlying undirected graph of G.

Suppose that the underlying undirected graph of G is weakly triangulated. Con-
sider a chordless cycle C of length at least six in G′. There cannot be a vertex x such
that both x1 and x2 are in C; otherwise, there would be edges (y1,x2) and (x1,u2)
in C, where u2 6= y2 and (y1,u2) is not in C, and thus transitivity in G would imply
that C has the chord (y1,u2). If x1 and y1 are both in C, then there cannot be an
edge from x to y in G; otherwise, since G is transitively oriented, the neighborhood
of x1 would contain the neighborhood of y1, and the vertices could not be part of the
same chordless cycle. Similarly, if x2 and y2 are both in C, then there cannot be an
edge from x to y in G. There cannot be any nonadjacent vertices u1, v2 in C such
that there is an edge from v to u in G; otherwise, the edge (w1,v2) of C would imply
an edge from w to u in G. Therefore, any chordless cycle C of G′ corresponds to a
chordless cycle of the same length in the underlying undirected graph of G; if the
underlying graph of G is weakly triangulated, then G′ must be chordal bipartite.

Suppose that G′ is chordal bipartite. Let C be a chordless cycle in the underlying
undirected graph of G. No vertex of C can have an edge directed to vertex u of C
and an edge directed into it from vertex v of C, since v would have an edge to u by
transitivity of the orientation. Let 1 be a vertex of C with edges directed to other
vertices of C. If the cycle is 1, 2, . . . , k, then 1, 3, . . . have edges directed outward with
respect to other vertices of C, while 2, 4, . . . have edges directed towards them. There
will be a chordless cycle 11, 22, 31, 42, . . . , (k − 1)1, k2, 11 in G′, contradicting our
assumption that G′ is chordal bipartite.

Theorem 1 immediately reduces the complexity of weakly triangulated compara-
bility graph recognition to the time of comparability graph recognition and orientation
plus the time of chordal bipartite graph recognition. Since comparability graphs can
be recognized and transitively oriented in O(n2.376) time using matrix multiplica-
tion [31], and chordal bipartite graphs can be recognized in O(n2) time [21, 27, 32],
we have an O(n2.376) algorithm for recognizing weakly triangulated comparability
graphs. If fast matrix multiplication is not desired due to its complexity, we get an
O(n3) recognition algorithm. These time complexities are an improvement over exist-
ing algorithms, since the best known algorithms for recognizing weakly triangulated
graphs take Θ(n4) time [30].

However, we can improve on these time bounds using properties of the compara-
bility graph recognition algorithm. It is possible to find a transitive orientation of a
comparability graph in O(n+m) time [25]; the reason that this does not give a linear
time algorithm for recognizing comparability graphs is that the algorithm will assign
some direction to edges, even if no transitive orientation is possible. Therefore, we will
use the following strategy for recognizing weakly triangulated comparability graphs.
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We find an orientation of the graph which is transitive if and only if the graph has
a transitive orientation. We determine whether the bipartite transformation of the
directed graph is chordal bipartite; if not, then we know that G is either not a com-
parability graph or G is not weakly triangulated. We then use properties of chordal
bipartite graphs, and use the bipartite transformation to verify that the orientation
is transitive. If the orientation is transitive, we use Theorem 1 to answer that G is a
weakly triangulated comparability graph.

We construct a Γ-free ordering of the bipartite transformation, which can be
done in O(n2) time [32]. Algorithms for constructing a Γ-free ordering work by using
a technique called doubly lexical ordering of the matrix. Details of the procedure are
not important to this paper, but if the neighborhood of a vertex x properly contains
the neighborhood of vertex y, then doubly lexical ordering guarantees that the column
or row corresponding to x comes after the column or row corresponding to y in the
Γ-free ordering of the bipartite adjacency matrix.

Theorem 2. Suppose that the bipartite transformation of a directed graph G
gives a chordal bipartite graph G′. We can determine whether G is transitive in O(n2)
time.

Proof. For each pair of vertices x, y we can determine whether there is a transi-
tivity violation x → y → z in constant time. If x does not have an edge to y, clearly
no such violation exists. So suppose there is an edge from x to y and x1 comes before
y1 in the doubly lexical ordering of G′. There must be a vertex z such that y → z
while x has no edge to z, or the neighborhood of y1 would be properly contained in
the neighborhood of x1 (the containment is proper since x1 has an edge to y2 while y1

does not), so we can immediately answer that G is not transitive. Now suppose that
x1 comes after y1 in the ordering. Let z2 be the first column of the Γ-free ordering
of G′ which has a 1 in row y1. If x1 does not have a 1 in this position, there is a
transitivity violation x → y → z. If there is a 1 in this position, then there is no
transitivity violation x → y → u, or the rows x1, y1 and columns z2, u2 would form
a Γ.

Corollary 3. Weakly triangulated comparability graphs can be recognized in
O(n2) time.

Proof. Given a graph G, we find an orientation of the edges which is transitive if
and only if G is a comparability graph using the algorithm of [25, 31]. We construct
the bipartite transformation G′ of the directed version of G. By Theorem 1, if G is
in the class, then G′ must be a chordal bipartite graph; we test this in O(n2) time
using the algorithms in [21, 32]. If G′ is chordal bipartite, we use Theorem 2 to test
whether the orientation is actually transitive. If the orientation is transitive and G′

is chordal bipartite, we use Theorem 1 to conclude that G is a weakly triangulated
comparability graph.

Corollary 4. The number of weakly triangulated comparability graphs is 2Θ(nlog2n).

Proof. Every chordal bipartite graph G is clearly a weakly triangulated compara-
bility, since there are no induced cycles of length greater than four in G, and there
cannot be any set of three vertices from a single color class in any hole of the comple-
ment. Any weakly triangulated comparability graph G can be reconstructed from the
bipartite transformation of the transitive orientation of G, which is a chordal bipar-
tite graph on 2n vertices. Therefore, the number of weakly triangulated comparability
graphs on n vertices is some number between the number of chordal bipartite graphs
on n vertices and the number of chordal bipartite graphs on 2n vertices. Since there
are 2Θ(nlog2n) chordal bipartite graphs on n vertices [29], the result follows.
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3. Independent set, transitive closure, and transitive reduction. We
know that there are polynomial algorithms for solving the clique, independent set,
chromatic number, and clique cover problems on weakly triangulated comparability
graphs, since such algorithms exist for these problems on both comparability graphs
and weakly triangulated graphs. Clique and chromatic number can be solved in linear
time on comparability graphs [17, 25], so we cannot hope to do better for these
problems. Since these graphs are perfect, and the size of the largest independent set
in G is equal to the clique cover number of G, we will consider only the independent
set problem.

The best known algorithm for solving independent set on weakly triangulated
graphs has time complexity Θ(n4) [3, 19] and the best algorithm for computing the
maximum independent set on comparability graphs has the same time complexity as
finding a maximum matching in a bipartite graph [13], as described below. We show
that this problem can be solved in O(n2) time on weakly triangulated comparability
graphs, as a simple consequence of Theorem 1. We note that it will be difficult to
improve the time bound for independent set on general comparability graphs, since
every bipartite graph is a comparability graph, and any improvement in the time
complexity of computing maximum independent set on comparability graphs will
improve the time complexity of computing the cardinality of a maximum matching in
bipartite graphs.

The best algorithm for solving the independent set problem on comparability
graphs is most easily phrased as solving the vertex cover problem on the class; to
solve the maximum independent set problem, we simply take the vertices which are
not part of the minimum vertex cover.

The algorithm for solving this problem takes a transitive orientation of the graph
G, performs the bipartite transformation, and solves the vertex cover problem on the
bipartite transformation G′ using well known ideas for transforming bipartite vertex
cover problem to bipartite matching problem. A vertex x is placed in the vertex cover
of G if and only if either x1 or x2 is in the minimum vertex cover of G′; this will be the
minimum vertex cover of G. The bottleneck step is solving the maximum matching

problem on G′; the current best time bounds are O(n1.5
√
m/ logn) [2] and O( n

2.5

log n )

[11].

For weakly triangulated comparability graphs, we make the same transformation,
but instead of using a general matching algorithm we use the fact that G′ is chordal
bipartite, and use a simpler matching algorithm for G′. It is known that a maximum
cardinality matching in a chordal bipartite graph can be found in linear time, given
a Γ-free ordering of the bipartite adjacency matrix of the graph [6]. We include the
algorithm here for the sake of completeness.

Lemma 5. The maximum cardinality matching problem on a chordal bipartite
graph can be solved in O(n2) time.

Proof. We create a Γ-free ordering of the bipartite adjacency matrix for the chordal
bipartite graph. We match the vertex corresponding to the first row with the vertex
whose column corresponds to the first 1 entry in that row (if such a column exists),
and delete that row and column. We then continue to the next row and repeat until all
the rows and columns have been deleted. Consider any row r and column c which we
choose for our matching. Suppose that we cannot choose to match these in a maximum
cardinality matching that includes all previous matches. If r or c is unmatched in the
optimal matching, then matching r with c cannot decrease the size of the matching.
If r is matched with c2 and c is matched with r2, there must be an edge (r2, c2) or
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rows r, r2 and c, c2 induce a Γ. Therefore, we can match r with c and r2 with c2 and
still get an optimum matching.

Corollary 6. The independent set problem can be solved in O(n2) time for
weakly triangulated comparability graphs.

Proof. Use Ford and Fulkerson’s transformation [13] to reduce this to bipartite
matching. Theorem 1 shows that this yields a chordal bipartite graph, and Lemma 5
lets us solve this problem in O(n2) time.

Transitive closure is normally defined on a directed acyclic graph G; an edge from
x to y is part of the transitive closure of G if there is a directed path of length ≥ 1 from
x to y in G. The best algorithms known for general transitive closure involve matrix
multiplication; relationships between matrix multiplication and transitive closure are
examined in [12, 14, 26].

We will solve the transitive closure problem efficiently for any directed acyclic
graph G with the property that the underlying undirected graph of the transitive
closure is a weakly triangulated comparability graph. This problem can be solved in
O(n+mt) time for chordal comparability graphs [23], where mt is the number of edges
of the transitive closure. We show that the problem can be solved in O(n2loglogn)
time for weakly triangulated comparability graphs.

The algorithm most closely resembles the algorithm for transitive closure of two
dimensional partial orders [22]. The fundamental idea is to use divide and conquer.
The set of vertices is partitioned into two sets S1, S2 of size n

2 with the property that
no edge goes from S2 to S1; the transitive closure is solved recursively within each
set. The key task is to add edges which are implied by transitivity from S1 to S2;
this is done by using the fact that the transitive closures of the two pieces can be
transformed to chordal bipartite graphs using the bipartite transformation.

Lemma 7. Suppose that G is a directed acyclic graph such that the underlying
undirected graph is a weakly triangulated comparability graph. Assume that we are
given the doubly lexical ordering of the bipartite transformation of G, and adjacency
lists of each vertex ordered by column number in the ordering. Let x be a vertex which
has edges to some vertices of G. We can find all edges out of x in the transitive closure
of {x} ∪ G in O(nloglogn) time.

Proof. Let Y = y1, y2, . . . , yk be the vertices of G which have an edge from x.
We place the vertices of Y in a priority queue, where the value associated with yi is
the column number of the first 1 in row yi.

We repeatedly look at the vertex yi with the smallest value in the priority queue;
let z be the vertex with the column number that is currently associated with yi.
Suppose there is another vertex yj on the queue with the same priority value as yi.
One of the vertices {yi,yj} has smaller row number in the bipartite transformation;
call the vertex with smaller row number ya and the vertex with larger row number
yb. Since we are given a Γ-free ordering, for any vertex z′ which comes after z in the
ordering, if ya has an edge to z′, then yb has an edge to z′. Therefore, we can eliminate
ya from our priority queue when looking for later edges implied by transitivity from
x.

Therefore, the algorithm is as follows. Remove from the priority queue the vertex
yi with the smallest value. Let z be as above and suppose z’s column number is k. Add
an edge from x to z. Next examine the current smallest value on the queue. Suppose
it is associated with the vertex yj . If the value associated with yj is also k, remove
yj from the priority queue and eliminate from further consideration whichever of yi
and yj has the smaller row number. Repeat this step until the current smallest value
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in the queue is greater than k. The vertex with the largest row number among those
with priority value k is then added back to the priority queue with associated value
equal to the column index of the next 1 after column k in its row. Repeat this entire
process until the priority queue is empty.

There are O(n) operations which correspond to adding an edge from x, and each
priority queue operation which does not add an edge from x must delete one vertex
from the priority queue. Therefore, the number of priority queue operations is O(n).
If the priority queue is a heap, each operation takes O(logn) time, and the total time
spent is O(nlogn). However, each value in the queue is an integer in the range 1, . . . , n,
which allows us to use van Emde Boas’s data structure [33] with cost O(loglogn) per
operation. Therefore, all edges can be added in O(nloglogn) time.

A similar procedure can be used to add a new vertex y with edges into it from
vertices of G, and to add all edges implied by transitivity in O(nloglogn) time.

Theorem 8. If the underlying undirected graph of the transitive closure of a di-
rected acyclic graph G is a weakly triangulated comparability graph, then the transitive
closure of G can be found in O(n2loglogn) time.

Proof. Let T be a topological sort of G. Divide the vertices of G into two sets S1,
S2, where S1 consists of the first n

2 vertices in T and S2 is the remainder. Recursively
find the transitive closures C1, C2 of the subgraphs induced by S1 and S2. Construct
the Γ-free matrix of the bipartite transformation of C1 and C2, and order the adjacency
lists of each vertex of C1 and C2 so that vertices appear in increasing order of their
columns in the Γ-free ordering.

For each vertex x in S1, add all edges implied by transitivity of the form x →
y1 → y2, where y1 and y2 are in S2. By Lemma 7, this step takes O(n2loglogn) time
overall. For each vertex y in S2, add all edges implied by transitivity of the form x1

→ x2 → y, x1, x2 ∈ S1; this also takes O(n2loglogn) time.

At this point, we claim that we have the transitive closure of G. Consider any
path from x to y in G. If x and y are both in S1 or both in S2, then the path must
be entirely within S1 or within S2 as we divided vertices along a topological sort of
G, and therefore, the edge from x to y will be added in the recursive step. Consider a
path of G from x in S1 to y in S2. Let x2 be the last vertex of S1 on the path, and let
y2 be the first vertex of S2 on the path. There must be an edge from x to x2 in C1,
and an edge from y2 to y in C2. When we are adding edges implied by transitivity
from x2, we will add an edge from x2 to y. When we are adding edges implied by
transitivity into y, since the edge from x2 to y has already been added, we will add
an edge from x to y.

The running time of this algorithm is governed by the recurrence relation T(n)
= 2T(n2 ) + O(n2loglogn). T(n) can be shown to be O(n2loglogn); one automatic
method for proving this can be found in [8].

The transitive reduction of a directed acyclic graph G is formed by removing from
G all edges x → z such that there exists a path of length greater than 1 from x to z
in the transitive closure of G. The relationship between computing transitive closure
and computing transitive reduction is discussed in [1]. We show that Lemma 7 can
be used to find the transitive reduction of G in O(n2loglogn) time in the case that
the underlying undirected graph of G’s transitive closure is a weakly triangulated
comparabilty graph.

Theorem 9. If the underlying undirected graph of the transitive closure of a di-
rected acyclic graph G is a weakly triangulated comparability graph, then the transitive
reduction of G can be found in O(n2loglogn) time.
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Proof. We first find the transitive closure of G and find a Γ-free ordering of
the bipartite transformation of the transitive closure. Consider any vertex x. Let
y1, y2, . . . , yk be the vertices which have edges in from x in G. Consider adding a new
vertex z which has edges to these same vertices. By Lemma 7, we can find all edges
implied by transitivity from z in O(nloglogn) time. An edge x → w of the transitive
closure is implied by transitivity and therefore is not in the transitive reduction of
G if and only if the edge z → w is found by the procedure of Lemma 7. Therefore,
repeating the procedure for each vertex x in G, the transitive reduction of G can be
found in O(n2loglogn) time.

If the input graph is an arbitrary directed acyclic graph, Corollary 3 and Theorem
9 give us an O(n2loglogn)-time algorithm which either finds the transitive reduction
or declares that the underlying undirected graph of transitive closure of the input
is not a weakly triangulated comparability graph. While computing the transitive
closure of the input graph, we simply verify at each recursive step that the underlying
undirected graph of the transitive closure of each subgraph is a weakly triangulated
comparability graph.

4. Conclusions and open problems. We have shown that weakly triangulated
comparability graphs can be dealt with more efficiently than either of the classes
weakly triangulated or comparability individually, by transforming problems on these
graphs to an associated chordal bipartite graph. This technique allows us to recognize
and find maximum independent set in O(n2) time for graphs in the class and to find
transitive closure and reductions in O(n2loglogn) time if the transitive closure is in
the class.

It would be interesting to find a geometric intersection model for the class of
graphs or its complement. Extensions of the models for the subclasses of permutation
graphs and interval graphs are possible, but the fact that there are 2Θ(nlog2n) weakly
triangulated comparability graphs means that the models would have to be made
considerably more complex.

Weakly triangulated cocomparability graphs are natural extensions of interval
graphs, using the fact that a graph G is an interval graph if and only if G is a chordal
cocomparability graph. Interval graphs are also equivalent to chordal asteroidal triple-
free graphs [20], and cocomparability graphs are a proper subset of asteroidal triple-
free graphs [9]. Thus, it also seems natural to consider weakly triangulated asteroidal
triple-free graphs to see whether problems remain tractable on this larger class.
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Abstract. We consider approximate counting of colorings of an n-vertex graph using rapidly
mixing Markov chains. It has been shown by Jerrum and by Salas and Sokal that a simple random
walk on graph colorings would mix rapidly, provided the number of colors k exceeded the maximum
degree ∆ of the graph by a factor of at least 2. We prove that this is not a necessary condition for
rapid mixing by considering the simplest case of 5-coloring graphs of maximum degree 3. Our proof
involves a computer-assisted proof technique to establish rapid mixing of a new “heat bath” Markov
chain on colorings using the method of path coupling. We outline an extension to 7-colorings of
triangle-free 4-regular graphs. Since rapid mixing implies approximate counting in polynomial time,
we show in contrast that exact counting is unlikely to be possible (in polynomial time). We give a
general proof that the problem of exactly counting the number of proper k-colorings of graphs with
maximum degree ∆ is #P -complete whenever k ≥ 3 and ∆ ≥ 3.
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1. Introduction. The problem of properly coloring the vertices of an n-vertex
graph with some given number of colors k has been widely studied [19]. Of equal the-
oretical interest has been the problem of counting the number of proper k-colorings of
a graph, the values of the so-called chromatic polynomial [19, p. 247]. Unfortunately
this is a #P -hard counting problem, even for graphs with a fixed bound ∆ on the
vertex degrees. (See section 6 for a proof of this fact in the context of this paper.)
Consequently, exact counting is unlikely to be possible, and attention turns to ap-
proximate counting, to some given proportional error ε. It is well known [15] that
randomized approximate counting in this sense is equivalent to approximate uniform
generation of a coloring; it is this problem we address here, using the Monte Carlo
Markov chain (MCMC) method [14]. The use of the MCMC method originated in
statistical physics (see, for example, [5, 9, 17]), but rigorous analysis of the method
has been a more recent development, with notable contributions from the computer
science community [6, 13]. This analysis involves using one of a few available methods
to prove that a Markov chain converges quickly to its stationary distribution.

In this context, Jerrum [12] and Salas and Sokal [18] independently proved that
a simple random walk on the k-colorings of an n-vertex graph would mix rapidly,
provided the number of colors k exceeded the maximum degree ∆ of the graph by
a factor of more than 2. These proofs were based on entirely different techniques,
coupling and Dobrushin uniqueness, respectively. The two results had different merits.
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Jerrum’s result was subsequently extended (but with an Ω∗(n2)1 increase in running
time) to the case k = 2∆, whereas Salas and Sokal’s result was extended to the
closely related Potts model [3]. However, the similarity of these bounds led to a
natural question: whether the condition k ≥ 2∆ is necessary for rapid mixing of the
underlying Markov chain on colorings. (Note that the chain is known to converge
eventually for k ≥ ∆ + 2.) There is still no general refutation of this question. Here
we examine only specific cases.

In a recent paper, Bubley and Dyer [3], using a new technique called path coupling,
showed how a coupling proof could be extended to the Potts model (and beyond).
Subsequently, Dyer and Greenhill [8] used this technique to analyze a more rapidly
mixing chain on colorings. This reduces the running time for the case k = 2∆ by an
Ω∗(n2) factor, but still does not demonstrate rapid mixing with fewer than 2∆ colors.

Here we show that it is possible to have rapid mixing with fewer than 2∆ colors by
considering the simplest case of 5-coloring graphs of maximum degree 3. To establish
our result we analyze a new Markov chain on colorings, from the so-called heat bath
family, using the technique of path coupling. The proof idea is somewhat novel in
this area: we establish the existence of certain required couplings by solving a large
number of large linear programs (in fact, transportation problems). The analysis
therefore cannot be carried out “by hand” and requires the use of linear programming
software to solve the many subproblems. Thus our analysis is a “computer proof” of
a mathematical theorem (in the spirit of [2, 4]).

We also extend our results to 7-colorings of triangle-free 4-regular graphs, again
demonstrating rapid mixing with fewer than 2∆ colors. (Observe that this includes
the physically relevant case of planar grids.) However, our methods are subject to
combinatorial explosion in terms of ∆, and we have currently not succeeded in pushing
them further.

Using results presented in [7] it is possible to deduce that the simple Jerrum/Salas–
Sokal Markov chain of colorings is rapidly mixing for the same values of k and the
same families of graphs as our new chains; that is, when k = 5 and the graphs have
maximum degree 3 or when k = 7 and the graphs are triangle-free and 4-regular.
(Note, however, that the mixing rate which is established in this way, while still
polynomial, is much larger than the mixing rate of our chains.)

The plan of the paper is as follows. In section 1.1 of the paper we review the path
coupling method, and in section 1.2 we briefly review recent work on approximately
counting colorings. In section 2 we give a rigorous mathematical definition of a heat
bath Markov chain. (As far as we are aware, this is the first general definition of this
concept.) In section 3 we show that the analysis of a heat bath Markov chain can be
reduced (using path coupling) to the task of solving a set of related transportation
problems. This leads to a computational method for analyzing heat bath Markov
chains. In section 4 this approach is applied to a Markov chain on 5-colorings of
graphs of maximum degree 3. A table needed for the computation is provided. In
section 5, we outline the extension to 7-colorings of triangle-free 4-regular graphs.
Finally, in section 6 we prove that the problem of exactly counting the number of
proper k-colorings of graphs with maximum degree ∆ is #P -complete when k ≥ 3
and ∆ ≥ 3.

1.1. Path coupling. Let Ω be a finite set and let M be a Markov chain with
state space Ω, transition matrix P , and unique stationary distribution π. If the initial

1Ω∗( · ) is the notation which hides factors of log n.
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state of the Markov chain is x, then the distribution of the chain at time t is given by
P tx(y) = P t(x, y). The total variation distance of the Markov chain from π at time t
with initial state x is defined by

dTV(P tx, π) =
1

2

∑
y∈Ω

|P t(x, y)− π(y)|.

A Markov chain is only useful in terms of almost uniform sampling or approximate
counting if its total variation distance tends to zero relatively quickly from some (easily
obtainable) initial state. Let τx(ε) denote the least value T such that dTV(P tx, π) ≤
ε for all t ≥ T . The mixing rate2 of M, denoted by τ(ε), is defined by τ(ε) =
max {τx(ε) : x ∈ Ω}. A Markov chain is said to be rapidly mixing if the mixing rate
is bounded above by some polynomial in n and log(ε−1), where n is a measure of the
size of the elements of Ω. All logarithms are to the base e.

There are relatively few methods available to prove that a Markov chain is rapidly
mixing. One such method is coupling. A coupling forM is a stochastic process (Xt, Yt)
on Ω×Ω such that each of (Xt), (Yt), considered independently, is a faithful copy of
M. The coupling lemma (see, for example, Aldous [1]) states that the total variation
distance of M at time t is bounded above by Prob[Xt 6= Yt], the probability that
the process has not coupled. The difficulty in applying this result lies in obtaining
an upper bound for this probability. In the path coupling method, introduced by
Bubley and Dyer [3], one need only define and analyze a coupling on a subset S of
Ω×Ω. Choosing the set S carefully can simplify considerably the arguments involved
in proving rapid mixing of Markov chains by coupling. The path coupling method
is described in the next lemma (taken from [8]). We use the term path to refer to
a sequence of elements of Ω, which need not be a path of possible transitions in the
Markov chain.

Lemma 1.1. Let δ be an integer-valued metric defined on Ω × Ω which takes
values in {0, . . . , D}. Let S be a subset of Ω × Ω such that for all (Xt, Yt) ∈ Ω × Ω
there exists a path

Xt = Z0, Z1, . . . , Zr = Yt

between Xt and Yt where (Zl, Zl+1) ∈ S for 0 ≤ l < r and
∑r−1
l=0 δ(Zl, Zl+1) =

δ(Xt, Yt). Define a coupling (X,Y ) 7→ (X ′, Y ′) of the Markov chain M on all pairs
(X,Y ) ∈ S. Suppose that there exists β < 1 such that

E [δ(X ′, Y ′)] ≤ β δ(X,Y )

for all (X,Y ) ∈ S. Then the mixing rate τ(ε) of M satisfies

τ(ε) ≤ log(Dε−1)

1− β .

Remark 1. The set S is often taken to be

S = {(X,Y ) ∈ Ω× Ω : δ(X,Y ) = 1} .
Here a coupling only need be defined for pairs at distance 1 apart.

Remark 2. Notice that Lemma 1.1 does not assume that the Markov chainM is
reversible.

2Elsewhere, the mixing rate is sometimes defined to be τx(ε) for some fixed x.
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1.2. Colorings of graphs. Let G = (V,E) be a graph on n vertices and let ∆
be the maximum degree of G. Let k be a positive integer and let C be a set of size k.
A map from V to C is called a k-coloring. A vertex v is said to be properly colored
in the coloring X if v is colored differently from all of its neighbors. A coloring X
is called proper if every vertex is properly colored in X. A necessary and sufficient
condition for the existence of a proper k-coloring of all graphs with maximum degree
∆ is k ≥ ∆ + 1. Denote by Ωk(G) the set of all proper k-colorings of G. The color
assigned to a vertex v in the coloring X is denoted by X(v).

Jerrum [12] and Salas and Sokal [18] independently defined a Markov chain with
state space Ωk(G) which is irreducible for k ≥ ∆ + 2 and rapidly mixing for k ≥ 2∆.
One version of this chain has the following transition procedure: from current state
X, choose a vertex v uniformly at random and choose a color c uniformly at random
from the set of those colors which properly color v in X. Then recolor v with c to
give the new state. A new Markov chain of colorings, denoted by M1(Ωk(G)), was
introduced in [8]. This new chain is irreducible for k ≥ ∆+1 and is also rapidly mixing
for k ≥ 2∆. Moreover, the new chain is provably faster than the Jerrum chain when
G is ∆-regular or (after a slight adjustment to the chain) when 2∆ ≤ k ≤ 3∆ − 1.
When k = 2∆ the new chain is Ω∗(n2) times faster than the Jerrum chain (see [8]).
The transitions ofM1(Ωk(G)) are defined by the following procedure: choose an edge
{v, w} uniformly at random from E and choose an ordered pair of colors (c(v), c(w))
uniformly at random from the set of all those such that both v and w are properly
colored when v is recolored c(v) and w is recolored c(w). The resulting coloring is the
new state.

2. Definition of a heat bath Markov chain. The notation is adapted from
that used in [3]. Let V and C be finite sets and let Ω be a subset of CV , the set of
functions from V to C. Let L be a subset of the power set of V . We shall refer to the
elements of L as lines. For X ∈ Ω, ` ∈ L, and c ∈ C`, let X`→c denote the element of
CV defined by

X`→c(u) =

{
c(u) if u ∈ `,
X(u) otherwise.

If X`→c ∈ Ω then we say that c is acceptable at ` in X. Finally let SX(`) be the set of
all elements of C` which are acceptable at ` in X. Let π be a distribution on Ω and,
for all ` ∈ L and all X ∈ Ω, let π∗X(`) be defined by

π∗X(`) =
∑

c∈SX(`)

π(X`→c).

The set of lines L and the distribution π can be used to define a Markov chainM(L, π)
with state space Ω. The transition procedure from the current state X is as follows:

1. choose ` uniformly at random from L,
2. choose c ∈ SX(`) with probability π(X`→c)/π∗X(`) and move to X`→c.

Clearly the Markov chain M(L, π) is aperiodic.
The definition of a heat bath Markov chain can now be stated.
Definition 2.1. A Markov chain M with state space Ω ⊆ CV is said to be a

heat bath Markov chain if there exists a set of lines L and a distribution π on Ω such
that M =M(L, π).

Suppose thatM(L, π) satisfies Definition 2.1. The transition matrix P ofM(L, π)
has entries

P (X,Y ) = π(Y )
∑
`⊇D

(|L||π∗X(`)|)−1
,
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where D = {v ∈ V : X(v) 6= Y (v)}. If ` ⊇ D, then SX(`) = SY (`) and π∗X(`) = π∗Y (`).
Therefore P is reversible with respect to π. IfM(L, π) is also irreducible, then it is an
ergodic chain with stationary distribution π. Say that the set of lines L is sufficient
if M(L, π) is irreducible.

In the special case that π is the uniform distribution on Ω we will write M(L)
instead of M(L, π). Here the transition procedure of M(L) involves choosing a line
` ∈ L uniformly at random and a color map c ∈ SX(`) uniformly at random and
making a transition to X`→c. All the heat bath Markov chains considered in this
paper involve the uniform distribution. Two examples are the two Markov chains of
k-colorings of a graph described in section 1.2. Both fit Definition 2.1, where π is
the uniform distribution on Ωk(G). For the Jerrum/Salas–Sokal chain the set L of
lines is merely the set of singleton vertices. In the case of the chain M1(Ωk(G)) the
set of lines L is the edge set E. In both cases, the set of lines L is sufficient, so the
corresponding Markov chain is ergodic.

Let H(X,Y ) denote the Hamming distance between X and Y , defined by

H(X,Y ) = | {v ∈ V : X(v) 6= Y (v)} |.
Suppose we want to analyze the mixing rate ofM(L) using path coupling on pairs at
Hamming distance 1 apart. Let X and Y be two elements of Ω which differ only at
v ∈ V . A coupling (X,Y ) 7→ (X ′, Y ′) must be defined for every ` ∈ L. Call a coupling
at ` optimal if it minimizes the expected value of H(X ′, Y ′). Note that the optimal
coupling defined here is not the same as the maximal coupling which is referred to
elsewhere in the literature. Refer to E [H(X ′, Y ′)− 1] as the cost of the coupling.
If SX(`) = SY (`), then an optimal coupling at ` is obtained by choosing the same
element c ∈ SX(`) in both X and Y . Here H(X ′, Y ′) = 0 if v lies on the line ` and
H(X ′, Y ′) = 1 otherwise. Suppose now that SX(`) 6= SY (`); it follows that v 6∈ `.
Given cX ∈ SX(`) and cY ∈ SY (`), let P (cX , cY ) denote the probability that the pair
(cX , cY ) is chosen by the coupling and let

h(cX , cY ) = | {u ∈ ` : cX(u) 6= cY (u)} |,
the number of elements of ` which are assigned different values by cX and cY . Then
the expected value of H(X ′, Y ′)− 1 is given by∑

P (cX , cY )h(cX , cY ),

where the sum is over all (cX , cY ) ∈ SX(`)× SY (`).

3. The related transportation problems. In this section it will be shown
that an optimal coupling for a heat bath Markov chain is equivalent to the opti-
mal solutions of a related set of transportation problems. (For more information on
transportation problems see, for example, [16].) Let m and n be positive integers
and let K be an m × n matrix of nonnegative integers (the cost matrix ). Let a
be a vector of m positive integers and let b be a vector of n positive integers such
that

∑m
i=1 ai =

∑n
j=1 bj = N. An m × n matrix Z of nonnegative numbers is a so-

lution of the transportation problem defined by a, b, and K if
∑n
j=1 Zi,j = ai for

1 ≤ i ≤ m and
∑m
i=1 Zi,j = bj for 1 ≤ j ≤ n. The cost of this solution is measured by∑m

i=1

∑n
j=1Ki,jZi,j . The elements of a are called row sums and the elements of b are

called column sums. An optimal solution of this transportation problem is a solution
which minimizes the cost. Every entry of an optimal solution is a nonnegative integer.
Efficient algorithms exist for solving transportation problems.
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Returning to the problem of defining an optimal coupling for the heat bath Markov
chain M(L) at the line `, let NX = |SX(`)| and NY = |SY (`)|. Let a be the NX -
dimensional vector with each entry equal to NY and let b be the NY -dimensional
vector with each entry equal to NX . Let K be the matrix with NX rows and NY
columns, corresponding to the elements of SX(`) and SY (`), respectively, such that
the (cX , cY )th entry of K is h(cX , cY ). A coupling at ` defines an NX ×NY matrix
Z with (cX , cY )th entry given by

NXNY Prob [X ′ = X`→cX , Y
′ = Y`→cY ] .

The matrix Z is a solution of the transportation problem defined by a, b, and K. An
optimal solution of this transportation problem corresponds to a optimal coupling at
`. The cost of an optimal solution equals NXNY times the cost of an optimal coupling.
Therefore one can attempt to prove thatM(L) is rapidly mixing by adapting the path
coupling method as follows. Here “nonisomorphic” means “nonisomorphic in some
appropriate sense.”

1. Compile a complete list of nonisomorphic pairs (X,Y ) such thatH(X,Y ) = 1.
2. For each such pair, calculate the contribution of all lines ` such that SX(`) =
SY (`).

3. For all other lines `, solve the corresponding transportation problem to find
the cost of the optimal coupling.

4. Combine all this information to determine whether the expected value of
H(X ′, Y ′)−1 is negative in all cases. If this is the case, then let the maximum
of these values be β − 1. The mixing time τ(ε) of M(L) satisfies

τ(ε) ≤ log(nε−1)

1− β
by Lemma 1.1. If 1 − β is only polynomially small, then M(L) is rapidly
mixing.

Remark 3. In order to prove that the Markov chain is rapidly mixing it may not
be necessary to find an optimal solution in each case. Instead, it may be sufficient to
find a solution with a low enough cost in each case.

Remark 4. Certainly the list of pairs (X,Y ) used in the above procedure must
contain at least one element from each isomorphism class so that the calculations are
conclusive. If the list is a transversal, then no unnecessary calculations are performed.
In many cases, however, the amount of effort required to find a transversal of the iso-
morphism classes is prohibitive and ruling out obviously isomorphic pairs will suffice.
Moreover, in most cases one need only consider a certain “neighborhood” around the
line ` rather than the entire maps X, Y .

4. Five-coloring degree-three graphs. Let G be a graph with maximum de-
gree 3 and let Ωk(G) denote the set of proper k-colorings of G. The two known
Markov chains on k-colorings described in section 1.2 are rapidly mixing for k ≥ 6.
In this section a Markov chain on Ω5(G) is defined and a computational proof that
the chain is rapidly mixing is given following the method described in section 3.

Let C = {1, . . . , 5} be the color set and let M be the following Markov chain
on Ω5(G). If w is a vertex with degree d then let the neighbors of w be denoted by
u1(w), . . . , ud(w). Denote by w̃ the set defined by

w̃ = {w, u1(w), . . . , ud(w)}.
Define the set of lines L by

L = {w̃ : w ∈ V } .
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Then SX(w̃) is

SX(w̃) =
{
c ∈ Cw̃ : Xw̃→c ∈ Ω5(G)

}
.(4.1)

The Markov chain M = M(L) is a heat bath Markov chain in the sense of Defini-
tion 2.1, where π is the uniform distribution on Ω5(G). The transitions of M from
current state X follow the pattern described in section 2: a line w̃ ∈ L is chosen uni-
formly at random, a corresponding color mapping c ∈ SX(w̃) is chosen uniformly at
random, and a transition is made to Xw̃→c. The chainM is irreducible; for example,
it can perform all the moves of the Jerrum/Salas–Sokal chain. Therefore the set of
lines L is sufficient and the chain M is ergodic with uniform stationary distribution.

The mixing rate of M will now be analyzed using path coupling on pairs at
Hamming distance 1 apart. Let X,Y ∈ Ω5(G) and let d = H(X,Y ). It is not always
possible to form a path

X = Z0, Z1, . . . , Zd = Y

of length d between X,Y ∈ Ω5(G) where H(Zl, Zl+1) = 1 for 0 ≤ l < d and Zl ∈
Ω5(G) for 0 ≤ l ≤ d; however, we can always form such a path where Zl ∈ CV for
0 ≤ l ≤ d. If X ∈ Ω5(G), then the definition of the set SX(w̃) given in (4.1) is
equivalent to the following definition:

SX(w̃) =
{
c ∈ Cw̃ : all elements of w̃ are properly colored in Xw̃→c

}
.

The latter definition makes sense for all X ∈ CV . Using the latter definition, we can
extend the chainM to act on the state space CV . It is easy to see that the extended
chain has the stationary distribution

π(X) =

{ |Ω5(G)|−1 if X ∈ Ω5(G),
0 otherwise.

The extended chain is no longer reversible; however, by Remark 2 we may apply
Lemma 1.1 to the extended chain. If the extended chain is rapidly mixing, then the
original chain is also rapidly mixing with the same upper bound on the mixing rate.
This follows since mixing time is defined as the maximum over all initial states, and
the original chain involves only a subset of these.

Now suppose that X and Y are two colorings which differ only at v. Without loss
of generality, suppose that X(v) = 1 and Y (v) = 2. Denote the degree of v by dv. Let
w be a vertex for which w̃ corresponds to the line chosen in the transition procedure.
If w = v or {w, v} ∈ E, then SX(w̃) = SY (w̃). Therefore the same choice of c may be
made in X and Y . It follows that these vertices contribute −(dv+1)/n to the expected
value of H(X ′, Y ′)− 1. The only other lines which may make nonzero contributions
to the expected value of H(X ′, Y ′) − 1 are those corresponding to vertices w which
satisfy the following criteria:

1. w 6= v and {w, v} 6∈ E,
2. there exists u ∈ V such that {w, u} ∈ E and {u, v} ∈ E.

Call such a vertex a critical vertex. Define the multiplicity µ(w) of a critical
vertex w to be the number of neighbors of w which are neighbors of v. Now w may
have up to three neighbors. If w has degree 2 or 3, then label its second neighbor by
z1; if w has degree 3, then label its third neighbor by z2. If zi is present, then it may
have up to three neighbors, for i = 1, 2. Let the second and third neighbors of zi be
labeled zi,1, zi,2, if they are present, for i = 1, 2. Finally u may have a third neighbor
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Table 4.1
The 15 configurations.

i dw edges µi(w) λi Mi(w)
1 1 NNNN 1 3 5/12
2 2 NNNN 1 20 13/28
3 2 NNNY 1 3 73/156
4 2 YNNN 2 8 25/29
5 2 YNNY 2 1 2/3
6 3 NNNN 1 112 381/748
7 3 YNNN 2 59 2230/2343
8 3 YYNN 3 17 94/71
9 3 NNYN 1 31 527/1081

10 3 YNYN 2 11 1888/2115
11 3 YYYN 3 3 10/9
12 3 NNNY 1 20 250/483
13 3 YNNY 2 5 67/90
14 3 NNYY 1 3 25/57
15 3 NYYY 2 1 3/4

which we denote by z3 if it is present. There are 15 nonisomorphic configurations on
these vertices, depending on the degree of w and on whether the edges

{v, z1} , {v, z2} , {z1, z2} , {z1, u}
are present or absent in E. The details are given in Table 4.1, where the second
column holds the degree of w and the third column holds a string of four characters,
each equal to “Y” or “N.” The characters refer to the four edges listed above—in
that order—and “Y” indicates that the edge is present in E while “N” indicates
that it is absent. The fourth column of Table 4.1 holds µi(w), the multiplicity of
w in the ith configuration. The last two columns of Table 4.1 are explained below.
Note that any identification or edges between the vertices z1,1, z1,2, z2,1, z2,2, z3 can
be ignored, as this situation can be modeled by coloring the affected vertices with the
same (respectively, different) colors. The only vertices which affect the sets SX(w̃),
SY (w̃) are the vertices

v, z3, z1,1, z1,2, z2,1, z2,2.

Call these vertices the rim vertices and call an assignation of colors to these vertices
a rim coloring. Following Remark 4, it suffices to consider a complete list of noniso-
morphic rim colorings for each configuration. Let λi be the number of nonisomorphic
rim colorings of the ith configuration, 1 ≤ i ≤ 15. These values are listed in the fifth
column of Table 4.1, while a complete list of the nonisomorphic rim colorings for each
configuration can be found in Table 4.2. Each rim coloring is shown as a list of six
characters representing the colors of the six rim vertices in the order given above. If
a rim vertex equals v, then its color is given as 0. Similarly, if a rim vertex equals u,
z1, or z2, then its color is given as ρ. If a rim vertex is absent, then its color is given
as ω. The first element of each rim coloring is always 0, but it is included so that any
symmetry in the configuration is apparent.

Suppose that in a given configuration the vertex z1 is present and is not joined by
an edge to v, u (or z2 if present). Then it suffices to assume that z1 has degree 3, as
follows. If z1 has degree 2, then its third neighbor z1,2 may be added and colored with
the same color as z1,1 without affecting the sets SX(w̃), SY (w̃). If z1 has degree 1,
then the sets SX(w̃), SY (w̃), respectively, contain exactly four times as many elements
as those obtained in the case that vertex z1 is not present. Let a, b, and K be the
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Table 4.2
The rim colorings for configurations 1–15.

Config 1: 01ωωωω 03ωωωω 0ωωωωω
Config 2: 0111ωω 0112ωω 0113ωω 0122ωω 0123ωω 0133ωω 0134ωω

0311ωω 0312ωω 0313ωω 0314ωω 0333ωω 0334ωω 0344ωω
0345ωω 0ω11ωω 0ω12ωω 0ω13ωω 0ω33ωω 0ω34ωω

Config 3: 0ρ1ρωω 0ρ3ρωω 0ρωρωω
Config 4: 0101ωω 0103ωω 0104ωω 0303ωω 0304ωω 0ω01ωω 0ω03ωω

0ω0ωωω
Config 5: 0ρ0ρωω
Config 6: 011111 011112 011113 011122 011123 011133 011134

011212 011213 011222 011223 011233 011234 011313
011314 011322 011323 011324 011333 011334 011344
011345 012222 012223 012233 012234 012323 012324
012333 012334 012344 012345 013333 013334 013344
013345 013434 013435 031111 031112 031113 031114
031122 031123 031124 031133 031134 031144 031145
031212 031213 031214 031233 031234 031244 031245
031313 031314 031323 031324 031333 031334 031344
031345 031414 031415 031424 031425 031433 031434
031435 031444 031445 031455 033333 033334 033344
033345 033434 033435 033444 033445 033455 034444
034445 034455 034545 0ω1111 0ω1112 0ω1113 0ω1122
0ω1123 0ω1133 0ω1134 0ω1212 0ω1213 0ω1233 0ω1234
0ω1313 0ω1314 0ω1323 0ω1324 0ω1333 0ω1334 0ω1344
0ω1345 0ω3333 0ω3334 0ω3344 0ω3345 0ω3433 0ω3435

Config 7: 010111 010112 010113 010122 010123 010133 010134
010211 010212 010213 010233 010234 010311 010312
010313 010314 010322 010323 010324 010333 010334
010344 010345 030311 030312 030313 030314 030333
030334 030344 030345 030411 030412 030413 030415
030433 030434 030435 030455 0ω0111 0ω0112 0ω0113
0ω0122 0ω0123 0ω0133 0ω0134 0ω0311 0ω0312 0ω0313
0ω0314 0ω0333 0ω0334 0ω0344 0ω0345 0ω0ω11 0ω0ω12
0ω0ω13 0ω0ω33 0ω0ω34

Config 8: 010101 010102 010103 010203 010303 010304 030303
030304 030405 0ω0101 0ω0102 0ω0103 0ω0303 0ω0304
0ω0ω01 0ω0ω03 0ω0ω0ω

Config 9: 011ρ1ρ 011ρ2ρ 011ρ3ρ 012ρ2ρ 012ρ3ρ 013ρ3ρ 013ρ4ρ
031ρ1ρ 031ρ2ρ 031ρ3ρ 031ρ4ρ 033ρ3ρ 033ρ4ρ 034ρ4ρ
034ρ5ρ 01ωρ1ρ 01ωρ2ρ 01ωρ3ρ 03ωρ1ρ 03ωρ3ρ 03ωρ4ρ
01ωρωρ 03ωρωρ 0ω1ρ1ρ 0ω1ρ2ρ 0ω1ρ3ρ 0ω3ρ3ρ 0ω3ρ4ρ
0ωωρ1ρ 0ωωρ3ρ 0ωωρωρ

Config 10: 010ρ1ρ 010ρ2ρ 010ρ3ρ 030ρ1ρ 030ρ3ρ 030ρ4ρ 010ρωρ
030ρωρ 0ω0ρ1ρ 0ω0ρ3ρ 0ω0ρωρ

Config 11: 010ρ0ρ 030ρ0ρ 0ω0ρ0ρ
Config 12: 0ρ1ρ11 0ρ1ρ12 0ρ1ρ13 0ρ1ρ22 0ρ1ρ23 0ρ1ρ33 0ρ1ρ34

0ρ3ρ11 0ρ3ρ12 0ρ3ρ13 0ρ3ρ14 0ρ3ρ33 0ρ3ρ34 0ρ3ρ44
0ρ3ρ45 0ρωρ11 0ρωρ12 0ρωρ13 0ρωρ33 0ρωρ34

Config 13: 0ρ0ρ11 0ρ0ρ12 0ρ0ρ13 0ρ0ρ33 0ρ0ρ34
Config 14: 0ρρρ1ρ 0ρρρ3ρ 0ρρρωρ
Config 15: 0ρρρ0ρ

row sums, column sums, and cost matrix obtained when z1 is absent and let a′, b′,
and K ′ be those obtained when z1 is present. Then K ′ has the block form

K ′ =


K ∗ ∗ ∗
∗ K ∗ ∗
∗ ∗ K ∗
∗ ∗ ∗ K
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and the vector a′ (respectively, b′) consists of four copies of the vector 4a (respectively,
4b) concatenated together. It is not hard to see that the cost of an optimal solution of
the transportation problem defined by a′, b′, and K ′ is bounded above by 16k, where
k is the cost of an optimal solution of the transportation problem defined by a, b, and
K. Therefore the cost of an optimal coupling when z1 is present is bounded above
by the cost of an optimal coupling when z1 is absent. The same argument holds with
the roles of z1 and z2 reversed and reduces the number of rim colorings for certain
configurations.

For each rim coloring of a given configuration the sets SX(w̃), SY (w̃) can be
formed. From these the matrix K of costs can be obtained and given as input to an
algorithm for the transportation problem. The cost of an optimal solution corresponds
to the value of NXNY E [H(X ′, Y ′)− 1] for an optimal coupling of X and Y at w.
Let Mi(w) be the greatest cost of an optimal coupling over all possible rim colorings
for the ith configuration, 1 ≤ i ≤ 15. These values are listed in the sixth column of
Table 4.1. These results lead to the following theorem.

Theorem 4.1. The Markov chain M is rapidly mixing with mixing rate

τ(ε) ≤ 161

144
n log(nε−1).

Proof. The maximum contribution of a critical vertex in the ith configuration is
denoted by Mi(w). These values were calculated using an algorithm for the trans-
portation problem and are listed in Table 4.1. Denote by dv the degree of the vertex
v. If dv = 0, then the expected value of H(X ′, Y ′) − 1 is −1/n. If dv > 0, then the
expected value of H(X ′, Y ′)− 1 in the ith configuration is given by

E [H(X ′, Y ′)− 1] ≤ − (dv + 1)

n
+
∑
w

Mi(w)

n

for 1 ≤ i ≤ 15, where the sum is over all critical w. By inspection of Table 4.1 it is
clear that

Mi(w) <
2µi(w)

3
≤ (dv + 1)µi(w)

2dv

for 1 ≤ i ≤ 15. Therefore the expected value of H(X ′, Y ′)− 1 is less than

(dv + 1)

2dvn

(∑
w

µi(w)− 2dv

)
≤ 0

for 1 ≤ i ≤ 15. To compute an upper bound for the mixing rate, let

T = max {Mi(w)/µi(w) : 1 ≤ i ≤ 15} .
By inspection of Table 4.1 one can see that T = 250/483, corresponding to configu-
ration 12. Then

E [H(X ′, Y ′)− 1] ≤ − 4

n
+

6T

n
= − 144

161n
.

Therefore, by Lemma 1.1 the mixing rate of M is as stated.
Remark 5. In order to prove thatM is rapidly mixing, it suffices to establish the

inequality T < 2/3, as shown in the proof of Theorem 4.1. To show this, the exact
value of Mi(w) was calculated for 1 ≤ i ≤ 15. As mentioned in Remark 3, much
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calculation can be saved by halting the algorithm for the transportation problem in
each case as soon as a feasible solution with low enough cost has been found. In
two separate calculations using different heuristics, the authors established the two
bounds T ≤ 1174/1767 and T ≤ 515/966 using this method. The first gives rise to
the upper bound

τ(ε) ≤ 589

8
n log(nε−1)

on the mixing rate of M, which is more than 65 times greater than the bound given
in Theorem 4.1. This illustrates that the increased efficiency which results in this way
may incur a significant loss of tightness in the bound on the mixing rate. However,
the second calculation gives rise to the bound

τ(ε) ≤ 161

129
n log(nε−1),

which is very close to the bound provided by Theorem 4.1.

5. Further applications. In principle it is not difficult to extend the result
of section 4 to graphs of larger (bounded) degree—the algorithm for generating all
the nonisomorphic configurations readily extends to this case. However, there is a
problem that prevents us from doing this: the number of rim colorings suffers from
combinatorial explosion, as does the size of the transportation problems to be solved.
This may be offset in some fashion by restricting attention to smaller classes of graphs.
The high degree of symmetry inherent in lattice graphs makes these ideal candidates.

It would be interesting to see just how general these classes of graphs can be made
before the computation becomes intractable. Determining the cut-off point is a largely
subjective matter and dependent on available resources. One additional computation
that we discovered to be tractable is the proof of rapid mixing of Ω7(G), where G is a
4-regular, triangle-free graph. It should be clear where the simplifications arise from
these two additional restrictions over the case considered in section 4: the regularity
condition ensures that we need not consider the cases where some of the rim vertices
are absent, and demanding that the graph is triangle-free means that we do not need
to consider the cases where some of the rim vertices are adjacent to the critical vertex
that they rim.

To further save on the amount of computational time needed, we did not actually
find the optimum solutions of the transportation problems. Instead we made use of
Remark 3, since it transpired that using the matrix minimum heuristic was sufficient.

We will use some of the notation of section 4 for the remainder of this section.
In order to ensure that the chain was rapidly mixing, we needed to show that we

had

E [H(X ′, Y ′)− 1] ≤ − 5

n
+
∑
w

Mi(w)

n

for all critical vertices w. (The 5 arises from the fact that there are five choices of
vertex, v and all of its neighbors, whose choice would ensure that H(X ′, Y ′) = 0.)

It is sufficient therefore to show that for each rim coloring Q we have

cost(Q)× 12

µ(w)
− 5 ≤ 0, i.e., cost(Q) ≤ 5

12
µ(w),(5.1)

where cost(Q) is the cost of the optimal solution to the transportation problem asso-
ciated with Q.
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Table 5.1
The worst configurations for 7-coloring 4-regular triangle-free graphs.

Rim coloring µ(w) Proven bound
0 3 4 5 5 6 5 5 6 5 6 7 1 62/189
0 3 4 5 5 6 5 6 6 5 6 7 1 62/189
0 3 4 0 5 6 3 3 7 4 4 7 2 950/1489
0 3 4 0 5 6 3 3 7 4 7 7 2 950/1489
0 3 4 0 5 6 3 3 7 5 5 7 2 950/1489
0 3 4 0 5 6 3 3 7 5 7 7 2 950/1489
0 3 4 0 5 6 3 7 7 4 7 7 2 950/1489
0 3 4 0 5 6 3 7 7 5 7 7 2 950/1489
0 3 4 0 3 5 0 6 7 3 4 5 3 914/969
0 3 4 0 3 5 0 6 7 3 4 6 3 914/969
0 3 4 0 3 5 0 6 7 3 6 7 3 914/969
0 3 4 0 3 4 0 3 5 0 6 7 4 1212/997
0 3 4 0 3 5 0 3 6 0 4 7 4 1212/997

It was necessary to consider 42574 nonisomorphic rim colorings. The worst cases
for the different values of µ(w) are listed in Table 5.1. Each rim coloring is shown as a
list of 12 numbers in four groups of three. Each group of three numbers corresponds
to a neighbor z of w and represents the colors of the neighbors of z other than w. The
notation for the colors is as explained in section 4 (although here the set of colors is
{1, . . . , 7}, with seven elements). By inspection, all of these worst-case rim colorings
satisfy (5.1), from which the rapid mixing result follows.

The mixing rate may be bounded by considering the largest value of the proven
bound over µ(w) in Table 5.1. This is 62/189. Thus E [H(X ′, Y ′)− 1] ≤ −67/63n. It
follows then from Lemma 1.1 that the Markov chainM is rapidly mixing with mixing
rate bounded above by

63

67
n log(nε−1).

Remark 6. A method is outlined in [7] whereby, under certain conditions, the
rapid mixing of a given Markov chain can be used to deduce the rapid mixing of a
second Markov chain with the same state space and stationary distribution as the
first. Using this and the results of section 4 it is possible to prove that the simple
Jerrum/Salas–Sokal chain is rapidly mixing when k = 5 for graphs of maximum degree
3. Similarly, using the results of this section it is possible to prove that the simple
chain is rapidly mixing when k = 7 for triangle-free 4-regular graphs. The mixing rate
of the Jerrum/Salas–Sokal chain is bounded above by O(n8 log(n)) in both cases.

6. A #P -completeness proof. In this section we present a proof that the
problem of counting the number of k-colorings of graphs with maximum degree ∆ is
#P -complete for fixed k, ∆ such that k ≥ 3 and ∆ ≥ 3. First we must establish
a preliminary result involving the path with r + 1 vertices u1, . . . , ur+1 and edges
{ui, ui+1} for 1 ≤ i ≤ r.

Lemma 6.1. Let Cr denote the path with r + 1 vertices u1, . . . , ur+1 and r edges
{ui, ui+1} for 1 ≤ i ≤ r. Let γ, γ′ be two fixed, distinct colors and let σr, δr be defined
by

σr = | {X ∈ Ωk(Cr) : X(u1) = γ, X(ur+1) = γ} |,
δr = | {X ∈ Ωk(Cr) : X(u1) = γ, X(ur+1) = γ′} |
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for r ≥ 1. Then

σr =
(k − 1)r − (−1)r−1(k − 1)

k
and δr =

(k − 1)r + (−1)r−1

k

for r ≥ 1.
Proof. This result follows easily by induction, using the following observations.

When r = 1, the equations give the correct values σ1 = 0 and δ1 = 1. If r > 1, then

σr = (k − 1)δr−1 and δr = σr−1 + (k − 2)δr−1,

giving the inductive step.
We now show that it is #P -complete to count the number of proper k-colorings

of arbitrary graphs of maximum degree ∆ when k ≥ 3 and ∆ ≥ 3.
Theorem 6.2. Denote by #kColMaxDeg∆ the problem of computing |Ωk(G)|

for an arbitrary graph G of maximum degree ∆. If k ≥ 3 and ∆ ≥ 3, then the problem
#kColMaxDeg∆ is #P -complete.

Proof. Let #kCol denote the problem of computing the number of proper k-
colorings for an arbitrary graph. If k ≥ 3, then by an immediate corollary of Vertigan’s
thesis (see [11]) the problem #kCol is #P -complete.

Let Π be the problem which takes as an instance a graph G with maximum degree
∆ and bipartition of the edge set E = M ∪B, and asks how many k-colorings of G are
there which make every edge in M monochromatic and every edge in B bichromatic.
There is an easy reduction from #kCol to Π, which we now describe. Given an
instance H of #kCol, define an instance G of Π as follows. Let the vertex set of G
equal the vertex set of H initially and let B equal the edge set of H, M = ∅. Let ∆′

be the maximum degree of H. Suppose first that ∆′ > ∆. Then replace each vertex
v with degree greater than ∆ by a path of new vertices, each of degree at most ∆,
joined together by edges in M . Ensure that each neighbor of v in H is connected
(by an edge in B) to exactly one of these new vertices and that at least one of the
new vertices has degree ∆. Next suppose that ∆′ < ∆. In this case choose a vertex
v of degree ∆′ in H and make v a vertex of degree ∆ in G, as follows. Add ∆ −∆′

vertices w to the vertex set of G, and make each new vertex a neighbor of v by adding
the edge {v, w} to M . The number of k-colorings of G which make all edges in M
monochromatic and all edges in B bichromatic is given by |Ωk(H)|. This shows that
#kCol is polynomial-time reducible to Π, so Π is #P -complete.

We now give a polynomial-time reduction of Π to #kColMaxDeg∆. Let H be an
instance of Π with edge bipartition E = M ∪B. Let m = |M | and let Cr be the path
with r+ 1 vertices and r edges, as in Lemma 6.1. For r ≥ 1, let Gr be the r-stretch of
H with respect to M . That is, Gr is obtained from H by replacing each edge {v, w}
in M by a copy of the path Cr, with the identifications u1 = v, ur+1 = w. Let Ns
be the number of k-colorings of H where s edges in M are monochromatic and the
remaining m− s edges in M (together with all edges in B) are bichromatic. Then

|Ωk(Gr)| =
m∑
s=0

Ns σr
s δr

m−s = δr
m

m∑
s=0

Ns xr
s,(6.1)

where xr = σr/δr. We may express (6.1), for 1 ≤ r ≤ m+ 1, as a matrix equation
δ1
−m|Ωk(G1)|

δ2
−m|Ωk(G2)|

...
δm+1

−m|Ωk(Gm+1)|

 =


1 x1 · · · x1

m

1 x2 · · · x2
m

...
...

. . .
...

1 xm+1 · · · xm+1
m




N0

N1

...
Nm

 .(6.2)
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Now, using Lemma 6.1,

xr = 1− k

(k − 1)(1− k)r−1 + 1
.

It follows that the values xr are distinct. If we know the values |Ωk(Gr)|, for 1 ≤
r ≤ m+ 1, then the values N0, N1, . . . , Nm may be obtained in polynomial time by
inverting the Vandermonde matrix in (6.2). Since Nm is the answer which satisfies
Π, this completes the reduction. Therefore #kColMaxDeg∆ is #P -complete.

By Theorem 6.2, the counting problem associated with the Jerrum/Salas–Sokal
chain [12, 18] and the Dyer–Greenhill chain [8] is #P -complete. Also, by Theorem 6.2
with ∆ = 3 and k = 5, the counting problem associated with the Markov chain of
section 4 is #P -complete.

Further #P -completeness results for graph colorings can be found in [10]. For
example, we show that the problem of counting k-colorings in graphs with maximum
degree ∆ remains #P -complete when restricted to triangle-free ∆-regular graphs, so
long as k ≥ 3 and ∆ ≥ 3. Thus, the specific counting problem associated with the
Markov chain of section 5 is #P -complete.
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Abstract. Traditional results in subrecursion theory are integrated with the recent work in
“predicative recursion” by defining a simple ranking ρ of all primitive recursive functions. The
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space level. Thus, the result is like an extension of the Schwichtenberg–Müller theorems. When
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1. Introduction. A variety of restricted recursion schemes has been success-
fully used to characterize some common complexity classes; see, e.g., Clote [6] for
a survey. At first characterized using explicit bounds on the value computed by a
recursion, some of these function classes were later characterized by restricting the
way in which values can be accessed during the recursion. These latter schemes are
called “predicative recursion” [4] or “ramified recurrence” [11] schemes; the phrase
“safe recursion” has also been used. Taking the predicative viewpoint, one has two
types of values: values which are known in their entirety and which therefore can be
examined completely, e.g., by being recursed upon; and those values which are still
emerging and which therefore can be accessed only in a more restricted way, e.g., by
examining a few low-order bits. One then develops a class of functions over these two
types. Although one can develop a formal mechanism having more types of values,
doing so does not usually allow one to define more functions: Leivant showed that
strictly predicative systems having more than two types collapse to the system having
only two types [11].

A different way to look at ramification is in terms of the amount or structure of
the recursions performed. One thinks of a loose analogy with the number of compre-
hension levels used to define a particular set in ramified set theory. A definition of
the function is given first, then one examines that definition to see how many “ramifi-
cation levels” are used by it. In this sense, ramification is “implicit” in the derivation
of the function as built up from the initial functions of the class using the derivation
rules of composition and recursion. Rather than explicitly controlling the type or
quality of the values appearing during the calculation, one measures the amount or
structure of the work that, implicitly, must have been performed in order to produce
the value. Of course, in order to use this approach one must restrict attention to func-
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tion definitions for which one can always ascribe ramification levels; in the present
work, the primitive recursive functions are used. A major purpose of this paper is
to propose a specific way of measuring the amount or structure of primitive recur-
sive derivations. The measure should classify derivations by specifying the number of
ramification levels that are implicitly used.

An obvious proposal for such a classification would be, according to the minimal
degree of derivations of the function, using an idea which dates back to the early
1960s: the degree, deg , of a derivation concluded by a recursion rule is one more
than the maximum degree of the subderivations; for a composition rule the degree
is just the maximum of the degrees of the subderivations. This simple definition
has the advantage of coinciding with the Grzegorczyk hierarchy Er at and above the
elementary functions: Er+1 = Dr for r ≥ 2, where Dr are the primitive recursive
derivations with degree at most r. As discussed by Clote [6], the characterization
for r ≥ 3 was shown by Schwichtenberg [23], and later the case of r = 2 was shown
by Müller [15]. Another possible classification was given prior to Müller’s result
by Parsons [20], who examined whether the step function (i.e., the function h in
f(x + 1) = h(x, f(x))) accesses the critical value. This result also characterized
the Grzegorczyk hierarchy at the elementary functions and above. A more detailed
discussion of other earlier work is given after the statement of the results in section 4.

In this paper we propose a new ranking ρ of the primitive recursive functions.
Like deg , the ranking ρ characterizes the Grzegorczyk hierarchy at and above the
elementary level; but at level 1 it characterizes the linear-space computable functions
—by Ritchie’s result [22], this is E2. Thus, Er+1 = PRr1 for r ≥ 1, where PRr1 consists
of the primitive recursive derivations with rank at most r. In this sense, the result is
like an extension of the Schwichtenberg–Müller theorems. Unlike the Schwichtenberg
and Müller proofs, the proof of this result does not refer directly to any computation
model. A natural series of classes PRr2 is also obtained down to the first level, when
primitive recursion is replaced with recursion on notation. In fact, Er+1 = PRr2 for
r ≥ 2, but PR1

2 characterizes the polynomial-time computable functions.

The µ measure of Niggl [17], a slight modification of [16], provides similar charac-
terizations of the complexity classes discussed here with respect to classes Rn1 and Rn2 .
The former are based on primitive recursion, the latter on recursion on notation. In
fact, the µ measure operates on algorithms given as lambda terms over ground-type
variables. The measure µ accounts for redundant input positions and therefore is able
to distinguish between proper and improper recursions, i.e., recursions in which the
critical input position of the recurrence function is not used. Thus µ does not require
any initial functions other than zero and its successor. Remarkably, the proofs of
R1

2 = fptime and Er+1 = Rn1 for r ≥ 1 use the same method, thus emphasizing the
uniform method of determining the computational complexity of primitive recursive
algorithms.

The measure ρ is convenient because it classifies derivations in an arguably more
natural way than deg does. For example, the natural derivation of the multiplica-
tion function uses two recursions. The Schwichtenberg–Müller approach classifies this
derivation in the same way as the exponential, as level 2. Although there is a deriva-
tion of multiplication that has deg equal to 1, one typically must pass through a
Turing machine simulation in order to find it. In contrast, the ranking ρ proposed
here classifies the natural derivation of multiplication as level 1, and exponentiation
as level 2.

A parallel of these developments can be carried out in the setting of formal logic.
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This paper is a companion to [1], which shows how to define weak subsystems of
arithmetic by defining the “rank” of proofs instead of by bounding the induction
formulas. Rank r functions turn out to be exactly those having a rank r proof of
convergence. The intuition of ramification levels is made more precise by the model-
theoretic analysis in [1]; also see Leivant [10].

The results of this paper should be of some interest to complexity theorists as
well as recursion theorists. Complexity characterizations based on the structure of
recursive derivations, without explicit bounds on time or memory resources, can help
to ground the concepts of computational complexity by providing a reference point
other than the original resource-based definitions.

Notation. Iterations of a function f are defined by f (0)(x) = x and f (n+1)(x) =
f(f (n)(x)). The binary length of x is |x| = (µn ≥ 0)(p(n)(x) = 0), where p(x) ≡
bx/2c. Vector notation is used freely throughout this work; for example, |~x| means
the vector |x1|, . . . , |xm|, where m is the number of elements (perhaps zero) in vector
~x. Sometimes vectors are treated as if they were sets, and vice versa. When ~x is
the empty vector, one assumes max ~x = 0. The arity of function f is indicated by
mf . Throughout, the domain and range are assumed to be the nonnegative numbers.
We avoid writing λ and instead casually use expressions such as “2x” to mean the
function λx.2x.

2. Existing subrecursive classes. First we would like to review some basic
and well-known facts about subrecursive function classes defined over the nonnegative
integers.

The primitive recursive functions, D, are usually defined by closing the set of
initial functions 0, Sx = x+ 1, and πnk (~x) = xk (for 1 ≤ k ≤ n, all n ≥ 0) under the
following primitive recursion and composition rules. Let P (x) = max(0, x− 1).

• Composition: given h and g1, . . . , gm with m = mh ≥ 1, derive f such that
f(~x) = h(g1(~x), . . . , gm(~x)).

• Primitive recursion: given g and h, derive f such that f(0, ~y) = g(~y) and
f(x, ~y) = h(Px, ~y, f(Px, ~y)) for x 6= 0.

Researchers have frequently used definitions similar to the following degree deg
for function derivations in D. The definition of deg can be applied equally well to the
classes PR1 and PR2 defined later in this paper.

• If f is an initial function, then deg (f) = 0.

• If f is defined by (any form of) composition from h and g1, . . . , gm, then
deg (f) = max{deg (h), deg (g1), . . . , deg (gm)}.
• If f is defined by (any form of) recursion with step function h and base function

g, then deg (f) = max{deg (g), 1 + deg (h)}.
Let Dr = {f ∈ D : deg (f) ≤ r}, the primitive recursive derivations with deg at

most r.

The degree of functions is closely related to the Grzegorczyk hierarchy, with classes
En. The definition of En refers to the Ackermann branches An(x, y) = A(n, x, y),
where A is the Ackermann function

A(0, x, y) = y + 1,
A(n+ 1, x, 0) = “if n = 0, then x else if n = 1, then 0 else 1”
A(n+ 1, x, y + 1) = A(n, x,A(n+ 1, x, y)).

Note that A0(x, y) = Sy, A1(x, y) = x + y, A2(x, y) = x · y, and A3(x, y) = xy.
Let Er consist of the initial functions 0, πnk , S, and Ar closed under composition and
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“bounded primitive recursion,” stated next. For later use we also define “bounded
recursion on notation.”
• Bounded primitive recursion: given g, h, and k, obtain f such that f(0, ~y) = g(~y)

and f(x, ~y) = h(Px, ~y, f(Px, ~y)) for x 6= 0, provided that for all x, ~y, f(x, ~y) ≤ k(x, ~y).
• Bounded recursion on notation: given g, h0, h1, and k, obtain f such that

f(0, ~y) = g(~y) and f(x, ~y) = hi(px, ~y, f(px, ~y)) for x 6= 0, where i = (xmod 2),
provided that for all x, ~y, f(x, ~y) ≤ k(x, ~y).

The following central results were established early on. See Clote [6] for a defini-
tion of the Kalmar elementary functions and for discussion of these theorems.

Theorem 2.1 (see Schwichtenberg [23]; Müller [15]). For r ≥ 2, Er+1 = Dr.
Theorem 2.2 (see Ritchie [22]). E2 consists of the linear-space computable func-

tions.
Theorem 2.3 (see Cobham [7]). The polynomial-time computable functions are

exactly those in the class obtained from the initial functions 0, πni , s0x = 2x, s1x =
2x + 1, and x#y ≡ 2|x|·|y| using composition and the rule of bounded recursion on
notation.

Theorem 2.4 (see Grzegorczyk [8]). E3 consists of the Kalmar elementary func-
tions.

3. Ranking recursions. The development begins by defining function classes
PR1 and PR2.

Let I1 consist of the following initial functions: constant 0; successor Sx = x+ 1;
predecessor P (x) = max(0, x− 1); and conditional C(x, y, z) = “if x = 0, then y else
z.”

Let I2 consist of constant 0; successors s0x = 2x and s1x = 2x + 1; predecessor
p(x) = bx/2c; and conditional c(x, y, z) = “if xmod 2 = 0, then y else z.”

Define PR1 to be the smallest set of function derivations containing a derivation
for each function in I1 and closed under the following rules of “full” composition
and recursion. These full closure rules differ slightly from the ordinary ones stated
earlier; this minor difference will be compensated for by the difference in the initial
functions. We use the full rules in order to simplify the definition of ρ and to improve
the similarity between PR2 and PR1.
• Full composition: given derivations h and g1, . . . , gm with m = mh ≥ 1, derive

f such that f(~x) = h(g1(~x1), . . . , gm(~xm)), where each ~xj is a vector consisting of
elements from the vector ~x (possibly with repetitions, omissions, or changes in order).
• Full primitive recursion: given derivations g and h, derive f such that f(0, ~y) =

g(~y) and f(x, ~y) = h(x, ~y, f(Px, ~y)) for x 6= 0.
Similarly, define PR2 to be the least set of function derivations containing I2 and

closed under the same rules, except using p instead of P in the recursion rule (now
called “full recursion on notation” instead of “full primitive recursion”).

For convenience, we have defined PR1 and PR2 to be sets of derivations rather
than sets of functions, because we will be working most often with the derivation
rather than the function itself. Given a derivation f , we sometimes ambiguously also
use f to refer to the function defined by the derivation.

Now we assign a rank, ρ(f, i), for each derivation f and for each position 1 ≤ i ≤
mf . The rank of an input position is supposed to be an indication of the amount
of recursion on that input; or, it is the number of ramification levels of “knowledge”
about that input which are required in order to “know” the result of the function.
In defining ρ, one uses the idea that when f is derived from subfunctions ~h, then
there is some sense in which the rank of input positions of ~h contributes to the
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rank of input positions of f . For example, if f(x) = h(0, g(x)), then one requires
ρ(f, 1) ≥ ρ(h, 2) and ρ(f, 1) ≥ ρ(g, 1). The key point is that recursion makes it
strictly more difficult to understand how a value is used. If f(x) = h(x, f(px)), then
one requires ρ(f, 1) ≥ 1 + ρ(h, 2) as well as ρ(f, 1) ≥ ρ(h, 1).

The rank ρ(f, i) is defined for both PR2 and PR1 as follows:

• If f is an initial function, then ρ(f, i) = 0 for 1 ≤ i ≤ mf .

• If f is defined by the full composition h(g1(~x1), . . . , gm(~xm)), then ρ(f, i) =
max({ρ(h, k) : xi ∈ ~xk} ∪ {ρ(gk, j) : xi ≡ (~xk)j}) for 1 ≤ i ≤ mf .

• If f is defined by full recursion from base function g and step function h, then
ρ(f, 1) = max{ρ(h, 1), 1 + ρ(h,mh)} and ρ(f, i) = max{ρ(h, i), ρ(h,mh), ρ(g, i− 1)}
for 2 ≤ i ≤ mf .

Define the rank of function derivations f by ρ(f) = max{ρ(f, i) : 1 ≤ i ≤ mf}.
Define PRr1 = {f ∈ PR1 : ρ(f) ≤ r} and PRr2 = {f ∈ PR2 : ρ(f) ≤ r}.
One can see that the formulation of full composition has been designed to give

rank 0 to input positions that appear in the defined function f(~x) but which do not
appear in any of the sublists ~x1, . . . , ~xm. A spuriously higher rank would have been
assigned if we had used projection functions and ordinary composition.

It is shown below that, without loss of generality, every PRri function derivation
has all subderivations also in PRri . On the other hand, PRri is closed under full
composition, because the rank of a function defined by full composition is bounded
by the greater of the ranks of the subderivations. It follows that PRri is equivalent
to the least class of function derivations containing the initial functions and closed
under full composition and the following rule:

• r-safe recursion: given g and h, derive f by full recursion, provided that ρ(f) ≤
r. This generalizes the rule of safe recursion (r = 1) in [4].

Rank differs from “tiers” (Leivant [11]) because rank, as defined by ρ, is not a
type system. This is not merely a syntactic distinction, as the present system admits
more instances of composition and recursion than the stricter system in [11]. In
particular, the systems PR1 and PR2 contain all the primitive recursive functions
and separates at all levels, while the system in [11] collapses to level 2. However,
the philosophical underpinning of rank is similar to that of tiers: by stratifying or
ramifying the definition of a function, one obtains at the same time a more predicative
definition and a more computationally tractable one.

Lemma 3.1 (ρ-normalization). If f is a derivation whose conclusion has rank r,
then there is a derivation f ′ defining the same function with the same input ranks, in
which every subderivation has rank at most r.

Proof. Essentially, the rank of a derivation can be reduced only by composing a
constant into a recursion position. Such a constant-depth recursion can be unrolled
as a sequence of compositions; the compositions do not increase the rank above the
rank of the subderivations.

Say that a derivation f ′ is equivalent to another derivation f if the functions
defined by f ′ and f are the same, and ρ(f ′, i) = ρ(f, i) for 1 ≤ i ≤ mf . We prove the
following strengthened statement: any derivation f~a obtained by substituting zero or
more constants ~a for some of the inputs of a derivation f has an equivalent derivation
f ′ in which every subderivation has rank at most ρ(f~a). The proof is by induction on
the derivation f .

Technically, f~a is obtained from f by a full composition in which each gi is either
some aj or else is the rank 0 identity function, either P (S(xi)) or p(s0(xi)). This use
of the identity function does not affect the rank; therefore we omit discussion of it
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below.

The strengthened statement is trivial for the initial functions, since their deriva-
tions have no subderivations. Next, consider f defined by recursion from g and h. We
consider two subcases.

The first subcase is when a constant a is substituted for the recursion variable and,
without loss of generality, other constants ~c are substituted for the subsequent non-
recursion variables, i.e., fa,~c(~y) = f(a,~c, ~y). Using the induction hypothesis on g and h
for each constant 1 ≤ j ≤ a, one has derivations g′ and h′j equivalent to g~c(~y) = g(~c, ~y)

and hj,~c(~y, z) = h(j,~c, ~y, z), such that g′ and h′j have all subderivations of rank at

most ρ(g~c) and ρ(hj,~c), respectively. If a 6= 0, then define f ′(~y) by a compositions
of h′j (1 ≤ j ≤ a) starting on g′ (in the case of PR1, or by |a| compositions in the
case of PR2). But if a = 0, define f ′(~y) = C(0, g′(~y), h′1(~y, g′(~y))) (for PR1, or
use conditional c instead of conditional C for PR2). The latter construction defines
the same function as g~c but provides the same rank as in fa,~c for inputs ~y. In
either case, the defined f ′ is equivalent to fa,~c and subderivations have the required
rank.

The second subcase is when no constant is substituted into the recursion position
of f , e.g., f~a(x, ~y) = f(x,~a, ~y). Here, the induction hypothesis is applied to both
g and h with respect to ~a to get suitable functions g′ and h′. Then defining f ′ by
recursion on these gives the required equivalent derivation.

Consider a function f~a, obtained from a function f(~x) = h(g1(~x1), . . . , gm(~xm))
by substituting arbitrary constants ~a for some of the inputs. Let g~aj be gj with some of

the inputs replaced by the constants among ~a that are selected by the list ~xj . Observe
that by the definition of ρ, ρ(g~aj ) ≤ ρ(f~a). Applying the induction hypothesis on each

g~aj gives equivalent functions g′j in which the rank of every subderivation is at most

ρ(f~a). Now let ~c be constants equal to the values of the constant expressions, if
any, among g′1, . . . , g

′
m. Applying the induction hypothesis to h with constants ~c,

one obtains an equivalent function h′. Again all subderivations have rank at most
ρ(h,~c) ≤ ρ(f~a). Finally, f ′ is obtained by composing h′ with the remaining (non-
constant) functions g′j . This defines f ′ equivalent to f~a with all subderivations of

rank at most ρ(f~a).

Of course, the translation defined by this proof could result in a serious blow-up
of the derivation size, but this is not a concern in the current work.

4. Consolidated characterizations. The main results are stated here in a
consolidated form and they are compared to previous work. Like deg , the ranking ρ
characterizes Er+1 for r ≥ 2. However, it also characterizes E2. Furthermore, ρ gives
natural characterizations when recursion on notation is considered.

Among other characterizations, the following theorem gives PR2
1 = PR2

2 = E3 =
the Kalmar elementary functions, and PR1

1 = E2 = flinspace (the linear-space
computable functions).

Theorem 4.1.

1. PRr1 = Er+1 for r ≥ 1.
2. PRr2 = Er+1 for r ≥ 2.
3. PR1

2 = fptime (the polynomial-time computable functions).
4. PR1 = PR2 = D (the primitive recursive functions).

Proof. Each part of items 1–3 is restated and proved as one of the theorems in
section 6.

Item 4 is an easy corollary. By items 1 and 2 one obtains PR2 = PR1. The
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equivalence of PR1 and D is obtained by straightforward simulations. For exam-
ple, the projection functions are computed in PR1 by the full composition πi(~x) =
C(0, C(xi, xi, xi), 0).

Oitavem [19] has shown that the Kalmar functions are obtained by adding s0 as
an initial function to the definition of PR1

1. In the current work, extra rank is used
instead: the Kalmar functions are shown to equal PR2

1 (and PR2
2). The use of extra

rank locates the Kalmar functions above the linear-space functions in a hierarchy.
The Kalmar functions were given a resource-free recursive characterization by

Leivant [14] using higher-type recurrence. The present results do not use higher-type
recursion.

This work extends the polynomial-time characterization of Bellantoni and Cook
[4]. That result is listed above, but it is seen from a new perspective. Rather than
defining a restricted class (fptime) using the rule of 1-safe recursion, one instead
considers all recursion-on-notation derivations and then classifies them according to
ρ. The set of derivations f such that ρ(f) = 1 are derivations of all the fptime
functions.

A linear-space characterization similar to the current one was first proved by Bel-
lantoni in his thesis [3, p. 49], at the suggestion of S. Cook; related linear-space results
were proved independently by Handley [9] and Leivant [11]. The characterization was
adapted and reproved by Nguyen [18] in her work on linear-space reasoning.

The current characterizations of Er+1 can also be compared to Leivant’s char-
acterization of Grzegorczyk classes using “coerced recurrence”; see [12, section 4].
Coerced recurrence seems to be more powerful than stratified recurrence. To restrict
it, Leivant uses an approach similar to Parson’s earlier definition ([20, p. 358]): one
separately determines whether the step function uses the critical term. Leivant de-
fined a hierarchy by putting the predicative recurrence rules at levels 0 and 1, together
with the Parsons-like rules at levels 2 and above (see [12, section 4]). This hierarchy,
which is similar to the present one, has desirable properties: it characterizes an in-
teresting class at level 1, and it corresponds to the Grzegorczyk classes at and above
the elementary level. Despite these desirable features, the definition by itself does not
seem to integrate the lower levels with the higher ones. One can argue that ρ provides
a more integrated definition. The characterization using ρ also differs in that it is type
free, requires only one recursion scheme rather than two (stratified and coerced), and
does not determine whether the step function uses the critical term.

Predicative recursion results for some other space-bounded complexity classes
are available (see Oitavem [19]; Bellantoni [2]; Leivant and Marion [13]; Bloch [5]).
With respect to parallel complexity classes, current results using unbounded recur-
sion schemes (Bloch [5]; Leivant and Marion [13]; Bellantoni [3, p. 69] and [2]) are
either unable to characterize the computationally interesting class NC or else require
awkward constructions to do so.1

If ρ is taken as determining a fundamental hierarchy, then one discards classes E0

and E1 in favor of PR0
1. Functions in the class PR0

1 are compositions of the initial
functions, i.e., functions computable in constant time, counting one time step for each
initial function application. This seems to be quite a bit less than the functions in E0

or E1, which are defined by arbitrary amounts of bounded primitive recursion (albeit
with a small size bound).

1Note added in press: A more satisfactory characterization recently appeared in D. Leivant, A
characterization of NC by tree recurrence, in Proceedings of the 1998 IEEE Symposium on Founda-
tions of Computer Science, IEEE, 1998, pp. 716–724.
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The remainder of the paper is devoted to proving the results. We introduce
Grzegorczyk polynomials and prove some simple facts about them. The statement
of the key bounding lemma uses Grzegorczyk polynomials as the bounding functions.
The required characterizations items 1–3 can be derived based on the bounding lemma.

5. Grzegorczyk polynomials. Bounding terms will be defined using an ana-
logue, at each level of the Grzegorczyk hierarchy, of the successor, addition, and
multiplication functions. These functions, indicated by Sr, +r, and ×r for r ≥ 1, are
defined by

S1(x) = S(x),

0 +r a = a,
x+r a = Sr(Px+r a) for x 6= 0,

0×r y = 0,
x×r y = y +r (Px×r y) for x 6= 0,

Sr+1(x) = Sr((x+r x)×r (x+r x)).

Thus, x+r a is x applications of Sr starting at a and x×r y is x applications of y+r

starting at 0, that is, x · y applications of Sr starting at 0. Equivalently, x ×r y =
(x · y) +r 0. Under these definitions, S1 is the ordinary successor function, and +1

and ×1 are ordinary addition and multiplication. At the next level, +2 and ×2 are
elementary. Observe that all the functions Sr,+r,×r are monotone increasing. They
are also monotone with respect to the level r; e.g., if r′ ≤ r, then x+r′ y ≤ x+r y for
all x and y.

A Grzegorczyk polynomial, or simply a polynomial, is an expression built up from
nonnegative integer constants, input variables, and the functions +r for r ≥ 1, ×r
for r ≥ 1, and max. All these functions are definable in PR1, but in considering
Grzegorczyk polynomials we mean to use them as initial functions and then perform
compositions.

Definition 5.1. Define rank for polynomials as follows. For the primitives (with
r ≥ 1)

ν(x, 1) = 0 for variable x,
ν(max, 1) = ν(max, 2) = 0,
ν(+r, 1) = r and ν(+r, 2) = r − 1,
ν(×r, 1) = ν(×r, 2) = r.

If the polynomial q(~x) is given by the expression q0(q1(~x1), . . . , qk(~xk)) (where each
~xk ⊆ ~x), then define

ν(q, i) = max{ ν(q0, k), ν(qk, j) : ~xi ≡ (~xk)j}.

When z is the ith variable in the list ~x, we may write ν(q, z) for ν(q, i).
Intuitively, ν is very much like ρ, except that max is considered an initial function.
When we see that the outermost operation of a polynomial is ×r, we know that

all variables have rank at least r. But when we see that the outermost operation is
+r, we know that variables in the left subterm have rank at least r, and those in the
right have at least r − 1.
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Grzegorczyk polynomials are a way of lifting ordinary polynomials into all levels
of the Grzegorczyk hierarchy. The lifted functions do not have all the properties of
the ordinary functions, such as commutativity of +. However, they do have many
desirable properties, allowing us to generalize the proofs of [4] to all levels of the
Grzegorczyk hierarchy. Some desirable properties of Grzegorczyk polynomials are as
follows: (1) a restricted kind of associativity for +; (2) the fact that rank r polynomials
are definable in Er+1; (3) the fact that +r+1 grows faster than any polynomial of
rank r; and (4) the ability to “separate” any polynomial q at any level r to get
q ≤ q′ +r+1 max ~x∗, where ~x∗ are the variables in q of rank at most r, and where q′

does not refer to ~x∗. These facts are proved in the remainder of this section.

Lemma 5.2 (semiassociativity). x+r′ (y +r z) ≤ (x+r′ y) +r z for all x, y, and
z and all r′ ≤ r.

Proof. The assertion is proved by calculating x+r′(y+rz) = (Sr
′
)(x)((Sr)(y)(z)) ≤

(Sr)(x)((Sr)(y)(z)) = (Sr)(x+y)(z) ≤ (Sr)(x+r
′
y)(z) = (x+r′ y) +r z.

Lemma 5.3 (definability). Every Grzegorczyk polynomial q belongs to Eν(q)+1.

Proof. We first show by induction on r ≥ 1 that Sr ∈ Er, and +r,×r ∈ Er+1.
In the base case, one has S1 ≡ S ∈ E0, +1 ∈ E1, and ×1 ∈ E2, as the latter two
are ordinary addition and multiplication. For the step case, the induction hypothesis
yields Sr ∈ Er and +r,×r ∈ Er+1. This implies Sr+1 ∈ Er+1 by definition of Sr+1. It
is well known from [23] that any function defined by primitive recursion from functions
in En, n ≥ 2, belongs to En+1. Thus +r+1 ∈ Er+2. Since x×r+1 y = (x · y) +r+1 0, we
can define ×r+1 ∈ Er+1 using +r+1. This concludes the induction showing Sr ∈ Er
and +r,×r ∈ Er+1.

Now consider a Grzegorczyk polynomial q, and let r = ν(q). We define q in Er+1

by induction on the structure of q. If q is a constant or a variable, then it is easily
defined in Er+1. If q is defined by q1 +s q2 or q1 ×s q2 for s ≤ r, or by max(q1, q2),
then we are done using the induction hypothesis and using the closure of Er+1 under
composition (note max ∈ E1). If q is q1 +s q2 or q1 ×s q2 for s ≥ r + 1, then either q
does not contain any variables or q is of the form c+r+1 q2 for a constant c. For the
case of q having the form c +r+1 q2 for a constant c, we can define q in Er+1 using
c compositions of Sr+1 onto the definition of q2, using q2 ∈ Er+1 by the induction
hypothesis.

Lemma 5.4 (domination). For every Grzegorczyk polynomial q(~x) there is a
constant cq satisfying q(~x) ≤ cq +ν(q)+1 max ~x for all ~x.

Proof. The proof is by induction on the structure of q. If q is a constant, then
the result is immediate using q as the required constant cq; if q is a variable, then it
is immediate using cq = 0. Otherwise, q(~x) = q1(~x1) ◦ q2(~x2), where ◦ is either +s,
×s, or max. Let r = ν(q).

Suppose that ◦ is +s or ×s with s ≤ r, or ◦ is max. In these cases, observe
that for every y, y ◦ y ≤ Sr((y +r y)×r (y +r y)) = Sr+1(y). Applying the induction
hypothesis to obtain cq1 and cq2 , define c = max(cq1 , cq2) so that

q(~x) ≤ (c+r+1 max ~x) ◦ (c+r+1 max ~x)
≤ Sr+1(c+r+1 max ~x)
= (c+ 1) +r+1 max ~x.

If ◦ is +s with s ≥ r + 2, or is ×s with s ≥ r + 1, then both ~x1 and ~x2 are empty
(since otherwise these variables would have rank greater than r, by the definition of
ν). In these cases q is a constant expression and the result is easy.
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If ◦ is +s with s = r + 1, then ~x1 is empty, again by definition of ν. In this case,
q1 is a constant expression and q(~x) is equivalent to c+r+1 q2(~x2) for some constant c.
Applying the induction hypothesis on q2, one obtains q(~x) ≤ c+r+1(cq2+r+1max ~x2) ≤
(c+r+1 cq2) +r+1 max ~x.

Lemma 5.5 (separation). Let q be a polynomial over ~x, let r be a nonnegative
integer, and define ~x′ = 〈xi : ν(q, xi) ≥ r + 1〉 and ~x∗ = 〈xi : ν(q, xi) ≤ r〉. Then
there is a polynomial q′ over ~x′ such that

q(~x) ≤ q′(~x′) +r+1 max ~x∗,(1)

ν(q′, z) = ν(q, z) for z ∈ ~x′.(2)

Proof. The proof is by structural induction on q. For q a constant or variable,
note ~x′ ≡ 〈〉 and ~x∗ ≡ ~x because all the inputs to q are rank 0. So if q is a constant,
defining q′ = c will do. Otherwise, q is a variable and we can define q′ = 0; the
statements (1) and (2) follow directly.

For the step case of the induction, one has q(~x) = q1(~x1)◦q2(~x2), where ◦ is either
+s or ×s or max, and where ~x1 ∪ ~x2 ⊆ ~x. Consider cases on ◦.

Suppose ◦ is ×s for some s ≥ r + 1. Then ~x′ = ~x and ~x∗ = 〈〉 because for each
z ∈ ~x one has ν(q1 ×s q2, z) ≥ s ≥ r + 1. Defining q′(~x′) = q(~x), the properties (1)
and (2) follow trivially.

For a more difficult case, suppose ◦ is +s for some s ≥ r + 1. If s > r + 1, then
again ~x′ = ~x and ~x∗ = 〈〉 because for z ∈ ~x1 one has ν(q1 +s q2, z) ≥ s > r + 1 and
for z ∈ ~x2 one has ν(q1 +s q2, z) ≥ s− 1 ≥ r+ 1. Otherwise, s = r+ 1. Then ~x1 ⊆ ~x′
because all the variables in the subexpression q1(~x1) obtain rank at least r + 1 due
to their appearance on the left side of +r+1. Applying the induction hypothesis to
q2(~x2), one obtains q′2((~x2)′), where (~x2)′ are the rank at least r + 1 variables in q2.
Defining q′(~x′) = q1(~x1) +r+1 q′2((~x2)′) one has

q(~x) ≤ q1(~x1) +r+1 (q′2((~x2)′) +r+1 max(~x2)∗)
≤ (q1(~x1) +r+1 q′2((~x2)′)) +r+1 max ~x∗

as required for statement (1) of the lemma. Statement (2) for q′ follows by statement
(2) of the induction hypothesis on q2 together with the definition of ν.

If ◦ is +s for s ≤ r, then we apply the induction hypothesis to both q1 and q2 with
r, to obtain q1(~x1) ≤ q′1((~x1)′) +r+1 max(~x1)∗ and q2(~x2) ≤ q′2((~x2)′) +r+1 max(~x2)∗.
Using the domination lemma on the polynomial y+s z and the fact that r+1 ≥ s+1,
let c be such that c+r+1 max(y, z) ≥ y +s z for all y, z. Then

q(~x) ≤ (q′1((~x1)′) +r+1 max(~x1)∗) +s (q′2((~x2)′) +r+1 max(~x2)∗)
≤ c+r+1 max(q′1((~x1)′) +r+1 max(~x1)∗, q′2((~x2)′) +r+1 max(~x2)∗)
≤ c+r+1 (max(q1((~x1)′), q2((~x2)′)) +r+1 max((~x1)∗ ∪ (~x2)∗))
≤ (c+r+1 max(q1((~x1)′), q2((~x2)′))) +r+1 max((~x1)∗ ∪ (~x2)∗).

Observing that rank r + 1 or greater variables in q1 or q2 are also rank r + 1 or
greater in q, and that rank at most r variables in q1 and q2 are also rank at most
r in q, one has (~x1)′ ∪ (~x2)′ ⊆ ~x′ and (~x1)∗ ∪ (~x2)∗ ⊆ ~x∗. Defining then q′(~x′) =
c+r+1 max(q′1((~x1)′), q′2((~x2)′)), we have demonstrated property (1) and must verify
property (2). By the induction hypothesis, every variable of rank at least r + 1 in q1
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or q2 has the same rank in q′1 or q′2, respectively. In q the subterms are combined with
+s, which does not change the rank of any of these variables, since these variables all
have rank at least r + 1 > s. In q′ the subterms are combined with max, which also
does not change the rank of any variable in the subterms. Property (2) follows.

For ×s with s ≤ r, one proceeds in the same way as for the case of +s with s ≤ r.
A similar proof also works for max.

6. Bounding lemma. The bounding lemma proved in this section is central to
all the results, as it shows how the recursive layering indicated by ρ corresponds to
bounded function growth rate. The latter in turn corresponds to bounds on the space
or time of a computation.

One can just as well prove the bounding lemma at the same time for PRr2 as
for PRr1. The proofs differ in the size measure used: the relevant measures are
‖x‖1 ≡ x for PR1 and ‖x‖2 ≡ |x| for PR2. In the following, one uses the fact that
S‖Px‖1 = ‖x‖1, or correspondingly S‖px‖2 = ‖x‖2, for x 6= 0. We write ‖ · ‖ to mean
either ‖ · ‖1 or ‖ · ‖2, depending on the class under discussion. The vector notation
‖~x‖ means 〈‖x1‖, . . . , ‖xm‖〉, where m is the number of elements in ~x.

Lemma 6.1 (bounding). For every f ∈ PRi (i ∈ {1, 2}) there is a Grzegorczyk
polynomial qf over mf variables such that ‖f(~x)‖i ≤ qf (‖~x‖i) and for 1 ≤ i ≤ mf ,
ρ(f, i) = ν(qf , i).

Proof. If f is one of the initial functions, then one assigns qf (~x) = 1 +1 max(~x),
and the required properties follow directly.

If f is defined by full composition, say f(~x) = h(g1(~x1), . . . , gn(~xn)), then one
correspondingly defines qf so that qf (‖~x‖) = qh(qg1

(‖~x1‖), . . . , qgn(‖~xn‖)) using the
polynomials obtained by the induction hypothesis. The statement of the lemma fol-
lows using monotonicity of polynomials to achieve the bounding expression and using
the definitions of ρ and ν to achieve the equality of the ranks.

The last case is when f is defined by full recursion, say in PR2,

f(0, ~y) = g(~y),
f(x, ~y) = h(x, ~y, f(px, ~y)) for x 6= 0.

The induction hypothesis gives qg(~v) and qh(u,~v, w) with input ranks equal to the
input ranks of g and h. Letting r = ρ(h,mh), one applies the separation lemma to
obtain q′h such that

qh(u,~v, w) ≤ q′h((u~v)′) +r+1 max((u~v)∗, w),

where (u~v)′ is a sublist corresponding to input positions of h (or qh) having rank at
least r+ 1, and (u~v)∗, w is a sublist corresponding to the input positions of h (or qh)
having rank at most r. The separation lemma also gives equality between the ranks
of the inputs that are in both qh and q′h. Now define qf by

qf (u,~v) = (u×r+1 q′h((u~v)′)) +r+1 max((u~v)∗, qg(~v)).

To prove the bound (1) for f , one uses induction on ‖x‖, where the base case follows
from ‖f(0, ~y)‖ ≤ qg(‖~y‖) ≤ qf (‖0, ~y‖). For the step case,

‖f(x, ~y)‖ ≤ qh(‖x, ~y, f(px, ~y)‖)
≤ q′h(‖x, ~y‖′) +r+1 max(‖x, ~y‖∗, qf (‖px, ~y‖))
≤ q′h(‖x, ~y‖′) +r+1

(
(‖px‖ ×r+1 q′h(‖px, ~y‖′)) +r+1 max(‖x, ~y‖∗, qg(‖~y‖))

)
≤ (‖x‖ ×r+1 q′h(‖x, ~y‖′))+r+1 max(‖x, ~y‖∗, qg(‖~y‖))
≤ qf (‖x, ~y‖).
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All that remains is to show that the ranks of variables in qf are the same as in f .

First consider u. If u ∈ (u~v)′, then ν(q′h, 1) = ν(qh, 1) ≥ r+ 1 by the definition of
(u~v)′ and (2) of the separation lemma. Using the induction hypothesis on h, this gives
ρ(h, 1) = ν(qh, 1) ≥ r+1. In this case, applying ν to qf gives ν(qf , 1) = ν(q′h, 1); also,
applying ρ to f gives ρ(f, 1) = ρ(h, 1). Thus ρ(f, 1) = ν(qf , 1) in this case. The other
case concerning the induction variable is when u ∈ (u~v)∗, that is, ρ(h, 1) = ν(qh, 1) ≤
r. In this case, ρ(qf , 1) = r + 1 due to the presence of u on the left side of +r+1 in
the definition of qf . Correspondingly, ρ(f, 1) = max(ρ(h, 1), r + 1) = r + 1 by the
definition of ρ. This finishes the proof of ρ(f, 1) = ν(qf , 1).

Now consider one of the parameter positions, 2 ≤ i ≤ mf = mh−1, where an input
vi−1 appears in qf . If vi−1 ∈ (u~v)′, then ν(qh, i) ≥ r + 1. Using the equality of ranks
in qh with ranks in q′h, one has ν(qf , i) = max(ν(qh, i), ν(qg, i−1)) by the definition of
ν on qf . By the induction hypothesis, ν(qh, i) = ρ(h, i) and ν(qg, i− 1) = ρ(g, i− 1),
leading to ν(qf , i) = max(ρ(h, i), ρ(g, i− 1)) = ρ(f, i) by the definition of ρ(f, i) with
ρ(h, i) ≥ r+ 1 > ρ(h,mh). The remaining case is when vi−1 does not appear in (u~v)′,
that is, ν(qh, i) ≤ r. By the induction hypothesis on h, one has ρ(h, i) = ν(qh, i) ≤ r,
leading to ρ(f, i) = max(ρ(g, i − 1), r). By the induction hypothesis on g this value
is max(ν(qg, i − 1), r). The definition of ν on qf , using the fact that vi−1 6∈ (u~v)′,
gives max(ν(qg, i− 1), r) = ν(qf , i). This finishes the proof that ρ(f, i) = ν(qf , i) for
2 ≤ i ≤ mf .

7. Proofs of characterization theorems. In this section we prove the charac-
terizations which were summarized in section 4. The Schwichtenberg–Müller theorem
is generalized. One direction uses the bounding lemma proved above, while the other
direction is obtained by generalizing the simulation lemmas of [4] and [3] to all levels
of the Grzegorczyk hierarchy. Finally, concerning PR1

2, we rely on the results of [4].
It is of some interest that the proofs for r ≥ 2 do not refer to any computation model,
unlike the Schwichtenberg and Müller proofs.

Lemma 7.1 (E-bounding). For r ≥ 0, every f ∈ Er+2 has a monotone increasing
bound bf ∈ PRr+1

1 .

Proof. Since S, +1, and ×1 are defined in PR1
1, we already have that A0, A1,

and A2 are in PR1
1. In fact, under these derivations, ρ(A2, 1) = ρ(A2, 2) = 1. Now

note that for r ≥ 0,

Ar+3(x, 0) = 1,
Ar+3(x, y) = Ar+2(x,Ar+3(x, Py)) for y 6= 0.

It follows by induction on r that Ar+3 is defined in PR1 with ρ(Ar+3, 1) = r+ 1 and
ρ(Ar+3, 2) = r + 2. Next note that max is definable in PR1

1 by max(x, y) = C(Sy
.−

x, x, y), where cutoff subtraction is defined by x
.− 0 = x and x

.− y = P (x
.− Py) for

y 6= 0. By a theorem in [23, p. 87], every f ∈ Er+2 satisfies f(~x) ≤ Ar+3(max(2, ~x), cf )
for some constant cf . Since Ar+3 is defined in PR1 with ρ(Ar+3, 1) = r + 1, the
composition Ar+3(max(2, ~x), cf ) gives a bounding function for f(~x) in PRr+1

1 .

Lemma 7.2 (generalized simulation). For every f ∈ Er+2 there is a derivation
f∗ ∈ PR1

1 and a monotone increasing function wf ∈ PRr+1
1 such that f∗(w, ~x) = f(~x)

for all w ≥ wf (~x). In fact, ρ(f∗, 1) ≤ 1 and for 2 ≤ i ≤ mf , ρ(f∗, i) = 0.

Proof. The proof is by induction on the definition of f ∈ Er+2. If f is one of the
initial functions 0, S,Πn

i , then f∗(w, ~x) = f(~x) and wf (~x) = 0 will do.

If f is the initial function Ar+2, then observe that f is definable in Er+2 using
Ar+2 itself to bound the recursions. Therefore, to obtain the statement of the lemma
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for Ar+2, one can apply the method below for compositions and bounded recursions
to the definition of Ar+2.

Suppose that f is defined by a composition in Er+2, say f(~x) = h(g1(~x), . . . , gm(~x)).
The induction hypothesis provides suitable simulations h∗, g∗1 , . . . , g

∗
m with monotone

increasing functions wh, wg1 , . . . , wgm ∈ PRr+1
1 . By the E-bounding lemma, there is a

function b ∈ PRr+1
1 which is a monotone increasing bound on all g1, . . . , gm. Therefore

one defines f∗(w, ~x) = h∗(w, g∗1(w, ~x), . . . , g∗m(w, ~x)) and wf (~x) = wh(b(~x), . . . , b(~x))+∑
j wgj (~x).

Consider f defined by a bounded recursion in Er+2, such as f(0, ~y) = g(~y), f(x+
1, ~y) = h(x, ~y, f(x, ~y)), and f(x, ~y) ≤ k(x, ~y); where g, h, k ∈ Er+2. First note that
the characteristic function x ≤ y can be defined by C(Sy

.− x, 1, 0) with ρ(≤, 1) = 1
and ρ(≤, 2) = 0. Using the induction hypothesis, let

f̂(0, w, x, ~y) = g∗(w, ~y),

f̂(v, w, x, ~y) = if v ≤ x, then h∗(w,Pv, ~y, f̂(Pv,w, x, ~y)) else f̂(Pv,w, x, ~y) (v 6= 0).

Also define wf (x, ~y) = wh(x, ~y, b(x, ~y)) + wg(~y) + x, where b ∈ PRr+1
1 is a monotone

increasing bound on k obtained from the E-bounding lemma. Given the ranks of the
input position for ≤ and for h′ and g′, we have ρ(f̂ , 1) = ρ(f̂ , 2) = 1 and ρ(f̂ , i+2) = 0
for 1 ≤ i ≤ mf . Moreover, if w ≥ wf (x, ~y), then a subsidiary induction on v shows

that f̂(v, w, x, ~y) = f(v, ~y) for v ≤ x and f̂(v, w, x, ~y) = f(x, ~y) for v ≥ x. Thus, the

lemma is finished by defining f∗(w, x, ~y) = f̂(w,w, x, ~y).
Finally, we can prove the main results.
Theorem 7.3 (characterization). For n ≥ 1, Er+1 = PRr1.
Proof. One direction follows from the generalized simulation lemma: given f ∈

Er+1 with r ≥ 1, we obtain f∗ such that f(~x) = f∗(wf (~x), ~x), where f∗ ∈ PR1
1 and

wf ∈ PRr1. Thus f ∈ PRr1 as desired.
In the other direction, we are given a derivation f ∈ PRr1 and need to show that

the function computed by f is in Er+1. First we apply the ρ-normalization lemma to
f , to ensure that all subderivations are also in PRr1. Now we proceed by induction on
the structure of f . In the initial cases 0, S, P , we have f ∈ E0 and C ∈ E1. In the case
of a full composition of h and ~g, the ranks of h and ~g are at most r (by ρ-normalization)
and therefore this case follows from the induction hypothesis, using composition in
Er+1 with the projection functions. Finally, if f is defined by full recursion from g
and h, the induction hypothesis gives g and h in Er+1. By the bounding lemma and
the definability lemma, f is bounded by a function in Er+1. Thus f is definable by
bounded primitive recursion in Er+1.

Theorem 7.4 (see Bellantoni and Cook [4]). PR1
2 = fptime.

Proof. Essentially this was proved in [4], to which the reader should refer. The
definition of PR1

2 corresponds closely to the definition of the class B in [4], with rank
0 input positions being “safe” and rank 1 input positions being “normal.” Although
there are slight differences in the details of the formulations, such as the use of full
composition instead of ordinary composition, these are inessential.

Theorem 7.5 (equivalence of higher levels). For r ≥ 2, PRr2 = PRr1.
Proof. The first part of the lemma is to show PRr1 ⊆ PRr2, for r ≥ 2. First define,

in PR2
2, the concatenation function⊕ and the unary conversion function u(x) = 2x−1:

x⊕ 0 = x,
x⊕ y = c(y, s0(x⊕ py), s1(x⊕ py)),
u(0) = 0,
u(x) = c(x, u(px)⊕ u(px), s1(u(px)⊕ u(px))).
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Under this definition, |u(x)| = x, and the number of steps in a full recursion on
notation on u(x) is the same as the number of steps in a full primitive recursion on x.
Also, p(u(x)) = u(Px). We write u(~x) for u(x1), . . . , u(xm), where m is the number
of elements in ~x.

To show PRr1 ⊆ PRr2, one proceeds by induction on the structure of a PR1

derivation f , defining a corresponding PR2 derivation f ′ such that f ′(u(~x)) = u(f(~x))
for all ~x, and such that ρ(f ′, i) = ρ(f, i) for all i. Each case of the induction is
straightforward: for initial functions 0, S, P, C we use 0, s1, p, c (note u(x) = 2x − 1);
if f is defined by full primitive recursion on g and h, then f ′ is defined by full recursion
on notation on g′ and h′ (note p(u(x)) = u(Px)); and for full compositions in PR1

we use full compositions in PR2. Having finished the structural induction, one

can observe that f(~x) = |f ′(u(~x))| is a computation of f in PRmax(ρ(f),2)
2 , because

u ∈ PR2
2 and | · | ∈ PR1

2 = fptime.

The second part is to show PRr2 ⊆ PRr1, for r ≥ 2. Using the characterization
theorem, Er+1 ⊆ PRr1 for r ≥ 2, so it is enough to show that for r ≥ 2, PRr2 ⊆ Er+1.

Let f be any derivation in PR2, and let r = ρ(f); we show that the function
computed by f is in Emax(3,r+1). Applying the ρ-normalization lemma, we can assume
that all subderivations of f are in PRr2. If f is an initial function, i.e., s0, s1, p,
or c, then the same function is defined in flinspace = E2. If f is defined by a
full composition h(g1(~x1), . . . , gm(~xm)), then by ρ-normalization and the induction
hypothesis we can compute h and ~g in Emax(3,r+1), and therefore by composition
f ∈ Emax(3,r+1). The last case is when f is defined by full recursion on notation, say,
f(0, ~y) = g(~y) and f(x, ~y) = h(x, ~y, f(px, ~y)) for x 6= 0. In this case, a function to

extract the high-order n bits of a value x is defined by e(x, n) = p(|x| .−n)(x) (where
“
.−” is the cutoff subtraction defined earlier). The e function, as well as the length

function | · | and comparison ≤, is in flinspace = E2. The induction hypothesis yields

g, h ∈ Emax(3,r+1). Now define a function f̂ by f̂(0, x, ~y) = g(~y) and f̂(n, x, ~y) = “if

n ≤ |x|, then h(e(x, n), ~y, f̂(Pn, x, ~y)) else f̂(Pn, x, ~y)” for n 6= 0. An induction

on n, for 0 ≤ n ≤ |x|, shows that f̂(n, x, ~y) = f(e(x, n), ~y). For n ≥ |x|, one has

f̂(n, x, ~y) = f(x, ~y) = f(e(x, n), ~y) due to the “else” clause. Thus the definition

f(x, ~y) = f̂(|x|, x, ~y) will complete the proof, provided that the recursion defining f̂

can be carried out in Emax(3,r+1), that is, provided we have a bounding function for f̂
in Emax(3,r+1). Since f̂(n, x, ~y) ≤ f(e(x, n), ~y) and e ∈ E2, a bound on f is sufficient

to give a bound on f̂ . By the bounding lemma for PRr2, one has a Grzegorczyk
polynomial q of rank r such that |f(~x)| ≤ q(|~x|). Therefore f(~x) ≤ 2q(|~x|). By
the definability lemma, q ∈ Er+1. Since exponentiation is in E3, we have 2q(|~x|) ∈
Emax(3,r+1). Therefore, f is bounded by an Emax(3,r+1) function.

8. Conclusion. A detailed analysis of the nesting of recursions has yielded ben-
efits at the low levels of the Grzegorczyk hierarchy. Ramified recursion has been
reframed in the traditional context of counting the nesting of recursions. Computa-
tionally interesting classes are seen to be characterized by this “structural” analysis
of function derivations, which is based on a novel way of counting recursions. This
integrates older characterizations at and above the elementary level with newer char-
acterizations below the elementary level.

All the results obtained here are for recursions in type level 0, i.e., the value
computed by the recursion is an integer. An extension of these results to higher-type
recursion would be of interest.
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Abstract. We study the problem of sorting n numbers on a p-processor bulk-synchronous paral-
lel (BSP) computer, which is a parallel multicomputer that allows for general processor-to-processor
communication rounds provided each processor sends and receives at most h items in any round. We
provide parallel sorting methods that use internal computation time that is O(n logn

p
) and a number

of communication rounds that is O( logn
log(h+1)

) for h = Θ(n/p). The internal computation bound is op-

timal for any comparison-based sorting algorithm. Moreover, the number of communication rounds
is bounded by a constant for the (practical) situations when p ≤ n1−1/c for a constant c ≥ 1. In fact,
we show that our bound on the number of communication rounds is asymptotically optimal for the
full range of values for p, for we show that just computing the “or” of n bits distributed evenly to the
first O(n/h) of an arbitrary number of processors in a BSP computer requires Ω(log n/ log(h + 1))
communication rounds.

Key words. parallel algorithms, parallel sorting, parallel processing
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1. Introduction. Most of the research on parallel algorithm design in the 1970s
and 1980s was focused on fine-grain massively parallel models of computation (e.g.,
see Akl [4], Bitton et al. [7], JáJá [26], Karp and Ramachandran [28], Leighton [32],
and Reif [43]), where the ratio of memory to processors is fairly small (typically
O(1)), and this focus was independent of whether the model of computation was
a parallel random-access machine (PRAM) or a network model, such as a mesh-of-
processors model. However, as more and more parallel computer systems are being
built, researchers are realizing that processor-to-processor communication is a prime
bottleneck in parallel computing (e.g., see Aggarwal, Chandra, and Snir [2], Bilardi
and Preparata [6], Culler et al. [13], Kruskal, Rudolph, and Snir [30], Mansour, Nisan,
and Vishkin [34], Mehlhorn and Vishkin [35], Papadimitriou and Yannakakis [38],
and Valiant [47, 46]). The real potential of parallel computation, therefore, will most
likely be realized only for coarse to medium-grain parallel systems, where the ratio of
memory to processors is unbounded, for such systems allow an algorithm designer to
balance communication latency with internal computation time. Indeed, this realiza-
tion has given rise to several new computation models for parallel algorithm design,
which all use what Valiant [46] calls “bulk synchronous” processing. In such a model
an input of size n is distributed evenly across a p-processor parallel computer. In a
single computation round (which Valiant calls a superstep) each processor may send
and receive h messages and then perform an internal computation on its internal mem-
ory cells using the messages it has just received. The amount of additional “internal
time” is allowed to be greater than h. To avoid any conflicts that might be caused by
asynchronies in the network (whose topology is left undefined) the messages sent out
in a round t by some processor cannot depend upon any messages that a processor
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receives in round t (but, of course, they may depend upon messages received in round
t− 1). We refer to this model of computation as the bulk-synchronous parallel (BSP)
model.

1.1. The BSP computer. As with the PRAM family of computer models,1 the
BSP model is distinguished by the broadcast and combining abilities of the network
connecting the various processors. In the weakest version, which is the only version
Valiant [46] considers, the network may not duplicate or combine messages but instead
may only realize h-relations between the processors. We call this the exclusive-read
exclusive-write (EREW) BSP model, noting that it is essentially the same as a model
Valiant elsewhere [47] calls the XPRAM and one that Gibbons [21] calls the EREW
phase-PRAM. It is also the communication structure assumed by the LogP model [13,
29], which is the same as the BSP model except that the LogP model does not
explicitly require bulk-synchronous processing.

It is also natural to allow for a slightly more powerful bulk-synchronous model,
which we call the weak–concurrent-read exclusive-write (CREW) BSP model. In this
model we assume processors are numbered 1, 2, . . ., p and that messages can be dupli-
cated by the network so long as the destinations for any message are a contiguous set
of processors {i, i+ 1, . . . , j}. This is essentially the same as a model Dehne et al. [16]
and Dehne, Fabri, and Rau–Chaplin [17] refer to as the coarse-grain multicomputer.
In designing an algorithm for this model one must take care to ensure that, even with
message duplication, the number of messages received by a processor in a single round
is at most h. Nevertheless, as we demonstrate in this paper, this limited broadcast
capability can sometimes be employed to yield weak-CREW BSP algorithms that are
conceptually simpler than their EREW BSP counterparts.

We can also define more powerful instances of the BSP model, such as a CREW
BSP model, which allows for arbitrary broadcasts, or even a concurrent-read concurrent-
write (CRCW) BSP model, which also allows for messages to the same location to be
combined (using some rule). These models correspond to models Gibbons [21] calls
the CREW phase-PRAM and CRCW phase-PRAM. In fact, Nash et al. [36] consider
even more-powerful bulk-synchronous models in which messages can be combined us-
ing more-powerful combining functions (such as “add” or “bitwise-and”). We person-
ally feel that anything more powerful than a weak-CREW BSP computer is probably
not a realistic parallel model, given the possible asynchronies a network may possess;
hence, we restrict our attention in this paper to the EREW and weak-CREW versions
of the BSP model.

The running time of a BSP algorithm is characterized by two parameters: TC ,
the number of communication rounds, and TI , the internal computation time, that
is, the sum, taken over all rounds of the algorithm, of the maximum amount of
internal computation time taken by any processor in that round. A prime goal in
designing a BSP algorithm is to minimize both of these parameters. Alternatively, by
introducing additional characterizing parameters of the BSP model, we can combine
TI and TC into a single running time parameter, which we call the combined running
time. Specifically, if we let L denote the latency of the network—that is, the worst-
case time needed to send one processor-to-processor message—and we let g denote the
time “gap” between consecutive messages received by a processor in a communication
round, then we can characterize the total running time of a BSP computation as

1Indeed, a PRAM with the same number of processors and memory cells is a BSP model with
h = 1, as is a module parallel computer (MPC) [35], which is also known as a distributed-memory
machine (DMM) [27], for any memory size.
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O(TI + (L + gh)TC). Incidentally, this is also the running time of implementing a
BSP computation in the analogous2 LogP model [13, 29].

The goal of this paper is to further the study of bulk-synchronous parallel al-
gorithms by addressing the fundamental problem of sorting n elements distributed
evenly across a p-processor BSP computer.

1.2. Previous work on parallel sorting. Let us, then, briefly review a small
sample of the work previously done for parallel sorting. Batcher [5] in 1968 gave
what is considered to be the first parallel sorting scheme, showing that in a fine-
grained parallel sorting network one can sort in O(log2 n) time using O(n) processors.
Since this early work there has been much effort directed at fine-grain parallel sorting
algorithms (e.g., see Akl [4], Bitton et al. [7], JáJá [26], Karp and Ramachandran [28],
and Reif [43]). Nevertheless, it was not until 1983 that it was shown, by Ajtai, Komlós,
and Szemerédi [3], that n elements can be sorted in O(logn) time with an O(n logn)-
size network (see also Paterson [39]). In 1985 Leighton [31] extended this result to
show that one can produce an O(n)-node bounded-degree network capable of sorting
in O(logn) steps, based upon an algorithm he called “columnsort.” In 1988 Cole [11]
gave simple methods for optimal sorting in the CREW and EREW PRAM models
in O(logn) time using O(n) processors, based upon an elegant “cascade mergesort”
paradigm using arrays, and this result was recently extended to the Parallel Pointer
Machine by Goodrich and Kosaraju [22]. Thus, one can sort optimally in these fine-
grained models.

These previous methods are not optimal, however, when implemented in bulk-
synchronous models. Nevertheless, Leighton’s columnsort method [31] can be used to
design a bulk-synchronous parallel sorting algorithm that uses a constant number of
communication rounds, provided p3 ≤ n. Indeed, there is a host of published algo-
rithms for achieving such a result when the ratio of input size to number of processors
is as large as this. For example, a randomized strategy, called sample sort, achieves
this result with high probability [8, 19, 20, 24, 25, 33, 42, 44], as do deterministic
strategies based upon regular sampling [18, 37, 45, 48]. These methods based upon
sampling do not seem to scale nicely for smaller n/p ratios, however. If columnsort is
implemented in a recursive fashion, then it yields an EREW BSP algorithm that uses
TC = O([logn/ log(n/p)]δ) communication rounds and internal computation time that
is O(TC(n/p) log(n/p)), where δ = 2/(log 3− 1), which is approximately 3.419. Using
an algorithm they call “cubesort,” Cypher and Sanz [14] show how to improve the TC
term in these bounds to be O((25)(log∗ n−log∗(n/p))[logn/ log(n/p)]2), and Plaxton [40]
shows how cubesort can be modified to achieve TC = O([logn/ log(n/p)]2). Indeed,
Plaxton [41] can modify the “sharesort” method of Cypher and Plaxton [15] to achieve
TC = O((logn/ log(n/p)) log2(logn/ log(n/p))). Finally, Chvátal [10] describes an ap-
proach of Ajtai, Komlós, Paterson, and Szemerédi for adapting the sorting network of
Ajtai, Komlós, and Szemerédi [3] to achieve a depth of O(logn/ log(n/p)) where the
basic unit in the network is a “black box” that can sort dn/pe elements. An effective
method for constructing such a network is not included in Chvátal’s report, however,
for the method he describes is a nonuniform procedure based upon the probabilistic
method. In addition, the constant factor in the running time appears to be fairly
large. Incidentally, these latter methods [10, 15, 14, 31, 40] are actually defined for
more-restrictive BSP models where the data elements cannot be duplicated and each

2There is also an o parameter in the LogP model, but it would be redundant with L and g in
this bound.
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internal computation must be a sorting of the internal-memory elements.
The only previous sorting algorithms we are aware of that were designed with the

BSP model in mind are recent methods of Adler, Byers, and Karp [1] and Gerbessiotis
and Valiant [20]. The method of Adler, Byers, and Karp runs in a combined time
that is O(ng log n

p + pg + gL), provided p ≤ n1−δ for some constant 0 < δ < 1. They
do not define their algorithm for larger values of p, but they do give a slightly better
implementation of their method in the LogP model so as to achieve a running time
of O(ng log n

p + pg + L) for p similarly bounded. Gerbessiotis and Valiant give several

randomized methods,3 the best of which runs with a combined time of O(n log n
p +

gpε+gn/p+L), with high probability, for any constant 0 < ε < 1, provided p ≤ n1−δ,
where δ is a small constant depending upon ε.

1.3. Our results. Given a set S of n items distributed evenly across p processors
in a weak-CREW BSP computer we show how S can be sorted in O(logn/ log(h+1))
communication rounds and O((n logn)/p) internal computation time, for h = Θ(n/p).
The method is fairly simple and the constant factors in the running time are fairly
small. Moreover, we also show how to extend our result to the EREW BSP model
while achieving the same asymptotic bounds on the number of communication rounds
and internal computation time. Our bounds on internal computation time are optimal
for any comparison-based parallel algorithm. In addition, we achieve a deterministic
combined running time that is O(n log n

p + (L+ gn/p)(logn/ log(n/p))), which is valid

for all values of p and improves the best bounds of Adler, Byers, and Karp [1] and
Gerbessiotis and Valiant [20] even when p ≤ n1−δ for some constant 0 < δ < 1,
in which case our method sorts in a constant number of communication rounds. In
fact, if p3 ≤ n, then our method essentially amounts to a sample sort (with regular
sampling). If p = Θ(n), then our method amounts to a pipelined parallel mergesort,
achieving the same asymptotic performance as the fine-grained algorithms of Cole [11]
and Goodrich and Kosaraju [22]. Thus, our method provides a sorting method that
is fully scalable over all values of p while achieving an optimal internal computation
time over this entire range.

Indeed, we show that our bounds on the number of communication rounds needed
to sort n elements on a BSP computer are also worst-case optimal for this entire range
of values of p. We establish this by showing that simply computing the “or” of n bits
distributed evenly across Θ(n/h) processors requires Ω(log n/ log(h + 1)) number of
communication rounds, where each processor can send and receive h messages in a
CREW BSP computer. This lower bound holds even if the number of additional pro-
cessors and the number of additional memory cells per processor are unbounded. Since
this lower bound is independent of the total number of processors and amount of mem-
ory in the multicomputer, it joins lower bounds of Mansour, Nisan, and Vishkin [34]
and Adler, Byers, and Karp [1] in giving further evidence that the prime bottleneck in
parallel computing is communication, not the number of processors nor the memory
size.

2. A weak-CREW BSP sorting algorithm. Let S be a set of n items dis-
tributed evenly in a p-processor weak-CREW BSP computer. We sort the elements
of S using a d-way parallel mergesort, pipelined in a way analogous to the binary
parallel mergesort procedures of Cole [11] and Goodrich and Kosaraju [22].

3They also give an alternate BSP sorting method that has a combined running time of
O([(n/p) loga+1 p + L log2 p + g loga+2 p + g(n/p) log p]/ log log p), with high probability, provided
p < n/ loga+1 p.
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Specifically, we choose d = max{d√n/pe, 2} and let T be a d-way rooted, com-
plete, balanced tree such that each leaf is associated with a subset Si ⊆ S of size at
least bn/pc and at most dn/pe. For each node v in T define U(v) to be the sorted
list of elements stored at descendants of v in T , where we define v to be a descendant
of itself if it is a leaf. Note that if {w1, w2, . . . , wd} denote the children of a node
v in T , then U(v) = U(w1) ∪ U(w2) ∪ · · · ∪ U(wd). Our goal, then, is to construct
U(root(T )). We may assume, without loss of generality, that the elements are dis-
tinct, for otherwise we can break ties using the original positions of the elements of
S.

We perform this construction in a bottom-up pipelined way. In particular, we
perform a series of stages, where in stage t we construct a list Ut(v) ⊆ U(v) for each
node v that we identify as being active. A node is full in stage t if Ut(v) = U(v), and
a node is active if Ut(v) 6= ∅ and v was not full in stage t− 3. Likewise, we say that
a list A stored at a node v in T is full if A = U(v). Initially, each leaf of T is full and
active, whereas each internal node is initially inactive.

We say that a list B is a k-sample of a list A if B consists of every kth element
of A. For each active node v in T we define a sample Lt(v) as follows:

• If v is not full, then Lt(v) is a d2-sample of Ut(v).
• If v first became full in stage t, then we define Lt(v) to be a d2-sample of
Ut(v) = U(v); we define Lt+1(v) to be a d-sample of Ut(v); and we define
Lt+2(v) = U(v) (i.e., Lt+2(v) is full).

We then define

Ut(v) = Lt−1(w1) ∪ Lt−1(w2) ∪ · · · ∪ Lt−1(wd),

where, again, {w1, w2, . . . , wd} denote the children of node v in T . Note that by our
definition of Lt(v), if a node v becomes full in stage t, then v’s parent becomes full
in stage t+ 3. Thus, assuming we can implement each stage with a constant number
of communication rounds using the p processors, we will be able to sort the elements

of S, by constructing U(root(T )), in just O(logd n) = O
(

log n
log(h+1)

)
communication

rounds, for h = Θ(n/p). Before we give the details for implementing each stage in
our algorithm, however, we establish the following bounds.

Lemma 2.1. If at most k elements of Ut(v) are in an interval [a, b], then at most
dk + 2d2 elements of Ut+1(v) are in [a, b].

Proof. Our proof is by induction on t. Suppose there are k elements of Ut(v) in an
interval [a, b]. Since the claim is clearly true if v is full (which is the base case), let us
suppose further that v is not full. Then Ut(v) = Lt−1(w1) ∪Lt−1(w2) ∪ · · ·Lt−1(wd),
where {w1, w2, . . . , wd} denote the children of v. Let ji denote the number of elements
of Lt−1(wi) in the interval [a, b] and let ki denote the number of elements of Ut−1(wi)
in the interval [a, b]. Likewise, let j′i denote the number of elements of Lt(wi) in the
interval [a, b] and let k′i denote the number of elements of Ut(wi) in the interval [a, b].
Finally, let k′ denote the number of elements of Ut+1(v) in the interval [a, b]. Then

k =
d∑
i=1

ji

and ⌊
ki
d2

⌋
≤ ji ≤

⌈
ki
d2

⌉
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by our definition of Lt(wi), with similar relationships holding, respectively, for k′ and
the k′i values. Therefore,

k′ =
d∑
i=1

j′i

≤
d∑
i=1

⌈
k′i
d2

⌉

≤
d∑
i=1

⌈
dki + 2d2

d2

⌉
(by our induction hypothesis)

=

d∑
i=1

(⌈
ki
d

⌉
+ 2

)

≤ 2d+

d∑
i=1

⌈
d2(ji + 1)

d

⌉

= 2d+

d∑
i=1

d(ji + 1)

= 2d+ d2 + d
d∑
i=1

ji

= 2d+ d2 + dk

≤ dk + 2d2,

provided d ≥ 2, which will always be the case for our algorithm.
Intuitively, this lemma says that Ut+1(v) will not be wildly different from Ut(v).

Similarly, we have the following corollary that relates Lt+1(v) and Lt(v).
Corollary 2.2. If at most k elements of Lt(v) are in an interval [a, b], then at

most d(k + 1) + 2 elements of Lt+1(v) are in [a, b].
Proof. Suppose there are k elements of Lt(v) in an interval [a, b]. The corollary

is immediately true if v is full, so let us suppose that v is not full. Then there are
at most d2(k + 1) elements of Ut(v) in [a, b]; hence, by Lemma 2.1, there are at most
d3(k + 1) + 2d2 elements of Ut+1(v) in [a, b]. Thus, there are at most d(k + 1) + 2
elements of Lt+1(v) in [a, b].

Having given this important lemma and its corollary, let us now turn to the details
of implementing each stage in our pipelined procedure using just a constant number
of communication rounds.

2.1. Implementing each stage using a constant number of communica-
tion rounds. We say that a list A is ranked [11, 22] into a list B if, for each element
a ∈ A, we know the rank of a’s predecessor in B (based upon the ordering of elements
in A ∪B). If A is ranked in B and B is ranked in A, then A and B are cross ranked.
The generic situation at the end of any stage t is that we have the following conditions
satisfied at each node v in T .

Induction invariants.
1. Lt(v) is ranked into Lt−1(v).
2. If v is not full, then Lt−1(wi) is ranked into Ut(v), for each child wi of v in
T .
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3. Lt(v) is ranked into Ut(v).
We maintain copies of the lists Lt−1(v), Lt(v), Ut−1(v), and Ut(v) for each active

node v in T , and we do not maintain any other lists during the computation. As we
shall show, this will allow us to implement the entire computation efficiently using
just p processors. In order to implement each stage in our computation using just
O(1) communication rounds we also maintain the following important load-balancing
invariant at each node v in T .

Load-balancing invariant.
• If a list A is not full, then A is partitioned into contiguous subarrays of size
d each, with each subarray stored on a different processor.

• If a list A is full, then A is partitioned into contiguous subarrays of size d2

each, with each subarray stored on a different processor.
We assume that the names of the nodes of v in T and the four lists stored at

each node v are defined so that given an index, i, into one of these lists, A, one can
determine the processor holding A[i] as a local computation (not needing a commu-
nication step). For example, we could number the nodes in T using the level-order
labeling (e.g., see Goodrich and Tamassia [23]) and number each contiguous subarray
of an array A consecutively. Since the arrays stored at the same level in T are all
within one element of being the same size, such a numbering scheme would allow us to
compute in O(1) time the processor number holding any subarray A[i..j] of an array
A simply by knowing the index for A[i..j] and the level-order number of the node
holding A[i..j].

Given that the induction and load-balancing invariants are satisfied for each node
v in T , we can construct Ut+1(v) at each active node, with the above invariants
satisfied for it, as follows.

Computation for stage t+ 1.
1. For each element a in Lt(wi), let b(a) and c(a), respectively, be the predecessor

and successor of a in Lt−1(wi). We can determine b(a) and c(a) in O(1)
communication rounds, for each such a, since Lt(wi) is ranked in Lt−1(wi) by
induction invariant 1. In fact, if Lt(wi) = U(wi), then this is essentially a local
computation. Moreover, by our load-balancing invariant and Corollary 2.2,
even in the general case, each processor (storing a portion of some Lt−1(wi))
will receive (and then send) at most d(d+1)+2 = Θ(h) messages to implement
this step.

2. Determine the location (rank) of b(a) and c(a) in Ut(v). This can also be
easily implemented with a O(1) communication rounds, as in the previous
step.

3. Broadcast a (and its rank in Lt(wi)) to all processors holding elements of
Ut(v) between b(a) and c(a). Note that this step may require usage of the
weak-CREW capability, since there may be many processors holding such
elements and, if so, these processors will be consecutively numbered. By our
load-balancing invariant and Lemma 2.1 we can guarantee that each processor
will receive at most 3d2 + d = Θ(h) messages to implement this step (each
processor receives at least one element from each child of v plus as many
elements as fall in its interval of Ut(v)); hence, this step can be implemented
in O(1) communication rounds.

4. Each processor assigned to a contiguous portion [e, f) of Ut(v) receives ele-
ments sent in the previous round and merges them via a simple d-way merge-
sort procedure to form a sublist of Ut+1(v) of size O(d2) = O(h). It is im-
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portant to observe that the processor for [e, f) receives at least one element
from each child of v so as to include all the elements that may intersect the
interval [e, f), even if none actually fall inside [e, f). This allows us to accu-
rately compute the rank of each element in Ut+1(v) locally; hence, it gives
us Ut(v) cross ranked with Ut+1(v). Moreover, this step can be accomplished
in O(1) communication rounds and O(d2 log d) = O((n/p) log(n/p)) internal
computation time.

5. For each element a in Ut+1(v) send a message to the processor holding
a ∈ Lt(wi) informing that copy of a of its rank in Ut+1(v). This step can
easily be accomplished in O(1) communication rounds and gives us induction
invariant 2.

6. Determine the sample Lt+1(v) and rank it into Ut+1(v), giving us induction
invariant 3. Also, use the cross ranking of Ut+1(v) and Ut(v) to rank Lt+1(v)
into Lt(v), giving us induction invariant 1. This step can easily be accom-
plished in O(1) communication rounds.

7. Finally, partition the four lists stored at each node v so as to satisfy the load-
balancing invariant. That is, we partition each list in T into the appropriately
sized sublists and ship sublists to processors according to our numbering
scheme. Assuming the total size of all the nonfull lists in T is O(n/d), this
can easily be performed in O(1) communication rounds using p = Θ(n/d2)
processors.

Therefore, given the above assumption regarding the total size of all the lists, in a
constant number of communication rounds and an internal computation time that
is O((n/p) log(n/p)) we can build the set Ut+1(v) and establish the induction and
load-balancing invariants so as to repeat this procedure in stage t+ 2.

Let us therefore analyze the total size of all the lists stored at nodes in T . Clearly,
the size of all the full lists in T is O(n). Moreover, each such list contributes at most
1/d of its elements to the next higher level in T , and from then on up T each list on
a level l contributes at most 1/d2 of its elements to lists on the next higher level in
T . Thus, the total size of all nonfull Ut−1(v) or Ut(v) lists forms a geometric series
that sums to be O(n/d), which is what we require. In addition, any sample Lt(v) or
Lt−1(v) that is not full can contain at most 1/d of the elements of U(v); hence, the
total space needed for all these lists is also O(n/d). This establishes the following.

Theorem 2.3. Given a set S of n items stored O(n/p) per processor on a
p-processor weak-CREW BSP computer, one can sort S in O(logn/ log(h+ 1)) com-
munication steps and O((n logn)/p) internal computation time, where h = Θ(n/p).

In achieving this result we exploited the broadcast capability of the weak-CREW
BSP model (in step 3). In the next section we show how to match the asymptotic
performance of Theorem 2.3 without using such a capability.

3. An EREW BSP sorting algorithm. Suppose we are now given a set S
of n items, which are distributed evenly across the p processors of an EREW BSP
computer. Our goal is to sort S in O(logn/ log(h + 1)) communication rounds and
O(n logn/p) internal computation time without using any broadcasts, for h = Θ(n/p).
We achieve this result using a cascading method similar to one used by Cole [11],
which itself is similar to the general fractional cascading technique of Chazelle and
Guibas [9].

Let T be a complete rooted d-way tree with each of its leaves associated with a
sublist Si ⊂ S of size at most dn/pe, where d = max{d(n/p)1/7e, 2} (the reason for
this choice will become apparent in the analysis). Our method proceeds in a series of
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stages, as in the weak-CREW BSP algorithm, with us constructing the set Ut(v) in
each stage, as before:

Ut(v) =
d⋃
i=1

Lt−1(wi),

where each Lt(v) list is defined to be a sample of Ut(v) as in our weak-CREW algo-
rithm.

In order to perform this construction so as to avoid broadcasts, however, we will
accomplish this by constructing a larger, augmented list, At(v), such that Ut(v) ⊆
At(v). We also define a list Dt(v) to be a d2-sample of At(v). For each active node
v, with parent u and children w1, w2, . . . , wd, we then define

At(v) = Dt−1(u) ∪
d⋃
i=1

Lt−1(wi),

i.e., At(v) = Dt−1(u) ∪ Ut(v). Intuitively, the Dt lists communicate information
“down” the tree T in a way that allows us to avoid broadcasts. Indeed, once a copy
of an element begins to traverse down the tree, it will never again traverse up (since
the D lists are sent only to children).

Still, although we are assuming, without loss of generality, that the elements of S
are distinct, this definition may create duplicate entries of an element in the same list,
with some traversing down and at most one traversing up. We resolve any ambiguities
this may create by breaking comparison ties based upon an upward-traversing element
always being greater than any downward-traversing element, and any comparison
between downward-traversing elements is resolved based upon the level in T where
the elements first began traversing down (where level numbers increase as one traverses
down T ).

The goal of each stage t in the computation, then, is to construct At(v) and
Ut(v), together with their respective samples Dt(v) and Lt(v). In order to prove
that each stage of our algorithm can indeed be performed in a constant number of
communication rounds on an EREW BSP computer we must establish the following
bounds.

Lemma 3.1. If at most k elements of At(v) are in an interval [a, b], then at most
(d+ 1)k + 2(d+ 1)2 elements of At+1(v) are in [a, b].

Proof. The proof is essentially the same as that for Lemma 2.1 except that the
expansion coefficient is now d + 1, instead of d, for each nonfull active node now
receives elements from all d+ 1 of its neighbors in T , not just its children.

This immediately implies the following.
Corollary 3.2. If at most k elements of Dt(v) are in an interval [a, b], then at

most (d+ 1)(k + 1) + 3 elements of Dt+1(v) are in [a, b].
Proof. Suppose there are k elements of Dt(v) in an interval [a, b]. Then there are

at most d2(k + 1) elements of At(v) in [a, b]; hence, by Lemma 3.1, there are at most
(d + 1)d2(k + 1) + 2(d + 1)2 elements of At+1(v) in [a, b]. Thus, there are at most
(d+ 1)(k + 1) + 3 elements of Dt+1(v) in [a, b].

In addition, we can also show the following.
Lemma 3.3. For any two consecutive elements b and c in At(v) let b′ and c′,

respectively, be the predecessor of b and the successor of c in At(u), where u is the
parent of v in T . There are at most (d+ 1)(d2 + 1) + 2(d+ 1)2 + 2 elements of At(u)
in the interval [b′, c′].
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Proof. By construction, At(v) contains Dt−1(u) as a subset, and Dt−1(u) is a
d2-sample of At−1(u). Thus, there can be at most d2 + 1 elements of At−1(u) in the
interval [b, c]. By Lemma 3.1, then, there will be at most (d+ 1)(d2 + 1) + 2(d+ 1)2

elements of At(u) in the interval [b, c]; hence, there will be at most (d+ 1)(d2 + 1) +
2(d+ 1)2 + 2 elements of At(u) in the interval [b′, c′].

Finally, we have the following.
Lemma 3.4. For any two consecutive elements b and c in Dt−1(u) there are at

most (d+ 1)2(d4 + 5) elements of At(v) in the interval [b, c], where u is the parent of
v in T .

Proof. By construction, Dt−1(u) is a d2-sample of At−1(u), which in turn contains
Lt−2(v) as a subset. Thus, there are at most d2 +1 elements of Lt−2(v) in the interval
[b, c]. This implies that there are at most d4 + 1 elements of At−2(v) in the interval
[b, c]. The lemma follows then by two applications of Lemma 3.1.

As will become apparent in our algorithm description, these bounds are all crucial
for establishing that our algorithm runs in the EREW BSP model using a constant
number of communication rounds per stage. In order to perform the computation
for stage t+ 1 using a constant number of communication rounds we assume that we
maintain the following induction invariants for each active node v in T .

Induction invariants.
1. At(v) is ranked into Ut(v).
2. At(v) and Dt−1(u) are cross ranked, where u is the parent of v.
3. At−1(v) is ranked into At(v).
4. Dt(v) is ranked in Dt−1(v).

We also maintain a load-balancing invariant, similar to the one we used in our
weak-CREW BSP algorithm, except that we now define a list A stored at a node v
to be full if A ⊇ U(v).

Load-balancing invariant.
• If a list A is not full, then A is partitioned into contiguous subarrays of size
d6 each, with each subarray stored on a different processor.

• If a list A is full, then A is partitioned into contiguous subarrays of size d7

each, with each subarray stored on a different processor.
Given that the induction and load-balancing invariants hold after the completion

of stage t, our method for performing stage t+ 1 is as follows.

Computation for stage t+ 1. For each child wi of v we perform the following
computation:

1. For each element a in At(wi) use the ranking of At(wi) in Ut(wi) to determine
if a is also in Lt(wi) (together with its rank in Lt(wi) if so). No communication
is necessary for this step, given induction invariant 1.

2. For each such element a in Lt(wi) use the ranking of At(wi) in Dt−1(v) to
determine the ranks of the predecessor, b(a), of a and successor, c(a), of a in
Dt−1(v). No communication is necessary for this step either, given induction
invariant 2.

3. For each a in Lt(wi), use the ranks of the processor(s) for b(a) and c(a)
in Dt−1(v) to determine the respective ranks of b(a) c(a) in At−1(v). No
communication is necessary for this step.

4. For each a in Lt(wi), request that the processor(s) for b(a) and c(a) in At−1(v)
send(s) the processor for a the name of predecessor, b′(a), of b(a) and the name
of successor, c′(a), of b(a) in At(v), using invariant 3. By Lemma 3.1 and
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our load-balancing invariant, each processor will receive and send at most
(d+ 1)d6 + 2(d+ 1)2 = Θ(h) messages to implement this step.

5. Send a (together with its rank in Lt(wi)) to the processor(s) assigned to
elements of At(v) between b′(a) and c′(a) to be merged with all other elements
of At+1(v) that fall in this range. As with the previous step, by Lemma 3.1
and our load-balancing invariant each processor will receive at most (d +
1)d6 + 2(d+ 1)2 = Θ(h) messages to implement this step. More importantly,
by Lemma 3.3, each processor will send an element a to at most d((d+1)(d2 +
1) + 2(d + 1)2 + 2)/d6e + 1 = O(1) other processors. Thus, no broadcasting
is needed in order to implement this step.

At the parent u of v we assume a similar (but simpler) computation is being performed:

1. For each element a in Dt(u), determine the ranks of b(a) and c(a), the re-
spective predecessor and successor of a in Dt−1(u). No communication is
necessary for this step, given induction invariant 4.

2. Request that the processor(s) for the copies of b(a) and c(a) in Dt−1(u) return
the ranks of b(a) and c(a) in At(v), which are available because of induction
invariant 2. By Corollary 3.2 and our load-balancing invariant, this step can
be implemented with each processor receiving and sending at most (d+1)(d6+
1) + 3 = Θ(h) messages.

3. Send a (together with its rank in Dt(u)) to the processor(s) assigned to ele-
ments of At(v) between b(a) and c(a) to be merged with all other elements
of At+1(v) that fall in this range. By Lemma 3.4 each processor will send
an element a to at most d(d + 1)2(d4 + 5)/d6e + 1 = O(1) other processors;
hence, no broadcasting is needed. Moreover, each processor will send d such
copies of a, which, by our load-balancing invariant, implies that a processor
will send O(h) messages. Likewise, each processor will receive at most O(h)
messages.

Finally, at node v we perform the following computation:

1. For each interval [e, f) of elements of At(v) assigned to a single processor,
merge all the elements coming from the parent u and children w1, w2, . . . , wd
to form At+1(v). Such a processor will receive at least one element from each
node adjacent to v, plus as many elements of At+1(v) as fall in [e, f), for a
total of at most d + 1 + (d + 1)d6 + 2(d + 1)2 = Θ(h). This mergesort com-
putation amounts to a (d+ 1)-way mergesort and can easily be implemented
in O(d7 log(d+ 1)) = O((n/p) log(n/p)) internal steps.

2. Likewise, for each interval [e, f) of elements of At(v) assigned to a single
processor, merge all the elements coming just from v’s children w1, w2, . . . , wd
to form Ut+1(v) (and At+1(v) ranked in Ut+1(v), which gives us induction
invariant 1).

3. Use the rank information derived from the previous two steps to rank At+1(v)
in Dt(u), giving us half of induction invariant 2. Also, rank At(v) in At+1(v),
giving us invariant 3 and by an additional calculation a ranking of Dt+1(v)
in Dt(v), which is invariant 4. Finally, send a message to each element a in
Dt(u) informing it of its rank in At+1(v) so as to complete the other half of
invariant 2. To implement this step requires that each processor send at most
h messages and each processor receive at most d6(d) = O(h) messages.

4. Finally, repartition the lists at each node v so as to satisfy the load-balancing
invariant. Assuming that the total size of all nonfull lists is O(n/d) and
the size of all full lists is O(n), this step can easily be implemented in O(1)
communication rounds.
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Let us, therefore, analyze the space requirements of this algorithm. The total size
of all the U(v) lists on the full level clearly is O(n). Each such list causes at most
d|U(v)|/de elements to be sent to v’s parent, u. Now the inclusion of these elements
in u causes at most (d+1)d|U(v)|/d3e elements to be sent to nodes at distance 1 from
u (including v itself). However, once an element starts traversing down the tree T it
never is sent up again. We can repeat this argument to establish that the existence
of U(v) causes at most (d + 1)2d|U(v)|/d5e elements to be sent to nodes at distance
2 from u, and so on. Thus, the number of all of these elements that originate from
u sum to be a geometric series that is O(n/d). Therefore, the total size of all the
nonfull lists is O(n/d). Likewise, the total size of all the lists (and hence the lists on
the full level) is O(n). This gives us the following theorem.

Theorem 3.5. Given a set S of n items stored O(n/p) per processor on a p-
processor EREW BSP computer, one can sort S in O(logn/ log(h+1)) communication
rounds and O(n logn/p) internal computation time, for h = Θ(n/p).

This immediately implies the following.
Corollary 3.6. Given a set S of n items stored O(n/p) per processor, one can

sort S on an EREW BSP computer with a combined running time that is O(n log n
p +

(L+ gn/p)(logn/ log(n/p))).
This bound also applies to the LogP model.

4. A lower bound for BSP computations. In this section we show that our
upper bounds on the number of communication rounds needed to sort n numbers on a
p-processor BSP computer are optimal. Specifically, we show that Ω(log n/ log(h+1))
communication steps are needed to compute the “or” of n bits using an arbitrary
number of processors in a CREW BSP computer, where h is the number of messages
that can be sent and received by a single processor in a single communication round.

Let us begin by formalizing the framework for proving our lower bound. Assume
we have a set S of n Boolean values x1, x2, . . . , xn initially placed in memory locations
m1,m2, . . . ,mn with memory cells m(i−1)h+1, . . . ,mih stored in the local memory
of processor pi, for i ∈ {1, 2, . . . , dn/he}. This, of course, implies that we have at
least dn/he processors, but for the sake of the lower bound we allow for an arbitrary
number of processors. Moreover, we place no upper bound on the amount of additional
memory cells that each processor may store internally. The goal of the computation
is that after some T steps the “or” of the values in S should be stored in memory
location m1.

Our lower bound proof will be an adaptation of a lower bound proof of Cook,
Dwork, and Reischuk [12] for computing the “or” of n bits on a CREW PRAM.
In performing this adaptation there are several difficulties that must be overcome.
The primary difficulty comes from the fact that each processor in a BSP computer
can send h messages in each communication round, rather than just a single value,
because this complicates arguments that bound the amount of information processors
can communicate by not sending messages.

Each processor pi is assumed initially to be in a starting state, qi1, taken from
a possibly unbounded set of states. At the beginning of a round t processor pi is
assumed to be in some state qit. A round begins with each processor sending up to h
messages, some of which may be (arbitrary) partial broadcasts, and simultaneously
receiving up to h messages from other processors. Without loss of generality, each
message may be assumed to be the contents of one of the memory cells associated with
the sending processor, since we place no constraints on the amount of information that
may be stored in a memory cell nor on the number of memory cells that a processor



428 MICHAEL T. GOODRICH

may contain. A processor then enters a new state qit+1 that depends upon its previous
state qit and the values of the messages it has received. A round completes with a
processor possibly writing new values to some of its internal memory cells based upon
its new state qit+1.

Before analyzing the most general situation, let us first prove a lower bound for
the oblivious case, where the determination of whether a processor pi will send a
message to processor pj in round t depends upon only the value of pi and t and not
on the input. Of course, the contents of such a message could depend upon the input.
For input string I = (x1, x2, . . . , xn) of Boolean values, let I(k) denote the input
string (x1, x2, . . . , x̄k, . . . , xn), where x̄k denotes the complement of Boolean value xk.
I is a critical input for function f(I) if f(I) 6= f(I(k)) for all k ∈ {1, 2, . . . , n}. (Note
that I = (0, 0, . . . , 0) is a critical input for the “or” function.) Say that input index
k affects [12] processor pi in round t with input I if the state of pi on input I after
round t differs from the state of processor pi on input I(k) after round t. Likewise,
say that input index k affects memory cell mi in round t with input I if the contents
of mi on input I after round t differs from the contents of mi on input I(k) after
round t.

Theorem 4.1. If f : {0, 1}n → {0, 1} has a critical input, then any oblivious
CREW BSP computer that computes f requires Ω(logn/ log(h + 1)) communication
rounds.

Proof. Let K(pi, t, I) (respectively, L(mi, t, I)) be the set of input indices that
affect processor pi (respectively, memory cell mi) in round t with input I. Further,
let Kt and Lt satisfy the following recurrence equations:

K0 = 0,(4.1)

L0 = 1,(4.2)

Kt+1 = Kt + hLt,(4.3)

Lt+1 = Kt+1 + Lt = Kt + (h+ 1)Lt.(4.4)

Note that it suffices to prove that |K(pi, t, I)| ≤ Kt and |L(pi, t, I)| ≤ Lt, for Kt

and Lt are both at most [2(h + 1)]t, and if I is a critical input for f , then every
one of the input indices must affect memory cell m1. That is, if m1 = f(I), then
|L(m1, T, I)| = n, which implies that T is Ω(log n/ log(h+ 1)).

We establish the bounds on |K(pi, t, I)| and |L(pi, t, I)| by induction on t. First,
note that K(pi, t, I) is empty in round t = 0, and L(mi, 0, I) = {i} if i ∈ {1, 2, . . . , n}
and otherwise L(mi, 0, I) is empty. In round t+ 1 each processor pi receives the con-
tents of up to h memory locations; hence, K(pi, t+1, I) ⊆ K(pi, t, I)∪⋃j∈I L(mj , t, I)
for some index set I with |I| ≤ h. Thus, |K(pi, t + 1, I)| ≤ Kt+1 by the induction
hypothesis. After a processor pi receives the values of these memory locations it may,
at its option, write to any of its internal memory cells based upon its new state.
Therefore, for any memory cell mj internal to processor pi, L(mj , t+1, I) ⊆ K(pi, t+
1, I) ∪ L(mj , t, I); hence, by the induction hypothesis and (4.3), |L(mj , t + 1, I)| ≤
Lt+1.

The main difficulty in generalizing this result to nonoblivious computations is
that in the non oblivious case a processor pi can receive information from a processor
pj by pj not sending a message to pi. Still, as we show in the next theorem, this
ability cannot alter the asymptotic performance of a CREW BSP computer by more
than a constant factor for computing the value of a function with a critical input.

Theorem 4.2. If f : {0, 1}n → {0, 1} has a critical input, then any CREW BSP
computer that computes f requires Ω(logn/ log(h+ 1)) communication rounds.
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Proof. Let K(pi, t, I) and L(mi, t, I) be as in the proof of Theorem 4.1. But now
let Kt and Lt be defined by the following recurrence relations:

K0 = 0,(4.5)

L0 = 1,(4.6)

Kt+1 = (6h+ 1)Kt + hLt,(4.7)

Lt+1 = Kt+1 + Lt = (6h+ 1)Kt + (h+ 1)Lt.(4.8)

As in the previous proof, it suffices to show that |K(pi, t, I)| ≤ Kt and |L(mi, t, I)| ≤
Lt, for Kt and Lt are both at most [7(h+ 1)]t.

We establish these bounds on |K(pi, t, I)| and |L(pi, t, I)| by induction on t. First,
note that K(pi, t, I) is empty in round t = 0, and L(mi, 0, I) = {i} if i ∈ {1, 2, . . . , n}
and otherwise L(mi, 0, I) is empty. At the beginning of round t a processor pi receives
the contents of at most h memory locations, and it also receives information by noting
that some processors did not send pi a message. Still, after it incorporates this
information into its new state qit+1, it optionally writes to its local memory, as in the
previous proof. Thus, if we can establish (4.7), then (4.8) immediately follows.

Say that input index k possibly causes a processor pj to send a message to pro-
cessor pi in round t with I if pj sends a message to processor pi in round t on input
I(k). Using this notion we bound K(pi, t+ 1, I) as a subset of

K(pi, t, I) ∪
⋃
j∈I

L(mj , t, I) ∪ Y (pi, t, I),

for some index set I with |I| ≤ h, where Y (pi, t, I) denotes the set of all indices k
that possibly cause some processor pj to send a message to pi with I. Thus, we must
bound r = |Y (pi, t, I)|. So, let Y = Y (pi, t, I) = {k1, k2, . . . , kr} be the set of indices
that possibly cause a processor to send a message to pi with I. Further, for each kj ,
let p(kj) denote a specific processor that would send pi a message in round t on I(kj),
and let P denote the set of all such processors, i.e., define P = {p(kj): kj ∈ Y }. Note
that if r ≤ hKt, then we have established (4.7), so for the remainder of this proof let
us assume that r > hKt. We will show that if this is the case, then r ≤ 6hKt.

As done by Cook, Dwork, and Reischuk [12], we employ a combinatorial graph
argument to derive a bound on r = |Y |. Consider a bipartite graph G whose two node
sets are Y and P . Let there be an edge between kj in Y and p(kl) in P if kj affects
p(kl) in round t with I(kl). Let e denote the number of edges in G. The degree of
any node p(kj) is at most |K(p(kj), t, I(kj))|, which, by our induction hypothesis, is
bounded by Kt. Thus, e ≤ |P |Kt ≤ rKt.

We can also derive a lower bound on e. To this end let us define a second graph
H, which is defined on the elements in Y . Say that two indices kj and kl in Y are
adjacent in H if there is, in G, an edge from kj to p(kl) or an edge from kl to p(kj).
That is, for each edge (kj , kl) in H there is at least one corresponding edge in G,
indicating that either kj affects p(kl) with I(kl) or kl affects p(kj) with I(kj). Say
that a subset Y ′ ⊆ Y is processor-disjoint if, for any kj and kj′ in Y ′, p(kj) 6= p(kj′).

Claim A. If Y ′ ⊆ Y is a processor-disjoint independent set in H, then |Y ′| ≤ h.

Proof of Claim A. Let Y ′ = {kj1 , kj2 , . . . , kjm}. Suppose, for the sake of a contra-
diction, that m > h. Since Y ′ is an independent set in H, then no index kj in Y ′ affects
the processor associated with any other index kl in Y ′ (i.e., p(kl)). Thus, since Y ′ is
processor-disjoint, on input I(kj1)(kj2) · · · (kjm) there would be more than h different
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messages sent to processor pi. However, this would contradict the communication
bandwidth assumptions of the BSP model.

Claim B. There are at least r/2 nodes in H with degree at least r/2h−Kt.
Proof of Claim B. Suppose, for the sake of contradiction, that there are at least

r/2 nodes in H with degree less than r/2h − Kt. To reach a contradiction we will
construct a processor-disjoint independent set in H of size more than h. We begin
by placing the nodes of H into equivalence classes such that the nodes in the same
class are all associated with the same processor, i.e., kj and kl are in the same class
if and only if p(kj) = p(kl). Note that there are at most Kt nodes in any class. Now
consider a simple greedy algorithm for constructing a processor-disjoint independent
Y ′ set in H:

1. Go to any node v in H of degree less than r/2h−Kt and place v into Y ′.
2. Having placed v into Y ′, delete from H all the nodes in the same class as v

as well as all nodes in H that are adjacent to v.
3. If there are nodes left in H, repeat the above two steps.

This, of course, removes less than r/2h − Kt + Kt = r/2h nodes in each iteration.
Thus, we can repeat this process for strictly more than

r/2

r/2h
= h

iterations. By construction, there are no edges in H between any of the nodes in
Y ′, and each node in Y ′ is in a different equivalence class. However, this implies a
processor-disjoint independent set Y ′ ⊆ Y in H such that |Y ′| > h, which contradicts
Claim A.

Claim B implies that there at least (r/2)(r/2h−Kt) edges in H; hence there are
at least this many edges in G. Therefore, (r/2)(r/2h−Kt) ≤ rKt. Noting that this
implies r ≤ 6hKt completes the proof of the theorem.

5. Conclusion. We have studied the power and limitations of parallel comput-
ing with particular attention paid to the importance of communication in parallel
algorithm design, which is an issue gaining prominence in both theory and practice.
We gave BSP algorithms for sorting that are optimal in terms of both the internal
computation times and the number of communication rounds. Admittedly, the algo-
rithm we derived for the EREW BSP model is considerably more complicated than
that we derived for the weak-CREW BSP model. Thus, it is not actually clear which
one would be more efficient in practice. A weak-CREW BSP computer would be eas-
ier to program but would require the switching hardware in the network to be more
sophisticated than what would be required by our EREW BSP algorithm.
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Abstract. Let X be an arrangement of n algebraic sets Xi in d-space, where the Xi are either
parametrized or zero-sets of dimension 0 ≤ mi ≤ d − 1. We study a number of decompositions of
d-space into connected regions in which the distance-squared function to X has certain invariances.
Each region is contained in a single connected component of the complement of the bifurcation set
B of the family of distance-squared functions or of certain subsets of B. The decompositions can
be used in the following proximity problems: given some point, find the k nearest sets Xi in the
arrangement, find the nearest point in X, or (assuming that X is compact) find the farthest point
in X and hence the smallest enclosing (d − 1)-sphere. We give bounds on the complexity of the
decompositions in terms of n, d, and the degrees and dimensions of the algebraic sets Xi.
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1. Introduction. Let X be the union of n algebraic sets Xi of dimension 0 ≤
mi ≤ d−1 in d-space which are defined either by parametrizations or, more generally,
as zero-sets. The dimension d of the ambient space is assumed to be arbitrary but
fixed. Given a point p ∈ Rd with rational or, more generally, with algebraic number
coordinates and a set of defining polynomials of X with rational coefficients, we would
like to do the following:

1. find the k nearest sets Xi;
2. find the nearest point in X;
3. and, provided that X is compact, find the farthest point in X (and hence the

smallest sphere with center p enclosing X).
For all of these proximity problems it is convenient to decompose d-space into certain
connected regions, depending on X, in which the distance-squared function to X has
certain invariances. A number of such decompositions are possible. Some decompo-
sitions have many invariants but also many regions, and it is of interest to bound the
number of regions in terms of n, d, and the degrees and dimensions of the algebraic
sets Xi. For example, the coarsest decomposition considered below consists of the
first-order Voronoi regions, and the finest consists of the regions in the complement
of the bifurcation set of the family of all distance-squared functions on X. However,
all the decompositions studied here have the property that the proximity problems
above can be solved in O(logn) · P time (discarding the preprocessing time for con-
structing the decomposition), where P is a polynomial in the degrees and coefficient
sizes of both the defining polynomials of X and the minimal polynomials of the al-
gebraic number coordinates of p (from section 4 on we shall often concentrate on the
combinatorial complexity, where the degrees and coefficient sizes of these polynomials
are assumed to be bounded by some constant independent of n). Decompositions of
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d-space into regions made of points having certain proximity properties with respect
to some collection of submanifolds of Rd have been studied both in computational
geometry and in singularity theory, but there hasn’t been much interaction between
these fields.

Most of the works in computational geometry consider either the classical, first-
order, Voronoi diagram of sets of isolated points or extensions to arrangements of
linear subspaces of Rd. The relation between higher-order Voronoi diagrams in Rd and
arrangements in Rd+1 is investigated by Edelsbrunner and Seidel [12]. A few works
also consider Voronoi diagrams of arrangements of curved objects. First-order Voronoi
diagrams of disjoint convex semialgebraic sites in d-space are studied in the book of
Sharir and Agarwal [22]. Alt and Schwarzkopf [1] study first-order Voronoi diagrams of
parametrized (semialgebraic) curve-segments and points in the plane. These authors
are also interested in the local geometry of Voronoi edges: for example, they point
out that end-points of self-Voronoi-edges (in the singularity theory literature known
as symmetry sets) correspond to centers of osculating circles at curvature extrema of
a planar curve and also to a cusp singularity of the evolute (or focal set). The local
geometry of such symmetry sets and of evolutes has been studied in great detail in a
number of singularity theory works.

One of the main topics of singularity theory is the classification of stable and un-
stable singularities of functions and maps, and of the bifurcation sets in the parameter
space of families of functions and maps. The bifurcation set of a family of functions
F : Rd × Rm → Rd × R, (p, x) 7→ (p, f(p, x)) consists of all points p in parameter
space Rd for which the function x 7→ f(p, x) has an unstable (degenerate) singularity.
The family of distance-squared functions from any point p ∈ Rd to a parametrized
m-dimensional surface X in d-space is a particular example of such a family, and the
bifurcation set of this family is precisely the union of the evolute and the symmetry
set of X. Porteous [16, 17] has used the classification of families of functions by Thom
(from the early 1960s) to study the relation between the geometry of evolutes and the
curvature of surfaces. Bruce, Giblin, and Gibson [6] have classified the singularities
of symmetry sets of planar curves and of surfaces and space-curves in R3; see also
the recent paper by Bruce [5]. Symbolic algorithms for computing bifurcation sets of
families of projection maps have been studied by Rieger [19, 20] and these algorithms
can also be used, with some minor modifications, to compute other bifurcation sets,
such as evolutes and symmetry sets.

1.1. Assumptions and some notation. Let X := ∪Xi ⊂ Rd be a collection of
n closed algebraic sets Xi and set mi := dimXi (0 ≤ mi ≤ d−1) and m := supmi. For
parametrized algebraic mi-surfaces x 7→ Xi(x) we denote the maximal degree of the
d component functions of Xi(x) by δi, and set δ := sup δi (1 ≤ i ≤ n). For the more
general case of zero-sets Xi = h−1

i (0), where hi := (h1
i , . . . , h

d−mi
i ) : Rd → Rd−mi ,

we assume that Xi, or rather its complexification, is a complete intersection (i.e.,
its codimension is equal to the number of defining equations) and we set ∆i :=
Πj deg hji = degXi and ∆ := sup ∆i (geometrically, degXi is the number of real
and complex intersection points, including those “at infinity,” of Xi and a “generic”
linear subspace of Rd of dimension d−mi).

The following notation will be used in this paper: Z(I) denotes the zero-set of an
ideal I, I(Z) the ideal of polynomials vanishing on Z, I : J the ideal quotient, and
clZ denotes the closure of the set Z. Also, 〈g1, . . . , gs〉 denotes the ideal generated
by the gi, 1 ≤ i ≤ s. The components of a vector x = (x1, . . . , xd) are denoted by
superscripts, so that subscripts can be used to enumerate elements of sets; and (xd)3
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denotes the third power of the dth component.

Next, we need some notation from singularity theory. For most parts of this paper
(sections 2 to 5), it is enough to remember the following notations: a nondegenerate
critical point of a function, where the matrix of second derivatives has maximal rank,
is of type A1 (or of Morse type), a pair of A1 points having the same critical values is
denoted by A2

1, and the least degenerate of the degenerate critical points is of type A2.
The bifurcation set B ⊂ Rd of a family of distance-squared functions is a generally
singular hypersurface whose regular components correspond to (codimension 1) sin-
gularities of type A2 or A2

1 of the distance-squared function. However, in section 6 we
need to count the strata of the singular locus of B corresponding to more degenerate
types of singularities (of codimension ≥ 2). The following notation for these singular-
ities is more or less standard (for more details on the classification of functions up to
K- and R-equivalence see chapter 8 of Dimca’s book [10]). A function f : Rd → R,
x := (x1, . . . , xd) 7→ f(x) has an Ak-singularity at x = 0 if there exists a smooth
coordinate change h : Rd → Rd, defined in the neighborhood of x = 0, such that
f ◦ h(x) = c+ (x1)k+1 +

∑d
i=2 εi(x

i)2, where c is some constant and εi = ±1; see [2].
In other words, Ak denotes an equivalence class of function-germs (we consider pm;u
f and h near x = 0), and the formula above describes a particular representative of
this class. The equivalence classes Ak are orbits of the Mather groups K and R. We
shall abuse the notation A≥k slightly: it will denote all classes of singularities in the
closure of the Ak orbit, not just the orbits represented by c + (x1)≥k+1 +

∑
εi(x

i)2.
Finally, the function f has an Ar≥1-singularity at a set of points {x1, . . . , xr}, if it has

an A≥1-singularity at each xi ∈ Rd and the r critical values f(xi) coincide.

Throughout this paper, dkf(p, x)[v1, . . . , vl] will always denote the kth differential
of a function f with respect to the variables x ∈ Rm and not with respect to the
parameter p ∈ Rd, and this k-linear form dkf should be multiplied with the vectors
vi ∈ Rm, 1 ≤ i ≤ l. Occasionally, we shall omit the parameters and variables (p, x).

Given a hypersurface M ⊂ Rd, we denote the arrangement cut-out by M by
A(M). We denote by |A(M)| the size of this arrangement, that is, the number of
i-cells, 0 ≤ i ≤ d, in A(M). Note that the connected regions of Rd \M are the d-cells
in A(M).

The Voronoi diagram of order k of a set S := {X1, . . . , Xn} of algebraic sets
Xi ⊂ Rd is defined as follows. Set µp(Xi) := infq∈Xi ‖q − p‖2 and let S̃ ⊂ S be a
subset with k elements, 1 ≤ k ≤ n− 1. Then

Vk(S̃) := {p ∈ Rd : µp(Xi) < µp(Xj), for all (Xi, Xj) ∈ S̃ × (S \ S̃)}

is the kth-order Voronoi cell of S̃ (which, in general, is not connected). The kth-order
Voronoi surface Vk of S is the union of the boundaries of such Voronoi cells, i.e.,
Vk := ∪S̃⊂S∂Vk(S̃), and the kth-order Voronoi diagram is the arrangement A(Vk).

1.2. Contents of following sections. In section 2 we study the bifurcation set
B of the family of distance-squared functions on an arrangement of mi-surfaces Xi

in Rd which are parametrized by polynomial maps. In particular, we give bounds for
the number of regions in the complement of B (and, in fact, for |A(B)|) and describe
certain invariants which characterize these regions. We also obtain a result on the local
topology of B that yields a priori information on how the semialgebraic components
of B are glued together. This result is valid both for parametrized surfaces Xi and for
zero-sets and does not assume that the family of distance-squared functions is versal
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(this is a common assumption in singularity theory works on this subject that does
not necessarily hold for “almost all” algebraic surfaces Xi of some bounded degree).

In section 3 we consider the more general case of arrangements of algebraic zero-
sets Xi (note that most zero-sets do not have a global parametrization given as the
image of some polynomial map). For zero-sets we exploit the geometric characteriza-
tion of the singularities of the distance-squared function in terms of the contact order
(or intersection multiplicity) of Xi with certain (d−mi)-spheres, where mi = dimXi.
This avoids the problem of finding local parametrizations of the Xi given by analytic
maps (working with polynomials is much more convenient). The more classical case
of contact between hypersurfaces Xi and osculating circles is treated in subsection
3.1; the more complicated case of contact between algebraic sets Xi of codimension
d−mi ≥ 2 and (d−mi)-spheres is studied in subsection 3.2.

In section 4 we describe an algorithm for determining the regions in the comple-
ment of the bifurcation set B. This algorithm is similar, in its overall structure, to
the algorithms in [19, 20] and uses standard techniques from computational algebra.
We also describe solutions to the proximity problems 1 to 3 stated at the beginning
of this introduction, which are based on the decomposition of d-space into regions in
the complement of B or of certain subsets of B.

In section 5 we present a few examples of these decompositions for curves and
points in the plane, which have been computed with the methods described in section
4.

Finally, in section 6, we compare the combinatorial complexities of the arrange-
ments A(B) and of the kth-order Voronoi diagrams A(Vk). Note that the boundaries
Vk of the Voronoi regions of order k are subsets of B, and the bounds in sections 2 and
3 are therefore upper bounds for the complexity of the kth-order Voronoi diagram of
arrangements of algebraic sets in terms of n, d, and the degrees and dimensions of
these sets. A comparison of the combinatorial complexities of the bifurcation set B
and of the Voronoi boundaries Vk for the more special arrangements studied in [1]
and [22] shows that there is a considerable gap, which can be partially understood
by studying the combinatorial complexity of certain intermediate sets Vk ⊂ Rk ⊂ B.
Even so, for general arrangements of algebraic sets, an asymptotically tight bound
(at least in terms of combinatorial complexity) for the number of regions of Rd \ Vk
remains a widely open problem (for n intersecting hypersurfaces in Rd we show, for
example, that |A(V1)| ∼ O(nd+1) and |A(V1)| ∼ Ω(nd)).

2. The complement of the bifurcation set B of a family of distance-
squared functions. In this section the algebraic mi-surfaces Xi of the arrangement
are parametrized by polynomial maps x 7→ Xi(x), where x = (x1, . . . , xmi) ∈ Rmi .
The necessary modifications in the (more general) case of zero-sets will be described
in section 3. The family of distance-squared functions on Xi is defined by

Fi : Rd × Rmi → Rd × R, (p, x) 7→ (p, fi(p, x) := ‖Xi(x)− p‖2).

Recall that an element of this d-parameter family of functions in mi variables is a
Morse function if its critical points are nondegenerate (i.e., the corresponding matrix of
second derivatives has maximal rank) and have distinct critical values. The bifurcation
set Bi ⊂ Rd of the family Fi is the set of “bad” parameters p for which x 7→ fi(p, x)
fails to be a Morse function. The set Bi is the union of the local bifurcation set

Ei := {p ∈ Rd : ∃x : dfi(p, x) = 0, rank d2fi(p, x) < mi},



PROXIMITY IN ARRANGEMENTS OF ALGEBRAIC SETS 437

consisting of A≥2-singularities, and the level bifurcation set

Si := cl{p ∈ Rd : ∃x 6= x̄ : dfi(p, x) = dfi(p, x̄) = 0, fi(p, x) = fi(p, x̄)},

consisting of A≥2
≥1-singularities. (The notation Ei and Si indicates that, from a classi-

cal differential geometry point of view, the local and level bifurcation sets are evolutes
and symmetry sets, respectively; see section 3. Also, recall that in all functions de-
pending on the parameters p ∈ Rd, the differentials are with respect to the remaining
variables.)

The bifurcation set B of the arrangement associated to X = ∪Xi is the union of
the bifurcation sets Bi of the Xi and the following intersurface level bifurcation sets:

Si,j := {p ∈ Rd : ∃x, x̄ : dfi(p, x) = dfj(p, x̄) = 0, fi(p, x) = fj(p, x̄)},

that is,

B :=
⋃

1≤i≤n
Ei ∪

⋃
1≤i≤n

Si ∪
⋃

1≤i<j≤n
Si,j .

This definition of B assumes that 1 ≤ dimXi ≤ d−1, but it can be extended easily
to include isolated points Xi = {qi}. For a point qi the sets Ei and Si are defined to be
empty, for a point pair qi, qj the set Si,j is defined to be the hyperplane perpendicular
to qj − qi through (qi + qj)/2, and for surface-point pairs Xi (dimXi ≥ 1), Xj = {qj}
we define

Si,j := {p ∈ Rd : ∃x : dfi(p, x) = 0, fi(p, x) = ‖qj − p‖2}.

The definitions of the local bifurcation sets Ei and of the intersurface level bifur-
cation sets Si,j are fairly straightforward from a computational point of view. The
definition of the intrasurface level bifurcation sets Si is less straightforward: the in-
equalities x 6= x̄, together with the defining equations appearing in the definition,
yield semialgebraic sets S ′i ⊂ Rd × R2mi which are not closed. It is, however, possi-
ble to close up the sets S ′i by adding a set of boundary points ∂S ′i on the diagonal
{x = x̄} ⊂ R2mi (see below). Furthermore, the closed sets S̃i := S ′i ∪ ∂S ′i can be de-
fined by polynomial equations (inequations are not required), which is a big advantage
from a computational algebra point of view.

Let S̄i ⊂ Rd×R2mi denote the set defined by the defining equations of S ′i (omitting
the inequalities x 6= x̄); this is a closed set which coincides with S ′i away from the
diagonal, but has too high dimension on the diagonal. Then the vanishing ideal of
the closure of S ′i is given by the ideal quotient

I(S̄i) : (I(S̄i) + 〈x1 − x̄1, . . . , xmi − x̄mi〉),

whose generators can be determined using Gröbner basis methods (see, for example,
[3, Chapter 6.2]). For zero-sets Xi of codimension ≥ 2 we actually close up the sets
S ′i in this way (see section 3.2). However, for arrangements of parametrized sets (and
of zero-sets of codimension 1; see section 3.1) the defining equations of the closure of
S ′i can be constructed in a more direct way that avoids the expensive computation
of Gröbner bases and also yields some useful information about the topology of the
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Fig. 1. The bifurcation set Bi of a single parabola Xi: the local bifurcation set Ei is the cusp-
shaped curve and the level bifurcation set Si is the solid half-line whose boundary ∂Si in the union
Ŝi of the solid and dashed vertical line coincides with the cusp point. The distance-squared function
to Xi from points of Bi has the following singularities: A3 at the cusp, A2 for all other points of
Ei, and A2

1 for all other points of Si.

bifurcation set Bi. We first give an outline of this construction and its topological
consequences; more detailed statements follow in Proposition 2.1 and its proof.

To find the defining equations of the closure of S ′i, we first “blow up” the diagonal
{x = x̄} ⊂ R2mi by a change of coordinates β that replaces the pair of points (x, x̄) by
(x, x+λ ·ω), where λ ∈ R and ω ∈ Pmi−1 (i.e., we represent the point x̄ by moving it
some distance λ along a ray through x and direction ω). The map β is an isomorphism
for λ 6= 0 “blowing down” the hyperplane {λ = 0} to the diagonal {x = x̄}, which is a
linear subspace of R2mi of codimension mi. Next, we choose a certain set of generators
of I(S̄i) and divide them by suitable powers of λ. The modified generators define a
closed algebraic set S̃i that coincides with the sets S̄i and S ′i in the complement of
the diagonal {λ = 0}. The set of boundary points of S ′i on the diagonal is given by
∂S ′i = S̃i ∩ {λ = 0}. Using the defining equations of the sets S̃i, S ′i, and S̄i and
excluding a Zariski closed subset of Xi in the space of all algebraic sets (where mi, δi,
and d are fixed) one easily checks the following properties. The set S ′i has dimension
d− 1, and “almost all” of its points (p, x, x̄) correspond to pairs of A1-singularities of
the distance-squared function having the same critical values fi(p, x) = fi(p, x̄). The
set ∂S ′i has dimension d−2 and almost all of its points correspond to A3-singularities.
(By contrast, most points of S̄i ∩ {λ = 0} merely correspond to A1-singularities and
form a d+mi-dimensional set.) It therefore follows that the projection of ∂S ′i into the
parameter space Rd is contained in the local bifurcation set Ei (which corresponds to
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A≥2-singularities). The projection of ∂S ′i, denoted by ∂Si, also forms the boundary

of the semialgebraic level bifurcation set Si ⊂ Rd in the smallest real algebraic set Ŝi
containing Si: moving along a generic path from Si to Ŝi \Si we first get a pair of real
A1-singularities having the same critical value, which coalesce in an A3-singularity
as we cross the boundary ∂Si and then become complex. Figure 1 illustrates this
situation in the simple case of a single parabola Xi(x) = (x, x2) in the plane. We can
now give a more precise description of this construction.

Proposition 2.1.
(i) For all (p, x, x) ∈ ∂S ′i, the distance-squared function x 7→ fi(p, x) has an A≥3-

singularity at x. This implies that π(∂S ′i) ⊂ Ei, where π : Rd × R2mi → Rd denotes
the projection onto the first factor.

(ii) The degree of ∂S ′i is of order δ2mi+1
i and that of ∪∂S ′i of order n · δ2m+1.

Proof. (i) The proof of the first part of the proposition follows the construction
outlined above. Set A := (a1, . . . , ami−1, 1), then the map given by

β : R2mi → R2mi , (x, λ,A) 7→ (x, x+ λ ·A)

“blows down” the hyperplane {λ = 0} to the diagonal {x = x̄} and has maximal rank
for λ 6= 0. Note that we have replaced the space of directions ω ∈ Pmi−1 by the affine
chart of vectors A in Rmi whose last component is equal to 1. To cover all of Pmi−1,
mi such charts are required, but it is easy to check that the arguments below do not
depend on the choice of chart. We then claim that the set S̃i can be defined by the
following three equations (omitting the inequality λ 6= 0): by dfi(p, x) = 0 (as before),
and by

Ui(p, x, λ,A) := λ−1
(
dfi(p, x+ λ ·A)− dfi(p, x)

)
= 0,

and by

Vi(p, x, λ,A) := λ−3
(
fi(p, x+ λ ·A)− fi(p, x)− λdfi(p, x)[A]− λ2

2
〈Ui, A〉

)
= 0.

It is easy to see that, away from the diagonal {λ = 0},

dfi(p, x) = Ui(p, x, λ,A) = Vi(p, x, λ,A) = 0

and the original system

dfi(p, x) = dfi(p, x+ λ ·A) = fi(p, x)− fi(p, x+ λ ·A) = 0

define the same zero-sets S ′i ⊂ Rd×R2mi \{λ = 0}. Furthermore, the right-hand sides
of Ui and Vi are divisible by λ and λ3 (by Taylor’s theorem); hence dfi = Ui = Vi = 0
defines a closed algebraic variety S̃i := S ′i ∪ ∂S ′i ⊂ Rd × R2mi .

In fact, S̃i is the smallest closed set containing S ′i, and the boundary ∂S ′i :=
S̃i ∩ {λ = 0} of S ′i in S̃i corresponds to A≥3-singularities of the distance-squared
function x 7→ fi(p, x). The boundary ∂S ′i is defined by the following equations:

dfi(p, x) = 0,

Ui(p, x, 0, A) = d2fi(p, x)[A] = 0,

Vi(p, x, 0, A) = − 1

12
d3fi(p, x)[A3] = 0.
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This system “recognizes” an A≥3-singularity of x 7→ fi(p, x) at x—the condition for
an A≥3-singularity is precisely that dfi = 0 and d2fi[v] = 0, d3fi[v

3] = 0 for some
nonzero vector v (see, for example, Porteous [18, p. 397]).

(ii) The degree of the variety ∂S ′i defined by the above system of equations is at
most of order δ2mi+1

i (by Bezout’s theorem), so that the degree of the union of n such
varieties is of order

∑n
i=1 δ

2mi+1
i ≤ n · δ2m+1.

Remarks. 1. Patching together the S̃i in the mi affine charts in the proof of
part i yields a variety V ⊂ Rd × Rmi+1 × Pmi−1 whose projection π onto Rd is
the intrasurface level bifurcation set Si. To compute the defining equations of Si it is
sufficient to use a single “good” affine chart for Pmi−1: for example, (a1, . . . , ami−1, 1)
is good if dimV > dim(V ∩{ami = 0}). In this case, the missing component of V “at
infinity” will be closed up by the projection π.

2. Part i of the proposition also holds locally for germs of C∞-submanifolds Xi

of dimension mi (note that the proof merely depends on the Taylor expansion of fi at
(p, x) = (p0, x0)). In particular, it also holds for algebraic zero-sets of dimension mi

(which will be studied in section 3), because these sets have a parametrization which
is even analytic.

3. For m = 1 and d = 2, the set ∪∂S ′i consists of isolated points (pl, xl) ∈ R2×R
(this can be checked by a simple dimensional argument), and there are at most O(n·δ3)
such endpoints by the proposition above. The projections pl of these points into the
plane are possible endpoints of the level-bifurcation set S = ∪Si. However, their
projections xl onto R correspond to curvature extrema of Xi and each curvature
extremum corresponds to one endpoint. But X = ∪Xi has at most O(n · δ) curvature
extrema.

Proposition 2.2. For all points p in a single connected region of Rd \ ∪Ei the
collection of distance-squared functions {x 7→ fi(p, x) : 1 ≤ i ≤ n} has a constant
number, c, of critical points, where

n ≤ c ≤
n∑
i=1

(2δi − 1)mi ∼ O(n · δm).

Proof. From the definition of the local bifurcation sets Ei we see that the distance-
squared functions x 7→ fi(p, x) have isolated critical points (of multiplicity 1) for all
p ∈ Rd \ ∪Ei. Each fi is nonnegative and has degree 2δi. Hence, each fi has at least
one local minimum and at most (2δi − 1)mi critical points; this yields the desired
bounds for c.

Remark. For arrangements of hypersurfaces Xi (i.e., mi = d − 1) the number of
critical points c has the following geometrical interpretation: it is equal to the number
of normal lines of X = ∪Xi passing through the point p.

Proposition 2.3. The number of connected regions of Rd \ B (and, in fact, the
size of A(B)) are at most of order n2d · δ(2m+1)d. Furthermore, let p ∈ Rd \B, and let

ξ1,ν1
(p), ξ2,ν2(p), . . . , ξc,νc(p)

denote the critical points ξl,νl(p) of the collection of distance-squared functions x 7→
fνl(p, x), where νl ∈ {1, . . . , n}, ordered by increasing distance. That is, fνl(p, ξl,νl(p))
< fνl+1

(p, ξl+1,νl+1
(p)). For all points p in a single connected region of Rd \B we have

the following: (i) the numbers ν1, . . . , νc are invariant, and (ii) the maps p 7→ ξl,νl(p)
are continuous for 1 ≤ l ≤ n.
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Proof. The bifurcation set B is a semialgebraic subset of a closed real algebraic
set B̂ ⊂ Rd, and the number of connected regions cut out by B is less than or equal
to the number of regions cut out by B̂. The number of connected regions of Rd \ B̂
is equal to the (d− 1)st Betti number of B̂ plus 1 (see below), and the desired upper
bound follows at once from a result of Milnor [15] (which says that the sum of the
Betti numbers of B̂ is of order (deg B̂)d) and the bound for the degree of B̂ derived
below. (On the other hand, the singular stratification of B̂ has O((deg B̂)d) strata
and |A(B)| ≤ |A(B̂)|, which yields the bound for |A(B)|.)

The (linear) formula for the number of connected components of Rd \ B̂ in terms
of the (d − 1)st Betti number of B̂ follows from standard duality results in algebraic
topology: roughly speaking, either from Lefschetz duality (which yields an isomor-
phism between the zeroth homology group H0 of Rd\B̂ and the dth cohomology group
Hd of the pair (Rd, B̂)) and the isomorphism Hd(Rd, B̂) ∼= Hd−1(B̂) (coming from the
standard exact homology sequence of the pair (Rd, B̂)); or, more directly, one can use
Alexander duality to get an isomorphism between H0 of Rd \ B̂ and Hd−1 of B̂. The
more precise argument (included in parentheses below) is a bit more complicated,
due to the possible noncompactness of B̂ and the appearance of reduced homology
groups and might be skipped. (Let Sd = Rd ∪{∞} and B̂c = B̂ ∪ {∞} denote 1-point
compactifications; then the Alexander duality yields the following isomorphism of re-
duced (co)homology groups H̃0(Sd \ B̂c) ∼= H̃d−1(B̂c). (See [11, Section 8.15, Chapter
VIII]). The set B̂ is a closed real algebraic set; hence H̃0(Sd \ B̂c) ∼= H̃0(Rd \ B̂) and
bi(B̂c) = bi(B̂), for all i > 0. Finally, note that the rank of the zeroth homology group
is one plus that of the reduced one.)

We claim that the degree of B̂ is of order n2δ2m+1. The set B̂ is the union of (n2 )

(real algebraic) sets Ŝi,j , n sets Ŝi, and n sets Êi. The orders of the degrees of the

Ŝi and the Êi are lower than those of the Ŝi,j ; hence it suffices to estimate the degree

of Ŝi,j . So let S̃i,j ⊂ Rd × Rmi+mj be the real algebraic set defined by the defining
equations of Si,j (omitting the existential quantifier). The restriction of the projection

π : Rd × Rmi+mj → Rd to S̃i,j yields the semialgebraic set Si,j . Complexifying the

defining equations of S̃i,j and taking the real part of the projection π onto Cd of

the resulting zero-set yields a closed real algebraic set Ŝi,j ⊂ Rd which contains the

semialgebraic set Si,j . Suppose that codimŜi,j = 1 (otherwise the complement of Ŝi,j
is connected, and we are finished), and let L ⊂ Rd be any line. Now there are two
cases: (1) the set A := π−1(L) ∩ S̃i,j consists of isolated points (the “generic case”)
and (2) dimA = e > 0. Let π̄ : Rd × Rmi+mj → Rmi+mj denote the projection onto
the second factor, let L̄ ⊂ Rmi+mj be any linear subspace of codimension e such that
π̄−1(L̄) is not contained in A and set Ā := A∩ π̄−1(L̄). The sets A in case 1 and Ā in
case 2 are discrete point sets, and the restriction of π to these point sets onto the set
of intersection points Ŝi,j ∩ L is surjective. The degree of Ŝi,j is therefore bounded
by the number of points of A (or Ā in case 2). Inspecting the defining equations of
these sets, we get from Bezout’s theorem that

deg Ŝi,j ≤ (2δi − 1)mi · (2δj − 1)mj · 2max(δi, δj)

(counting both real and complex roots with their multiplicities).

For the proof of the second part of the proposition, consider the following real
algebraic set:

ΣFi := {(p, x) : dfi(p, x) = 0} ⊂ Rd × Rmi .
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The set ΣFi is the critical set of the family Fi of all distance-squared functions fi on
Xi. The fibers π−1(p) ∩ ΣFi of the projection π : Rd × Rmi → Rd correspond to the
critical points of fi from p. The restriction of π to ΣFi is a covering map whose branch-
locus is the (preimage of the) evolute Ei and which is finite-to-one off the branch-locus.
The number of points in each fiber π−1(p) ∩ ΣFi is therefore finite and constant for
all points p in a connected region of Rd \ Ei. The same is true for the total number c
of critical points of a collection {fi}1≤i≤n of distance-squared functions on X := ∪Xi

for all p in a single connected region of Rd \ ∪Ei. Furthermore, the indices ν1, . . . , νc
are invariant within a connected region of Rd \ (∪Ei) ∪ (∪Si,j), because c is constant
and permutations of indices can only occur along the intersurface level bifurcation
sets Si,j . Finally, let U be any connected region of Rd \∪Ei and consider the union of
the n bundles ∪ni=1π

−1(U) ∩ ΣFi . This is a semialgebraic set consisting of c disjoint
components of dimension d, and these components are the graphs of continuous maps
hj : U → Rmi , 1 ≤ j ≤ c (these facts are established by arguments that are quite
similar to the proof of the first main structure theorem in [4, Chapter 2.2]; in fact,
most stratification schemes of semialgebraic sets seem to be based on some version of
this theorem). The composition of the hj with the projection π̄ : Rd×Rmi → Rmi is a
continuous map, which implies that the c critical points of the collection of distance-
squared functions x 7→ fi(p, x), 1 ≤ i ≤ n, vary continuously with p ∈ U . The
continuity of the maps p 7→ ξl,νl(p) for all p within a single connected region of Rd \B
then follows from the results above and the fact that the permutation of the critical
points of a single function x 7→ fi(p, x) can only occur on Si.

3. Contact of X with spheres and the definition of B for zero-sets X.
The fibers of the distance-squared function from a point p ∈ Rd are (d − 1)-spheres
of varying radius r, given by {x ∈ Rd : ‖x − p‖2 − r2 = 0}. The conditions for
an Ak-singularity of the distance-squared function, which appear in the definition
of the bifurcation set B, can be reformulated in more geometric terms involving the
contact between a family of such spheres and a collection X = ∪Xi of algebraic
sets. Using these more geometric conditions, we can easily define, and compute, the
bifurcation set B in the case of algebraic sets Xi given as zero-sets of polynomials
hji ∈ Q[x] = Q[x1, . . . , xd], 1 ≤ j ≤ d−mi.

We first consider the special case of algebraic hypersurfaces (codimension 1) where
the local and level bifurcation sets of the distance-squared function are the well-
known evolutes and symmetry sets of classical differential geometry (section 3.1). In
section 3.2 we consider the more general case of arrangements of algebraic sets Xi of
codimension 1 ≤ d −mi ≤ d − 1 which are complete intersections (i.e., are defined
by d −mi polynomials). Note that the case of points Xi (of codimension d) can be
handled as in section 2.

3.1. Arrangements of hypersurfaces, evolutes, and symmetry sets. First,
recall that a hypersurface Xi in d-space has d− 1 (not necessarily distinct) principal
curvatures κj and directions dj which are the eigenvalues and eigendirections of the
Weingarten map. (The Weingarten map Wp : TpXi → TpXi, v 7→ −∇vN measures
the rate of change of the normal direction N along a direction v in the tangent space
of Xi at p.) A (d− 1)-sphere is a curvature sphere at x ∈ Xi if its center lies on the
normal line through x and its radius r is the inverse of one of the principal curvatures
of Xi at x. The unique great circle in this curvature sphere whose tangent line at x
is oriented along the principal direction associated to 1/r is an osculating circle. The
evolute (or focal surface) Ei of Xi is the locus of centers of such osculating circles
and of the curvature spheres containing them (for each surface patch of Xi there are
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generically d− 1 sheets of the evolute, one for each principal curvature).
The distance-squared function from p ∈ Rd to Xi has an Ak-singularity (k ≥ 1)

at x ∈ Rd if and only if there exists a circle with center p having (k+ 1)-point contact
with Xi at x. The order of contact is ≥ 2 if p lies on the normal line to Xi at x and ≥ 3
if, in addition, the circle is an osculating circle. The local bifurcation set Ei consists
of points p for which the distance-squared function to Xi has an A≥2-singularity;
such points are centers of osculating circles (and of curvature spheres). The local
bifurcation set Ei is therefore the evolute of Xi. The relation between singularities of
the distance-squared function, normal singularities of submanifolds (i.e., singularities
of the exponential map of the normal bundle), and the possible types of contact
between these submanifolds and spheres was first studied by Porteous; see [16] and
[17].

The intra- and intersurface level bifurcation sets Si and Si,j are loci of centers of
bitangent spheres touching X = ∪Xi in two distinct points (the spheres can shrink
to a point as their centers tend to the self-intersection locus of X). If both points of
tangency lie on a single surface Xi then the center belongs to Si, otherwise it belongs
to Si,j . Clearly, the distance-squared function from a center of a bitangent sphere has
the two points of tangency as its critical points, and the corresponding critical values
are given by the square of the radius of the bitangent sphere. The locus of centers
of bitangent spheres of a hypersurface is known as symmetry set in the differential
geometry literature, and the singularities of such symmetry sets of plane curves and
of surfaces in 3-space have been classified by Bruce, Giblin, and Gibson [6]. (In the
pattern recognition literature, the symmetry set of a plane curve is also known under
the names skeleton, medial axis, and symmetric axis transform.)

Using these geometrical descriptions of the local bifurcation sets Ei and of the
level bifurcation sets Si and Si,j , we can now define the bifurcation set of the distance-
squared functions for arrangements of algebraic hypersurfaces given as zero-sets Xi =
h−1
i (0). Below, V ‖W denotes the condition that the pair of vectors V,W in Rd is

parallel (obviously, this condition involves the vanishing of d − 1 functions involving
the components of the vectors), and S(p, x, r) := ‖x−p‖2−r2 defines a (d−1)-sphere
with center p and radius r. The fact that (at least) one of the principal curvatures of
Xi at x is equal to 1/r is equivalent to the vanishing of the following two equations:

Qi(x, u) := det

(
(d2hi(x)− u · I) dhi(x)

(dhi(x))t 0

)
(where I denotes the d× d identity matrix) and

Ri(x, u, r) := u2r2 − ‖dhi(x)‖2.
(The condition Qi = Ri = 0 can be deduced easily from the standard formula for the
principal curvatures of a hypersurface defined as zero-set; see, e.g., [23, p. 204]. Note
that the derivation of this formula [23, pp. 202–204] is for hypersurfaces in 3-space,
but the d-dimensional case (d ≥ 2) is analogous.)

Using this notation, the local bifurcation sets (evolutes) are defined as follows:

Ei := {p ∈ Rd : ∃x, u, r :hi(x) = S(p, x, r) = Qi(x, u) = Ri(x, u, r) = 0,

dhi(x)‖dS(p, x, r)}.
The level bifurcation sets (symmetry sets) are given by

Si := cl{p ∈ Rd : ∃x1 6= x2 :hi(xk) = 0, dhi(xk)‖(xk − p), k = 1, 2;

‖x1 − p‖2 = ‖x2 − p‖2}
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and

Si,j := {p ∈ Rd : ∃xi, xj :hk(xk) = 0, dhk(xk)‖(xk − p), k = i, j;

‖xi − p‖2 = ‖xj − p‖2}.

The estimates in Propositions 2.1, 2.2, and 2.3 for arrangements of parametrized
surfaces, in terms of n and δ, have the following analogues, (i)–(iii) of 3.1, in the case
of (d− 1)-dimensional zero-sets.

Proposition 3.1. Let B denote the bifurcation set of the family of distance-
squared functions on a collection X = ∪ni=1Xi of algebraic hypersurfaces of maximal
degree ∆. Then the following holds: (i) the degree of ∪∂S ′i is at most of order n ·∆2d;
(ii) the number of critical points of the distance-squared function from any point p ∈
Rd \ ∪Ei to X is at most of order n ·∆d; and (iii) the number of connected regions of

Rd \ B and the size of A(B) are at most of order n2d ·∆2d2

.

Proof. For statement (i), we modify the defining equations of Si, as in the case of
parametrized sets Xi, by blowing up the diagonal {x1 = x2} ⊂ R2d by setting x2 :=
x1 +λ ·ω, where ω ∈ Pd−1, and by dividing certain generators of the resulting ideal by
suitable powers of λ. Let S̃i be the zero-set of these modified defining equations and
let S ′i denote the semialgebraic set that coincides with S̃i off the diagonal {λ = 0};
then again ∂S ′i = S̃i ∩ {λ = 0} (see the proof of Proposition 2.1). For statements
(ii) and (iii) we simply follow the proofs of Propositions 2.2 and 2.3 using the new
definitions of the components of B.

3.2. Arrangements of algebraic sets of higher codimension. Let Xi =
h−1
i (0) be the mi-dimensional zero-set of a polynomial map hi := (h1

i , . . . , h
d−mi
i ) :

Rd → Rd−mi . The distance-squared function from p to Xi has an Ak-singularity at x
if and only if there exists a (d−mi)-sphere with center p having (k+ 1)-point contact
with Xi at x. Algebraically, the order of contact (or intersection multiplicity) between
Xi and a (d −mi)-sphere, with defining equations s1(ξ) = · · · = smi(ξ) = 0, at x is
equal to the dimension of the vector space

R[ξ]/〈h1
i (ξ − x), . . . , hd−mii (ξ − x), s1(ξ − x), . . . , smi(ξ − x)〉.

It is easy to see that such a sphere has at least 2-point contact with Xi at x if its
center p lies in the normal space NxXi = x + span{dh1

i (x), . . . , dhd−mii (x)} of Xi at
x (this assumes that x is a regular point of Xi, but the algebraic definition of the
intersection multiplicity above is also valid for the singular locus of Xi).

We can now define the local bifurcation set Ei for complete intersections Xi and
give an estimate for its degree. The point p lies in the normal space of Xi at x if
x−p ∈ span{dh1

i (x), . . . , dhd−mii (x)}, which means that all (d−mi+1)× (d−mi+1)

minors of (dhi(x)
x−p ) have to vanish. Note that only mi of these minors are independent

and that each of them has degree O(∆i). Let Mi := (M1
i , . . . ,Mmi

i ) : Rd × Rd →
Rmi be a d-parameter family of polynomial maps, depending on the variables x and
parameters p, whose component functions are such independent minors. Then ϕi :=
(hi,Mi) : Rd × Rd → Rd, (p, x) 7→ ϕi(p, x) is a d-parameter family of polynomial
maps from Rd to Rd. Using the algebraic definition of the intersection multiplicity,
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one checks that the simple roots in x of ϕi correspond to points of Xi having 2-point
contact with (d −mi)-spheres with center p through x. Roots of higher multiplicity
correspond to points x in which the order of contact is at least 3-point; hence we
define

Ei := {p ∈ Rd : ∃x : ϕi(p, x) = det dϕi(p, x) = 0}.

The product of the degrees of these defining equations of Ei is at most O(∆
2(mi+1)
i ).

The level bifurcation set of the family of all distance-squared functions to a pair
of complete intersections Xi = h−1

i (0) and Xj = h−1
j (0) of dimension mi and mj is

given by

Si,j := {p ∈ Rd : ∃x, x̄ : ϕi(p, x) = ϕj(p, x̄) = 0, ‖x− p‖2 = ‖x̄− p‖2}
and has degree at most O(∆mi+1

i ∆
mj+1
j ). The level bifurcation set of a single set Xi

is given by

Si := cl{p ∈ Rd : ∃x 6= x̄ : ϕi(p, x) = ϕi(p, x̄) = 0, ‖x− p‖2 = ‖x̄− p‖2}

and has degree at most O(∆
2(mi+1)
i ). Recall that Si is the projection of the algebraic

set S̃i := S ′i ∪ ∂S ′i. The set S̃i is the closure of the difference of two algebraic sets
U \V , where U is the zero-set of the defining equations of Si, omitting the inequations
x 6= x̄, and where V is defined by the equations of Si and by x = x̄. Hence, S̃i =

Z(I(U) : I(V )) is an algebraic set of degree at most degU ∼ O(∆
2(mi+1)
i ), and its

projection Si is a semi-algebraic subset of an algebraic set of degree O(∆
2(mi+1)
i ).

Next recall that the boundary S ′i of S̃i is contained in the diagonal E := {x =
x̄} ⊂ R2d. The subspace E is linear which implies that deg S̃i ∩ E = deg S̃i and that

S ′i ⊂ S̃i ∩ E has degree at most O(∆
2(mi+1)
i ).

Finally, note that the number of critical points of the distance-squared function
from some fixed point p ∈ Rd \ Ei is finite and bounded above by the degree of the
map ϕi, which is O(∆mi+1

i ). Summing up, we have the following proposition.
Proposition 3.2. Let B denote the bifurcation set of the family of distance-

squared functions on a collection X = ∪ni=1Xi of algebraic sets of maximal degree ∆
and maximal dimension m. Then the following holds: (i) the degree of ∪∂S ′i is at
most of order O(∆2(m+1)); (ii) the number of critical points of the distance-squared
function from any point p ∈ Rd \ ∪Ei to X is at most of order n · ∆m+1; and (iii)
the number of connected regions of Rd \ B and the size of A(B) are at most of order
n2d ·∆2(m+1)d

Remarks. 1. Note that the estimates i, ii, and iii yield in the case of hypersurfaces
(m = d− 1) the same estimates as in Proposition 3.1 (i), (ii), and (iii).

2. The estimate (i) implies for arrangements of plane curves (where m = 1) that
there are at most O(n ·∆4) endpoints of the level bifurcation set. But, again using
the fact that these endpoints correspond to curvature extrema of the curves Xi, one
checks that actually there are at most O(n ·∆) such endpoints.

3. It is also interesting to compare these estimates for arrangements of zero-
sets with the corresponding bounds in the special case of parametrized mi-surfaces
given in section 2. Not surprisingly, the combinatorial complexities (fixing the degrees
∆ or δ) are the same. However, in terms of algebraic complexity, the estimates in
Propositions 2.1, 2.2, and 2.3 for arrangements of parametrized surfaces are sharper
than the corresponding ones in Proposition 3.2 This can be seen using the following
fact.
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Lemma 3.3. The degree ∆i of a parametrized mi-surface Xi given by

x 7→ Xi(x) := (X1
i (x), . . . , Xd

i (x)), δi := sup
j

degXj
i

is of order δmii (which implies, for arrangements of such surfaces, that ∆ ∼ O(δm)).
Proof. Let L be a (d−mi)-dimensional linear subspace of Rd not contained in Xi,

and let L be given as zero-set of some linear map L = (L1, . . . , Lmi) : Rd → Rmi . By
Bézout’s theorem, L◦Xi : Rmi → Rmi has at most δmii roots (counting multiplicities,
complex roots, and roots at infinity), hence |L ∩Xi| ∼ O(δmii ).

4. Determining the connected regions of Rd \ B, and applications to
proximity queries. This section consists of two parts: in subsection 4.1 we sketch
the exact symbolic computation of connected regions of Rd \B of constant description
size for arrangements of algebraic sets defined by polynomials with rational coeffi-
cients. And in subsection 4.2 we discuss how this partition of Rd can be used to
efficiently answer proximity queries for points with algebraic number coordinates. In
terms of combinatorial complexity (where the degrees and coefficient sizes of the defin-
ing polynomials of the algebraic sets are bounded by some constant), computing the
partition takes O(n4d−6+ε) (for d ≥ 3) or O(n4+ε) (for d = 2) expected time (here
ε is some small positive constant), and answering a proximity query takes O(logn)
time. In dimensions 2 and 3, the time for computing the partition almost matches
the number of regions of Rd \ B (in the worst case), but in higher dimensions the
computation time is much larger than the number of regions. In section 6 we shall
study certain partitions, cut out by subsets of B, which have a lower combinatorial
complexity but can still be used for the same proximity problems.

4.1. Determining the partition. The bifurcation set B of the family of distance-
squared functions between points p ∈ Rd and a collection of algebraic sets is a semi-
algebraic set which is the projection of a real algebraic set B̃ ⊂ Rd × Ra, where
a ≤ 2m (for parametrized mi-surfaces, m := supmi) or a = 2d (for zero-sets). The
defining equations of the components Ẽi, S̃i, S̃ij of B̃ are described in sections 2 and
3 and are polynomials with rational coefficients (we assume that the Xi are defined
by polynomials over Q). If π denotes the restriction to B̃ of the obvious projection
from Rd×Ra to Rd and if B̂ ⊂ Rd is a closed real algebraic set containing B, then we
have the following set-up for the algorithm below (which consists of three steps):

B̃ ⊂ Rd × Rayπ
B ⊂ B̂ ⊂ Rd

1. Eliminate x1, . . . , xa between the defining equations of B̃. Result: the defining
equations of the real algebraic set B̂ ⊂ Rd.

2. Decompose Rd into connected regions (of constant combinatorial complexity)
such that each such region lies in a single component of Rd \ B̂ (and hence of
Rd \ B).

3. Optional step: determine the connected regions of Rd \ B by deleting the
“branches” of B̂ \ B from B̂.

In these steps we use known techniques; here we discuss their complexity and give
some references.
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Step 1. The set B̃ has 2n+ (n2 ) components; the combinatorial complexity of the
elimination is therefore O(n2). Next, we consider the algebraic complexity. Recall
from section 3.2 that, for zero-sets Xi of codimension ≥ 2, the generators of the
ideals I(S̃i) have to be precomputed from certain ideal quotients. In all other cases
the defining equations of the components of B̃ are already known. For parametrized
surfaces one has to eliminate mi (for B̃l = Ẽi), 2mi (for B̃l = S̃i), or mi + mj

variables (for B̃l = S̃i,j). During the elimination, which can use either multipolynomial
resultants (see, for example, [7]) or Gröbner bases, one can remove repeated factors,
because the later steps of the algorithm only require information about the radicals
of the elimination ideals I(B̂l) := I(B̃l)∩Q[p]. (Note that the worst-case computation

time is DO(v) for the multipolynomial resultant and D2O(v)

for Gröbner bases, where
D ≤ δ or ∆ is the maximal degree of the input polynomials and v = d+a the number
of variables.)

Step 2. We mention two algorithms in (i) and (ii) below which can be used to com-
pute a partition of Rd into connected regions, of constant combinatorial complexity,
in the complement of B̂. The first is the classical one and has been used to compute
the examples shown in section 5; the second is more efficient. Recall that B̂ is the
union of the zero-sets of N ∼ O(n2) polynomials of maximal degree D ∼ O(δ2m+1)
(for parametrized Xi) or O(∆2(m+1)) (for zero-sets Xi).

(i) The cylindrical algebraic decomposition of Collins [9] yields at most (ND)2d

d-cells in the complement of Rd \ B̂. The cells are diffeomorphic to open d-cubes (so
that the number of lower dimensional cells in their closure is independent of N) and

can be determined in L3(ND)2d time (where L denotes the maximal coefficient size
of the input polynomials).

(ii) Chazelle et al. [8] (see also [22, Theorem 8.23]) describe a stratification
which yields d-cells in the complement of B̂ whose closure contains a number of lower
dimensional cells which does not depend on N . Assuming that the maximal degree
D and the bit lengths of all polynomials arising during the computation are bounded
by some constant, this stratification consists of at most O(N2d−3+ε) (for d ≥ 3) or
O(N2+ε) (for d = 2) cells which can be determined deterministically in O(N2d+1)
time or by a randomized algorithm in O(N2d−3+ε) (for d ≥ 3) or O(N2+ε) (for d = 2)
expected time (here ε denotes an arbitrarily small positive constant). Furthermore,
given some point p ∈ Rd, the cell containing p can be determined in O(logN) time.
The drawback of this stratification procedure is that, considering the degree D as a
variable, the number of cells and the running time become doubly exponential in d
with base D.

Remark. The algorithm of Grigor’ev and Vorobjov [14] can be used to find the
representative points of a partition of Rd\B̂ into connected regions, and this algorithm

produces at most (ND)d
2

such points in LO(1)(ND)O(d2) time. But it is not clear
whether the number of lower-dimensional cells in the closure of each of these regions
is independent of N (also, some extra work would be required to compute the region
boundaries).

Step 3. The algorithms in Rieger [19, 20] can be adapted to determine the con-
nected regions in the complement of B. The adapted algorithm is based on a very
coarse “stratification” (in which the strata can have singularities) of B̂ consisting of
O(n2) · P “branches” (where P is a polynomial in the degrees of the Xi) such that
each “branch” either lies entirely in B or in B̂ \B. Picking a “good” sample point q in
each “branch,” one can count the number k of real roots of the specialization I(B̃)p=q



448 J. H. RIEGER

(using results from real algebra): if k > 0, then the “branch” belongs to B, otherwise
we delete it. The running time of this procedure is quadratic in n and polynomial
in the remaining parameters. However, a region in the complement of B̂ could have
up to O(N) = O(n2) “branches” of B̂ in its closure, and in the proximity queries
discussed next it is important that the regions have a constant number of cells in
their closures.

4.2. Answering proximity queries. We now discuss how the decompositions
above can be used to answer proximity queries exactly (i.e., without numerical er-
rors). Let p ∈ Rd be a point whose coordinates (α1, . . . , αd) are algebraic numbers,
represented by minimal polynomials mj(t) = 0 and isolating intervals with rational
endpoints. Given p and a set of defining polynomials of X with rational coefficients
we would like to do the following:

1. find the k nearest sets Xi;
2. find the nearest point in X;
3. and, provided that X is compact, find the farthest point in X (and hence the

smallest sphere with center p enclosing X).

For all three problems we first decompose Rd into regions which lie in a single con-
nected component in the complement of ∪Si,j (or B or B̂—the latter two possibilities
yield finer decompositions but with the same “leading term” with respect to the
asymptotic complexity in the number of regions). For problem 1 we store for each
region the k nearest Xi (for any sample point in the region), for problem 2 the nearest
Xi, and for problem 3 the farthest. This completes the preprocessing.

Next, given p, we use the algorithm in [8] to find the region containing p. This
takes O(logn) time, assuming that the degrees and coefficient sizes of the defining
polynomials of X and of the minimal polynomials mj are bounded by some constant.
This solves problem 1 already. In the case of problem 2 (respectively, 3) we now know
the set Xi in the arrangement that contains the nearest (respectively, farthest) point
q ∈ X from p.

The only remaining task, then, is to determine the coordinates (β1, . . . , βd) of the
point q ∈ Xi. The coordinates are algebraic numbers, and we want to compute their
minimal polynomials and isolating intervals. We know from sections 2 and 3 that the
critical points of the distance-squared function from p to Xi are either the real roots
of df1

i (p, x) = · · · = dfmii (p, x) = 0, where df ji ∈ Q(α1, . . . , αd)[x], (for parametrized

mi-surfaces Xi) or of ϕ1
i (p, x) = · · · = ϕdi (p, x) = 0, where ϕji ∈ Q(α1, . . . , αd)[x],

(for zero-sets Xi). The real roots ξ1, . . . , ξs of these systems are isolated and have
algebraic coordinates whose minimal polynomials and isolating intervals can be de-
termined by computing a diagonal basis of the systems and by isolating the roots of
univariate polynomials with algebraic coefficients (using primitive element methods
and the modified Uspenski algorithm). For parametrized surfaces Xi we have to de-
termine the root ξj , 1 ≤ j ≤ s, for which the algebraic number fi(p, ξj) is minimal
(problem 2) or maximal (problem 3); and the result is q = Xi(ξj), whose coordi-
nates are algebraic numbers. For zero-sets Xi we have to determine the ξj for which
‖ξj − p‖2 is minimal or maximal; and the result is q = ξj .

Remarks. 1. The decomposition of d-space into connected regions in the comple-
ment of Y := ∪Si,j is finer than it needs to be for answering the above queries. In

section 6 we study certain subsets Rk and R̃k of Y which cut out far fewer regions (see
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Fig. 2. The set B̂ for a pair of parabolas.

Proposition 6.1 for precise statements). Using the above exact symbolic methods, one
can replace Y by the following sets: in problem 1 by Rk, in problem 2 by R1, and in
problem 3 by R̃1.

2. However, in problems 2 and 3, if one replaces the exact symbolic computation of
the nearest and farthest point q ∈ X from p by the numerical curve-tracing procedure
sketched below, then the decomposition into regions of Rd \ Y is too coarse, and one
must replace Y by the full bifurcation set B! The numerical procedure consists of
the following: determine one sample point p′ for each region in the complement of
B (or B̂) and the corresponding nearest or farthest point q′ ∈ X. After determining
the region containing p (as before), one knows that any path in this region joining its
sample point p′ with p corresponds to a unique path in X joining the corresponding
nearest/farthest points q′ and q. This follows from the fact that the critical points of
the distance-squared function are isolated in the complement of B and the continuity
of the map which assigns to p its nearest/farthest point in X (Proposition 2.3). This
would not be the case if we replace B by Y .

5. Some examples for arrangements in the plane. The first example, in
Figure 2, shows a pair of parabolas X1(x) = (x, x2 − 1), X2(x) = (x, 1− x2) together
with the set B̂ which contains the bifurcation set B. It should be noted that most
curves in Figure 2, except for the intercurve level bifurcation set, are already known
from Figure 1: the first parabola X1 and the sets Ê1 = E1 (a cusp-shaped curve) and
Ŝ1 (a vertical line) are exactly as shown in Figure 1, and turning Figure 1 upside
down yields X2, E2, and Ŝ2 (Ŝ2 coincides with Ŝ1). The set Ŝ1,2, which contains the
intercurve level bifurcation set S1,2 (but we do not know whether it is equal to it),
consists of a horizontal line through the origin and the zero-set Z of an irreducible



450 J. H. RIEGER

Fig. 3. Cylindrical algebraic decomposition of B̂ and a pair of parabolas.

(over Q) degree 12 polynomial. The set Z has three real components: a compact curve
with 6 cusps and a pair of nonsingular curves passing through the intersection points
of the parabolas. Figure 3 shows a cylindrical algebraic decomposition of the plane
into regions in the complement of R2 \ B̂ ∪X1 ∪X2, which are arranged in “vertical
cylinders.” The cylinders are bounded by vertical tangent lines or by vertical lines
passing through singular points. The regions within a cylinder I × R, where I is an
interval on the x-axis, are separated by nonintersecting function graphs over I.

The second example, in Figure 4, shows the set Ŝ1,2 for a parabola X1(x) = (x, x2)
and a point X2 = (1, 2). Note that the Voronoi diagram of X1, X2 consists of just
two regions: the region cut out by Ŝ1,2 containing the point X2 and the complement

of the closure of this region. The curve Ŝ1,2 has 2 cusps, which correspond to centers
of osculating circles of X1 which pass through the point X2. Figure 5 illustrates this
fact: the cusps of Ŝ1,2 lie on the evolute E1 = Ê1 of the parabola X1 (and hence are
centres of osculating circles having A2-contact with X1).

6. Regions of Rd \B and Voronoi regions. The estimates in sections 2 and 3
for the size of A(B) (in terms of n, d, and the degrees and dimensions of the Xi) yield
upper bounds for the complexity of the kth-order Voronoi diagram. They also bound
the complexity of Voronoi diagrams of collections Xs := ∪iXs

i of closed semialgebraic
sets Xs

i ⊂ Rd, each given as unions and intersections of O(1) “elementary” sets of
the form {x ∈ Rd : h(x) ? 0}, where ? ∈ {=, <,>,≤,≥} (actually, any such Xs

i can
be defined by choosing ? ∈ {=, <}). For each Xs

i we can define a real algebraic set
Xi ⊃ Xs

i , using the O(1) polynomials h, such that dimXi = dimXs
i . If Bs and B are

the bifurcation sets of Xs and X := ∪iXi, then Bs ⊂ B; in fact B \ Bs consists of the
closure of certain (d− 1)-cells of B. The size of the arrangement A(Bs) (and hence of
the kth-order Voronoi diagram of Xs) is therefore bounded above by |A(B)|.

A comparison of the bounds for the size of A(B) and of Voronoi diagram A(Vk)
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Fig. 4. The set Ŝ1,2 for a parabola X1 and the point X2 = (1, 2) (marked by a cross).
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Fig. 5. The sets Ŝ1,2 and Ê1 for a parabola X1 and the point X2 = (1, 2).

reveals, however, a considerable gap—at least in the special cases where something
about the complexity of the Voronoi diagram is known. The works on Voronoi di-
agrams of arrangements of (semi-)algebraic sets study the combinatorial complexity
(i.e., assume that the degrees of the algebraic sets in an arrangement are bounded
above by some constant). In this case, |A(B)| ∼ O(n2d). On the other hand, Sharir
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and Agarwal show in [22, Appendix 7.1] that the size of the first-order Voronoi dia-
gram of n disjoint convex semialgebraic sets of “constant description size” (i.e., defined
by O(1) polynomial (in)equations of bounded degree and coefficient size) in d-space
is O(nd+ε) (for any ε > 0). And Alt and Schwarzkopf [1] show that the first-order
Voronoi diagram of n points and disjoint parametrized algebraic curve segments in
the plane, which also do not have self-intersections, has O(n) size and can be con-
structed by a randomized algorithm in O(n logn) (expected) time. Their algorithm
concentrates on the combinatorial aspect of the problem and assumes that the semi-
algebraic level bifurcation sets Si and Si,j (in our notation) can be determined by
some numerical polynomial equation solver. We have seen in previous sections that
the bifurcation set can also be determined by exact symbolic methods.

On the other hand, the first-order Voronoi diagram of the dn ∼ Θ(n) intersecting
hyperplanes Xij := {xi = j}, where 1 ≤ i ≤ d and 1 ≤ j ≤ n, has Θ(nd) connected
d-dimensional regions (recall that (x1, . . . , xd) are coordinates in Rd). Hence we have
the lower bound |A(V1)| ∼ Ω(nd).

The goal of the present section, then, is to study the gap in the combinatorial
complexities of A(B) and of A(Vk). To this end, we shall derive a bound for the
combinatorial complexity of certain intermediate sets Vk ⊂ Rk ⊂ B, which we are
going to define next.

Roughly speaking, the sets Rk are constructed by deleting from the intersurface
level bifurcation set Y := ∪1≤i<j≤nSi,j ⊂ B certain “branches” that cannot belong
to Vk. In order to describe this construction, we need the following notation. Recall
the notation for an Ar≥1-singularity of the distance squared-function (see section 1.1).
For a family of distance-squared functions f(p, x) parametrized by the coordinates of
the points p ∈ Rd, we denote the set of points p for which f has a singularity of type
Ar≥1 by L(Ar≥1). Geometrically, it is the locus of centers of r-tangent spheres (i.e.,
spheres touching the algebraic set X in r distinct points). Now set

Yr := Y ∩ L(Ar≥1).

Furthermore, let Yr1,...,rs denote the locus of common intersection points of s such sets
Yri . In order to avoid redundancies, let us agree that the indices are nonincreasing,
i.e., ri ≥ ri+1. It is also convenient to define the “closure” of Yr1,...,rs as

Ȳr1,...,rs :=
⋃
{Ya1,...,at : t ≥ s, ai ≥ ri, 1 ≤ i ≤ s}. (∗)

Note that the points p of the s-fold self-intersection locus of Yr1,...,rs of Y = Ȳ2

are centers of s concentric ri-tangent spheres (where ri ≥ 2). Also note that p ∈
Ȳr1,...,rs \ Yr1,...,rs if and only if there are more than s such spheres or some sphere
has more than ri points of tangency. To save breath, we shall often refer to the “k
smallest ri-tangent spheres” with common center p ∈ Yr1,...,rs , k ≤ s, rather than to
the “subset of the set of s simultaneous Ar≥1-singularities with the k smallest critical
values.” Finally, let Sc1,...,ct be the locus of common intersections of t sets Xi of
codimension ci := d−mi, which corresponds to the intersection locus of ( t2 ) branches
of Y , and define its “closure” S̄c1,...,ct as in (∗). Each branch consists of centers of
spheres tangent to a pair of intersecting sets Xi, Xj whose radius tends to zero as the
center approaches Xi ∩Xj , such spheres will be called vanishing spheres. We are now
ready to construct the sets Rk.
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First, we decompose the intersurface level bifurcation set Y into certain branches
which, for generic arrangements X, will be (d− 1)-dimensional. Let B(Y ) denote the
set of connected components (branches) of Y \ Ȳ3 ∪ S̄1,1. Note that all points of such
a branch lie either in Vk ⊂ Y or in Y \ Vk, because for all these points we have a pair
of critical points of the distance-squared function whose critical value is distinct from
all other critical values.

Next, we decompose the self-intersection locus of Y into connected components
of i-fold intersections, i = 2, 3, . . . , s and compare the radii of ≥ 2-tangent spheres
associated to the i branches of B(Y ) passing through an i-fold intersection point.
Let us call the set of Xj ∈ {X1, . . . , Xn} containing the r points of tangency of an
r-tangent sphere the support set of this sphere and the smallest sphere among a set
of concentric r-tangent spheres with the same support set the minimal sphere. We
also consider any vanishing sphere to be minimal. If, at any point p of the self-
intersection locus, the ≥ 2-tangent sphere associated with some branch of B(Y ) does
not belong to the k smallest minimal spheres with center p (including the vanishing
sphere if p ∈ Sc1,...,ct) and distinct support sets, then this branch cannot belong to Vk.
Deleting all such branches from Y yields the set Rk. To be a bit more precise, let L be
the set of “strata” of the “stratification” (the reason for the quotes will be explained
in the remark below) of the self-intersection locus of Y into connected components
of Yr1,...,rs (s, ri ≥ 2), Sc1,...,ct (t ≥ 2), and Sc1,...,ct ∩ Yr1,...,rs (t, ri ≥ 2, s ≥ 1).
For any l ∈ L, let lk denote the set of branches b ∈ B(Y ) passing through l which
correspond to the k smallest minimal ≥ 2-tangent spheres with center in l, which
by definition have distinct support sets (if there are fewer than k minimal spheres
with distinct radius, then lk contains all branches through l that correspond to some
minimal sphere). We can now define

Rk := {b ∈ B(Y ) : b ∈ lk, for all l ∈ L : l ⊂ clb} ∪ Ȳ3 ∪ S̄1,1.

The principal result of the present section is based on an enumeration of the
connected components of the self-intersection locus of Y , on the one hand, and of
those components that also belong to Rk, on the other hand. We give an outline of
our enumeration technique. Given an arrangement X = ∪ni=1Xi, there are Πs

i=1( nri )

sets Ȳr1,...,rs , and each of them has a constant number of connected components (recall
that the maximal degree of the defining equations of X and the ambient dimension
are assumed to be fixed). The number of connected components of Yr1,...,rs depends
on the number of connected components of all the (lower dimensional) sets

Ya1,...,at ⊂ Ȳr1,...,rs \ Yr1,...,rs

in its boundary. For “large enough” s and r1, . . . , rs (see more precise statements
below), the boundary of Yr1,...,rs will be empty, so that Yr1,...,rs has as many con-
nected components as Ȳr1,...,rs . We call a connected component of such a nonempty
set Yr1,...,rs , whose boundary is empty, a maximal component, and Yr1,...,rs a maximal
set. (Note that its index set r1, . . . , rs is maximal, with respect to the natural partial
order of Ns, among the nonempty sets Ya1,...,as . Among these nonempty sets, however,
it will be the one with minimal dimension.) Likewise, the combinatorial complexity
of the closures of the sets Sc1,...,ct and Sc1,...,ct ∩ Yr1,...,rs is O(nt) and O(nt+Σri), re-
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spectively, and the complexity of the interiors of these sets will depend on the number
of components in their boundary (for Σri and Σcj sufficiently large we get, again,
maximal sets with empty boundary). By inductively deleting the lower dimensional
boundary components from Y = Ȳ2, beginning with the maximal components, whose
boundary is empty, we obtain a “stratification” of Y whose “strata” are the connected
components of the sets Yr1,...,rs , Sc1,...,ct and their intersections. The number of strata
obtained in this way is of the order of the number of maximal sets (recall that a given
maximal set has O(1) connected components, in terms of combinatorial complexity).

Remarks (refining stratification to get genuine stratification). 1. First, the rough
idea. The strata of this stratification of Y can have singularities along the intersection
of Y with the local bifurcation set E := ∪Ei. For example, the intersurface level
bifurcation curve Y in Figure 2 has a component C with six cusps contained in Y ∩E
(C is the small compact curve in the center of the figure). So what is going on here?
The strata of C are connected components of Yr1,...,rs and correspond to points p ∈ Rd
for which the distance-squared function to X has s simultaneous singularities of type
Ari≥1. But any r-tuple of singular points with the same critical values belongs to Ar≥1:

for example, the regular branches of C in Figure 2, which are of type A2
1 = {A1, A1},

but also the cusps, which are of type {A2, A1}. Roughly speaking, one can further
subdivide the components (i.e., the strata) of Y into submanifolds (i.e., genuine strata)
by requiring that its singular points Σ1, . . . ,Σri , 1 ≤ i ≤ s, are of the same local
type (for example, we distinguish A1 from A2 points). For each original stratum we
then obtain O(1) genuine “equisingular” strata (the number of local types on a given
stratum depends on the degree of the Xi and the ambient dimension, but not on n).
With this understood, we shall no longer make the distinction between a stratification
and its genuine refinement.

2. The meaning of equisingular (for readers familiar with singularity theory).
We are considering, in general, nonversal d-parameter families of functions. As d
increases, the standard groups of equivalences for functions, such as R and K, will
quickly yield an infinite number of equisingular strata (due to the appearance of
moduli). Recall that a K-orbit consists, in general, of several R-orbits; we can only
expect for the class of quasi-homogeneous functions that the K- and R-orbits coincide
(by a result of Saito [21]). The appropriate definition of equisingular stratum, which
yields a finite number of smooth strata, therefore involves the union of K-modular
strata (minus certain exceptional strata of higher codimension).

We can now state the main result of section 6.

Proposition 6.1. For any arrangement of parametrized or implicitly defined
algebraic sets (whose degrees are bounded by some constant) in d-space consisting of
n elements of any positive codimension the following hold:

(i) Vk ⊂ Rk ⊂ Y ⊂ B, 1 ≤ k ≤ n− 1.
(ii) The size of A(Rk) and hence the number of connected regions of Rd \Rk are

bounded above by O(min(nd+k, n2d)).
(iii) The combinatorial complexity of Y2,...,2 (d twos) is Πd

j=1(n2 ) ∼ O(n2d) and
represents the “leading term” in the combinatorial complexity of A(B).

Proof. Statement (i) simply follows from the definitions of these sets. For the
proof of statements (ii) and (iii) it is convenient to distinguish generic and nongeneric
arrangements X, which are defined as follows. Let X be the space of arrangements
X ⊂ Rd of n zero-sets Xi of codimension ci of maximal degree ∆ (or of n mi-
surfaces Xi parametrized by polynomials ofdegree ≤ δ). X can be identified with
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some semialgebraic subset of the finite dimensional space of coefficients of
∑n
i=1 ci

polynomials in d variables of degree ≤ ∆ (or of nd polynomials in
∑n
i=1mi variables

of degree ≤ δ). (Note that not all choices of coefficients yield mi-dimensional real
algebraic sets Xi.) Now define W to be the union of the following sets (corresponding
to degenerate X for which Y has “excess intersection”):{

X ∈ X : ∃s ≥ 1,∃ri ≥ 2 : dimYr1,...,rs > d+ s−
s∑
i=1

ri

}
,

{
X ∈ X : ∃t ≥ 2,∃ci ≥ 1 : dimSc1,...,ct > d−

t∑
i=1

ci

}
,

andX ∈ X : ∃s, ci ≥ 1,∃t, rj ≥ 2 : dim(Sc1,...,ct ∩ Yr1,...,rs) > d+ s−
t∑
i=1

ci −
s∑
j=1

rj

 .

(Note that X denotes both a subset of Rd as well as a point of X , but the meaning
of X should be clear from the context.) One shows, using the defining equations of
these sets, that W is a Zariski closed subset of X . We shall therefore say that an
element X in X \W is generic and one in W nongeneric.

First, assume that X is generic and consider the following two stratifications of
Rd. In the first, take as strata of dimension 0 to d−1 the connected components of the
sets Yr1,...,rs , Sc1,...,ct , Sc1,...,ct ∩ Yr1,...,rs and as d-dimensional strata the connected
components in the complement of Y = Ȳ2. In the second stratification, we discard the
connected components of Yr1,...,rs that do not belong to Rk and take the connected
components of Rd \Rk as d-dimensional strata.

For the 0-dimensional maximal sets Yr1,...,rs we have, by the genericity of X, the
relation Σsi=1ri = d + s. For the 0-dimensional maximal sets Sc1,...,ct and Sc1,...,ct ∩
Yr1,...,rs we have in the worst case of hypersurface arrangements (where all ci = 1)
the relations t = d and t+ Σri = d+ s. Hence, there are at most Πs

i=1( nri ) ∼ O(nd+s)
such maximal sets, and each of them has O(1) connected components. For the first
stratification (whose union of strata of dimension less than d is Y ), the relation Σri =
d+ s, where all ri ≥ 2, implies that s ≤ d. For the second stratification (whose union
of strata of dimension < d is Rk) we have, by the definition of Rk, s ≤ min(k, d). Let
ei denote the number of i-dimensional strata. Then, for all 0 ≤ i ≤ d−1, ei ∼ O(n2d)
(for the stratification of Y ) and ei ∼ O(nmin(d+k,2d)) (for the stratification of Rk).

For statement (ii) of the proposition we now consider the second stratification.
We claim that the number ed of connected regions of Rd \Rk is also O(nmin(d+k,2d)).
Taking a 1-point compactification Sd = Rd∪{∞} and adding at most O(nmin(d+k,2d))
cells to the induced stratification of Rk in the d-sphere, we get a cell complex K whose
Euler characteristic is equal to χ(Sd) = 1 + (−1)d. Note that ed is bounded above by
the number of d-cells of K; this implies (ii).

For statement (iii), note that Y2,...,2 (with d twos) is the maximal set of the highest
combinatorial complexity in the stratification of Y satisfying the relation Σri = d+s,
and its number of connected components is of order n2d.

For nongeneric arrangements X ∈ W , we consider a “linear deformation” Xt,
t ∈ (−ε,+ε), of X = X0 such that X0 is the only nongeneric element—linear in the
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sense that t 7→ Xt defines a line in the space of coefficients which can be identified with
X . (Such a deformation can be obtained, for example, by constructing a stratification
of the semialgebraic set W and by restricting a line in the normal space of the stratum
containing X to some sufficiently small open neighborhood.) Consider the union U of
any of the semialgebraic sets Ut = Yt or (Rk)t associated to Xt; U is a semialgebraic
subset of Rd×(−ε,+ε). We claim that the combinatorial complexity of the degenerate
arrangement A(U0) is of the same order as that of its generic deformation A(Ut), for
small t 6= 0, which implies the desired bounds in the degenerate case.

The claim follows from the following argument. First, we want to check that
all strata of U0 lie in the closure of some stratum of U \ U0. Given a pair of closed,
connected subsets A,B ⊂ Rd and any point q ∈ A there exists a sphere tangent to A at
q and to B in some point q′. Let At and Bt be subsets of Xt ⊂ Rd×(−ε,+ε) such that
A0, B0 are connected subsets of X = X0. Our assumptions about the algebraic set X
imply that the dimensions of At and Bt are constant for t in some open neighborhood
I of 0 (in particular the sets remain nonempty over the reals). By the geometric
fact above, there exist points qt ∈ At and q′t ∈ Bt supporting bitangent spheres with
centers pt, such that the sets {qt : t ∈ I}, {q′t : t ∈ I}, and {pt : t ∈ I} are connected
and p0 is any point of U0. Next, let ε > 0 be small enough such that U is transverse
to all hyperplanes t = c, for any constant |c| < ε, except t = 0. (U is, in general,
a singular semialgebraic set, and transverse means that the hyperplane in question
is transverse to all the strata of a suitable stratification of U , e.g., a stratification
satisfying the Whitney condition (b). See the book by Goresky and MacPherson [13,
Part I, Chapters 1.2–1.8] for a good introduction to stratification theory.) So the
numbers of strata of dimension 0 ≤ i ≤ d in A(Ut) are locally constant for t ∈ (−ε, 0)
and t ∈ (0, ε); denote these numbers by r− and r+, respectively. Hence there are
r− + r+ strata in A(U \U0) and therefore at most that many strata of A(U0).

Remarks. 1. For compact arrangements X = ∪Xi we can define regions analogous
to the usual kth-order Voronoi regions, such that for all points within each region the
farthest k sets in the arrangement do not change. If Ṽk is the union of the boundaries
of these regions and R̃k the set analogous to Rk, except that the k smallest minimal
spheres are replaced by the k largest maximal spheres, then Proposition 6.1 above
holds for R̃k and Ṽk in place of Rk and Vk.

2. One can get a sharper bound for the (expected) size of A(Vk), where k ∼ O(1),
in the average case. Set µp(Xi) := infq∈Xi ‖q − p‖2. The sets Yr1,...,rs ∩ Rk and
(Yr1,...,rs ∩ Sc1,...,ct) ∩ Rk, s ≤ k, can only belong to Vk if the critical values of the s
Ari≥1-singularities of the distance-squared function from p ∈ Yr1,...,rs are smaller than
all but k − s ∼ O(1) of the minima µp(Xj) of the O(n) sets Xj that do not belong
to the support sets of one of these Ari≥1-singularities (for p ∈ ∩ti=1Xi, we include the
intersecting Xi in the support set). Now suppose for the moment that there exists a
“good” probability measure on the space X of arrangements (definition follows below)
such that if we pick some X = ∪Xi ∈ X “at random,” then Pr[µp(Xi) < µp(Xj)] =
1/2 (actually it is enough if this probability is different from 0 and 1). One then checks
that the probability that the critical values of all s Ari≥1-singularities are smaller than

O(n) minima µp(Xj) is O(n−s). Looking at the proof of Proposition 6.1 we now see
the following: if M sets X are picked independently from some “good” distribution
on X then, as M →∞, the expected size of A(Vk) is O(nd).

The “good” probability measures on X are defined as follows. Let Xmi denote
the space of real algebraic sets of dimension mi of some bounded degree (recall that
Xmi can be identified with a semialgebraic subset of the space of coefficients of the
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defining polynomials of such sets); then X := ×ni=1Xmi . Let Mi be a probability
measure on Xmi (for example, the uniform distribution on some compact subset B of
Xmi of bounded coefficients). We say that the collection of probability measuresMi,
1 ≤ i ≤ n, is “good” if the following hold. 1. For each pair (Mi,Mj), the Lebesgue
measure on Xmi ×Xmj is absolutely continuous with respect to the product measure
Mi ×Mj . 2. For any given p ∈ Rd and all ordered pairs i, j the sets {(Xi, Xj) :
µp(Xi) < µp(Xj)} have non-zero Lebesgue measure in Xmi ×Xmj . Conditions 1 and
2 imply that Pr[µp(Xi) < µp(Xj)] 6= 0, 1, but seem quite strong. Note, however, that
the conditions are trivially satisfied in an important special case: if all sets Xi in an
arrangement have the same dimension and are chosen from a single, but arbitrary,
distribution, then, by symmetry, Pr[µp(Xi) < µp(Xj)] = 1/2.
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Abstract. We study a classical problem in online scheduling. A sequence of jobs must be
scheduled on m identical parallel machines. As each job arrives, its processing time is known.
The goal is to minimize the makespan. Bartal et al. [J. Comput. System Sci., 51 (1995), pp.
359–366] gave a deterministic online algorithm that is 1.986-competitive. Karger, Phillips, and
Torng [J. Algorithms, 20 (1996), pp. 400–430] generalized the algorithm and proved an upper bound
of 1.945. The best lower bound currently known on the competitive ratio that can be achieved by
deterministic online algorithms is equal to 1.837. In this paper we present an improved deterministic
online scheduling algorithm that is 1.923-competitive; for all m ≥ 2. The algorithm is based on a
new scheduling strategy, i.e., it is not a generalization of the approach by Bartal et al. Also, the
algorithm has a simple structure. Furthermore, we develop a better lower bound. We prove that, for
general m, no deterministic online scheduling algorithm can be better than 1.852-competitive.

Key words. makespan minimization, online algorithm, competitive analysis
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1. Introduction. We study a classical problem in online scheduling. A sequence
of jobs must be scheduled on m identical parallel machines. Whenever a job arrives,
its processing time is known in advance, and the job must be scheduled immediately
on one of the machines without knowledge of any future jobs. Preemption of jobs is
not allowed. The goal is to minimize the makespan, i.e., the completion time of the
last job that finishes.

Algorithms for this scheduling problem are used in multiprocessor scheduling.
Moreover, the problem is important because it is the root of many problem variants
where, for instance, preemption is allowed, precedence constraints exist among jobs, or
machines run at different speeds. The problem was first investigated by Graham [10].
In fact, Graham also studied the offline version of the problem, when all jobs are
known in advance. The problem of computing an optimal offline schedule for a given
job sequence is NP-hard [9]. Graham gave a fast scheduling heuristic that achieves
a good approximation ratio. He developed the well-known List algorithm that takes
the given jobs one by one and always schedules them on the least loaded machine.
Clearly, List is also an online algorithm.

Following [13], we call a deterministic online scheduling algorithm A c-competitive
if, for all job sequences σ = J1, J2, . . . , Jn,

A(σ) ≤ c ·OPT (σ),

where A(σ) is the makespan of the schedule produced by A and OPT (σ) is the
makespan of an optimal schedule for σ.
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Graham’s List algorithm is (2 − 1
m )-competitive. Galambos and Woeginger [8]

presented an algorithm that is (2 − 1
m − εm)-competitive, where εm > 0, but εm

tends to 0 as m goes to infinity. It was unknown for a long time whether there was
an algorithm that achieves a competitive ratio of c, c < 2, for general m. Bartal,
et al. [3] then gave an algorithm that is 1.986-competitive, for all m ≥ 70. Karger,
Phillips, and Torng [11] generalized the algorithm and proved a competitive ratio of
1.945, for all m. This has been the best upper bound known so far for general m. For
the special case m = 4, Chen, van Vliet, and Woeginger [6] developed an algorithm
that is 1.733-competitive. With respect to lower bounds, Faigle, Kern, and Turan [7]
showed that no deterministic online algorithm can have a competitive ratio smaller
than (2 − 1

m ) for m = 2 and m = 3. Thus, for these values of m, List is optimal.
Faigle, Kern, and Turan [7] also proved that no deterministic online algorithm can be
better than 1.707-competitive, for any m ≥ 4. The best lower bound known so far for
general m is due to Bartal, Karloff, and Rabani [4], who showed that no deterministic
online algorithm can have a competitive ratio smaller than 1.837, for m ≥ 3454. For
more work on related online scheduling problems see, for instance, [1, 2, 5, 12, 14].

In this paper we present an improved deterministic online algorithm for the
scheduling problem defined above. The algorithm is 1.923-competitive, for all m ≥ 2.
Our algorithm is based on a new scheduling strategy, i.e., it is not a generalization of
the approach by Bartal et al. [3]. Moreover, the algorithm has a simple structure. At
any time, the algorithm maintains a set S1 of bm2 c machines with a low load and a
set S2 of dm2 e machines with a high load. Every job is either scheduled on the least
loaded machine in S1 or on the least loaded machine in S2. The decision about which
of the two machines to choose depends on the ratio of the load on machines in S1 to
the load on machines in S2. A description of the algorithm is given in section 2. A
detailed analysis follows in section 3. We also develop a better lower bound for online
scheduling. In section 4 we show that if a deterministic online scheduling algorithm
is c-competitive for all m ≥ 80, then c ≥ 1.852.

2. The new scheduling algorithm. For the description of the algorithm we
need some definitions. Let the load of a machine be the sum of the processing times
of the jobs already assigned to it. At any time, the algorithm maintains a list of
the machines sorted in nondecreasing order by the current load. Let M t

i denote
the machine with the ith smallest load, 1 ≤ i ≤ m, after exactly t jobs have been
scheduled. In particular, M t

1 is the machine with the smallest load and M t
m is the

machine with the largest load. We denote by lti the load of machine M t
i , 1 ≤ i ≤ m.

Note that the load ltm of the most loaded machine is always equal to the current
makespan.

As with previous algorithms [3, 11], our new scheduling strategy tries to prevent
schedules in which the load on all machines is about the same. If all machines have
the same load, with all previous jobs being very small, an adversary can present an
additional large job and force a competitive ratio of (2 − 1

m ). This is the worst-case
scenario for List .

Our new algorithm, called M2, always tries to maintain k machines with a low
load and m − k machines with a high load, where k = bm2 c. The goal is to always
have a schedule in which the total load Ll on the k lightly loaded machines is at most
α times the total load Lh on the m − k heavily loaded machines, for some α to be
specified later. A schedule satisfying Ll ≤ αLh is always prepared to handle a large
incoming job and can easily maintain a competitive ratio of c, where c is 1.923.

Algorithm M2 always schedules a new job Jt with processing time pt on the
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least loaded machine as long as Ll ≤ αLh is satisfied after the assignment. Note that
during this assignment, the load Ll on the lightly loaded machines does not necessarily
increase by pt because the least loaded machine might become one of the machines M t

i ,
k < i ≤ m. If an assignment of Jt to the least loaded machine results in Ll > αLh,
then M2 considers scheduling Jt on the machine with the (k + 1)st smallest load.
However, if this assignment increases the makespan and the new makespan exceeds
c · (Ll +Lh)/m, then Jt is finally scheduled on the least loaded machine, ignoring the
violation of Ll ≤ αLh. Note that Ll + Lh is the sum of the processing times of all
jobs that have arrived so far, and thus (Ll +Lh)/m is a lower bound on the optimum
makespan.

ALGORITHM M2. Set c = 1.923, k = bm2 c, and j = 0.29m. Set α = (c−1)k−j/2
(c−1)(m−k) .

Every new job Jt is scheduled as follows. Let Ll be the sum of the loads on machines
M t

1, . . . ,M
t
k if Jt is scheduled on the least loaded machine. Similarly, let Lh be the

sum of the loads on machines M t
k+1, . . . ,M

t
m if Jt is scheduled on the least loaded

machine. Let λtm be the makespan, i.e., the load of the most loaded machine, if Jt
is scheduled on the machine with the (k + 1)st smallest load. Recall that lt−1

m is the
makespan before the assignment of Jt.

Schedule Jt on the least loaded machine if one of the following conditions holds.

(a) Ll ≤ αLh.
(b) λtm > lt−1

m and λtm > c · Ll+Lhm .

Otherwise schedule Jt on the machine with the (k + 1)st smallest load.

Theorem 1. Algorithm M2 is 1.923-competitive for all m ≥ 2.

Before analyzing the algorithm in the next section, we discuss the choice of α.
First observe that 0 < α < 1 for m ≥ 2. The inequality 0 < α holds because
c − 1 > 1/2 and k > j; thus (c − 1)k − j/2 > 0. Inequality α < 1 holds because

(c − 1)k ≤ (c − 1)(m − k) and j/2 > 0. In fact, for even m, α = (c−1)−j/m
c−1 ≈ 0.686

and, for odd m, α tends to this value as m goes to infinity. Always setting α = 0.686
in the algorithm M2 asymptotically results in the same competitive ratio of 1.923.

Choosing α = (c−1)k−j/2
(c−1)(m−k) has two advantages. (1) We can prove a competitiveness of

1.923 for even small m. (2) In the analysis we can do symbolic calculations where a
fixed α = 0.686 would require numeric calculations.

3. Analysis of the algorithm. We present a detailed proof of Theorem 1.
The analysis presented by Graham [10] for the List algorithm, combined with the
observation that algorithm M2 only schedules a job on the machine with the (k + 1)st
smallest load if the resulting makespan does not exceed 1.923 times the optimum
makespan, shows that M2 is c-competitive, where c = max{(2 − 1

m ), 1.923}, for all
m ≥ 2. This gives the desired bound for small m. For m ≥ 8, the following analysis
applies.

Consider an arbitrary job sequence σ = J1, J2, . . . , Jn. Let pt be the processing
time of Jt, 1 ≤ t ≤ n. We will show that M2 schedules every job Jt, 1 ≤ t ≤ n, such
that

M 2(σt) ≤ 1.923 ·OPT (σt),

where M 2(σt) is the makespan of the schedule produced by M2 on the subsequence
σt = J1, J2, . . . , Jt and OPT (σt) is the makespan of an optimal schedule for σt.
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3.1. The basic analysis. Suppose that M2 has already scheduled the first t−1
jobs and that a competitive ratio of c = 1.923 was maintained at all times. Let

L =
t∑

s=1

ps.

L is the sum of the loads on all machines after Jt is assigned.

If the makespan does not change during the assignment of Jt, then by the in-
duction hypothesis there is nothing to show. Also, if the makespan changes but is
bounded from above by c Lm , then we are done because L

m is a lower bound on the
optimum makespan for σt.

Thus we concentrate on the case where, during the assignment of Jt, the makespan
increases and exceeds c Lm . Condition (b) in Algorithm M2 implies that Jt is scheduled

on the least loaded machine. Let l1 = lt−1
1 be the load of the least loaded machine

immediately before Jt is assigned.

First we consider the case where l1 ≤ (c− 1) Lm = 0.923 Lm . We have

M 2(σt) = l1 + pt ≤ (c− 1) Lm + pt.

If pt ≤ L
m , then

M 2(σt) ≤ (c− 1) Lm + L
m ≤ c Lm ≤ c ·OPT (σt).

If pt = (1 + δ) Lm , for some positive δ, then

M 2(σt) = l1 + pt

≤ (c− 1) Lm + (1 + δ) Lm

≤ c · (1 + δ) Lm = c · pt
≤ c · max

1≤s≤t
ps ≤ c ·OPT (σt).

Here we use the fact that max1≤s≤t ps is also a lower bound on the optimum makespan.

In the remainder of this proof we will study the situation that the load on the
least loaded machine is greater than (c − 1) Lm , i.e., l1 = (c − 1 + ε) Lm for some

positive ε. Since l1 cannot be greater than L
m , we have 0 < ε ≤ 2 − c = 0.077. Note

that all machines must have a load of at least (c − 1 + ε) Lm . Since Jt is assigned
to the least loaded machine and the makespan after the assignment is greater than
c Lm , we have pt > c Lm − l1 ≥ (1 − ε) Lm ≥ ( 1

2 + ε) Lm . Our goal is to show that the
sequence σt−1 = J1, J2, . . . , Jt−1 contains m jobs, each with a processing time of at
least (1

2 + ε) Lm . Then there are m+1 jobs with a processing time of at least (1
2 + ε) Lm ,

two of which must be scheduled on the same machine in an optimal schedule. Thus

OPT (σt) ≥ (1 + 2ε) Lm .

If pt ≤ L
m , then

M 2(σt) = l1 + pt ≤ (c− 1 + ε) Lm + L
m

≤ c(1 + ε) Lm ≤ c ·OPT (σt).
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If pt = (1 + δ) Lm for some positive δ, then

M 2(σt) = (c− 1 + ε) Lm + pt ≤ (c+ ε+ δ) Lm

≤ c ·max{(1 + 2ε), (1 + δ)} Lm
≤ c ·OPT (σt).

In each case, Theorem 1 is proved. It remains to show that the sequence σt−1 =
J1, J2, . . . , Jt−1 does contain m jobs, each with a processing time of at least ( 1

2 + ε) Lm .

3.2. Identifying large jobs. We have to analyze jobs in the sequence σt−1. Let
time s, 1 ≤ s ≤ t, denote the point of time immediately after Js is scheduled. (Time
0 is the point of time before any jobs are scheduled.) For any time s, 1 ≤ s ≤ t, let
Ls be the total load on the m machines, i.e.,

Ls =
s∑
r=1

pr.

Note that Lt = L.

Definition 1. At any time s, 1 ≤ s ≤ t, the schedule constructed by M2 is
called steady if the total load on the k lightly loaded machines Ms

1 , . . . ,M
s
k is at most

α times the total load on the m− k heavily loaded machines Ms
k+1, . . . ,M

s
m.

In the following, when referring to machines Ms
1 , . . . ,M

s
m, we will often drop s

when the meaning is clear.

Lemma 1. At time t− 1, i.e., immediately before Jt is scheduled, M2’s schedule
is not steady.

Proof. Immediately before Jt is scheduled, the total load on the machines
M1, . . . ,Mk is at least

Ll = k(c− 1 + ε) Lm

> k(c− 1) Lm

= ((c− 1)k − j
2 ) Lm + j

2
L
m

= α(c− 1)(m− k) Lm + j
2
L
m .

If M2’s schedule was steady, then the total load on machines Mk+1, . . . ,Mm would be
at least 1

αLl. Thus the total load before the assignment of Jt would be at least

Lt−1 ≥ (1 + 1
α )Ll

> k(c− 1) Lm + (m− k)(c− 1) Lm + 1
α
j
2
L
m .

Here we used the facts Ll > k(c− 1) Lm and Ll > α(c− 1)(m− k) Lm + j
2
L
m . Thus

Lt−1 > (c− 1)L+ j
2α

L
m

= L+ (c− 2)L+ j
2α

L
m

> L

because α = (c−1)k−j/2
(c−1)(m−k) ≤ (c−1)−j/m

c−1 ≤ 7
10 and hence (c − 2)L + j

2α
L
m > −0.077L +

0.2L > 0. We have a contradiction.
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3.2.1. Analyzing load.
Definition 2. At any time s, 1 ≤ s ≤ t, a machine is called full if its load is at

least (c− 1 + ε) Lm .

Recall that at time t − 1, all machines have a load of at least (c − 1 + ε) Lm and,
thus, are full.

For i = 1, . . . ,m, let ti be the most recent time when exactly i machines were
full. Note that

t1 < t2 < · · · < tm = t− 1.

Of particular interest to us will be the time tm−bjc when exactly m − bjc machines
were full. Let t′, tm−bjc ≤ t′ < t − 1, be the most recent time when M2’s schedule
was steady. If M2’s schedule was not steady during the time interval [tm−bjc, t − 1],
then let t′ = tm−bjc. Let f be the number of machines that are full at time t′.

Our goal is to show that at time t′, the total load on the nonfull machines
M1, . . . ,Mm−f in M2’s schedule is at most (c − 1.5)(m − f) Lm . We will show this
using the following two lemmas. Let

X = (c−1)
c L,

Y = (c−1)2

c L− j
2
L
m .

Lemma 2. If at time t′ the total load on the nonfull machines M1, . . . ,Mm−f in
M2’s schedule were greater than (c−1.5)(m−f) Lm , then the total load at time t would

satisfy L > X + Y (1− c
m )−(bjc+1).

The proof of Lemma 2 is presented in the appendix.
Lemma 3. X + Y (1− c

m )−(bjc+1) ≥ L.
Proof. We have (

1− c

m

)−(bjc+1)

≥
(

1− c

m

)−j
≥ ecj/m.

The first inequality follows because bjc+ 1 ≥ j. Thus,

X + Y (1− c
m )−(bjc+1) ≥ (c−1)

c L+ ( (c−1)2

c L− j
2mL) · ecj/m

= (1− 1
1.923 )L+ (0.9232−1.923·0.145

1.923 L) · e0.29·1.923.

Evaluating the last expression gives that it is at least 1 · L.
We summarize the results of Lemmas 2 and 3.
Lemma 4. At time t′, the total load on the nonfull machines M1, . . . ,Mm−f is

at most (c− 1.5)(m− f) Lm .

3.2.2. Tracing the assignment of large jobs. We now identify jobs with a
processing time of at least ( 1

2 + ε) Lm .
Lemma 5. During the time interval (tm−k, t′], f − m + k jobs, each of size at

least ( 1
2 + ε) Lm , are scheduled.

Proof. At time tm−k, m − k machines are full. At time t′, f machines are full,
where f ≥ m− bjc. Consider the f −m+ k steps in (tm−k, t′] at which the number
of full machines increases. Since at least m− k machines are full, the number of full
machines can increase only if a job is scheduled on the least loaded machine. By
Lemma 4, at time t′, the total load on the m − f least loaded machines is at most
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(c− 1.5)(m− f) Lm . This implies that at time t′, the load on the least loaded machine

is at most (c− 1.5) Lm . Thus, at any of the f −m+ k steps in (tm−k, t′] at which the
number of full machines increases, the load on the least loaded machine is at most
(c − 1.5) Lm . Hence jobs of size at least (c − 1 + ε) Lm − (c − 1.5) Lm = (1

2 + ε) Lm are
introduced.

Lemma 6. At time tm−k, each of the machines M1, . . . ,Mf−m+k+1 has a load of
at most (c − 1.5) Lm . The total load on the machines Mf−m+k+1, . . . ,Mk is at most

(c− 1.5)(m− f) Lm .
Proof. The machine with the (f−m+k+1)st smallest load at time tm−k becomes

the least loaded machine no later than time t′, when f machines are full. Thus, if at
time tm−k, machine Mf−m+k+1 (or any machine Mi with i ≤ f −m+ k) had a load
greater than (c−1.5) Lm , then the load of the least loaded machine at time t′ would be

greater than (c−1.5) Lm . Lemma 4 implies that this is impossible. Similarly, if at time

tm−k, machines Mf−m+k+1, . . . ,Mk had a total load of at least (c − 1.5)(m − f) Lm ,

then the total load on M1, . . . ,Mm−f at time t′ would be at least (c− 1.5)(m− f) Lm .
Again, Lemma 4 gives the desired statement.

Lemma 7. During the time interval (t′, t−1], m−f jobs of size at least (1
2 + ε) Lm

are scheduled.
Proof. By the definition of t′, M2’s schedule is not steady during [t′+1, t−1]. Let

s ∈ [t′ + 1, t− 1] be any of the m− f time steps in [t′ + 1, t− 1] at which the number
of full machines has just increased. If the load on the least loaded machine is at most
(c− 1.5) Lm when Js is scheduled, then ps ≥ (c− 1 + ε) Lm − (c− 1.5) Lm = (1

2 + ε) Lm .
Suppose that immediately before the assignment of Js, the least loaded machine

has a load greater than (c−1.5) Lm . Let ls−1
k+1 be the load of machine Mk+1 and suppose

ls−1
k+1 = (c−1+ε+δ) Lm for some nonnegative δ. By the definition of t′, at least m−bjc

machines are full at any time in [t′, t− 1]. Thus,

Ls−1 ≥ (m− bjc)(c− 1 + ε) Lm + bjc(c− 1.5) Lm + (m− k)δ Lm

≥ (c− 1)L− 1
2bjc Lm + (m− bjc)ε Lm + δ

2L

≥ (c− 1)L− j
2
L
m + (m− j)ε Lm + δ

2L.

The second inequality follows because m−k ≥ 1
2m. Since M2’s schedule is not steady,

M2 would prefer to schedule Js on machine Mk+1 but cannot because

ls−1
k+1 + ps > c(Ls−1 + ps)/m.

Hence,

ps ≥ ( cmLs−1 − ls−1
k+1)/(1− c

m )

≥ c
mLs−1 − ls−1

k+1

≥ c(c− 1− j
2m ) Lm − (c− 1) Lm + c(1− j

m )ε Lm − ε Lm + cδ
2
L
m − δ Lm .

The load ls−1
k+1 = (c−1+ε+δ) Lm cannot be greater than (3−c−ε) Lm since otherwise we

would have, at time t− 1, m− k machines each with a load greater than (3− c− ε) Lm
and k machines each with a load of at least (c − 1 + ε) Lm , resulting in a total load
greater than L. Thus, δ ≤ 4− 2c− 2ε and

ps ≥ ((c− 1)2 − cj
2m ) Lm + (c− 1− cj

m )ε Lm + 2( c2 − 1)(2− c− ε) Lm
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= ((c− 1)2 − (c− 2)2 − cj
2m ) Lm + (1− cj

m )ε Lm

≥ 0.567 Lm + 0.442ε Lm

≥ (1
2 + ε) Lm

for all ε ≤ 0.12. Recall that our ε is at most 2− c = 0.077.
We now consider the time tm−k−bjc when exactly m− k − bjc machines are full.

Let t′′ be the earliest point of time in the interval [tm−k−bjc, tm−k] at which the

machine with the (k + 1)st smallest load has a load greater than (c− 1.5) Lm .
Lemma 8. During the time interval (t′′, tm−k], every job is scheduled on the least

loaded machine.
Proof. We first show that at any time s ∈ [t′′, tm−k], M2’s schedule is steady.

Lemma 6 implies that at time s the total load on the lightly loaded machinesM1, . . . ,Mk

is at most Ll = k(c − 1.5) Lm . By the definition of t′′, the total load on the heavily
loaded machines Mk+1, . . . ,Mm at time s is at least

Lh = (m− k − bjc)(c− 1) Lm + bjc(c− 1.5) Lm

= (m− k)(c− 1) Lm − bjc2 L
m .

We show that at time s, the total load on the lightly loaded machines is at most α
times the load on the heavily loaded machines. This holds if Ll ≤ αLh, i.e., if

k(c− 1.5) Lm ≤ k(c−1)−j/2
(c−1)(m−k) ((m− k)(c− 1) Lm − bjc2 L

m ),

which is equivalent to

(c− 1)(kbjc+ (m− k)j)− j bjc2 ≤ (c− 1)k(m− k).

This in turn holds if

jm− j2

2(c−1) ≤ k(m− k).

The left-hand side is at most 0.245m2, and the right-hand side is 1
4m

2 for even m and
at least 0.246m2 for odd m ≥ 9. Thus, at time s, M2’s schedule is steady.

Now consider job Js+1 scheduled at time s + 1. Let ls1 be the load on the least
loaded machine at time s. We have ls1 ≤ (c− 1.5) Lm . Let p be a processing time such

that ls1 + p = (c − 1.5) Lm . The property stated in Lemma 6 must also hold at time
s because the load on the lightly loaded machines M1, . . . ,Mk can only be smaller.
Thus, if Js+1 has a processing time of at most p, scheduling Js+1 on the least loaded
machine results in a total load of at most k(c−1.5) Lm on machines M1, . . . ,Mk. Since

the total load on machines Mk+1, . . . ,Mm is at least (m − k)(c − 1) Lm − bjc2 L
m , the

calculations of the preceding paragraph show that M2’s schedule must be steady after
the assignment.

Suppose that Js+1 has a processing time ps+1 > p and that scheduling Js+1 on the
least loaded machine results in a load of k(c− 1.5) Lm + δ Lm on machines M1, . . . ,Mk,
for some δ > 0. This implies that at time s + 1, the load on any of the machines
Mk+1, . . . ,Mk+bjc must be at least (c− 1.5 + δ) Lm . With the above definitions of Ll
and Lh, we conclude that after the assignment of Js+1 to the least loaded machine,
the total load on M1, . . . ,Mk is at most Ll+ δ Lm and the total load on Mk+1, . . . ,Mm

is at least Lh + bjcδ Lm . Since, for m ≥ 8, we have bjc ≥ 2 and α ≥ 1
2 , M2’s schedule
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must be steady.

Lemma 9. At time t′′ − 1, the load on machine Mk+1 is at most (c− 1.5) Lm .

Proof. If t′′ > tm−k−bjc, then the lemma follows from the definition of t′′. We
show that t′′ cannot be equal to tm−k−bjc. Recall that f ≥ m− bjc. Thus, Lemma 6

implies that at time tm−k, machine Mk−bjc+1 has a load of at most (c − 1.5) Lm . If
t′′ = tm−k−bjc, then there are bjc steps in (t′′, tm−k] at which the number of full
machines increases. By Lemma 8, at all these steps, the jobs are assigned to the least
loaded machine. Thus at time t′′, the load of machine Mk+1 cannot be greater than
the load of machine Mk−bjc+1 at time tm−k. This means that Mk+1 has a load of at

most (c− 1.5) Lm at time t′′, contradicting the choice of t′′.
Lemma 10. During time interval (0, tm−k], m− k jobs of size at least (1

2 + ε) Lm
are scheduled.

Proof. Let i be the number of machines that are full at time t′′. Consider the i
steps in (0, t′′] at which the number of full machines increases. At any of these steps,
before the assignment of the job, the load on M1 and Mk+1 is at most (c − 1.5) Lm
each; see Lemma 9. Thus jobs of size at least (c− 1 + ε) Lm − (c− 1.5) Lm ≥ ( 1

2 + ε) Lm
must be scheduled. At the m − k − i steps in (t′′, tm−k] at which the number of full
machines increases, jobs are scheduled on the least loaded machine (Lemma 8). The
least loaded machine has a load of at most (c − 1.5) Lm and we conclude again that

jobs of size at least ( 1
2 + ε) Lm must be scheduled.

Lemma 5 as well as Lemmas 7 and 10 imply the following statement.

Lemma 11. During time interval (0, t − 1], m jobs of size at least (1
2 + ε) Lm are

scheduled.

By the discussion immediately preceding section 3.2, the proof of Theorem 1 is
complete.

4. The lower bound. We develop an improved lower bound for deterministic
scheduling algorithms.

Theorem 2. Let A be a deterministic online scheduling algorithm. If A is c-
competitive for all m ≥ 80, then c ≥ 1.852.

Proof. We will construct a job sequence σ such that A(σ) ≥ 1.852 ·OPT (σ). The
job sequence consists of several rounds. We assume that m is a multiple of 40.

Round 1: m jobs with a processing time of w = 0.01.

Round 2: m jobs with a processing time of x = 0.06.

Round 3:

Subround 3.1: 19
20m jobs with a processing time of y1 = 0.282.

Subround 3.2: 1
20m jobs with a processing time of y2 = 0.4.

Round 4:

Subround 4.1: 1
2m jobs with a processing time of z1 = 0.5.

Subround 4.2: 1
4m jobs with a processing time of z2 = 1− y2 = 0.6.

Subround 4.3: 3
40m jobs with a processing time of z3 = 1− y1 = 0.718.

Subround 4.4: 3
40m jobs with a processing time of z4 = 0.84.

Subround 4.5: 1
10m+ 1 jobs with a processing time of z5 = 1.

Note that in the fourth round, m+ 1 jobs have to be scheduled.

In the following, when analyzing the various subrounds, we will often compare
the makespan produced by an online algorithm A in a subround to the optimum
makespan at the end of the subround. It is clear that the optimum makespan during
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the subround can only be smaller.

Analysis of Round 1: Clearly, in order to maintain 1.852-competitiveness, online
algorithm A must schedule the m jobs in Round 1 on different machines.

Analysis of Round 2: Algorithm A must schedule the m jobs in Round 2 on
different machines. Otherwise, A’s makespan would be at least w + 2x = 0.13. Since
the optimum makespan during the round is always at most w + x = 0.07 and 0.13

0.07 >
1.857, A would not be 1.852-competitive. At the end of the second round, A has a
load of l2 = w + x = 0.07 on each of its machines.

Analysis of Round 3: At the end of Subround 3.1, the optimum makespan is
at most x + y1 = 0.342. On each of 19

20m machines, OPT schedules an x-job and
a y1-job. The remaining 1

20m machines have an x-job and 20 jobs of size w. If A
does not schedule the jobs in Subround 3.1 on different machines, then its makespan
is at least w + x + 2y1 = 0.634 > 1.853(x + y1). The optimum makespan after
Subround 3.2 is y1 + 2x = 0.402. In an optimal schedule, 1

20m machines have a y2-
job, 1

2m machines have a y1-job and two x-jobs. The remaining machines have a y1-job
and at most three w-jobs. Online algorithm A must schedule the jobs of Subround 3.2
on different machines and these machines may not contain any y1-jobs since otherwise
A’s makespan is at least w+x+y1+y2 = 0.752 > 1.87(y1+2x). At the end of Round 3,
the least loaded machine in A’s schedule has a load of l3 = w + x+ y1 = 0.352.

Analysis of Round 4: Subround 4.1: After Subround 4.1, the optimum makespan
is y1 + y2 = 0.682. In an optimal schedule, 1

20m machines contain a y1 and a y2. 1
2m

machines contain a z1, two w and two x. 9
20m machines contain two y1. Algorithm

A must schedule all z1-jobs on different machines. Otherwise its makespan would be
at least l3 + 2z1 = 1.352 > 1.98(y1 + y2).

Subround 4.2: At the end of the subround, the optimum makespan is y1 + z1 =
0.782. In OPT’s schedule, 1

2m machines have a y1 and a z1. 1
20m machines have a

y1 and a y2. 1
5m machines have two y1, three w, and three x. 1

4m machines have a
z2 and some of them have two additional w and x. Algorithm A must schedule each
z2-job on a machine not containing any z1 or z2 jobs. Otherwise its makespan would
be at least l3 + z1 + z2 = 1.452, which is greater than 1.856(y1 + z1).

Subround 4.3: The optimum makespan after the subround is 3y1 = 0.846. In an
optimal schedule 1

2m machines have a y1, a z1, and an x. 1
4m machines have a z2,

two x, and four w. 3
40m machines have a z3. 3

20m machines have three y1. 1
40m

machines have two y2. As before, A may not schedule any z3-jobs on a machine
containing a z1, a z2, or a z3 because this would result in a makespan of at least
l3 + z1 + z3 = 1.57 > 1.855(3y1).

Subround 4.4: The optimum makespan is y2 +z1 = 0.9. In OPT’s schedule, all the
z-jobs are scheduled on different machines. 1

20m machines having a z1 also contain a
y2. (1

2 − 1
20 )m machines containing a z1 also have a y1, an x, and up to three w. The

1
4m machines having a z2 also have a y1. Machines having a z3 also have three x.
Machines having a z4 also have an x. At this point, OPT is left with 1

10m machines
on which it has to schedule 1

4m jobs with a processing time of x and 1
4m jobs with a

processing time of y1. This can be done by scheduling (a) 1
40m machines with 10 x

and one y1 each and (b) 3
40m machines with three y1. As usual, A may not schedule

a z4-job on a machine already having any z-jobs; otherwise its makespan is at least
l3 + z1 + z4 = 1.692 = 1.88(y2 + z1).

Subround 4.5: The online algorithm A must schedule one of the z5-jobs on a
machine already containing another z-job, because a total of m + 1 jobs have to be
scheduled in Round 4. This gives a makespan of at least w+x+ y1 + z1 + z5 = 1.852.
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We will show that OPT can schedule all the jobs with a makespan of 1 if m ≥ 80.
An optimal schedule is as follows. 1

10m machines have a z5. 1
4m machines have two

z1. 3
40m machines have a z4, two w, and two x. 3

40m machines have a z3 and a y1.
1
5m machines have a z2, one y1, two w, and one x. 1

20m machines have a z2 and a
y2. 9

40m machines have three y1, two w, and two x. OPT has 1
40m machines left on

which it has to schedule one z5 job and 1
5m jobs of size x. This can be done if at least

two machines are left, i.e., if m ≥ 80. OPT can use one machine for the z5-job and
the remaining machines for the x-jobs.

5. Open problems. An interesting problem is to formulate and analyze a gen-
eralization of the algorithm M2 that, at any time, is allowed to schedule a new job on
any of the m machines. In such an algorithm, the ratio of the load on the ith smallest
machine to the load on the (i+ 1)st smallest machine has to be bounded by some αi,
1 ≤ i ≤ m − 1. The problem is to specify αi’s and a proper scheduling rule that is
able to maintain these values. A first step in this direction is to maintain three sets
S1, S2, and S3 of m/3 machines with low, medium, and high loads, respectively.

More generally, with respect to the scheduling problem studied here, a fundamen-
tal open problem is to develop randomized online algorithms that achieve a competi-
tive ratio smaller than the deterministic lower bound for all m.

Appendix. We prove Lemma 2. For convenience, we state the lemma again.
Lemma A.1. If at time t′, the total load on the nonfull machines M1, . . . ,Mm−f

in M2’s schedule were greater than (c − 1.5)(m − f) Lm , then the total load at time t

would satisfy L > X + Y (1− c
m )−(bjc+1).

Proof. In order to prove the lemma, we have to keep track of the load on the m
machines during the entire time interval [t′, t]. For i = f, . . . ,m+ 1, let

Zi = X + Y (1− c
m )−(i−m+bjc).

We will show by induction on i that for i = f, . . . ,m,

Lti − Φti > Zi,(1)

where Φ is a nonnegative potential that we will define in a moment. Using the
inequality Ltm − Φtm > Zm, we will then prove L > Zm+1.

We first explain the purpose of the potential. We want to show that during the
time interval (t′, t− 1], every time another machine becomes full, a job J with a large
processing time p must be scheduled. Since, by the definition of t′, M2’s schedule is
not steady in (t′, t − 1], M2 would prefer to assign J to machine Mk+1. However,
M2 schedules J on the least loaded machine, causing another machine to become
full. This implies that an assignment of J to machine Mk+1 results in an increased
makespan that exceeds c times the average load on the machines, i.e., J ’s processing
time p must be large. In some cases, when Mk+1 has a high load, we will not be able
to argue that J ’s processing time is greater than a certain value. In these cases we
will pay some “missing processing time” out of the potential. This way we can ensure
that J ’s amortized processing time is greater than the desired value. J ’s amortized
processing time is the actual processing time plus the change in potential.

Formally, the potential Φ is defined as follows. At time t′, we color some of the
load in M2’s schedule. More precisely, on each of the machines M1, . . . ,Mk+m−f
we color the load that is above level (c − 1) Lm . We can imagine that we draw a

horizontal line at level (c− 1) Lm across M2’s schedule and color the load on machines
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M1, . . . ,Mk+m−f that is above this line. Note that this way a job might be partially
colored. During time interval (t′, t], the colored load is updated as follows.

1. Whenever M2 schedules a job that causes one more machine to become full,
we choose the least loaded machine with colored load among Mk+1, . . . ,Mm

and remove the color from its load.
2. Whenever a job is assigned to a machine with colored load, we color that job.
3. After the final job Jt is scheduled, the color is removed from all machines.

At any time, let I = {i|Mi has colored load} and let ci, i ∈ I be the amount of
the load that is colored on Mi. Define

Φ =
∑
i∈I

ci.

During the interval (t′, t− 1], the following invariants hold.

I1. Whenever M2 schedules a job that causes one more machine to become full,
there is a machine in {Mk+1, . . . ,Mm} with colored load.

I2. If a machine has colored load, then all its load above level (c−1) Lm is colored.

I3. At any time, if machine Mk+1 has load (c−1 + δ) Lm for some positive δ, then

ci ≥ δ Lm for all i ∈ I with i ≥ k + 1.
I4. At any time, there exists a machine among M1, . . . ,Mk with colored load at

least ε Lm .

Invariant I1 holds because at time t′ there are m − f machines in {Mk+1, . . . ,Mm}
with colored load, exactly m − f more jobs are scheduled in (t′, t − 1] that cause a
machine to become full, and every time this happens, by update rule 1, the number
of machines in {Mk+1, . . . ,Mm} with colored load is reduced by exactly 1. Invariant
I2 follows from update rule 2. Invariant I3 is immediate from I2. Invariant I4 holds
because initially, at time t′, we color loads on the k lightly loaded machines that are
full and these machines remain in the set of lightly loaded machines during (t′, t− 1].

Base of the induction. In order to prove inequality (1) for i = f , we have to
evaluate Lt′ , the total load on the m machines at time t′. We will show that

Lt′ − Φt′ > Zf .(2)

This implies that inequality (1) holds for i = f because, between time t′ and time
tf , the number of full machines remains the same and, whenever the load on the m
machines increases by p, the potential increases by at most p (see update rule 2).

If M2’s schedule is not steady at time t′, i.e., t′ = tm−bjc and f = m− bjc, then

Zf = X + Y = (c− 1)L− j
2
L
m ≤ (c− 1)L− bjc2 L

m .(3)

By assumption, at time t′, the load on the nonfull machines is greater than (c −
1.5)(m− f) Lm = (c− 1.5)bjc Lm = (c− 1)bjc Lm − bjc2 L

m . The load on the full machines

is at least (c− 1)f Lm + Φt′ = (c− 1)(m− bjc) Lm + Φt′ . We obtain

Lt′ − Φt′ > (c− 1)L− bjc2 L
m .(4)

Inequalities (3) and (4) give the desired bound.

We study the case where M2’s schedule is steady at time t′. The total load on
the nonfull machines is greater than (c − 1.5)(m − f) Lm . The load on each machine
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Mm−f+1, . . . ,Mk is at least (c − 1 + ε) Lm . Thus the total load Ll on the k lightly
loaded machines M1, . . . ,Mk is

Ll > (c− 1 + ε)(k −m+ f) Lm + (c− 1.5)(m− f) Lm

= (c− 1)k Lm − 1
2 (m− f) Lm + (k −m+ f)ε Lm

≥ (c− 1)k Lm − j
2
L
m + 1

2 (f −m+ bjc) Lm + (k −m+ f)ε Lm .

Note that the load (k −m + f)ε Lm will go into the potential. Since the schedule is

steady, the total load Lh on the heavily loaded machines Mk+1, . . . ,Mm is at least 1
α

times the above expression. Neglecting the term 1
α (k −m+ f)ε Lm , we obtain

Lh > (c− 1)(m− k) Lm + 1
2α (f −m+ bjc) Lm .

The load (c − 1)(m − k) Lm can fill the machines Mk+1, . . . ,Mm up to a level of

(c − 1) Lm . Of the additional load 1
2α (f − m + bjc) Lm , at least a fraction of f−k

m−k is
located on machines Mk+m−f+1, . . . ,Mm and does not go into the potential. Thus,

Lt′ − Φt′ = Ll + Lh − Φt′

> (c− 1)L− j
2
L
m + 1

2 (f −m+ bjc)(1 + 1
α
f−k
m−k ) Lm

= X + Y + 1
2 (f −m+ bjc)(1 + 1

α
f−k
m−k ) Lm .

We have to show that

1
2 (f −m+ bjc)(1 + 1

α
f−k
m−k ) Lm ≥ Y ((1− c

m )−(f−m+bjc) − 1)(5)

holds for every f ∈ {m− bjc, . . . ,m}. This proves inequality (2).
We define functions

g(x) = 1
2 (x−m+ bjc)(1 + 1

α
x−k
m−k ) Lm ,

h(x) = Y ((1− c
m )−(x−m+bjc) − 1).

The function g(x) is a polynomial of degree 2, and h(x) is an exponentially increasing
function. Obviously, g(m− bjc) = h(m− bjc) = 0. We will show that

g′(m− bjc) > h′(m− bjc)(6)

and

g(y) > h(y) for some y > m.(7)

This implies that g(x) > h(x) must hold for all x ∈ (m−bjc,m]. (If g(z) ≤ h(z) were
true for some z ∈ (m− bjc,m], then g(x) < h(x) for all x > z.)

Recall that, as mentioned in the proof of Lemma 1, α ≤ 7
10 . Also, evaluating Y

with its actual parameters gives Y ≤ 0.299L. We have

g′(m− bjc) = 1
2 (1 + 1

α
m−bjc−k
m−k ) Lm

≥ 1
2 (1 + 10

7 · m−k−bjcm−k ) Lm

≥ (17
14 − 10

7
j
m ) Lm

= 0.8 Lm .
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The last inequality holds because bjc ≤ j and m − k ≥ m/2. Also, h′(m − bjc) =
Y ln((1− c

m )−1) ≤ 0.299 Lm ln((1− c
m )−m) < 0.79 Lm . The last inequality holds because

ln((1− c
m )−m) is decreasing in m and evaluates to less than 2.63 for m ≥ 4. This shows

(6). For the proof of (7), let y = m+ j−bjc. Then g(y) ≥ 1
20.29m(1+ 10

7 ) Lm ≥ 0.35L.
Also, h(y) = Y ((1− c

m )−0.29m− 1) ≤ 0.299L((1− c
m )−0.29m− 1). The last expression

is decreasing in m and less than 0.341L for all m ≥ 4. The proof of inequality (5) is
complete.

Induction step. We show that if inequality (1) holds for i−1, then it also holds
for i. Let si be the earliest point of time when exactly i machines are full. We have
ti−1 < si ≤ ti. For all s ∈ [ti−1, si − 1],

Ls − Φs > Zi−1.(8)

This is because of the induction hypothesis and the fact that if the load on the m
machines increases by p between time ti−1 and time si−1, then the potential increases
by at most p.

Let Lsi−1 be the total load on the m machines at time si − 1 and let l = lsi−1
k+1

be the load on machine Mk+1 at time si − 1. Suppose l = (c − 1 + δ) Lm for some
δ > 0. The job Jsi that causes the ith machine to become full is scheduled on the
least loaded machine. Since M2’s schedule is not steady at time si, M2 would prefer to

schedule Jsi on machine Mk+1. Since this is not possible, condition (b) in Algorithm
M2 implies that the processing time psi of Jsi must satisfy

l + psi >
c(Lsi−1 + psi)

m
,

which is equivalent to

psi > ( cmLsi−1 − l)/(1− c
m ).

Consider the change in potential during the assignment of Jsi . Update rule 1 and
invariants I1–I3 imply that the potential drops by at least δ Lm .

psi −∆Φ > ( cmLsi−1 − l)/(1− c
m ) + δ Lm

≥ ( cm (Zi−1 + Φsi−1)− l)/(1− c
m ) + δ Lm

≥ ( cmZi−1 + cδ
m
L
m − (c− 1 + δ) Lm )/(1− c

m ) + δ Lm

= ( cmZi−1 − (c− 1) Lm )/(1− c
m )

= cY
m (1− c

m )−(i−m+bjc).

The second inequality follows because of inequality (8). The third inequality holds
because at time si− 1, there is at least one machine in {Mk+1, . . . ,Mm} with colored
load, i.e., Φsi−1 ≥ δ Lm . Thus,

Lsi − Φsi ≥ Lsi−1 − Φsi−1 + psi −∆Φ

> Zi−1 + cY
m (1− c

m )−(i−m+bjc)

= X + Y (1− c
m )−(i−m+bjc)

= Zi.

The induction step is complete because during time interval (si, ti] the inequality is
maintained.
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We finally have to prove

L > Zm+1.(9)

Our inductive proof shows Lt−1−Φt−1 > Zm. Job Jt is scheduled on the least loaded

machine and by assumption l1 + pt >
c(Lt−1+pt)

m , where l1 = (c− 1 + ε) Lm is the load
of the least loaded machine at time t − 1, i.e., immediately before Jt is scheduled.
Recall that at time t we remove the color from the load in M2’s schedule. Invariant
I4 implies that the potential at time t must decrease by at least ε Lm . Calculations
identical to that in the inductive step show inequality (9).
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Abstract. Tree-structured computations are relatively easy to process in parallel. As leaf
processes are recursively spawned they can be assigned to independent processors in a multicomputer
network. However, to achieve good performance the on-line mapping algorithm must maintain load
balance, i.e., distribute processes equitably among processors. Additionally, the algorithm itself must
be distributed in nature, and process allocation must be completed via message-passing with minimal
communication overhead.

This paper investigates bounds on the performance of deterministic and randomized algorithms
for on-line tree embeddings. In particular, we study trade-offs between computation overhead (load
imbalance) and communication overhead (message congestion). We give a simple technique to derive
lower bounds on the congestion that any on-line allocation algorithm must incur in order to guarantee
load balance. This technique works for both randomized and deterministic algorithms. We prove
that the advantage of randomization is limited. Optimal bounds are achieved for several networks,
including multidimensional grids and butterflies.
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1. Introduction. Tree-structured computations arise naturally in diverse ap-
plications of the divide-and-conquer paradigm, for example, N -body simulations, the
evaluation of functional expressions, backtrack searches, and branch-and-bound pro-
cedures. As the computation evolves, the corresponding tree grows and shrinks. Each
node of the tree can recursively spawn subprocesses and communicate with its par-
ent. The most significant feature of tree computations is that each node can spawn
children independently of and therefore in parallel with other nodes.

How do we exploit this inherent parallelism on a multicomputer network con-
taining as few as 2 or as many as 100,000 processors? For maximum speedup, the
processes must be evenly distributed in the network. If neither the structure nor the
size of the tree can be predicted at compile time, then a reasonable strategy might be
to assign each newly spawned process to a randomly chosen processor. This gives even
load distribution with high probability. Unfortunately, it also causes large congestion;
many processes are spawned simultaneously and each sends startup information to
its assigned processor over a long distance in the network. For any given network,
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one might reasonably suspect a trade-off between computational overhead (poor load
distribution) and communication overhead (high congestion).

For the boolean hypercube and its derivative networks, e.g., the butterfly and
cube-connected-cycle networks, simple and efficient algorithms have recently been
developed and analyzed [1, 4]. These algorithms map processes to randomly chosen
processors, but the random choice is confined to processors within a short distance
from the spawning processor. In particular, every N -node tree can be dynamically
spawned within the N -node hypercube so that, with high probability, each processor
receives O(1) tree nodes and such that the maximum congestion in the network is O(1)
[4]. Using this randomized tree embedding technique for butterfly, Ranade showed
that optimal speedup can be achieved for backtrack search problems [6].

For the complete network Karp and Zhang showed that by assigning newly gen-
erated branch-and-bound tree nodes to random processors, the parallel branch-and-
bound algorithm achieves linear speedup with high probability [3, 10]. The analysis
in [3] was later simplified by Ranade [5].

In this paper we extend our study of on-line embeddings to additional multi-
computer networks. We derive lower bounds on the congestion that any on-line,
deterministic algorithm must incur in order to guarantee load balance. The bounds
are tight, to within constant factors, for several networks, including multidimensional
grids and butterflies. The deterministic lower bound for butterflies contrasts sharply
with previous randomized upper bounds [4]. We also adapt the techniques of [4] to
develop a randomized algorithm for grids and show that its performance is better than
the deterministic lower bound. Finally, we give tight lower bounds on the expected
congestion for randomized algorithms.

Our lower bounds are all based on the simpler problem of allocating tree nodes to
two processors. It is well known that bounded-degree trees have small separators, and
this seems to suggest that only a small amount of communication should be needed
to distribute tree nodes evenly. Nevertheless, we show that, even in the simple case
of two processors, large communication overhead is inevitable for balanced on-line
embeddings.

The remainder of this paper is organized as follows. Section 2 defines the on-line
embedding model and the cost measures studied in this paper. Section 3 presents
lower bounds for deterministic algorithms. Section 4 discusses a deterministic off-line
algorithm that embeds dynamic trees under a strict balance requirement. Section 5
presents randomized algorithms with improved performance. Section 6 presents lower
bounds for randomized algorithms. Section 7 concludes the paper.

2. Models. We model the problem of growing trees on networks as an on-line
embedding problem. Informally, the on-line tree embedding problem may be described
as follows. We start with the root of a binary tree placed at some node of a multi-
computer network. At any instant, each node with 0 or 1 child may choose to spawn a
new child. Each newly spawned child must be assigned to a network node, and a path
in the network must be chosen from the parent node to the child node. Furthermore,
the decision of where to place the newly spawned child must be entirely local, i.e.,
the embedding algorithm can perform only local computations and no global data
structures are allowed.

The on-line embedding algorithm is further constrained in that processes cannot
migrate. Once embedded, a tree node cannot subsequently be moved to a differ-
ent node in the network. These requirements are critical for fine-grain multicom-
puters [8]. Disallowing process migration is a common policy in practice; migra-
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tion can conceivably lead to thrashing and thus cripple a large multicomputer net-
work.

This framework for maintaining a dynamically evolving tree differs substantially
from a model studied recently by Wu and Kung [9]. The latter model allows for a
global data structure which all processors can access simultaneously. Moreover, newly
spawned nodes do not need to be assigned processors immediately; the allocation can
be deferred until some processor becomes idle. While the arguments and techniques
used to prove tight upper and lower bounds are not affected drastically, the resulting
bounds are substantially different.

2.1. Growth sequences. Although many tree nodes can spawn children simul-
taneously, it will suffice for our lower bound arguments to assume that the tree grows
one node at a time. Formally, an instance of the on-line tree embedding problem is
a sequence of directed edges, ei = (wj , wi), 1 ≤ j < i, in which wi is the ith node
spawned and has parent wj . Node w1 is the root. A growth sequence is a sequence
of edges such that for each k the set {ei : i ≤ k} of edges forms a directed tree with
each node having outdegree at most two.

The restriction to binary trees is arbitrary, any bounded degree would do, but
since the networks we consider have bounded degree, trees with unbounded fanout
lead, uninterestingly, to poor worst-case performance.

2.2. Embeddings and their quality. An embedding of a tree T in a network
H is a mapping of nodes of T to vertices of H, together with a mapping from edges
of T to paths in H. The mapping of nodes is not required to be one-to-one; multiple
processes can share the same processor. An on-line embedding induced by a growth
sequence is a sequence of embeddings in which each embedding is an extension of the
previous one. This enforces the policy of disallowing process migration.

Two standard measures of the quality of an embedding are dilation and con-
gestion. The dilation of an embedding is the maximum path length in the network
corresponding to an edge of T . The congestion of an embedding is the maximum
number of edges of T whose images traverse any edge in H.

An embedding of a k-node tree is said to be α-balanced, α ≥ 1, if no more than
αdk/P e tree nodes are assigned to any of the P nodes of H. The overloading factor,
α, is typically a small constant, independent of P , the size of the network.

In some tree-structured computations, the computational activity is limited to
the leaves of the tree. In such cases, it is important only to evenly distribute the
leaves within the network. An on-line embedding of a tree with ` leaves is said to be
α-balanced on the leaves, α ≥ 1, if no more than αd`/P e leaves are assigned to any of
the P processors of the network.

Finally, an on-line embedding for a growth sequence ρ is continuously α-balanced
if for every i the ith embedding (induced by the first i elements of ρ) is α-balanced.
On the other hand, if only the final embedding in the sequence is α-balanced, then
we say that the on-line embedding is terminally α-balanced. Obviously, terminal
balance is a weaker requirement than continuous balance. Also note that in order to
distinguish the two balance requirements under the on-line model, the length of the
growth sequence will be given to the embedding algorithms.

3. Deterministic lower bounds. For a given embedding of a tree T , an edge
e = (u, v) in T is said to be a cut edge if the end points u and v of e are mapped
to distinct processors. Each cut edge corresponds to a child spawned at a remote
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processor, thus requiring communication through the network. The number of cut
edges can critically affect congestion.

3.1. Lower bound on two processor cut edges. Given a deterministic on-
line algorithm we show how to construct an N -node binary tree for which the al-
gorithm either requires Θ(N) cut edges or fails to achieve terminally α-balanced for
α < 2. We describe an adversary which progressively grows a tree such that if the
algorithm does not use many cut edges, then the final embedding will not be balanced.

On-line allocation for two processors is equivalent to coloring each tree node
either black or white. Without loss of generality, suppose that the root is colored
black. The adversarial tree construction works in phases. In the first phase, we spawn
two children from every black node. This phase ends when all the leaves are white.
Phase 2 continues with this strategy of spawning from one color only, spawning two
children from every white node until all the leaves are black. The tree is grown in
this “layer-by-layer” method, producing leaves of alternating colors at the ends of
successive phases.

Since the two-coloring algorithm is deterministic, the color committed on-line to
each newly spawned node is “known,” i.e., computable by the adversary constructing
the growth sequence. Thus for each possible deterministic algorithm the adversary
can produce a well-defined tree.

We will show that the number of cut edges grows linearly with the size of the
adversarial tree under the requirement of terminal balance. The proof is based on the
following observation. At the end of every phase, each leaf is connected to its parent
by a cut edge. Since every internal node has two children, more than half the edges
of the tree (those incident to leaves) are cut edges.

We use the following terminology. A tree node is in layer i if the path from the
root to the node contains i − 1 cut edges. Let ni be the number of nodes in layer i.
Each node spawned during phase i lies either in layer i or in layer i+ 1.

Lemma 3.1. For every deterministic algorithm A, α < 2, and ε < (2 − α)/4
there exists a growth sequence ρ of length N > α/(2−α− 4ε) such that if the on-line
embedding of ρ is terminally α-balanced, then the number of cut edges is greater than
εN .

Proof. We consider two cases: either the embedding of ρ is completed before
phase 1 terminates or the embedding is completed in a later phase.

The embedding is completed before phase 1 terminates. In this case every white
node is a leaf and the number of cut edges equals the number of white leaves. In order
to maintain terminal balance, there must be at least N − αdN/2e white nodes. This
number is greater than N−α(N/2+1/2), which exceeds εN when N > α/(2−α−4ε).
Therefore there are at least εN cut edges.

The embedding is completed during phase k, k > 1. Let ni be the number of
nodes in layer i. We again distinguish between two subcases: either

∑k−1
1 ni ≥ εN

or
∑k−1

1 ni < εN .

When
∑k−1

1 ni ≥ εN .
We first observe that every node in layer k − 1 is an internal node. Together
with the fact that every internal node has two children, we conclude that
there are 1 +

∑k−1
1 ni cut edges, each connecting a node in layer k − 1 to a

node in layer k. Thus, in this subcase the number of cut edges is greater than
εN .

When
∑k−1

1 ni < εN .
In this subcase nk+nk+1 > N(1−ε). From the terminal balance condition, we
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also have nk < αdN/2e. These two imply that nk+1 > N(1− ε)− αdN/2e >
N(1− ε− α/2)− α/2 > εN when N > α/(2− 4ε− α). Since the embedding
terminated during phase k, and before phase k+1 began, it follows that every
node in layer k + 1 is a leaf that is connected to its parent by a cut edge.
From the preceding argument, it again follows that the number of cut edges
is greater than εN .

Lemma 3.1 implies that every deterministic, on-line, load-balancing algorithm
requires a linear number of cut edges on some finite sequence. This lower bound for
terminally balanced algorithms holds for continuously balanced algorithms as well.

3.2. Multiple processors. As we show in this section, Lemma 3.1 can be ex-
tended in a straightforward manner to any bounded number of processors. With
P colors (processors) instead of two, we use a construction similar to the one in
Lemma 3.1. The only difference is that each phase grows only one subtree, rooted
at a leaf grown in the previous phase. Each phase ends when all the leaves grown
during that phase are colored differently from the root of the subtree. We also use
the same terminology. A tree node is in the layer i if the path from the node to the
root contains i− 1 cut edges. The symbol ni denotes the number of nodes in layer i.

Lemma 3.2. For every deterministic algorithm A, P ≥ 2, α < P , and ε <
1
2 (1 − α/P ) there exists a growth sequence ρ of length N > α/(1 − 2ε − α/P ) such
that if the on-line embedding of ρ is terminally α-balanced among P processors, then
the number of cut edges is greater than εN .

Proof. We consider two cases: the construction of ρ ends either in the first phase
or in a later phase.

The construction ends in the first phase. In this case every node in the second
layer has a cut edge to its parent. In order to maintain terminal α-balance, the number
of nodes in the second layer must be at least N − αdN/P e. Therefore the number of
cut edges is at least N −αdN/P e > N −α(N/P +1) > εN when N > α/(1−2ε− α

P ).
The construction ends during the kth phase for k > 1. Let Tk be the subtree

constructed during the kth phase, and let r ∈ Tk be the root of Tk. Tk is partitioned
into two subsets, L and R. L is the set of nodes which are in layer k+1 and R = Tk−L.
Notice that L contains only leaves of Tk since ρ ends in phase k.

Every node in the tree induced by ρ− Tk has 0 or 2 children (except the parent
of r); hence the number of leaves in ρ − Tk is 1

2 (N − |Tk|). Additionally, every leaf
in (ρ − Tk) ∪ L has a cut edge to its parent, so the number of cut edges is at least
1
2 (N − |L| − |R|) + |L| ≥ 1

2 (N − |R|). Therefore, by bounding the size of R we get

a lower bound on the number of cut edges. The size of R is at most αdNP e because
it consists of only one color (the color of r). Therefore the number of cut edges is at
least 1

2 (N − |R|) ≥ 1
2 (N −αdNP e) ≥ 1

2 (N −α(NP + 1)) ≥ N
2 (1−α/P )− α

2 > εN when
N > α/(1− α

P − 2ε).
As mentioned in the previous section, in some tree-structured computations it

is important to evenly distribute only the leaves of the tree. We next generalize
Lemma 3.2 to get a lower bound on the number of cut edges when only the leaves
need to be terminally balanced.

Lemma 3.3. For every deterministic algorithm A, P ≥ 2, α < P , and ε <
1
2 (1− α

2P ) there exists a growth sequence ρ of length N > 2α/(1− α
P − 2ε) such that

if the on-line embedding of ρ is terminally α-balanced on the leaves, then the number
of cut edges is greater than εN .

Proof. We use the adversarial strategy in Lemma 3.2 to grow a tree with N nodes,
N > 2α/(1 − α

P − 2ε). In order to simplify the calculation, we assume, without loss
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of generality, that N is even so that there are exactly N/2 leaves in the N -node tree.
In the N -node tree grown by the adversary, let S denote the set of leaves which

have the same color as their parents. Every leaf that has the same color as its parent
must have been spawned in the last phase. Every leaf not in S is connected to its
parent by a cut edge so that the number of cut edges is at least N/2− |S|.

Since all leaves in S are grown in the same phase, they have the same color as the
root of the subtree that is grown during that phase. In order to satisfy the terminal α-
balance requirement on the leaves, the size of S is at most αd N2P e. Hence the number

of cut edges is at least N/2 − |S| ≥ N/2 − α( N2P + 1) ≥ N(1
2 − α

2P ) − α ≥ εN when
N > 2α/(1− α

P − 2ε).

3.3. Lower bounds on network congestion and dilation. The lower bound
of Lemma 3.2 on the number of cut edges required by any deterministic algorithm
for P processors can be used to derive lower bounds on the worst-case congestion
and dilation in different networks. In this section we derive tight lower bounds for
multidimensional grids and butterfly networks.

We partition the given P -processor network into B blocks of equal size. We
refer to an edge that connects processors in different blocks as a cross-link. An α-
balanced embedding of an N -node tree assigns at most αN/B tree nodes per block;
for convenience we let N be a multiple of P so that all divisions are exact. For any
specified α, we choose B such that α/B < 1 so that each block in the partition can
receive at most a small fraction of the tree nodes.

By Lemma 3.2, in the worst case, Ω(N) edges of the tree must be cut. If there
are C cross-links in the network partition, then some cross-link must accommodate
Ω(N/C) cut edges of the tree, causing congestion Ω(N/C). Observe that an upper
bound on C yields a lower bound on congestion.

By removing the edges in every
√
P/Bth column, the P -node two-dimensional

grid can be partitioned into B blocks of equal size with B
√
P cross-links. Conse-

quently, the congestion is Ω(N/
√
P ). For the P -node butterfly C = O(P/ logP )

when the edges at every O((logP )/B)th level are removed; therefore, the congestion
is Ω(N logP

P ).
It is equally easy to obtain lower bounds on dilation. For a partition of the network

into blocks, define the boundary of a block to be the set of processors incident to cross-
links. Furthermore, let nd be the number of processors within distance d from the
boundary. Observe that in any embedding with dilation d every tree node incident
to a cut edge must lie within distance d from a boundary node of some block. Since
there are Ω(N) cut edges in the worst case, the total number of network nodes within
distance d of boundary nodes must be large enough to accommodate Ω(N) tree nodes.

By removing the edges in every
√
P/Bth column, the P -node two-dimensional

grid can be partitioned into B blocks of equal size so that nd = Θ(d
√
P ) for each

block. From the balance constraint each processor has at most αdN/P e tree nodes.
In order to accommodate Ω(N) tree nodes, it follows that d = Ω(

√
P ). Similarly,

by removing the edges at every O((logP )/B)th level, the P -node butterfly can be
partitioned so that nd = Θ(dP/ logP ). It follows that for the butterfly, d = Ω(logP ).

These lower bounds can be matched by deterministic algorithms, which map
tree nodes to processors in a round-robin manner so that the tree nodes are evenly
distributed. First, we observe that the lower bound on dilation is already a constant
factor of the diameters of the corresponding networks; therefore the dilation upper
bounds immediately follow. Next, we choose the route that connects adjacent tree
nodes. For the two-dimensional grids the algorithm picks the direct route from a
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parent tree node to its children that makes at most one turn in the grid. As a result
a tree edge whose image goes through a horizontal network link will have at least
one endpoint embedded in the same row of processors as the communication link.
Since the number of tree nodes embedded into a row of processors is O(N/

√
P ) from

the balance requirement, we conclude that the congestion on every horizontal link is
O(N/

√
P ). A similar argument holds for vertical links, and the congestion bound

follows. For butterfly networks we use standard off-line routing algorithms to meet
the O(N logP

P ) congestion bounds.
The lower bounds on congestion and dilation for two-dimensional grids discussed

above extend in a straightforward manner to grids with multiple dimensions. We
summarize our observations in the following theorem.

Theorem 3.4. For every deterministic algorithm A and constant α > 1, there
exists a growth sequence ρ of length N (N sufficiently large) such that if the on-line
embedding of ρ is terminally α-balanced, then (1) on the P -node, k-dimensional grid
(constant k) the dilation is Ω(P 1/k) and the congestion is Ω(N/P 1−1/k), and (2) on
the P -node butterfly the dilation is Ω(logP ) and the congestion is Ω(N logP

P ).

3.4. Infinite growth sequences. In the previous sections we have shown that
every deterministic, balanced (either terminally or continuously) algorithm is required
to make Ω(N) cuts on some growth sequences of sufficiently large length N . Turning
the question around, one is led to ask if there is a growth sequence which is universally
bad in the sense that every balanced algorithm is forced to make linearly many cuts.

As we will see in the next section, for every length-N growth sequence there
is an off-line algorithm which is continuously α-balanced between two processors for
1 < α < 2 and requires only O(log2N) cut edges. However, in this section we show the
existence of an infinite growth sequence on which every on-line continuously balanced
algorithm requires, infinitely often, linearly many cut edges. Formally, we establish
the following theorem.

Theorem 3.5. There exists an infinite growth sequence φ∗ such that for every
overloading factor 1 < α < 2 every on-line deterministic algorithm A which produces a
continuously α-balanced embedding on two processors will, on infinitely many prefixes
φ1, φ2, . . . of lengths N1, N2, . . . , make at least εNi cuts with ε = α(2− α)/4(2 + α).

Before proceeding to the proof of the above theorem, we explain the idea behind
the proof. The infinite sequence is constructed using a standard diagonalization argu-
ment that invokes Lemma 3.1 repeatedly. We begin with an enumeration, (A1,A2, . . .)
of all algorithms as a sequence in which every algorithm appears infinitely often.

The universal growth sequence is constructed in stages. The portion constructed
in phase i is denoted φi, and the entire growth sequence at the end of phase i is
denoted Gi so that G0 consists of the root of the tree and Gi = Gi−1 ◦φi for i > 0 (the
symbol ◦ denotes concatenation). The idea is to construct φi such that algorithm Ai
requires linearly many cuts on Gi. Since the number of cuts made by Ai on the initial
prefix Gi−1 can be very small, we make φi large enough so that the number of cut
edges forced in φi is a fraction of the length of Gi. This latter idea is formalized in
the following lemma.

Lemma 3.6. Suppose that A is a continuously α-balanced, deterministic algorithm
(α < 2) and that φ is a growth sequence of length n. Then for every N > 2αn/(2−α)
there is a growth sequence φ ◦ ρ of length n+N on which A makes at least ε(N + n)
cut edges, where ε = α(2− α)/4(2 + α).

Proof. For ease of exposition, we assume that N + n is even. We use Lemma 3.1
to grow the sequence ρ of length N from a leaf of φ. We define layers on the subtree
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induced by ρ as in Lemma 3.1 and use ni to denote the number of nodes in layer i of ρ.

We consider two cases: either the embedding of ρ is complete before phase 1
terminates or the embedding is completed during phase k, k > 1.

The embedding is complete before phase 1 terminates. In this case, every node in
the second layer is incident to a cut edge, so the number of cut edges in ρ equals n2.
In order to maintain α-balance, the number of nodes n2 must be at least N−αdN+n

2 e.
Therefore, the number of cut edges is at least N − α(N+n

2 ). Since N > 2αn/(2− α),
we have that N > 2α(N +n)/(2 +α) so that the number of cut edges is greater than
α(2− α)(N + n)/2(2 + α) = 2ε(N + n).

The embedding is complete after phase 1 terminates. We further divide the second
case into two subcases, depending on whether

∑k−1
1 ni ≥ ε(N + n) or

∑k−1
1 ni <

ε(N + n).

When
∑k−1

1 ni ≥ ε(N + n).
In this subcase, every node in the first k−1 layers is an internal node and has
two children, so the number of cut edges between layers k and k − 1 equals∑k−1

1 ni + 1, which exceeds ε(N + n).

When
∑k−1

1 ni < ε(N + n).
In this subcase nk + nk+1 > N − ε(N + n). From the balance condition we
have that nk ≤ αdN+n

2 e so that nk+1 > N − ε(N +n)− α
2 (N +n). Using the

inequality N > 2α(N+n)/(2+α), it follows that nk+1 > ( 2α
2+α−ε− α

2 )(N+n),
which exceeds ε(N + n).

Proof of Theorem 3.5. Theorem 3.5 follows from applying Lemma 3.6 in the
diagonalization argument outlined earlier with ε = α(2− α)/4(2 + α).

4. Deterministic algorithm for off-line model. In the off-line model the
entire growth sequence is given in advance. The off-line embedding algorithm can
preprocess this sequence to produce a sequence of embeddings. Since bounded-degree
trees have small separators, terminal balance is easy to guarantee between two pro-
cessors. The more interesting case is when the off-line algorithm is required to be
continuously balanced.

Our off-line upper bound contrasts sharply with the on-line lower bound. An N -
node binary tree can be partitioned into two subsets, each containing at least bN/3c
nodes, by removing a single edge. Therefore an embedding algorithm can, by making
a single cut edge, guarantee terminal 4

3 balance between two processors. Of course,
this is possible only if each edge has a distinct identity which can be recognized by
the algorithm when the child node adjacent to the edge is spawn.

Less trivially, we can show that for every α, every length-N growth sequence
can be continuously α-balanced between two processors with O(log2N) cuts for any
1 < α < 2. This is achieved using multicolor bisectors [2].

Lemma 4.1 (see [2]). The nodes of every N-node binary tree, each of whose nodes
has one of k distinct colors, can be bisected into two equal-size (to within one) subsets
by removing at most k logN edges. Furthermore, for each of the k colors the set of
all nodes of the same color are divided equally (to within one) between the two subsets
in the bisection.

The algorithm first partitions the input growth sequence ρ into groups of con-
secutively spawned nodes. The partition {Vi} with Vi of size Ni is determined as
follows: The first N1 nodes in the growth sequence are placed in the first partition V1.
The number N1 is chosen to be an even number greater than 2/γ, where γ = 2α−2

2−α .
The second group V2 contains the next N2 nodes; N2 is chosen to be the largest even
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number no greater than γN1. In general, Vi contains Ni tree nodes, where Ni is the
largest even number no greater than γ

∑i−1
j=1Nj .

Once the partition is formed, the off-line algorithm applies Lemma 4.1 to the
input tree in which every node in Vi has color i. When the tree is processed on-line,
edge by edge, the new child is allocated depending on whether the current edge lies in
the separator set S. If it does, the child is placed in the remote processor; otherwise,
it is placed in the same processor as the parent.

We now show that this algorithm maintains continuous α-balance. We first bound
the number of groups in the partition. To this end, define a sequence, {Mi}, such

that M1 = N1 and Mi = γ
∑i−1
j=1Mj for all i ≥ 2.

Lemma 4.2. Mi = γN1(1 + γ)i−2 for i ≥ 2.
Proof. This lemma is proved by induction on i. Since M2 = γN1, the basis i = 2

is established. For the inductive step

Mi+1 = γ
i∑

j=1

Mj

= γ
i−1∑
j=1

Mj + γMi

= Mi + γMi

= (1 + γ)Mi

= γN1(1 + γ)i−1.

Since for every i ≥ 2, Ni equals the largest even integer no greater than Mi, we
can bound each Ni from below as follows.

Lemma 4.3. Ni > Mi − 2(1 + γ)i−2 for i ≥ 2.
Proof. This lemma is proved by induction on i. Again, N2 > M2−2 by definition,

so the basis is established. For the inductive step,

Ni+1 > γ
i∑

j=1

Nj − 2

> γ
i∑

j=1

Mj − γ
i∑

j=2

2(1 + γ)j−2 − 2

= γ
i∑

j=1

Mj − 2γ

i−2∑
j=0

(1 + γ)j − 2

= Mi+1 − 2(1 + γ)i−1.

Lemma 4.4. The above off-line algorithm partitions any length-N growth sequence
into O(logN) groups and produces O(log2N) cut edges.

Proof. From Lemmas 4.2 and 4.3, we conclude that Ni > (γN1− 2)(1 + γ)i−2 for
all i ≥ 2. With N1 > 2/γ, it follows that the sequence {Ni} increases exponentially,
so the number of groups in the partition is bounded by O(logN). Since the number
of colors is bounded by O(logN), the resulting bisector S contains O(log2N) edges
as seen in Lemma 4.1.

We formally establish the continuously balancing property for the above off-line
algorithm in the following theorem.
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Theorem 4.5. For every growth sequence ρ of length N and 1 < α < 2, the off-
line algorithm requires at most O(log2N) cut edges and is continuously α-balanced
between two processors for all prefixes of ρ of length M > N1 (where N1 is as defined
above).

Proof. The number of cut edges is bounded in Lemma 4.4. Since exactly half of
the tree nodes in every Vi are assigned to each processor, the numbers of nodes in
both processors are always equal at the end of every Vi; therefore we need to show
only that the algorithm gives a continuously α-balanced embedding while processing
every Vi. First, every Vj , 1 ≤ j ≤ i − 1, is perfectly balanced, so the number of
white nodes equals the number of black nodes just before Vi is processed. Second, the
number of white nodes in Vi equals the number of black nodes. Independent of the
order in which the white and black nodes within Vi appear, we claim that α-balance
is always guaranteed. To see this, consider the extreme case in which all the black
nodes appear before the white nodes. The total number of black nodes after half the
nodes in Vi appear equals 1

2 (
∑i−1
j=1Nj) + 1

2Ni. We claim that this is no more than

the quantity allowed under α-balance, which equals α
2 (
∑i−1
j=1Nj +Ni/2). To see this,

consider the difference

α

2

i−1∑
j=1

Nj +Ni/2

− 1

2

i−1∑
j=1

Nj

− 1

2
Ni

=
α− 1

2

i−1∑
j=1

Nj − 1− α/2
2

Ni

≥ α− 1

2

i−1∑
j=1

Nj − 2− α
4
· 2α− 2

2− α
i−1∑
j=1

Nj

= 0.

5. Randomized algorithms.

5.1. n-way balancing. The key tool for our randomized algorithms is the n-
way balancing transformation [4], which evenly distributes a binary tree of size N into
a ring of n = logN processors. The n-way balancing transformation works as follows.
A tree node is distinguished if it is in level i ≡ 0 mod n/3. For each distinguished
node v we pick a random number S(v) between 0 and n/3 as the stretch count. The
transformation inserts a single dummy node in each edge in the subtree of height
S(v) rooted at v. The resulting tree after this transformation is denoted by B(T ).
Define level set i to be the set of all tree nodes in a level congruent to i modulo n.
Let the processors of the ring be p0, p1,. . . , pn−1 in clockwise order. The algorithm
embeds the tree nodes in level set i of B(T ) into processor pi. Figure 5.1 illustrates
an example of six-way balancing.

This transformation embeds every sufficiently large binary tree into a ring evenly
with high probability and with dilation two, since at most one dummy node will be
inserted into each edge in T .

Lemma 5.1 (see [4]). With probability 1 − N−c, c > 0, the above logN -way
balancing algorithm dynamically embeds every N -node tree into the logN -node ring
so that O(N/ logN) tree nodes are mapped to any ring node.

When the number of processors in the ring is less than logN , we instead map a
virtual logN -length ring onto our smaller ring. In particular, with two processors the
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B(T)T

0

121

Fig. 5.1. A 6-way balancing example taken from [6]. The solid circles indicate where the dummy
nodes will be inserted, and the numbers next to the distinguished nodes are the stretch counts.

first half of the virtual ring is mapped to one node and the second half to the other.
Since the dilation of the mapping on the virtual ring is two, only the eight nodes of
the virtual ring within distance two of the breaks contribute to the cut edges. Since
these eight nodes contain at most O(N/ logN) tree nodes, the number of cut edges is
bounded by O(N/ logN).

When the number of processors in the ring exceeds logN , we divide the ring into
logN groups, each containing an equal number of consecutive processors. We use
logN -way balancing to assign tree nodes to groups, and a deterministic strategy is
used within each group to distribute nodes evenly in a group. For the P -node ring,
the dilation is bounded by O(P/ logN) because each tree edge traverses at most three
groups. The bound on dilation is optimal; any mapping of the N -node complete bi-
nary tree on the P -node ring requires dilation Ω(P/ logN). From the dilation result,
for any link l in the ring, only those processors that are within distance O(P/ logN)
can contribute congestion on l. Each processor can have at most O(N/P ) tree nodes
in a balanced embedding, and each tree node has at most three edges; therefore, the
congestion is O(N/ logN) for any link in the ring. The congestion is a factor of logN
less than the worst-case lower bound for deterministic on-line algorithms and matches
the lower bound, shown in section 6, on the expected value of the congestion for any
randomized algorithms.

5.2. Cut-edges reduction. Suppose that we wish to equitably allocate the tree
nodes on-line among P processors with the goal of minimizing the total number of cut
edges. When P is any fixed constant, the strategy mentioned above uses O(N/ logN)
cuts. However, when P is logN , each of the N − 1 edges is cut. By modifying the
logN -way balancing technique slightly, we can reduce the total number of cuts to
O(N/ log N

P ). As we will see in the next section, this bound is the best possible.

We modify the algorithm so that we choose ε so 1 > ε > 0, and for each node
in every ε log N

P th level set of the transformed tree, we map it to a processor chosen
uniformly at random among the P processors. We call these nodes leaders. Those
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nodes not in these level sets are embedded into the processor where their parents
are embedded. We show that with high probability this algorithm gives balanced

embedding and optimal number of cut edges when P = O(N/ log
1

1−ε N).
We need the following lemma [4], which states that with high probability the sum

of independent random variables is at most a constant times their expected sum.
Lemma 5.2 (see [4]). Let x1, . . . , xm be independent random variables in the

range from 0 to V with E(xi) = µi. Let X =
∑
xi, and let µ =

∑m
i=1 µi = E(X).

Then for any constant β, Pr(X ≥ βµ) ≤ exp(−β µV ).
Theorem 5.3. With probability 1−N−c, c > 0, the above algorithm dynamically

embeds every N -node binary tree into P processors, where P = O(N/ log
1

1−ε N) so
that O(N/P ) tree nodes are mapped to any processor and the number of cut edges is
O(N/ log N

P ).
Proof. First we estimate the number of cut edges. Since only edges at every

ε log N
P th level of B(T ) are cut, from Lemma 5.1 the total number of cut edges is

O(N/ log N
P ). This bound matches the lower bound on the expected number of cut

edges, as we will see in the next section.
Let l = ε log N

P . The transformed tree is divided into m subtrees, t1, . . . , tm, by
cutting the edges between levels k l and k l− 1 (for any integral k). Each ti is rooted
at a leader, and every node in ti will follow this leader to a processor. Let Mi be the
number of nodes in ti and xi,p be the number of tree nodes in ti that will be mapped
into a particular processor p. We denote the total number of tree nodes assigned to p
by Xp =

∑m
i=1 xi,p.

The contributions from each subtree to any processor are independent and occur
with equal probability. Therefore for all i, 1 ≤ i ≤ m, E(xi,p) = Mi/P and E(Xp) =
N/P . Moreover, all xi,p’s are mutually independent, and since each tree contains
at most the number of nodes in a complete binary tree of height ε log N

P , all xi,p ≤
2ε log N

P = N
P

ε
. Applying Lemma 5.2 we get

Pr

(
X ≥ αN

P

)
= Pr(X ≥ αE(X))

≤ exp

(
−α (NP )

(NP )ε

)

= exp

(
−α(

N

P
)1−ε

)
≤ exp(−c′(log

1
1−ε N)1−ε)

< N−c
′
.

With probability 1 − PN−c
′ ≥ 1 − N−c, every processor receives O(N/P )

tree nodes when P = O(N/ log
1

1−ε N). For larger values of P , the same bound is
achievable, but the algorithm becomes more complicated and requires global
information.

5.3. Two-dimensional grids. Any embedding of the N -node complete binary
tree in the P -node two-dimensional grid with at most O(N/P ) tree nodes per grid
node requires dilation Ω(

√
P/ logN) [7]. This follows from the fact that in any such

embedding, some pair of tree nodes must be mapped distance Ω(
√
P ) apart, while

the distance in the tree between the two nodes is O(logN). This lower bound on
dilation is tight for off-line embeddings. In the previous section we saw that every
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on-line deterministic algorithm that balances the load requires dilation Ω(
√
P ) in the

worst case. In this section we present a randomized algorithm which achieves the
O(
√
P/ logN) bound.

We shall see in section 6 that the expected value of the congestion is Ω( N√
P logN

).

The randomized algorithm presented here will meet this bound.

5.3.1. Randomized algorithm for two-dimensional torus. For convenience,
we work with the two-dimensional torus instead of the grid. Since the two-dimensional
torus can be embedded efficiently within the grid, our bounds for the torus are tight
to within a constant factor for the grid.

Our randomized algorithm for the torus extends the previous algorithm for rings.

We partition the P -node torus into log2N square blocks, each of size
√
P

logN by
√
P

logN .

The block in row i and column j is denoted by Bij . We use the (logN)-way balancing
transformation twice, independently for each dimension, to obtain two trees, Tr and
Tc. The random stretch counts in the two trees are chosen independently. Every node
that is in level set i of Tr and level set j of Tc is mapped to Bij . Within a block the
tree nodes are distributed evenly in a deterministic manner.

Lemma 5.4. With probability 1 − N−c, c > 0, the above algorithm dynamically
embeds every N -node tree T in the

√
P ×√P grid so that each block column receives

O( N
logN ) tree nodes.

Proof. The proof of this lemma results directly from Lemma 5.1.

After knowing that each column receives O(N/ logN) nodes, we show that within
a column, the distribution to a particular block is the sum of many mutually indepen-
dent random variables. Then by using Lemma 5.2 we can show that the algorithm
distributes nodes evenly among the blocks in a column.

Lemma 5.5. Given that each column receives O(N/ logN) tree nodes with prob-
ability 1−N−c, c > 0, the above algorithm dynamically embeds every N -node tree T
in the

√
P ×√P grid so that each block receives O( N

log2 N
) tree nodes.

Proof. The analysis and terminology follows the analysis and terminology in [4]
quite closely.

We will examine how tree nodes are distributed among the blocks in one column.
Let column i be the block column with the largest number of tree nodes, let I be the
set of nodes from T that are in block column i, and call any node in I an i-node.
Note that all the i-nodes are in the level set i of Tc.

Recall that n = logN . Tree T is divided into three zones. Zone 0 contains nodes
that are in level sets 0 through n/3−1, zone 1 contains level sets n/3 through 2n/3−1,
and zone 3 contains the rest. Define the triple for the ith level set as the level sets i,
i+ n/3, and i+ 2n/3.

Zone 1 of T is naturally partitioned into a set of forests f1, . . . , fm. Each forest
consists of all the trees in zone 1 that have the same nearest common ancestors at
level set 0 (that is the top of zone 0). Let these ancestors be r1, . . . , rm, respectively.
For each forest fj , 1 ≤ j ≤ m, let Mj be the number of i-nodes in fj and xj,q be the
number of i-nodes that are mapped into the triple of level set q.

We want to show that I is evenly distributed among all the level sets of Tr. Since
the number of nodes in any level set is bounded by the number of nodes in its triple,
it suffices to show that with high probability any triple receives at most O( N

log2N
) tree

nodes from I.

We show that the distribution from I to the triple of an arbitrary level set q is
the sum of many mutually independent random variables. The tree nodes assigned to
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level set triple q have contributions from each forest. We claim that the size of these
contributions, xj,q, are mutually independent over the forests. The value of xj,q is
defined entirely by the level of the roots of the fj and by the stretch counts chosen
there, which are independent by definition. The level of the roots of fj depends on
the level of rj and on the stretch count chosen there. Since the stretch counts are
independent, the level of the roots and thus the values of xj,q for any q are independent.

Now we can apply Lemma 5.2 by noting that each xj,q is less than 2
2
3n and that

E(xj,q) =
3Mj

logN . Let Xq =
∑m
j=1 xj,q. Applying the lemma yields

Pr

(
Xq ≥ β N

log2N

)
≤ exp

(
− βN

2
2
3nlog2N

)
≤ exp

(
− βN

1
3

log2N

)
≤ N−c′ .

A similar argument is valid for zones 0 and 2, so with probability greater than
1−3N−c

′
the number of i-nodes coming from all zones to level set triple q is O( N

log2N
).

Therefore with probability greater than 1− 3nN−c
′

every block in column i receives
O( N

log2N
) nodes. And with probability greater than 1 − 3n2N−c

′
> 1 − N−c every

block in the tori receives O( N
log2N

) nodes.

Theorem 5.6. With probability 1 − N−c, c > 0, the above algorithm dynami-
cally embeds every N -node tree T in the

√
P × √P grid so that each grid node re-

ceives O(N/P ) tree nodes and such that the dilation is O(
√
P

logN ) and the congestion is

O( N√
P logN

).

Proof. By Lemma 5.5 each block will receive O( N
log2N

) tree nodes with high

probability. Since the choices of processor among one block are completely even, each
processor receives O(N/P ) tree nodes with high probability.

The image of a tree edge can traverse at most three blocks in each dimension;

therefore the dilation is bounded by 6
√
P

logN . The tree edges are mapped to the shortest
path in the network with at most one turn. Denote the processor in row i and column
j by Pi,j . Without loss of generality, consider a horizontal communication link `
between Pi,j and Pi,j+1. From the dilation bound, at least one endpoint of every
tree edge whose image traverses ` must lie within the interval Pi,j−3

√
P/logN through

Pi,j+3
√
P/logN . Since each grid node has O(N/P ) tree nodes and each tree node has

at most degree 3, the total number of tree edges that can possibly go through ` is
bounded by O( N√

P logN
).

The technique for two-dimensional grids can be easily extended to grids with
multiple dimensions. In particular, for P -node grids with a fixed number k of dimen-
sions, the bounds on dilation and congestion are O(P 1/k/ logN) and O( N

P 1−1/k logN
),

respectively.

Theorem 5.7. With probability 1 −N−c, c > 0, the generalization of the above
algorithm (which divides the grid into logN blocks along each dimension) dynamically
embeds every N -node tree T in the P 1/k × · · · × P 1/k k-dimensional grid (constant
k) so that each grid node receives O(N/P ) tree nodes and such that the dilation is
O(P 1/k/ logN) and the congestion is O( N

P 1−1/k logN
).
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6. Randomized lower bound. We again consider the two-processor model for
our randomized lower bound. Let A be any probabilistic on-line algorithm which is
α-balanced, 1 ≤ α < 2. For an N -node tree the algorithm guarantees that there are
at most αdN2 e nodes in either processor. In what follows we show how to construct
an N -node binary tree TA such that the expected number of cut edges created by
A for TA is at least (1 − α/2)2N/18 logN . As a consequence, we can conclude that
any balanced on-line tree embedding algorithm can be expected to make Ω(N/ logN)
cuts on the worst-case tree.

Theorem 6.1. For every algorithm A and α > 1, there exists a growth sequence
ρ of length N such that if the on-line embedding of ρ is terminally α-balanced between
two processors, then the expected number of cut edges is Ω(N/ logN).

Proof. The worst-case tree consists of a sequence of complete binary trees that are
grown as follows. We start with the depth-1 complete binary tree with three nodes.
Let βi be the random variable denoting the fraction of edges in the ith level that are
cut edges and r = 1

3 (1 − α/2). If E(β1) ≤ r/ logN , then we grow the tree one more
level to form the depth-2 complete binary tree with seven nodes. On the other hand,
if E(β1) > r/ logN , then we start a new complete binary tree at the rightmost leaf
of the current complete binary tree. See Figure 6.1 for an example.
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Fig. 6.1. Tree growth examples.

In general, we continue growing TA using the same rule. If E(βi) ≤ r/ logN , then
we grow TA by attaching two leaves to every level-i node. If E(βi) > r/ logN , then
we grow TA by attaching two leaves to just the rightmost level-i node. In other words,
we extend the current binary subtree by one level in the former case, and we start a
new binary subtree in the latter case. The procedure stops when we have grown N
nodes. Figure 6.2 illustrates one possible choice for a 32-node tree. Note that every
level (except possibly the last) contains 2a nodes, where a ≥ 0.

For the purposes of our discussion, it is useful to consider TA as a collection of
complete binary subtrees {Ti}. In particular, we define Ti to be the ith maximal
complete binary subtree formed during the construction of TA. We denote the last
subtree formed as Tm. The last level of Tm may be partially empty. We also define
ni to be the number of nodes in Ti less the rightmost leaf for i < m since this node
forms the root of the next tree.

Let C be the random variable denoting the number of cut edges created by A on
TA. In what follows we show that E(C) ≥ (1− α/2)2N/18 logN when N = 2n. The

proof is divided into two cases, depending on the value of
∑m−1
i=1 ni.

Case 1.
∑m−1
i=1 ni ≥ rN , where r = 1

3 (1− α/2).
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Fig. 6.2. A 32-node example.

Let xi be the random variable denoting the number of cut edges in the last level
of Ti, 1 ≤ i ≤ m− 1. The last level of Ti has 1

2ni edges and expected fraction of cut
edges greater than r/ logN , therefore E(xi) ≥ 1

2nir/ logN . Hence,

E(C) ≥
m−1∑
i=1

E(xi)

>

m−1∑
i=1

1

2
nir/ logN

=
1

2
rN(r/ logN)

= (1− α/2)2N/18 logN.

Case 2.
∑m−1
i=1 ni < rN .

Since
∑m−1
i=1 ni < (1 − α/2)N/3, we know that nm > N − (1 − α/2)N/3 =

(4 + α)N/6 and the number of levels in Tm is logN − 1. Let σj be the random
variable denoting the fraction of cut edges at level j of Tm for 1 ≤ j ≤ logN − 2.
By assumption, E(σj) ≤ r/ logN . Also, let sj be the random variable denoting the
number of nodes on level j that remains connected to the root of Tm if all the cut
edges are cut. Then s0 = 1 and sj ≥ 2sj−1 − σj2j for 1 ≤ j ≤ logN − 2. Solving the

recurrence for sj , we find that sj ≥ 2j(1−∑j
i=1 σi) for 1 ≤ j ≤ logN − 2.

Since r < 1/6, Tm is a complete binary tree with at most 1/6N nodes not in the
last level. Therefore slogN−1 ≥ 2slogN−2 − Y − rN , where Y is the random variable
denoting the number of cut edges on the last level of Tm. Let R be the random
variable denoting the number of nodes in Tm that are still connected to the root of
Tm when all the cut edges are cut.
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R ≥
logN−1∑
j=0

sj

≥
logN−2∑

j=0

2j

(
1−

logN−2∑
i=1

σi

)+ slogN−1

≥
logN−2∑

j=0

2j

(
1−

logN−2∑
i=1

σi

)+ 2slogN−2 − Y − rN

≥
logN−1∑

j=0

2j

(
1−

logN−2∑
i=1

σi

)− Y − rN
= (N − 1)

(
1−

logN−2∑
i=1

σi

)
− Y − rN.

Since the largest component of TA can have size at most αN/2 once the cut edges
have been removed, we know that R ≤ αN/2. Thus we have that

Y ≥ (N − 1)

1−
logN−2∑
j=1

σj

− rN − αN/2.
By definition, C ≥ Y , and therefore

E(C) ≥ E(Y )

≥ (N − 1)(1− (logN − 2)r/ logN)− rN − αN/2
= (1− r + 2r/ logN)(N − 1)− rN − αN/2
≥ (1− r − r − α/2)N − 1

= 1/3(1− α/2)N − 1.

This concludes the proof that A is expected to create at least (1−α/2)2N
18 logN cut edges

when embedding TA on-line among two processors.
The preceding result can be generalized to show that for any on-line randomized

algorithm for partitioning an N -node binary tree into components of size at most
O(N/P ), the expected number of cuts is at least Ω(N/ log N

P ) in the worst case.
Theorem 6.2. For every algorithm A and α > 1, there exists a growth sequence

ρ of length N such that if the on-line embedding of ρ is terminally α-balanced among
P processors, then the expected number of cut edges is Ω(N/ log N

P ).
Proof. The proof is nearly identical to that above, except that we use a threshold

of Θ(1/ log N
P ) instead of Θ(1/ logN) when deciding whether to start a new complete

binary tree at each level of TA. From Theorem 5.3 this bound is tight, up to constant
factors, for all P , 2 ≤ P < 2N .

7. Conclusion. The execution of divide-and-conquer type algorithms on multi-
computers requires a simple strategy for distributing the subprocesses as they are
created. Ideally, the distribution would give a balanced load and not require large
communication overhead. We have shown that on grid and butterfly networks the
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worst-case dilation of any deterministic balanced algorithm is as large as the diameter
of these networks.

Allowing randomization yields some improvement. Both the dilation and the con-
gestion can be improved by a factor of logN . As shown in [4] this reduces the dilation
for the butterfly to a constant. We have also shown that the dilation and expected
worst-case congestion for meshes cannot be improved by more than a logarithmic
factor.

These large overheads for grids leads to the question of whether there are algo-
rithms with better performance for the kinds of trees that arise in practice.
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Abstract. The classic all-terminal network reliability problem posits a graph, each of whose
edges fails independently with some given probability. The goal is to determine the probability that
the network becomes disconnected due to edge failures. This problem has obvious applications in
the design of communication networks. Since the problem is ]P-complete and thus believed hard
to solve exactly, a great deal of research has been devoted to estimating the failure probability. In
this paper, we give a fully polynomial randomized approximation scheme that, given any n-vertex
graph with specified failure probabilities, computes in time polynomial in n and 1/ε an estimate for
the failure probability that is accurate to within a relative error of 1 ± ε with high probability. We
also give a deterministic polynomial approximation scheme for the case of small failure probabilities.
Some extensions to evaluating probabilities of k-connectivity, strong connectivity in directed Eulerian
graphs and r-way disconnection, and to evaluating the Tutte polynomial are also described.

Key words. network reliability, approximation scheme, minimum cut
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1. Introduction.

1.1. The problem. We consider a classic problem in reliability theory: given a
network on n vertices, each of whose m links is assumed to fail (disappear) indepen-
dently with some probability, determine the probability that the surviving network
is connected. The practical applications of this question to communication networks
are obvious, and the problem has therefore been the subject of a great deal of study.
A comprehensive survey can be found in [4].

Formally, a network is modeled as a graph G, each of whose edges e is presumed
to fail (disappear) with some probability pe and thus to survive with probability qe =
1− pe. Network reliability problems are concerned with determining the probabilities
of certain connectivity-related events in this network. The most basic question of
all-terminal network reliability is determining the probability that the network stays
connected. Others include determining the probability that two particular nodes stay
connected (two-terminal reliability), and so on.

Most such problems, including the two just mentioned, are ]P-complete [25, 24].
That is, they are universal for a complexity class at least as intractable as NP and
therefore seem unlikely to have polynomial time solutions. Attention therefore turned
to approximation algorithms. Provan and Ball [24] proved that it is ]P-complete even
to approximate the reliability of a network to within a relative error of ε. However,
they posited that the approximation parameter ε is part of the input, and used an
exponentially small ε (which can be represented in O(n) input bits) to prove their
claim. They note at the end of their article that “a seemingly more difficult unsolved
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problem involves the case where ε is constant, i.e., is not allowed to vary as part of
the input list.”

Their idea is formalized in the definition of a polynomial approximation scheme
(PAS). In this definition, the performance measure is the running time of the approx-
imation algorithm as a function of the problem size n and the error parameter ε, and
the goal is for a running time that is polynomial in n for each fixed ε (e.g., 21/εn). If
the running time is also polynomial in 1/ε, the algorithm is called a fully polynomial
approximation scheme (FPAS). An alternative interpretation of an FPAS is that it
has a running time polynomial in the input size when ε is constrained to be input
in unary rather than binary notation. When randomization is used in an approxi-
mation scheme, we refer to a polynomial randomized approximation scheme (PRAS)
or fully polynomial randomized approximation scheme (FPRAS). Such algorithms are
required to provide an ε-approximation with probability at least 3/4; this probability
of success can be increased significantly (e.g., to 1−1/n or even 1−1/2n) by repeating
the algorithm a small number of times [23].

Deterministic FPASs for nontrivial problems seem to be quite rare. However,
FPRASs have been given for several ]P-complete problems such as counting maximum
matchings in dense graphs [7], measuring the volume of a convex polytope [6], and
disjunctive normal form (DNF) counting—estimating the probability that a given
DNF formula evaluates to true if the variables are made true or false at random [18].
In a plenary talk, Kannan [8] raised the problem of network reliability as one of the
foremost remaining open problems needing an approximation scheme.

1.2. Our results. In this paper, we provide an FPRAS for the all-terminal
network reliability problem. Given a failure probability p for the edges, our algorithm,
in time polynomial in n and 1/ε, returns a number P that estimates the probability
FAIL(p) that the graph becomes disconnected. With high probability,1 P is in the
range (1±ε)FAIL(p). The algorithm is Monte Carlo, meaning that the approximation
is correct with high probability but that it is not possible to verify its correctness. It
generalizes to the case where the edge failure probabilities are different, to computing
the probability the graph is not k-connected (for any fixed k), and to the more general
problem of approximating the Tutte polynomial for a large family of graphs. It
can also estimate the probability that a Eulerian directed graph remains strongly
connected under edge failures. Our algorithm is easy to implement and appears likely
to have satisfactory time bounds in practice [3, 16].

Some care must be taken with the notion of approximation because approxima-
tions are measured by relative error. We therefore get different results depending
on whether we discuss the failure probability FAIL(p) or the reliability (probability
of remaining connected) REL(p) = 1 − FAIL(p). Consider a graph with a very low
failure probability, say ε. In such a graph, approximating REL(p) by 1 gives a (1+ ε)-
approximation to the reliability, but approximating the failure probability by 0 gives
a very poor (infinite) approximation ratio for FAIL(p). Thus, the failure probability
is the harder quantity to approximate well. On the other hand, in a very unreli-
able graph, FAIL(p) becomes easy to approximate (by 1) while REL(p) becomes the
challenging quantity. Our algorithm is an FPRAS for FAIL(p). This means that in
extremely unreliable graphs, it cannot approximate REL(p). However, it does solve
the harder approximation problem on reliable graphs, which are clearly the ones likely
to be encountered in practice.

1The phrase with high probability means that the probability that it does not happen can be
made O(n−d) for any desired constant d by suitable choice of other constants (typically hidden in
the asymptotic notation).
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The basic approach of our FPRAS is to consider two cases. When FAIL(p) is
large, it can be estimated via direct Monte Carlo simulation of random edge failures.
We thus focus on the case of small FAIL(p). Note that a graph becomes disconnected
when all edges in some cut fail (a cut is a partition of the vertices into two groups; its
edges are the ones with one endpoint in each group). The more edges cross a cut, the
less likely it is that they will all fail simultaneously. We show that for small FAIL(p),
only the smallest graph cuts have any significant chance of failing. We show that
there is only a polynomial number of such cuts, and that they can be enumerated
in polynomial time. We then use a DNF counting algorithm [17] to estimate the
probability that one of these explicitly enumerated cuts fails, and take this estimate
as an estimate of the overall graph failure probability.

After presenting our basic FPRAS for FAIL(p) in section 2, we present several
extensions of it, all relying on our observation regarding the number of small cuts
a graph can have. In section 3, we give FPRASs for the network failure probability
when every edge has a different failure probability, for the probability that an Eulerian
directed graph fails to be strongly connected under random edge failures, and for
the probability that two particular “weakly connected” vertices are disconnected by
random edge failures. In section 4, we give an FPRAS for the probability that a
graph partitions into more than r pieces for any fixed r. In section 5, we give two
deterministic algorithms for all-terminal reliability: a simple heuristic that provably
gives good approximations on certain inputs and a deterministic PAS that applies to
a somewhat broader class of problems. In section 6, we show that our techniques give
an FPRAS for the Tutte polynomial on almost all graphs.

1.3. Related work. Previous work gave algorithms for estimating FAIL(p) in
certain special cases. Karp and Luby [18] showed how to estimate FAIL(p) in n-vertex
planar graphs when the expected number of edge failures is O(logn). Alon, Frieze,
and Welsh [1] showed how to estimate it when the input graph is sufficiently dense
(with minimum degree Ω(n)). Other special case solutions are discussed in Colbourn’s
survey [4]. Lomonosov [21] independently derived some of the results presented here.

A crucial step in our algorithm is the enumeration of minimum and near-minimum
cuts. Dinitz et al. [5] showed how to enumerate (and represent) all minimum cuts.
Vazirani and Yannakakis [26] showed how to enumerate near-minimum cuts. Karger
and Stein [15] gave faster cut enumeration algorithms as well as bounds on the number
of cuts that we will use heavily.

A preliminary version of this work appeared in [10]. The author’s thesis [9] dis-
cusses reliability estimation in the context of a general approach to random sampling
in optimization problems involving cuts. In particular, this reliability work relies on
some new theorems bounding the number of small cuts in graphs; these theorems
have led to other results on applications of random sampling to graph optimization
problems [12, 11, 2].

2. The basic FPRAS. In this section, we present an FPRAS for FAIL(p). We
use two methods, depending on the value of FAIL(p).

When FAIL(p) is large, we estimate it in polynomial time by direct Monte Carlo
simulation of edge failures. That is, we randomly fail edges and check whether the
graph remains connected. Since FAIL(p) is large, a small number of simulations
(roughly 1/FAIL(p)) gives enough data to estimate it well.

When FAIL(p) is small, we resort to cut enumeration to estimate it. Observe
that a graph becomes disconnected precisely when all of the edges in some cut of the
graph fail. By a cut we mean a partition of the graph vertices into two groups. The
cut edges are those with one endpoint in each group (we also refer to these edges as
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the ones crossing the cut). The value of the cut is the number of edges crossing the
cut.

We show that when FAIL(p) is small, only cuts of small value in G have any
significant chance of failing. We observe that there is only a polynomial number
of such cuts and that they can be found in polynomial time. We therefore estimate
FAIL(p) by enumerating the polynomial-size set of small cuts of G and then estimating
the probability that one of them fails.

If each edge fails with probability p, then the probability that a k-edge cut fails is
pk. Thus, the smaller a cut, the more likely it is to fail. It is therefore natural to focus
attention on the small graph cuts. Throughout this paper, we assume that our graph
has minimum cut value c—that is, that the smallest cut in the graph has exactly c
edges. Such a graph has a probability of at least pc of becoming disconnected—namely,
if the minimum cut fails.

Fact 2.1. If each edge of a graph with minimum cut c fails independently with
probability p, then the probability that the graph becomes disconnected is at least pc.

Clearly, the probability that a cut fails decreases exponentially with the number
of edges in the cut. This would suggest that a graph is most likely to fail at its small
cuts. We formalize this intuition.

Definition 2.2. An α-minimum cut is a cut with value at most α times the
minimum cut value.

Below, we show how to choose between the two approaches just discussed. If
FAIL(p) ≥ pc ≥ n−4 then, as we show in subsection 2.1, we can estimate it via Monte
Carlo simulation. This works because Õ(1/FAIL(p)) = Õ(n4) experiments give us
enough data to deduce a good estimate (Õ(f) denotes O(f logn)). On the other
hand, when pc < n−4, we know that a given α-minimum cut fails with probability
pαc = n−4α. We show in subsection 2.2 that there are at most n2α α-minimum cuts.
It follows that the probability that any α-minimum cut fails is less than n−2α—that is,
exponentially decreasing with α. Thus, for a relatively small α, the probability that
a greater than α-minimum cut fails is negligible. Thus (as we show in subsection 2.3)
we can approximate FAIL(p) by approximating the probability that some less than
α-minimum cut fails. Our FPRAS (in subsection 2.4) is based on enumerating these
small cuts and determining the probability that one of them fails.

2.1. Monte Carlo simulation. The most obvious way to estimate FAIL(p) is
through Monte Carlo simulations. Given the failure probability p for each edge, we
can “simulate” edge failures by flipping an appropriately biased random coin for each
edge. We can then test whether the resulting network is connected. If we do this many
times, then the fraction of trials in which the network becomes disconnected should
intuitively provide a good estimate of FAIL(p). Karp and Luby [18] investigated this
idea formally, and observed (a generalization of) the following.

Theorem 2.3. Performing O((logn)/(ε2FAIL(p))) trials will give an estimate
for FAIL(p) accurate to within 1± ε with high probability.

Corollary 2.4. If FAIL(p) ≥ pc ≥ n−4, then FAIL(p) can be estimated to
within (1 + ε) in Õ(mn4/ε2) time using Monte Carlo simulation.

The criterion that FAIL(p) not be too small can of course be replaced by a con-
dition that implies it. For example, Alon, Frieze, and Welsh [1] showed that for any
constant p, there is an FPRAS for network reliability in dense graphs (those with min-
imum degree Ω(n)). The reason is that as n grows and p remains constant, FAIL(p)
is bounded below by a constant on dense graphs and can therefore be estimated in
Õ(n2/ε2) time by direct Monte Carlo simulation.
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The flaw of the simulation approach is that it is too slow for small values of
FAIL(p), namely those less than 1 over a polynomial in n. It is upon this situation that
we focus our attention for the remainder of this section. In this case, a huge number
of standard simulations would have to be run before we encountered a sufficiently
large number of failures to estimate FAIL(p) (note that we expect to run 1/FAIL(p)
trials before seeing any failures). Karp and Luby [18] tackled this situation for various
problems, and showed that it could be handled in some cases by biasing the simulation
such that occurrences of the event being estimated became more likely. One of their
results was an FPRAS for network reliability in planar graphs, under the assumption
that the failure probability p of edges is O((logn)/n) so that the expected number
of edges failing is O(logn). Their algorithm is more intricate than straightforward
simulation, and, like ours, relies on identifying a small collection of “important cuts”
on which to concentrate.

Another problem where direct Monte Carlo simulation breaks down, and to which
Karp and Luby [18], found a solution, is that of DNF counting: given a boolean for-
mula in DNF, and given for each variable a probability that it is set to true, estimate
the probability that the entire formula evaluates to true. Like estimating FAIL(p),
this problem is hard when the probability being estimated is very small. Karp and
Luby [18] developed an FPRAS for DNF counting using a biased Monte Carlo simu-
lation. The running time was later improved by Karp, Luby, and Madras [17] to yield
the following.

Theorem 2.5. There is an FPRAS for the DNF counting problem that runs in
Õ(s/ε2) time on a size s formula.

We will use the DNF counting algorithm as a subroutine in our FPRAS.

2.2. Counting near-minimum cuts. We now turn to the case of pc small.
We show that in this case, only the smallest graph cuts have any significant chance
of failure. While it is obvious that cuts with fewer edges are more likely to fail, one
might think that there are so many large cuts that overall they are more likely to fail
than the small cuts. However, the following proposition lets us bound the number of
large cuts and show this is not the case.

Theorem 2.6. An undirected graph has less than n2α α-minimum cuts.
Remark. Vazirani and Yannakakis [26] gave an incomparable bound on the num-

ber of small cuts by rank rather than by value.
In this subsection, we sketch a proof of Theorem 2.6. A detailed proof of the

theorem can be found in [15] and an alternative proof in [11]. Here, we sketch enough
detail to allow for some of the extensions we will need later. We prove the theorem only
for unweighted multigraphs (graphs with parallel edges between the same endpoints);
the theorem follows for weighted graphs if we replace any weight w edge by a set of
w unweighted parallel edges.

2.2.1. Contraction. The proof of the theorem is based on the idea of edge
contraction. Given a graph G = (V,W ) and an edge (v, w), we define a contracted
graph G/(v, w) with vertex set V ′ = V ∪{u}−{v, w} for some new vertex u and edge
set

E′ = E − {(v, w)} ∪ {(u, x) | (v, x) ∈ E or (w, x) ∈ E}.

In other words, in the contracted graph, vertices v and w are replaced by a single
vertex u, and all edges originally incident on v or w are replaced by edges incident
on u. We also remove self-loops formed by edges parallel to the contracted edge since
they cross no cut in the contracted graph.
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Fact 2.7. There is a one-to-one correspondence between cuts in G/e and cuts in
G that e does not cross. Corresponding cuts have the same value.

Proof. Consider a partition (A,B) of the vertices of G/(v, w). The vertex u
corresponding to contracted edge (v, w) is on one side or the other. Replacing u by v
and w gives a partition of the vertices of G. The same edges cross the corresponding
partitions.

2.2.2. The contraction algorithm. We now use repeated edge contraction in
an algorithm that selects a cut from G. Consider the following contraction algorithm.
While G has more than 2 vertices, choose an edge e uniformly at random and set
G← G/e. When the algorithm terminates, we are left with a two-vertex graph that
has a unique cut. A transitive application of Fact 2.7 shows that this cut corresponds
to a unique cut in our original graph; we will say this cut is chosen by the contraction
algorithm. We show that any particular minimum cut is chosen with probability at
least n−2. Since the choices of different cuts are disjoint events whose probabilities
add up to one, it will follow that there are at most n2 minimum cuts. We then
generalize this argument to α-minimum cuts.

Lemma 2.8. The contraction algorithm chooses any particular minimum cut with
probability at least n−2.

Proof. Each time we contract an edge, we reduce the number of vertices in the
graph by one. Consider the stage in which the graph has r vertices. Suppose G has
minimum cut c. It must have minimum degree c, and thus at least rc/2 edges. Our
particular minimum cut has c edges. Thus a randomly chosen edge is in the minimum
cut with probability at most c/(rc/2) = 2/r. The probability that we never contract
a minimum cut edge through all n− 2 contractions is thus at least(

1− 2

n

)(
1− 2

n− 1

)
· · ·
(

1− 2

3

)
=

(
n− 2

n

)(
n− 3

n− 1

)
· · ·
(

2

4

)(
1

3

)
=

(n− 2)(n− 3) · · · (3)(2)(1)

n(n− 1)(n− 2) · · · · · · (4)(3)

=
2

n(n− 1)

=

(
n

2

)−1

> n−2.

2.2.3. Proof of Theorem 2.6. We can extend the approach above to prove
Theorem 2.6. We slightly modify the contraction algorithm and lower bound the
probability so that it chooses a particular α-minimum cut. With r vertices remaining,
the probability we choose an edge from our particular α-minimum cut is at most 2α/r.
Let k = d2αe. Suppose we perform random contractions until we have a k-vertex
graph. In this graph, choose a vertex partition uniformly at random, so that each of
its cuts is chosen with probability 21−k. It follows that a particular α-minimum cut
is chosen with probability(

1− 2α

n

)(
1− 2α

(n− 1)

)
· · ·
(

1− 2α

k + 1

)
21−k =

(n− 2α)!

(k − 2α)!

k!

n!
21−k

=

(
k

2α

)(
n
2α

)21−k

> n−2α.
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Note that for α not a half-integer, we are making use of generalized binomial co-
efficients which may have nonintegral arguments. These are discussed in [19, Sec-
tions 1.2.5–6]; cf. Exercise 1.2.6.45. There, the Gamma function is introduced to
extend factorials to real numbers such that α! = α(α − 1)! for all real α > 0. Many
standard binomial identities extend to generalized binomial coefficients, including the
facts that

(
n
2α

)
< n2α/(2α)! and 22α−1 ≤ (2α)! for α ≥ 1.

Remark. The contraction algorithm described above is used only to count cuts.
An efficient implementation given in [15] can be used to find all α-minimum cuts in
Õ(n2α) time. We use this algorithm in our FPRAS.

2.3. Cut failure bounds. Using the cut counting theorem just given, we show
that large cuts do not contribute significantly to a graph’s failure probability. Consider
Theorem 2.6; taking α = 1, it follows from the union bound that the probability that
some minimum cut fails is at most n2pc. We now show that the probability that any
cut fails is only a little bit larger.

Theorem 2.9. Suppose a graph has minimum cut c and that each edge of the
graph fails independently with probability p, where pc = n−(2+δ) for some δ > 0. Then

1. the probability that the given graph disconnects is at most n−δ(1 + 2/δ), and
2. the probability that a cut of value αc or greater fails in the graph is at most
n−αδ(1 + 2/δ).

Remark. We conjecture that a probability bound of n−αδ can be proven (elimi-
nating the (1 + 2/δ) term).

Proof. We prove part 1 and then note the small change needed to prove part 2. For
the graph to become disconnected, all the edges in some cut must fail. We therefore
bound the failure probability by summing the probabilities that each cut fails. Let r
be the number of cuts in the graph, and let c1, . . . , cr be the values of the r cuts in
increasing order so that c = c1 ≤ c2 ≤ · · · ≤ cr. Let pk = pck be the probability that
all edges in the kth cut fail. Then the probability that the graph disconnects is at
most

∑
pk, which we proceed to bound from above.

We proceed in two steps. First, consider the first n2 cuts in the ordering (they
might not be minimum cuts). Each of them has ck ≥ c and thus has pk ≤ n−(2+δ),
so that

∑
k≤n2

pk ≤ (n2)(n−(2+δ)) = n−δ.

Next, consider the remaining larger cuts. According to Theorem 2.6, there are less
than n2α cuts of value at most αc. Since we have numbered the cuts in increasing
order, this means that cn2α > αc. In other words, writing k = n2α,

ck >
ln k

2 lnn
· c

and thus

pk < (pc)
ln k

2 lnn

= (n−(2+δ))
ln k

2 lnn

= k−(1+δ/2).
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It follows that ∑
k>n2

pk <
∑
k>n2

k−(1+δ/2)

≤
∫ ∞
n2

k−(1+δ/2) dk

≤ 2n−δ/δ.

Summing the bounds for the first n2 and for the remaining cuts gives a total of
n−δ + 2n−δ/δ, as claimed.

The proof of part 2 is the same, except that we sum only over those cuts of value
at least αc.

Remark. A slightly stronger version of part 1 was first proved by Lomonosov
and Polesskii [22] using different techniques that identified the cycle as the most
unreliable graph for a given c and n. We sketch their result, which we need for a
different purpose, in subsection 4.3.2. However, part 2 is necessary for the FPRAS
and was not previously known.

2.4. An approximation algorithm. Our proof that only small cuts matter
leads immediately to an FPRAS. First we outline our solution. Given that FAIL(p) <
n−4, Theorem 2.9 shows that the probability that a cut of value much larger than
c fails is negligible, so we need only determine the probability that a cut of value
near c fails. We do this as follows. First, we enumerate the (polynomial size) set of
near-minimum cuts that matter. From this set we generate a polynomial size boolean
expression (with a variable for each edge, true if the edge has failed) that is true if any
of our near-minimum cuts has failed. We then need to determine the probability that
this boolean expression is true; this can be done using the DNF counting techniques
of Karp, Luby, and Madras [18, 17]. Details are given in the following theorem.

Theorem 2.10. When FAIL(p) < n−4, there is a (Monte Carlo) FPRAS for
estimating FAIL(p) running in Õ(mn4/ε3) time.

Proof. Under the assumption, the probability that a particular minimum cut fails
is pc ≤ FAIL(p) ≤ n−4. We show there is a constant α for which the probability
that any cut of value greater than αc fails is at most εFAIL(p). This proves that
to approximate to the desired accuracy we need only determine the probability that
some cut of value less than αc fails. It remains to determine α. Write pc = n−(2+δ);
by hypothesis δ ≥ 2. Thus by Theorem 2.9, the probability that a cut larger than αc
fails is at most 2n−δα. On the other hand, we know that n−(2+δ) = pc ≤ FAIL(p),
so it suffices to find an α for which 2n−δα ≤ εn−(2+δ). Solving this shows that
α = 1 + 2/δ− (ln(ε/2))/δ lnn ≤ 2− ln(ε/2)/2 lnn suffices and that we therefore need
only examine the smallest n2α = O(n4/ε) cuts.

We can enumerate these cuts in O(n2α log3 n) time using certain randomized
algorithms [14, 11] (a somewhat slower deterministic algorithm can be found in [26]).
Suppose we assign a boolean variable xe to each edge e; xe is true if edge e fails and
false otherwise. Therefore, the xe are independent and true with probability p. Let
Ei be the set of edges in the ith small cut. Since the ith cut fails if and only if all
edges in it fail, the event of the ith small cut failing can be written as Fi = ∧e∈Eixe.
Then the event of some small cut failing can be written as F = ∨iFi. We wish to
know the probability that F is true. Note that F is a formula in DNF. The size of
the formula is equal to the number of clauses (n2α) times the number of variables per
clause (at most αc), namely, O(cn2α). The FPRAS of Karp, Luby, and Madras [17]
estimates the truth probability of this formula, and thus the failure probability of the
small cuts, to within (1± ε) in Õ(cn2α/ε2) = Õ(cn4/ε3) = Õ(mn4/ε3) time.
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We are therefore able to estimate to within (1± ε) the value of a probability (the
probability that some α-minimum cut fails) that is within (1 ± ε) of the probability
of the event we really care about (the probability that some cut fails). This gives us
an overall estimate accurate to within (1± ε)2 ≈ (1± 2ε).

Corollary 2.11. There is an FPRAS for FAIL(p) running in Õ(mn4/ε3) time.
Proof. Suppose we wish to estimate the failure probability to within a (1 ± ε)

ratio. If FAIL(p) > n−4, then we can estimate it in Õ(mn4/ε2) time by direct Monte
Carlo simulation as in Corollary 2.4. Otherwise, we can run the Õ(mn4/ε3)-time
algorithm of Theorem 2.10.

If the graph is sparse (with O(n) edges) and the minimum cut is Õ(1) (both these
conditions apply to, e.g., planar graphs) then the time for a Monte Carlo trial is O(n),
while the size of the formula for the DNF counting step above is Õ(n2α). Thus if we
use a different FAIL(p) threshold for deciding which algorithm to use, we can improve
the running time bound to Õ(n3.8/ε2).

While this time bound is still rather poor, experiments have suggested that per-
formance in practice is significantly better—typically Õ(n3) on sparse graphs [16].

3. Extensions. We now discuss several extensions of our basic FPRAS. In this
section, we will consider many cases in which it is sufficient to consider the probability
that an α-minimum cut fails for some α = O(1 − log ε/ logn) (as in the previous
section) that is understood in context but not worth deriving explicitly. We will refer
to these α-minimum cuts as the weak cuts of the graph.

3.1. Varying failure probabilities. The analysis and algorithm given above
extend to the case where each edge e has its own failure probability pe. To extend the
analysis, we transform a graph with varying edge failure probabilities into one with
identical failure probabilities. Given the graph G with specified edge failure probabil-
ities, we build a new graph H all of whose edges have the same failure probability p,
but that has the same failure probability as G. Choose a small parameter θ. Replace
an edge e of failure probability pe by a “bundle” of ke parallel edges, each with the
same endpoints as e but with failure probability 1− θ, where

ke = d−(ln pe)/θe .
This bundle of edges keeps its endpoints connected unless all the edges in the bundle
fail; this happens with probability

(1− θ)d−(ln pe)/θe.

As θ → 0, this failure probability converges to pe. Therefore, the reliability of H
converges as θ → 0 to the reliability of G. Thus, to determine the failure probability
of G, we need determine only the failure probability of H in the limit as θ → 0.

Since H has all edge failure probabilities the same, our section 2 analysis of
network reliability applies to H. In particular, we know that it suffices to enumerate
the weak cuts of H and then determine the probability that one of them fails. To
implement this idea, note that changing the parameter θ scales the values of cuts in
H without changing their relative values (modulo a negligible rounding error). We
therefore build a weighted graph F by taking graph G and giving a weight ln 1/pe to
edge e. The weak cuts in F correspond to the weak cuts in H. We find these weak
cuts in F using the contraction algorithm (which works for weighted graphs [15]) as
before.

Given the weak cuts in H, we need to determine the limiting probability that one
of them fails as θ → 0. We have already argued that as θ → 0, the probability a cut
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in H fails converges to the probability that the corresponding cut in G fails. Thus we
actually want to determine the probability that one of a given set of cuts in G fails.
We do this as before. We build a boolean formula with variables for the edges of G
and with a clause for each weak cut that is true if all the edges of the cut fail. The
only change is that variable xe is set to true with probability pe. The algorithm of [17]
works with these varying truth probabilities and computes the desired quantity.

Theorem 3.1. There is an FPRAS for the all-terminal network reliability prob-
lem with varying edge failure probabilities.

One might be concerned by the use of logarithms to compute edge weights. How-
ever, it is easy to see that in fact approximate logarithms suffice for the purpose of
enumerating small cuts. If we approximate each logarithm to within relative error .1,
then every α-minimum cut in F remains an 11α/9-minimum cut in the approximation
to F . Thus we can enumerate a slightly larger set of near-minimum cuts in order to
find the weak cuts. Once we find the weak cuts, we use the original pe values in the
DNF counting algorithm.

In the case of varying failure probabilities, we cannot bound the number of edges
in any particular weak cut by a quantity less than m (a weak cut may have m − n
edges with large failure probabilities). Thus the size of the DNF formula, and thus
the running time of the DNF counting algorithm, may be as large as mn2α ≈ mn4/ε.

All the other extensions described in this paper can also be modified to handle
varying failure probabilities. But for simplicity, we focus on the uniform case.

3.2. Multiterminal reliability. The multiterminal reliability problem is a gen-
eralization of the all-terminal reliability problem. Instead of asking whether the graph
becomes disconnected, we consider a subset K of the vertices and ask if some pair of
them becomes disconnected. If some pair of vertices in K is separated by a cut of
value O(c), then we can use the same theorem on the exponential decay of cut failure
probabilities to prove that we need only to examine the small cuts in the graph to
determine whether some pair of vertices in K becomes disconnected.

Lemma 3.2. If some pair of vertices in K is separated by a cut of value O(c),
then there is an FPRAS for the multiterminal reliability problem with source vertices
K.

Proof. We focus on the case of uniform failure probability p; the generalization
to arbitrary failure probabilities is as before. Suppose a cut of value βc separates
vertices in K. Then the probability that K gets disconnected when edges fail with
probability p is at least pβc. If pc > n−4, then pβc > n−4β = n−O(1) and we use Monte
Carlo simulation as before to estimate the failure probability. If pc < n−4, then by
Theorem 2.9, the probability that a cut of value exceeding αc fails is O(n−2α). Thus,
choosing α such that n−2α ≤ εpβc, we can enumerate the weak cuts and apply DNF
counting.

3.3. k-connectivity. Just as we estimated the probability that the graph fails to
be connected, we can estimate the probability that it fails to be k-edge connected for
any constant k. Note that the graph fails to be k-edge connected only if some cut has
less than k of its edges survive. The probability of this event decays exponentially with
the value of the cut, allowing us to prove (as with Theorem 2.9) that if the probability
that fewer than k edges in a minimum cut survive is O(n−(2+δ)), then the probability
that fewer than k edges survive in a nonweak cut is negligible. Thus, if direct Monte
Carlo simulation is not applicable, we need only determine the probability that some
weak cut keeps less than k of its edges. But this is another DNF counting problem.
For any particular weak cut containing C ≤ m edges, we enumerate all

(
C

C−k+1

)
=
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O(Ck−1) = O(mk−1) sets of C − k + 1 edges, and for each add a DNF clause that is
true if all the given edges fail.

In fact, one can also adapt the algorithm of [17] to determine the probability that
all but k − 1 variables in some clause of a DNF formula become true; thus we can
continue to work with the O(mn4/ε)-size formula we used before.

Corollary 3.3. For any constant k, there is an FPRAS for the probability that
a graph with edge failure probabilities fails to be k-edge connected.

3.4. Eulerian directed graphs. A natural generalization of the all-terminal
reliability problem to directed graphs is to ask for the probability that a directed
graph with random edge failures remains strongly connected. A directed graph fails
to be strongly connected precisely when all the edges in some directed cut fail. In
general, the techniques of this paper cannot be applied to directed graphs—the main
reason being that a directed graph can have exponentially many minimum directed
cuts.

We can, however, handle one special case. In a Eulerian directed graph G on
vertex set V , the number of edges crossing from any vertex set A to V − A is equal
to the number of edges crossing from V −A to A. Thus if we construct an undirected
graph H by removing the directions from the edges of G, we know that any (directed)
cut in G has value equal to half that of the corresponding (undirected) cut in H. It
follows that the α-minimum directed cuts of G correspond to α-minimum undirected
cuts of H. Therefore, there are at most 2n2α α-minimum directed cuts in G that
can be enumerated by enumerating the α-minimum cuts of H (the factor of 2 arises
from considering both directions for each cut). As in the undirected case, if the
directed failure probability is less than n−4, an analogue of Theorem 2.9 immediately
follows, showing that only weak directed cuts are likely to fail. It therefore suffices to
enumerate a polynomial number of weak directed cuts to estimate the directed failure
probability.

Corollary 3.4. There is an FPRAS for the probability that a directed Eulerian
graph fails to remain strongly connected under random edge failures.

Corollary 3.5. For any constant k there is an FPRAS for the probability that
a directed Eulerian graph fails to have directed connectivity k under random edge
failures.

3.5. Random orientations. In a similar fashion, we can estimate the proba-
bility that, if we orient each edge of the graph randomly, the graph fails to be strongly
connected. For each cut, we make a DNF formula with two clauses, one of which is
true if all edges point “left” and the other if all edges point “right.” (This observation
is due to Alan Frieze.) This problem can also be phrased as estimating the number
of non-strongly connected orientations of an undirected graph; in this form, it is re-
lated to the Tutte polynomial discussed in section 6. Similarly, we can estimate the
probability that random orientations fail to produce a k-connected directed graph.

4. Partition into r components. The quantity FAIL(p) is an estimate of
the probability that the graph partitions into more than one connected component.
We can similarly estimate the probability that the graph partitions into r or more
components for any constant r. Besides its intrinsic interest, the analysis of this
problem will be important in our study of some heuristics and derandomizations in
section 5 and the Tutte polynomial in section 6.

We first note that a graph partitions into r or more components only if an r-
way cut—the set of edges with endpoints in different components of an r-way vertex
partition—loses all its edges. Note that some of the vertex sets of the partition might
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induce disconnected subgraphs, so that the r-way partition might induce more than
r connected components. However, it certainly does not induce less. Our approach
to r-way reliability is the same as for the 2-way case. We show that there are few
small r-way cuts and that estimating the probability one fails suffices to approximate
the r-way failure probability. As a corollary, we show that the probability of r-way
partition is much less than that of 2-way partition.

4.1. Counting multiway cuts. We enumerate multiway cuts using the con-
traction algorithm as for the 2-way case. Details can be found in [15].

Lemma 4.1. In an m-edge unweighted graph the minimum r-way cut has value
at most 2m(r − 1)/n.

Proof. A graph’s average degree is 2m/n. Consider an r-way cut with each of the
r−1 vertices of smallest degree as its own singleton component and all the remaining
vertices as the last component. The value of this cut is at most the sum of the
singleton vertex degrees, which is at most r − 1 times the average degree.

Corollary 4.2. There are at most
(

n
2(r−1)

)
minimum r-way cuts.

Proof. Suppose we fix a particular r-way minimum cut and run the contraction
algorithm until we have 2(r − 1) vertices. By the previous lemma, the probability
that we pick an edge of our fixed cut when k vertices remain is at most 2 r−1

k . Thus
the probability that our fixed minimum r-way cut is chosen is

n∏
k=2r−1

(
1− 2(r − 1)

k

)
,

which is analyzed as in the proof of Theorem 2.6, substituting r − 1 for α.
Corollary 4.3. For arbitrary α ≥ 1, there are at most (rn)2α(r−1) α-minimum

r-way cuts that can be enumerated in Õ((rn)2α(r−1)) time.
Proof. First run the contraction algorithm until the number of vertices remaining

is d2α(r − 1)e. At this point, choose a random r-way partition of what remains. There
are at most r2α(r−1) such partitions.

The time bound follows from the analysis of the recursive contraction algo-
rithm [15].

Remark. We conjecture that in fact the correct bound is O(nαr) α-minimum
r-way cuts. Subsection 4.3.2 shows this is true for α = 1. Proving it for general α
would slightly improve our exponents in the following sections.

4.2. An approximation algorithm. Our enumeration of multiway cuts allows
an analysis and reduction to DNF counting exactly analogous to the one performed
for FAIL(p).

Corollary 4.4. Suppose a graph has r-way minimum cut value cr, and suppose
that each edge fails with probability p, where pcr = (rn)−(2+δ)(r−1) for some constant
δ > 0. Then the probability that an α-minimum r-way cut fails is at most (rn)−αδ(r−1)

(1 + 2/δ).
Proof. The proof is exactly as for Theorem 2.9, substituting (rn)(r−1) (drawn

from Corollary 4.3) for n everywhere.
Corollary 4.5. There is an algorithm for ε-approximating the probability that

a graph partitions into r or more components, running in Õ(m(rn)4(r−1)/ε3) time.
The algorithm is an FPRAS with running time Õ(mn4(r−1)/ε3) for any fixed r.

Proof. Exactly as for the 2-way cut case, with (rn)(r−1) replacing n everywhere.
Let cr be the r-way minimum cut value and let δ be defined by pcr = (rn)−(2+δ)(r−1).
If pcr > (rn)−4(r−1), estimate the partition probability via Monte Carlo simulation.
Otherwise, it follows as in the 2-way cut case that for the same constant α as we chose
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there, the probability that a greater than α-minimum r-way cut fails is less than εpcr .
Thus to estimate the partition probability it suffices to enumerate (in Õ((rn)4(r−1)/ε)
time) the set of α-minimum r-way cuts and perform DNF counting.

One might wish to compute the probability that a graph partitions into exactly
r components, but it is not clear that this can be done. In particular, computing
REL(p) can be reduced to this problem (for any r) by adding r − 1 isolated vertices.
There is at present no known FPRAS for REL(p).

4.3. Comparison to 2-way cuts. For sections 5 and 6, we need to show that
the probability of partition into r components is much less than that of partition into
2 components. We give two proofs, the first simpler but with a slightly weaker bound.
The following subsections can use the weaker analysis at the cost of worse exponents.
In this section, the term “cut” refers exclusively to 2-way cuts unless we explicitly
modify it.

4.3.1. A simple argument.
Lemma 4.6. If pc = n−(2+δ), then the probability that an r-way cut fails is at

most n−δr/4(1 + 2/δ).
Proof. We show that any r-way cut contains the edges of a (2-way) cut of value

rc/4. Thus, if an r-way cut fails then an (r/4)-minimum 2-way cut fails. The proba-
bility that this happens has been upper-bounded by Theorem 2.9.

To show the claim, consider an r-way cut. Contract each component of the r-way
partition to a single vertex, yielding an r-vertex graph G′. All edges in this graph
correspond to edges of the r-way cut. Every cut in G′ corresponds to a cut of the
same value in the original graph, so it suffices to show that G′ has a 2-way cut of
value at least rc/4. To see this, note that every vertex in G′ has degree at least c, so
the number of edges in G′ is at least rc/2. Consider a random cut of G′, generated by
assigning each vertex randomly to one side or the other. Each edge has a 1/2 chance
of being cut by this partition, so the expected value of this cut is at least rc/4. It
follows that G′ has a cut of value at least rc/4 that corresponds to a cut of value at
least rc/4 in the original graph.

4.3.2. A better argument. We can get a slightly better bound on the proba-
bility that a graph partitions into r components via a small variation on an argument
made by Lomonosov and Polesskii [22, 20, 4]. The better bound improves some of
our exponents. Their proof uses techniques somewhat different from the remainder
of the paper and can safely be skipped.

Lemma 4.7. Let FAILr(G, p) denote the probability that G partitions into r
or more connected components when each edge fails with probability p. Let G have
minimum cut c for some even c. Let Cn be a cycle with c/2 edges between adjacent
vertices. Then for any r, FAILr(G, p) ≤ FAILr(Cn, p).

Corollary 4.8. For any graph G with minimum cut c, if edges fail with
probability p where pc = n−(2+δ), then the probability the failed graph has r or more
connected components is less than n−δr/2.

Remark. Note that for r = 2, the above result gives a slightly stronger bound on
FAIL(p) than we are able to get in Theorem 2.9. Unfortunately, this argument does
not appear to extend to proving the bound we need on the probability that a greater
than α-minimum r-way cut fails.

Proof of Corollary 4.8. Thanks to Lemma 4.7, it suffices to prove this claim for
the case of G a cycle Cn with (c/2)-edge “bundles” between adjacent vertices. The
number of components into which Cn is partitioned is equal to the number of bundles
that fail, so we need only bound the probability that r or more bundles fail. The
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probability that a single bundle fails is pc/2 = n−(1+δ/2), so the probability that r
particular bundles fail is n−r(1+δ/2). There are

(
n
r

)
< nr sets of exactly r bundles.

It follows that the probability r or more bundles fail is less than nrn−r(1+δ/2) =
n−rδ/2.

Proof of Lemma 4.7. Consider the following time-evolving version of the contrac-
tion algorithm on a connected graph G. Each edge of G is given an arrival time
chosen independently from the exponential distribution with mean 1. Each time an
edge arrives, we contract its endpoints if they have not already been contracted. This
gives rise to a sequence of graphs G = Gn, Gn−1, . . . , G1, where Gr has r vertices. Let
G[t] be the graph that exists at time t. Thus initially G[0] = Gn and eventually G[∞]
has one vertex since all edges have arrived. We draw a correspondence between this
model and our edge failure model as follows: at time t, the failed edges are those which
have not yet arrived. It follows that each vertex in G[t] corresponds to a connected
component of G when each edge has failed (to arrive) independently with probability
e−t.

We consider the random variable Tr(G) defined as the time at which the edge
that contracts Gr to Gr−1 arrives. We show that Tr(Cn) stochastically dominates
Tr(G) for every r—that is,

Pr[Tr(G) ≥ t] ≤ Pr[Tr(Cn) ≥ t].

(See Motwani and Raghavan [23] for additional discussion of this definition.) Assum-
ing this is true, we can prove our result as follows:

Pr[G[t] has r or fewer components] = Pr[Tr(G) ≤ t]
≥ Pr[Tr(Cn) ≤ t]
= Pr[Cn[t] has r or fewer components].

To prove stochastic domination, let tr(G) = Tr−1(G) − Tr(G) denote the length
of time for which Gr exists before being contracted to Gr−1. Clearly, tr(G) is just the
time it takes for an edge to arrive that has endpoints in different connected compo-
nents of Gr. It follows that Tr(G) =

∑n
r′=r tr′(G). Similarly, Tr(Cn) =

∑n
r′=r tr′(Cn).

Thanks to the memoryless nature of the exponential distribution, the tr are mutually
independent (this will be justified more carefully later). We will show that tr(Cn)
stochastically dominates tr(G) for every r. The fact that Tr(Cn) stochastically dom-
inates Tr(G) then follows from the fact that when X dominates X ′ and Y dominates
Y ′ and the variables are independent, X + Y dominates X ′ + Y ′.

To analyze tr, suppose there are mr edges in Gr (note mr is a random variable).
The arrival time of each edge in Gr measured from Tr(G) is exponentially distributed
with mean 1. Therefore, the arrival time of the first such edge, namely tr(G), is
exponentially distributed with mean 1/mr. Now note that Gr is c-connected, so
it must have mr ≥ cr/2. It follows that tr(G) is exponentially distributed with
mean at most 2/cr, meaning that it is stochastically dominated by any exponentially
distributed variable with mean 2/cr. On the other hand, when Cn has been reduced to
r components, it is isomorphic to Cr. By the same analysis as for G, we know tr(Cn)
is exponentially distributed with mean 2/cr, and thus stochastically dominates tr(G).

Our glib claim that the tr are independent needs some additional justification.
Technically, we condition on the values Gn, . . . , G1 of the evolving graph. We show
that regardless of what values Gi we condition on, Tr(Cn) stochastically dominates
Tr(G | Gn, . . . , G1). Since the stochastic domination applies regardless of our condi-
tioning event, it follows even if we do not condition.
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Once we have conditioned on the value Gr, tr is just the time it takes for an
edge to arrive that contracts Gr to Gr−1 and is therefore independent of tr′ when
r′ 6= r. But we must ask whether tr still has the right exponential distribution—the
complicating factor being that we know the first edge to arrive at Gr must contract
Gr to a specific Gr−1 and not some other graph. To see that this does not matter,
let B be the event that first edge to arrive at Gr is one that creates Gr−1. Then

Pr[tr ≥ t | B] = Pr[B | tr ≥ t] Pr[tr ≥ t]/Pr[B]

= Pr[B] Pr[tr ≥ t]/Pr[B]

= Pr[tr ≥ t]
since, of course, the time of arrival of the edge the contracts Gr has no impact on
which of the edges of Gr is the first to arrive.

5. Heuristics and deterministic algorithms. Until now, we have relied on
the fact that the most likely way for a graph to fail is for some of its near-minimum
cuts to fail. We now strengthen this argument to observe that most likely, exactly
one of these near-minimum cuts fails. This leads to two additional results. First,
we show that the sum of the individual small-cut failure probabilities is a reasonable
approximation to the overall failure probability. This justifies a natural heuristic and
indicates that in practice one might not want to bother with the DNF counting phase
of our algorithm. In a more theoretical vein, we also give a deterministic PAS for
FAIL(p) that applies whenever FAIL(p) < n−(2+δ). We prove the following theorems.

Theorem 5.1. When pc < n−4 (and in particular when FAIL(p) < n−4), the
sum of the weak cuts’ failure probabilities is a (1 + o(1)) approximation to FAIL(p).

Theorem 5.2. When pc < n−(2+δ) for any constant δ (and in particular when
FAIL(p) < n−(2+δ)), there is a deterministic PAS for FAIL(p) running in
(n/ε)exp(O(− logn ε)) time.

We remark that unlike many PASs whose running times are only polynomial for
constant ε, our PAS has polynomial running time so long as ε = n−O(1). Its behavior
when ε is tiny prevents it from being an FPAS, however.

To prove these theorems, we argue as follows. As shown in section 2, it is sufficient
to approximate, for the given ε, the probability that some α-minimum cut fails, where

α = 1 + 2/δ − (ln ε)/δ lnn.

Let us write these α-minimum cuts as Ci, i = 1, . . . , n2α. Let Fi denote the event
that cut Ci fails. We can use inclusion-exclusion to write the failure probability as

Pr[∪Fi] =
∑
i1

Pr[Fi1 ]−
∑
i1<i2

Pr[Fi1 ∩ Fi2 ] +
∑

i1<i2<i3

Pr[Fi1 ∩ Fi2 ∩ Fi3 ] + · · · .

Later terms in this summation measure events involving many cut failures. We show
that when many cuts fail, the graph partitions into many pieces, meaning a multiway
cut fails. We then argue (using Lemma 4.6 or Corollary 4.8) that this is so unlikely
that later terms in the sum can be ignored. This immediately yields Theorem 5.1.

To prove Theorem 5.2, we show that for any fixed ε it is sufficient to consider
a constant number of terms (summations) on the right-hand side in order to get a
good approximation. Observe that the kth term in the summation can be computed
deterministically in O(m(n2α)k) time by evaluating the probability of each of the
(n2kα) intersection events in the sum (each can be evaluated deterministically since it
is just the probability that all edges in the specified cuts fail). Thus, our running time
will be polynomial so long as the number of terms we need to evaluate is constant.
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5.1. Inclusion-exclusion analysis. As discussed above, our analyses use a
truncation of the inclusion-exclusion expression for

Pr[∪Fi] =
∑
i1

Pr[Fi1 ]−
∑
i1<i2

Pr[Fi1 ∩ Fi2 ] +
∑

i1<i2<i3

Pr[Fi1 ∩ Fi2 ∩ Fi3 ] + · · · .

Suppose we truncate the inclusion-exclusion, leaving out the kth and later terms.
If k is odd the truncated sum yields a lower bound; if k is even it yields an upper
bound. We show that this bound is sufficiently tight. We do so by rewriting the
inclusion-exclusion expression involving particular sets of failed cuts failing as an
expression based on how many cuts fail.

Lemma 5.3. Let Su be the event that u or more of the events Fi occur. If the
inclusion-exclusion expansion is truncated at the kth term, the error introduced is

∑
u

(
u− 2

k − 2

)
Pr[Su].

Proof. Let Tu be the event that exactly u of the events Fi occur. Consider the first
summation

∑
Fi1 in the inclusion-exclusion expansion. The event where precisely the

events Fj1 , . . . , Fju occur (that is, the event that cuts Cj1 , . . . , Cjk fail but no others
fail) contributes to the u terms Pr[Fj1 ], . . . ,Pr[Fju ] in the sum. It follows that each
sample point contributing to Tu is counted u =

(
u
1

)
times in the summation. Thus,

∑
Pr[Fi1 ] =

∑
u

(
u

1

)
Pr[Tu].

By the same reasoning,

∑
Pr[Fi1 ∩ Fi2 ] =

∑
u

(
u

2

)
Pr[Tu],

and so on. It follows that the error introduced by truncation at term k is

∑
i1<i2<···<ik

Pr[Fi1 ∩ Fi2 ∩ · · · ∩ Fik ]−
∑

i1<i2<···<ik+1

Pr[Fi1 ∩ Fi2 ∩ · · · ∩ Fik+1
] + · · ·

=
∑
j≥k

(−1)k−j
∑
u

(
u

j

)
Pr[Tu]

=
∑
u

∑
j≥k

(−1)k−j
(
u

j

)
Pr[Tu]

=
∑
u

(
u− 1

k − 1

)
Pr[Tu].

Now recall that Su is the event that u or more of the Fi occur, meaning that Pr[Tu] =
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Pr[Su]− Pr[Su+1]. Thus we can rewrite our bound above as

∑
u

(
u− 1

k − 1

)
(Pr[Su]− Pr[Su+1])

=
∑
u

(
u− 1

k − 1

)
Pr[Su]−

∑
u

(
u− 1

k − 1

)
Pr[Su+1]

=
∑
u

(
u− 1

k − 1

)
Pr[Su]−

∑
u

(
u− 2

k − 1

)
Pr[Su]

=
∑
u

((
u− 1

k − 1

)
−
(
u− 2

k − 1

))
Pr[Su]

=
∑
u

(
u− 2

k − 2

)
Pr[Su].

This completes the proof.

5.2. A simple approximation. Using the above error bound, we can prove
Theorem 5.1. Let Fi denote the event that the ith near-minimum cut fails. Our
objective is to estimate Pr[∪Fi]. Summing the individual cuts’ failure probabilities
corresponds to truncating our inclusion-exclusion sum at the second term, giving (by
Lemma 5.3) an error of

∑
u≥2 Su. We now bound this error by bounding the quantities

Su.
Lemma 5.4. If u distinct (2-way) cuts fail then a dlog(u+ 1) + 1e-way cut fails.
Proof. Consider a configuration in which u distinct cuts have failed simultane-

ously. Suppose this induces k connected components. Let us contract each connected
component in the configuration to a single vertex. Each failed cut in the original graph
corresponds to a distinct failed cut in the contracted graph. Since the contracted
graph has k vertices, we know that there are at most 2k−1 − 1 ways to partition its
vertices into two nonempty groups, and thus at most this many cuts. In other words,
u ≤ 2k−1 − 1. Now solve for u and observe it must be integral.

Corollary 5.5. If pc = n−(2+δ) then Pr[Su] ≤ n−dlog(u+1)+1eδ/2.
Proof. Apply Corollary 4.8 to the previous lemma.
Thus, for example, S2 and S3 are upper bounded by the probability that a 3-

way cut fails, which by Corollary 4.8 is at most n−3δ/2. More generally, all 2k values
S2k , . . . , S2k+1−1 are at most n−(k+2)δ/2. It follows that the error in our approximation
by the bound of Theorem 5.1 is∑

u≥2

Su ≤
∑
k≥1

2kn−(k+2)δ/2

= n−δ
∑
k≥1

(2n−δ/2)k

= 2n−3δ/2(1 + o(1)),

whenever δ > 0. This quantity is o(pc), and thus o(FAIL(p)), whenever n−3δ/2 =
o(n−(2+δ)), i.e. δ > 4. This proves Theorem 5.1.

5.3. A PAS. We now use the inclusion-exclusion analysis to give a PAS for
FAIL(p) when pc = n−(2+δ) for some fixed δ > 0, thus proving Theorem 5.2. We
give an ε-approximation algorithm with a running time of (n/ε)exp(O(− logn ε)), which
is clearly polynomial in n for each fixed ε (and in fact, for any ε = n−O(1)).
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We must eliminate two uses of randomization: in the contraction algorithm for
identifying the α-minimum cuts and in the DNF counting algorithm for estimating
their failure probability.

The first step is to deterministically identify the near-minimum cuts of G. One
approach is to use a derandomization of the contraction algorithm [13]. A more
efficient approach is to use a cut enumeration scheme of Vazirani and Yannakakis [26].
This scheme enumerates cuts in increasing order of value, with a “delay” of Õ(mn)
per cut. From the fact that there are only n2α weak cuts, it follows that all weak cuts
(in the sense of section 3) can be found in Õ(mn1+2α) time.

We must now estimate the probability one of the near-minimum cuts fails. Let
us consider truncating to the first k terms in the inclusion-exclusion expansion. From
Corollary 5.5 we know that Pr[Su] ≤ n−(log(u+1)+1)δ/2. It follows from Lemma 5.3
that for any k ≤ 1

3δ logn, our error from using the k-term truncation of inclusion-
exclusion is∑

u

(
u− 2

k − 2

)
n−(log(u+1)+1)δ/2 ≤ n−δ/2

∑
u≥k

(u− 2)k−2(u+ 1)−δ(log n)/2

≤
∑
u≥k

(u+ 1)k−2−δ(log n)/2

≤
∑
u≥k

(u+ 1)δ(log n)/3−2−δ(log n)/2

≤
∑
u≥k

(u+ 1)−δ(log n)/6−1

≤
∫ ∞
u=k−1

(u+ 1)−δ(log n)/6−1 du

=
k−δ(log n)/6

δ(logn)/6

=
n−δ(log k)/6

δ(logn)/6

= O(n−δ(log k)/6).

This quantity is O(εn−(2+δ)) = O(εpc) = O(εFAIL(p)) for some k = 2O(− logn ε). It
follows that for an ε-approximation we need only evaluate the inclusion-exclusion up
to the kth term. Computing the kth term requires examining every set of k of the
(n/ε)O(1) α-minimum cuts; this requires (n/ε)exp(O(− logn ε)) time. This concludes the
proof of Theorem 5.2.

We can slightly improve our bound on Pr[Su], which in turn gives better bounds
on k.

Lemma 5.6. If u distinct α-minimum cuts fail, then a u1/2α-way cut fails.
Proof. Consider a configuration in which u distinct cuts have failed simultane-

ously. Suppose this induces k connected components. Let us contract each connected
component in the configuration to a single vertex. In this contracted graph (before
edges fail), the minimum cut is at least c (since contraction never reduces the mini-
mum cut). Furthermore, each of the u failed cuts is a cut of value at most αc, and
thus an α-minimum cut, in the contracted graph. Since the contracted graph has k
vertices, we know from Theorem 2.6 that u < k2α, meaning that k > u1/2α.

However, this serves only to reduce the values of our constants (and reduce the
running time from an exponential to a polynomial dependence on 1/δ).
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6. The Tutte polynomial. The Tutte polynomial T (G;x, y) is a polynomial in
two variables defined by a graph G. Evaluating it at various points x, y on the so-called
Tutte plane yields various interesting quantities regarding the graph. In particular,
computing the network reliability REL(p) is the special case of evaluating the Tutte
polynomial at the point x = 1, y = 1/(1 − p). Another special case is counting
the number of strongly connected orientations of an undirected graph, discussed in
subsection 3.5. Yet another is counting the number of forests in a graph. Alon, Frieze,
and Welsh [1] showed that for any dense graph (one with Ω(n2) edges) and fixed x
and fixed y ≥ 1 there is an FPRAS for the Tutte polynomial.

6.1. Results. In this section, we prove the following.
Theorem 6.1. For every y ≥ 1 there is a c = O(y lognxy) (in particular,

c = O(logn) for any fixed x and y) such that for all n-vertex m-edge graphs of edge-
connectivity greater than c,

T (G;x, y) =
ym

(y − 1)n−1
(1 +O(1/n)).

Thus, a good approximation can be given in constant time. Note that almost
all graphs fall under this theorem as the minimum cut of a random graph is tightly
concentrated around n/2� c.

Theorem 6.2. For every y > 1 there is a c = O(y lognxy) such that there is an
FPRAS for T (G;x, y).

This theorem is perhaps unsurprising given the previous theorem. A slightly more
challenging quantity is the “second-order term” saying how far a given graph diverges
from its approximation in the first theorem.

Theorem 6.3. Let

∆T (G;x, y) =
ym

(y − 1)n−1
− T (G;x, y).

For any fixed y > 1 and fixed x, there is a c = O(logn) such that there is an FPRAS
for ∆T (G;x, y).

This theorem is stronger than and implies the previous theorem. When ∆T is
very close to 0, ym

(y−1)n−1 accurately approximates T but approximating ∆T with small

relative error is harder.

6.2. Method. Our proofs begin with a lemma of Alon, Frieze, and Welsh [1]
(which we have slightly rephrased to include what is for them the special case of
x = 1).

Lemma 6.4 (see [1]). When y > 1,

T (G;x, y) =
ym

(y − 1)n−1
E[Qκ−1],

where Q = (x−1)(y−1), and κ is a random variable equal to the number of connected
components of G when each edge of G fails independently with probability p = 1−1/y.
(In the case Q = 0 (when x = 1), we use the fact that 0r = 0 for r 6= 0 while 00 = 1.)

In other words, when pr is the probability that the graph with random edge
failures partitions into exactly r components, the Tutte polynomial can be evaluated
from

E[Qκ−1] =
n∑
k=1

prQ
r−1.
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For the remainder of this subsection, we normalize our analysis by considering the

quantity T ′(G;x, y) = T (G;x, y) (y−1)n−1

ym = E[Qκ−1]. Clearly, any results on relative

approximations to T ′ translate immediately into results on relative approximations
to T .

We begin with an intuitive argument. From Theorem 2.9, when pc = n−(2+δ)

(which happens for some c = O(logn) for any fixed p) we know pr is negligible for
r ≥ 1. Intuitively, since p1 ≈ 1 and all other pr ≈ 0, we might as well approximate
T ′ by Q. Extending this argument, we know that compared to p2, all terms pr for
r > 2 are negligible. Therefore, the error in the approximation of T ′ by Q is almost
entirely determined by p2Q

2, which we can determine by computing p2.
To prove our results formally, we have to deal with the fact that the term Qr

in the expectation increases exponentially with r. We prove that the pr decay fast
enough to damp out the increasing values of Qr. We also need to be careful that
when Q < 0, the large leading terms do not cancel each other out.

6.3. Proofs. For our formal analysis, instead of the quantities pr, it is more con-
venient to work with quantities sr measuring the probability that the graph partitions
into r or more components. Note that s1 = 1 and s2 = FAIL(p). Since pr = sr−sr+1,
it follows that

T ′(G;x, y) =
n∑
r=1

prQ
r−1

=
n∑
r=1

(sr − sr+1)Qr−1

=
n∑
r=1

srQ
r−1 −

n∑
r=2

srQ
r−2

= 1 +
n∑
r=2

sr(Q
r−1 −Qr−2)

= 1 + (Q− 1)
n∑
r=2

srQ
r−2.

Theorem 6.1 will follow directly from the last equation if we can show that the trailing
term (Q−1)

∑n
r=2 srQ

r−2 = O(1/n). Theorem 6.3 will follow if we can give an FPRAS
for
∑n
r=2 srQ

r−2. The fact that the value of this sum is o(1) (Theorem 6.1) means that
the FPRAS for it immediately yields an FPRAS for T ′, thus proving Theorem 6.2.

To prove these results, first consider the case x = 1. In this case Q = 0, meaning
Qr−2 = 1 for r = 2 and 0 for r > 2. Thus T ′(G;x, y) = 1−s2 = 1−FAIL(p) = REL(p).
We have already seen in Theorem 2.9 that whenever pc = n−(2+δ), the probability
that the graph becomes disconnected is at most n−δ(1+2/δ). This is certainly O(1/n)
if δ ≥ 1, meaning REL(p) = 1−O(1/n). But this in turn is true when pc < n−3, i.e.,

c > 3 lnn/ ln(y/(y − 1)) = O(y lnn).

This proves Theorem 6.1 for Q = 0. On the other hand, Theorem 6.3 simply claims
that there is an FPRAS for 1− REL(p) = FAIL(p), which is what section 2 showed.
Finally, Theorem 6.2 says that when FAIL(p) is small, we can approximate REL(p)
(by approximating FAIL(p)).

We now generalize this argument to the case x > 1. To derive the appropriate
lower bound on c, we state two criteria that will we need in our analysis. First,
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we require c to be such that pc = n−(2+δ) for some δ > 1. Equivalently, we have
1 ≤ δ = − log(n2pc)/ logn. Second, we require that Q < 1

4n
δ/4. Plugging in for δ, we

find the equivalent requirement

Q <
1

4
nδ/4

=
1

4
(n2pc)−1/4,

(4Q)4 < 1/n2pc,

n2(4Q)4 <

(
y

y − 1

)c
,

ln(256Q4n2)/ ln

(
1 +

1

y − 1

)
< c.

This is true for some c = O(y(lnnQ)) = O(y lnnxy) as claimed.
Given the above relations between Q,n, and δ, we can use Corollary 4.8. Since

pc = n−(2+δ), we deduce that sr ≤ n−rδ/2. Since Q < 1
4n

δ/4 < 1
2n

δ/2 we find that

n∑
r=r0

srQ
r−2 ≤ Q−2

∑
r≥r0

(Qn−δ/2)r

≤ Q−2(Qn−δ/2)r0/(1− (Qn−δ/2)r0)

≤ Q−2(Qn−δ/2)r0/

(
1− 1

2r0

)
≤ 2Q−2(Qn−δ/2)r0 .

Our results follow from this bound. First, taking r0 = 2, we find that the error in
approximating T ′(G;x, y) by 1 is at most

2n−δ = o(1).

This proves Theorem 6.1.
To prove Theorem 6.3, note that the leading term in the summation (6.1) is

s2 ≥ n−(2+δ). We can therefore estimate the sum to within relative error O(ε) by
evaluating summation terms up to summation index r0 where (Qn−δ/2)r0 ≤ εn−(2+δ).
Since the left-hand side decreases exponentially in n as a function of r0, we can achieve
this error bound by taking

r0 = O(logn(n2+δ/ε)) = O(1 + logn 1/ε).

In other words, we need only to determine O(1 − logn ε) terms in the summation.
This in turn reduces to determining the quantities sr appearing in those terms.

We cannot find the sr exactly. However, for an ε-approximation, it suffices to
approximate each relevant sr to within ε. We can do so using the algorithm of
Corollary 4.5. The running time of this algorithm for estimating the r-way failure
probability to within ε is (nr/ε)O(1). We have argued above that we need only to run
the algorithm for r ≤ r0 = O(1 − logn ε). It follows that the running time of our
algorithm is nO(1−logn ε)/εO(1) = (n/ε)O(1), as required. This proves Theorem 6.3.

Finally, we consider the case x < 1. Our argument is essentially unchanged from
before. We need to be slightly more careful because our sum is now an alternating
sum, which means that the leading terms are a good approximation only if they do not
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cancel each other out. To see that such cancelling does not occur, note that the first
term has value s2 = n−(2+δ), while the remaining terms (by the analysis above) have
total (absolute) value O(n(Qn−3δ/2)). If we choose n large enough that Q < 1

4n
δ/4,

then this bound is O( 1
4n
−5δ/4) < 1

4s2 for δ > 4, so the remaining terms do not cancel
s2.

7. Conclusion. We have given an FPRAS for the all-terminal network reliability
problem and several variants. In the case of large failure probability, the FPRAS
uses straightforward Monte Carlo simulation. For smaller failure probabilities, the
FPRAS uses an efficient reduction to DNF counting or a less efficient deterministic
computation. An obvious open question is whether there is also a deterministic PAS
for the case of large failure probabilities. Another is whether there is also an FPRAS
for REL(p) = 1− FAIL(p), the question being open only for the case REL(p) near 0.

This work has studied probabilistic edge failures; a question of equal importance
is that of network reliability under vertex failures. We are aware of no results on
the structure of minimum vertex cuts that could lead to the same results as we
have derived here for edge cuts. In particular, graphs can have exponentially many
minimum vertex cuts. The same obstacle arises in directed graphs (where we wish to
measure the probability of failing to be strongly connected).

Although the polynomial time bounds proven here are not extremely small, we
expect much better performance in practice since most graphs will not have the large
number of small cuts assumed for the analysis. Preliminary experiments [16] have
suggested that this is indeed the case.
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Abstract. We study the problem of computing a Hamiltonian tour (cycle) or path on a set of
points in order to maximize the minimum edge length in the tour or path. This “maximum scatter”
traveling salesperson problem (TSP) is closely related to the bottleneck TSP and is motivated by ap-
plications in manufacturing (e.g., sequencing of rivet operations) and medical imaging. In this paper,
we give the first algorithmic study of these problems, including complexity results, approximation
algorithms, and exact algorithms for special cases. In an attempt to model more accurately the real
problems that arise in practice, we also generalize the basic problem to consider a more general
measure of “scatter” in which points on a tour or path should be far not only from their immediate
predecessor and successor, but also from other near-neighbors along the tour or path.
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1. Introduction. In this paper we study a new class of traveling salesperson
problem (TSP) variants that is based on the objective of finding, in an edge-weighted
complete graph G = (S,E), a tour (cycle) or a path that is most “scattered.” Specif-
ically, the goal is to maximize the length of a shortest edge in the tour/path; i.e., to
have each point be far from the points that are visited just before or just after it in
the tour/path. We refer to this problem as the maximum scatter TSP, or the max-min
1-neighbor TSP.

More generally, we consider the max-min m-neighbor TSP in which the goal is
to maximize the minimum distance between any point and all of its “m-neighbors”
along the tour/path. An m-neighbor of p is a point that is at most m points away
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from p in the tour/path. The problem, then, is to find a tour/path, (p1, . . . , pn), on
the n points of S in order to maximize

min
i∈{1,...,n}

min
j∈{i−m,...,i−1,i+1,...,i+m}

d(pi, pj),

where d(pi, pj) denotes the length of edge (pi, pj) (not the length along the tour/path
linking pi and pj). The indices in the minimization should be modified appropriately
to account for wrap-around effects in cycles, or endpoint effects in paths.

Motivation. This maximum scatter TSP problem arises in some manufacturing
processes where it is important to have substantial separation (distance) between
consecutive (or nearly consecutive) operations on a workpiece. We first encountered
the problem in discussions with Boeing, where the problem was that of sequencing
the riveting operations when fastening sheets of metal together [21, 22]. To prevent
nonuniform deformation of the sheet metal plates that are being joined, it is important
to sequence the riveting process so that the distance between one rivet and the next
one is large; i.e., the riveting operations should be scattered. In operations that involve
heating the workpiece, it may be important not just to have each point well separated
from its immediate predecessor and successor, but also from its m-neighbors, in order
to allow for cooling time in the vicinity of each operation.

The maximum scatter TSP also arises in some medical imaging applications,
as has been recently studied by Penavic [20]. When imaging physiological functions
using a dynamic spatial reconstructor (DSR), the radiation sources are placed along
the top half of a circular ring, with sensors placed directly opposite, in the bottom
half of the ring. The “firing sequence” determines the order in which the sources,
and their partnered sensors, are activated, usually in a periodic pattern. The sensors
collect intensity data of the energy that passes through the patient, who is placed in
the center of the ring. When source i is activated, some amount of scattering occurs,
so it is important not to activate sensors of nearby sources (e.g., i+ 1, i− 1, i+ 2, . . .)
soon after i is activated. This motivated Penavic to study firing sequence orderings
for some specific geometries of DSR hardware, and motivates our study (in section 6)
of some one-dimensional versions of the maximum scatter problem.

Related Work. A closely related problem is the bottleneck traveling salesperson
problem (BTSP), in which the goal is to minimize the length of a longest edge in a
Hamiltonian cycle. (See [17].) The BTSP is known to be NP-complete, and no constant
factor approximation algorithm can exist unless P=NP. Assuming the edge lengths
satisfy the triangle inequality, there exists an approximation algorithm to produce
a tour whose longest edge has a length that is at most twice the optimal, and this
approximation factor of two is best possible [18]. By similar techniques we obtain
similar hardness results for the maximum scatter TSP (in edge-weighted graphs);
however, our approximation algorithm is very different from that given in [18], and
neither algorithm works for the other problem.

Another variant of the TSP that is potentially related to our work is the MAX
TSP, in which the goal is to find a tour whose length is as long as possible. Several
approximation algorithms exist for the MAX TSP (without any assumptions on the
edge lengths), including a naive algorithm that achieves a 2/3 approximation factor,
and a recent algorithm of Hassin and Rubinstein [10] that achieves a 5/7 approxima-
tion factor. (See also Kosaraju [16], who claimed an earlier approximation factor of
5/7; however, Bhatia has recently shown that their algorithm gives a bound of 19/27
instead of the claimed 5/7.) However, neither of these algorithms works for our max-
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imum scatter problem. Also, there exists a polynomial-time approximation scheme for
geometric (e.g., Euclidean) versions of the MAX TSP [4]. The noncrossing version of
geometric MAX TSP is considered in [2]. Very recently, since the original appearance
of our own paper [3], Barvinok et al. [5] show that the MAX TSP can be solved ex-
actly in polynomial time, for points in fixed dimension, under a (constant-complexity)
polyhedral metric. Most recently, Fekete [8] shows that the Euclidean MAX TSP is
NP-hard for the Euclidean metric, in three or more dimensions. His proof also shows
that the Euclidean maximum scatter TSP is NP-hard in three or more dimensions.
However, the complexity of the MAX TSP, as well as the maximum scatter TSP and
the noncrossing MAX TSP, remains open for points in the Euclidean plane.

The most directly related previous work on the maximum scatter TSP has been
done by Penavic [19], who studied the optimal firing sequences for a DSR application
in which all sources are equally spaced. Our one-dimensional results generalize this
previous work.

Summary of Results.
• We show that the maximum scatter TSP is, in general, NP-complete, and

that no constant-factor approximation algorithm exists, unless P=NP. We do
not yet know the complexity of the geometric maximum scatter TSP problem
for points in the plane (and Euclidean distances); we conjecture that it is
NP-hard. See section 2.
• In the case that distances obey the triangle inequality, we give approximation

algorithms (section 3) guaranteed to get within factor 2 of optimal for the
maximum scatter TSP, for both the tour (cycle) and path versions of the
problem. Further, we prove that this factor is best possible.
The methods also extend to give a factor-2 (best factor) approximation for the
max-min 2-neighbor TSP, for the cycle version and some cases (n 6= 3k + 1)
of the path version of the problem, by using a very recent result on the
Pósa conjecture (see section 3). (These extensions are not practical and are
of theoretical interest only.)
• We also give (section 4) practical constant-factor approximation results on

the max-min 2-neighbor TSP in the case that distances obey the triangle
inequality, for both the cycle (factor 64) and path (factor 32) versions of the
problem. Our approach utilizes novel methods of applying matching tech-
niques, together with metric properties of the distance matrix, and may be
of independent interest.
These methods extend (section 5) also to yield a constant-factor (4 · 8dm/2e)
approximation for the path version of the max-min m-neighbor TSP, for any
constant m > 2, when n is a multiple of m+ 1.

• We give algorithms (section 6) that find the optimal solution to the max-
min 1-neighbor TSP exactly, in some special cases. In particular, we obtain
linear-time (optimal) exact algorithms for the case of points on a line, or on
a circle, with Euclidean distances, for both the cycle and the path versions of
the problems (for the path version of points on a circle, we consider only the
case in which n is an odd integer or the points are equally spaced).

Notation. We consider a complete graph, G = (S,E) on a set of points S, with
the full edge set E. We let d(p, q) denote the distance between point p and point q,
and we let de = d(p, q) denote the length of edge e = (p, q). We let diam(R) denote
the diameter of the set R ⊆ S; i.e., diam(R) = maxp,q∈R d(p, q). The (open) disk
Dp(r) of radius r, centered at p ∈ S, is defined to be the set of points in S that are at
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distance less than r from p. The boundary of Dp(r) is the circle consisting of points
of S that are at distance exactly r from p.

An algorithm is said to yield a factor α approximation for a maximization problem
if the algorithm is guaranteed to produce a solution whose objective function value is
at least (1/α) times the value of an optimal solution.

2. Complexity considerations: Hardness results. Our first result demon-
strates the importance of restricting our problem to graphs having some structure
(e.g., edge lengths obeying triangle inequality).

Theorem 2.1. There can exist no polynomial-time, constant-performance-bound
approximation algorithm for an arbitrary instance of the maximum scatter TSP (cycle
or path version), unless P=NP.

Proof. We consider the cycle version of the problem; the same argument applies
for the path version as well. Assume to the contrary that such an algorithm exists,
and its performance bound is ρ. We show that this algorithm can be used to test
whether a graph has a Hamiltonian cycle. Given an arbitrary graph, G = (S,E),
construct an instance of maximum scatter TSP (cycle version) on the complete graph
on S, with edge lengths de = 1 if e /∈ E, and de = 1 + ρ if e ∈ E. If G has a
Hamiltonian cycle, the maximum scatter TSP has an objective value of ρ + 1; thus,
the approximation algorithm must yield a tour whose shortest edge length is greater
than 1 (i.e., it produces a Hamiltonian cycle in G). If G does not have a Hamiltonian
cycle, then the maximum scatter TSP has an objective value of 1, and therefore the
approximation algorithm also yields a tour for which at least one edge has length 1.
Thus G is Hamiltonian if and only if the alleged approximation algorithm produces a
tour of minimum edge length greater than 1.

Theorem 2.2. There can exist no polynomial-time algorithm for the maximum
scatter TSP (cycle or path version) in a graph satisfying the triangle inequality with
a performance bound smaller than 2 unless P=NP.

Proof. The proof follows the previous one, except that the weight ρ+1 is replaced
by weight 2. (Note that the triangle inequality holds in the resulting graph.)

While the above two results parallel the similar facts known about the bottleneck
TSP (BTSP), there is a significant difference in our current knowledge about the
BTSP versus the maximum scatter TSP in the case of the geometric versions of these
two problems. Specifically, it is easy to see that the BTSP is NP-hard even for points
in the plane, using a reduction from Hamiltonian cycle in a grid graph (see [17]): A
tour whose maximum edge length is 1 exists in the complete graph whose edge lengths
are given by the Euclidean distances if and only if the grid graph is Hamiltonian. This
approach does not apply, however, to show NP-hardness of the maximum scatter TSP
in the plane; to date, this problem remains open. (In one dimension, the problem is
solvable in linear time, as we show in section 6, while in Euclidean 3-space Fekete [8]
has recently shown that the problem is NP-hard.)

Next, we show that the max-min m-neighbor TSP is at least as hard as the
max-min 1-neighbor (scatter) TSP.

Theorem 2.3. In a graph satisfying the triangle inequality, the max-min m-
neighbor TSP with m > 1 is at least as hard as the max-min 1-neighbor TSP for both
the cycle and the path versions of the problems.

Proof. We reduce the problem with m = 1 to that with m > 1. From the given
node set S of the former, we construct another node set S′ for the latter. Set S′

consists of the original n nodes of S, plus an additional dn2 e(m− 1) nodes. Let D and
d be the largest and smallest distances between all pairs of nodes in S. We arrange
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S1

(a) (b)

S2 S1 S2

S S

Fig. 2.1. Examples for the construction in the proof of Theorem 2.3 with m = 3 : (a) n = 4
is even; (b) n = 5 is odd. The cycles are given by connecting all (solid and dashed) edges, and the
paths are given by removing one edge, e.g., the dashed edge, from the cycles.

the dn2 e(m − 1) additional nodes of S′ into m − 1 clusters S1, . . . , Sm−1, each with
dn2 e nodes. Any pair of nodes in the same cluster are within distance less than d, and
any pair of nodes that are in different clusters (treating S as a cluster at this time)
are separated by a distance larger than D. There must exist an optimal m-neighbor
cycle on S′ consisting of dn2 e “rounds,” where each round contains exactly two nodes
of S and one node from each of S1, . . . , Sm−1 (see Figure 2.1). Observe that for any
two nodes in the same cluster (S or Si), only those in S can possibly be m-neighbors.
An optimal 1-neighbor cycle on S can then be obtained from this cycle by skipping
the nodes not in S. An optimal m-neighbor path on S′ has the same structure except
for cutting the cycle open by removing one edge (see Figure 2.1). Again an optimal
1-neighbor path on S can be obtained in the same way.

The following is immediate from Theorems 2.3 and 2.2.
Corollary 2.4. There can exist no polynomial-time algorithm for the max-min

m-neighbor TSP (cycle or path version) in a graph satisfying the triangle inequality
with a performance bound smaller than 2, unless P=NP.

3. Approximating the max-min 1-neighbor TSP. In this section, we con-
sider the maximum scatter (max-min 1-neighbor) TSP, for both the cycle and path
versions, on the complete graph G = (S,E), whose edges are weighted with nonneg-
ative lengths that satisfy the triangle inequality. In the riveting problem, S may be
points in the plane, and edges are assigned Euclidean lengths.

We first mention that some of the natural approaches do not work in this case:
(1) The BTSP, in which we must minimize the longest edge (vs. maximizing the

shortest edge), has a 2-approximation algorithm [18], which works as follows:
First, find a biconnected subgraph of the given graph that minimizes the
longest edge; the square of this biconnected graph is Hamiltonian; finally, we
trace a Hamiltonian tour in the square of the graph. However, this approach
does not yield an approximation for the maximum scatter TSP.

(2) The MAX TSP also has constant factor approximation algorithms (e.g., to
get within factor 5/7 of optimal [16]), but again the methods do not yield
approximations for the maximum scatter TSP. The reason for this is that
the algorithms for MAX TSP generate “long” paths, and then connect them
arbitrarily into a cycle, since the added edges will only add to the length of the
tour. However, in the scatter problem, adding a very short edge at this stage
can drastically reduce the scatter (minimum length edge) obtained, resulting
in a tour that is far from optimal.
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(3) A natural greedy algorithm (select the next point to be the unvisited one
that is furthest away) also fails for the maximum scatter TSP, as there are
simple examples showing that it can yield paths or tours that are arbitrarily
bad with respect to optimum.

(4) For the geometric version of the maximum scatter TSP in the plane, we
have also attempted to use our one-dimensional (exact) results, by projecting
the points onto each of a small number of axes, solving the one-dimensional
problems on those axes, and then lifting back to two dimensions. However,
bad examples exist for this approach as well.

We now present a new approximation method that does yield provably good
solutions. We concentrate for now on the cycle version of the problem. We make use
of the following theorem due to Dirac [6]: If every node of a graph having n nodes
(n ≥ 3) has degree ≥ dn2 e, then the graph has a Hamiltonian cycle. We devise an
efficient algorithmic version of Dirac’s proof in our proof of Theorem 3.5 below; we
are not aware of an algorithmic proof appearing in the literature.

Our algorithm is very simple: We consider the edges E in order of increasing
length. We delete edges, one by one, starting with the shortest one and stopping
when the deletion of an edge, say, e = (u, v) (of length de = d(u, v)), would cause a
node (say, v) to have degree less than dn2 e. Let G′ = (S,E′) be the graph that remains.
By definition, then, E′ includes edge e = (u, v), as well as all other edges of length at
least de.

By Dirac’s theorem, we know that G′ has a Hamiltonian cycle. We can find such
a cycle (call it C) in O(n2) time (see Theorem 3.5). A shortest edge of C has length
at least de.

Let d∗ be the length of a shortest edge of an optimal tour.

Lemma 3.1. Let R ⊂ S be a subset of nodes with |R| > bn2 c (resp., |R| > dn2 e).
Then, in any Hamiltonian cycle (resp., path) on S, there must exist an edge joining
two nodes of R.

Proof. Let k = bn2 c and Sout = S \ R. To avoid having any edge joining two
nodes of R in a Hamiltonian cycle, all nodes in R must be connected only to nodes in
Sout, which is impossible since the total number of edges out of R is at least 2k + 2
but such a number for Sout is at most 2k. We use the same argument to prove the
case of a Hamiltonian path. Letting k = dn2 e, we have that the total number of edges
out of R is at least 2 + 2[(k + 1) − 2] = 2k but such a number for Sout is at most
2(k − 1).

We later also use the following immediate generalization of Lemma 3.1.

Lemma 3.2. For any integer m ≥ 1, let R ⊂ S be a subset of nodes with |R| >
b n
m+1c( resp., |R| > d n

m+1e). Then, in any Hamiltonian cycle (resp., path) on S, there
must exist two nodes of R that are m-neighbors.

Corollary 3.3. Let R ⊂ S be a subset of nodes with |R| = bn2 c + 1. Then,
d∗ ≤ diam(R).

Lemma 3.4. d∗ ≤ 2de, where de is the length of the edge, e = (u, v), which is the
first edge not to be deleted in our algorithm, as its deletion would result in the degree
of v being < dn2 e.

Proof. Let R = {u} ∪Nv, where Nv denotes the set of nodes w such that (v, w)
6∈ E′. (Note that v ∈ Nv, since we do not allow self-loops, and that u /∈ Nv.) Thus,
R includes all nodes at distance at most de from node v, and node v itself. By speci-
fication of the algorithm, |S \Nv| ≥ dn2 e, while |S \ R| < dn2 e. Thus, |R| = bn2 c + 1,
so, from Corollary 3.3, d∗ ≤ diam(R). However, since all nodes of R are at distance
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≤ de from v, we know, from the triangle inequality, that diam(R) ≤ 2de. Thus,
d∗ ≤ 2de.

Theorem 3.5. Given a complete graph on set S of n points satisfying triangle
inequality, there exists an O(n2)-time approximation algorithm for the maximum scat-
ter TSP on S that produces a Hamiltonian tour whose shortest edge is at least 1

2 times
optimal. The approximation factor is the best possible unless P=NP.

Proof. The approximation factor and its optimality follow from Lemma 3.4 and
Theorem 2.2. The O(n2) running time can be accomplished as follows. First, in over-
all time O(n2), we find for each node the median weight (the dn2 eth longest) edge
among those edges incident on it. By taking the minimum of these n medians, we
find the length of the critical edge, e, and therefore can easily identify the edges E′

of the graph G′ by deleting all edges of E shorter than e. Our algorithm now re-
sembles a constructive version of Dirac’s proof. We start with a Hamiltonian cycle
in the complete graph; this is trivially found. Then, we delete edges (u, v), one by
one, which are not in E′. With each deletion, we modify the existing Hamiltonian
cycle, u = v1, v2, . . . , vn−1, vn = v, swapping out edges (u, v) and (vi, vi+1), and swap-
ping in edges (u, vi+1) and (vi, v), where i ∈ S ∩ T is an index in the intersection of
S = {i : (u, vi+1) ∈ E′} and T = {i : (vi, v) ∈ E′}. As in Dirac’s proof, S ∩ T must
be nonempty, since |S ∪ T | < n (since n /∈ S, T ) and |S ∪ T |+ |S ∩ T | = |S|+ |T | =
deg(u) + deg(v) ≥ n. By representing the sets S and T with bit vectors of length
n each, where bit j indicates if index j belongs to the set, we can find i ∈ S ∩ T
in O(n) time. Note that the new edges in the resulting Hamiltonian cycle, (u, vi+1)
and (vi, v), are both in E′, i.e., we never introduce new edges that need to be
deleted. Therefore we need to perform the deletions at most n times, in overall time
O(n2).

Now we consider the path version of the problem. One simple way is to add a
fake point Q very far away from all points of S so that it does not affect the max-min
edge length at all, and then solve the cycle problem. When we get the answer that is a
cycle, we simply cut the cycle open at Q to get a path, and then remove Q. Notice that
using Lemma 3.1, we have a corollary for the path version similar to Corollary 3.3:
Any subset R of S with |R| = dn2 e+1 has d∗ ≤ diam(R), where d∗ is now the optimal
max-min edge length of Hamiltonian paths. When we apply our cycle algorithm, the
problem size is n′ = n+ 1, for which we take the size of R to be bn′2 c+ 1 = dn2 e+ 1,
which is exactly the desired size of R for the path version.

Corollary 3.6. Given a complete graph on set S of n points satisfying trian-
gle inequality, there exists an O(n2)-time approximation algorithm for the maximum
scatter TSP on S that produces a Hamiltonian path whose shortest edge is at least 1

2
times optimal. The approximation factor is the best possible unless P=NP.

4. Approximating the max-min 2-neighbor TSP. We turn now to the prob-
lem of approximating the max-min 2-neighbor TSP. We begin by pointing out, as
observed by Khuller [12], that our method for the max-min 1-neighbor TSP can be
directly extended to work for the cycle version of the max-min 2-neighbor TSP, if the
following Pósa conjecture (which is a generalization of Dirac’s theorem) is true: If
every node of an n-node graph has degree ≥ d 2

3ne, then the graph contains the square
(i.e., the second power) of a Hamiltonian cycle. Here the kth power of a cycle C is
the graph obtained by joining every pair of nodes that are k-neighbors in C. Very
recently, the Pósa conjecture has been proved for a very large n [14]. Also, the proof
leads to a polynomial-time algorithm [12, 13]. Thus we have the following result.
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Theorem 4.1. Given a complete graph on a set S of n points, with edge lengths
satisfying the triangle inequality, there exists a polynomial-time approximation algo-
rithm that constructs a Hamiltonian cycle on S whose objective value for the max-min
2-neighbor problem is at least 1

2 times the optimal. The approximation factor is the
best possible, unless P=NP.

Notice that the node-degree condition in the Pósa conjecture does not work well
for us in the path version unless n = 3k; see Lemma 3.2. For n = 3k+2, we can again
add a fake point Q very far away, construct a cycle, and then remove Q to obtain
a desirable path. But when n = 3k + 1, the same trick requires us to add two fake
points Q and Q′. In constructing a cycle, we also need to make sure that Q and Q′

are next to each other (so that removing Q and Q′ does not break the final path),
which might not be easy to do. We do not explore this further here.

Corollary 4.2. Given a complete graph on set S of n points satisfying triangle
inequality, where n = 3k or n = 3k+ 2, there exists a polynomial-time approximation
algorithm that constructs a Hamiltonian path on S whose objective value for the max-
min 2-neighbor problem is at least 1

2 times the optimal. The approximation factor is
the best possible unless P=NP.

Remark 1. Theorem 4.1 and Corollary 4.2 are of theoretical interest only. The
current proof of the Pósa conjecture is quite complex and uses the regularity lemma
that holds only for a very large n [14]. To turn the proof into an algorithm, it is nec-
essary to use an algorithmic version of the regularity lemma that runs in polynomial
time. Such an algorithm is given in [1]. To get an idea about how large n should be,
we quote the following sentences from [1, p. 474]:

We note that the dependence of Q(ε, t) on ε and t, as well as the
running time of the algorithm on these two parameters is rather hor-
rible; in fact, log∗Q is a polynomial (of degree about 20) in 1/ε and
in t.

As described in [1], the regularity lemma is valid for n > Q, where Q = Q(ε, t) is
a function of given (fixed) parameters ε > 0 and t (a positive integer). In typical
applications, ε is small (and thus 1/ε is large) and t is large. Even if we take t = 2
and ε = 1, this means that n has to be larger than Q, where log∗Q ≈ 220!

Remark 2. An algorithmic proof of the following Seymour conjecture (a general-
ization of the Pósa conjecture) would also imply a factor-2 (optimal factor) approxi-
mation algorithm for the cycle version of the max-min m-neighbor TSP: If every node
of an n-node graph has degree ≥ d m

m+1ne, then the graph contains the mth power of
a Hamiltonian cycle. Currently the conjecture is proved for the case when every node
has degree ≥ ( m

m+1 + ε)n, for any ε > 0, by using the regularity lemma [15].

We turn now to describe our own approximation method for the cycle and path
versions of the max-min 2-neighbor TSP. Our method is not based in any way on the
Pósa conjecture. Although the approximation factors are not optimal, the algorithms
are simple and practical. Also, unlike Corollary 4.2, the algorithms work for all cases
for the path version as well. Furthermore, the techniques can be extended to obtain
an approximation for the max-min m-neighbor TSP, for any constant m > 2 (see
section 5), not just m = 2.

Our main results are constant-factor approximation algorithms, which utilize
novel methods of applying matching techniques, together with metric properties of the
distance matrix, to search for “large” triangles (cycles of three nodes) that can then
be concatenated to form provably good tours and paths for the 2-neighbor problem.
Our overall strategy consists of the following steps:
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1. Construct bn/3c vertex-disjoint large triangles whose vertices are the points
in S. Here, by “large” we mean that all three sides of the triangles have
lengths at least a constant fraction of the upper bound, 2r (see Lemma 4.3).
(Of course, if n is not a multiple of 3, there are one or two points not part of
any triangle, but this complication can be handled, as we see later.)

2. Concatenate these large triangles together in order to create a Hamiltonian
path or cycle such that the distances between any 2-neighbors are large.

We elaborate these steps in the following sections.

4.1. Constructing large triangles. We describe how to construct large trian-
gles. We assume without loss of generality that there are no two distances between
points that are exactly the same. (If d(pi, pj) = d(pi′ , pj′), where i < j and i′ < j′, then
we consider edge (pi, pj) to be shorter than edge (pi′ , pj′) if (i, j) is lexicographically
less than (i′, j′).)

Let C denote a smallest circle, having a radius denoted by r, centered at one of
the n points such that the corresponding (open) disk contains exactly bn/3c points
of S (including the center point) interior to the circle. By definition, then, C passes
through exactly one point of S (which is not, of course, counted as one of the bn/3c
interior points).

Lemma 4.3. The max-min distance in the cycle version of a 2-neighbor TSP is
at most 2r.

Proof. The proof is immediate from Lemma 3.2.
Computationally, r and C can be found as follows. For each point we find as a

candidate the bn3 cth shortest edge among all edges incident on the point. The shortest
edge among these n candidates defines r and the center of C. Clearly, the computation
takes O(n2) time.

For simplicity of exposition, we now assume that n is a multiple of 3. We will
handle the other cases later. After computing r and C, we use Algorithm Big-Triangles
to construct n/3 vertex-disjoint large triangles, using n points of S as vertices, as
follows.

Algorithm Big-Triangles. The algorithm takes r, C, and S as input, and
constructs n/3 vertex-disjoint large triangles using n points of S as vertices. It consists
of the following three phases.

1. The point-point matching phase. Consider the bipartite graph G = (V1, V2, E),
where V1 is the set of points inside the disk defined by C and V2 is the set of points
outside the disk, including the point on the boundary C. Edge set E consists of “long”
edges from V1 to V2, between two nodes whose distance is at least r. Refer to Figure 4.1.
Note that |V1| = n/3 and |V2| = (2n)/3. Perform a maximum cardinality matching
on G. By Lemma 4.4 (below), all nodes of V1 are matched. For each matched pair,
create a segment e by connecting the two points. Clearly, each such e is of length at
least r.

Lemma 4.4. There is a matching in G in which all nodes of V1 are matched.
Proof. We use Hall’s theorem [9], which states that a “complete” matching of V1

into V2 exists if and only if for every subset A of V1, |A| ≤ |Γ(A)|, where Γ(A) is a
set of those vertices of V2 that are adjacent to at least one vertex in A.

We assume, by way of contradiction, that there exists a set A ⊆ V1 for which
|A| > |Γ(A)|. Consider now the nodes of V2 \Γ(A). The cardinality of this set satisfies

|V2 \ Γ(A)| = |V2| − |Γ(A)| > |V2| − |A| ≥ n/3,
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Fig. 4.1. Left: Point-point matching phase of Big-Triangles. Right: Segment-point matching
phase.

since |A| ≤ |V1| = n/3 and |V2| = (2n)/3. Furthermore, by definition, all of these
points are at a distance less than r from all points of A. A disk, centered at an
arbitrary point of A of radius r contains this center point as well as all of the points
of V2 \ Γ(A), i.e., at least n/3 + 2 points in total, in its interior, contradicting the
original choice of r.

2. The segment-point matching phase. We now create a bipartite graph H =
(W1,W2, E), in which the nodes W1 are the edges (segments) e that form the point-
point matching created in phase 1, and the nodes W2 are the points of V2 that are
not matched in phase 1. Note that |W1| = |W2| = n/3. The edge set E is specified
as follows: there is an edge between node e ∈ W1 and point p ∈ W2 if and only if p
is separated from both endpoints of the segment e by a distance at least r/4. Refer
to Figure 4.1. Perform a maximum (maximal suffices) matching on H. Now, for each
matched pair, e and p, create a triangle by connecting p with the two endpoints of
e. If the matching is a perfect matching, stop (there are n/3 triangles whose edge
lengths are at least r/4); otherwise go to the next phase.

3. The swapping phase. Let P be the set of “left-over” points not yet in any
triangle, and E′ be the set of “left-over” segments (created in phase 1) connecting
points of S that are not yet in any triangle. Note that |P | = |E′| = n/3− T, where T
is the size of the matching in phase 2.

Let e = (v1, v2) ∈ E′ be an arbitrary left-over segment, and let Ci = Dvi(r/2)
and ci = Dvi(r/4), for i = 1, 2, be the (open) disks centered at vi with radii r/2 and
r/4, respectively. Since e is not matched with any point of P in phase 2, all points in
P are within distances less than r/4 from at least one endpoint of e, i.e., P ⊂ c1 ∪ c2.
We define Pi = ci ∩ P, i = 1, 2; we refer to Pi as a cluster. Since e has length at least
r, c1 ∩ c2 = ∅; thus, (P1, P2) partition P . Now, the partition (P1, P2) has been defined
in terms of the particular edge e ∈ E′; however, the choice of e does not matter as far
as the partition is concerned.

Lemma 4.5. Each choice of e ∈ E′ results in the same partition of P .
Proof. Suppose that two distinct edges, e = (v1, v2) ∈ E′ and e′ = (v′1, v

′
2) ∈ E′,

give rise to two distinct partitions (P1, P2) and (P ′1, P
′
2), respectively. Then, there is

some pair of points, p1, p2 ∈ P, that is split by one partition but not by the other:
without loss of generality, assume that p1 ∈ P1 and p1 ∈ P ′1, while p2 ∈ P2 and
p2 ∈ P ′1. Then, d(p1, p2) > r/2, since d(v1, p1) + d(p1, p2) + d(p2, v2) ≥ d(v1, v2) ≥ r
implies that d(p1, p2) > r−d(v1, p1)−d(p2, v2) ≥ r−(r/4)−(r/4) = r/2. On the other
hand, since p1, p2 ∈ P ′1, we get that d(p1, p2) ≤ d(p1, v

′
1) +d(v′1, p2) < r/4 + r/4 = r/2

(since d(p1, v
′
1) 6= d(v′1, p2), and d(p1, v

′
1), d(v′1, p2) ≤ r/4), a contradiction.
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Fig. 4.2. Swapping: 4abc is a good triangle with respect to Pi, having edge lengths at least r/4.
Then, triangles 4pqa and 4xbc have edge lengths at least r/8.

Lemma 4.6. If Pi 6= ∅, then each segment of E′ has exactly one endpoint in Ci.
Proof. Let p ∈ Pi and let e′ ∈ E′ be any left-over segment. Since p is not

matched in phase 2 with e′, we know that d(p, v′) < r/4 for an endpoint v′ of e′.
Then, d(v′, vi) ≤ d(v′, p) + d(p, vi) < r/2, implying that v′ ∈ Ci, so e′ has at least
one endpoint in Ci. Further, e′ cannot have both endpoints in Ci, since e′ has length
greater than r, while Ci has radius r/2.

We call (P1, P2) a 1-partition if some Pi is empty, and a 2-partition otherwise. For
simplicity, unless otherwise stated, the following discussions assume that (P1, P2) is a
2-partition; the case of a 1-partition is easily handled.

For i = 1, 2, let Ri = Dvi(r) be the disk of radius r that is concentric with Ci.
We call a triangle 4abc constructed from phase 2 good with respect to Pi if a, b, and
c are all outside or on the boundary of Ri, and bad otherwise.

Lemma 4.7. Let 4abc be a good triangle with respect to Pi whose edge lengths are
at least r/4. Consider any segment e = (p, q) ∈ E′. Since we know (Lemma 4.6) that
e has exactly one endpoint in Ci, we can assume without loss of generality that p ∈ Ci
and that q 6∈ Ci is closer to b than to a and c. Then, for any x ∈ Pi, the triangles
4pqa and 4xbc have edge lengths at least r/8.

Proof. Points a, b, and c are each at distance at least r/2 from each of x and p,
since a, b, and c are each at distance at least r from the center, vi, of Ri, while x
and p are each within distance r/2 from vi. Also, recall that e has length at least
r. If d(b, q) ≥ r/8, then 4pqa and 4xbc have edge lengths at least r/8. Otherwise,
d(q, a) ≥ r/8, since d(q, a) + d(q, b) ≥ d(a, b) ≥ r/4, and again 4pqa and 4xbc have
edge lengths at least r/8. Refer to Figure 4.2.

The operation of replacing a good triangle (4abc), a left-over edge (e = (p, q) ∈
E′), and a left-over point (x ∈ Pi) with a pair of triangles (4pqa and 4xbc) is called
a swapping operation. The above lemma assures us that the edge lengths of the new
triangles are “large” (at least r/8), if the new triangles are as specified in the lemma.

Phase 3 proceeds by constructing Ci and Ri, i = 1, 2, then performing the swap-
ping operation for all points in P1 (swapping stage 1), and then performing the same
operation for all points in P2 (swapping stage 2). By Lemma 4.8 (given below), there
are always enough good triangles to complete the swapping operations, so that all
points are now vertices of n/3 triangles, each having edge lengths greater than r/8.

Lemma 4.8. There are always enough good triangles to complete the swapping
operations on all points in P1 and all points in P2. Also, after completion of Algorithm
Big-Triangles, the smallest edge length of all n/3 triangles is at least r/8.



526 ARKIN, CHIANG, MITCHELL, SKIENA, AND YANG

Proof. We first consider swapping stage 1. At the end of phase 2, suppose there
are T triangles, ` unmatched segments (and points), |P1| = `1, and |P2| = `2; then
we have T + ` = n/3, and `1 + `2 = `. Let T1,bad be the number of bad triangles
with respect to P1. If t1 is the total number of vertices of these triangles that are
inside R1, then t1 ≥ T1,bad, since each bad triangle has at least one vertex inside R1.
Recall that R1 is a disk of radius r; thus, by our choice of r, R1 contains at most
n/3 points. These points include ` endpoints from unmatched segments, `1 points
of P1, and t1 vertices from bad triangles. Therefore we have n/3 ≥ ` + `1 + t1 ≥
`+ `1 + T1,bad. Let T1,good be the number of good triangles with respect to P1. Then
T1,good = T − T1,bad = (n/3− `)− T1,bad ≥ (n/3− `)− (n/3− `− `1) = `1, i.e., there
are enough good triangles for the points in P1. For swapping stage 2, the situation is
the same except that now ` = `2, meaning that we have a 1-partition, and the same
counting argument applies. Finally, the smallest edge length of triangles at the end of
phase 2 is at least r/4 = δ. During phase 3, let 4abc be a good triangle for P1, and
in swapping stage 1 we swap 4abc with a segment e = (p, q) ∈ E′ and a point x ∈ P1

to produce 4pqa and 4xbc, as shown in the proof of Lemma 4.7. Notice that 4pqa,
with edge lengths at least δ/2, is now bad for P2 (and also for P1) and will not be
used for swapping in swapping stage 2. Also, 4xbc has edge lengths at least δ rather
than δ/2. Applying Lemma 4.7 again in swapping stage 2, the smallest edge length of
the final triangles is still at least δ/2 = r/8.

Now, for n not being a multiple of 3, i.e., n = 3k + l, l = 1 or 2, we perform
exactly the same operations. Note that the disk defined by C contains k points of S;
2k + l points of S lie outside the disk (including the one point on its boundary, C).
Applying Algorithm Big-Triangles then gives k large triangles, using up all k points
in the interior of C, with one or two points left over, outside, or on the boundary of C.

To analyze the complexity, we note that phases 1 and 2 are just maximum car-
dinality matching and maximal matching for bipartite graphs, which can be done in
time O(n2.5) (either by the O(n2.5)-time algorithm of [11] or by the O(

√
nm)-time

algorithm of [7], where m = O(n2) is the number of edges in the graphs). In phase 3,
we consider an arbitrary edge e ∈ E′ and the disks (Ci and Ri) of radii r/2 and r
centered at its endpoints, identify the corresponding good/bad triangles, and perform
local swappings, in O(n) time per swap. Finally, as analyzed before, radius r and
circle C are determined in O(n2) time.

Theorem 4.9. Given a complete graph on set S of n points satisfying triangle
inequality, there exists an algorithm that constructs in O(n2.5) time bn/3c triangles
from points in S such that the smallest edge length of the triangles is at least r/8,
where r is the radius of a smallest disk centered at a point of S, containing exactly
bn/3c points in its interior, and one additional point on its boundary.

4.2. Concatenating the triangles. We first show how to concatenate the tri-
angles into a Hamiltonian path, and then show how to make a Hamiltonian cycle.

Theorem 4.10. Given a list of triangles ∆1,∆2, . . . ,∆k, whose minimum edge
length is δ, the triangles can be chained into a path such that any two nodes that are
2-neighbors in the path are at distance at least δ/2 from each other.

In fact, the order in which the triangles are placed in the path is arbitrary, so that
any permutation on the triangles is possible. This will be used to complete a cycle.

To prove the theorem, we can arrange the order in which the vertices of a triangle
is visited, according to the following lemma.

Lemma 4.11. We are given a triangle 4abc, whose nodes are visited in that order
by a path, and a triangle 4xyz to be added after 4abc, such that all six edges in both
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triangles are of length at least δ. Then the order of the nodes of triangle 4xyz can be
chosen such that, in the resulting path, if p ∈ {a, b, c, x, y, z} and q ∈ {a, b, c, x, y, z}
are 2-neighbors, then d(p, q) ≥ δ/2.

Proof. We need to satisfy the following requirements: (1) the first two nodes of
triangle 4xyz visited must each be at distance at least δ/2 from c, and (2) the first
node of triangle 4xyz visited must be at distance at least δ/2 from b. This task can
be carried out as follows: (1) among nodes x, y, and z, the one that is closest to
c (say, x) is visited last, and (2) between the remaining two nodes, the one that is
closer to b (say, y) is visited second to last; this fixes the entire ordering of visiting the
nodes. To verify, consider requirement (1) first. If d(c, x) ≥ δ/2, then the requirement
is trivially satisfied. If d(c, x) < δ/2, then we have d(c, y) > δ/2, since d(x, y) ≥ δ
((x, y) is an edge of triangle 4xyz) and d(c, y) + d(c, x) ≥ d(x, y). Similarly, we have
d(c, z) > δ/2. This completes the verification of requirement (1). Requirement (2) is
satisfied by exactly the same argument.

The proof of the theorem is now immediate. Start the path with any triangle, in
any order of the vertices, and keep adding new triangles to the path, one at a time,
according to the lemma.

Now we can directly apply Theorem 4.10 to obtain a Hamiltonian path, if n is
a multiple of 3. Combining Theorem 4.10 and Theorem 4.9, the shortest distance
among all 2-neighbors in the path is at least r/16. Recall that, from Lemma 3.2 and
the definition of r given in section 4.1, the objective value of an optimal Hamiltonian
path for max-min 2-neighbor problem is at most 2r.

Theorem 4.12. Given a complete graph on set S of n points satisfying trian-
gle inequality, where n is a multiple of 3, there exists an algorithm that constructs
in O(n2.5) time a Hamiltonian path on S whose objective value for the max-min 2-
neighbor problem is at least 1

32 times the optimal.

Now consider the case in which n is not a multiple of 3. Let k = bn/3c, and
n = 3k + l, where l = 1 or 2. Recall from section 4.1 that at the completion of
Algorithm Big-Triangles, we have k triangles and one or two left-over points outside
or on the boundary (C) of the disk of radius r. We will combine such left-over points
with existing triangles, and then perform the concatenation.

For each left-over point p ∈ S that is not a vertex of an existing triangle, we claim
that we can find an existing triangle 4abc (with edge length at least δ (= r/8)) such
that p is at a distance at least r (> δ) from each of a, b, and c. We call 4abc a good
triangle for p. To prove this claim, note, from the definition of r, that there are at
most k points (including p) in the open disk Dp(r). Thus, there are at most k − 1
triangles having at least one vertex in Dp(r), meaning that there exists some triangle
4abc whose vertices are each outside (or on the boundary of) Dp(r), as claimed. We
create a special “triangle,” abcp.

If n = 3k+ 2, let p and q denote the two left-over points. We know that each has
a good triangle. If each has a distinct good triangle we obtain two special “triangles,”
each with four vertices. Otherwise, p and q have a common good triangle, 4abc. We
claim then that d(p, q) ≥ r > δ; otherwise, the disk Dp(r) contains q, as well as at
least one vertex of each of the k − 1 other large triangles, contradicting the choice
of r. Thus we obtain one special “triangle” with five vertices, abcpq, with pairwise
distances of at least δ.

We now treat the special “triangles” (abcp, abcq, or abcpq) as if they were triangles
during the concatenation process. In order to concatenate it with its predecessor
triangle, we treat it as triangle 4abc. The predecessor will fix a specific ordering of
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points a, b, and c to be visited; we then visit the remaining points of the “triangle”
(p, q, or both p and q). In order to concatenate a triangle after it, we consider only
the last point (p or q) and its two previously visited points as a triangle, and apply
the same lemma (Lemma 4.11).

Combining Algorithm Big-Triangles with Theorem 4.10, we obtain an algorithm
to construct a Hamiltonian path whose max-min 2-neighbor distance is at least 1

32
times the optimal max-min 2-neighbor distance of a Hamiltonian cycle. We have
proved the following lemma.

Lemma 4.13. Given a complete graph on set S of n points satisfying triangle
inequality, there exists an algorithm that constructs in O(n2.5) time a Hamiltonian
path on S whose max-min 2-neighbor distance is at least 1

32 times the optimal max-
min 2-neighbor distance of a Hamiltonian cycle.

In order to construct a Hamiltonian path whose objective function value is at
least 1

32 times that of an optimal path (as opposed to an optimal cycle, as in the above
lemma), considerably more effort is required. The modifications to the algorithm and
the analysis are given in Appendix A, where we prove the following theorem.

Theorem 4.14. Given a complete graph on set S of n points satisfying triangle
inequality, there exists an algorithm that constructs in O(n2.5) time a Hamiltonian
path on S whose objective value for the max-min 2-neighbor problem is at least 1

32
times the optimal.

Since the Hamiltonian path on S obtained in Lemma 4.13 above has a max-min
2-neighbor distance provably close to the optimal max-min 2-neighbor distance in a
cycle, we can use it to obtain an approximation algorithm for the cycle version of the
problem, by appropriately “closing” the path into a tour.

Theorem 4.15.Given a complete graph on set S of n points satisfying triangle
inequality, there exists an algorithm that constructs in O(n2.5) time a Hamiltonian
cycle on S whose max-min 2-neighbor distance is at least 1

64 times the optimal.

Proof. Given a list of triangles (with possibly one or two being special triangles),
whose minimum edge length is at least δ = r/8, we use the following process to chain
the triangles into a cycle such that any two nodes that are 2-neighbors in the cycle
are at distance at least δ/4.

We first check if there is any pair of triangles 4abc and 4xyz such that two
vertices of 4abc, say, a and b, are each at a distance at least δ/4 from each of x, y,
and z. If so, chain the triangles starting with 4abc (visiting in that order) and end
with 4xyz (in the order required by its predecessor), by applying Lemma 4.11. The
ordering of the other triangles is arbitrary.

We assume from now on that no such pair of triangles exists. We consider an
arbitrary triangle 4abc, and construct disks Ca, Cb, and Cc, respectively, centered at
a, b, and c, each with radius δ/4. Since the search in step 1 is not successful, Ca, Cb,
and Cc must together contain (in their interiors) at least two vertices of each of the
remaining triangles (each disk contains at most one vertex of a triangle since each
triangle edge has length at least δ). We say that a triangle is covered by a pair of disks
{Ca, Cb} if its two vertices are respectively contained in (the interiors of) Ca and Cb.

First, consider the case in which there are no special triangles.

Case (a). One pair of disks, say, {Cb, Cc}, covers all triangles.

Then, all triangles are of type xBC, where B and C denote the vertices, respectively,
inside Cb and Cc (all such vertices form clusters B and C), and x denotes the third
vertex (possibly x ∈ A, where cluster A is defined similarly). It is easy to see that any
two points in different clusters are at a distance larger than δ/2. Also, any such point
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x is at a distance greater than δ/2 from any point in B (resp., C). (Suppose 4xb′c′ is
one such triangle with b′ ∈ B. For any point b′′ ∈ B, d(b′, b′′) < δ/2, but d(x, b′) ≥ δ,
and thus d(x, b′′) ≥ d(x, b′) − d(b′, b′′) > δ/2.) Construct the Hamiltonian cycle by
repeatedly traversing the triangles in the order of xBC, and finally going back to the
starting point (denoted by xBC → starting point).

Case (b). Two pairs of disks, say, {Cb, Cc} and {Ca, Cc}, are necessary and suf-
ficient to cover all triangles.

Then there are three types of triangles: ABC, xBC, and yAC, where x /∈ A is at dis-
tance greater than δ/2 from any point of B (resp., C) and y /∈ B is at distance greater
than δ/2 from any point of A (resp., C), by the same argument above. Construct the
Hamiltonian cycle by exhausting all triangles of the same type and then going to the
next type, in the order given as follows:
ABC → xBC → AyC → starting point.

Case (c). All three pairs of disks are needed to cover all triangles.
Then there are four types of triangles: ABC, xBC, yAC, and zAB, where properties
analogous to those in Case (b) hold for x, y, and z. Construct the Hamiltonian cycle
as follows:
ABC → xBC → AyC → ABz → starting point.

Now consider the case in which there are special triangles. If there is one with
five vertices, say, uvwpq, then at least two vertices, say, p and q, must each be “far
away” from all vertices of 4abc (since Ca, Cb, and Cc together can contain at most
three vertices of uvwpq). Thus we can complete the chaining of triangles in step 1 by
starting with pquvw (in that order) and ending with 4abc (in the order required by
its predecessor). Consider therefore special triangles F with four vertices. If F has less
than three vertices in the interiors of Ca, Cb, and Cc, then again F has at least two
vertices each far away from all vertices of 4abc and hence step 1 can be completed.
We thus need to consider only special triangles of type ABCt, where t (by the same
argument) is at a distance greater than δ/2 from any point of A (resp., of B and of C).
For Cases (a)–(c) considered above, the Hamiltonian cycle is given as follows (observe
that the sequences are unchanged except for starting with the special triangles):

Case (a): AtBC → xBC → starting point,
Case (b): ABtC → ABC → xBC → AyC → starting point,
Case (c): ABtC → ABC → xBC → AyC → ABz → starting point.

The approximation factor follows by noting that δ/4 = r
32 and that the optimal

objective value is at most 2r.

5. Approximating the max-min m-neighbor TSP. In this section, we show
how the techniques developed in sections 4.1–4.2 can be generalized to obtain a
constant-factor approximation for the max-min m-neighbor TSP, for any constant
m > 2. For simplicity, we consider only the path version in which n is a multiple of
m+1. The method of “closing” a path into a cycle in Theorem 4.15 and the techniques
of handling the case in which n is not a multiple of m + 1 for the path version (in
Appendix A) are not easily extended to the case in which m > 2; we pose them as
open questions.

Analogous to the techniques for 2-neighbor TSP, we use large (m+ 1)-cliques to
play the role of large triangles. An (m + 1)-clique Km+1 consists of m + 1 vertices
that are the points in S (thus a triangle is a 3-clique); the clique edges of Km+1 are
implicitly defined by its vertices. We want Km+1 to be large, meaning that each vertex
of Km+1 is “far away” from all the other vertices of Km+1 (i.e., all clique edges of
Km+1 are “long”). Again, our overall strategy consists of the following steps:
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1. Create n/(m+ 1) vertex-disjoint large (m+ 1)-cliques whose vertices are the
points in S.

2. Concatenate these large (m+1)-cliques together to create a Hamiltonian path
such that the distances between any m-neighbors are large.

We elaborate these steps in the following. First, let r be the radius of a smallest
circle, C, centered at one of the n points whose corresponding disk contains exactly
n/(m + 1) points of S (including the center point), and one additional point on its
boundary. From Lemma 3.2, 2r is an upper bound for the max-min distance in the
path version of an m-neighbor TSP (since n is a multiple of m + 1). Again, C and r
are easily found in O(n2) time.

After computing r and C, we use Algorithm Big (m + 1)-Cliques (analogous to
Algorithm Big-Triangles in section 4.1), to grow the n/(m+ 1) points in the interior
of C into n/(m + 1) vertex-disjoint large (m + 1)-cliques. The process consists of m
phases, where in phase i we grow each i-clique into an (i+ 1)-clique.

Algorithm Big (m+1)-Cliques. The algorithm consists of m phases, classified
into two parts.

Part 1. Complete matching phases. This part consists of bm/2c phases. For each
phase i = 1, 2, . . . , bm/2c, perform the following.

Phase i: Construct a bipartite graphG = (V1, V2, E), where the nodes V1 represent
the i-cliques constructed in phase i− 1 (if i = 1, then the nodes V1 are the points in
the disk defined by C) and V2 are the left-over points. Note that |V1| = n/(m+ 1) and
|V2| = n − i · n

m+1 = (m + 1 − i) n
m+1 . Edge set E consists of “long” edges from V1

to V2, between two nodes Ki ∈ V1 and p ∈ V2, where p is at distance at least r from
all vertices of Ki. Perform a maximum cardinality matching on G. By Lemma 5.1,
all nodes of V1 are matched. For each matched pair Ki ∈ V1 and p ∈ V2, grow the
i-clique Ki into an (i+ 1)-clique by including point p as its additional vertex. Clearly,
all clique edges of all resulting (i+ 1)-cliques have lengths at least r.

Lemma 5.1. For each phase i = 1, 2, . . . , bm/2c, there exists a matching in G in
which all nodes of V1 are matched.

Proof. We use an argument similar to the proof of Lemma 4.4. Again, by way
of contradiction, we assume that there exists a set A ⊆ V1 for which |A| > |Γ(A)|,
where Γ(A) ⊆ V2 is a set of nodes that are adjacent (via edges of G) to at least one
node of A. Now we have |A| ≤ |V1| = n/(m + 1), |V2| = (m + 1 − i) n

m+1 , and thus
|V2 \ Γ(A)| > |V2| − |A| ≥ (m − i) n

m+1 . That is, for each i-clique Ki of A, there are
at least (m− i) n

m+1 + 1 left-over points (in V2 \ Γ(A)) that are each within distance
less than r from some vertex of Ki. Consider i (open) disks centered at each of the i
vertices of Ki, each with radius r: by the pigeonhole principle, at least one of these
disks contains more than ((m − i) n

m+1 )/i points of V2 \ Γ(A). Since i ≤ bm/2c, this
disk contains at least n

m+1 + 2 points, including the center point. This contradicts the
original choice of r.

Part 2. Maximal matching and swapping phases. This part consists of the remain-
ing dm/2e phases. For each phase i = bm/2c+ 1, . . . ,m, perform the following.

Phase i: Let δ be the length of the shortest clique edge among all i-cliques at
the end of phase i − 1 (for i = bm/2c + 1, take δ = r). Construct a bipartite graph
G = (V1, V2, E) in the same way as in Part 1, except that the edge set E is specified
as follows: there is an edge between two nodes Ki ∈ V1 and p ∈ V2 if and only if p is
at a distance at least δ/4 from all vertices of Ki. Now perform the following steps:

1. Maximal matching step. Perform a maximal matching (rather than maximum
cardinality matching) on G. For each matched pair Ki ∈ V1 and p ∈ V2, grow
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the i-clique Ki into an (i + 1)-clique by including point p as its additional
vertex. If all nodes in V1 are matched, stop phase i here (all i-cliques in V1

are grown into (i+ 1)-cliques); otherwise go to the next step.
2. Swapping step. Let V ′1 ⊆ V1 be the set of the left-over i-cliques of V1 that are

not matched in step 1, and P ⊆ V2 the set of the left-over points that are not
yet in any clique. Perform swapping operations of Lemma 5.3 on the i-cliques
of V ′1 . By Lemma 5.4, all of them can be grown into (i+ 1)-cliques, with the
lengths of all clique edges at least δ/8.

Suppose that the swapping step is performed in phase i. Let Ki ∈ V ′1 be some
left-over i-clique whose vertices are u1, . . . , ui, and let Cj = Duj (δ/2) be the disk
centered at uj with radius δ/2, for each j = 1, . . . , i.

Lemma 5.2. Independent of the choice of the left-over i-clique Ki, the disks Cj
induce a partition of the left-over points P into at most i nonempty clusters P1, . . . , Ph,
h ≤ i. For each j = 1, . . . , h, all points of Pj are enclosed in the interior of Cj
(renumbering the subscripts of the vertices of Ki might be necessary), and each left-
over i-clique in V ′1 (including Ki) has exactly one vertex in the interior of Cj.

Proof. This is a direct generalization of Lemmas 4.5 and 4.6.

In phase i, let Rj = Duj (r) be the disk that has the same center, uj , as Cj and has
radius r, for each j = 1, . . . , h. We call a clique (either an i-clique or an (i+ 1)-clique)
good for Pj if the clique has no vertex in the interior of Rj , and bad otherwise. By
Lemma 5.2, each left-over i-clique in V ′1 is bad for all clusters P1, . . . , Ph.

Lemma 5.3. Let Ki+1 be a good (i+1)-clique for cluster Pj. Then for any left-over
i-clique Ki ∈ V ′1 and a left-over point x ∈ Pj , we can construct two new (i+1)-cliques
from Ki+1,Ki, and x such that one new (i + 1)-clique is bad for all P1, . . . , Ph and
has clique edge lengths at least δ/8, and the other has clique edge lengths at least δ/4.

Proof. Let δ′ = δ/4. Note that all clique edges in Ki+1 and in Ki have lengths
at least δ′. We claim that there is always a vertex v∗ of Ki+1 that is at distance at
least δ′/2 = δ/8 from all vertices of Ki. To see this, consider the vertices u1, . . . , ui
of Ki, one by one. Initially, all i + 1 vertices of Ki+1 are candidates for v∗. Now, u1

can be “too close” (within distance less than δ′/2) to at most one vertex of Ki+1: if
there is a vertex v` of Ki+1 with d(u1, v`) < δ′/2, then since all clique edges in Ki+1

have lengths at least δ′, we have d(v, v`) ≥ δ′ for each vertex v 6= v` of Ki+1, and thus
d(u1, v) ≥ d(v, v`)−d(u1, v`) > δ′/2. Therefore u1 can filter out at most one candidate
for v∗. Now consider u2 and the remaining i candidates. Again, u2 can filter out at
most one candidate. Repeating this process, there are i constraints (from the vertices
of Ki) in total, but we have i+ 1 candidates initially. Therefore such v∗ must always
exist. This completes the proof of the claim.

Now we construct two new (i+ 1)-cliques from Ki+1,Ki, and x as follows. First,
we grow Ki into an (i+1)-clique by including v∗ as its additional vertex. Clearly, this
new clique has edge lengths at least δ′/2 = δ/8. Also, since Ki is originally bad for
all clusters P1, . . . , Ph by Lemma 5.2, this new (i+ 1)-clique continues to be bad for
all clusters. Secondly, we construct the other (i+ 1)-clique by swapping out vertex v∗

from Ki+1 and swapping in point x ∈ Pj as a new vertex. The fact that this clique
still has edge lengths at least δ′ = δ/4 follows from the observation that Ki+1 is good
for Pj (hence all vertices of Ki+1 are at a distance at least r from the center of Rj ,
Cj) and that x is within distance less than δ/2 from the center of Cj (by Lemma 5.2)
and from the triangle inequality.

Lemma 5.4. Suppose that the swapping step is performed in phase i. Then there
are always enough good (i + 1)-cliques for Pj , j = 1, . . . , h, such that all left-over
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i-cliques can be grown into (i + 1)-cliques by the swapping operations of Lemma 5.3,
with final clique edge lengths at least δ/8.

Proof. This is similar to Lemma 4.8. The swapping step goes through at most
h stages, where for each stage j = 1, . . . , h we perform the swapping operations of
Lemma 5.3 for points in Pj , until either all points in Pj are used up (in which case we
move to the next stage), or all left-over i-cliques are grown into (i+1)-cliques (in which
case we stop the entire swapping step). Now consider any such stage j. Right before
stage j, suppose there are T (i + 1)-cliques (and hence n

m+1 − T left-over i-cliques),
and ` left-over points that are not yet in any clique. Let |Pj | = `j , then Σj`j = `.
Also, ` is at least n

m+1 −T, the number of left-over i-cliques. We claim that all points
of Pj have enough good (i + 1)-cliques to swap with. To show this, suppose among
the T (i + 1)-cliques, Tj,good of them are good for Pj and Tj,bad of them are bad for
Pj ; T = Tj,good+Tj,bad. Consider all points of S in the interior of Rj : these include `j
points from Pj ,

n
m+1−T vertices each from a left-over i-clique (by Lemma 5.2), and tj

vertices from bad (i+1)-cliques, where tj ≥ Tj,bad. Since the interior of Rj contains at
most n/(m+1) points, we have n/(m+1) ≥ `j+( n

m+1−T )+tj ≥ `j+( n
m+1−T )+Tj,bad.

Then we have Tj,good = T − Tj,bad ≥ `j , completing the proof of the claim. Since the
number of the left-over i-cliques is no more than the number of the left-over points
(all of which in turn have enough good (i+ 1)-cliques to swap with), all the left-over
i-cliques can eventually be grown into (i+1)-cliques. Also, from Lemma 5.3, after each
swapping operation, the only new (i + 1)-clique that can possibly have edge lengths
less than δ/4 (but at least δ/8) is bad for all P1, . . . , Ph, and hence it will not be
used for swapping hereafter in phase i. Therefore, at the end of phase i all left-over
i-cliques can be grown into (i+ 1)-cliques with clique edge lengths at least δ/8.

From Lemma 5.4, we know that in the worst case, the length of the shortest clique
edge is reduced by a factor of 8 (from δ to δ/8) in each phase i of Part 2. Therefore
the final (m+ 1)-cliques have edge lengths at least r(1/8)dm/2e.

Theorem 5.5. Given a constant m > 2 and a complete graph on set S of n points
satisfying triangle inequality, where n is a multiple of m+ 1, there exists an algorithm
that constructs in O(n2.5) time n/(m+ 1) vertex-disjoint (m+ 1)-cliques from points
in S such that the smallest edge length of the cliques is at least r(1/8)dm/2e, where
r is the radius of a smallest (open) disk centered at a point of S, containing exactly
n/(m+ 1) points of S, and one additional point on its boundary.

Now we are ready to concatenate the (m+ 1)-cliques into a Hamiltonian path.
Theorem 5.6. Given a list of (m + 1)-cliques whose minimum edge length is δ,

the cliques can be chained into a path such that any two nodes that are m-neighbors
in the path are at a distance at least δ/2 from each other.

Proof. This is the same as Theorem 4.10, except that we use an immediate gen-
eralization of Lemma 4.11 to chain the (m+ 1)-cliques.

From Theorems 5.5 and 5.6, and the fact that 2r is an upper bound for the
optimal objective value, we conclude with the following theorem.

Theorem 5.7. Given a constant m > 2 and a complete graph on set S of n points
satisfying triangle inequality, where n is a multiple of m+ 1, there exists an algorithm
that constructs in O(n2.5) time a Hamiltonian path on S whose objective value for the
max-min m-neighbor problem is at least 1

4 ( 1
8 )dm/2e times the optimal.

6. Exact algorithms for points on a line or on a circle. We consider now
the special cases in which S is a set of n points on a line or on a circle, and distances
are Euclidean. In these cases, we are able to obtain linear-time (optimal) algorithms
to solve exactly the maximum scatter TSP, for both the cycle and path versions. (For



ON THE MAXIMUM SCATTER TSP 533

the path version of points on a circle, we consider only the case in which n is an odd
integer or the points are equally spaced.) First, we concentrate on the cycle version
of points on a line; we discuss the remaining problems and versions in Appendix B.

In the following, the n points of S lie on a line, labeled 1, 2, . . . , n from left to
right. We distinguish between two cases, depending on whether n is odd or even.
Interestingly, the latter case is more complex than the former case. In fact, when
n is odd, an optimal cycle can be specified in O(1) time, i.e., without knowing the
positions of the nodes, a fixed specification based only on the ordering of the nodes
is guaranteed to be an optimal cycle. Such an optimal cycle can be constructed and
output (with the length d∗ of a shortest edge of the cycle identified) in O(n) time.
When n is even, we show that in linear time we can identify d∗, and after that an
optimal cycle can be constructed using a purely combinatorial method in O(n) time.

We define the following terminology. A subset I of S containing ` consecutive
nodes is called an `-interval. An edge (u, v) is said to span the ` nodes in the `-
interval whose endpoint nodes are u and v (thus each edge spans at least two nodes).
An edge is called an `-edge if it spans ` nodes. We let k = bn2 c throughout this section.

6.1. Cycle version: Points on a line (n odd). We have n = 2k + 1 in
this case. Recall that d∗ is the length of a shortest edge of an optimal cycle. By
Corollary 3.3, the length of the shortest (k + 1)-interval is an upper bound for d∗.
Now we show that this upper bound is achievable by the following specification of a
Hamiltonian cycle:

Starting from node 1, the “right” edges connect node p to node [(k+
1) + p], for p = 1, 2, . . . , k, and the “left” edges connect node (k + q)
to node q, for q = 1, 2, . . . , k + 1.

It is easy to verify that the above specification gives a Hamiltonian cycle, and that
each “right” edge spans k+2 nodes and each “left” edge spans k+1 nodes. Therefore
this Hamiltonian cycle is optimal.

Theorem 6.1. For the cycle version of the maximum scatter TSP, where the n
points lie on a line, the distances are Euclidean, and n is an odd integer, there exists
an algorithm that specifies an optimal Hamiltonian cycle in O(1) time, and constructs
such a cycle in O(n) time.

6.2. Cycle version: Points on a line (n even). We have n = 2k in this case.
Without loss of generality, we assume that all k-intervals on S have distinct lengths.
This assumption is clearly nonrestrictive, since we can always break a tie by viewing
the interval whose position is to the left of the other as having a shorter length. We
say that two intervals I1 and I2 overlap if I1 ∩ I2 6= ∅.

Lemma 6.2. Let I1 and I2 be two overlapping k-intervals. Then in any Hamilto-
nian cycle on S that avoids having an edge joining two nodes of I1, there must exist
an edge joining two nodes of I2.

Proof. Let Sin = I1 ∩ I2 and |Sin| = ` > 0. Also, let Sout = S \ (I1 ∪ I2). Then
since |I1 ∪ I2| = 2k− `, we have |Sout| = `. Suppose on the contrary that there exists
a Hamiltonian cycle C that avoids having an edge joining two nodes either both in I1
or both in I2. Then consider the ` nodes in Sin: they can only be connected to the `
nodes in Sout. Now there are 2` edges of C going out from Sin, but the total degree of
the nodes of Sout in C is 2`; therefore all of the nodes of Sout can be connected only
to the nodes of Sin also. This implies that the nodes in Sin ∪ Sout are disconnected
from the other nodes of S, and thus C is not a Hamiltonian cycle, which is a contra-
diction.
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Corollary 6.3. Any shortest edge in any optimal Hamiltonian cycle on S can
span at most k nodes.

Proof. By Lemma 3.1, any such edge e can span at most k+1 nodes. Now suppose
e spans k+1 nodes. Let I1 be the k-interval consisting of the leftmost k nodes spanned
by e, and I2 be the k-interval of the rightmost k nodes spanned by e. Clearly I1 and
I2 overlap, and the optimal cycle containing e does not have any edge joining either
two nodes of I1 or two nodes of I2, contradicting Lemma 6.2. Thus e can span at most
k nodes.

Corollary 6.4. Let I1, I2, and I3 be, respectively, the shortest, the second-
shortest, and the third-shortest k-intervals on S, and let ei be the edge connecting the
two endpoint nodes of Ii for all i = 1, 2, 3. Then d∗ ≤ de2 if I2 overlaps with I1, and
d∗ ≤ de3 otherwise.

Proof. If I1 and I2 do not overlap, then they must be the leftmost and rightmost
k-intervals on S and I1 ∪ I2 = S. Thus I3 must overlap with I1 or I2. The stated
upper bounds follow from Lemma 6.2 and Corollary 6.3.

Assume now that we are given the shortest k-interval, I1, on S. We give an algo-
rithm that specifies an optimal Hamiltonian cycle C∗ by distinguishing the following
two cases.

Case 1. I1 is the leftmost k-interval.

Place I1 = {1, 2, . . . , k} and I2 = {k + 1, . . . , 2k} on a schematic cycle as shown in
Figure 6.1(a), (b). Produce edges e1 = (1, k + 1) and e2 = (k, 2k).

Start visiting node 1, and then repeatedly visit the kth node in the schematic
cycle counted counterclockwise from the current node (the current node is counted as
the first node), i.e., visiting nodes k+ 2, 3, k+ 4, . . . , until reaching an endpoint node
of e2. Note that this visits every other node in I1 and in I2 in increasing order (nodes
1, 3, . . . in I1 and nodes k+2, k+4, . . . in I2). If k is an even integer (see Figure 6.1(a)),
then node 2k ∈ I2 is finally reached; if k is odd (see Figure 6.1(b)), then node k ∈ I1
is finally reached. In either case, follow e2 to visit the other endpoint node of e2. Now,
complete the other half of C∗ by a symmetric method: repeatedly visit the kth node
in the schematic cycle, this time counted clockwise from the current node, visiting the
remaining nodes in I1 and in I2 in decreasing order, until reaching node k+1. Finally,
follow e1 to go back to node 1 (see Figure 6.1(a), (b)).

It is easy to verify that C∗ is a Hamiltonian cycle. Also, all edges in C∗ other
than e1 and e2 span k nodes on one side and k + 2 nodes on the other side of the
schematic cycle, and e1 and e2 span k + 1 nodes on both sides. In addition, all edges
in C∗ avoid joining two nodes that are both in I1 or both in I2. (I1 is the shortest
k-interval, and I2 may happen to be the second shortest k-interval.) Therefore, C∗

achieves the upper bound given in Corollary 6.4 and is an optimal Hamiltonian cycle.

Case 2. I1 is not the leftmost k-interval.

First, relabel the nodes of S, by labeling the nodes of I1 from 1 to k, and continuing
the labeling in a wrap-around fashion (see Figure 6.1(c)). Then, use the new labels
and apply the same procedure of Case 1 to produce C∗. Since the wrap-around effect
has already been taken into account in Case 1 (via the schematic cycle), it is clear
that C∗ is an optimal Hamiltonian cycle.

Clearly, by considering each of the k + 1 possible k-intervals we can, in O(n)
time, identify the length d∗. Then, we can apply the above algorithm to construct an
optimal Hamiltonian cycle in additional O(n) time.

Theorem 6.5. For the cycle version of the maximum scatter TSP, where the n
points lie on a line, the distances are Euclidean, and n is an even integer, there exists
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1 → 6 → 3 → 8

4 → 7 → 2 → 5
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C* =
1 → 7 → 3 → 9 → 5

10 → 4 → 8 → 2 → 6

→

→

Fig. 6.1. Examples of C∗ specified by the algorithm: (a) n = 8 and k = 4 is even; (b) n = 10
and k = 5 is odd; (c) wrap-around relabeling when I1 is not the leftmost k-interval.

an algorithm that computes an optimal Hamiltonian cycle in O(n) time.
In Appendix B we consider extensions of these results to the cycle version of points

on a circle (Theorem B.2), and the path version of points on a line (Theorem B.4) or
on a circle (Corollary B.5).

7. Conclusion. We conclude with the following open problems:
• What is the complexity of the geometric maximum scatter TSP for points in

the Euclidean plane? We conjecture that it is NP-hard. The recent result of
Fekete [8] shows that the problem is indeed NP-hard in Euclidean spaces of
dimension three or greater.
• Can better bounds for the max-min m-neighbor TSP for any m ≥ 1 be

obtained in the geometric case?
• For points on a line or on a circle, can we solve the max-min m-neighbor

TSP exactly for m > 1? We conjecture that there exists a polynomial-time
algorithm, perhaps similar to the one we presented for the case m = 1.
• Can we solve the maximum scatter TSP exactly for points lying on the bound-

ary of an arbitrary convex body?

Appendix A. Max-min 2-neighbor Hamiltonian path: n not a multiple
of 3. We already gave an algorithm to construct a Hamiltonian path whose objective
value for the max-min 2-neighbor problem is at least 1

32 times the optimal, when n is
a multiple of 3 (Theorem 4.12). Now we give algorithms achieving the same factor for
the remaining cases, when n = 3k+ l, for l = 1, 2. Surprisingly, the case of n = 3k+ 2
can be easily solved, but the case of n = 3k+1 is much more difficult, and we overcome
the difficulty by refining our Algorithm Big-Triangles and utilizing metric properties
of the distance matrix. Also worth noting is that in the last case of our algorithm, for
n = 3k + 1, we actually produce an optimal Hamiltonian path.

One major difference between the cycle and path versions, when n is not a multiple
of 3, is on the upper bounds for the optimal objective values. Let r be the radius of a
smallest circle, C, centered at one of the n points that contains exactly dn/3e = k+ 1
points in its interior (including the center point), and one additional point on its
boundary.

Lemma A.1. The max-min distance in the path version of a 2-neighbor TSP is at
most 2r.
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Proof. The proof is immediate from Lemma 3.2.

Notice that C now contains k+1 points in its interior, as opposed to just k points
in the interior in the cycle version given in Lemma 4.3.

When n = 3k + 2, we add one fake point Q far away from all n points in S and
then apply Algorithm Big-Triangles on this new set of n′ = 3k + 3 points. The circle
C is the smallest one containing n′/3 = k+ 1 points in its interior and one additional
point on the boundary, as desired. Suppose 4Qyz is the (big) triangle containing Q
produced by Algorithm Big-Triangles. Then in applying Theorem 4.10 to chain the
k + 1 triangles into a Hamiltonian path, we start with 4Qyz, visiting the vertices
in that order, and chain the remaining triangles in an arbitrary order. Finally, we
remove Q and obtain a Hamiltonian path on S with approximation factor 1

32 .

When n = 3k + 1, we apply the same trick, adding two fake points Q and Q′

far away from all n points in S as well as from each other, and apply our algorithm
on this new set of n′ = 3k + 3 points. Again circle C and its radius r are as desired.
If we can make sure that Q and Q′ are in the same triangle, say, 4QQ′z, among
the k + 1 triangles constructed by Algorithm Big-Triangles, then we can again chain
the triangles by visiting Q,Q′, and z first (in that order), followed by the remaining
triangles, and finally remove Q and Q′ from the resulting path. This will give a desired
Hamiltonian path on S.

In the rest of this section, we show how to modify Algorithm Big-Triangles so
that it constructs k+ 1 triangles whose shortest edge length is at least r/8, such that
Q and Q′ are in the same triangle. There is one case, however, in which this is not
achieved, but instead we are able to produce an optimal path for this case.

Let a ∈ S be the center point of C. First, we want Algorithm Big-Triangles to
produce 4QQ′a at the end of phase 2. This can be done as follows: In phase 1 we
match a ∈ V1 with Q ∈ V2 but leave Q′ ∈ V2 unmatched, and in phase 2 we match
segment (Q, a) with point Q′ first and then complete the matching. We have to show
that there is still a complete matching in phase 1.

Lemma A.2. In phase 1 of Algorithm Big-Triangles, there is a matching in G in
which all nodes of V1 are matched, with a ∈ V1 and Q ∈ V2 being a matched pair and
Q′ ∈ V2 being left unmatched.

Proof. Let V ′1 = V1 \ {a} and V ′2 = V2 \ {Q,Q′}. We want to match all nodes
in V ′1 with nodes in V ′2 . We use the same proof of Lemma 4.4, except that now
|A| ≤ |V ′1 | = n′/3−1, and |V ′2 | = (2n′)/3−2. Thus |V ′2 \Γ(A)| > |V ′2 |− |A| ≥ n′/3−1,
i.e., |V ′2 \ Γ(A)| ≥ n′/3. Again, any circle centered at an arbitrary point of A with
radius r contains at least n′/3 + 1 = k + 2 points in its interior, contradicting the
original choice of r.

In phase 3, we have to make sure that Q and Q′ still stay in the same triangle after
swapping operations. A natural attempt to achieve this is to try to show, by modifying
the argument of Lemma 4.8, that there are still enough good triangles to perform
the swappings, even without using 4QQ′a during the swappings. Unfortunately this
method does not work, and thus we have to employ additional techniques to perform
careful swappings.

Recall from Lemmas 4.5 and 4.6 that at the beginning of phase 3, the set P of
left-over points is partitioned into (P1, P2) by the set E′ of left-over segments, where
(P1, P2) is either a 2-partition or a 1-partition. Also, the triangles constructed at the
end of phase 2 have edge lengths at least r/4.

Lemma A.3. If (P1, P2) is a 2-partition, then we can complete all swapping
operations on P1 and on P2 in phase 3 of Algorithm Big-Triangles, constructing k+ 1
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triangles with edge lengths at least r/8, such that Q and Q′ stay in the same triangle.
Proof. Let e = (v1, v2) be a left-over segment in E′, where vi is within distances

less than r/4 from all points in Pi for i = 1, 2 (see Lemma 4.5). Recall that e is
constructed in phase 1 and that one of its endpoints, say, v1, is inside C, and the other
endpoint, v2, is outside or on the boundary of C. Let Ri and Ci, i = 1, 2, as defined in
the description of phase 3, be centered at vi. Recall that the radiuses of Ri and Ci are
r and r/2, respectively; also, a triangle is good for Pi if all three vertices are outside
or on the boundary of Ri, and bad otherwise. Now d(v1, a) < r, since v1 is inside C
and a is the center of C, and thus a is inside R1. This means that 4aQQ′ is bad for
P1 and is not needed for swapping the points of P1. We first perform swappings on
P1 (swapping stage 1), with 4aQQ′ untouched. Now we perform swappings on P2

(swapping stage 2). Observe that v2 is outside or on the boundary of C, so d(a, v2) ≥ r
and thus 4aQQ′ is good for P2. Suppose in swapping stage 2 we want to swap 4aQQ′
with a point x ∈ P2 and a left-over segment e′ = (p, q), where p is closer to P1 and q
is closer to P2 (and again by Lemma 4.5 p is within distances less than r/4 from all
points of P1, and similarly for q and points of P2). We claim that we can construct
triangles 4xQQ′ and 4apq so that their edge lengths are large enough. (Note that Q
and Q′ stay in the same triangle.) Clearly, 4xQQ′ satisfies the condition. To prove
the claim, observe that q is inside C2 and thus d(q, v2) < r/2. But since d(a, v2) ≥ r,
we have d(a, q) ≥ d(a, v2)− d(q, v2) > r/2. Also, by the construction in phase 1, any
left-over point t ∈ P1 (before swapping stage 1) is outside or on the boundary of C,
i.e., d(a, t) ≥ r. But as already mentioned, d(p, t) < r/4 by Lemma 4.5. Therefore
d(a, p) ≥ d(a, t)− d(p, t) > (3r)/4. This shows that all edge lengths in 4apq are also
large enough, which completes the proof of the claim. Now the cardinality of P2 and
the number of good triangles for P2 are both decreased by 1, so there are enough good
triangles remaining to swap with the rest of the points in P2 (as shown in Lemma 4.8),
with 4xQQ′ untouched—actually it is a bad triangle for P2 now. This shows that the
conditions of the lemma are satisfied.

A nice property for (P1, P2) being a 2-partition is that the points of P1 and P2 are
all outside or on the boundary of C, and they also “confine” the endpoints of left-over
segments, so that the endpoints of the left-over segments are far enough from a. When
(P1, P2) is only a 1-partition, we do not have this nice property, and a more delicate
technique is needed.

Theorem A.4. If (P1, P2) is a 1-partition with P1 = P, then we can either com-
plete all swapping operations on P1 in phase 3 of Algorithm Big-Triangles, constructing
k + 1 triangles with edge lengths at least r/8, such that Q and Q′ stay in the same
triangle, or otherwise we can construct an optimal max-min 2-neighbor Hamiltonian
path on S.

Proof. Let R1 and C1 be centered at any endpoint v1 of a left-over segment such
that v1 is within distance less than r/4 from all points of P1 (such an endpoint must
exist for every segment; see Lemmas 4.5 and 4.6). If there is such v1 inside C, then
d(a, v1) < r. The conditions of the lemma are satisfied in this case, since letting R1

and C1 be centered at this v1 means that a is inside R1, i.e., 4aQQ′ is bad for P1

and thus is not touched in the swapping operations on P1. Therefore let us assume
that all such endpoints v1 are outside or on the boundary of C and thus 4aQQ′ is
good for P1. Let R1 and C1 be centered at any arbitrary such v1, and call this center
d. Let R′1 be a circle centered also at d with radius (5r)/8. Now we redefine a triangle
to be good/bad for P1 using R′1, namely, a triangle is good for P1 if no vertex is
inside R′1, and bad otherwise. The swapping lemma (Lemma 4.7) still works with this
new definition of good/bad triangles, since any point not in the interior of R′1 is at
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a distance greater than (5r)/8 − r/2 = r/8 from each point inside C1. Also, the two
new triangles produced by a swapping operation are both bad for P1, and thus there
are no further shrinkings on their edge lengths. In the following, good/bad triangles
are all defined by using R′1. We consider two cases.

Case (I). There are less than n′/3 points inside R′1 or some bad triangle has more
than one vertex inside R′1.

Claim A.1. There are at least |P1|+1 good triangles for P1, and thus 4aQQ′ can
be left untouched in the swapping operations on P1, i.e., we can perform the desired
swappings on P1.

Proof. The proof is a refinement of the proof of Lemma 4.8. At the end of phase 2,
suppose there are T triangles, T1,bad bad triangles for P1, t1 bad triangle vertices inside
R′1, and ` left-over segments. Then we have |P1| = `, T + ` = n′/3, and T1,bad ≤ t1. If
R′1 has less than n′/3 points in the interior, then T1,bad+`+` ≤ t1 +2` < n′/3; if some
bad triangle has more than one vertex inside R′1, then T1,bad < t1, i.e., T1,bad+ `+ ` <
t1+2` ≤ n′/3. In both cases, we have T1,bad ≤ n′/3−2`−1. The number T1,good of good
triangles for P1 is then given by T1,good = T − T1,bad ≥ (n′/3− `)− (n′/3− 2`− 1) =
`+ 1 = |P1|+ 1.

Case (II). Otherwise, R′1 has exactly n′/3 points in its interior and each bad
triangle for P1 has exactly one vertex inside R′1. This means that there are exactly
` = |P1| good triangles, including 4aQQ′. There are three subcases.

(II.1). There exists some point s inside C, s 6= a, such that d(s, a) ≥ r/8.

Claim A.2. We can perform the desired swappings on P1.

Proof. We perform the task by considering the cases below.

Case (a). s is an endpoint of some left-over segment e = (s, q). Since q is outside
or on the boundary of C, we have d(a, q) ≥ r. Also, we already have d(a, s) ≥ r/8. We
swap 4aQQ′ with segment e and point x ∈ P1 and produce two triangles 4asq and
4xQQ′. Notice that4xQQ′, with Q and Q′ staying in the same triangle, is bad for P1

and will not be touched from now on. Also, both |P1| and T1,good, the number of good
triangles for P1, are decreased by 1 and the swapping operations can be completed as
before.

Case (b). No such s exists as an endpoint of a left-over segment (i.e., each left-over
segment has one endpoint within distance less than r/8 from a) and s is a vertex of
some triangle 4suv.

Note that by the construction in phases 1 and 2, 4suv has exactly one vertex
inside C; since s is inside C, we have d(a, u) ≥ r and d(a, v) ≥ r. We want to swap
4aQQ′ with a point x ∈ P1 and a left-over segment (p, q), where p is inside C (and
thus d(p, a) < r/8) and q is inside C1.

1. 4suv is good for P1. We produce triangles4xQQ′,4asv, and 4upq. To verify,
observe that d(a, s) ≥ r/8 and d(a, v) ≥ r, so 4asv is fine. As for 4upq, we have
d(u, p) > (7r)/8, since d(u, a) ≥ r and d(p, a) < r/8. Also, u is outside or on the
boundary of R′1 (since 4suv is good), so d(u, d) ≥ (5r)/8. Recall that d is the center
of R′1 and that C1 is also centered at d with radius r/2. Now q is inside C1, so
d(q, d) < r/2. Therefore d(u, q) ≥ d(u, d)−d(q, d) > r/8, which completes the validity
of 4upq. Note that 4asv is good, 4upq is bad, and 4xQQ′ is bad and will not be
touched from now on. Again, both |P1| and T1,good are decreased by 1 and the desired
conditions are satisfied.

2. 4suv is bad for P1. Recall that each bad triangle has exactly one vertex inside
R′1. If s is inside R′1, then both u and v are outside or on the boundary of R′1; otherwise,
one of u and v, say, v, is inside R′1 (and s and u are outside or on the boundary of R′1).
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In both cases, we again produce triangles 4xQQ′,4asv, and 4upq. The validities
of these triangles are established by the same arguments as before. Now 4asv is bad
(the other two triangles are bad as well), but originally 4suv was bad also. Again
|P1| and T1,good are both decreased by 1 and the desired conditions are satisfied.

(II.2). All n′/3 points inside C (including a) are within distances less than r/8
from a, but there exists some point t inside R′1, t 6= d, such that d(t, d) ≥ r/8.

Claim A.3. The interiors of C and of R′1 contain two disjoint clusters, each with
n′/3 points, and the distance between any two points in different clusters is larger than
(7r)/8.

Proof. Recall that d(a, d) ≥ r (4aQQ′ has no vertex inside R1 in the first place).
Now any point inside R′1 is within distance less than (5r)/8 from d, so any point inside
R′1 is at distance at greater than r− (5r)/8 = (3r)/8 from a. But any point inside C is
within distance less than r/8 from a. Therefore all n′/3 points inside R′1 are outside
or on the boundary of C (and thus at distance at least r from a). This shows the
disjointness of the two clusters. Let y and z be two points inside R′1 and inside C,
respectively. Then d(y, z) > (7r)/8, since d(y, a) > r and d(z, a) < r/8.

Claim A.4. We can perform the desired swappings on P1.

Proof. Recall that d is an endpoint of some left-over segment e = (p, d), where
p is inside C (and thus d(p, a) < r/8). We perform the task by considering the cases
below.

Case (a). t is a point in P1. We produce 4tpd, which is valid since d(t, d) ≥ r/8
(the condition of Case (II.2)) and d(t, p) > (7r)/8 (t and p are in different clusters).
Now |P1| is decreased by 1 (|P1| = `− 1) but T1,good is still `. Thus we can complete
the swappings on P1 without using 4aQQ′.

Case (b). t is an endpoint of a left-over segment e′ = (p′, t), where p′ is inside C.
Let x be any point of P1. We produce 4tpd and segment (p′, x). Note that 4tpd is
valid as shown in Case (a), and segment (p′, x) has a length larger than (7r)/8, since
p′ and x are in different clusters. Again |P1| is decreased to `− 1 but T1,good is still `,
so we can complete the desired swappings on P1.

Case (c). t is a vertex of a (bad) triangle 4tuv for P1. Since each bad triangle
has exactly one vertex inside R′1, u and v are outside or on the boundary of R′1, so
d(u, d) ≥ (5r)/8 and d(v, d) ≥ (5r)/8. Let x be any point in P1. Since x and (p, d)
are the left-over point and segment, by the construction of phase 2, d(x, d) < r/4.
Therefore d(u, x) > (5r)/8 − r/4 = (3r)/8; similarly, d(v, x) > (3r)/8. Thus we can
produce triangles 4uvx and 4tpd (whose validity is established as before). Again |P1|
is decreased to ` − 1 but T1,good is still `, so we can complete the desired swappings
on P1.

(II.3). All n′/3 points inside C (including a) are within distance < r/8 from a and
all n′/3 points inside R′1 (including d) are within distance < r/8 from d.

Claim A.5. We can construct an optimal max-min 2-neighbor Hamiltonian path
on S.

Proof. As in Case (II.2), the interiors of C and of R′1 contain two disjoint clusters
S1 and S2, respectively, each with n′/3 points (i.e., |S1| = |S2| = n′/3 = k + 1), and
the distance between any two points in different clusters is larger than (7r)/8. Let
S′ = (S \S1) \S2; then |S′| = k− 1. We disregard the fake points Q and Q′ from now
on. Any point p′ ∈ S′ is outside or on the boundary of C, and thus p′ is at a distance
greater than r − r/8 = (7r)/8 from any point of S1. Similarly, p′ is outside or on the
boundary of R′1, and thus p′ is at a distance greater than (5r)/8 − r/8 = r/2 from
any point of S2. Note that diam(S1) < (r/8) · 2 = r/4, and similarly daim(S2) < r/4.
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Without loss of generality, assume that diam(S1) < diam(S2). To avoid having any
pair of 2-neighbors both in S1, the Hamiltonian path starts from a point in S1, and
visits two points outside S1 (one in S2 and one in S′), then repeats the process. After
repeating the process (k − 1) times, S1 and S2 both have two points left over, and
S′ is empty. The only possible way to avoid having any pair of 2-neighbors both in
S1 is to visit the kth point of S1, then the last two points of S2, and finally the
last point of S1. This means that there must be a pair of points both in S2 that
are 2-neighbors, i.e., diam(S2) is an upper bound for d∗, the max-min 2-neighbor
distance of an optimal path. We can achieve this upper bound by constructing the
path (S1S2S

′)k−1S1S2S2S1, where each occurrence of S1 means visiting a point in
S1, and similarly for the occurrences of S2 and S′, and the last two points in S2 to
be visited are the pair in S2 defining diam(S2). Clearly, all other 2-neighbors in this
path have distances larger than r/2, which is larger than diam(S2), and the minimum
2-neighbor distance is diam(S2), the upper bound of d∗. Therefore d∗ = diam(S2)
and the path is optimal.

This completes the proof of Theorem A.4.
This completes the proof of Theorem 4.14.

Appendix B. Other exact algorithms for points on a line or a circle.

B.1. Cycle version: Points on a circle. We define an `-interval as before,
and the arc of an `-interval I to be the arc containing the ` nodes of I, with endpoints
being the endpoint nodes of I. Also, we define the length of I to be the length of the
longest edge among all edges joining two nodes of I. Observe that in the case of points
on a line, the edge joining the two endpoints of I always gives the length of I; this is
no longer true for the case of points on a circle—unless the angle subtended by the
arc of I is no more than π.

Lemma B.1. Let S be a set of n nodes lying on a circle, and d∗ be the length of
the shortest edge of an optimal Hamiltonian cycle on S. If n = 2k + 1 is odd, then
for any (k+ 1)-interval I = {u, . . . , v} whose arc subtends an angle larger than π, the
length of edge (u, v) is larger than d∗. Moreover, the shortest and the second shortest
(k + 1)-intervals are both shorter than edge (u, v) and must each subtend an angle
no more than π. Similarly, if n = 2k is even, then for any k-interval I = {u, . . . , v}
whose arc subtends an angle larger than π, the length of edge (u, v) is larger than d∗.
Moreover, the shortest, the second shortest, and the third shortest k-intervals are all
shorter than edge (u, v) and must each subtend an angle no more than π.

Proof. Consider the case in which n is odd (see Figure B.1(a)). Observe that
I ′ = {u, s, . . . , t} is also a (k + 1)-interval, whose arc subtends an angle no more
than π. This means that edge (u, t) is the longest edge with both endpoints in I ′. By
Corollary 3.3, the length of (u, t) is an upper bound for d∗. But since (u, v) is longer
than (u, t), the length of edge (u, v) is larger than d∗. In fact, (u, v) is longer than
both (u, t) and (s, v) by the same argument, where (s, v) defines the length of another
(k + 1)-interval I ′′ = {s, . . . , t, v} with subtended angle no more than π.

Now consider the case in which n is even (see Figure B.1(b)). Again, I ′ =
{s, p, . . . , t}, I ′′ = {p, . . . , t, v}, and I ′′′ = {u, s, . . . , q} are three k-intervals each of
whose arcs subtends an angle no more than π, and edge (u, v) is longer than all three
edges joining both endpoints of I ′, of I ′′, and of I ′′′. This means that the length of
(u, v) is larger than the length of the third shortest k-interval. The lemma then follows
from Corollary 6.4.

We solve the problem by the following algorithm. When n = 2k+ 1, we apply the
algorithm of section 6.1 to construct a Hamiltonian cycle C∗. When n = 2k, we first
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Fig. B.1. Proof of Lemma B.1: (a) n is odd; (b) n is even.

scan all n possible k-intervals to identify the shortest k-interval, I1. By Lemma B.1, I1
is found by taking the shortest edge among all edges joining the two endpoint nodes
of all k-intervals. Then we label all nodes of S from 1 to 2k clockwise along the circle,
with the nodes of I1 labeled 1 to k. Finally, we use the new labels and apply the
algorithm of Theorem 6.5 to construct a Hamiltonian cycle C∗.

We claim that the resulting C∗ is optimal. First, the wrap-around effect is readily
taken care of: when n = 2k + 1, each edge on C∗ spans k + 2 nodes on one side and
also spans k + 1 nodes on the other side; when n = 2k, each edge either spans k + 1
nodes on both sides (edges e1 and e2 given in the algorithm of section 6.2) or spans k
nodes on one side and k+ 2 nodes on the other side (the remaining edges). Secondly,
let I be an (k + 1)-interval (resp., k-interval) when n = 2k + 1 (resp., n = 2k). The
issue that an edge spanning all k + 1 nodes (resp., all k nodes) of I may not be the
longest edge within I is resolved by Lemma B.1. Hence C∗ is an optimal Hamiltonian
cycle.

Theorem B.2. Let S be a set of n points lying on a circle and the distances
are Euclidean. Then there exists an algorithm that solves the cycle version of the
maximum scatter TSP on S exactly in optimal O(n) time.

B.2. Path version: Points on a line. Now, consider the path version of points
on a line. As we did at the end of section 3, we add a fake point Q very far away from
all points of S, say, at position∞, so that it does not affect the max-min edge length,
and solve the cycle problem. When we get the answer that is a cycle, we simply cut
the cycle open at Q to get a path, and then remove Q. We call this method fake-point
algorithm for future reference. We denote by C∗ the intermediate cycle constructed,
and P ∗ the final path obtained.

When n = 2k, adding Q makes the construction of C∗ an easy case (n′ = n + 1
is odd), for which we apply the algorithm of section 6.1. The upper bound for the
path version (from Lemma 3.1: every set R of cardinality dn2 e+ 1 = k + 1 must have
an edge inside R) is easily achieved (the edges in the resulting path P ∗ are (k + 1)-
or (k + 2)-edges), and hence P ∗ is optimal. When n = 2k + 1, adding Q makes the
construction of C∗ a more complicated case (n′ = 2k + 2 is even). In this case, a
tighter upper bound for an optimal path is needed. In fact, we can show the following
lemma similar to Lemma 6.2.

Lemma B.3. Suppose n = 2k + 1, and let I1 and I2 be two distinct (k + 1)-
intervals. Clearly, I1 and I2 must overlap. Then in any Hamiltonian path that avoids
having any edge joining two nodes of I1, there must exist an edge joining two nodes
of I2.

Proof. Let Sin = I1 ∩ I2 and Sout = S \ (I1 ∪ I2). If |Sin| = ` (0 < ` < k + 1,
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Fig. B.2. Example of an optimal Hamiltonian path specified by the direct algorithm when n is
odd (n = 7).

since I1 and I2 overlap and also they are distinct), then |I1 ∪ I2| = 2k + 2 − `, and
thus |Sout| = ` − 1. In a Hamiltonian path on S, to avoid having any edge joining
two nodes both in I1 or both in I2, every node in Sin must connect only to nodes
in Sout. Since |Sin| = |Sout| + 1, this means that the path must alternate between
the nodes of Sin and the nodes of Sout, starting and ending at some nodes both in
Sin, without visiting the nodes outside Sin ∪ Sout (such left-over nodes exist since
|S \ (Sin ∪ Sout)| = 2k + 1− (`+ `− 1) > 0), a contradiction.

This says that the length of the second shortest (k + 1)-interval gives an upper
bound for d∗, the optimal objective value. We claim that using the fake-point algo-
rithm, where we apply the algorithm of section 6.2 to construct cycle C∗ on n′ = 2k+2
points, achieves this upper bound. Recall from section 6.2 that each edge of C∗ spans
either k′ = k + 1 and k′ + 2 nodes on two sides of the schematic cycle (type 1 edge),
or k′ + 1 nodes on both sides (type 2 edge). When we remove Q to obtain P ∗, each
edge spans one less node on one side of the schematic cycle. The only possibility for
an edge of P ∗ to span less than k + 1 nodes is when the k′ nodes (on the schematic
cycle) spanned by some type 1 edge include Q. But this means that these k′ nodes
are counted by wrapping around the line, and thus such an edge actually spans k′+ 2
nodes on the line. Therefore P ∗ has each edge spanning at least k + 1 nodes (while
avoiding both endpoints in the shortest (k + 1)-interval), and thus is optimal.

We can also use the following algorithm to solve the problem directly (we thus
call the method direct algorithm):

When n = 2k:
Connect node p to node (p + k), for all p = 1, 2, . . . , k; also connect
node [(k + 1) + q] to node q, for all q = 1, 2, . . . , (k − 1).
When n = 2k + 1:
Identify the shortest (k + 1)-interval I1. Relabel the nodes of S in a
wrap-around fashion, with the nodes of I1 labeled 1, . . . , (k+ 1). Put
the nodes in a schematic cycle as in Figure B.2. Use the new labels
to construct the following path: start visiting node 1, and repeatedly
visit the (k + 1)-st node counted counterclockwise from the current
node (which is counted as the first node), until reaching node k + 1
and stop. The resulting path is 1, (k+ 2), 2, (k+ 3), 3, . . . , (k+ 1) (see
Figure B.2).

It is easy to see that when n = 2k, the constructed path has each edge spanning
k+ 1 or k+ 2 nodes (in fact, the path is the same as the one constructed by the fake-
point algorithm), and when n = 2k+ 1, the constructed path has each edge spanning,
respectively, k+ 1 and k+ 2 nodes on two sides of the schematic cycle while avoiding
both endpoints in I1. Therefore the path is optimal.

Theorem B.4. Let S be a set of n points lying on a line and the distances are
Euclidean. Then there exists an algorithm that solves the path version of the maximum
scatter TSP on S exactly in optimal O(n) time.
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B.3. Path version: Points on a circle. Because of the wrap-around effect,
the fake-point algorithm does not work: it is not possible to place Q so that Q is
far away from all points of S. When n = 2k + 1, the above direct algorithm readily
takes care of the wrap-around effect. Also, since the length of the second shortest
(k + 1)-interval is (an upper bound for) d∗, the issue that an edge spanning all k + 1
nodes of a (k + 1)-interval I may not be the longest edge within I is resolved by
Lemma B.1. Therefore we can solve the problem by scanning all n possible (k + 1)-
intervals to identify the shortest one (whose length is given by the edge joining its two
endpoints), and applying the direct algorithm. When n = 2k, the problem is more
involved: all k edges (1, k + 1), (2, k + 2), . . . , (k, 2k) each span k + 1 nodes on both
sides of the circle, and thus it is not possible to have a Hamiltonian path with each
edge spanning at least k+1 nodes (as in the case of points on a line)—a tighter upper
bound is needed. We do not explore the problem any further; however, if the points
of S are equally spaced, then it is easy to see that the above direct algorithm gives an
optimal Hamiltonian path.

Corollary B.5. Let S be a set of n points lying on a circle and the distances
are Euclidean. If n is an odd integer or the points are equally spaced, then there exists
an algorithm that solves the path version of the maximum scatter TSP on S exactly
in optimal O(n) time.
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Abstract. The parametrized complexity of a number of fundamental problems in the theory of
linear codes and integer lattices is explored. Concerning codes, the main results are that Maximum-
Likelihood Decoding and Weight Distribution are hard for the parametrized complexity class
W [1]. The NP-completeness of these two problems was established by Berlekamp, McEliece, and van
Tilborg in 1978 using a reduction from Three-Dimensional Matching. On the other hand, our proof
of hardness for W [1] is based on a parametric polynomial-time transformation from Perfect Code
in graphs. An immediate consequence of our results is that bounded-distance decoding is likely to be
hard for linear codes. Concerning lattices, we address the Theta Series problem of determining for
an integer lattice Λ and a positive integer k whether there is a vector x∈Λ of Euclidean norm k. We
prove here for the first time that Theta Series is NP-complete and show that it is also hard for W [1].
Furthermore, we prove that the Nearest Vector problem for integer lattices is hard for W [1]. These
problems are the counterparts of Weight Distribution and Maximum-Likelihood Decoding for
lattices. Relations between all these problems and combinatorial problems in graphs are discussed.
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1. Introduction. Our main objective in this paper is to explore the parametrized
complexity of certain fundamental computational problems in the theories of linear
codes and integer lattices. There is a natural close relationship between computational
problems in these areas. We prove one main combinatorial transformation, which we
then use to show hardness for problems in both domains.

There has been a substantial amount of work on the complexity of the problems
considered here. Although many of these problems are naturally parametrized, all the
prior work was in the framework of NP-completeness. The following three problems,
considered by Berlekamp, McEliece, and van Tilborg [5] in 1978, are of importance in
the theory of linear codes:

Problem: Maximum-Likelihood Decoding
Instance: A binary m× n matrix H, a target vector s∈Fm2 , and an integer k > 0.
Question: Is there a set of at most k columns of H that sum to s?
Parameter: k
Problem: Weight Distribution
Instance: A binary m× n matrix H and an integer k > 0.
Question: Is there a set of k columns of H that sum to the all-zero vector?
Parameter: k
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Problem: Minimum Distance
Instance: A binary m× n matrix H and an integer k > 0.
Question: Is there a nonempty set of at most k columns of H that sum to the

all-zero vector?
Parameter: k

Notice that the difference between the definitions of the Minimum Distance and
Weight Distribution problems is very slight. Weight Distribution requires
exactly k columns in a solution, while Minimum Distance requires at most k columns
in a solution.

Berlekamp, McEliece, and van Tilborg [5] proved that Maximum-Likelihood
Decoding and Weight Distribution are NP-complete by means of a reduction
from Three-Dimensional Matching. They conjectured that Minimum Distance
is also NP-complete, and Vardy [32] recently proved this conjecture using a nonpara-
metric reduction from Maximum-Likelihood Decoding. Since Three-Dimensional
Matching is fixed-parameter tractable, these earlier results do not allow us to con-
clude anything about the parametrized complexity of the three problems.

Over the past few years, it has been shown that many NP-complete problems are
fixed-parameter tractable. For example, Vertex Cover, a well-known NP-complete
problem [22, p. 53] which asks whether a graph G on n vertices has a vertex cover

of size at most k, can be solved [3] in time O(kn + (4/3)
k
k2). Loosely speaking, the

parametrized complexity hierarchy

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆W [P] ⊆ · · · ⊆ XP

introduced by Downey and Fellows [14, 15] distinguishes between those problems that
are fixed-parameter tractable and those that are not. For more details on the W
hierarchy of parametrized complexity, see section 4, the Appendix, and references
therein, in particular [18].

One of our main results in this paper is a proof that Maximum-Likelihood
Decoding and Weight Distribution are hard for the parametrized complexity
class W [1]. We also show that both problems belong to the class W [2]. The proof of
W [1]-hardness is based on a parametric polynomial-time reduction from the Perfect
Code problem for graphs. Such a proof establishes both W [1]-hardness and NP-
completeness at the same time. Furthermore, an immediate consequence of this result
is that bounded-distance decoding is likely to be hard for binary linear codes, unless
the parametrized complexity hierarchy collapses with W [1] = FPT.

Three closely related problems in the theory of integer lattices are natural counter-
parts of the three problems concerning linear codes, discussed above. These problems
are defined as follows:

Problem: Nearest Vector
Instance: A basis X = {x1, x2, . . . , xn} ⊂ Zn for a lattice Λ, a target vector s∈Zn,

and an integer k > 0.
Question: Is there a vector x∈Λ such that ‖x− s‖2 ≤ k?
Parameter: k

Problem: Theta Series
Instance: A basis X = {x1, x2, . . . , xn} ⊂ Zn for a lattice Λ and an integer k > 0.
Question: Is there a vector x∈Λ such that ‖x‖2 = k?
Parameter: k
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Problem: Shortest Vector
Instance: A basis X = {x1, x2, . . . , xn} ⊂ Zn for a lattice Λ and an integer k > 0.
Question: Is there a nonzero vector x∈Λ such that ‖x‖2 ≤ k?
Parameter: k

Here, a lattice Λ is the set of all linear combinations with integer coefficients of the
elements of its basis X and ‖ · ‖ denotes the Euclidean norm. Again, notice that the
difference between the definitions of Shortest Vector and Theta Series is very
slight. Theta Series requires ‖x‖2 = k in a solution, while Shortest Vector
requires only the inequality ‖x‖2 ≤ k.

Peter van Emde Boas [30] proved in 1980 that Nearest Vector is NP-complete
and conjectured that Shortest Vector is also NP-complete. There has been a
considerable amount of work devoted to the proof of this conjecture; see [2] and [31]
for a discussion. Ajtai [1] has recently proved that the Shortest Vector prob-
lem is hard for NP under randomized reductions. Akin to the situation with linear
codes, nothing is currently known regarding the parametrized complexity of the three
problems discussed above.

Herein, we prove for the first time that Theta Series is NP-hard. More-
over, since our reduction is parametric, it shows that Theta Series is hard for the
parametrized complexity class W [1]. Along similar lines, we prove that the Nearest
Vector problem is also hard for W [1].

Our results are based on a powerful combinatorial transformation that uses many
of the ideas employed in the proofs of the main theorems in [14, 15]. We feel that one
of the most interesting aspects of our work is a demonstration of the potential utility
of parametric methods and perspectives in addressing issues in “classical” complexity
theory. We will assume that the reader has some familiarity with the parametrized
complexity framework such as can be found in [14, 15, 16, 18], for example. For the
benefit of readers that do not have this background, some discussion and essential
definitions are presented in section 4 and the appendix.

In the interests of readability, we defer the proof of our main combinatorial trans-
formation to section 3. In the next section, we prove the main results using this trans-
formation. In section 4 we present an outline of the proof of membership in W [2] for
several of the problems considered in this paper. We also discuss the remaining open
problems and speculate on whether the techniques used herein might be adapted to
provide a proof of W [1]-hardness for Minimum Distance or of NP-hardness for the
Shortest Vector.

2. The main results through red/blue graphs. We start with some notation
and terminology. Let G = (V,E) be a graph. We say that two distinct vertices
u, v ∈V are neighbors if they are adjacent in G, namely, if (u, v)∈E. We will assume
throughout that G = (V,E) is loopless so that a vertex v ∈V is never its own neighbor.
A set of vertices V ′ ⊆ V is said to be a perfect code in G if every vertex of V \V ′ has a
unique neighbor in V ′, while the vertices of V ′ itself do not have neighbors in V ′. The
starting point for our transformations is the parametrized problem of determining the
existence of a k-element perfect code in a graph.

Problem: Perfect Code
Instance: A graph G = (V,E) and an integer k > 0.
Question: Is there a k-element perfect code in G?
Parameter: k
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This problem was shown to be hard for W [1] in [15]. Kratochv́ıl [25, 24] was the first
to prove, several years earlier, that this problem is NP-complete.

Our general approach in what follows is based on constructing and manipulating
linear codes, and other sets of vectors, using bipartite graphs. Let G = (R,B, E)
be a bipartite graph with the partition of the vertices into the red set R and the
blue set B. We make the following definitions concerning special sets of red vertices
in G.

Definition 2.1. Suppose that G = (R,B, E) is a red/blue bipartite graph, and
let R ⊆ R be a nonempty set of red vertices. We say that R is

• a dominating set if every vertex in B has at least one neighbor in R,
• a perfect code if every vertex in B has a unique neighbor in R,
• an odd set if every vertex in B has an odd number of neighbors in R,
• an even set if every vertex in B has an even number of neighbors in R.

Notice that what we define to be a perfect code is not the same for red/blue
bipartite graphs and for general (uncolored) graphs. Similarly, our definition of a
dominating set in a red/blue graph does not coincide with the conventional definition
of dominating sets in general graphs. However, it will always be clear from the context
which definition applies in each case.

We can now state the main problems concerning red/blue graphs that we consider
in this paper.

Problem: Even Set
Instance: A red/blue graph G = (R,B, E) and an integer k > 0.
Question: Is there a nonempty set of at most k vertices R ⊆ R that is an even

set in G?
Parameter: k

Problem: Exact Even Set
Instance: A red/blue graph G = (R,B, E) and an integer k > 0.
Question: Is there a set of k vertices R ⊆ R that is an even set in G?
Parameter: k

Problem: Odd Set
Instance: A red/blue graph G = (R,B, E) and an integer k > 0.
Question: Is there a set of at most k vertices R ⊆ R that is an odd set in G?
Parameter: k

Problem: Exact Odd Set
Instance: A red/blue graph G = (R,B, E) and an integer k > 0.
Question: Is there a set of k vertices R ⊆ R that is an odd set in G?
Parameter: k

We shall see shortly that all these problems are NP-complete. We will also prove
that Exact Even Set, Odd Set, and Exact Odd Set are hard for W [1]. The
following theorem will serve as the main combinatorial engine in our proof.

Theorem 2.2. Let G be a graph on n vertices, and let k be a positive integer.
In time polynomial in n and k we can produce a red/blue bipartite graph G′ and a
positive integer k′ such that

P1. every dominating set in G′ has size at least k′,
P2. every dominating set in G′ of size k′ is a perfect code in G′,
P3. there is a perfect code of size k in G if and only if there is a perfect code of

size k′ in G′.
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Notice that the red/blue graph G′ encodes the information about the existence
of a k-element perfect code in G. However, while the graph G is completely arbitrary,
the red/blue graph G′ has a substantial amount of useful structure, expressed by the
properties P1 and P2.

The theorem itself is established in the next section by means of a somewhat
complicated graph-theoretic transformation that has a general architecture similar to
the one employed in proving the main theorems of [14] and [15]. In what follows,
we will use Theorem 2.2 to yield significant results that illustrate the applicability of
our graph-theoretic approach to parametrized problems concerning linear codes and
integer lattices.

Parametrized complexity of problems concerning linear codes. First,
note that we have the following merely by observing that in a red/blue bipartite
graph, by definition a perfect code is an odd set and an odd set is a dominating set.

Theorem 2.3. Odd Set and Exact Odd Set are hard for W [1] and NP-
complete.

Proof. Theorem 2.2 immediately implies a polynomial-time parametrized trans-
formation from Perfect Code, which is a W [1]-hard and NP-complete problem, to
Odd Set and to Exact Odd Set. Given an instance G and k of Perfect Code,
we construct G′ and k′ as in Theorem 2.2. It follows from properties P1–P3 that G′

contains an odd set of size at most k′ if and only if G has a k-element perfect code
and the size of this odd set is, in fact, exactly k′.

We now observe that Odd Set is very similar to Maximum-Likelihood De-
coding. This immediately leads to the following.

Theorem 2.4. Maximum-Likelihood Decoding is hard for W [1].

Proof. Given an instance G = (R,B, E) and k of Odd Set, we construct an
instance of Maximum-Likelihood Decoding as follows. The binary m × n ma-
trix H = [hij ] is the adjacency matrix of G, whose columns are indicators of the
neighborhoods of vertices in R. That is, without loss of generality (w.l.o.g.) we let
R = {1, 2, . . . , n} and B = {1, 2, . . . ,m} and then set hij = 1 if and only if i∈B is
adjacent to j ∈R in G. Thus G is a Tanner graph for the binary linear code having
H as its parity-check matrix (cf. [29, 26]). We set the target vector s equal to the
all-one vector 1 of length m = |B|. It is easy to see that a set of k columns of H
sums to s = 1 if and only if the corresponding k vertices of R constitute an odd set in
G.

We now employ Theorem 2.2 in a slightly more elaborate way to establish the
following.

Theorem 2.5. Exact Even Set is hard for W [1] and NP-complete.

Proof. We again reduce from Perfect Code. Given an instance G and k of
Perfect Code, we first construct G′ = (R,B, E) and k′ as in Theorem 2.2. Next,
we let G1 = (R1,B1, E1) and G2 = (R2,B2, E2) denote two identical replicas of G′.
We can combine G1 and G2 into a single red/blue graph H by creating a new red
vertex z and connecting it to all the vertices in B1 and B2. Finally, we obtain a
red/blue graph H∗ by adjoining to H a set of |R| blue vertices B∗, one for each vertex
of R, and connecting them as follows: every β ∈B∗ is adjacent to one vertex in R1

and one vertex in R2, which correspond to the same vertex of R, and every such pair
of vertices in R1 and R2 is connected through some vertex of B∗. The construction
of H∗ from G′ is illustrated in Figure 2.1. The instance of Exact Even Set is given
by H∗ and 2k′ + 1.
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β ∈ B*

R

B B1 B2

R 1 R 2

z

β ∈ B*

corresponding red/blue graph H*red/blue graph G' = (R ,B,E )

Fig. 2.1. Construction of H∗ from G′.

Now suppose that G has a k-element perfect code. Then by property P3 of
Theorem 2.2, the red/blue graph G′ has a k′-element perfect code R ⊆ R. It is
straightforward to verify that the 2k′ vertices corresponding to R in R1 and R2,
together with the vertex z, constitute an even set of size 2k′ + 1 in H∗. Indeed, by
construction every blue vertex of B1 ∪ B2 is adjacent to z and to exactly one vertex
in the replica of R, either in R1 or in R2. Every blue vertex of B∗ is either adjacent
to both replicas of some vertex in R or to none at all.

In the other direction, suppose that S is an even set of size 2k′ + 1 in H∗. If S
contains a vertex ρ∈R1, then it must also contain the corresponding vertex of R2,
since otherwise the vertex of B∗ adjacent to ρ will have exactly one neighbor in S. It
follows that |S∩R1| = |S∩R2| and the vertices of S are paired in this way. Since the
size of S is odd, we conclude that S must contain the vertex z. This further implies
that S ∩ R1 is a dominating set in G1, as otherwise there is a vertex β ∈B1 which
has the single neighbor z in S. Since |S| = 2k′ + 1 and |S ∩ R1| = |S ∩ R2|, the size
of this dominating set is exactly k′. By property P2 of Theorem 2.2, this dominating
set is a perfect code in G1 = G′, and property P3 implies that G has a perfect code
of size k.

It is easy to see that Exact Even Set and Weight Distribution are es-
sentially different ways to formulate one and the same problem. Thus we have the
following theorem.

Theorem 2.6. Weight Distribution is hard for W [1].
Proof. This follows directly from Theorem 2.5 by taking the matrix H in Weight

Distribution to be the adjacency matrix for the graph G = (R,B, E) in Exact
Even Set in the same way as it was done in the proof of Theorem 2.4.

Complexity of bounded-distance decoding. The fact that
Maximum-Likelihood Decoding is hard for W [1], as established in Theorem 2.4,
implies hardness for bounded-distance decoding of binary linear codes in a certain
sense. We now explain this implication.

Maximum-likelihood decoding is a nearest neighbor search in the space Fn2 en-
dowed with the Hamming distance d(x, y) = number of positions where x∈Fn2 and
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y ∈Fn2 differ. Let H be an m× n binary matrix, and let C be the binary linear code
defined by H; that is, C = {x∈Fn2 : Hxt = 0}. Then for all y ∈Fn2 , a maximum-
likelihood decoder for C always finds the closest codeword; that is, x∈C such that
d(x, y) is the minimum possible. If s = Hyt, this is equivalent to finding the smallest
set of columns of H that sums to s; hence the corresponding decision problem is
precisely Maximum-Likelihood Decoding.

While the complexity of maximum-likelihood decoding has been thoroughly stud-
ied [2, 4, 5, 9, 28], almost nothing is presently known regarding the complexity of
bounded-distance decoding, even though most of the decoders used in practice are
bounded-distance decoders. A decoder is said to be bounded-distance if there exists
a constant t > 0 such that for all y ∈Fn2 , the decoder always finds the closest code-
word x∈C, provided d(x, y) ≤ t. Formally, for each positive integer t, we define the
following problem.

Problem: BDD(t)
Instance: A binary m× n matrix H, a target vector s∈Fm2 , and an integer k ≤ t.
Question: Is there a set of at most k columns of H that sum to s?

Notice that BDD(t) is trivially in P for all t, since it can be solved in time
O(nt) by simply computing Hxt for every vector x in a Hamming sphere of radius t.
Hence, the complexity of bounded-distance decoding has to be studied in a different
framework. In particular, we would like to have an algorithm that solves BDD(t)
in time O(nc), where c is a constant independent of t. That is, the multiplicative
constant in O(·) may depend on t, but not the exponent.

The following corollary to W [1]-hardness of Maximum-Likelihood Decoding
shows that such an algorithm does not exist unless the W complexity hierarchy col-
lapses with W [1] = FPT.

Theorem 2.7. Suppose that W [1] 6= FPT. Then for any positive constant c,
there exists an integer t0 such that BDD(t) is not solvable in time O(nc) for all t ≥ t0
even if the multiplicative constant in O(nc) may depend on t.

Proof. First observe that the claim of the theorem is equivalent to the following:
for any positive constant c, there exists an integer t0 such that BDD(t0) is not solvable
in timeO(nc). This is so because if t ≥ t0, then the set of possible instances of BDD(t0)
is a subset of the set of possible instances of BDD(t). Hence, if BDD(t0) cannot be
solved in time O(nc), then neither can BDD(t) for all t ≥ t0.

Now, assume to the contrary that for some c we can solve BDD(t) in time O(nc)
for all t. Given an instance of Maximum-Likelihood Decoding, we set t = k and
query an oracle for BDD(t), which provides an answer to the question of Maximum-
Likelihood Decoding in time O(nc). The constant in O(nc) may depend on
t = k; let us denote this constant by ak. Setting f(k) = ak, we see that Maximum-
Likelihood Decoding is solvable in time f(k)nc. Hence, it is fixed-parameter
tractable, which in view of Theorem 2.4 is possible only if W [1] = FPT.

Parametrized complexity of problems concerning integer lattices. The
combinatorial transformation in Theorem 2.2 can also be used to show both NP-
completeness and W [1]-hardness for Nearest Vector and Theta Series. We
start with the Nearest Vector problem.

Theorem 2.8. Nearest Vector is hard for W [1].

Proof. Given an instance G and k of Perfect Code, we again construct
G′ = (R,B, E) and k′ as in Theorem 2.2. W.l.o.g., let R = {1, 2, . . . , r} and
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B = {1, 2, . . . , b}, and let H be the r × b blue/red adjacency matrix of G′, which
is the transpose of the matrix constructed in Theorem 2.4. That is, the rows of H
are now indicators of the neighborhoods of the vertices in R. If c is a real constant
and A = [aij ] is an integer matrix, we let cA = [caij ] denote the matrix obtained
by multiplying each entry of A by c. We choose c to be a large integer, so that
c > k′, and construct an instance of Nearest Vector as follows. First, we define a
(b+ r)× (b+ r) integer matrix

M =

 cH Ir

2cIb 0

 ,(2.1)

where Ir is the r × r identity matrix and 0 stands for the b× r all-zero matrix. It is
easy to see that M has n = r + b linearly independent rows, which constitute a basis
for a sublattice Λ of Zn. We take the target vector as s = (c, c, . . . , c, 0, 0, . . . , 0)∈Zn
so that the first b entries of s are equal to c while the last r entries are equal to zero.
Then Λ, s, and k′ is the instance of Nearest Vector to which the instance G and
k of Perfect Code is transformed.

If there is a perfect code of size k in G, then by property P3 of Theorem 2.2
there is a perfect code R ⊆ R of size k′ in G′. For convenience, we let M ′ denote
the r × (b + r) matrix consisting of the first r rows of M . Thus each row of M ′ is
naturally indexed by a unique vertex of R. Let x = (x1, x2, . . . , xn)∈Λ be the sum
of those k′ rows of M ′ that are indexed by the vertices of the perfect code R. Then
it is easy to see that xi = c in the first b positions, and ‖x− s‖2 = k′.

In the other direction, suppose that there is a vector x = (x1, x2, . . . , xn)∈Λ with
‖x−s‖2 ≤ k′, and denote y = (y1, y2, . . . , yn) = x−s. First observe that yi ≡ 0 mod c
for i = 1, 2, . . . , b by the construction of M and s. Since c > k′ while ‖y‖2 ≤ k′, it
follows that yi = 0 in the first b positions. This further implies that xi = c for
i = 1, 2, . . . , b. Now let R be the subset of R consisting of all the vertices that index
those rows of M ′ that are included in the linear combination comprising x (with a
nonzero coefficient). We claim that R is a dominating set in G′. Indeed, if some
vertex i∈B does not have a neighbor in R, then xi ≡ 0 mod 2c in the corresponding
position, contrary to the fact that xi = c, which we have already established. Hence,
by property P1 of Theorem 2.2, we have that |R| ≥ k′. Together with ‖x− s‖2 ≤ k′

this implies that ‖x − s‖2 = |R| = k′, and R is a perfect code in G′ by property P2
of Theorem 2.2. Property P3 of Theorem 2.2 now implies that G has a perfect code
of size k.

By modifying the argument of Theorem 2.8 only slightly, we can prove that Theta
Series is also hard for W [1]. The idea is to incorporate the target vector s into the
generator matrix M for Λ. The same argument also shows, for the first time, that
Theta Series is NP-complete.

Theorem 2.9. Theta Series is hard for W [1] and NP-complete.
Proof. We proceed as in the proof of Theorem 2.8, except that we now choose

c so that c > 4k′ + 1 and replace the matrix in (2.1) by the slightly more elaborate
(b+ r + 1)× (b+ r + 1) matrix

M =


cH 0 2Ir

c2Ib 0 0

c c · · · c 1 0 0 · · · 0

 ,(2.2)
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where 0 is used to denote both the all-zero column and the b× r all-zero matrix. We
again think of the n = r+b+1 rows of M as a basis for a sublattice Λ of Zn. Thus an
instance G and k of Perfect Code is transformed by Theorem 2.2 into the red/blue
graph G′ = (R,B, E) and k′, which is further transformed into the instance Λ and
4k′ + 1 of Theta Series.

Suppose that G contains a k-element perfect code, and let R ⊆ R be the corre-
sponding k′-element perfect code in G′. We again let M ′ denote the r × (b + r + 1)
submatrix of M consisting of the first r rows that are naturally indexed by the vertices
of R. Let x = (x1, x2, . . . , xn)∈Λ be the following linear combination of k′ + 1 rows
of M : k′ rows of M ′ indexed by the k′ vertices of the perfect code R with coefficient
+1 and the last row of M with coefficient −1. Then it is easy to see that xi = 0 in
the first b positions and ‖x‖2 = 4k′ + 1.

In the other direction, suppose that there exists x = (x1, x2, . . . , xn)∈Λ with
‖x‖2 = 4k′ + 1. Write x = a1v1 + a2v2 + · · ·+ anvn, where a1, a2, . . . , an are integers,
not all zero, and v1, v2, . . . , vn are the rows of M , listed in a top-to-bottom order.
First, we again observe that xi ≡ 0 mod c for i = 1, 2, . . . , b by the construction of
M . Since c > 4k′ + 1, it follows that xi = 0 in the first b positions. Further observe
that xi ≡ 0 mod 2 in the last r positions. Together with ‖x‖2 ≡ 1 mod 4, this implies
that xb+1 = an must be nonzero. Notice that

a2
n = x2

b+1 ≤ ‖x‖2 = 4k′ + 1 < c.(2.3)

As in the proof of Theorem 2.8, let R be the subset of R consisting of the vertices
that index those rows of M ′ which have a nonzero coefficient in the linear combination
comprising x. We again claim that R is a dominating set in G′. Otherwise, let i∈B
be a vertex which does not have a neighbor in R, and let y = x − anvn. We have
already shown that xi = 0. Hence yi = −anc 6= 0 and |yi| < c2 in view of (2.3).
This is a contradiction, since if i does not have neighbors in R, then yi ≡ 0 mod c2

by the construction of M . From this point on, the proof is exactly the same as in
Theorem 2.8. Referring to Theorem 2.2, we conclude that |R| ≥ k′, which together
with ‖x‖2 = 4k′ + 1 implies that |R| = k′ and R is necessarily a perfect code in G′.
This, in turn, further implies the existence of a k-element perfect code in G.

As a final remark in this section, we observe that a theorem of Cai and Chen [11]
states that if the optimization problem naturally associated to an integer-parameter
problem has a fully polynomial-time approximation scheme (see [22] for an exposition
of this concept), then the corresponding parametrized problem is fixed-parameter
tractable. We can draw from this the following corollary.

Corollary 2.10. There is no fully polynomial-time approximation scheme for
any of the problems discussed in this section, unless W [1] = FPT.

In the next section, we prove our principal combinatorial transformation (Theo-
rem 2.2), which served us so well in this section.

3. The combinatorial engine. Our proof of Theorem 2.1 has many similarities
to the proofs of the main theorems of [14] and [15], to which the reader may wish
to refer. Notice that an implicit assumption in Theorem 2.2 is that the constant k′

may depend on k but not on n. This assumption is essential for all the parametrized
transformations in the previous section. (For more on this, see the appendix.) We
now restate Theorem 2.1, while specifying a precise value for k′ in terms of k.
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Theorem 2.1. Let G = (V,E) be a graph on n vertices, and let k be a positive
integer. In time polynomial in n and k we can produce a red/blue bipartite graph
G′ = (R,B, E′) and the positive integer

k′ = (2k + 1) + 3
(
2k(k + 1) + (k + 1)2

)
such that:

P1. Every dominating set in G′ has size at least k′;
P2. Every dominating set in G′ of size k′ is a perfect code in G′;
P3. There is a perfect code of size k in G if and only if there is a perfect code of

size k′ in G′.
We start the proof with some notation. In describing the construction of G′ from

G it is convenient to identify V with the set of integers {1, . . . , n}. An interval of
vertices is defined to be a subset of V consisting of consecutive integers, for example,
{3, 4, 5, 6}, and may be empty. Let J denote the set of all nonempty intervals having
a size of at most n− k; that is,

J = { J : J is an interval in V and 1 ≤ |J | ≤ n− k }.

For an interval J ∈J , define the initial boundary ∂(J) of J to be the largest non-
negative integer strictly less than the smallest element of J . For example, ∂({2, 3, 4}) =
1, ∂({6}) = 5, ∂({1, 2}) = 0. Define the terminal boundary ∂′(J) to be the smallest
positive integer strictly greater than the largest element of J . Thus ∂′({2, 3, 4}) = 5,
for example.

We will also need to refer to empty intervals, but we will still need to indicate
where these empty intervals begin and end. For this purpose, we introduce the special
symbols ε0, ε1, . . . , εn and extend the definitions of ∂ and ∂′ as follows. For u =
0, 1, . . . , n, we define ∂(εu) = u and ∂′(εu) = u+ 1. Thus εu represents the “interval”
of vertices in V that is empty but “located” between u and u+ 1. We let J ∗ denote
the set of nonempty intervals J augmented with these empty intervals; that is, J ∗ =
J ∪ { εu : 0 ≤ u ≤ n }.

If u, v ∈V with u < v, we define the interval between u and v as J(u, v) =
{u + 1, . . . , v − 1}, provided v − u ≥ 2. If v = u + 1, then J(u, v) = εu. Similarly,
for u∈V we define the interval preceding u to be J(0, u) = {1, . . . , u − 1} if u ≥ 2,
and if u = 1, then J(0, u) = J(0, 1) = ε0. The interval succeeding u∈V is defined as
J(u,∞) = {u+ 1, . . . , n} if u < n, and J(n,∞) = εn.

Let [k] denote the set of integers {1, 2, . . . , k}, and let [k]∗ denote the set of
integers {0, 1, . . . , k}. Part of our construction of G′ = (R,B, E′) will be quantified
over the set [k]∗ × [k]∗ of ordered pairs of elements of [k]∗, while other parts of the
construction will be quantified over subsets of this set, namely, [k]× [k]∗ and [k]∗× [k].
This distinction between [k] and [k]∗ is basically a technicality, which is needed to
account for the boundary cases in the construction.

The red foundation. Our description of G′ starts with five sets of red vertices
R1, R2, . . . , R5. We will refer to the vertices of R1, R2, . . . , R5 as basic red vertices.
All the blue vertices, as well as some additional red vertices, will be added to G′ as the
construction progresses. The five sets R1, R2, . . . , R5 are employed in our construction
to represent the structure of each possible choice of a k-element subset of the set of
vertices of G. Each one of the five sets is, in a sense, a gadget designed to capture a
different aspect of this structure. We now describe these sets along with their roles
in the construction of G′ and the notation used to refer to their vertices:
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• Gadgets that indicate the k chosen vertices:
R1 = { a(i, u) : i∈ [k], u∈V }.
• Gadgets that indicate the intervals between chosen vertices:
R2 = { b(i, J) : i∈ [k]∗, J ∈J ∗ }.

• Gadgets that indicate pairs of intervals:
R3 = { c(i, i′, J, J ′) : i, i′ ∈ [k]∗, J, J ′ ∈J ∗ }.

• Gadgets that indicate choice/interval pairs:
R4 = { c′(i, i′, u, J) : i∈ [k], i′ ∈ [k]∗, u∈V, J ∈J ∗ }.

• Gadgets that indicate interval/choice pairs:
R5 = { c′′(i, i′, J, u) : i∈ [k]∗, i′ ∈ [k], J ∈J ∗, u∈V }.

It will be convenient to organize the basic red vertices into blocks. These blocks
will constitute a partition of the basic red vertices, and there will be altogether

k′′ = 1 + 2k + 2k(k + 1) + (k + 1)2(3.1)

blocks. Specifically, we partition R1 into k blocks, R2 into k + 1 blocks, R3 into
(k + 1)2 blocks, and R4, R5 into k(k + 1) blocks each. These blocks are defined as
follows:

A(i) = {a(i, u) : i∈ [k], u∈V } for i = 1, 2, . . . , k,

B(i) = {b(i, J) : i∈ [k]∗, J ∈J ∗} for i = 0, 1, . . . , k,

C(i, i′) = {c(i, i′, J, J ′) : J, J ′ ∈J ∗} for i∈ [k]∗ and i′ ∈ [k]∗,

C′(i, i′) = {c′(i, i′, u, J) : u∈V, J ∈J ∗} for i∈ [k] and i′ ∈ [k]∗,

C′′(i, i′) = {c′′(i, i′, J, u) : J ∈J ∗, u∈V } for i∈ [k]∗ and i′ ∈ [k].

We let R0 denote the set of k′′ red blocks defined above. These will be referred to as
the basic blocks. Additional blocks of blue and red vertices will be added to G′ later
in the construction.

The semantics of the reduction. Our semantic intentions in the design of
G′ = (R,B, E′) can be summarized as follows. The k blocks of R1 represent the
choice of k vertices of V that may form a k-element perfect code in G. The k + 1
blocks of R2 represent the intervals between the consecutive choices of vertices of V
represented in R1. The blocks of R3, R4, R5 do not carry any meaning with respect
to G; these blocks are needed to impose an internal structure on G′.

Although we have only started to describe G′, enough is already visible to en-
able us to describe, at least in part, the solution translations of the reduction. This
description may serve to motivate and clarify some of the forthcoming details of the
proof. There are two different solution translations, namely, translations in the

forward direction: the manner in which a k-element perfect code in
G translates into a k′-element perfect code in G′, and the

backward direction: the manner in which a k′-element perfect code
(or dominating set) in G′ translates into a k-element perfect
code in G.

The forward solution translation. In the forward direction, suppose that the
elements of a perfect code of size k in G = (V,E) are given by u1, u2, . . . , uk and
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w.l.o.g. assume that

u1 < u2 < · · · < uk.

Let J0 = J(0, u1). In other words, J0 is the interval (set) of elements of V that precede
u1. For i = 1, 2, . . . , k − 1, let Ji = J(ui, ui+1). Thus Ji is the interval of elements of
V that are properly between ui and ui+1. Finally, let Jk = J(uk,∞) be the interval
of elements of V following uk. Now consider the sets

S1 = { a(i, ui) : i∈ [k] },(3.2)

S2 = { b(i, Ji) : i∈ [k]∗},(3.3)

S3 = { c(i, i′, Ji, Ji′) : i∈ [k]∗, i′ ∈ [k]∗},(3.4)

S4 = { c′(i, i′, ui, Ji′) : i∈ [k], i′ ∈ [k]∗},(3.5)

S5 = { c′′(i, i′, Ji, ui′) : i∈ [k]∗, i′ ∈ [k] },(3.6)

and let S = S1 ∪ S2 ∪ · · · ∪ S5. Notice that S contains precisely one vertex from
each of the k′′ basic red blocks, where k′′ is given by (3.1). Our construction of
G′ = (R,B, E′) will ensure that the set S may be extended to a perfect code in G′.
This extension is accomplished by adding two more vertices for each vertex in S3, S4,
and S5, as specified later in our construction.

The backward solution translation. Our construction of G′ will also ensure
that any k′-element dominating set S in G′ must be distributed so that there is exactly
one element of S in each of the k′′ basic blocks of R0. Furthermore, S will be forced
to have the restricted form of a perfect code in G′. The construction will ensure that
for such a set S, the u-indices of the k elements of S ∩R1 are distinct and that these
indices correspond to a k-element perfect code in G.

The construction. We will describe G′ = (R,B, E′) by starting with the k′′

basic red blocks of R0 and applying various operators to these blocks. Each appli-
cation of an operator results in further blocks of red and blue vertices being created,
along with various edges. A high-level blueprint for G′ = (R,B, E′) in terms of these
operators is shown in Figure 3.1.

In constructing G′ = (R,B, E′), operators are applied only to argument sets of
red blocks. Thus each blue vertex β ∈B is created by a single specific application of
an operator, and the neighborhood of β is completely established by this application.
This allows us to argue a series of claims concerning properties of G′ as we continue
to describe the steps of the construction.

The block guard operator Γ1. The operator Γ1 takes a single red block X
as an argument and adds one blue vertex connected to every red vertex in X .

The last step of the construction of G′ = (R,B, E′) will be to apply this operator
to each of the red blocks of the construction. When we get to the last step, there will
be k′ red blocks, the collection of which will be denoted R.

The last step. Apply the block guard operator Γ1 to every red block.
We cannot make this the first step of the construction because some of the k′ red

blocks to which Γ1 is to be applied have yet to be created by applications of operators
in earlier steps of the construction. However, Γ1 does provide a simple initial example
of an operator (the action of the block guard operator is illustrated in Figure 3.2),
and we can easily prove certain important properties of G′ = (R,B, E′) having only
this much information about the construction.
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Fig. 3.1. The blueprint for G′ in terms of basic blocks and operators (example for k = 2).

For example, the following lemma follows directly from the definition of Γ1. This
simple lemma already establishes property P1 of Theorem 2.2.

Lemma 3.1. Every dominating set in G′ = (R,B, E′) has size at least k′ and
contains at least one vertex from each of the k′ red blocks of R.

Proof. Let S ⊆ R be a dominating set in G′, and let X ∈R be a red block. If
S ∩X = ∅, then the blue vertex β ∈B created by the application of Γ1 to X does not
have a neighbor in S.

Next, we need a definition. Let Γ be an operator; let A denote the union of the red
blocks that either provide the arguments for the application of Γ or are created by the
application of Γ; and let B denote the set of blue vertices created by the application
of Γ.

Definition 3.2. We say that the operator Γ is locally perfect if the following
condition is satisfied for every subset S of A that contains exactly one vertex from
each red block contained in A: if every vertex in B has at least one neighbor in S,
then every vertex in B has a unique neighbor in S. In other words, if S contains one
vertex from each red block and is “locally” a dominating set, then S is necessarily a
“local” perfect code.

The above definition is motivated by the observation that if every application of
an operator in the construction of G′ = (R,B, E′) is locally perfect, then property P2
of Theorem 2.2 will hold. This observation is a corollary to the following lemma.
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Fig. 3.2. The block guard operator Γ1.

Lemma 3.3. Every k′-element dominating set S in G′ must contain exactly one
vertex from each of the k′ red blocks of R, and the last step in the construction of G′

is locally perfect.
Proof. Since each of the k′ blocks of R must contain at least one element of S by

Lemma 3.1, each block must contain exactly one element of S. Local perfection of Γ1

is trivial.
The branch operator Γ2. The arguments to the Γ2 operator are two red blocks

X and X ′, given together with a partition of X ′ into |X | or more nonempty classes,
and an injective assignment to each element of X of a different class in the partition
of X ′; that is,

x∈X 7→ Sx ⊂ X ′

so that Sx ∩ Sy = ∅ for x 6= y. The result of applying Γ2 to X and X ′ with this
assignment is

a. the creation of the set of |X | blue vertices

{β(x) : x∈X },
b. for each blue vertex β(x) in this set, the creation of edges con-

necting β(x) to x∈X and to all the red vertices in X ′ that
belong to Sy for some y 6= x in X .

Lemma 3.4. The branch operator Γ2 is locally perfect. In particular, suppose
that this operator is applied to the red blocks X and X ′, and let S be a k′-element
dominating set in G′ = (R,B, E′). Then S ∩ X = {x} and S ∩ X ′ = {x′} for some
x′ ∈Sx.

Proof. The fact that S intersects each of the blocks X and X ′ at a single vertex,
say, x and x′, follows immediately from Lemma 3.3. The vertex x∈X is adjacent to
the single blue vertex β(x). If x′ ∈X ′ belongs to a partition class that is not assigned
to a vertex of X , then x′ is not adjacent to any of the blue vertices created by Γ2 and
the set S dominates only the single vertex β(x), a contradiction. Similarly, if x′ ∈Sy
for some vertex y 6= x in X , then the blue vertex β(y) is not adjacent to either x or
x′. Hence β(y) is not dominated by S, again a contradiction. Thus x′ ∈Sx, which is
the only remaining case. It now follows that every blue vertex created by Γ2 has a
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Fig. 3.3. The branch operator Γ2.

unique neighbor in S. The unique neighbor of β(x) is x and x′ is the unique neighbor
of every other blue vertex. Thus, the branch operator Γ2 is locally perfect.

A useful special case of the application of Γ2 is as “equality” enforcer. For this,
we assume that the arguments to Γ2 are isomorphic sets with the isomorphism given
by the correspondence

x∈X ←→ e(x)∈X ′,

and in applying the operator Γ2, we use the natural assignment x 7→ Sx = {e(x)}.
In this situation, assuming that S is a k′-element dominating set in G′, we observe
that S ∩ X = {x} and S ∩ X ′ = {y} necessarily imply that y = e(x) in view of
Lemma 3.4. With Γ2 at hand, we are finally ready to describe the first two steps of
our construction.

Step 1. For i = 1, 2, . . . , k− 1, apply the operator Γ2 to the arguments X = A(i)
and X ′ = B(i) with the assignment

a(i, u) 7→ { b(i, J) : J ∈J ∗, ∂(J) = u }.(3.7)

Also apply Γ2 to the arguments X = A(k) and X ′ = B(k) with the assignment

a(k, u) 7→ { b(k, J) : J ∈J ∗, ∂(J) = u and ∂′(J) =∞}.(3.8)

Step 2. For i = 2, 3, . . . , k, apply the operator Γ2 to the arguments X = A(i)
and X ′ = B(i− 1) with the assignment

a(i, u) 7→ { b(i− 1, J) : J ∈J ∗, ∂′(J) = u }.(3.9)

Also apply Γ2 to the arguments X = A(1) and X ′ = B(0) with the assignment
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a(1, u) 7→ { b(0, J) : J ∈J ∗, ∂′(J) = u and ∂(J) = 0 }.(3.10)

The first two steps of the construction operate on the vertices in R1 and R2 that
represent, respectively, the choice of k vertices of G and the intervals between these
chosen vertices. The purpose of these two steps is reflected in the following lemma.

Lemma 3.5. Suppose that S is a k′-element dominating set in G′ = (R,B, E′).
Then the k + (k + 1) vertices of S ∩ R1 and S ∩ R2 consistently represent k vertices
of G = (V,E) and the intervals between these vertices in the following way:

a. If S ∩ A(1) = {a(1, u)}, then S ∩ B(0) = {b(0, J(0, u))}.
b. For i = 1, 2, . . . , k−1, if S∩A(i) = {a(i, u)} and S∩A(i+1) =
{a(i+ 1, v)}, then S ∩ B(i) = {b(i, J(u, v))}.

c. If S ∩ A(k) = {a(k, u)}, then S ∩ B(k) = {b(k, J(u,∞))}.
d. For all i < i′, if S∩A(i) = {a(i, u)} and S∩A(i′) = {a(i′, u′)},

then u < u′.
Proof. Referring to the last application of the operator Γ2 in Step 2, it follows

from Lemma 3.4 that if S ∩ A(1) = {a(1, u)}, then S ∩ B(0) consists of a vertex x′

which belongs to the set assigned to a(1, u) on the right-hand side of (3.10). But this
set consists of the single element b(0, J(0, u)), which establishes part (a). Part (c)
follows in a similar fashion from Lemma 3.4 and (3.8). Part (b) follows from Lemma
3.4 along with the combination of (3.7) and (3.9). Indeed, assuming the condition of
part (b), it follows from Lemma 3.4 that S ∩ B(i) = {x′}, where x′ belongs to the
intersection of the set assigned to a(i, u) in (3.7) with the set assigned to a(i + 1, v)
in (3.9). Thus x′ = b(i, J), where ∂(J) = u and ∂′(J) = v, that is, J = J(u, v).
Part (d) follows immediately from part (b).

The product operator Γ3. The arguments for the operator are three red
blocks X1, X2, and Z, where Z is isomorphic to the product X1 × X2, together with
a one-to-one correspondence:

z ∈Z ←→ (x1, x2) ∈ X1 ×X2.(3.11)

We write z = z(x1, x2) to denote the element of Z that corresponds to the pair
(x1, x2)∈X1 × X2 in (3.11). An application of Γ3 augments G′ = (R,B, E′) in the
following ways:

a. Two auxiliary blocks of red vertices are created:

P1 = { ρ1(x1, x2) : x1 ∈X1, x2 ∈X2 },
P2 = { ρ2(x1, x2) : x1 ∈X1, x2 ∈X2 }.

b1. The operator Γ2 is applied to the arguments X = X1 and
X ′ = P1 with the assignment

x∈X1 7→ { ρ1(x, y) : y ∈X2 }.(3.12)

b2. The operator Γ2 is applied to the arguments X = X2 and
X ′ = P2 with the assignment

y ∈X2 7→ { ρ2(x, y) : x∈X1 }.(3.13)

c. The operator Γ2 is applied as an equality enforcer to the
arguments X = P1 and X ′ = P2 with the assignment

ρ1(x1, x2) 7→ { ρ2(x1, x2) }.(3.14)
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d1. The operator Γ2 is applied as an equality enforcer to the
arguments X = P2 and X ′ = Z with the assignment

ρ2(x1, x2) 7→ { z(x1, x2) }.(3.15)

d2. The operator Γ2 is applied as an equality enforcer to the
arguments X = Z and X ′ = P1 with the assignment

z(x1, x2) 7→ { ρ1(x1, x2) }.(3.16)

Lemma 3.6. The product operator Γ3 is locally perfect. In particular, suppose
that this operator is applied to the three red blocks X1,X2, and Z, and let S be a
k′-element dominating set in G′ = (R,B, E′) with S ∩ X1 = {x} and S ∩ X2 = {y}.
Then S ∩ Z = {z(x, y)}.

Proof. It follows from Lemma 3.3 that S intersects each of the red blocks P1,P2,
and Z at a single vertex, say, ρ1(x′, y′)∈P1, ρ2(x′′, y′′)∈P2, and z ∈Z, respectively.
We can now argue a series of simple observations regarding ρ1(x′, y′), ρ2(x′′, y′′), and
z, which follow from Lemma 3.4 in conjunction with the assignments in (3.12)–(3.16).
In view of (3.12), respectively, (3.13), we have that x′ = x, respectively, y′′ = y. By
the equality enforcing assignment in (3.14), we have x′ = x′′ and y′ = y′′. Thus
x′′ = x′ = x and y′′ = y′ = y. It now follows from either (3.15) or (3.16) that
z = z(x, y).

Since the product operator Γ3 is composed from five applications of the branch
operator Γ2, the local perfection of Γ3 follows from the local perfection of Γ2 estab-
lished in Lemma 3.4. Alternatively, this can be proved directly by verifying that each
of the |X1|+ |X2|+ 3 |X1||X2| blue vertices created by Γ3 is adjacent to one and only
one of the five red vertices x∈X1, y ∈X2, ρ1(x, y)∈P1, ρ2(x, y)∈P2, and z(x, y)∈Z,
regardless of the choice of x∈X1 and y ∈X2.

With the product operator Γ3 at hand, we can now describe the next three steps
in our construction of G′ = (R,B, E′). These three steps establish a relation between
the blocks in R3, R4, R5 and the blocks of R1, R2 which represent the choice of some
k vertices of G according to Lemma 3.5.

Step 3. For each pair (i, i′) with i, i′ ∈ [k]∗, apply the operator Γ3 to the arguments
X1 = B(i), X2 = B(i′), and Z = C(i, i′) with the product correspondence

c(i, i′, J, J ′)∈ C(i, i′) ←→ (b(i, J), b(i′, J ′))∈ B(i)× B(i′).

Step 4. For each pair (i, i′) with i∈ [k] and i′ ∈ [k]∗, apply the operator Γ3 to the
arguments X1 = A(i), X2 = B(i′), and Z = C′(i, i′) with the product correspondence

c′(i, i′, u, J)∈ C′(i, i′) ←→ (a(i, u), b(i′, J))∈ A(i)× B(i′).

Step 5. For each pair (i, i′) with i∈ [k]∗ and i′ ∈ [k], apply the operator Γ3 to the
arguments X1 = B(i), X2 = A(i′), and Z = C′′(i, i′) with the product correspondence

c′′(i, i′, J, u)∈ C′′(i, i′) ←→ (b(i, J), a(i′, u))∈ B(i)×A(i′).

At this stage of the construction, the red/blue graph G′ = (R,B, E′) is highly
structured, but the adjacency structure of G′ is independent of the adjacency struc-
ture of G = (V,E). The following operator will finally establish the connection
between G = (V,E) and G′ = (R,B, E′).
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Fig. 3.4. The product operator Γ3.

The G-adjacency operator Γ4. This operator takes all the vertices of R1

as arguments, that is, all the A-blocks A(1),A(2), . . . ,A(k). A set of n = |V | blue
vertices

{β(u) : u∈V }

is created. These vertices are connected as follows. For each i = 1, 2, . . . , k, the blue
vertex β(u) is connected to a(i, u) and to a(i, v) for all v ∈V that are adjacent to u
in G.

It is easy to see that an application of Γ4 essentially amounts to replicating k
times the original graph G = (V,E) as a red/blue bipartite graph with the set of red
vertices A(i) and the set of blue vertices {β(u) : u∈V }, both isomorphic to V . This
is precisely what we do next.

Step 6. Apply the operator Γ4 to all of the A-blocks A(1),A(2), . . . ,A(k).
Let S be a k′-element dominating set in G′ = (R,B, E′). We know from

Lemma 3.3 that S intersects each of the red blocks, in particular each of the blocks
A(1),A(2), . . . ,A(k), at a single vertex. Thus for each i = 1, 2, . . . , k, we can define
vi to be the unique vertex of V such that S ∩ A(i) = {a(i, vi)}. With this notation,
let V (S) = {v1, v2, . . . , vk}.

Lemma 3.7. The set V (S) is a k-element dominating set in G. Furthermore, if
S is a perfect code in G′ = (R,B, E′), then V (S) is a k-element perfect code in G.

Proof. It follows from Lemma 3.5 that v1, v2, . . . , vk are all distinct (in fact v1 <
v2 < · · · < vk). Hence |V (S)| = k. The rest is immediate from the definition of Γ4: a
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vertex u∈V has a (unique) neighbor in V (S) if and only if the vertex β(u) created
by Γ4 has a (unique) neighbor in S.

Notice that the G-adjacency operator Γ4 is not locally perfect unless V (S) is
actually a perfect code in G = (V,E) for every k′-element dominating set S in G′.
However, the following operator ensures that the latter condition is always satisfied.

We say that two distinct vertices u and u′ in G = (V,E) are close if there is a
path length of 1 or 2 between them. (Notice that a vertex u is not considered close to
itself.) It is easy to see that a dominating set in G is also a perfect code if and only
if it does not contain close vertices.

The perfection operator Γ5. This operator takes as arguments all of the C, C′,
and C′′ blocks. An application of the operator results in the following.

a. The creation of a set of blue vertices with one vertex for each
ordered pair (u, u′) of close vertices in G, that is,

{β(u, u′) : u is close to u′ in G }.(3.17)

b. The creation of edges connecting each blue vertex β(u, u′) in
this set to all the red vertices contained in one of the following
three sets:

C(u, u′) = { c(i, i′, J, J ′) : i, i′ ∈ [k]∗, u∈J, u′ ∈J ′ },
C′(u, u′) = { c′(i, i′, u, J) : i∈ [k], i′ ∈ [k]∗, u′ ∈J },
C′′(u, u′) = { c′′(i, i′, J, u′) : i∈ [k]∗, i′ ∈ [k], u∈J }.

The idea of the perfection operator Γ5 is to ensure that if V (S) contains close
vertices, then S cannot be a dominating set in G′ = (R,B, E′). This is accomplished
in the following step.

Step 7. Apply the perfection operator Γ5 to all of the C, C′, and C′′ blocks.
Next, we need some more notation. We again let S denote a k′-element dominat-

ing set in G′ and define the sets J0, J1, . . . , Jk as follows:

Ji = J(u, v) ⊂ V so that S ∩ B(i) = {b(i, J(u, v))} for i = 0, 1, . . . , k.

It follows from Lemma 3.5 that the sets J0, J1, . . . , Jk are well defined, and the se-
quence of sets J0, {v1}, J1, {v2}, J2, . . . , Jk−1, {vk}, Jk constitutes a partition of the
vertex set V of G.

Lemma 3.8. The perfection operator Γ5 is locally perfect, and the set V (S) =
{v1, v2, . . . , vk} does not contain close vertices.

Proof. With the notation just defined, it follows from Lemma 3.6 along with Steps
3, 4, and 5 of our construction that

S ∩ C(i, i′) = { c(i, i′, Ji, Ji′) } for all i∈ [k]∗ and i′ ∈ [k]∗,

S ∩ C′(i, i′) = { c′(i, i′, vi, Ji′) } for all i∈ [k] and i′ ∈ [k]∗,

S ∩ C′′(i, i′) = { c′′(i, i′, Ji, vi′) } for all i∈ [k]∗ and i′ ∈ [k].

Now consider a pair (u, u′) of close vertices inG. Since J0, {v1}, J1, {v2}, J2, . . . , Jk−1, {vk}, Jk
is a partition of the vertex set V of G, exactly one statement is true on the following
list describing where u is to be found and where u′ is to be found.

Case 1: u∈Ji and u′ ∈Ji′ .
In this case β(u, u′) in (3.17) is adjacent to a single red vertex in S. Specifically, β(u, u′)
is connected to c(i, i′, Ji, Ji′)∈C(u, u′), where { c(i, i′, Ji, Ji′) } = S ∩ C(i, i′).
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Case 2: u = vi and u′ ∈Ji′ .
In this case β(u, u′) in (3.17) is adjacent to a single red vertex in S. Specifically, β(u, u′)
is connected to c′(i, i′, vi, Ji′)∈C′(u, u′), where { c′(i, i′, vi, Ji′) } = S ∩ C′(i, i′).

Case 3: u∈Ji and u′ = vi′ .
In this case β(u, u′) in (3.17) is adjacent to a single red vertex in S. Specifically, β(u, u′)
is connected to c′′(i, i′, Ji, vi′)∈C′′(u, u′), where { c′′(i, i′, Ji, vi′) } = S ∩ C′′(i, i′).

Case 4: u = vi and u′ = vi′ .
In this case β(u, u′) is not adjacent to any of the vertices of S.

In each case, we see that a blue vertex β(u, u′) created by Γ5 is adjacent to at
most one vertex of S, which implies that Γ5 is locally perfect. Furthermore, since S is
a dominating set by assumption, Case 4 above cannot happen. In other words, there
is no pair of close vertices in the set V (S) “chosen” by a k′-element dominating set S
in G′ = (R,B, E′).

Lemma 3.9. The set V (S) is a k-element perfect code in G = (V,E).
Proof. By Lemma 3.7, the set V (S) is a k-element dominating set in G, and by

Lemma 3.8 it does not contain close vertices. Hence V (S) is a perfect code.
We can now complete our construction and complete the proof of Theorem 2.1.

Recall that the last step in the construction is as follows.
Step 8. Apply the block guard operator Γ1 to every red block constructed thus

far.
Theorem 2.2 now follows from a series of easy observations. Property P1 of

Theorem 2.2 is established in Lemma 3.1. The fact that V (S) is necessarily a perfect
code in G, established in Lemma 3.9, further implies that the G-adjacency operator Γ4

is locally perfect. Thus all the operators used in our construction are locally perfect,
and property P2 of Theorem 2.2 holds. The “if” part of property P3 then follows
directly from Lemma 3.9. The reader can now verify the few remaining details to see
that the forward translation of a k-element perfect code in G = (V,E) to a k′-element
perfect code in G′ = (R,B, E′), outlined in (3.2)–(3.6), works correctly.

4. Membership in the parametrized complexity class W [2]. All of the
hardness results for parametrized complexity that we derive in this paper are by re-
duction from the Perfect Code problem. This particular problem has eluded exact
classification in the W [t] hierarchy for a number of years. What is known [15] is that
Perfect Code is hard for W [1] and belongs to W [2]. It may be a representative of a
natural parametrized complexity degree, which is intermediate between the W [1] and
W [2] complexity classes. This remains an interesting open problem in the structure of
the parametric complexity classes, especially in view of connections to one-per-clause
satisfiability problems.

In this section we indicate how some of the problems considered in this paper,
namely, Maximum-Likelihood Decoding, Weight Distribution, and Minimum
Distance, can be shown to belong to the parametrized complexity class W [2]. A wide
variety of problems are known to be complete or hard forW [2], including Dominating
Set, Bandwidth, Length-k Factorization of Monoids, Longest Common
Subsequence for k-Sequences, and k-Processor Precedence Constrained
Scheduling (see [8, 12, 6, 7]).

To establish the necessary background for Theorem 4.4 below, we now briefly
recall the definition of the classes of the W [t] hierarchy based on problems about
bounded-depth circuits. We will generally follow the exposition in [14]. We first define
circuits in which some logic gates have bounded fan-in and some have unrestricted
fan-in. It is assumed that fan-out is never restricted.
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Definition 4.1. A Boolean circuit is of mixed type if it consists of circuits
having gates of the following kinds:

small gates: ¬ gates, ∧ gates, and ∨ gates with bounded fan-in; we
will usually assume that the bound on fan-in is 2 for ∧ gates
and ∨ gates and 1 for ¬ gates.

large gates: ∧ gates and ∨ gates with unrestricted fan-in.
The depth of a circuit C is defined to be the maximum number of gates (small or

large) on an input-output path in C. The weft of a circuit C is the maximum number
of large gates on an input-output path in C. We say that a family of decision circuits
F has bounded depth if there is a constant h such that every circuit in the family F
has depth at most h. We say that F has bounded weft if there is constant t such that
every circuit in the family F has weft at most t.

Let F be a family of mixed-type decision circuits. We allow that F may have
many different circuits with a given number of inputs. To F we associate the following
parametrized circuit problem LF = { (C, k) : C ∈F accepts some input vector of
weight k}, where the (Hamming) weight of a Boolean vector x is the number of 1’s in
the vector.

Definition 4.2. A parametrized language L belongs to W [t] if L reduces to
the parametrized circuit problem LF (t,h) for the family F (t, h) of mixed-type decision
circuits of weft at most t and depth at most h for some constant h.

Definition 4.3. A parametrized language L belongs to W ∗[t] if it belongs to W [t]
with the definition of a small gate being revised to allow fan-in bounded by a fixed
arbitrary function of k and where the depth of a circuit is allowed to be a function of
k as well.

Whether W ∗[t] = W [t] for all t is an important open problem. The significance
of this question is that for purposes of establishing membership in the W [t] hierarchy,
we would like to have the most generous possible characterization of W [t] available
to work with. It is shown that W ∗[1] = W [1] and W ∗[2] = W [2] in [21] and [18],
respectively. For t ≥ 3 the question is still open. Our argument here makes essential
use of the result of [18] that W ∗[2] = W [2].

Theorem 4.4. Weight Distribution belongs to W [2].
Proof. Given an instance H and k of Weight Distribution, we describe how

to compute a pair (E, k′), consisting of a Boolean expression E and a positive integer
k′, such that the circuit corresponding to E has a form allowed by the definition
of W ∗[2] = W [2] and such that H, k is a yes-instance of Weight Distribution if
and only if E is satisfied by a weight k′ truth assignment. In order for this to be
a parametric reduction, we must have k′ computed purely as a function of k. Our
reduction is simple in this regard: we take k′ = k.

Suppose that H is an m × n binary matrix, and let h1, h2, . . . , hn denote the
columns of this matrix. For j = 1, 2, . . . ,m, we will write hi[j] to denote the jth
component of hi. The set V of Boolean variables for E is

V = { v[b, i] : b = 1, 2, . . . , k and i = 1, 2, . . . , n }.

Intuition can be served by viewing V as consisting of k “choice blocks,” each of size n.
The expression E is constructed so that any satisfying truth assignment must make
exactly one variable in each of these blocks true, and will in this way indicate a set
of k columns of H.

Let E denote the set of all subsets of {1, 2, . . . , k} of even cardinality. For each
j ∈{1, 2, . . . ,m} and σ ∈E , define the Boolean expressions:
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E+(σ, j)=
∧
b∈σ

∧
i: hi[j] = 0

¬v[b, i],

E−(σ, j)=
∧
b6∈σ

∧
i: hi[j] =1

¬v[b, i],

E(σ, j)= E+(σ, j) ∧ E−(σ, j).

Then the expression E has the form

E = E1 ∧ E2 ∧ E3,

where

E1 =
∧

1≤b<b′≤k

n∧
i=1

(¬v[b, i] ∨ ¬v[b′, i]),

E2 =
k∧
b=1

(
n∨
i=1

v[b, i]

)
,

E3 =
m∧
j=1

∨
σ∈E

E(σ, j).

It is easy to see that if the definition of a small gate allows fan-in bounded by
a function of k, then each of the subexpressions E1 and E2 has weft one, while
the subexpression E3 has weft two. The depth of E1, E2, and E3 is 4, 2, and 6,
respectively, so that the depth of E itself is 7. Thus E belongs to a family of weft-
two circuits allowed by the definition of W ∗[2]. We next argue the correctness of the
reduction. Note the validity of the following easy claims.

Claim 1. The subexpression E2 is satisfied by a weight k truth assignment to the
variables of V if and only if exactly one variable in each of the k blocks is assigned
the value true.

Claim 2. The subexpression E′ = E1 ∧E2 is satisfied by a weight k truth assign-
ment to the variables of V if and only if exactly one variable in each of the k blocks
is assigned the value true in such a way that the second indices of the true variables
are all distinct.

Let τ be a weight k truth assignment that satisfies E′. It follows from Claim 1
that for each b∈{1, 2, . . . , k}, there is a unique i∈{1, 2, . . . , n} such that v[b, i] is
assigned the value true by τ . Thus τ and b together specify the unique ith column
of H. For j = 1, 2, . . . ,m, we let α(b, j, τ) denote the binary value to be found in the
jth row of this column, that is, α(b, j, τ) = hi[j].

Claim 3. The expression E3 is satisfied by a weight k truth assignment τ : V →
{true, false} that also satisfies E′ = E1 ∧E2 if and only if for each j ∈{1, 2, . . . ,m}
there is some σ ∈E such that the following equality holds: σ = {b : α(b, j, τ) = 1}.

Now suppose that H, k is a yes-instance of Weight Distribution, and let
hi1 , hi2 , . . . , hik be the k columns of H that sum to the all-zero vector. Let τ be
the truth assignment that assigns the variables v[1, i1], v[2, i2], . . . , v[k, ik] to be true

and assigns all the other variables in V the value false. Clearly, τ has weight k. It
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follows from Claim 2 that τ satisfies E′ = E1 ∧ E2. For j = 1, 2, . . . ,m, let σj be the
subset of {1, 2, . . . , k} consisting of all b such that hib [j] = 1. Since

hi1 [j] + hi2 [j] + · · ·+ hik [j] = 0 (mod 2)

for all j, it follows that the number of such indices b must be even. Hence σj ∈E
for all j. It is not difficult to see that for the truth assignment τ specified above, σj
is precisely the set {b : α(b, j, τ) = 1}. Hence by Claim 3, τ also satisfies E3 and
therefore E itself.

Conversely, suppose that E has a truth assignment τ of weight k. By Claim 2,
there are k distinct indices i1, i2, . . . , ik such that τ assigns to the k variables v[1, i1],
v[2, i2], . . . , v[k, ik] the value true and assigns all other variables in V the value false.
By Claim 3, the number of elements in the set {b : α(b, j, τ) = 1} = {b : hib [j] = 1}
must be even for each j = 1, 2, . . . ,m. Hence the k columns hi1 , hi2 , . . . , hik of H sum
to the all-zero vector.

The above argument can be easily modified to show that Maximum-Likelihood
Decoding and Minimum Distance also belong to W ∗[2] = W [2]. We conjecture
that all of these problems are equivalent to the Perfect Code problem.

5. Concluding discussion and open problems. We have shown that four of
six fundamental computational problems in the domains of linear codes and integer
lattices are NP-complete and hard for the parametrized complexity class W [1]. The
obvious outstanding open problems are the following.

• Is the Minimum Distance problem, recently proved to be NP-complete
in [32], also hard for W [1]?
• Is the Shortest Vector problem hard for NP and W [1]?

A consequence of the proof in [32] that the Minimum Distance problem is NP-
hard is that Even Set is NP-hard. This leaves us in the curious situation that
the only known proof of this seemingly quite combinatorial result is by means of
sophisticated algebraic techniques deeply rooted in coding theory. Is there a direct
combinatorial proof? Understanding this issue may shed some light on whether the
combinatorial methods used here to show NP and W [1] hardness for Theta Series
can be extended to the Shortest Vector problem.

6. Appendix: Short survey of parametrized complexity. Over the past
several years, it has become increasingly clear that classical complexity frameworks
such as NP-completeness and PSPACE-completeness are not adequate to address
intractability questions for problems that are naturally parametrized and for which
the important applications are covered by parameter values of, say, k ≤ 50.

For example, consider the Vertex Cover problem, which asks whether a graph
G on n vertices has a vertex cover of size at most k. This is one of the six NP-complete
problems singled out for attention by Garey and Johnson [22]. The best known result,

presently, is that Vertex Cover can be solved in time O(kn+(4/3)
k
k2) with a very

small hidden constant [3]. This means that although the problem is NP-complete,
it is well solved for input graphs of unlimited size, as long as k is at most 70 or so.
Strong tractability results such as this seem to be not uncommon when problems
are qualitatively classifiable as fixed-parameter tractable, meaning that they belong
to the parametrized complexity class FPT, formally defined below. Three of the six
basic NP-complete problems considered by Garey and Johnson in [22, Chapter 3] are
fixed-parameter tractable.

In general, a variety of metrics can be applied to the input of a computational
problem. The total length of the input is one basic measurement, but it is by no
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means the only important one. It is natural to try to understand how different
input measurements interact in determining problem complexity. Furthermore, it
is essential to understand such interactions in order to exploit the opportunities for
designing algorithms that are sensitive to natural input distributions.

A generic example of a parameterization is provided by the many well-known de-
cision problems concerning graphs that take as input a graph G and a positive integer
k. The parameter k appears to contribute to the complexity of such problems in
two qualitatively different ways. Graph Genus, Min-Cut Linear Arrangement,
Vertex Cover, and Feedback Vertex Set for Undirected Graphs (see, for
example, [22] for definitions) can all be solved in time O(f(k)nc), where c is a con-
stant independent of k and f(·) is some (arbitrary) function. This “good behavior” is
termed fixed-parameter tractability in the theory introduced in [14]. As is the case with
polynomial-time complexity, the exponent c is typically small. One can equivalently
define fixed-parameter tractability to mean solvability in time O(f(k) + nc), that is,
with only an additive contribution from the parameter [13]. There is a rich collection
of distinctive techniques for devising FPT algorithms (see [16, 18, 23, 10, 27]).

Contrasting complexity behavior is exhibited by the naturally parametrized prob-
lems such as Clique, Dominating Set, and Bandwidth for which the best known
algorithms have running times O(nck). These problems have been shown to be com-
plete or hard for the various levels of the W hierarchy of parametrized complexity

W [1] ⊆W [2] ⊆ · · · ⊆W [P ] ⊆ · · · ⊆ XP,
which can be taken as evidence that they are unlikely to be fixed-parameter tractable
[8]. With these problems, we seem to hit a natural “wall” requiring brute force effort,
much as is typically the case with NP-complete problems. For example, essentially
no better algorithm is known for the k-Dominating Set problem than checking all
k-subsets.

As in the theory of NP-completeness, there are roughly two kinds of arguments
that can be offered for believing that parametrized problems that are complete or hard
for W [1] are not likely to be fixed-parameter tractable. The first kind of argument
is, roughly speaking, sociological. So many different kinds of problems stand or fall
together that the combination of efforts expended unsuccessfully from the various
vantages compels a belief in inherent intractability. The second kind of argument is
some form of direct intuition concerning the nature of the computations that define
the issue, e.g., nondeterministic as opposed to deterministic polynomial time.

For parametrized complexity, both kinds of arguments can be made. Although
the amount of unsuccessful effort that has been expended in an attempt to show fixed-
parameter tractability for W [1]-hard problems is much less than the total effort ex-
pended to date in attempting to develop polynomial-time algorithms for NP-complete
problems, it is still considerable and accumulating. The parametrized complexity
class W [1] is particularly interesting and important for several reasons: there is a
substantial list of natural and useful computational problems that are precisely W [1]-
complete. This list includes Clique, Independent Set, Vapnik–Chervonenkis
Dimension, Monotone Data Complexity for Relational Databases, Square
Tiling, k-Step Derivation for Context Sensitive Grammars, m-Length
Common Subsequence for k-Sequences, and k-Length Post Correspon-
dence, among other problems.

Direct intuition about W [1] is also available. It is shown in [19, 12] that the
k-step halting problem for nondeterministic Turing machines is W [1]-complete. This
problem is formally defined as follows.
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Problem: Short Turing Machine Acceptance
Instance: A nondeterministic Turing machine M and a positive integer k.
Question: Does M have a computation path accepting the empty string in at most

k steps?
Parameter: k

This is a problem so generic and opaque that it is hard to imagine that there
is any algorithm for it that radically improves on simply exploring the n-branching
depth-k tree of allowed transitions exhaustively. This is essentially the same intuition
as the belief that Cook’s theorem provides a basis for the intractability of NP-complete
problems.

For a definition of theW [t] complexity classes and the fundamentals of parametrized
complexity, we refer the reader to section 4 and [14, 15, 16, 18]. Here, we will briefly
review the basic definitions of a parametrized problem and fixed-parameter tractabil-
ity.

Definition 6.1. A parametrized problem is a set L ⊆ Σ∗ × Σ∗, where Σ is a
fixed alphabet. For convenience, we can think of a parametrized problem as a subset
L of Σ∗ ×N , where N is the set of nonnegative integers.

Definition 6.2. We say that parametrized problem L is (uniformly) fixed-
parameter tractable if there is a constant α and an algorithm Φ such that Φ decides
if (x, k)∈L in time f(k)|x|α, where f : N → N is an arbitrary function.

Let A and B be parametrized problems. We say that A is (uniformly many to
1) reducible to B if there is an algorithm Φ which transforms (x, k)∈Σ∗ × N into
(x′, g(k)) in time f(k)|x|α, where f, g : N → N are arbitrary functions and α is a
constant independent of k so that (x, k)∈A if and only if (x′, g(k))∈B. Such an
algorithm Φ may be called a parametric transformation. It is easy to see that if A
reduces to B and B is fixed-parameter tractable, then so too is A.
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Abstract. Algorithms with optimal expected running time are presented for searching the
occurrences of a two-dimensional m×m pattern P in a two-dimensional n×n text T over an alphabet
of size c. The algorithms are based on placing in the text a static grid of test points, determined only
by n, m, and c (not dynamically by earlier test results). Using test strings read from the test points
the algorithms eliminate as many potential occurrences of P as possible. The remaining potential
occurrences are separately checked for actual occurrences. A suitable choice of the test point set leads
to algorithms with expected running time O(n2 logcm

2/m2) using the uniform Bernoulli model of
randomness. This is shown to be optimal by a generalization of a one-dimensional lower bound result
by Yao. Experimental results show that the algorithms are efficient in practice, too. The method is
also generalized for the k mismatches problem. The resulting algorithm has expected running time
O(kn2 logcm

2/m2), provided that k ≤ (mbm/dlogcm
2ec − 1)/2. All algorithms need preprocessing

of P which takes time and space O(m2). The text processing can be done on-line, using a rather
small window. The algorithms easily generalize to d-dimensional matching for any d.

Key words. multidimensional matching, average case analysis, approximate matching
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1. Introduction. The classical pattern matching problem for strings is to find
all (exact or approximate) occurrences of a pattern P in a text T . In a one-dimensional
case, P and T are strings over some alphabet Σ of size c. In a d-dimensional case, P
and T are d-dimensional arrays over Σ. The applications are numerous.

The exact one-dimensional pattern matching is well understood. For two- and
higher-dimensional versions, several algorithms have been proposed, too, mainly aim-
ing at a good worst-case running time; see, e.g., [7, 6, 16, 26, 11, 2, 13, 22]. Recently,
the two-dimensional problem has been solved in linear worst-case time with algorithms
that are alphabet-independent and work in small additional space [10].

In the applications of one-dimensional matching, the Boyer–Moore algorithm [8],
whose expected running time is “sublinear,” is clearly the most successful; see, e.g.,
[15]. Also in higher dimensions, one should look at algorithms with good expected
running time, not only the worst case. The first significant step in this direction was
the algorithm of Baeza–Yates and Régnier [5] that finds the occurrences of an m×m
pattern in an n× n text in expected time O(n2/m).

Results. In this paper, we give better algorithms that find exact occurrences
of an m ×m pattern in an n × n text in expected time O(n2 logcm

2/m2) under the
uniform Bernoulli model of random strings over Σ. Algorithms with the same expected
performance have independently appeared in [17, 12, 23].

Our algorithms are not dimensionality specific. For a d-dimensional pattern of
size md and text of size nd, they run in expected time O(nd logcm

d/md).
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In [25], A. Yao confirmed a conjecture of Knuth [18] by proving a lower bound
of O(n logcm/m) for the expected time complexity of one-dimensional exact pattern
matching. Yao’s argument generalizes for d-dimensional matching and gives a lower
bound O(nd logcm

d/md). Hence, our algorithms are the first algorithms for multidi-
mensional matching with optimal expected running time. Experiments show that the
algorithms are also fast in practice.

We also generalize our algorithm for approximate pattern matching. We con-
sider the two-dimensional k mismatches problem (find all occurrences of P in T
with ≤ k mismatching symbols) and give an algorithm with expected running time
O(kn2 logcm

2/m2). The algorithm requires that k ≤ (mbm/dlogcm
2ec−1)/2. Under

this condition the expected running time is at most linear in |T |; previously Chang
and Lawler [9] (see also [24]) have given an algorithm with similar properties for the k
differences problem of one-dimensional approximate matching. The two-dimensional
k mismatches problem has also been studied in [21, 19, 4, 3].

Overview. We next informally describe the very simple elimination idea behind
our algorithms. Note first that the naive algorithm for pattern matching and its im-
provements such as the Knuth–Morris–Pratt algorithm [18] are based on a view of
the problem that could be called positive: the algorithm tries to prove at each text
location that there is an occurrence of P at that location.

In applications, T often contains relatively few occurrences of P . Hence the nega-
tive view can fit the situation better than the positive one. A negative view algorithm
tries to prove for each text location that there can not be an occurrence of P at that
location. This forms the elimination phase of the algorithm. Whenever the elimination
proof fails, the algorithm has found a potential occurrence of P that needs further
consideration. A separate checking phase then examines whether or not a potential
occurrence really matches P . This leads to fast algorithms because the elimination
phase needs, on average, to examine only a small fraction of T .

The well-known Boyer–Moore algorithm [8] has this flavor. In this paper, we
develop algorithms based on the negative view for two- and higher-dimensional pattern
matching.

We explain the idea of our algorithms using two-dimensional P and T . Let

P : b b a
b b b
b a b

T : a a a a b b a b b
b b b b b b b b b
a b c c b a b a c
b a b a b a b a b
a a c b b b a a a
b c b b b c b b c
a c c b c c a c c
c c c b b b a a a
c c c c a c b b c .

We have to find all (I, J) such that T [I + k− 1, J + h− 1] = P [k, h] for 1 ≤ k, h ≤ 3.
If we are lucky, we can eliminate all possible occurrences of P in T by examining only
the entries T [i, j] where i = 3, 6, 9; j = 3, 6, 9, because any possible occurrence of P in
T must overlap at least one of these entries of T . The test entries in T are as follows:
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I

c II a c

b c c

c c c .

As the first entry T [3, 3] equals c, and c does not occur in P at all, no occurrence of P
in T can overlap T [3, 3]. This proves that there can not be an occurrence of P inside
subarray T [1 : 5, 1 : 5]. Test entry T [3, 6] = a eliminates all other occurrences of P
that overlap T [3, 6] except those that have the overlapping symbol a. The upper left-
hand corners of these potential occurrences of P are T [1, 5] (marked I in the figure)
and T [3, 4] (marked II), because P [1, 3] = P [3, 2] = a. The checking phase then finds
that there is an occurrence of P at T [1, 5] but not at T [3, 4].

The fourth test entry T [6, 3] = b is least useful for elimination because b occurs 7
times in P . Hence, we are left with 7 potential occurrences of P that overlap T [6, 3].
However, there is no reason to use only one entry of T in each elimination step. Taking
T [6, 2] = c as an additional test entry would eliminate all possible occurrences of P
that overlap T [6, 2] and T [6, 3] because substring cb does not occur in P .

Increasing the number of test entries used in each elimination step obviously leads
to more extensive elimination but possibly takes more time. Therefore, we determine
q such that, when each elimination step is based on q entries of T , the expected total
running time of elimination and (naive) checking is minimized. It turns out that the
minimum is given by q ≈ log|Σ| |P |; this simply has the effect of using a superalphabet
of size Θ(|P |).

The test entries will be distributed over T such that every potential occurrence
of P in T covers at least q entries. We use a static distribution of test entries; this
is a major difference to virtually all other pattern matching algorithms proposed in
the literature. The grid of test entries is determined using only the size (and shape)
of P , T and the underlying alphabet. The elimination phase becomes oblivious: the
results of earlier elimination tests do not cause dynamic changes on later tests. This
property helps in writing fast code for the algorithms, for both sequential and parallel
environments.

The idea of using superalphabet of size Θ(|P |) in two-dimensional matching ap-
pears independently in [12, 17, 23]. All achieve the same asymptotic running time as
our algorithms. Crochemore and Rytter [12, Sect. 12.7] sketch an algorithm which
comes close to one of our algorithms, while the algorithms in [17, 23] differ in that
they determine the test entries dynamically.

The above idea is formulated in section 2 as a generic pattern matching algorithm.
The elimination of potential occurrences of P is based on reading test strings of
length q from T . The strings are picked up according to a fixed sampling scheme.
In section 3, we give an example scheme such that each test entry belongs to only
one test string. To get the minimum total number of test entries, we use test strings
whose shape has the smallest possible diameter. In section 4, we give a bit more
efficient scheme in which each test entry belongs to several test strings. Section 5
reformulates the lower bound of Yao [25] for d-dimensional pattern matching. Section 6
describes the results of experiments comparing the running times of the algorithms of
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sections 3 and 4, the trivial algorithm, and an algorithm by Tarhio [23]. In section 7,
we generalize the algorithm for the k mismatches problem. The elimination is based
on k + p nonoverlapping test strings; here p is a parameter used for optimizing the
performance of the method.

2. General algorithm. To keep the technical exposition simple we restrict our-
selves to the two-dimensional case with square patterns and texts. The generalization
of all our results to the d-dimensional pattern matching with rectangular patterns and
texts is straightforward.

Let a two-dimensional m ×m array P = (pij), 1 ≤ i, j ≤ m, be the pattern and
a two-dimensional n× n array T = (tij), 1 ≤ i, j ≤ n, be the text over some alphabet
Σ. Let c denote the size of the alphabet Σ.

We let integer q denote the sample size. Selecting a suitable q will minimize the
expected running time of our algorithms. A sequence Q = ((0, 0), (i1, j1), (i2, j2), . . . ,
(iq−1, jq−1)) of q disjoint pairs of indexes is called a (two-dimensional) template of
size q. The sequence always begins with the pair (0, 0) which is called the origin of
the template. A template Q and a pair of indexes (i, j) define a sample Q(i, j) =
((i, j), (i + i1, j + j1), . . . , (i + iq−1, j + jq−1)). Here Q gives the shape of the sample
and (i, j) the location of the sample.

Pattern P is said to contain sample Q(i, j) if all the pairs listed in Q(i, j) refer
to entries of P . Such sample Q(i, j) determines a test string s(P,Q(i, j)) in P as
s(P,Q(i, j)) = pi,jpi+i1,j+j1 . . . pi+iq−1,j+jq−1

.
A sampling scheme Q for a template Q, a pattern P , and a text T is a pair

(QP ,QT ) where pattern sampling scheme QP and text sampling scheme QT are sub-
sets of all possible Q-shaped samples of P and T , respectively, i.e.,

QP ⊆ {Q(i, j) | P contains Q(i, j)} and

QT ⊆ {Q(i, j) | T contains Q(i, j)}.
Let R be a potential occurrence of P in T (i.e., an m ×m subarray of T ) with

upper left-hand corner at (i, j). A witness of R is a pair (Q(iP , jP ), Q(iT , jT )) ∈
QP × QT such that Q(iT , jT ) is in R in the same position as Q(iP , jP ) is in P ,
i.e., iT − i + 1 = iP and jT − j + 1 = jP . Witness (Q(iP , jP ), Q(iT , jT )) is positive
if s(P,Q(iP , jP )) = s(T,Q(iT , jT )); otherwise the witness is negative. A potential
occurrence with a negative witness can not be a real occurrence of P in T .

Example 1. Let

Q: 0 2
1

P : b b c
b c a
a a a

T : c b a a b
b b c b c
b c a c a
a a b b a
c a b b b .

The numbers in the template Q = ((0, 0), (1, 1), (0, 1)) show the order of the entries.
Let R be a potential occurrence of P in T with the upper left-hand corner at (2, 1)
(marked with dashed boundaries above). If Q(2, 2) ∈ QP and Q(3, 2) ∈ QT , then
(Q(2,2),Q(3,2)) is a negative witness of R as s(P,Q(2, 2)) = caa 6= cba = s(T,Q(3, 2)).
This proves that R is not an occurrence of P . All other possible witnesses of R would
be positive.

We are now ready to give a general description of our algorithms. The idea is
to eliminate potential occurrences with negative witnesses and check the remaining
potential occurrences using, e.g., naive checking. We select a sampling scheme Q such
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that every potential occurrence has exactly one witness in Q. If that one witness is
positive, then the potential occurrence has no negative witnesses and must be checked.
In other words, the potential occurrences worth checking are determined by finding
all positive witnesses. Uninteresting potential occurrences are implicitly eliminated by
ignoring negative witnesses.

Algorithm [Generic].

1. [Selection of q, Q and Q]. Select suitable sample size q, template Q and sam-
pling scheme Q = (QP ,QT ) for a given pattern P and text T over alphabet
Σ of size c. Scheme Q must provide exactly one witness for each potential
occurrence of P in T .

2. [Preprocessing of P ]. For each pattern sample Q(i, j) ∈ QP , evaluate the
test string s(P,Q(i, j)). Construct a suitable data structure to quickly find
all pattern samples with a given test string.

3. [Elimination]. For each text sample Q(iT , jT ) ∈ QT , scan T to obtain the
string s(T,Q(iT , jT )) and find, using the data structure constructed in the
preprocessing step, all pattern samples Q(iP , jP ) such that s(P,Q(iP , jP )) =
s(T,Q(iT , jT )). For each matching pair (Q(iP , jP ), Q(iT , jT )), execute the
checking phase for the potential occurrence R with the upper left-hand corner
at (iR, jR) = (iT − iP + 1, jT − jP + 1).

4. [Checking]. Given a potential occurrence R with the upper left-hand corner
at (iR, jR), check whether or not there really is an occurrence, that is, test
whether or not tiR+I−1,jR+J−1 = pI,J for 1 ≤ I, J ≤ m.

Selecting different sampling schemes in the generic algorithm gives different con-
crete algorithms. The simplest alternative is developed in section 3 where we use
templates with small diameter to maximize the number of potential occurrences each
text sample is contained in. Utilizing overlaps of text samples leads to an algorithm
with faster pattern preprocessing and a more sophisticated (not necessarily slower)
elimination phase. Such methods are described and analyzed in section 4.

The sampling schemes of both of these algorithms are designed to minimize the
number of text positions inspected during elimination as the text is typically much
larger than the pattern. For the same reason, our algorithms preprocess the pattern
samples. In an application, where multiple patterns are to be searched in the same
static text, it might be useful to reverse the handling of text and patterns. However,
we will not follow this direction further in this paper.

3. Square templates. The requirement of one witness per potential occurrence
means that the number of different witnesses in Q, |QP ||QT |, approximately equals
the number of potential occurrences of P in T .1 This implies that one can minimize
the number of text samples by maximizing the number of pattern samples. This is
the main idea of the algorithm presented in this section. The idea is realized by using
what we call square templates.

Definition 3.1. Template Q = ((0, 0), (i1, j1), . . . , (iq−1, jq−1)) of size q is a
square template iff 0 ≤ ik, jk ≤ d√qe − 1 for 1 ≤ k ≤ q − 1.

A square sample (sample whose shape is defined by a square template) of size q
is contained in a d√qe × d√qe subarray whose upper left-hand corner is the origin of
the sample. It is easy to see that the square shape maximizes the number of possible
pattern samples.2 Optimal sample size q will be determined in the analysis of the

1The nonexactness is caused by witnesses near the text boundaries.
2Actually, for some q, we could fit the template in a d√qe × b√qc subarray.
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algorithm.
Given a square template Q, the pattern sampling scheme QP now contains all

possible Q-shaped pattern samples, that is,

QP = {Q(i, j) | 1 ≤ i, j ≤ m− d√qe+ 1}.

To get one witness per potential occurrence the text samples must be placed at the
intersections of every (m− d√qe+ 1)th row and column. This gives

QT =

{
Q (i(m− d√qe+ 1), j(m− d√qe+ 1))

∣∣∣∣∣ 1 ≤ i, j ≤
⌊
n− d√qe+ 1

m− d√qe+ 1

⌋}
.

Now each text sample is a component of the witness of |QP | = (m− d√qe+ 1)2

different potential occurrences. For each text sample, we need to find all matching
pattern samples. To do this as quickly as possible, we preprocess the pattern to get a
data structure which we call test dictionary.

Let w be a string of length q over alphabet Σ. Let A(w) be the set of origins of
pattern samples whose test string is w. That is,

A(w) = {(i, j) | w = s(P,Q(i, j)), Q(i, j) ∈ QP }.

A(w) is called the set of addresses of w. The test dictionary D(P,QP ) for pattern P
and sampling scheme QP of P is a data structure supporting queries that for a given
string w ∈ Σq yield the set of addresses of w.

There are two obvious implementations of test dictionary D(P,QP ). First, one
can use a trie representing the test strings, with the addresses A(w) associated with
the leaf that corresponds to string w. The test strings and their addresses can be
constructed by scanning P for each pattern sample. There are ≤ m2 samples, hence
the total length of the test strings is ≤ m2q, and the trie representing them can
be built in time O(m2qc) or O(m2q log c), depending on whether direct indexing or
balanced search trees are used for implementing the branches of the trie. The queries
for A(w) can be answered in time O(q) or O(q log c), respectively (plus the size of
A(w)).

The second possibility to implement D(P,QP ) is to convert the test strings into
(c-ary) integers, and use these integers as indices to an array of size cq representing
the addresses A(w) for each w. The optimal value of q turns out to be small enough to
keep cq acceptable. The array initialization takes O(cq) time and the trivial method
of pattern processing requires O(m2q). The queries can be answered in time O(q).

With a suitable ordering of the template entries and a little bookkeeping the
pattern processing time can be reduced to O(m2). The template is ordered like text:
row by row from top to bottom with each row ordered left to right. Individual rows
of the samples can then be thought of as c-ary integers of d√qe digits and the whole

sample as a cd
√
qe-ary integer of d√qe digits (rows). Each sample row is a substring of

a pattern row. The sample row values coming from a pattern row can be calculated
with a single scan of the row in time O(m) in the obvious way. Similarly, given all
the sample row values the sample values can then be calculated by scanning the row
values column by column. The operation is further complicated by the fact that, to
have the sample size be exactly q, one of the sample rows may have to be shorter than
d√qe. Despite the complexity of this method, it turned out to be faster, in practice,
than the simpler O(m2q) method.
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Example 2. Let Q, P , T and R be as in Example 1. Then Q is a square template
and, using the sampling scheme of this section, we have

QP = {Q(1, 1), Q(1, 2), Q(2, 1), Q(2, 2)},
QT = {Q(2, 2), Q(2, 4), Q(4, 2), Q(4, 4)}.

The witness of R in Q = (QP ,QT ) is (Q(1, 2), Q(2, 2)). The addresses of strings
w ∈ Σ3 are now A(bac) = {(1, 2), (2, 1)}, A(bcb) = {(1, 1)}, A(caa) = {(2, 2)}, and
A(w) = ∅ for all other w. The trie implementation of D(P,QP ) would be as follows.

D(P,QP ): cc¡¡bc¡¡ac¡¡c
c@@c c@@a c@@ac

@@
c

c@@b
{(1,2),(2,1)} {(1,1)} {(2,2)}

Analysis. We determine q such that the expected processing time of T (i.e.,
elimination + checking) is minimized under the assumption that T is a random text
in the uniform Bernoulli model (each symbol of Σ can occur in a given position
of T with probability 1/c independently of the content of other positions). We will
next analyze the expected time for the elimination and checking of a fixed potential
occurrence R of P in T .

Let Q(iT , jT ) ∈ QT be the text sample contained in R. The elimination phase for
R consists of evaluating string w = s(T,Q(iT , jT )) and finding A(w) from D(P,QP ).
This takes time O(q), i.e., is proportional to the number q of entries of T that have
to be examined to get w. As Q(iT , jT ) is contained in (m − d√qe + 1)2 potential
occurrences of P , the elimination time amortized for R is proportional to q/(m −
d√qe+ 1)2.

The analysis of the checking phase is based on the naive checking that compares
the corresponding entries of P and R until the first mismatch or an entire occurrence
of P is found. The expected number of comparisons is less than α = c/(c − 1).
However, the checking is activated only if the witness of R is positive. The probability
of this event is 1/cq, and the expected number of comparisons in the checking phase
is therefore less than α/cq.

Now we choose q to minimize the total expected number of comparisons allocated
for R,

q

(m− d√qe+ 1)2
+
α

cq
.(3.1)

Application of elementary calculus on (3.1) without the ceiling function gives the
equation

q = logcm
2 − logc

m2(m+ 1)

(m−√q + 1)3
+ logc

c ln c

c− 1

for the optimal (real) value of q. This further implies that

logcm
2 − 1 < q < logcm

2 +
1

2
,
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when m ≥ 2 and c ≥ 2. Based on this we choose q = dlogcm
2e (when m = 1, define

q = 1).
Substituting this into (3.1) and noting that there are ≤ n2 potential occurrences

gives the following bound for the expected number of symbols examined during the
elimination and checking:

n2

 dlogcm
2e(

m−
⌈√dlogcm

2e
⌉

+ 1
)2 +

α

m2

 ≤ n2 4dlogcm
2e+ α

m2

= O

(
n2 logcm

2

m2

)
= O

( |T | logc |P |
|P |

)
,

where we have used the fact that m− d√dlogcm
2ee+ 1 ≥ m/2 if c ≥ 2 and m ≥ 2.

We have shown the following result.
Theorem 3.2. The occurrences of an m×m pattern P in an n× n text T can

be found using square templates of size dlogcm
2e in expected time O(n2 logcm

2/m2).
The preprocessing of P takes time and space O(m2).

When the pattern is large (|P | = ω(n
√

logc n)), the pattern preprocessing domi-
nates the matching time. If desirable, the preprocessing time can be reduced by using
only a part of the pattern in the preprocessing and elimination phases. The full pat-
tern is used only in the checking phase. When the area of the pattern used in the
preprocessing is Θ(n

√
logc n), the expected total time becomes O(n

√
logc n).

It should be clear that the algorithm of this section generalizes to d-dimensional
pattern matching for rectangular patterns P and texts T such that the expected
running time is O (|T | logc |P |/|P |) for processing T . Preprocessing P needs time
O(|P |).

4. Linear templates. In this section, we relax the requirement of a minimum
number of text samples. Instead, we minimize the number of text entries belonging to
samples by letting the samples share entries. This, together with an efficient method
for reading the text samples and comparing them to pattern samples, leads to an
algorithm with performance similar to the algorithm of previous section.

To make the reading of the text samples simple in the case of overlapping tem-
plates, we use linear templates. A linear template Q of size q defines the shape of sam-
ples to be an evenly spaced subsequence of q entries on a row of a two-dimensional
array. Hence Q is of the form Q = ((0, 0), (0, h), (0, 2h), . . . , (0, (q − 1)h)) for some
h ≥ 1. Note that samples Q(i, j) and Q(i, j + h) share q − 1 entries.

Text sampling scheme QT will consist of linear samples placed on every mth row,
called a test row, such that they start from every hth entry. Hence the samples overlap
each other as Q(i, j) and Q(i, j + h) above. This gives

QT =

{
Q(im, jh)

∣∣∣∣ 1 ≤ i ≤
⌊ n
m

⌋
, 1 ≤ j ≤

⌊
n−m
h

⌋
+ 1

}
.

The number of text entries belonging to samples in QT is now bn/mc(b(n−m)/hc+q).
To minimize this, we should maximize h. The upper bound for h is given by the fact
that every potential occurrence must contain at least one text sample. This gives
h = bm/qc. The pattern sampling scheme is

QP = {Q(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ h} .
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Note that there are no overlaps between pattern samples.
Example 3. Let P be a 5× 5 pattern, T a 12× 12 text and Q = ((0, 0), (0, 2)) a

linear template of size 2. Using the above method, we get

QP ={Q(1,1), Q(1, 2), Q(2, 1), Q(2, 2), Q(3, 1), Q(3, 2), Q(4, 1), Q(4, 2), Q(5,1), Q(5, 2)},
QT ={Q(5, 2), Q(5, 4), Q(5, 6), Q(5, 8), Q(10, 2), Q(10, 4), Q(10, 6), Q(10, 8)}.

This is illustrated below:

Q: 0 1 P : 1 2 × ×
3 4 × ×
5 6 × ×
7 8 × ×
9 10× ×

T :

1 2 3 4 ×

5 6 7 8 ×

.

The numbered entries in the pattern and the text are the origins of the samples. The
entries marked with “×” are the other sample entries.

Utilizing the overlaps of text samples makes it possible to read each test string
s(T,Q(i, j)), Q(i, j) ∈ QT , in constant amortized time. For each test row, we read the
sample entries from left to right and maintain a window of size q to hold the current
string.

We also need to find the matching pattern samples in constant time. To achieve
this we replace the trie of section 3 with an Aho–Corasick multipattern matching
automaton AC(P,QP ) (see [1]). The automaton can be built in the same asymptotic
time as the trie; in fact AC(P,QP ) is simply the trie augmented with the failure-
transitions. The addresses of the test strings are attached to the states of AC(P,QP )
that correspond to the test strings. As there are mbm/qc samples of size q in QP ,
the preprocessing time becomes O(m2); with c shown explicitly the bound becomes
O(m2c) or O(m2 log c). This is smaller, by a factor of q, than the preprocessing time
of the previous section, as there are now fewer pattern samples.

The method of treating strings as integers can be modified to work with the
linear templates, too. During the scanning of T , we treat the characters as digits and
maintain a window of q digits. The pattern samples can be read one at a time in
O(m2) time. Otherwise, the method works as with square templates.

Analysis. As already mentioned, the number of text entries read during elimi-
nation is⌊ n

m

⌋(⌊n−m
h

⌋
+ q

)
=
⌊ n
m

⌋⌊n−m+ qh

h

⌋
≤
⌊ n
m

⌋ ⌊n
h

⌋
≤ n2

mh
=

n2

mbm/qc ,

which is also the running time of the elimination phase, as each entry can be processed
in constant time. The expected running time of the checking phase is, as before, at
most n2α/cq. Thus, the total expected text processing time is now bounded by

n2

 1

m
⌊
m
q

⌋ +
α

cq

 .
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Omitting the floor function, we can again apply calculus to find that the optimal
(real) value of q is

q = logcm
2 + logc

c ln c

c− 1
,

where 0 < logc
c ln c
c−1 < 1

2 for c ≥ 2. Thus we again choose q = dlogcm
2e which leads

to the bound3

n2

(
2 logcm

2 + α

m2

)
= O

(
n2 logcm

2

m2

)
= O

( |T | logc |P |
|P |

)
for the total expected number of examined symbols during elimination and checking.

Theorem 4.1. The occurrences of an m × m pattern P in an n × n text T
can be found using overlapping linear templates of size dlogcm

2e in expected time
O(n2 logcm

2/m2). The preprocessing of P takes time and space O(m2).
Again, the pattern preprocessing time dominates when |P | = ω(n

√
logc n). As

with the square template algorithm, the total expected time in such a case can be
limited to O(n

√
logc n) by using only an area of size Θ(n

√
logc n) of the pattern in

the preprocessing.
The algorithm again easily generalizes to d-dimensional P and T . Note that, for

any d, the generalized algorithm uses linear (one-dimensional) samples scanned with
the Aho–Corasick automaton. In this way, the elimination phase of d-dimensional
matching reduces directly to one-dimensional techniques.

For larger d, it may happen that q = dlogcm
de > m in which case the straightfor-

ward generalization does not work any more.4 An easy correction is to use superrows,
consisting of two or more adjacent one-dimensional rows. As 2d−1m ≥ logcm

d for
d ≥ 1, c ≥ 2, m ≥ 2, a superrow with diameter 2 is always sufficient. Therefore this
does not change the asymptotic behavior of the algorithm.

The algorithm of this section is quite similar to the (suboptimal) algorithm by
Baeza–Yates and Régnier [5], the main difference being that we use test samples with
fixed size and location.

5. Lower bound. In [25], Yao proved a lower bound of Ω(n logcm/m) for the
expected running time of one-dimensional pattern matching. In this section, we gen-
eralize Yao’s result for d-dimensional hypercubic strings.

Let P be a pattern of size md and T a text of size nd over alphabet Σ of size
c. There exists some minimum number of entries of T that must be examined before
any algorithm can be sure that all occurrences of P in T have been found. We define
g(P, n) to be the minimum of such numbers for pattern P over all texts of size nd.
Thus, g(P, n) gives the best case lower bound of pattern matching for pattern P .

There exists patterns that are easy to match in the best case (e.g., patterns that
do not contain all characters of the alphabet). However, the following theorem shows
that such patterns are rare.

Definition 5.1. For n ≥ m > 0, let

f1(m,n) =

⌈
1

d
logc

(
(n−m)d

ln(md + 1)
+ 2

)⌉
and

3Taking the floor function into account, q′ = bm/bm/qcc is always at least as good a choice as
q, because q′ ≥ q and bm/q′c = bm/qc.

4For d = 2 there is one such case, namely m = 3, c = 2 with log2 32 ≈ 3.17. In this special case,
we can simply set q = 3.
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f2(m,n) =
⌊ n

2m

⌋d ⌈1

d
logc(m

d + 1)

⌉
.

Define

f(m,n) =

{
f1(m,n) if m ≤ n ≤ 2m,
f2(m,n) if n > 2m.

Theorem 5.2. There exists a positive number b such that, for any |Σ| = c ≥ 2

and m > 0, there exists a set of patterns L ⊆ Σm
d

satisfying

|L| ≥
(

1− 1

m9d

)
cm

d

,

and

for each P ∈ L, g(P, n) ≥ bf(m,n) for all n ≥ m.
Proof. The proof is a simple modification of Yao’s proof in [25]. As the proof is

quite long we will give here only a brief guide for the modification. Almost all that
is required is to remember that we are now dealing with d-dimensional strings. For
example, in Yao’s Lemma 5.2 the text has to be divided into hypercubes of size (2m)d

instead of strings of length 2m. Similarly, we need to replace the occurrences of m, n,
n −m (denoted by d in Yao’s paper), 2m and bn/(2m)c throughout the proof with
md, nd, (n−m)d, (2m)d and bn/(2m)cd, respectively. Additionally, the terms of the
form xq4 . . . and xq20 . . . must have an extra factor of 2d. This is balanced by the
factor 1/d in the definitions of f1 and f2.

The above theorem shows that for the majority of patterns (i.e., for the patterns
in L) even the best case complexity of pattern matching is

Ω

(
nd logcm

d

md

)
,

for a fixed d. This implies that for a fixed d and T and random P , the expected
running time of pattern matching is Ω

(
nd logcm

d/md
)
. Thus our algorithms for fixed-

dimensional strings are optimal.
It is possible to have a single version of our algorithms work for all dimensions d.

In such a case, the lower bound given by Theorem 5.2, with dependency on d shown
explicitly, is

Ω

(
1

d2d
nd logcm

d

md

)
,

leaving the upper and lower bounds separated by factor d2d. Our conjecture is that
the lower bound can be improved to Ω

(
nd logcm

d/md
)

in this case, too, but that
remains an open question.

6. Experimental results. We have conducted some experiments to find out
how these algorithms work in practice and how they compare to each other and some
other algorithms. The other algorithms in the experiments are the trivial algorithm
(check naively each potential occurrence of P in T ) and an asymptotically optimal al-
gorithm by Tarhio [23]. Tarhio’s algorithm represents the dynamic sampling approach
as opposed to the static sampling schemes of our algorithms.
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Table 6.1
Running times of the algorithms in milliseconds for n = 1000.

Preprocessing Text scanning Total
c m st lt tdbm st lt tdbm st lt tdbm triv
2 2 0.16 0.10 0.13 1593 1254 1539 1593 1254 1539 1156
2 4 0.27 0.14 0.15 531 446 565 531 446 565 1101
2 8 0.64 0.42 0.24 147 140 188 148 140 189 1064
2 16 2.30 0.58 0.67 46.1 41.7 49.6 48.4 42.3 50.3 1044
2 32 10.1 1.64 2.24 12.0 13.0 11.8 22.1 14.6 14.1 1014
2 64 44.9 6.34 8.69 3.01 4.59 2.90 47.9 10.9 11.6 945
2 128 202 26.7 42.0 0.77 1.19 0.74 203 27.9 42.7 820
2 256 1081 107 180 0.22 0.27 0.20 1082 107 180 594

256 2 0.61 0.38 0.50 300 270 374 300 270 374 524
256 4 0.78 0.46 0.53 84.6 77.7 110 85.4 78.1 111 522
256 8 1.23 0.57 0.56 28.9 27.0 32.8 30.1 27.6 33.4 519
256 16 3.19 0.94 0.80 13.1 12.6 11.2 16.3 13.6 12.0 511
256 32 96.9 54.0 83.3 2.21 4.34 2.35 99.1 58.3 85.7 496
256 64 144 59.4 88.5 0.53 0.72 0.50 144 60.1 89.0 462
256 128 331 80.9 107 0.17 0.17 0.12 331 81.1 107 402
256 256 1367 166 182 0.10 0.06 0.04 1367 166 182 293

Both the square template algorithm (ST) and the linear template algorithm (LT)
use the method of converting strings to integers. Also Tarhio’s algorithm (TDBM =
two-dimensional Boyer–Moore) uses a similar method; in this sense, these algorithms
are very comparable. The pattern preprocessing of ST is done using the more compli-
cated (but faster) O(m2) method. All of these algorithms try to choose the parameters
in the pattern preprocessing phase so that the running time of the text scanning phase
is minimized. The algorithms were written and carefully optimized using C and were
run on a Sun 4 workstation.

Table 6.1 shows the results of experiments using independently generated random
texts and patterns. Text size is 1000×1000 in all of the tests, and pattern and alphabet
sizes vary. The times (given in milliseconds) are averages of seven tests with different
patterns.

The table gives the pattern preprocessing and text scanning times separately; the
total time is the sum of these. The total time for the trivial algorithm (TRIV) is
also its scanning time, as it doesn’t have preprocessing. The times do not include the
reading of the text and the pattern from disk.

The trivial algorithm is clearly inferior to other algorithms for all except the small-
est patterns. The ST algorithm has poor preprocessing times due to the complicated
preprocessing method. Otherwise the algorithms perform similarly.

The scanning times are the most interesting here as that is what the algorithms
try to minimize. Figure 6.1 compares the scanning times of the algorithms. The times
are shown relative to logcm

2/m2 to bring the times with different pattern sizes to the
same scale.

As the pattern size increases, the total time decreases at first but starts to increase
when the pattern preprocessing starts to dominate. Both in theory and in practice, the
minimum is at m2 ≈ n√logc n. As suggested earlier, for large patterns the total time
can be reduced by using only a part of the pattern in the preprocessing phase. The
algorithms LT, ST, and TDBM can all be modified in this way. Table 6.2 shows the
running times for the modified LT algorithm for alphabet size 2. Figure 6.2 compares
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Fig. 6.1. Scanning times relative to logcm
2/m2 scaled so that the scanning time of LT is 1

when m = 2. The alphabet size c is 2.

Table 6.2
Running times of LT with total time minimization in milliseconds for n = 1000 and c = 2.

m Prepr Scan Total
2 0.10 1253 1253
4 0.14 446 447
8 0.42 139 140

16 0.58 41.8 42.4
32 1.63 13.0 14.6
64 2.83 5.95 8.78

128 2.95 5.31 8.25
256 3.00 3.49 6.49
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Fig. 6.2. The minimized total running time of LT compared to the preprocessing and scanning
times of basic LT.
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the minimized total running time to the preprocessing and scanning times of the basic
algorithm that tries to minimize scanning time.

7. The k mismatches case. The k mismatches problem asks for finding ap-
proximate occurrences of P with at most k mismatches, that is, occurrences that
match with P except possibly for ≤ k symbols. In this section, we generalize the
algorithms of sections 3 and 4 to the k mismatches problem. After the publication of
an earlier version of this paper, Park [20] presented some improvements to the ap-
proximate matching algorithms and their analysis. This section includes some small
changes to the earlier version inspired by Park’s improvements.

One of the requirements of the algorithms in the previous sections was that every
potential occurrence have exactly one witness. The k mismatches case, k ≥ 1, can be
handled by increasing the number of witnesses per potential occurrence as shown by
the following lemma.

Lemma 7.1. Let potential occurrence R have k + p disjoint witnesses. If < p of
them are positive, then R can not be an occurrence of P with ≤ k mismatches.

Suggested by the lemma, the sampling scheme Q has to be such that every po-
tential occurrence has k + p nonoverlapping witnesses of size q. Parameters q and p
will be determined in the analysis; note that to get optimal performance, we cannot
simply choose p = 1.

The elimination phase now maintains a counter, initially equal to 0, for every
potential occurrence R. When a positive witness of R is found, the counter of R is
increased by one. When the counter achieves value p, R is transmitted to the checking
phase. The checking phase naively compares R and P until k+1 mismatches are found
or the whole pattern has been compared.

To avoid initializing all the Θ(n2) counters, we do not create a counter until its
first incrementation. The counters can be accessed in constant expected time using,
e.g., hashing.

We will now show how to modify the sampling schemes of sections 3 and 4 to
have k + p witnesses for each potential occurrence.

Square templates. The text sampling scheme described in section 3 consists
of square samples placed in the form of a regular grid such that every potential
occurrence contains exactly one whole sample. If we take k+p copies of such a sample
grid, each translated such that there are no overlaps, we have a text sampling scheme
QT where each potential occurrence contains exactly k+p disjoint text samples. When
we define the pattern sampling scheme QP to be the same as in section 3, we have the
desired sampling scheme Q = (QP , QT ) with k+p witnesses per potential occurrence.

The method works as long as we can keep the text samples disjoint. This means
that we must have

k + p ≤
⌊
m− d√qe+ 1

d√qe
⌋2

.(7.1)

Linear templates. Using the linear templates of section 4, there are two ways
to increase the number of witnesses. First, we can increase the number of test rows
in QT so that every potential occurrence contains u test rows. If k + p ≤ m, we can
select u = k + p and we are done. In the case k + p > m, every segment of length m
of every test row in QT will contain more than one, say v, disjoint samples. This is
achieved by selecting a step size h = bm/vqc. The text sampling scheme can now be
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defined as

QT =
{
Q(im− u+ r, jh)

∣∣∣ 1 ≤ i ≤
⌊
n− u+ 1

m

⌋
,

1 ≤ j ≤
⌊
n−m
h

⌋
+ 1 + (v − 1)q, 1 ≤ r ≤ min{u, n− im+ u}

}
.

The corresponding pattern sampling scheme is

QP = {Q(i, j + rqh) | 0 ≤ r ≤ v − 1, 1 ≤ i ≤ m, 1 ≤ j ≤ h}.
This sampling scheme Q = (QP ,QT ) gives uv disjoint witnesses per potential occur-
rence.

For some (large) values of q and k + p it may not be possible to select u and v
such that the optimum value k + p of uv is achieved. However, by selecting

v =

⌈
k + p

m

⌉
and u =

⌈
k + p

v

⌉
,

we can get close, as then

k+ p ≤ uv =

⌈
k + p

v

⌉
v ≤ k+ p+ v− 1 = k+ p+

⌈
k + p

m

⌉
− 1 < (k+ p)

(
1 +

1

m

)
.

The upper bounds for u and v are given by u ≤ m and vq ≤ m. Thus, the above
selections can be done as long as

k + p ≤ m
⌊
m

q

⌋
.(7.2)

Analysis. The running time (without pattern preprocessing) is the sum of three
components:
A = the number of entries of T examined during the elimination,
B = the number of updates of the counters for potential occurrences, and
C = the number of symbols compared during the checking.

For both of the above sampling schemes we have

A ≈ n2(k + p)q

m2
.(7.3)

The expected value B̄ of B is

B̄ ≤ n2(k + p)

cq
(7.4)

because there are at most n2 potential occurrences with k + p witnesses each, and a
witness is positive with probability 1/cq.

The third component C needs a more careful analysis. First, we denote by C ′ the
number of character comparisons during naive checking of a randomly chosen potential
occurrence R. As C ′ is a Pascal distributed random variable with parameters k + 1
and c−1

c , we get

C̄ ′ = (k + 1)
c

c− 1
≤ 2(k + 1).



586 JUHA KÄRKKÄINEN AND ESKO UKKONEN

However, a candidate reaching the checking phase is not random: it is known to
contain p positive witnesses. This increases the number of comparisons by at most pq.

Next we analyze the probability, denoted by H, that the checking is started for
a fixed R. As H is the probability that at most k of the k + p witnesses of R are
negative, we have

H =
k∑
i=0

(
k + p

i

)(
1

cq

)k+p−i(
1− 1

cq

)i
.

Noting that (
k + p

i

)
=

(
k+p
k

)(
k
i

)(
k+p−i
k−i

) ,
we can rewrite H as follows

H =

(
k+p
k

)
cqp

k∑
i=0

(
k
i

)(
k+p−i
k−i

) ( 1

cq

)k−i(
1− 1

cq

)i

≤
(
k+p
k

)
cqp

k∑
i=0

(
k

i

)(
1

cq

)k−i(
1− 1

cq

)i
=

(
k+p
k

)
cqp

.

As there are at most n2 potential occurrences, we now have

C̄ ≤ n2H(C̄ ′ + pq) ≤ n2
(
k+p
k

)
cqp

(2k + 2 + pq).(7.5)

Select finally the parameters q and p satisfying

q =
⌈
logcm

2
⌉

and(7.6)

p = 1 +

⌈
logcq

(
k + p

k

)⌉
.(7.7)

The value of p needs a little more analysis. We first note that

1 ≤ 1 +

⌈
logcq

(
k + 1

k

)⌉
and k + 1 ≥ 1 +

⌈
logcq

(
2k + 1

k

)⌉
.

The latter inequality holds because

logcq

(
2k + 1

k

)
= logcq

(
2k + 1

k

2k

k − 1
· · · k + 1

1

)
≤ logcq (k+1)k = k logcq (k+1) ≤ k,

with the reasonable assumption that k + 1 ≤ m2 ≤ cq. Given the above and the fact
that the right-hand side of (7.7) is an integer valued nondecreasing function of p, we
are guaranteed that there exists an integer value of p satisfying (7.7) in the range
[1, k + 1]. If there are many such values, we select the smallest of them. The value
can, in practice, be found by trying with p = 1, 2, . . . until (7.7) is satisfied. Note that
if k = 0, then p = 1, and the algorithm reduces to the exact matching algorithm.
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Substituting (7.6), (7.7), and the fact that p ≤ k + 1 into (7.3), (7.4), and (7.5)
gives

A, C̄ = O

(
n2(k + 1) logcm

2

m2

)
and

B̄ = O

(
n2(k + 1)

m2

)
.

Hence, the expected running time of the algorithm is

A+ B̄ + C̄ = O

(
n2(k + 1) logcm

2

m2

)
.

As A is the most significant component in the running time, the only way to
improve the selection of parameters q and p would be to decrease q. However, any
asymptotically significant decrease in q would increase B̄ past A. Thus, the above
selection of the parameters is asymptotically optimal.

The maximum value of k that the algorithm can handle is limited by (7.1) with
square templates and by (7.2) with linear templates. The linear template algorithm
is less restrictive in most cases. Substituting q = dlogcm

2e and p ≤ k + 1 into (7.2)
gives the bound

k ≤
m
⌊

m
dlogcm

2e
⌋
− 1

2

for the maximum value of k. For larger patterns, the actual upper bound for k in the
linear template algorithm is close to m2/dlogcm

2e.
If the counters are destroyed as soon as they can no longer be increased, the

space taken by the counters is O(kn/m) on average and O(nm) in the worst case.
The space requirement can be reduced with the following technique. Divide the text
into slices of 2m−2 rows that overlap each other by m−1 rows, and search each slice
separately. All potential occurrences belong to exactly one slice, so no occurrence will
be missed or found twice. The space requirement is now reduced to O(k) on average
and O(m2) in the worst case. The number of text samples read at most doubles, so
the asymptotic time requirement remains the same. The number of samples can still
be reduced by using wider slices, which increases the space requirement, and/or by
optimizing the sampling scheme for the slices, which has been done by Park [20].

We have shown the following theorem.
Theorem 7.2. Let k ≤ (mbm/dlogcm

2ec−1)/2. Then the k mismatches problem
for two-dimensional m×m pattern P and n×n text T can be solved in expected time
O((k + 1)n2 logcm

2/m2) and additional space O(m2). The preprocessing of P takes
time and space O(m2).

The algorithm requires that k = O(m2/ logcm
2). Substituting this into the bound

of the above theorem shows that whenever the algorithm works, it is at most linear
in |T |. Chang and Lawler [9] have obtained similar results for the one-dimensional k
differences problem.

8. Concluding remarks. There are many possibilities for practical fine-tuning
of our algorithms. For example, in the algorithm of section 3 it is possible to combine
the elimination and checking phases using the spiral-shaped test strings of Gonnet
[14]. The text processing in all algorithms can be performed with a window of size
O(m2) into the text.
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We ignored worst-case considerations in this paper. It is possible to use some
linear worst-case algorithm for the checking phase of our algorithms such that the
total time stays O(n2). However, it is not clear that this would be useful in practice.
More important is that the obliviousness of the elimination phase makes parallel
implementations of our algorithms simple.

The expected time O(|T | logc |P |/|P |) of our exact matching algorithms was
shown to be optimal for d-dimensional strings when d is considered constant, but
not when d is variable. It remains an open problem to either remove the dependence
on d from the lower bound or develop an algorithm that is better than ours for vari-
able d. Another open problem is whether our approximate matching algorithms are
optimal in the expected case.

Acknowledgment. We would like to thank Jorma Tarhio for his useful com-
ments and his help in implementing the TDBM-algorithm.
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[5] R. Baeza-Yates and M. Régnier, Fast two-dimensional pattern matching, Inform. Process.
Lett., 45 (1993), pp. 51–57.

[6] T. P. Baker, A technique for extending rapid exact-match string matching to arrays of more
than one dimension, SIAM J. Comput., 7 (1978), pp. 533–541.

[7] R. S. Bird, Two dimensional pattern matching, Inform. Process. Lett., 6 (1977), pp. 168–170.
[8] R. S. Boyer and J. S. Moore, A fast string searching algorithm, Comm. ACM, 20 (1977),

pp. 762–772.
[9] W. I. Chang and E. L. Lawler, Approximate string matching in sublinear expected time,

in Proceedings of the 31st IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, 1990, pp. 116–124.

[10] M. Crochemore, L. Ga̧sieniec, W. Plandowski, and W. Rytter, Two-dimensional pat-
tern matching in linear time and small space, in Proceedings of the 12th Symposium on
Theoretical Aspects of Computer Science, vol. 900 of LNCS, Springer, New York, 1995,
pp. 181–192.

[11] M. Crochemore, L. Ga̧sieniec, and W. Rytter, Two-dimensional pattern matching by sam-
pling, Inform. Process. Lett., 46 (1993), pp. 159–162.

[12] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, 1994.
[13] Z. Galil and K. Park, Alphabet-independent two-dimensional witness computation, SIAM J.

Comput., 25 (1996), pp. 907–935.
[14] G. H. Gonnet, Efficient searching of text and pictures (extended abstract ), Technical Report

OED-88-02, Centre for the New OED, University of Waterloo, Waterloo, Ontario, Canada,
1988.

[15] A. Hume and D. M. Sunday, Fast string searching, Software—Practice and Experience, 21
(1991), pp. 1221–1248.

[16] R. M. Karp and M. O. Rabin, Efficient randomized pattern-matching algorithms, IBM J. Res.
Dev., 31 (1987), pp. 249–260.

[17] J. Y. Kim and J. Shawe-Taylor, Fast expected two dimensional pattern matching, in Pro-
ceedings of the 1st South American Workshop on String Processing, 1993, pp. 77–92.

[18] D. E. Knuth, J. H. Morris, and V. R. Pratt, Fast pattern matching in strings, SIAM J.
Comput., 6 (1977), pp. 323–350.

[19] K. Krithivasan and R. Sitalakshmi, Efficient two-dimensional pattern matching in the pres-
ence of errors, Inform. Sci., 43 (1987), pp. 169–184.



TWO- AND HIGHER-DIMENSIONAL MATCHING 589

[20] K. Park, Analysis of two-dimensional approximate pattern matching algorithms (Note ), The-
oret. Comput. Sci., 201 (1998), pp. 263–273.

[21] S. Ranka and T. Heywood, Two-dimensional pattern matching with k mismatches, Pattern
Recognition, 24 (1991), pp. 31–40.
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Abstract. We investigate topological, combinatorial, statistical, and enumeration properties of
finite graphs with high Kolmogorov complexity (almost all graphs) using the novel incompressibility
method. Example results are (i) the mean and variance of the number of (possibly overlapping)
ordered labeled subgraphs of a labeled graph as a function of its randomness deficiency (how far it
falls short of the maximum possible Kolmogorov complexity) and (ii) a new elementary proof for the
number of unlabeled graphs.
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1. Introduction. The incompressibility of individual random objects yields a
simple but powerful proof technique. The incompressibility method [9] is a new general
purpose tool and should be compared with the pigeon hole principle or the proba-
bilistic method. Here we apply the incompressibility method to randomly generated
graphs and “individually random” graphs—graphs with high Kolmogorov complexity.

In a typical proof using the incompressibility method, one first chooses an in-
dividually random object from the class under discussion. This object is effectively
incompressible. The argument invariably says that if a desired property does not hold,
then the object can be compressed. This yields the required contradiction. Since a
randomly generated object is with overwhelming probability individually random and
hence incompressible, one usually obtains the property with high probability.

Results. We apply the incompressibility method to obtain combinatorial prop-
erties of graphs with high Kolmogorov complexity. These properties are parametri-
zed in terms of a “randomness deficiency” function.1 This can be considered as a
parametrized version of the incompressibility method. In section 2 we show that for
every labeled graph on n nodes with high Kolmogorov complexity (also called “Kol-
mogorov random graph” or “high-complexity graph”), the node degree of every vertex
is about n/2 and there are about n/4 node-disjoint paths of length 2 between every
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pair of nodes. In section 2.2, we analyze “normality” properties of Kolmogorov ran-
dom graphs. In analogy with infinite sequences one can call an infinite labeled graph
normal if each finite ordered labeled subgraph of size k occurs in the appropriate sense

(possibly overlapping) with limiting frequency 2−(k2). It follows from the Martin–Löf
theory of effective tests for randomness [14] that individually random (high complex-
ity) infinite labeled graphs are normal. Such properties cannot hold precisely for finite
graphs, where randomness is necessarily a matter of degree: We determine close quan-
titative bounds on the normality (frequency of subgraphs) of high-complexity finite
graphs in terms of their randomness deficiency.

Denote the number of unlabeled graphs on n nodes by gn. In section 2.3 we
demonstrate the use of the incompressibility method and Kolmogorov random graphs

by providing a new elementary proof that gn ∼ 2(n2)/n!. This has previously been
obtained by more advanced methods [12]. Moreover, we give a good estimate of the
error term. Part of the proof involves estimating the order (number of automorphisms)
s(G) of graphs G as a function of the randomness deficiency of G. For example, we
show that labeled graphs with randomness deficiency appropriately less than n are
rigid (have but one automorphism: the identity automorphism).

Related work. Several properties (high degree nodes, diameter 2, rigidity) have
also been proven by traditional methods to hold with high probability for randomly
generated graphs [5, 4]. We provide new proofs for these results using the incompress-
ibility method. They are actually proved to hold for the definite class of Kolmogorov
random graphs—rather than with high probability for randomly generated graphs.

In [10] (also [9]) Li and Vitányi investigated topological properties of labeled
graphs with high Kolmogorov complexity and proved them using the incompressibility
method to compare ease of such proofs with the probabilistic method [7] and the
entropy method.

In [8] it was shown that every labeled tree on n nodes with randomness deficiency
O(logn) has maximum node degree of O(logn/ log logn). Analysis of Kolmogorov
random graphs was used to establish the total interconnect length of Euclidean (real-
world) embeddings of computer network topologies [15] and the size of compact rout-
ing tables in computer networks [6]. Infinite binary sequences that asymptotically
have equal numbers of 0s and 1s and, more generally, where every block of length k
occurs (possibly overlapping) with frequency 1/2k were called “normal” by E. Borel
[2]. References [9, 11] investigate the quantitative deviation from normal as a function
of the Kolmogorov complexity of a finite binary string. Here we consider an analogous
question for Kolmogorov random graphs.2 Finally, there is a close relation and gen-
uine difference between high-probability properties and properties of incompressible
objects; see [9, Section 6.2].

1.1. Kolmogorov complexity. We use the following notation. Let A be a
finite set. By d(A) we denote the cardinality of A. In particular, d(∅) = 0. Let x be a
finite binary string. Then l(x) denotes the length (number of bits) of x. In particular,
l(ε) = 0, where ε denotes the empty word.

Let x, y, z ∈ N , where N denotes the natural numbers. Identify N and {0, 1}∗

2There are some results along these lines related to randomly generated graphs, but as far as the
authors could ascertain (consulting Alan Frieze, Svante Janson, and Andrzej Rucinski around June
1996) such properties have not been investigated in the same detail as here. See, for example, [1,
pp. 125–140]. But note that pseudorandomness also is different from Kolmogorov randomness.
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according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . . .

Hence, the length l(x) of x is the number of bits in the binary string or number
x. Let T0, T1, . . . be a standard enumeration of all Turing machines. Let 〈·, ·〉 be a
standard one-to-one mapping from N × N to N , for technical reasons chosen such
that l(〈x, y〉) = l(y) +O(l(x)). An example is 〈x, y〉 = 1l(x)0xy. This can be iterated
to 〈〈·, ·〉, ·〉.

Informally, the Kolmogorov complexity [13] of x is the length of the shortest
effective description of x. That is, the Kolmogorov complexity C(x) of a finite string x
is simply the length of the shortest program, say in FORTRAN (or in Turing machine
codes) encoded in binary, which prints x without any input. A similar definition holds
conditionally in the sense that C(x|y) is the length of the shortest binary program
which computes x on input y. Kolmogorov complexity is absolute in the sense of
being independent of the programming language up to a fixed additional constant
term which depends on the programming language but not on x. We now fix one
canonical programming language once and for all as reference and thereby C(). For
the theory and applications, see [9]. A formal definition is as follows:

Definition 1. Let U be an appropriate universal Turing machine such that

U(〈〈i, p〉, y〉) = Ti(〈p, y〉)
for all i and 〈p, y〉. The conditional Kolmogorov complexity of x given y is

C(x|y) = min
p∈{0,1}∗

{l(p) : U(〈p, y〉) = x}.

The unconditional Kolmogorov complexity of x is defined as C(x) := C(x|ε).
It is easy to see that there are strings that can be described by programs much

shorter than themselves. For instance, the function defined by f(1) = 2 and f(i) =
2f(i−1) for i > 1 grows very fast, f(k) is a “stack” of k twos. Yet for each k it is clear
that f(k) has complexity at most C(k) +O(1). What about incompressibility?

By a simple counting argument one can show that whereas some strings can be
enormously compressed, the majority of strings can hardly be compressed at all.

For each n there are 2n binary strings of length n but only
∑n−1
i=0 2i = 2n − 1

possible shorter descriptions. Therefore, there is at least one binary string x of length
n such that C(x) ≥ n. We call such strings incompressible. It also follows that for
any length n and any binary string y, there is a binary string x of length n such that
C(x|y) ≥ n. Generally, for every constant c we can say a string x is c-incompressible
if C(x) ≥ l(x) − c. Strings that are incompressible (say, c-incompressible with small
c) are patternless, since a pattern could be used to reduce the description length.
Intuitively, we think of such patternless sequences as being random, and we use
“random sequence” synonymously with “incompressible sequence.”3 By the same
counting argument as before we find that the number of strings of length n that are
c-incompressible is at least 2n−2n−c+1. Hence there is at least one 0-incompressible
string of length n, at least one-half of all strings of length n are 1-incompressible, at
least three-fourths of all strings of length n are 2-incompressible, . . . , and at least
the (1 − 1/2c)th part of all 2n strings of length n are c-incompressible. This means

3It is possible to give a rigorous formalization of the intuitive notion of a random sequence as a
sequence that passes all effective tests for randomness; see, for example, [9].
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that for each constant c ≥ 1 the majority of all strings of length n (with n > c)
is c-incompressible. We generalize this to the following simple but extremely useful
lemma.

Lemma 1. Let c be a positive integer. For each fixed y, every set A of cardinality
m has at least m(1− 2−c) + 1 elements x with C(x|y) ≥ blogmc − c.

Proof. The proof is by simple counting.
As an example, set A = {x : l(x) = n}. Then the cardinality of A is m = 2n.

Since it is easy to assert that C(x) ≤ n+ c for some fixed c and all x in A, Lemma 1
demonstrates that this trivial estimate is quite sharp. The deeper reason is that since
there are few short programs, there can be only few objects of low complexity. We
require another quantity: The prefix Kolmogorov complexity which is defined just as
C(·|·) but now with respect to a subset of Turing machines that have the property
that the set of programs for which the machine halts is prefix-free; that is, no halting
program is a prefix of any other halting program. For details see [9]. Here we require
only the quantitative relation below.

Definition 2. The prefix Kolmogorov complexity of x conditional to y is denoted
by K(x|y). It satisfies the inequality

C(x|y) ≤ K(x|y) ≤ C(x|y) + 2 logC(x|y) +O(1).

2. Kolmogorov random graphs. Statistical properties of strings with high
Kolmogorov complexity have been studied in [11]. The interpretation of strings as
more complex combinatorial objects leads to a new set of properties and problems that
have no direct counterpart in the “flatter” string world. Here we derive topological,
combinatorial, and statistical properties of graphs with high Kolmogorov complexity.
Every such graph possesses simultaneously all properties that hold with high proba-
bility for randomly generated graphs. They constitute “almost all graphs” and the
derived properties a fortiori hold with probability that goes to 1 as the number of
nodes grows unboundedly.

Definition 3. Each labeled graph G = (V,E) on n nodes V = {1, 2, . . . , n}
can be represented (up to automorphism) by a binary string E(G) of length

(
n
2

)
. We

simply assume a fixed ordering of the
(
n
2

)
possible edges in an n-node graph, e.g.,

lexicographically, and let the ith bit in the string indicate presence (1) or absence (0)
of the ith edge. Conversely, each binary string of length

(
n
2

)
encodes an n-node graph.

Hence we can identify each such graph with its binary string representation.
Definition 4. A labeled graph G on n nodes has randomness deficiency at most

δ(n) and is called δ(n)-random if it satisfies

C(E(G)|n) ≥
(
n

2

)
− δ(n).(2.1)

2.1. Some basic properties. Using Lemma 1, with y = n, A the set of strings
of length

(
n
2

)
, and c = δ(n) gives us the following lemma.

Lemma 2. A fraction of at least 1− 1/2δ(n) of all labeled graphs G on n nodes is
δ(n)-random.

As a consequence, for example, the c logn-random labeled graphs constitute a
fraction of at least (1 − 1/nc) of all graphs on n nodes, where c > 0 is an arbitrary
constant.

Labeled graphs with high complexity have many specific topological properties,
which seem to contradict their randomness. However, these are simply the likely
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properties, whose absence would be rather unlikely. Thus, randomness enforces strict
statistical regularities—for example, to have diameter exactly 2.

We will use the following lemma (Theorem 2.6.1 in [9]).

Lemma 3. Let x = x1 . . . xn be a binary string of length n, and y a much smaller
string of length l. Let p = 2−l and #y(x) be the number of (possibly overlapping)
distinct occurrences of y in x. For convenience, we assume that x “wraps around” so
that an occurrence of y starting at the end of x and continuing at the start also counts.
Assume that l ≤ logn. There is a constant c such that for all n and x ∈ {0, 1}n if
C(x) ≥ n− δ(n), then

|#y(x)− pn| ≤ √αpn

with α = [K(y|n) + log l + δ(n) + c]3l/ log e.

Lemma 4. All o(n)-random labeled graphs have n/4+o(n) disjoint paths of length
2 between each pair of nodes i, j. In particular, all o(n)-random labeled graphs have
diameter 2.

Proof. The only graphs with diameter 1 are the complete graphs that can be
described in O(1) bits, given n, and hence are not random. It remains to consider an
o(n)-random graph G = (V,E) with diameter greater than or equal to 2. Let i, j be
a pair of nodes connected by r disjoint paths of length 2. Then we can describe G by
modifying the old code for G as follows:

• a program to reconstruct the object from the various parts of the encoding
in O(1) bits;
• the identities of i < j in 2 logn bits;
• the old code E(G) of G with the 2(n−2) bits representing presence or absence

of edges (j, k) and (i, k) for each k 6= i, j deleted;
• a short program for the string ei,j consisting of the (reordered) n− 2 pairs of

bits deleted above.

From this description we can reconstruct G in

O(logn) +

(
n

2

)
− 2(n− 2) + C(ei,j |n)

bits, from which we may conclude that C(ei,j |n) ≥ l(ei,j)− o(n). As shown in [11] or
[9] (here Lemma 3) this implies that the frequency of occurrence in ei,j of the aligned
2-bit block “11”—which by construction equals the number of disjoint paths of length
2 between i and j—is n/4 + o(n).

A graph is k-connected if there are at least k node-disjoint paths between every
pair of nodes.

Corollary 1. All o(n)-random labeled graphs are (n4 + o(n))-connected.

Lemma 5. Let G = (V,E) be a graph on n nodes with randomness deficiency
O(logn). Then the largest clique in G has at most b2 lognc+O(1) nodes.

Proof. The proof is the same as the largest size transitive subtournament in a
high-complexity tournament as in [9].

With respect to the related property of random graphs, in [1, pp. 86–87], it is
shown that a random graph with edge probability 1/2 contains a clique on asymptot-

ically 2 logn nodes with probability at least 1− e−n2

.

2.2. Statistics of subgraphs. We start by defining the notion of labeled sub-
graph of a labeled graph.
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Definition 5. Let G = (V,E) be a labeled graph on n nodes. Consider a labeled
graph H on k nodes {1, 2, . . . , k}. Each subset of k nodes of G induces a subgraph Gk
of G. The subgraph Gk is an ordered labeled occurrence of H when we obtain H by
relabeling the nodes i1 < i2 < · · · < ik of Gk as 1, 2, . . . , k.

It is easy to conclude from the statistics of high-complexity strings in Lemma 3
that the frequency of each of the two labeled two-node subgraphs (there are only two
different ones: the graph consisting of two isolated nodes and the graph consisting of
two connected nodes) in a δ(n)-random graph G is

n(n− 1)

4
±
√

3

4
(δ(n) +O(1))n(n− 1)/ log e.

This case is easy since the frequency of such subgraphs corresponds to the frequency
of 1s or 0s in the

(
n
2

)
-length standard encoding E(G) of G. However, to determine

the frequencies of labeled subgraphs on k nodes (up to isomorphism) for k > 2 is a
matter more complicated than the frequencies of substrings of length k. Clearly, there
are

(
n
k

)
subsets of k nodes out of n and hence that many occurrences of subgraphs.

Such subgraphs may overlap in more complex ways than substrings of a string. Let
#H(G) be the number of times H occurs as an ordered labeled subgraph ofG (possibly
overlapping). Let p be the probability that we obtainH by flipping a fair coin to decide
for each pair of nodes whether it is connected by an edge or not:

p = 2−k(k−1)/2.(2.2)

Theorem 1. Assume the terminology above with G = (V,E) a labeled graph on
n nodes, k is a positive integer dividing n, and H is a labeled graph on k ≤ √2 logn
nodes. Let C(E(G)|n) ≥ (n2)− δ(n). Then∣∣∣∣#H(G)−

(
n

k

)
p

∣∣∣∣ ≤ (nk
)√

α(k/n)p

with α := (K(H|n) + δ(n) + log
(
n
k

)
/(n/k) +O(1))3/ log e.

Proof . A cover of G is a set C = {S1, . . . , SN} with N = n/k, where the Si’s

are pairwise disjoint subsets of V and
⋃N
i=1 Si = V . According to [3], we have the

following claim.
Claim 1. There is a partition of the

(
n
k

)
different k-node subsets into h =

(
n
k

)
/N

distinct covers of G, each cover consisting of N = n/k disjoint subsets. That is, each
subset of k nodes of V belongs to precisely one cover.

Enumerate the covers as C0, C2, . . . , Ch−1. For each i ∈ {0, 1, . . . , h − 1} and
k-node labeled graph H, let #H(G, i) be the number of (now nonoverlapping) occur-
rences of subgraph H in G occurring in cover Ci.

Now consider an experiment of N trials, each trial with the same set of 2k(k−1)/2

outcomes. Intuitively, each trial corresponds to an element of a cover, and each
outcome corresponds to a k-node subgraph. For every i we can form a string si
consisting of the N blocks of

(
k
2

)
bits that represent presence or absence of edges within

the induced subgraphs of each of the N subsets of Ci. Since G can be reconstructed
from n, i, si, and the remaining

(
n
2

) − N
(
k
2

)
bits of E(G), we find that C(si|n) ≥

l(si)− δ(n)− log h. Again, according to Lemma 3 this implies that the frequency of
occurrence of the aligned

(
k
2

)
-block E(H), which is #H(G, i), equals

Np±
√
Npα
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with α as in the statement of Theorem 1. One can do this for each i independently,
notwithstanding the dependence between the frequencies of subgraphs in different
covers. Namely, the argument depends on the incompressibility of G alone. If the
number of occurrences of a certain subgraph in any of the covers is too large or too
small then we can compress G. Now,∣∣∣∣#H(G)− p

(
n

k

)∣∣∣∣ =

h−1∑
i=0

|#H(G, i)−Np|

≤
(
n

k

)√
α(k/n)p.

In [9, 11] we investigated up to which length l all blocks of length l occurred at
least once in each δ(n)-random string of length n.

Theorem 2. Let δ(n) < 2
√

1
2 log n/4 logn and G be a δ(n)-random graph on n

nodes. Then for sufficiently large n, the graph G contains all subgraphs on
√

2 logn
nodes.

Proof. We are sure that H on k nodes occurs at least once in G if
(
n
k

)√
α(k/n)p in

Theorem 1 is less than
(
n
k

)
p. This is the case if α < (n/k)p. This inequality is satisfied

for an overestimate of K(H|n) by
(
k
2

)
+2 log

(
k
2

)
+O(1) (since K(H|n) ≤ K(H)+O(1)),

and p = 2−k(k−1)/2, with k set at k =
√

2 logn. This proves the theorem.

2.3. Unlabeled graph counting. An unlabeled graph is a graph with no labels.
For convenience we can define this as follows: Call two labeled graphs equivalent (up
to relabeling) if there is a relabeling that makes them equal. An unlabeled graph is an
equivalence class of labeled graphs. An automorphism of G = (V,E) is a permutation
π of V such that (π(u), π(v)) ∈ E iff (u, v) ∈ E. Clearly, the set of automorphisms of
a graph forms a group with group operation of function composition and the identity
permutation as unity. It is easy to verify that π is an automorphism of G iff π(G)
and G have the same binary string standard encoding, that is, E(G) = E(π(G)). This
contrasts with the more general case of permutation relabeling, where the standard
encodings may be different. A graph is rigid if its only automorphism is the identity
automorphism. It turns out that Kolmogorov random graphs are rigid graphs. To
obtain an expression for the number of unlabeled graphs we have to estimate the
number of automorphisms of a graph in terms of its randomness deficiency.

In [12] an asymptotic expression for the number of unlabeled graphs is derived
using sophisticated methods. We give a new elementary proof by incompressibility.
Denote by gn the number of unlabeled graphs on n nodes—that is, the number of
isomorphism classes in the set Gn of undirected graphs on nodes {0, 1, . . . , n− 1}.

Theorem 3. gn ∼ 2(
n
2)
n! .

Proof. Clearly,

gn =
∑
G∈Gn

1

d(Ḡ)
,

where Ḡ is the isomorphism class of graph G. By elementary group theory,

d(Ḡ) =
d(Sn)

d(Aut(G))
=

n!

d(Aut(G))
,

where Sn is the group of permutations on n elements and Aut(G) is the automorphism
group of G. Let us partition Gn into Gn = G0

n∪· · ·∪Gnn , where Gmn is the set of graphs
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for which m is the number of nodes moved (mapped to another node) by any of its
automorphisms.

Claim 2. For G ∈ Gmn , d(Aut(G)) ≤ nm = 2m log n.
Proof. d(Aut(G)) ≤ (nm)m! ≤ nm.

Consider each graph G ∈ Gn having a probability Prob(G) = 2−(n2).

Claim 3. Prob(G ∈ Gmn ) ≤ 2−m(n2− 3m
8 −log n).

Proof. By Lemma 2 it suffices to show that if G ∈ Gmn and

C(E(G)|n,m) ≥
(
n

2

)
− δ(n,m)

then δ(n,m) satisfies

δ(n,m) ≥ m
(
n

2
− 3m

8
− logn

)
.(2.3)

Let π ∈ Aut(G) move m nodes. Suppose π is the product of k disjoint cycles of
sizes c1, . . . , ck. Spend at most m logn bits describing π: For example, if the nodes
i1 < · · · < im are moved then list the sequence π(i1), . . . , π(im). Writing the nodes of
the latter sequence in increasing order we obtain i1, . . . , im again; that is, we execute
permutation π−1 and hence we obtain π.

Select one node from each cycle—say, the lowest numbered one. Then for every
unselected node on a cycle, we can delete the n−m bits corresponding to the presence
or absence of edges to stable nodes, and m− k half-bits corresponding to presence or
absence of edges to the other, unselected cycle nodes. In total we delete

k∑
i=1

(ci − 1)

(
n−m+

m− k
2

)
= (m− k)

(
n− m+ k

2

)
bits. Observing that k = m/2 is the largest possible value for k, we arrive at the
claimed δ(n,m) of G (difference between savings and spendings is m

2 (n− 3m
4 )−m logn)

of (2.3).
We continue the proof of Theorem 3:

gn =
∑
G∈Gn

1

d(Ḡ)
=
∑
G∈Gn

d(Aut(g))

n!
=

2(n2)

n!
En,

where En :=
∑
G∈Gn Prob(G)d(Aut(G)) is the expected size of the automorphism

group of a graph on n nodes. Clearly, En ≥ 1, yielding the lower bound on gn. For
the upper bound on gn, noting that G1

n = ∅ and using the above claims, we find

En =
n∑

m=0

Prob(G ∈ Gmn )AvgG∈Gmn d(Aut(G))

≤ 1 +
n∑

m=2

2−m(n2− 3m
8 −2 log n)

≤ 1 + 2−(n−4 log n−2),

which proves the theorem.
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The proof of the theorem shows that the error in the asymptotic expression is
very small.

Corollary 2. 2(
n
2)
n! ≤ gn ≤ 2(

n
2)
n! (1 + 4n4

2n ).
The next corollary follows from (2.3) (since m = 1 is impossible).
Corollary 3. If a graph G has randomness deficiency slightly less than n (more

precisely, C(E(G)|n) ≥ (n2)− n− logn− 2) then G is rigid.
The expression for gn can be used to determine the maximal complexity of an

unlabeled graph on n nodes. Namely, we can effectively enumerate all unlabeled
graphs as follows:

• Effectively enumerate all labeled graphs on n nodes by enumerating all binary
strings of length n and for each labeled graph G do the following:
If G cannot be obtained by relabeling from any previously enumerated labeled
graph then G is added to the set of unlabeled graphs.

This way we obtain each unlabeled graph by precisely one labeled graph representing
it. Since we can describe each unlabeled graph by its index in this enumeration, we
find by Theorem 3 and Stirling’s formula that if G is an unlabeled graph then

C(E(G)|n) ≤
(
n

2

)
− n logn+O(n).

Theorem 4. Let G be a labeled graph on n nodes and let G0 be the unlabeled
version of G. There exists a graph G′ and a label permutation π such that G′ =
π(G) and up to additional constant terms C(E(G′)) = C(E(G0)) and C(E(G)|n) =
C(E(G0), π|n).

By Theorem 4, for every graph G on n nodes with maximum complexity there is
a relabeling (permutation) that causes the complexity to drop by as much as n logn.
Our proofs of topological properties by the incompressibility method required the
graph G to be Kolmogorov random in the sense of C(E(G)|n) ≥ (n2)−O(logn) or for

some results C(E(G)|n) ≥ (n2)−o(n). Hence by relabeling such a graph we can always
obtain a labeled graph that has a complexity too low to use our incompressibility
proof. Nonetheless, topological properties do not change under relabeling.
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SELF-STABILIZING ALGORITHMS FOR FINDING CENTERS AND
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Abstract. Locating a center or a median in a graph is a fundamental graph-theoretic problem.
Centers and medians are especially important in distributed systems because they are ideal locations
for placing resources that need to be shared among different processes in a network. This paper
presents simple self-stabilizing algorithms for locating centers and medians of trees. Since these
algorithms are self-stabilizing, they can tolerate transient failures. In addition, they can automatically
adjust to a dynamically changing tree topology. After the algorithms are presented, their correctness
is proven and upper bounds on their time complexity are established. Finally, extensions of our
algorithms to trees with arbitrary, positive edge costs are sketched.

Key words. center, distributed algorithm, median, self-stabilization, tree
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1. Introduction. Let G = (V,E) be a simple, connected graph with vertex set
V and edge set E. The eccentricity of a vertex i ∈ V is the largest distance from i
to any vertex in V . A vertex with minimum eccentricity is called a center of G. The
weight of a vertex i ∈ V is the sum of the distances from i to all vertices in V . A
vertex with minimum weight is called a median of G.

Locating centers and medians of graphs has a wide variety of important applica-
tions because placing a common resource at a center or a median of a graph minimizes
the costs of sharing the resource with other locations. This is especially important in
distributed systems in which information is disseminated from or gathered at a single
node (or a small number of nodes). As a result, distributed algorithms for locating cen-
ters and medians of graphs are extremely useful. There are several known algorithms
[10, 11, 15, 18, 24, 25, 29, 31] for finding centers and medians of graphs, including
distributed algorithms by Korach, Rotem, and Santoro [27]. In this paper, we propose
two simple, self-stabilizing, distributed algorithms for finding centers and medians of
trees. We then prove the correctness of these algorithms and establish upper bounds
on their time complexity. We finally show that the algorithms can be slightly modified
to locate centers and medians in trees with arbitrary positive edge costs.

Self-stabilization in distributed systems was first introduced by Dijkstra [8] in
1974. Since then the power and simplicity of self-stabilizing algorithms has been amply
demonstrated. For example, self-stabilizing mutual exclusion algorithms for various
classes of networks have been presented in [5, 8, 19, 22, 28]; self-stabilizing algorithms
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for electing a leader appear in [9, 21, 30]; self-stabilizing algorithms for construct-
ing spanning trees have been presented in [1, 6, 7]; self-stabilizing algorithms for
problems related to maximum flow and maximum matching appear in [13, 16, 20];
self-stabilizing algorithms for coloring graphs appear in [14, 34]; general techniques
for constructing self-stabilizing algorithms are presented in [2, 26]. Not only are self-
stabilizing algorithms tolerant to transient failures, but many of them are also capable
of handling the addition and deletion of vertices or edges in a transparent manner.
These attractive properties give self-stabilizing algorithms a distinct advantage over
the more classical distributed algorithms.

By using the general techniques of Katz and Perry [26] and Awerbuch and Vargh-
ese [2], it is possible to construct self-stabilizing center-finding or median-finding al-
gorithms. However, the general technique proposed by Katz and Perry [26] requires
global state collection at a leader followed by distributed reset (if necessary) and this
makes their method unacceptably inefficient. Therefore, we view Katz and Perry more
as a demonstration of the feasibility of self-stabilization than as a practical alternative.
A similar claim can be made about the compiler of Awerbuch and Varghese [2] that
takes any deterministic, synchronous, distributed protocol in a message passing sys-
tem and produces an equivalent asynchronous, self-stabilizing, distributed protocol.
The technique of Awerbuch and Varghese for constructing self-stabilizing protocols
is powerful and general. However, it is because of the generality of their technique
that often, hand-crafted protocols for a particular problem are simpler and more effi-
cient than the self-stabilizing protocols generated by their compiler. This is certainly
true for the center- and median-finding problems for which our solutions are not only
extremely simple, but also time and space optimal.

The balance of this paper is organized as follows. In section 2 we discuss the notion
of self-stabilization in distributed systems. In section 3 we present two self-stabilizing
algorithms—one for finding centers of trees and the other for finding medians of
trees. Section 4 contains proofs that establish the partial correctness of the proposed
algorithms. In section 5 we present proofs to show that the proposed algorithms
terminate. In section 6 we establish upper bounds on the time complexity of the
algorithms. Section 7 extends our algorithms so as to locate centers and medians in
trees that have arbitrary, positive edge costs. Section 8 contains concluding remarks
and a glimpse of possible future work.

2. Self-stabilization in distributed systems. Following Schneider [32], we
view a distributed system S as consisting of two types of components: processes and
interconnections between processes representing communication through local shared
memory or through message channels. Each component in the system has a local
state and the global state of the system is simply the union of the local states of all
components. Let P be a predicate defined over the set of global states of the system.
An algorithm A running on S is said to be self-stabilizing with respect to P if it
satisfies the following:

Closure: If a global state q satisfies P , then any global state that is reachable
from q using algorithm A, also satisfies P .

Convergence: Starting from an arbitrary global state, the distributed system S is
guaranteed to reach a global state satisfying P in a finite number of steps of A.

Global states satisfying P are said to be stable. To show that an algorithm is self-
stabilizing with respect to P we need to show both closure and convergence. In ad-
dition, to show that an algorithm solves a certain problem, we need to show partial
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Fig. 1. Eccentricities of vertices in a tree. The two centers in the tree are marked by double
circles.
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Fig. 2. Weights of vertices in a tree. The unique median in the tree is marked by a double circle.

correctness, that is, every stable state of S constitutes a solution to the problem.

3. Center and median-finding algorithms.

3.1. Notation. We begin this section with some notation and terminology.
• d(i, j) denotes the distance, the length of a shortest path in G, between ver-

tices i and j.
• e(i) = max{d(i, j) | j ∈ V } denotes the eccentricity of a vertex i, the distance

between i and a farthest vertex from i in G.
• center(G) = {i ∈ V | e(i) ≤ e(j) for all j ∈ V } denotes the set of centers of
G, the set of vertices in V with minimum eccentricity.

• w(i) =
∑
j∈V d(i, j) denotes the weight of a vertex i, the sum of the distances

between i and all vertices in V .
• median(G) = {i ∈ V | w(i) ≤ w(j) for all j ∈ V } denotes the set of medians

of G, the set of vertices in V with minimum weight.
Figure 1 shows a tree along with the eccentricity of each vertex. Vertices 3 and 4

have the minimum eccentricity, and are therefore centers of the tree. Figure 2 shows
the same tree along with the weight of each vertex. Vertex 4 has the minimum weight,
and is therefore the unique median.

For the remainder of the paper we restrict our attention to trees. We demonstrate
that for this class of graphs, simple and elegant self-stabilizing algorithms for locating
centers and medians exist. Our algorithms have been used as the basis of other self-
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stabilizing algorithms on trees [12, 33]. We hope that our algorithms can be extended
to solve the corresponding problems for arbitrary graphs. Let T = (V,E) be a tree
with vertex set V and edge set E. Without loss of generality we assume that V =
{1, 2, . . . , n}. The following proposition states well-known properties of centers and
medians of trees [3, 4, 17].

Proposition 3.1. A tree has a single center (median) or two adjacent centers
(medians).

3.2. The model of computation. Before presenting our self-stabilizing algo-
rithms, we briefly describe the underlying model of computation. We assume that
each vertex in T is a process. Each process i maintains a single local variable whose
value can be read by the neighboring processes, but can be written into only by i. The
program executed by each process is expressed in the language of guarded commands.
We assume that each process repeatedly evaluates its guards and checks if any guard
is true. If so, the process executes the corresponding action in a single atomic step.
Such an atomic step by a process is called a move. A guard that evaluates to true in a
certain global state is said to be enabled in that global state. In this model of compu-
tation, the execution of our algorithms can be viewed as a sequence of moves, in which
moves by different processes are interleaved. In particular, an execution sequence of
an algorithm A running on a distributed system S is a sequence: q0,m1, q1,m2, q2, . . .
such that

(i) qi, for each i ≥ 0, is a global state of the system S,
(ii) mi, for each i ≥ 1, is a move by some process executing algorithm A,
(iii) move mi is a move whose guard is enabled in state qi−1; move mi takes the

system from state qi−1 into state qi,
(iv) the sequence is either infinite or is finite and, if finite, ends in a global state

in which no guard is enabled.

Since our algorithms are self-stabilizing, no initialization of the variables is as-
sumed. Furthermore, the underlying network topology is permitted to change under
the condition that the topology remain connected and acyclic.

3.3. The algorithms. To facilitate the description of the algorithms, we intro-
duce two functions. Let h : V → N be a function from vertex set V to the set of
natural numbers N . Similarly, let s : V → N −{0} be a function from V to the set of
positive natural numbers. We will refer to h(i) and s(i) as the h-value and the s-value,
respectively, of vertex i. In addition, we will use the following notation:

N(i) = {j | (i, j) ∈ E} denotes the set of neighbors of vertex i.
Nh(i) = {h(j) | (i, j) ∈ E} denotes the multiset of h-values of the neighbors
of i.
N−h (i) = Nh(i) − {max(Nh(i))} denotes all of Nh(i) with one maximum h-
value removed. For example, if Nh(i) = {2, 3, 3}, then N−h (i) = {2, 3}.
Ns(i) = {s(j) | (i, j) ∈ E} denotes the multiset of s-values of the neighbors
of i.
N−s (i) = Ns(i)−{max(Ns(i))} denotes all ofNs(i) with one maximum s-value
removed.

To motivate our algorithms, we first make a few observations. The following con-
dition on the h-value of vertex i is called the height condition:

h(i) =

{
0 if i is a leaf,
1 + max(N−h (i)) otherwise.
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Fig. 3. h-values of vertices satisfying the height condition in a tree.
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Fig. 4. s-values of vertices satisfying the size condition in a tree.

Here we use the notation max(N−h (i)) to stand for the maximum value in the multiset
N−h (i).

The following condition on the s-value of a vertex i is called the size condition:

s(i) =

{
1 if i is a leaf,
1 + Σ(N−s (i)) otherwise.

Here we use the notation Σ(N−s (i)) to represent the sum of all the elements in the
multiset N−s (i).

We will show that if the h-values (s-values) of all the vertices in T satisfy the
height (size) condition, then the centers (medians) of T are the only vertices whose h-
values (s-values) are greater than or equal to the h-values (s-values) of all neighboring
vertices. Figure 3 shows a tree with the h-values of all its vertices satisfying the height
condition. The two centers, 3 and 4, are the only vertices whose h-values are greater
than or equal to the h-values of all neighbors. Figure 4 shows a tree with the s-values
of all its vertices satisfying the size condition. The median, 4, is the only vertex whose
s-value is greater than or equal to the s-values of all neighbors. Our center-finding and
the median-finding algorithms are shown in Figure 5. It is easy to observe that each
of the two statements in the center-finding (median-finding) algorithm is an attempt
to ensure that the height (size) condition is satisfied by vertex i.

4. Partial correctness. The stable states of the center-finding algorithm are
defined as those that satisfy the height condition. Similarly, the stable states of the
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{ Center-finding algorithm for vertex i }
∗
[
(i is a leaf) ∧ (h(i) 6= 0) −→ h(i) := 0

(i is not a leaf) ∧ (h(i) 6= 1 +max(N−h (i))) −→ h(i) := 1 +max(N−h (i))]

{ Median-finding algorithm for vertex i }
∗
[
(i is a leaf) ∧ (s(i) 6= 1) −→ s(i) := 1

(i is not a leaf) ∧ (s(i) 6= 1 + Σ(N−s (i))) −→ s(i) := 1 + Σ(N−s (i))]

Fig. 5. The center-finding and the median-finding algorithms.

median-finding algorithm are those that satisfy the size condition. We prove the partial
correctness of the center-finding and median-finding algorithms by showing that the
stable states of these algorithms indeed constitute a solution to the center-finding and
median-finding problem, respectively.

To prove the partial correctness of the proposed algorithms, we introduce the
notion of an ordering function. A function f : V → N , that associates natural numbers
to all vertices in T , is an ordering function if for all i ∈ V , there exists at most one
neighbor j of i such that f(i) ≤ f(j). We shall refer to f(i) as the f -value of vertex
i. The following is easily verified (see Figures 3 and 4 for examples).

Proposition 4.1. If the h-values (s-values) of all the vertices in T satisfy the
height condition (size condition), then h (s) is an ordering function.

Given an ordering function f : V → N , define a directed graph (digraph) G(f) =
(N(f), A(f)) whose node1 set is N(f) = V and whose arc set A(f) is defined as

A(f) = {(i, j) | j ∈ N(i) and (f(j), j) is lexicographically the largest}.
Thus, from each node i ∈ N(f) there is an outgoing arc to a neighbor with largest
f -value. If there are several neighbors with largest f -value, then the tie is broken by
choosing a neighbor with the largest f -value and the largest label.

The following lemma states an important property of the digraph G(f).
Lemma 4.2. The underlying undirected graph of the digraph G(f) is connected.

G(f) contains exactly one cycle and this cycle is of length two.
Proof. Since T is connected, by definition of the arc set A(f), for all i ∈ N(f),

there exists exactly one neighbor of i, say j, such that (i, j) ∈ A(f). By definition of
an ordering function, for any other neighbor of i, say k, k 6= j, we have f(k) < f(i).
Since f(k) < f(i), from the definition of an ordering function, we conclude that for
all neighbors k′ of k, where k′ 6= i, f(k′) < f(k). Therefore (k, i) ∈ A(f). This implies
that for every edge in T there is at least one corresponding arc in G(f) and hence
G(f) is connected. Furthermore, every node in G(f) has exactly one outgoing arc
implying that G(f) has |N(f)| arcs. Since G(f) is a connected graph with |N(f)|
arcs, it contains exactly one cycle. Suppose that (i1, i2, . . . , il) for l ≥ 3 is a cycle in
G(f). We know that if (i, j) is an arc in A(f), then (i, j) is an edge in E. This implies
that (i1, i2, . . . , il) is a cycle in T also. But, T is acyclic. Hence, the single cycle that
G(f) contains has to be a 2-cycle (a cycle of length two).

Let i and j be the two nodes in G(f) that belong to its unique cycle. Without
loss of generality assume that f(i) ≥ f(j). On deleting the arcs (i, j) and (j, i) from

1We employ the convention of using “vertex” and “edge” for undirected graphs and “node” and
“arc” for directed graphs.
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G(f) we obtain two connected components, each of which is a directed tree, with
arcs directed towards i and j, respectively. Denote the directed tree containing node
i by Ti(f) = (Ni(f), Ai(f)) and the directed tree containing node j by Tj(f) =
(Nj(f), Aj(f)). Designate i as the root of Ti(f) and j as the root of Tj(f). Since
Ti(f) and Tj(f) are now rooted trees, we can use the standard notion of a parent-child
relationship between pairs of adjacent nodes in these trees. The following property of
the trees Ti(f) and Tj(f) is easy to verify.

Proposition 4.3. Each arc in Ti(f) and in Tj(f) is directed from a node to its
parent and if k is a nonleaf node in Ti(f) or in Tj(f), then f(k) > f(`) for each child
` of k.

We now use Proposition 4.1, Lemma 4.2, and Proposition 4.3 to prove the fol-
lowing theorem that provides a way of identifying the centers in T using the h-values
associated with the vertices.

Theorem 4.4. Let the h-values of all vertices in T satisfy the height condition.
Then

center(T ) = {k | h(k) ≥ h(`) for all ` ∈ N(k)}.

Proof. Since the h-values satisfy the height condition, by Proposition 4.1, h is
an ordering function. Hence by Lemma 4.2, G(h) = (N(h), A(h)) is a connected
digraph, with a unique cycle that is of length two. Let i and j be the two nodes
in the unique cycle in G(h) such that h(i) ≥ h(j). Consider the rooted, directed
trees Ti(h) = (Ni(h), Ai(h)) and Tj(h) = (Nj(h), Aj(h)). It is easy to see that for all
k ∈ Ni(h) (Nj(h)), h(k) is the height of the subtree of Ti(h) (Tj(h)) rooted at k.

The rest of the proof is organized into the following two subcases that are based
on the relationship between h(i) and h(j).

Case 1. h(i) > h(j). In this case, it follows from Proposition 4.3 that i is the
only vertex in T whose h-value is greater than or equal to the h-values of all of its
neighbors. We will now show that center(T ) = {i}. Since h is an ordering function
and (i, j) ∈ A(h) we know that j has the largest h-value among all the neighbors of i.
Let ` be a child of i in Ti(h) with the largest h-value. Then, h(j) ≥ h(`). Furthermore,
we know that h(i) > h(j) and h(i) = h(`)+1. This implies that h(`) = h(j) and hence
h(i) = h(j) + 1. Since the height of Ti(h) is equal to the distance between the root i
and the farthest node from i in Ti(h), we have that e(i) = max{h(i), h(j) + 1} = h(i).
Similarly, e(j) = max(h(i) + 1, h(j)} = h(i) + 1. Any node in Ni(h) − {i} is at least
a distance of h(j) + 2 = h(i) + 1 from the farthest node in Tj(h) and any node in
Nj(h) − {j} is at least a distance of h(i) + 2 from the farthest node in Ti(h). This
implies that i is the vertex in T with the smallest eccentricity. Hence, center(T ) = {i}
and the claim in the theorem is true for the case when h(i) > h(j).

Case 2. h(i) = h(j). In this case, Proposition 4.3 implies that i and j are the only
two vertices in T whose h-values are greater than or equal to the h-values of all of
their neighbors. We will now show that center(T ) = {i, j}. Furthermore, it is easy to
see that e(i) = e(j) = h(i) + 1 = h(j) + 1. As in Case 1, any node in Ni(h)−{i} is at
least a distance of h(j)+2 from the farthest node in Tj(h) and any node in Nj(h)−{j}
is at least a distance of h(i) + 2 from the farthest node in Ti(h). Hence, i and j are
the two vertices in T with minimum eccentricity. Therefore, center(T ) = {i, j}. The
claim in the theorem is true even in the case when h(i) = h(j).

Theorem 4.4 implies that if all h-values satisfy the height-condition, then each
process can determine if it is a center of T , by simply checking if its h-value is greater
than or equal to the h-values of all its neighbors. Thus a stable state of the sys-
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tem running our center-finding algorithm constitutes a solution to the center-finding
problem.

The following theorem is similar to Theorem 4.4 and provides a way of identifying
the medians in T using the s-values of the vertices in T . We omit the proof since it is
similar to the proof of Theorem 4.4.

Theorem 4.5. Let the s-values of all the vertices in T satisfy the size condition.
Then

median(T ) = {k | s(k) ≥ s(`) for all ` ∈ N(k)}.

Theorem 4.5 implies that if all s-values satisfy the size condition, then each process
can determine if it is a median of T or not, by simply checking if its s-value is greater
than or equal to the s-values of all its neighbors.

5. Convergence. Our algorithms trivially satisfy the closure property. This is
because in a stable state all guards are false and no moves are possible. This implies
that once the system reaches a stable state, it remains in a stable state. So we turn
our attention to convergence.

To establish convergence of an algorithm, we need to show that any execution
sequence of the algorithm is finite in length. In this section we show that any execution
sequence of the center-finding algorithm is finite in length, thereby showing that the
center-finding algorithm satisfies the convergence property. A similar proof (omitted,
see [23]) suffices to show that any execution sequence of the median-finding algorithm
is also finite. We call a move by process i a decreasing move if it decreases the h-value
of process i; otherwise we call the move an increasing move. The convergence proof
of the center-finding algorithm is organized in two sections. Section 5.1 shows the
total number of decreasing moves that all processes can make is at most n2. Section
5.2 shows that the total number of increasing moves is also finite. The precise upper
bound on the number of increasing moves is established in section 6.

5.1. Decreasing moves. We start with an arbitrary execution sequence by the
center-finding algorithm. Let M(i, p) denote a move by process i that is the pth move
in this execution sequence. Occasionally, when the identity of the process making a
move is irrelevant to our discussion, we will simply use M( , p) to denote the move. In
what follows, we show that the processes in T can make at most n2 decreasing moves
during the execution of the center-finding algorithm. Our proof is presented in two
sections. In section 5.1.1 we define the notion of the cause of a decreasing move and
prove two properties related to the cause of a decreasing move. Section 5.1.2 extends
the notion of the cause of a decreasing move to define the source of a decreasing move
and then shows that distinct decreasing moves by a process have distinct sources. We
then show an upper bound on n on the number of distinct sources and this leads to
the upper bound of n on the number of decreasing moves each process can make. The
upper bound of n2 on the total number of decreasing moves by all processes follows.

5.1.1. The cause of a decreasing move. Let h(i, p) denote the value of the
variable h(i) after move M( , p) and before move M( , p + 1). Accordingly, we use
N−h (i, p) to denote the multi-set N−h (i) after move M( , p) and before move M( , p+1).

Consider a decreasing move M(i, p) by process i. Let us suppose that M(i, p) is
not the initial (first) move by process i. Intuitively, our goal is to identify a unique
neighbor of process i, say j, and a unique decreasing move, say M(j, q), by process j
to be the “cause” of move M(i, p). Since M(i, p) is not the initial move by process i,



608 S. BRUELL, S. GHOSH, M. KARAATA, AND S. PEMMARAJU

we can identify a p′ < p such that M(i, p′) is the move made by process i just before
move M(i, p). Note that M(i, p′) may or may not be a decreasing move. Focusing on
the situation just after move M(i, p′), we notice that since process i has just made a
move,

h(i, p′) = max (N−h (i, p′)) + 1.(5.1)

Since move M(i, p) is decreasing, we have that

h(i, p− 1) > max (N−h (i, p− 1)) + 1.(5.2)

Since M(i, p′) and M(i, p) are consecutive moves by process i, the value of the
variable h(i) does not change after move M(i, p′) and before move M(i, p). Hence,
h(i, p′) = h(i, p− 1). This fact, along with (1) and (2), implies that

max (N−h (i, p− 1)) < max (N−h (i, p′)).(5.3)

It is then easy to see that there exists a neighbor j, of i, such that

h(j, p− 1) ≤ max (N−h (i, p− 1))(5.4)

and j makes at least one decreasing move between moves M(i, p′) and M(i, p). Fur-
thermore, j itself may have made several decreasing moves between M(i, p′) and
M(i, p). Let M(j, q) be the last decreasing move by process j such that p′ < q < p.
Define cause(M(i, p)) = M(j, q). Note that so far cause() has been defined only for
those decreasing moves that are not initial moves. We extend the definition to include
decreasing moves that are initial, by setting cause(M(i, p)) = M(i, p) if M(i, p) is
decreasing and is the initial move by process i. Hence, the cause of a decreasing move
by a process is always a decreasing move made by that process or made by a neighbor.

We now state and prove two useful properties related to the function cause().
The first property is that distinct decreasing moves by a process have distinct causes.

Lemma 5.1. Suppose that M(i, p′) and M(i, p) are distinct decreasing moves
by a process i. Then cause(M(i, p′)) 6= cause(M(i, p)).

Proof. Without loss of generality assume that p′ < p. Then cause(M(i, p′)) =
M( , a′) for some a′ ≤ p′ and cause(M(i, p)) = M( , a) for some a, p′ < a < p. Thus
a′ < a and the lemma follows.

The next property that we establish is that the cause relationship is “acyclic.”
Lemma 5.2. Let M(i, p) be a decreasing move by process i. If M(i, p) is not the

initial move by process i, then the move cause(cause(M(i, p))) is not made by process
i.

Proof. Suppose that M(i, p) is not the initial move of process i. Then there is a
neighbor of i, say j, such that cause(M(i, p)) = M(j, q). If M(j, q) is the initial move
by process j, then cause(M(j, q)) = M(j, q) and the lemma holds. So we assume that
M(j, q) is not the initial move by process j. We combine inequalities (2) and (4) to
obtain

h(j, p− 1) ≤ max (N−h (i, p− 1)) < h(i, p− 1)− 1.(5.5)

After the decreasing move M(i, p) we have h(j, p) ≤ max (N−h (i, p)) = h(i, p) − 1,
implying that h(j, p) < h(i, p). By the same token, if cause(M(j, q)) = M(i, r) for
some r < q, then we should have

h(i, q) < h(j, q).(5.6)
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But, we know that h(j, q) ≤ h(j, p − 1) because M(j, q) is the last decreasing move
by process j before move M(i, p). In addition, it follows from (5) that h(j, p − 1) <
h(i, p − 1). We also know that h(i, p − 1) = h(i, q) because the h-value of process i
remains unchanged between moves M(j, q) and M(i, p). Thus we have

h(j, q) ≤ h(j, p− 1) < h(i, p− 1) = h(i, q),

which contradicts inequality (6). Hence, cause(M(j, q)) cannot be a move by process
i.

5.1.2. The source of a decreasing move. Based on the definition of the cause
of a decreasing move, we define the notion of the source of a decreasing move.

For each decreasing move M(i, p) define source(M(i, p)) as follows:

source(M(i, p)) =


M(i, p) if M(i, p) is decreasing and is

the first move of process i,
source(cause(M(i, p))) if M(i, p) is decreasing, but is

not the first move by process i.

Intuitively, source(M(i, p)) can be thought of as the initial move that is decreasing
and causes M(i, p) through a chain of decreasing moves.

Now suppose that

M(i0, p0),M(i1, p1), . . . ,M(ia, pa)

is a sequence of decreasing moves where
(a) M(i0, p0) = M(i, p),
(b) M(ia, pa) = source(M(i, p)), and
(c) for all b, 0 ≤ b ≤ a− 1, we have that M(ib+1, pb+1) = cause(M(ib, pb)), and

M(ib+1, pb+1) 6= M(ib, pb).
Using Lemma 5.2 and the fact that our algorithm is running on an acyclic network, we
conclude that the sequence i0, i1, . . . , ia is a path. Thus, we can associate with each
decreasing move M(i, p) a path i0, i1, . . . , ia, called the path to the source of move
M(i, p). By inductively applying Lemma 5.1 to paths to the sources of moves M(i, p)
and M(i, p′), we easily obtain the following lemma (see [23] for a proof).

Lemma 5.3. Suppose that M(i, p′) and M(i, p) are distinct decreasing moves by
process i. Then source(M(i, p′)) 6= source(M(i, p)).

Since the source of a decreasing move is the first move by some process, Lemma
5.3 has the following immediate consequence.

Corollary 5.4. Each process in T can make at most n decreasing moves.
As an immediate consequence we have the following lemma.
Lemma 5.5 (decreasing moves lemma). The processes in T can make a total of

at most n2 decreasing moves.

5.2. Increasing moves. In this section we show that the number of increas-
ing moves by the center-finding algorithm is finite. Consider an arbitrary execution
sequence of the center-finding algorithm. Since the algorithm can make at most n2

decreasing moves, there exists a finite prefix of the execution sequence that contains
all the decreasing moves made by the algorithm. Let the length of the smallest such
prefix be t. Hence the execution sequence X = M( , t+ 1),M( , t+ 2),M( , t+ 3), . . .
contains only increasing moves. Our goal is to show that X is a finite sequence.

Lemma 5.6 (increasing moves lemma). X is a finite sequence.
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Proof (by contradiction). To obtain a contradiction, suppose that X is infinite.
Clearly, there exists at least one process, say j0, such that infinitely many moves in
X are made by j0. Recall that a leafprocess can make at most one move (and that
move is decreasing) and hence j0 is not a leaf-process and has at least two neighbors.
Clearly, j0 has at least one nonleaf neighbor, say j1, that makes infinitely many moves
in X. We will now show that j0 has at least two neighbors that make infinitely many
moves in X. Again we show this by contradiction.

Suppose that j1 is the only neighbor of j0 that makes infinitely many moves in
X. Then there exists t′ > t such that no neighbor of j0, except j1, makes moves in
the execution sequence

X ′ = M( , t′),M( , t′ + 1),M( , t′ + 2), . . . .

Note that j0 and j1 make infinitely many moves in X ′. Clearly, after finitely many
moves in X ′, h(j1) will be strictly greater than the h-value of any other neighbor of j0.
This means that after finitely many moves in X ′, N−h (j0) will no longer contain h(j1)
and will therefore subsequently remain unchanged. But if N−h (j0) remains unchanged,
j0 has no reason to make any more moves. The implication is that j0 makes only
finitely many moves in X ′ and as a result j0 makes finitely many moves in X. This
contradicts our original supposition that j0 makes infinitely many moves in X.

Thus j0 has at least two nonleaf neighbors that make infinitely many moves in X.
The same is true of j1 and hence we claim that j1 has a nonleaf neighbor j2, distinct
from j0, that makes infinitely many moves in X. This argument can be carried on
further to claim the existence of an infinite sequence of distinct nonleaf processes that
make infinitely many moves in X. But this is a contradiction because T has a finite
number of processes. Hence, our original assumption that X is an infinite execution
sequence is false.

The increasing moves lemma along with the decreasing moves lemma (Lemma
5.5) leads to the following theorem.

Theorem 5.7. Any execution sequence of the center-finding algorithm is finite.
This establishes the total correctness of the center-finding algorithm.

6. Time complexity. In this section we establish upper bounds on the time
complexity of the center-finding and median-finding algorithms. In section 6.1 we
show that the center-finding algorithm makes O(n3 +n2 · ch) moves in the worst case,
where ch is the maximum initial h-value of any process. A similar proof shows that
the median-finding algorithm makes O(n3 ·cs) moves in the worst case, where cs is the
maximum initial s-value of any process. This proof is omitted (see [23] for the proof).
By worst case, we mean a case in which an adversary is allowed not only to maliciously
select an initial global state, but is also allowed to choose an execution sequence out
of many possible execution sequences. In [12] we show that, when measured in rounds,
the time complexity of our center-finding algorithms is Θ(r), where r is the radius
of the tree (eccentricity of the centers). A similar proof suffices to show that when
measured in rounds, the time complexity of our median-finding algorithm is Θ(d)
where d is the maximum distance from a median to a leaf.

6.1. Complexity of the center-finding algorithm. To be specific, define the
global state of the distributed system running the center-finding algorithm to be the
n-dimensional vector of natural numbers(

h(1), h(2), . . . , h(n)
)
.
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Let q be an arbitrary state of the system. We denote the h-value of process i in state
q by h(i,q). Accordingly, we use N−h (i,q) to denote the multiset N−h (i) in state q.
Given two n-dimensional vectors of natural numbers, q0 and q, we write q0 → q
if there is a move of the center-finding algorithm by some process in T that takes
the system from state q0 to state q. As is usual, we use

∗→ to denote the reflexive,

transitive closure of →. We use q0
p→ q to denote that there exists a sequence of p

moves of the center-finding algorithm that takes the system from state q0 to state q.
Consider two n-dimensional vectors of natural numbers q0 = (h1, . . . , hn) and

q′0 = (h′1, . . . , h
′
n). We say that q′0 dominates q0 (or q0 is dominated by q′0) if hi ≤ h′i

for all i, 1 ≤ i ≤ n. The next three lemmas are used in Theorem 6.5 to establish an
upper bound on the number of moves made by the center-finding algorithm in the
worst case. The following lemma can be easily shown by induction on the number of
moves required to take the system from state q0 to state q (see [23] for the proof).

Lemma 6.1. Suppose that q0 and q′0 are states of the center-finding algorithm

such that q0 is dominated by q′0. Let q be a state such that q0
∗→q. Then there exists

a state q′, with q′0
∗→q′, that dominates q.

In any state q of the system denote the maximum h-value of any process in T,
by hm(q). Let hM (q0) be the maximum h-value of any process in any state that is
reachable from q0. In other words,

hM (q0) = max{hm(q) | q0
∗→q}.

We know that hM (q0) exists because we have shown that the center-finding algorithm
converges to a state in which all guards are false in a finite number of moves. This
implies that every execution sequence starting at q0 is finite in length and hence the
number of states reachable from q0 is also finite. Thus hM (q0) is the maximum h-value
that any process can achieve when the center-finding algorithm is executed starting
in state q0. The following corollary immediately follows from the above lemma.

Corollary 6.2. Let q0 and q′0 be states of the center-finding algorithm such
that q0 is dominated by q′0. Then hM (q0) ≤ hM (q′0).

The following lemma uses Corollary 6.2 to establish an upper bound on the max-
imum h-value reachable from a state q0 = (ch, ch, . . . , ch), in terms of the maximum
h-value reachable from the state q′0 = (0, 0, . . . , 0). Since the proof of this lemma is
similar to the proof of Lemma 6.1, it is omitted.

Lemma 6.3. Suppose that q0 = (ch, ch, . . . , ch) for some ch ∈ N and q′0 =
(0, 0, . . . , 0). Then hM (q0) ≤ hM (q′0) + ch.

The following lemma establishes a relationship between hm(q0) and hM (q0).
Lemma 6.4. Let q0 be a state of T . Then, hM (q0) ≤ hm(q0) + bn/2c.
Proof. Let q′0 = (hm(q0), hm(q0), . . . , hm(q0)). Since q0 is dominated by q′0,

by Corollary 6.2, hM (q0) ≤ hM (q′0). Now let q′′0 = (0, 0, . . . , 0). By Lemma 6.3,
hM (q′0) ≤ hM (q′′0)+hm(q0). This leads to the inequality hM (q0) ≤ hM (q′′0)+hm(q0).
It is easy to see that an upper bound on hM (q′′0) is bn/2c.

Theorem 6.5. The center-finding algorithm can make at most O(n3+n2·hm(q0))
moves starting from state q0.

Proof. Let q be a state such that q0
∗→q. Let H(q) be the sum of the h-values of

all the processes in state q. Thus H(q) = Σi∈V h(i,q). Clearly, 0 ≤ H(q) ≤ nhM (q0),

for all q, with q0
∗→q. If the center-finding algorithm makes no decreasing moves,

then an upper bound on the total number of increasing moves is nhM (q0). But the
algorithm may make up to n2 decreasing moves and each decreasing move may reduce
the value of H() by at most hM (q0). Hence, the total amount of reduction that the
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{ Center-finding algorithm for vertex i }
∗
[
(i is a leaf) ∧ (h(i) 6= 0) −→ h(i) := 0

(i is not a leaf) ∧ (h(i) 6= max(NC−h (i))) −→ h(i) := max(NC−h (i))]

Fig. 6. The center-finding algorithm for a tree with nonunit edge costs.

decreasing moves can cause is at most n2hM (q0). Thus an upper bound on the total
number of increasing moves is nhM (q0) + n2hM (q0). Using Lemma 6.4 this bound
can be translated into (hm(q0) + bn/2c)(n + n2). Thus, including decreasing moves,
the center-finding algorithm can make at most O(n3 + n2 · hm(q0)) moves.

7. Extensions. It is easy to extend the center-finding and median-finding al-
gorithms to trees with arbitrary, positive edge costs. In particular, suppose that
c(i, j) ∈ <+ (the set of positive reals) is the cost associated with edge (i, j) ∈ E.
Based on this, we can define the distance d(i, j) between any pair of vertices i, j ∈ V
as follows. Let P be an arbitrary path between vertices i and j. The distance between
i and j along path P is the sum of the costs of all the edges in P . The distance d(i, j) is
the smallest distance between i and j along any path between i and j. Having defined
the distance d(i, j) between any pair of vertices i and j, we can define the notions of
eccentricity, weight, centers, and medians as in section 3.1.

We first focus on the task of modifying our original center-finding algorithm to
work correctly for trees with possibly nonunit edge costs. Before we present the mod-
ified algorithm, we introduce some additional notation.

• NCh(i) = {h(j) + c(i, j) | (i, j) ∈ E} denotes the multiset that contains, for
each neighbor j of i, the sum of the h-value of j and the cost of the edge
(i, j).
• NC−h (i) = NCh(i) − {max(NCh(i))} denotes all of NCh(i) with one maxi-

mum element removed.
The modified version of the center-finding algorithm is presented in Figure 6.

This algorithm is a generalization of our original center-finding algorithm (shown in
Figure 5). This is because if c(i, j) = 1 for all edges (i, j) ∈ E, then max(NC−h (i)) =
max(N−h (i))+1. The proof of total correctness of this algorithm is almost identical to
the proof of total correctness of our original center-finding algorithm and is therefore
omitted.

We now examine the task of generalizing the median-finding algorithm to work
correctly for trees with possibly nonunit edge costs. For any edge (i, j) in T , on deleting
(i, j) from T we obtain two trees, one containing i and the other containing j. Denote
these trees by Ti,j and Tj,i, respectively. Let Ni,j and Nj,i denote the number of
vertices in Ti,j and Tj,i, respectively. Korach, Rotem, and Santoro [27] characterize a
median of a tree as follows.

Lemma 7.1. A vertex i ∈ V is a median of T if and only if for all j ∈ N(i)
Ni,j ≥ Nj,i.

It is easy to see that even if edges have associated arbitrary, positive edge costs,
the above lemma holds. Therefore, we have the following.

Lemma 7.2. The medians of a tree remain unchanged independent of any change
in the costs of the edges.

Thus, our median-finding algorithm, without any modification, works correctly
for a tree with arbitrary, positive costs associated with its edges.
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8. Conclusion. The proofs of correctness of our algorithms rely on the assump-
tion that when a guard evaluates to true, then the corresponding action is executed
in one atomic step by the process. However, it is possible to show that our algorithms
are correct even when this assumption is relaxed in the following sense. Suppose that
each action by a process i is a sequence of atomic reads of i’s neighbors’ local vari-
ables followed by an atomic write into process i’s local variable. Now the execution
of our algorithms can be viewed as a sequence in which atomic reads and writes by
different processes are interleaved. The proofs of correctness of our algorithms under
these weaker assumptions are essentially similar, but more tedious than those we have
presented here. A sketch of the proof of the correctness of the center-finding algorithm
can be found in [12].

Our time complexity analysis (section 6) reveals that the number of moves made
by the center-finding algorithm depends not only on n, the number of processes in
T , but also on the initial h-values of the processes. This is somewhat unfortunate
because we can construct small trees with large initial h-values that could cause
the center-finding algorithm to be rather slow. The median-finding algorithm has
a similar problem. One possible way to overcome this problem is to assume that
each process knows an upper bound on the total number of processes in T . Using
this information, processes could refuse to make moves that would make their local
variable unreasonably large. We also suspect that the problem could be overcome by
the use of randomization.

Buckley and Harary [4] have defined various other types of “central” vertices
in a graph. Some examples are centroids, cores, pits, path-centers, p-centers, and p-
medians. Part of our future work will focus on extending the techniques presented in
this paper for designing self-stabilizing algorithms to locate p-centers and p-medians
of trees. Another aspect of this work that we wish to pursue further is applying the
techniques presented in this paper to locating centers and medians in arbitrary graphs.
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Abstract. In this paper we describe methods for mitigating the degradation in performance
caused by high latencies in parallel and distributed networks. For example, given any “dataflow”
type of algorithm that runs in T steps on an n-node ring with unit link delays, we show how to run
the algorithm in O(T ) steps on any n-node bounded-degree connected network with average link
delay O(1). This is a significant improvement over prior approaches to latency hiding, which require
slowdowns proportional to the maximum link delay. In the case when the network has average link
delay dave, our simulation runs in O(

√
daveT ) steps using n/

√
dave processors, thereby preserving

efficiency. We also show how to efficiently simulate an n × n array with unit link delays using

slowdown Õ(d
2/3
ave) on a two-dimensional array with average link delay dave. Last, we present results

for the case in which large local databases are involved in the computation.

Key words. hiding latency, parallel and distributed computation, linear and two-dimensional
arrays, complementary slackness
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1. Introduction. Most papers describing algorithms for parallel or distributed
computation assume a model of computation in which all the links have unit delay.
Such a model is nice to work with and it is realistic for some parallel machines, but
not for most. In reality, there are often substantial delays associated with some or
all of the links. These delays can be caused by long wires, links that are realized
by paths that go through one or more intermediate switches, wires that are required
to go off-chip or off-board, communication overheads, and/or by the method which
is used to prepare a packet for entry into the network. Link delays are an even
greater concern for distributed machines and networks of workstations (NOWs). This
is because some latencies can be very high (due to the fact that some processors can
be far apart physically) and also because the variation among latencies can be high
(since some processors may be very close or even part of the same tightly coupled
parallel machine).

1.1. Traditional approaches. Since communication latency is an important
factor in the performance of a parallel or distributed algorithm, several methods have
been devised in an attempt to compensate for latency. The simplest of these methods
is to slow down the computation to the point where the latency is accommodated.
This approach is most commonly used at the circuit level, where the clock speed
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is set to be slow enough so that all of the data has time to reach its destination
before the next step begins. This means that the circuit needs to be slowed down to
accommodate the highest latency. Such an approach is clearly less than desirable in
the context of a NOW with high-latency links.

An alternative approach is to organize the network in a hierarchical fashion so
that the latencies are consistent with the hierarchy. For example, the CM-5 [1, 14]
is organized into a fat tree and the KSR consists of two levels of nested rings. In
both cases, the highest latency links are segregated into the top levels of the network
hierarchy. This type of architecture works well for applications in which most of the
computation is local since local computation can proceed using the low-level low-
latency links. Only rarely, it is hoped, would the high-latency links be needed. Thus,
only certain steps of the computation would be slow. Unfortunately, this approach is
not suitable for scenarios where the network is unstructured (which is often the case
for a NOW) or when the underlying application requires frequent communications
through the high-level links.

Redundant computation is another approach that has been used in the past [6,
11, 13] to hide the effects of latency. Here the idea is to avoid latency by recomputing
data locally instead of waiting to receive it through a high-latency link.

Probably the most generally applicable method of hiding latency is the approach
known as complementary slackness. The idea behind this approach is to load each
processor with enough work so that it stays productive while waiting for data to be
supplied by the network. There are many implementations and incarnations of this
method. For example, each processor in the CRAY YMP C-90 keeps busy by operating
on a pipeline of 128 64-bit words. Processors on the HEP machine [21] swapped
between unrelated threads while waiting for the data. The CM-1 and CM-2 were
designed to simulate much larger virtual machines so that a single processor would
perform the computation of many virtual processors [4, 22]. The technique also forms
a critical component of Valiant’s bulk synchronous model of parallel computing [23, 24]
and it has been employed in several papers [3, 10, 11, 15, 20].

Unfortunately, in all of the preceding examples, it is incumbent on the program-
mer to provide the slackness or pipelining needed or to determine what part of the
computation must be redundantly duplicated and by which processors to overcome
the latencies in the network. Even in the scenario where a large virtual network is
being simulated on a small parallel machine, it is incumbent on the programmer to
find the parallelism necessary to efficiently implement the algorithm on a (potentially
very large) virtual network.

The goal of our research is to devise automatic methods for hiding latency. Our
approach falls within the broad class of methods based on complementary slackness,
but it does not require the programmer to provide slackness, pipelines, or greater
parallelism in order to hide the latency. Rather, our methods attempt to find the
slackness automatically. By automatically finding the slackness, we hope to allow the
programmer to assume that there are uniform delays on each link of the network,
thereby easing the task of writing code. Moreover, our methods will enable us to
automatically convert a program that was written for a well-structured unit-delay
machine into a program that will run with minimal degradation in performance on
a network with potentially large and variable latencies, at least for certain classes of
networks.

1.2. Model and problem. We consider the problem of simulating a network G
with unit-delay links on a network H with arbitrary delays on its links. We refer to G
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Fig. 1. The computation pebbles created by a guest linear array.

as the guest and H as the host. Let g1, g2, . . . be the processors of G and p1, p2, . . . be
the processors of H. We shall use pebbles to record the computations performed by the
guest processors. In particular, pebble (i, t) represents the tth step of computation by
processor gi. In a simulation of G, H carries out the same step-by-step computation
as G. In other words, H simulates G by computing every pebble created by G in an
order that preserves the “dependency” of the pebbles. Our goal is to provide methods
that would allow H to simulate G with a minimum amount of slowdown when G is
used in a general-purpose way. Formally, slowdown is the ratio of TH to TG, where TG
is the time taken by G to compute all the pebbles and TH is the time taken by H to
simulate this computation. Two computation models are studied here: the dataflow
model and the database model.

Dataflow model. In the dataflow model, each computation solely depends on
the computation of the previous step. Creating a pebble (i, t) involves two time units.
The first time unit is for communication, where gi obtains pebbles of the form (j, t−1)
from all its neighbors gj . The second time unit is for computation, where gi performs
computation based on pebbles (j, t−1) and records the result in pebble (i, t). Take an
example of an n-node guest linear array. In 2T time steps, G creates n× T pebbles,
where pebble (i, t), for 1 < i < n and 1 < t ≤ T , depends on pebbles (i − 1, t − 1),
(i, t − 1), and (i + 1, t − 1). (See Figure 1.) Any host processor p can compute
pebble (i, t) as long as p has the information in pebbles (i − 1, t − 1), (i, t − 1), and
(i + 1, t − 1), either by directly computing these pebbles or by receiving them from
neighboring processors.

The dataflow model is applicable to many computations such as matrix opera-
tions, Fourier transform, sorting, algorithms for computational geometry, etc. A large
number of examples can be found in [12].

Database model. In the database model each guest processor gi has a poten-
tially large local memory that may be accessed and updated by gi during each step.
We refer to the local memory of gi as the database, bi. Each computation not only
depends on the computation of the immediate past but also the state of the database.
For example, let G be a linear array. To create pebble (i, t), gi first communicates



618 M. ANDREWS, T. LEIGHTON, P. T. METAXAS, AND L. ZHANG

with its neighbors, then performs computations based on pebbles (i−1, t−1), (i, t−1),
and (i + 1, t − 1) and the current state of database bi. Last, gi updates database bi.
Hence, creating a pebble involves two time units as in the dataflow model: one for
communication and one for computation and recording.

In the database model, a pebble not only records the result of a computation
but also the changes to the database incurred by this computation. To emphasize,
a pebble does not contain a snapshot of the whole database but rather the changes
incurred by one computation. Therefore, a pebble has small size and can be passed
along links.

In order to simulate G on H, we assume that the initial contents of each database
can be copied before the computation begins (thereby allowing redundant computa-
tions), but that the large size of a database makes it impractical to transmit a copy
of a database through the network during the computation. Suppose processor p of
H copies databases bi and bj ; then p only has access to bi and bj and hence can only
compute pebbles of the form (i, t) and (j, t) for t ≥ 1. Moreover, if both processors p
and q decide to copy bi, then p and q each maintains a copy of bi, and each looks up
and updates its own copy. If p is to compute pebble (i, t), then p needs an updated
copy of the database that includes all the changes incurred by the computations (i, t′)
for all t′ < t. Hence, p must either have directly computed all the pebbles (i, t′) or
else have received the information from its neighbors.

Unlike the dataflow model, the database model captures a scenario where the
computation performed by a processor depends on the state of a local memory or
where part of the computation performed by a processor is to update its local mem-
ory. These situations could be critical in some applications involving a network of
workstations.

Bandwidth. The guest network G has unit bandwidth on each link. This allows
each pebble to be passed along a unit-delay link of G in one time step. In our
simulation we assume that the link bandwidth of the host network H is w. That is,
P pebbles can be passed along a d-delay link of H in d+ dPw e− 1 steps by pipelining.
In many cases of our study, it is sufficient to assume that the host and the guest have
comparable link bandwidth; i.e., w is a constant. However, in certain situations the
bandwidth needs to be Õ(logn). Otherwise, we pay an extra factor of Õ(logn) in the
slowdown. The details are discussed in sections 3.2.4 and 4.2.4.

1.3. Results. Table 1 summarizes our results. In the table, n is the size of the
guest, dave is the average delay of the host and “Bd-deg” stands for bounded-degree.
The ratio of n and the slowdown is the size of the host, since all the simulations
are work efficient; i.e., it takes the guest and the host the same amount of work to
compute the same result, where work is the product of the number of processors used
and the running time.

The first two results in Table 1 are proved in terms of linear arrays. An n-node
unit-delay ring is essentially the same as an n-node unit-delay linear array, since the
latter can simulate the former with a slowdown of 2 [12]. Result 1 is asymptotically
optimal in some cases. In addition, we also have a constant-approximation algorithm
for simulating rings and linear arrays in the dataflow model. Results 2 and 3 are
optimal up to a polylogarithmic factor in some cases. Result 3 is for a worst-case
model. When the delays on the host are randomly arranged, the bound can be

improved to O(d
2/3
ave ). Results 4 and 5 are easy generalizations of results 1 and 2,

respectively. Sections 2 and 3 present latency hiding methods for the dataflow model.
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Section 4 concentrates on the database model.

The methods for latency hiding in the two computation models are substantially
different. For example, we make heavy use of redundant computation in the database
model, whereas redundancy is apparently not useful for the dataflow model.

Our bounds indicate that hiding latency in the database model is more difficult
than in the dataflow model. Intuitively, this is because computation in the dataflow
model is processor independent and hence can be done by any processor with the
information of the previous computation. In the database model, computation can
only be done by the processors with the right databases. One cannot afford to pass
large databases across the links with limited bandwidth, because this will cause high
slowdown. One also cannot afford to keep many copies of the databases, because
memory is expensive and keeping every copy of the databases updated is difficult.

In section 4, we also establish limits on the degree to which the high latency can
be mitigated when each database is allowed a small number of copies. For example, if
each database has only one copy, we show that the slowdown can be as much as dmax

even if dave is a constant and the best simulation is used. When each database has
at most two copies and each host processor copies a constant number of databases,
we give an example of a host whose average delay is a constant, but for which the
slowdown has a lower bound of Ω(logn). These results demonstrate that it is easier
to overcome latencies in dataflow types of computations than in computations that
require access to large local databases.

1.4. A related scheduling problem. The problem of latency hiding in the
dataflow model can be viewed as the following scheduling problem. The pebbles
created by the guest network together with their dependencies form a directed acyclic
graph (dag), whose nodes represent computational tasks of equal execution time, and
whose arcs represent precedence. All these tasks are to be computed by the processors
in a given host network. If the same host processor computes two tasks of direct
dependence, no communication cost is incurred. Otherwise, there is a communication
cost between the two host processors that compute these two tasks, and this cost is
equal to the total delay between the processors in the host network. The goal here
is to schedule the dag (with possible repetitions of the nodes) using the given host
processors so as to minimize the makespan, i.e., the total time taken to execute all
the tasks.

A variation of the above scheduling problem has been studied. Here, we are given
any task dag (not necessarily created by a guest network in the dataflow model). All
the arcs in the dag are associated with a fixed quantity that indicates the communica-

Table 1
Result summary.

Guest Host Model Order of slowdown

1 Ring/linear array Bd-deg network Dataflow
√
dave

2 Ring/linear array Bd-deg network Database
√
dave log3 n

3 2-D array 2-D array Dataflow d
2/3
ave log5/3 n

4 2-D array Bd-deg network Dataflow n1/4(
√
dave + n1/4)

5 2-D array Bd-deg network Database n1/4 log3 n(
√
dave + n1/4)
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tion cost. Note that, unlike our problem, the communication cost here is the same for
any processor pair. In [18] Papadimitriou and Ullman studied an n×n grid dag (which
they called a diamond dag). They showed a nontrivial time-communication tradeoff
and gave an asymptotically optimal schedule. Their result was similar to the special
case of our Result 1 stated in section 1.3, where all the link delays in our host network
are the same. In [19] Papadimitriou and Yannakakis presented a 2-approximation al-
gorithm for general dags where an unlimited number of processors could be used.
For well-known families of dags such as the full binary tree, the diamond dag, and
the fast Fourier transform, only a finite number of processors were needed and their
approximation algorithms were optimal (or near optimal). Redundant computation
was used in [19].

Dag scheduling has been studied in other papers, including [2, 5, 7, 8, 9, 16, 17].
Some variations of the problem are the cases in which the dags are limited to certain
topologies, the task nodes require different execution times, arcs require different
communication time, and processors have different processing powers.

2. Dataflow model—Linear arrays. We begin our presentation with the
methods for hiding latency in linear arrays. Our basic approach is to transfer a
process that involves a two-way communication to a process that involves one-way
communication only. (This idea is also essential for simulating two-dimensional arrays
in section 3.) We present an asymptotically tight bound on the slowdown for linear
arrays. All the results for linear arrays are applicable to rings.

2.1. Average delay—An upper bound. Let the network G be an n-processor
guest linear array with unit delay on all the edges. Let the network H be an n-
processor host linear array with arbitrary delays, where di is the delay on the ith edge
of H. As discussed in section 1.2, in 2T time steps G creates n × T pebbles, where
pebble (i, t), for 1 < i < n and 1 < t ≤ T , depends on pebbles (i− 1, t− 1), (i, t− 1),
and (i+ 1, t− 1). We first present algorithm Stripe in which H simulates G with a

slowdown of O(dave), where dave =
∑n−1
k=1 dk/(n− 1) is the average delay of H.

Consider the first n/2 rows of pebbles created by G. Let L be the triangle formed
by pebbles (i, t), where i+ t ≤ n+ 1. Let R be the triangle formed by pebbles (i, t),
where i ≤ t. (See Figure 2.) In Stripe, H first simulates the bottom half of L
and then the bottom half of R. At this point every pebble in the first n/2 rows is
simulated. If the entire computation of G is partitioned into groups each of which
consists of n/2 rows of pebbles, then H can repeat the process and simulate every
group in a similar manner.

To simulate the bottom half of L, the computation pebbles of G are divided into
n slanted stripes, and each processor of H simulates one stripe. (See Figure 2.) In
particular, processor pi of H simulates a stripe consisting of pebbles (i− t+ 1, t) for
1 ≤ t ≤ i and t ≤ n/2. Note that in the original computation by G, processor gi
depends on both gi−1 and gi+1. However, in the simulation by H pi depends on pi−1

and pi−2. Hence, Stripe transforms a process that involves two-way communication
into a process that involves only one-way communication.

Lemma 2.1. Processor pi (1 ≤ i ≤ n) is able to compute pebble (i − t + 1, t) at

step t+
∑i−1
k=1 dk.

Proof. We use induction on i. The base case for p1 is obvious. Pebble (i− t+1, t)
depends on pebbles (i−t, t−1), (i−t+1, t−1), and (i−t+2, t−1), which are computed
by processors pi−2, pi−1, and pi, respectively. By induction these three pebbles are
computed at step (t − 1) +

∑i−3
k=1 dk, (t − 1) +

∑i−2
k=1 dk, and (t − 1) +

∑i−1
k=1 dk,
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Fig. 2. (Left) Triangles L and R. (Right) Algorithm Stripe. Each slanted stripe is simulated
by one processor of H. Arrows correspond to communications. Dashed lines correspond to the delays
di encountered by communications.

respectively. It follows that (i− t+ 1, t) can be computed at step t+
∑i−1
k=1 dk.

Hence, pebbles (i + 1, n/2), for 0 ≤ i ≤ n/2, are computed at steps n/2 +∑i+n/2−1
k=1 dk, and so the bottom half of L is simulated in n/2 +

∑n−1
k=1 dk steps by H.

The bottom half of R is simulated in a similar manner. (Note that the intersection
of R and L only needs to be computed once.) Thus, H has completed simulating
the first n/2 rows of pebbles created by G. To continue the simulation, each pebble

(i, n/2) is passed to processor pi. With pipelining, this can be done in
∑n−1
k=1 dk steps.

The next n/2 and every subsequent n/2 rows of pebbles can be simulated in a similar
manner. Therefore, the slowdown is upper bounded by

s =
2 · (n/2 +

∑n−1
k=1 dk) +

∑n−1
k=1 dk

n/2
= O(dave).

2.2. A better upper bound. To get a better upper bound on the best achiev-
able slowdown, we use the idea of “complementary slackness” in our new algorithm
called FatStripe. Each host processor is loaded with enough work to balance out the
communication time. Suppose FatStripe uses an interval of m processors to carry
out the simulation. For simplicity, assume that this interval consists of processors
p1, . . . , pm. The bottom half of L is divided into m slanted stripes, each of which has
width ` = n/m. Again, pi computes every pebble in stripe i. (See Figure 3.) Within
each stripe i, pi first computes all the pebbles in the bottom row and then moves up.

Lemma 2.2. Processor pi finishes simulating stripe i by step `n/2 +
∑i−1
k=1 dk.

Proof. We inductively show that pi can compute the pebbles in the xth row of
stripe i by time step `x+

∑i−1
k=1 dk. The base of the induction holds trivially for i = 1

and x = 1, since processor p1 does not depend on other processors and pebbles in the
first row do not depend on other pebbles. Let us consider the pebbles on the (x+1)st
row of stripes i+ 1 for x ≥ 1 and i ≥ 1. These pebbles could only depend on pebbles
on the xth row of stripe i−1, i, and i+1, which can be computed by processors pi−2,
pi−1, and pi by steps `x+

∑i−3
k=1 dk, `x+

∑i−2
k=1 dk, and `x+

∑i−1
k=1 dk, respectively, by

induction. Hence, pi is able to receive all the information necessary to compute its
(x+ 1)st row by step `x+

∑i−1
k=1 dk and therefore finish computing the (x+ 1)st row

by step `(x+ 1) +
∑i−1
k=1 dk. Since each stripe contains at most n/2 rows, pi finishes

simulating stripe i by step `n/2 +
∑i−1
k=1 dk.

Hence, the slowdown is O(n/m +
∑m−1
k=1 dk/n) in simulating the first n/2 rows

of pebbles. All the subsequent n/2 rows can be simulated in a similar manner. To
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Fig. 3. Algorithm FatStripe. Processor pi simulates stripe i, which has width ` = n/m. (In

the figure, ` = 4.) All the pebbles in stripe i are computed by time step `n/2 +
∑i−1

k=1
dk.

minimize the slowdown, FatStripe uses the interval I (with mI processors and dI
average delay) that minimizes the quantity n/mI + dImI/n. Therefore, Theorem 2.3
follows.

Theorem 2.3. FatStripe achieves slowdown of minintervals I O(n/mI+dImI/n).
In the case when

√
dave ≤ n, there exists an interval I with MI = n/

√
dave

processors and average delay dI ≤ dave by the pigeon-hole principle. Theorem 2.3
implies that the slowdown is O(

√
dave) when MI simulates G. In the case when√

dave > n a single host processor is used to carry out the simulation, which incurs a
slowdown of n = O(

√
dave). The simulation is work efficient in both cases. Therefore,

Corollary 2.4 holds.
Corollary 2.4. FatStripe efficiently simulates G on H and achieves a slow-

down of O(
√
dave), where dave is the average delay of H.

Let us consider the effect of bandwidth on the slowdown. In FatStripe as long
as the stripe width is at least 2, then pebbles cross the edges one at a time by using
pipelining. In Stripe (i.e., FatStripe with stripe width 1) at most two pebbles may
cross an edge at the same time. Therefore, it is sufficient for the host bandwidth to
be twice as large as that of the guest bandwidth. Otherwise, we pay another factor
of 2 in the slowdown.

2.3. A matching lower bound. We proceed to show that the upper bound,
minI O(n/mI + dImI/n), in Theorem 2.3 is asymptotically tight by showing that
minI max{n/2mI , dImI/2n} is a lower bound on the best achievable slowdown even
if we allow redundant computation. Note that with redundant computation, a pebble
may be computed by several host processors. This technique makes it more likely for
the host to simulate the guest efficiently. However, we show below that redundancy
does not help in this case.

Lemma 2.5. The top pebble, (1, n) of triangle L, cannot be computed at a time
step earlier than

τ = min
intervals I

max{n2/2mI , dImI/2}.

Proof. We consider how the pebbles in L are computed in some simulation of
G by H. In particular, we build a ternary tree T to keep track of the processors
that have “effectively” computed the pebbles in L. The top pebble (1, n) has to be
computed by some processor of H. Call this processor q. (If more than one processor
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of H has computed (1, n), then we pick any one of them to be q.) We label the root of
tree T with q(1,n). Let u be a processor that has computed (1, n− 1) and has passed
this information to q, and let v be a processor that has computed (2, n− 1) and has
passed this information to q. (Note that other processors may compute (1, n− 1) and
(2, n − 1). We are only concerned with processors that pass information to q.) Now
label the children of q(1,n) with u(1,n−1) and v(2,n−1). We proceed to construct the
children of u(1,n−1) and v(2,n−1). In general, node a(i,t) in T has children b(i−1,t−1),
c(i,t−1), and d(i+1,t−1) if the following holds. Processors a, b, c, and d compute pebbles
(i, t), (i− 1, t− 1), (i, t− 1), and (i+ 1, t− 1), respectively, and a receives the values
of (i− 1, t− 1), (i, t− 1), and (i+ 1, t− 1) from b, c, and d before a is able to compute
(i, t). The leaves of T are nodes of the form p(i,1). The important observation is the
following. If p(i,t) is a node in T , then information has to be passed from processor p to
q in H. The total delay from p to q lower bounds the number of steps in the simulation.

Let J be the smallest interval that contains all the processors appearing in tree T .
If processors x and y are at the two ends of J , then there exist two nodes of the form
x(ix,tx) and y(iy,ty) in T . Hence, information has to be passed from x and y to q in H.
This takes at least dJmJ/2 steps, and pebble (1, n) therefore cannot be computed at
a step earlier than dJmJ/2. Since mJ processors are computing n2/2 pebbles, a work
argument shows that (1, n) cannot be computed before step n2/2mJ . Hence, (1, n)
cannot be computed at a step earlier than τ = minI max{n2/2mI , dImI/2}.

It follows that the slowdown in simulating triangle L is lower bounded by τ/n.
By a similar argument to Lemma 2.5 none of the pebbles (i, n), for 1 ≤ i ≤ n, can be
computed at a time step earlier than τ . By repeating this argument the first kn rows
of G cannot be simulated in time less than kτ . Therefore, we obtain Theorem 2.6.

Theorem 2.6. The slowdown of any simulation of an n-node guest linear array
G by a host linear array H is lower bounded by minI Θ(n/mI + dImI/n), where I is
a subarray of H and has mI processors and average delay dI . Hence, FatStripe is
optimal up to a constant factor.

2.4. Simulating linear arrays on general networks. We now consider sim-
ulating a linear array G on a general n-node network H with average delay dave. We
first embed a linear array H in H and then use H to carry out the simulation of G.

Lemma 2.7. Let H be a connected n-node network with arbitrary topology. Then
an n-node linear array H can be one-to-one embedded in H such that every edge of
H is used at most twice in H.

Proof. Our proof follows the approach of Theorem 3.15 in [12, page 470]. We
include the proof here for completeness. It is sufficient to embed a linear array H in
a spanning tree of H. The proof proceeds by induction on the height of the tree with
the following inductive hypothesis. For any child u of the root v, there is a one-to-one
embedding of a linear array in the tree such that v and u form two endpoints of the
array, the edge uv is used at most once, and all other edges of the tree are used at
most twice. (Note that we treat all the edges as undirected.)

Let T be any spanning tree of H. The base of the induction in which T is a single
node, i.e., the height is 0, is trivial. Otherwise, let v be the root of T and u be any
child of v. We label the children of v as u1, . . . , ud and assume u = ud without loss of
generality. We place the first node of the linear array at v, and we place the second
node of the array at any child w of u1 (if any) using edges vu1 and u1w. Next, we
inductively place the nodes of the array in each node of the subtree of T rooted at
u1, making sure that the last node is placed at u1, the edge u1w is used at most once,
and that all other edges in the subtree are used twice. Therefore, edge u1w is used at
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Fig. 4. Embed a linear array one to one in a tree such that each tree edge is used at most twice.
The dotted lines indicate tree edges and the solid lines indicate array edges.

most twice in total.

We place the next node of the linear array at any child x of u2 (if any), using
edges u1v, vu2 and u2x. Again, we inductively place nodes of the linear array in the
subtree rooted at u2 such that u2 and x are endpoints. We continue in this fashion.
At the last subtree rooted at u, we enter this subtree at a child of u (if any) and exit
at u. This completes the embedding of the linear array. Our lemma follows from the
observation that the linear array has endpoints v and u, edges vu1, . . . , vud−1 are
used twice, and vud is used once. (See Figure 4.)

Since H has n nodes and degree δ, H has at most δn/2 edges, and therefore the
total delays on all edges of H are at most δdaven/2. By Lemma 2.7, H uses each
edge of H at most twice. Hence, the total delays on all edges of H is at most δdaven,
and the average delay of H is at most δdave. By Corollary 2.4, H can simulate G
with a slowdown of O(

√
δdave). When H has bounded degree, i.e., δ = O(1), we have

Theorem 2.8.

Theorem 2.8. A bounded-degree host network with average delay dave can effi-
ciently simulate an n-processor guest linear array with a slowdown of O(

√
dave).

Theorem 2.8 does not hold when H has unbounded degree. Consider the follow-
ing example. Let H be a linear array of

√
n cliques, in which each clique contains

√
n

nodes. If a clique edge has delay 1 and an edge connecting two adjacent cliques has
delay n, then H has dave < 4. Suppose m connected cliques are used to simulate n
steps of G. Lemma 2.5 implies a slowdown of minm max{√n/2m,m/2} in simulat-
ing every n steps of computation by the guest. The first term follows from a work
argument, since m

√
n processors are in m cliques. The second term comes from the

communication delay, since a linear array embedded in these m connected cliques has
a total delay of at least mn. Hence, the slowdown is at least minm max{√n/2m,m/2},
which is Ω(n1/4), whereas the average delay is a constant.

3. Dataflow model—Two-dimensional arrays. In this section we present
methods for hiding latency in two-dimensional arrays. The analysis here is substan-
tially more complex than that for the one-dimensional case. We focus on simulating
a two-dimensional array on a two-dimensional array. Section 3.1 generalizes the ap-
proach for the linear arrays. Section 3.2 introduces some new mechanism to improve
the bound. Section 3.3 discusses the case when the delays are randomly arranged.
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Fig. 5. Algorithm 2d-Ray. In pyramid P1 the dashed line represents the ray of pebbles computed
by processor pi,j (which is shown in the upper left corner). Two of those pebbles, computed at times
t and t− 1, are shown shaded. The five numbered pebbles are those upon which (i− t+ 1, j− t+ 1, t)
depends.

3.1. An analogue of the one-dimensional case. Let the guest network G be
an n×n two-dimensional array with unit delay on all the edges. Let the host network
H be an n × n two-dimensional array with arbitrary delays. Let xi,j be the delay
between processors pi,j and pi+1,j of H for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n, and let yi,j
be the delay between pi,j and pi,j+1 of H for 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1. The tth
step of computation by processor gi,j of G is recorded in pebble (i, j, t). In 2T steps,
G creates n × n × T pebbles, where pebble (i, j, t), for 1 < i, j < n and 1 < t ≤ T ,
depends on (i− t+ 1, j− t+ 1, t− 1), (i− t, j− t+ 1, t− 1), (i− t+ 2, j− t+ 1, t− 1),
(i− t+ 1, j − t, t− 1), and (i− t+ 1, j − t+ 2, t− 1).

Consider the first n/2 steps of computation by G. We define four pyramids P1, P2,
P3, and P4 analogous to the left and right triangles in the linear array case. All four
pyramids have the square, defined by vertices (1, 1, 1), (1, n, 1), (n, 1, 1), and (n, n, 1),
as their bases. The top vertices of P1, P2, P3, and P4 are (1, 1, n), (1, n, n), (n, 1, n),
and (n, n, n), respectively. Note that the bottom half of the four pyramids contains
all the pebbles created by G for the first n/2 steps of computation.

Algorithm 2d-Ray is a two-dimensional analogue of Stripe. To simulate the
first n/2 steps of computation of G, 2d-Ray simulates P1, P2, P3, and P4 one by
one. Pyramid P1 is divided into n2 rays, each of which is simulated by one processor
of H. In particular, processor pi,j of H simulates ray Ri,j , consisting of pebbles
(i− t+ 1, j − t+ 1, t) for 1 ≤ t ≤ min{i, j, n/2}. (See Figure 5.) When every pebble
for the first n/2 steps of computation of G is simulated, 2d-Ray repeats the process
and simulates the next n/2 steps of computation. In the following we bound the
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slowdown in terms of the total delay on monotone paths, where a monotone path
travels in two directions, up and right. Let the length of a path be the total delay on
the path, and let Di,j be the length of the longest monotone path from processor p1,1

to pi,j in H. We have Lemma 3.1.

Lemma 3.1. Processor pi,j of H is able to compute pebble (i− t+ 1, j − t+ 1, t)
at step Di,j + t.

Proof. We use induction on the indices (i, j) of the processors. The base of
the induction for p1,1 is obvious. Pebble (i − t + 1, j − t + 1, t) depends on pebbles
(i−t+1, j−t+1, t−1), (i−t, j−t+1, t−1), (i−t+2, j−t+1, t−1), (i−t+1, j−t, t−1),
and (i−t+1, j−t+2, t−1), which are computed by processors pi−1,j−1, pi−2,j−1, pi,j−1,
pi−1,j−2, and pi−1,j , respectively. (See Figure 5.) By induction, these five pebbles are
computed at stepsDi−1,j−1+(t−1), Di−2,j−1+(t−1), Di,j−1+(t−1), Di−1,j−2+(t−1),
and Di−1,j + (t− 1), respectively. It follows that pebble (i− t+ 1, j − t+ 1, t) can be
computed at step max{Di−1,j + xi−1,j , Di,j−1 + yi,j−1}+ t = Di,j + t.

Hence, 2d-Ray simulates pyramid P1 in Dn,n + n steps. Since P2, P3, and P4

can be simulated similarly, 2d-Ray simulates the first n/2 steps of computation of G
in O(Dn,n + n) steps. The simulation is repeated for every n/2 steps of computation
of G. Therefore, Lemma 3.2 holds.

Lemma 3.2. Algorithm 2d-Ray achieves a slowdown of O(Dn,n/n), where Dn,n

is the length of the longest monotone path in H.

Unfortunately, Dn,n can be large compared with dave, the average delay of H.
In the worst case Dn,n can be Θ(n2dave), implying a slowdown of Θ(ndave). We
introduce algorithm FatRay, a two-dimensional analogue of FatStripe, to achieve
a slowdown that is often better than O(Dn,n/n). Pyramid P1 is divided into m2 rays,
each of which has size `× ` = n

m × n
m . FatRay uses an m×m contiguous subarray

of processors in H to carry out the simulation. For simplicity, assume FatRay uses
processors pi,j (1 ≤ i, j ≤ m). Again, pi,j computes every pebble in ray Ri,j , and pi,j
first computes all the pebbles on the bottom plane and then moves up. The following
lemma is analogous to Lemma 2.2.

Lemma 3.3. Processor pi,j finishes simulating ray Ri,j by using step `2n/2+Di,j.

Proof. As in Lemma 2.2 we can inductively show that pi,j can compute all the
pebbles in the xth plane in ray Ri,j by using time step `2x + Di,j . Since each ray
contains at most n/2 planes of pebbles, pi,j finishes simulating ray Ri,j by using step
`2n/2 +Di,j .

This implies a slowdown of O(n2/m2 + Dm,m/n). To minimize the slowdown,
FatRay uses the contiguous subarray S that minimizes n2/m2

S +DS/n, where mS ×
mS is the size of S and DS is the length of the longest monotone path in S.

Theorem 3.4. FatRay achieves a slowdown of minsubarrays S O(n2/m2
S+DS/n).

Unfortunately, the slowdown can still be big compared with dave. For example,
suppose that H is partitioned into n squares of size

√
n×√n with one edge of delay

n in the center of each square and unit delay on all other edges. The slowdown is
minS Θ(n2/m2

S + DS/n) = Θ(n1/3), whereas dave is a constant. Matters are better,
however, when all the delays are the same, as we show in the following theorem.

Theorem 3.5. In the case where all the delays in H are d, FatRay efficiently
simulates G on H and achieves a slowdown of Θ

(
min{d2/3, n2}). The slowdown is

optimal up to a constant factor.

Proof. When d ≤ n3 FatRay uses a subarray of size n
d1/3 × n

d1/3 . Theorem 3.4 im-

plies a slowdown of O(d2/3). We show that the slowdown is asymptotically tight as fol-
lows. Consider pebble (i, j, d1/3), and suppose processor q computes it in a simulation.
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Let A be the set of pebbles of the form (i′, j′, t), for 1 ≤ t < d1/3, on which (i, j, d1/3)
depends; i.e., (i, j, d1/3) cannot be computed until after (i′, j′, t) is computed. If every
pebble in A is computed q, then it takes at least |A| = Ω

(
(d1/3)3

)
= Ω(d) time steps

to simulate A. Otherwise, a processor p 6= q computes some pebble in A and passes
this information to q. The delay from p to q is at least d. Hence, the slowdown on
simulating the first d1/3 steps is d2/3. The same argument applies for the slowdown
in the next d1/3 steps.

When d > n3 FatRay uses a single host processor for the simulation and achieves
a slowdown of O(n2). This slowdown is asymptotically tight for the same reason as
in the previous case. We consider pebbles (i, j, n) instead of (i, j, d1/3). In both cases
the simulation is work efficient.

Theorem 3.5 can be generalized to any k-dimensional array for k ≥ 1.

Theorem 3.6. Suppose G is an n × · · · × n k-dimensional array with unit-
delay edges, and H is an n× · · · × n k-dimensional array with delay-d edges; then H
can efficiently simulate G with a slowdown of Θ(min{dk/k+1, nk}). The slowdown is
optimal up to a constant factor.

3.2. Improved bounds for worst-case delays. In order to improve the slow-
down, we observe that not all the host processors are useful. If a host processor
is surrounded by high delays, then the benefit to be gained by using its computing
power is nullified by the communication cost. We first describe criteria of remov-
ing such host processors. We then embed guest processors to the unremoved host
processors. Suppose that guest processor gi,j is mapped to host processor p; then p
computes the pebbles in ray Ri,j in the 2d-Ray algorithm. For any arrangement of
the delays in H, we show how to embed G on H such that, for any monotone path
in G, its image in H has length of O(daven log5/2 n). As a result, Lemma 3.2 implies

a slowdown of O(dave log5/2 n) as long as only O(1) guest processors are mapped to
each host processor. By applying the idea used in FatRay, we improve the slowdown

to O(d
2/3
ave log5/3 n) and achieve work efficiency at the same time.

3.2.1. Removing useless processors. We first recursively represent H using a
quadtree, in which each node corresponds to a subarray of H. The root represents the
entire n× n array. The four children of the root represent the four n

2 × n
2 subarrays,

etc. In general, a node at depth k of the quad tree corresponds to an n
2k
× n

2k
subarray

of H. We refer to this subarray as a depth-k array. The leaves represent the individual
processors of H. (See Figure 6.)

We describe a two-stage procedure to remove “useless” processors of H. A proces-
sor is removed if it is surrounded by high delays (Stage 1) or few unremoved processors
(Stage 2). (When a processor is removed, its incident edges remain in the network.)
For each depth k, we define two quantities Dk for “delay threshold” and mk for “sur-
vival threshold.” Note that Dk is larger than the average delay on a row/column in a
depth-k array by a factor of Θ(logn), and mk is smaller than the number of processors
in a depth-k array by a factor of Θ(logn):

Dk = (c logn)
( n

2k
dave

)
,(1)

mk =

(
1

c logn

)(
n2

4k

)
.(2)
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Fig. 6. The quad tree that represents H.

A constant c is specified later. We also define a maximum depth kmax such that when
k = kmax the survival threshold mk becomes 1.

kmax = logn− 1

2
log c− 1

2
log logn.(3)

• Stage 1. From depth k = kmax down to depth 0, if the total delay on a
row/column of a depth-k array exceeds the threshold Dk, then all the n

2k

processors on that row/column are removed.
• Stage 2. From depth k = kmax down to depth 0, if the number of unremoved

processors in a depth-k array is smaller than the threshold mk, then all the
processors in that array are removed. Moreover, we also remove processors
so that the number of remaining processors in any depth-k array is an integer
multiple of mk.

Lemma 3.7. At most 2n2/c processors are removed in Stage 1.

Proof. The total delay of H is 2n2dave. At most 2n2k

c log n depth-k rows and columns

can have delay more than Dk. Since each depth-k row/column contains n
2k

processors,

at most 2n2

c log n processors are removed at depth k. There are log n depths, and so the
lemma follows.

Lemma 3.8. At most n2/c processors are removed at Stage 2.

Proof. Since there are 4k depth-k arrays, at most n2

c log n processors are removed
at depth k.

We label each array with the number of unremoved processors contained in it.
By Lemmas 3.7 and 3.8, at most 3n2/c processors of H are removed. Therefore,
H is labeled with c1n

2, where c1 ≥ 1 − (3/c). Any constant c > 3 works for our
argument.

3.2.2. The embedding. For clarity of presentation, we create an intermedi-
ate two-dimensional array G that has size

√
c1n × √c1n and unit-delay edges only.

We describe an algorithm Embed that maps the processors of G one to one to the
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Fig. 7. (Left) Depth-k region R and depth k+ 1 regions R1, R2, and R3 of G. (Right) Depth-k
and k + 1 arrays of H. Depth k + 1 region Ri has size zi, where zi is the number of unremoved
processors in the corresponding array of H. In this figure, z4 = 0, and R4 is therefore empty.

unremoved processors of H. The goal is to show that for any monotone path in G its
image in H under Embed has length O(daven log5/2 n). As a result, H can simulate

G with a slowdown of O(dave log5/2 n). Obviously G can simulate G with constant
slowdown.

Embed partitions G into regions recursively, and each depth-k region of G cor-
responds to a depth-k array of H. The depth-0 region is the entire network G. By
the construction of Stage 2, c1n

2 (the number of processors in G) is a multiple of m0.
Hence, G can be viewed as a collection of contiguous squares of size

√
m0 × √m0.

We inductively assume that each depth-k region consists of contiguous squares of
size
√
mk × √mk, where mk is defined in equation (2). Each depth-k region R is

partitioned into four depth k + 1 regions R1, R2, R3, and R4 as follows. First, each√
mk ×√mk square of R is divided into four squares of size

√
mk+1 ×√mk+1, where√

mk+1 =
√
mk/2. Suppose that Ri corresponds to a depth k + 1 square of H that

has zi unremoved processors; then Ri has size zi. By the construction of Stage 2, zi
is a multiple of mk+1. Hence, Ri can be formed as a collection of contiguous squares
of size

√
mk+1 × √mk+1. Note that if zi is 0, then the corresponding Ri is empty.

(See Figure 7.)

At depth kmax, each depth-kmax region consists of contiguous squares of size 1×1.
Embed maps the processors in a depth-kmax region of G to the unremoved processors
in the corresponding depth-kmax array of H in an arbitrary one-to-one manner. Thus,
we have a one-to-one mapping from the processors of G to the unremoved processors
of H.

We also define the depth-k boundaries in G to be the borders of depth-k regions
of G. Note that the depth-k boundaries are at least

√
mk apart in both horizontal

and vertical directions.

3.2.3. Bounding monotone path length. In this section we bound the total
delay on the image of P in H, where P is any monotone path in G. Suppose a and b
are two neighboring processors in G; then their images aH and bH in H are connected
by a 1-bend route as follows. First, aH is routed along its row to bH ’s column and
then routed to bH along the column. We define a and b (resp., aH and bH) to be
k-related if k is the largest integer such that a and b (resp., aH and bH) are in a same
depth-k region (resp., depth-k array). We also define aH and bH to be peers of each
other. Note that each unremoved host processor can have four peers.
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Lemma 3.9. Let P be any monotone path in G. The image of P in H has a total
delay of O(daven log5/2 n) under Embed.

Proof. Let a and b be two neighboring processors on P and let aH and bH be
their images. Suppose a and b (resp., aH and bH) are k-related. We first bound the
length of the 1-bend route from aH to bH . By the construction of Stage 1, the total
delay on a depth-k row/column that contains aH or bH is at most Dk. Hence, the
distance from aH to bH is at most 2Dk.

We now bound the number of neighboring a’s and b’s that can be k-related. If
k < kmax, P must cross some depth k + 1 boundary of G in traveling from a to b.
Since P is monotone and the depth-k boundaries are

√
mk apart in both horizontal and

vertical directions, P can cross the depth-k boundaries at most 2n√
mk

times. Hence,

at most 2n√
mk+1

neighboring a’s and b’s on P can be k-related. This implies that

the total delay incurred by k-related peers on the image of P is at most 2Dk
2n√
mk+1

for k < kmax. Obviously, at most 2n neighboring a’s and b’s can be kmax-related.
Summing over all depths, we conclude that the total delay on the image of P is at
most 2Dkmax ·2n+

∑
k<kmax

2Dk
2n√
mk+1

, which is O(daven log5/2 n) by the definitions

of Dk, mk and kmax.
Hence, we can embed G on H such that O(1) guest processors are mapped to

each host processor and that the image in H of any monotone path in G has length
O(daven log5/2 n). Lemma 3.2 implies that H can simulate G with a slowdown of

O(dave log5/2 n). To improve the slowdown and achieve efficiency, we apply the idea of
complementary slackness and use an m×m contiguous subarray of H for simulation as
in FatRay. Theorem 3.4 and Lemma 3.9 imply a slowdown of O((davem log5/2m)/n+

n2/m2). By choosing m to be max{nd−1/3
ave log−5/6 n, 1}, we have Theorem 3.10.

Theorem 3.10. Network H with average delay dave can efficiently simulate G

with a slowdown of O(d
2/3
ave log5/3 n).

3.2.4. Bandwidth. The preceding analysis focuses entirely on the issue of la-
tency and ignores bandwidth constraints. This does not present any problems if the
link bandwidth available on the host array is Ω(log3/2 n) times larger than that on the
guest array. If the bandwidth of the host and guest arrays are comparable, however,
and if the guest array is fully utilizing the bandwidth on its links, then congestion
becomes an issue. Formally, the congestion on an edge equals the number of pebbles
that wish to cross this edge simultaneously. In this case, we may need to slow down
the simulation by an additional factor of O(log3/2 n).

In section 3.2.3, peers aH and bH are connected by a 1-bend route in H. To
address the congestion issue, we present a more sophisticated method of connecting
aH and bH such that each edge in H has O(log3/2 n) routes going through it and that
the distance between aH and bH remains unchanged asymptotically.

We begin with some definitions. Recall that Embed maps each depth-k region
Rk of G to a depth-k array Sk of H. A depth-k row/column of Sk is live if it contains
some unremoved host processors. A boundary point of Sk is live if it belongs to some
live row or column of Sk. We first bound the number of connections from inside of
Sk to outside of Sk in terms of the number of live rows and columns of Sk.

Lemma 3.11. Consider any depth-k array, Sk, of H. The number of processors
in Sk that have peers outside Sk is O(x

√
logn), where x is the number of live rows

and columns in Sk.
Proof. Let z be the number of unremoved processors in Sk; then the number of

live rows and columns is at least z
n/2k

. The number of host processors in Sk that
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have peers outside Sk is proportional to the perimeter of Rk, the depth-k region that
corresponds to Sk. By the construction of Embed, Rk consists of squares of size√
mk×√mk. Hence, Rk has perimeter of O(z/

√
mk), which is O( z

n/2k

√
logn) by the

definition of mk in (2). Our lemma follows.
We now describe a recursive procedure that connects the peers. The following

facts are used in our routing.
Fact 3.12. Consider a routing problem on a square array of size x× x.
1. If each node has O(y) requests, then the routing can be done in one bend and
O(xy) congestion.

2. Let the nodes on the cross divide the square array into four x
2 × x

2 quad-
rants. If each boundary node and cross node have O(y) requests and all other
nodes have no requests, then the routing can be done in O(1) bends and O(y)
congestion.

Our recursive routing starts at depth k = kmax. Consider all the depth-k arrays
Sk. For all the peers that are k-related, we connect them through a 1-bend routing
within Sk. Since Sk has size

√
logn ×√logn and each host processor has at most 4

peers, the congestion caused by this 1-bend routing within Sk is O(
√

logn) by item
1 of Fact 3.12. For all the processors that have peers outside Sk, we route them
to live boundary points such that the following two conditions hold. First, each
live boundary point of Sk receives O(

√
logn) requests. This is possible because of

Lemma 3.11. Second, the routing uses 1 bend and causes a congestion of O(logn) by
item 1 of Fact 3.12.

We proceed recursively to depths k < kmax. Consider all the depth-k arrays Sk.
From the previous stage the host processors that are not connected to their peers are
routed to some live boundary points of depth k + 1 arrays. Hence, they are either
on the boundary or on the cross of Sk, and O(

√
logn) host processors are routed to

the same location. For all the peers that are k-related, we connect them within Sk.
Otherwise, we route them to the live boundary points of Sk such that each live point
receives O(

√
logn) requests (including those from all previous stages but have not yet

connected to their peers). This is possible by Lemma 3.11. In both cases, item 2 of
Fact 3.12 implies that the routing can be done in O(1) bends and that the congestion
incurred is O(

√
logn).

The congestion incurred at depth k, for 1 ≤ k < kmax, is O(
√

logn) and at
depth kmax is O(logn). Since each of the depths uses the same underlying edges, the

overall congestion is O(log3/2 n). The host processors are routed to live boundary
points in O(1) bends at each depth, and therefore the length incurred at depth k is
O
(
n
2k
dave logn

)
. Suppose that aH and bH are k-related; then the distance between

them is
∑
k′≥k O( n

2k′
dave logn), which remains O( n

2k
dave logn) as in Lemma 3.9. In

summary, we have Lemma 3.13.
Lemma 3.13. In the above routing scheme the congestion is O(log3/2 n) on all

edges of H. Furthermore, for any monotone path P in G, the image of P in H has
length O(daven log5/2 n).

3.3. Improved bounds for randomly arranged delays. In this section, we
show that the length of the longest monotone path in H is often short when the delays
are randomly arranged. If M is the number of edges in an n× n array H, then for a
given set of M delays with average dave the longest monotone path in H has length
O(ndave) for most of the M ! permutations of the delays. That is, in the uniform
distribution of the M ! permutations, the longest monotone path has length O(ndave)
with high probability, and therefore the slowdown is O(dave) with high probability.
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Fig. 8. The bounding box and four edge-disjoint alternate paths for edge f .

Without loss of generality we assume that dave is a constant. (For a nonconstant
dave, each delay d is normalized to max{d/dave, 1}. The normalized delays have av-
erage O(1), and the total original delay on any monotone path is at most dave times
the total normalized delay.) We divide the delays in H into O(logn) levels. Level `
contains the delays that are in the range of [2`, 2`+1), and level `+ contains the delays
that are at least 2`.

3.3.1. Shortcuts and edge coloring. If an edge with a large delay is sur-
rounded by edges with small delays, we can route around this large delay. The intu-
ition is that in a random permutation most long delays can be shortcut. For each edge
f , we consider four edge-disjoint alternate paths that connect the two endpoints of f .
(See Figure 8.) The 3 × 3 box that contains these four paths is called the bounding
box of f . After the shortcut, the total delay on f equals the shortest alternate path
length. For clarity, we shall refer to the delay before the shortcut as the original delay
and the delay after the shortcut as the shortcut delay.

For a given set of delays with a constant average, the number of level-`+ original
delays is O(n22−`). Therefore, the probability for an edge f to have a level-`+ original
delay is O(2−`). However, shortcutting dramatically decreases this probability as the
following lemma shows.

Lemma 3.14. The probability for an edge f to have a level-`+ shortcut delay is
O(2−4`).

Proof. If edge f has a shortcut delay from level `+, then the four alternate paths
must each have an edge whose original delay is from level (` − 4)+. For a particular
set of four edges to have level (` − 4)+ original delays, the probability is

(
B
4

)
/
(
M
4

)
,

where B is the number of level (`−4)+ original delays, and M is the number of edges
in H. Since there are 3 · 3 · 9 · 1 = 81 ways to choose four edges from four alternate
paths, we derive the following from a union bound:

Pr [ Shortcut delay on f is from level `+ ] ≤ 81 ·
(
B

4

)/(
M

4

)
.

Our lemma follows from the observation that B = O(n22−`) since dave = O(1), and
that M = Θ(n2).

Unfortunately, these probabilities are not independent from edge to edge for two
reasons. First, the arrangement of delays is a permutation of a given set of delays.
This does not cause a problem, however, as the analysis in Lemmas 3.15 and 3.17 will
show. Intuitively, in a permutation if one edge has a large delay, then other edges
are less likely to have large delays. Second, the bounding boxes are not necessarily
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disjoint. To resolve this problem we introduce an edge coloring, so that any two
distinct edges with the same color have edge-disjoint bounding boxes. Clearly, only a
constant number of colors are needed.

We show in the following that, for any monotone path in H, the total delay
incurred from the edges in one particular color group is O(n) with high probability.
Since there are O(1) color groups, our results follows from a union bound. For each
color group we consider two cases, edges with large shortcut delays and edges with
small shortcut delays.

3.3.2. Large delays. In this section we show that, with high probability, the
total delay in H due to shortcut delays from large levels is O(n). Therefore, any
monotone path can only pick up O(n) delays from these levels.

Lemma 3.15. With probability 1 − O(n−1), any monotone paths pick up a total
delay of O(n) from levels ` ≥ L, where L = 1

2 logn− 1
2 log logn.

Proof. By Lemma 3.14, the probability that one particular edge has a shortcut
delay from level (3

4 logn)+ is O(n−3). Since H has Θ(n2) edges, with probability
1−O(n−1) no edge in H has shortcut delay from level ( 3

4 logn)+.

We show below that, with high probability, H has O(log3 n) shortcut delays from
level L+. Let A = an2 be an upper bound on the number of edges in one particular
color group, where a is a constant. Since dave = O(1), at most B = bn3/2 log1/2 n
original delays can be from levels (L − 4)+, where b is a constant. We show that,
with a small probability, more than C = c log3 n edge delays are from level L+ for a
sufficiently large constant c.

For a particular set of C edges to have level-L+ shortcut delays, at least four
edges in each of these C bounding boxes have level (L − 4)+ original delays. For
a particular set of four edges in each bounding box to have level (L − 4)+ original
delays, the probability is at most

(
B
4C

)
/
(
M
4C

)
. This is true since all the C bounding

boxes are edge disjoint. There are at most
(
A
C

)
ways to choose C edges whose shortcut

delays are from L+ and 81C ways to choose four edges from each of the C boxes. We
therefore derive the following from a union bound:

p = Pr [ At least C edges have level-L+ shortcut delays ]

≤ 81C
(
A

C

)(
B

4C

)/(
M

4C

)
.(4)

We bound probability p with the inequalities(y
x

)x
≤
(
y

x

)
≤
(ye
x

)x
,(5)

where e = 2.718 is the base of the natural logarithm. By the definitions of A, B, and
C and the fact that M ≈ 2n2, we have

p ≤
(

81 ·Ae
C

)C (
Be

M

)4C

=

(
81 · a · b4 · e5

24 · c · logn

)c log3 n

.

Let c be a sufficiently large constant; then the above probability is bounded byO(n−1).
Summing over all the O(1) color groups, we conclude that with probability 1−O(n−1)
H has no shortcut delays from level ( 3

4 logn)+ and O(log3 n) shortcut delays from level

L+. Hence, any monotone path picks up a total delay of O(n3/4 log3 n) = O(n) from
levels ` ≥ L.
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3.3.3. Small delays. In this section we show that the shortcut delay from small
levels do not accumulate too much on any monotone path with high probability. In
particular, with probability 1 − O(n−2), each monotone path picks up an O(n2−`)
delay from each “small” level `. Summing over all O(logn) “small” levels, we can con-
clude that each monotone path picks up a total of O(n) small delays with probability
1−O(n−1).

Consider a particular level ` < L, where L = 1
2 logn − 1

2 log logn. We divide

H into m2 squares of size 22` × 22`, where m = n2−2`. There are
(

2m−1
m

)
sequences

of 2m − 1 squares that some monotone path could possibly go through. We call
these sequences of 2m− 1 squares monotone sequences. If the total number of level-`
shortcut delays in each of these sequences is bounded, then the total level-` shortcut
delay that any monotone path picks up is also bounded.

Lemma 3.16. With probability 1 − O(n−2), any monotone path picks up a total
of a O(n2−`) delay from level-` shortcut delays, where ` < L is one particular level
and L = 1

2 logn− 1
2 log logn.

Proof. Consider one particular monotone sequence of 2m − 1 squares of size
22`×22`, where m = n2−2`. Let random variable X be the number of level-` shortcut
delays in this sequence of squares, and let random variable Xi be the number of level-`
shortcut delays from the ith square in the sequence. We use a moment generating
function argument to upper bound X = X1 + · · · + X2m−1. We first bound the
probability Pr [ X1 = k1, . . . , X2m−1 = k2m−1 ]. Let A = a24` be an upper bound on
the number of edges from one particular color group in each 22` × 22` square, where
a is a constant. Since dave = O(1), at most B = bn22−` original delays can be from

level (`− 4)+, where b is a constant. Let k =
∑2m−1
i=1 ki. By applying the same logic

as for inequality (4), we have

P = Pr [ X1 = k1, . . . , X2m−1 = k2m−1 ]

≤ 81k ·
(
A

k1

)
· · ·
(

A

k2m−1

)
·
(
B

4k

)/(
M

4k

)
.

By inequality (5), the probability is bounded by

P ≤ 81k ·
(
Ae

k1

)k1

· · ·
(

Ae

k2m−1

)k2m−1

·
(
Be

M

)4k

=

2m−1∏
i=1

(
81 · a · b4 · e5

24 · ki

)ki
.(6)

We proceed to bound the expectation of eX :

E[eX ] = E[eX1+···+Xm ]

=
∑
k≥0

ek
∑∑
ki=k

Pr [ X1 = k1, . . . , X2m−1 = k2m−1 ]

≤
∑
k≥0

∑∑
ki=k

2m−1∏
i=1

(
y

ki

)ki
, where y = 81 · a · b4 · e6 · 2−4

≤
∑
k≥0

∑∑
ki=k

2m−1∏
i=1

yki

ki!

= ey(2m−1).
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The first inequality follows from inequality (6), and the last equality follows from

ey(2m−1) = (
∑
j≥0

yj

j! )2m−1. We use Markov’s inequality to bound the probability

that the total number of level-` shortcut delays exceeds β(2m− 1) in this particular
monotone sequence:

Pr [ X ≥ β(2m− 1)] = Pr
[
eX ≥ eβ(2m−1)

] ≤ E[eX ]

eβ(2m−1)
≤ e(y−β)(2m−1).

There are
(

2m−1
m

)
< 22m−1 monotone sequences. By a union bound, the probability

that every sequence has fewer than β(2m − 1) level-` shortcut delays is at least 1 −
22m−1e(y−β)(2m−1). Let β be the constant y + 2; then this probability is bounded by
1 − O(n−2), since m = n/22` ≥ logn. Therefore, every monotone path picks up a
total of O(n2−`) shortcut delays from level ` with probability 1−O(n−2).

Summing over all levels ` < L results in a total delay that is linear in n as desired.
Lemma 3.17. With probability 1−O(n−1), all the monotone paths pick up a total

delay of O(n) from levels ` < L for L = 1
2 logn− 1

2 log logn.
For the case in which dave = O(1), Lemmas 3.15 and 3.17 show that any monotone

path has a total delay of O(n) with high probability. For the case in which dave is
nonconstant, the discussion at the beginning of the section implies that Theorem 3.18
holds.

Theorem 3.18. Suppose H is a network with average delay dave; then with high
probability every monotone path in H has delay O(ndave).

To make the algorithm work efficient, we use an m×m subarray of H of average
delay at most dave to simulate G. Theorems 3.4 and 3.18 imply that the slowdown

is O(n2/m2 + davem/n) with high probability. By choosing m to be max{nd−1/3
ave , 1},

we have Theorem 3.19.
Theorem 3.19. Suppose the delays on network H are from a random permuta-

tion of a set of delays whose average is dave; then with high probability H can simulate

G with slowdown O(d
2/3
ave).

Congestion problems are not an issue here, since each edge of H is used O(1)
times by alternate paths in the shortcut process.

4. Database model. We switch our attention to the database model. As dis-
cussed in section 1, simulation in the database model is more difficult than in the
dataflow model. For algorithms such as Stripe in section 2 to work for the database
model a host processor needs Θ(n) copies of the databases on average. This is un-
realistic because of the memory requirement as well as the difficulty in updating the
databases. We therefore develop new machinery for the database model. Contrary to
the dataflow model, we make substantial use of redundant computation. Apart from
the slowdown, another important parameter for the database model is load, which is
the number of databases that a host processor copies.

The main contribution of this section is an algorithm called Overlap that sim-
ulates linear arrays in the database model with a small load and a small slowdown.
Since Overlap is technically involved, we begin with a special case in section 4.1,
where the host linear array has delay d on all edges. The simulation in this special
case is much simpler, and it conveys some intuition for using redundant computa-
tion in the general case. Section 4.2 presents Overlap in detail. The techniques
are generalized to simulate linear and two-dimensional arrays on general networks in
sections 4.3 and 4.4. Last, in section 4.5 we discuss the lower bounds on slowdown
when each database is allowed a small number of copies.
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4.1. A special case. In this section we consider a special case. Let G be a
guest linear array with n processors and unit-delay edges, and let H be a host linear
array with n processors and delay d on all edges. We use redundant computation
to achieve an optimal slowdown of O(

√
d). Recall that in the dataflow model, the

optimal slowdown is achieved for linear arrays without using redundancy.

Theorem 4.1. In the database model, H can efficiently simulate G with a slow-
down and a load of O(

√
d). This slowdown is optimal up to a constant factor.

Proof. We consider two cases. If n ≤ √d, then one host processor copies all the
databases and carries out the entire computation by itself. Hence the load and the
slowdown are n, which is O(

√
d). Otherwise, the first n√

d
host processors are used for

the simulation. For 1 ≤ j ≤ n√
d
, processor pj copies 3

√
d databases bi and computes

3
√
d columns of pebbles (i, t), where (j− 2)

√
d+ 1 ≤ i ≤ (j+ 1)

√
d and 1 ≤ t. In this

way each processor shares
√
d databases with its right and left neighbors and each

pebble is redundantly computed by three neighboring processors.

We show how to simulate the first
√
d rows of pebbles created by G in O(d) steps

by H. Every subsequent
√
d rows of pebbles are simulated in the same manner. The

algorithm is demonstrated in Figure 9. For 1 ≤ j ≤ n√
d
, let

Pj = {Pebbles (i, t) : 1 ≤ t ≤ √d, −2
√
d+ 1 ≤ i− j√d ≤ √d},

Lj = {Pebbles (i, t) : 1 ≤ t ≤ √d, 1 ≤ i− (j − 2)
√
d ≤ t},

Rj = {Pebbles (i, t) : 1 ≤ t ≤ √d, −t+ 1 ≤ i− (j + 1)
√
d ≤ 0},

Tj = Pj − (Lj ∪Rj),
Aj = {Pebbles ((j − 2)

√
d, t) : 1 ≤ t ≤ √d},

Bj = {Pebbles ((j − 1)
√
d+ 1, t) : 1 ≤ t ≤ √d},

Cj = {Pebbles ((j
√
d, t) : 1 ≤ t ≤ √d},

Dj = {Pebbles ((j + 1)
√
d+ 1, t) : 1 ≤ t ≤ √d}.

Processor pj of H computes all the pebbles in Pj . First, pj computes the pebbles in
the trapezium Tj without communicating with its neighbors. There are 2d pebbles
in Tj , and so this takes 2d steps. Next, pj passes column Bj to processor pj−1 and
receives column Aj from pj−1. It also passes column Cj to processor pj+1 and receives

column Dj from pj+1. This communication takes d+
√
d < 2d steps using pipelining.

Processor pj can now compute the pebbles in triangles Lj and Rj in d steps. It
is important for pj to compute the pebbles in Lj and Rj in order to continue the

simulation of the next
√
d rows of pebbles, since databases need to be updated. This

presents a major difference between the dataflow and database models.

Hence, it takes at most 5d steps in total for processor pj to compute every pebble

in Pj . The next
√
d steps of computation can be simulated in a similar fashion. The

slowdown is therefore O(
√
d). The lower bound proof in Theorem 3.5 implies that the

slowdown of Ω(
√
d) is necessary.

Note that during the computation of Tj , the pebbles in columns Bj and Cj can
start to travel to the neighboring processors of pj as soon as they are ready. Processor
pj can also start to compute triangles Lj and Rj before the entire columns of Aj and
Dj are transferred. In this way, the communication time can be saved. Although
it does not make a difference asymptotically in this case we take advantage of this
observation in Overlap.
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Fig. 9. Simulating
√
d steps of computation of G on H.

4.2. Algorithm OVERLAP. To simulate a guest linear array on a host linear
array with arbitrary delays we use an algorithm called Overlap. In Overlap, we
remove host processors that are surrounded by high delays. The motivation of this step
is similar to that of section 3.2. For the remaining processors, we decide how much
redundancy is needed for neighboring processors and how much computation each
processor is able to carry out. During the simulation, some pebbles are redundantly
computed to ensure that the communication is not too costly. We first obtain a
slowdown of O(dave log3 n), where dave is the average delay of H and n is the size of
G and H, and later improve the slowdown to O(

√
dave log3 n) while achieving work

efficiency.

4.2.1. Removing useless processors. We recursively represent H using a bi-
nary tree, in which each node corresponds to a subarray of H. The root represents the
entire array. The left and right children of the root represent the left and right halves
of the array, respectively. In general, a node at depth k of the binary tree corresponds
to a subarray of H that contains n

2k
processors. We refer to this subarray as a depth-k

interval. The leaves represent the individual processors of H. (See Figure 10.)
We describe a two-stage process that removes the processors that are surrounded

by high delays (Stage 1) and the processors that are surrounded by few unremoved
processors (Stage 2). During Stage 2, we also label each live subarray, where a live sub-
array contains some unremoved processor. These labels indicate how many columns
of pebbles the live subarrays are able to compute.

For every depth k, we define Dk to be the “delay threshold” and mk to be the
“overlap size” as follows. Note that Dk is larger than the average delay in a depth-k
interval by a factor of Θ(logn), and mk is smaller than the number of processors in
a depth-k interval by a factor of Θ(logn). We shall use mk to indicate the size of
overlap between neighboring depth-k intervals, i.e., the number of columns of pebbles
redundantly computed by both intervals:

Dk = (c logn)
( n

2k
dave

)
,(7)
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Fig. 10. The binary tree that represents H. In this figure, unremoved processors of H are
represented by black circles; removed processors are represented by white circles. Arrows indicate
the endpoints of the root interval. Interval I has one live child and I′ has two live children.

mk =

(
1

c logn

)( n
2k

)
.(8)

As we shall see, any constant c > 5/2 works for our argument. We also define a
maximum depth kmax such that when k = kmax the overlap size mk becomes 1:

kmax = logn− log logn− log c.(9)

• Stage 1. From depth k = kmax down to depth 0, if the total delay in a depth-
k interval exceeds Dk, then all the processors in that interval are removed.
• Stage 2. At depth k = kmax, let I be a live depth-k interval and let x be

the number of unremoved processors in I. If x is smaller than 2mk, then we
remove all the remaining processors in I and I is no longer live. Otherwise,
we label I with x.
Suppose all the live depth-(k + 1) intervals are labeled. Now consider each
live depth-k interval I. If I has two live children I1 and I2 that are labeled
with x1 and x2, then let x = x1 + x2 −mk+1. If I has one live child I1 that
is labeled with x1, then let x = x1. If x < 2mk, we remove all the remaining
processors in I and I is no longer live. Otherwise, we label I with x. We
proceed to depth k − 1 until reaching depth 0.

Lemma 4.2. At most n/c processors are removed at Stage 1.

Proof. The total delay in the array H is ndave. At most 2k

c log n depth-k intervals
can have delay more than Dk. Each depth-k interval contains n

2k
processors and so at

most n
c log n processors are removed at depth k. Since there are log n depths, at most

n/c processors are removed at Stage 1.
Lemma 4.3. The label on the root interval is at least

(
1− 5

2c

)
n at Stage 2.

Proof. Before Stage 2, the number of remaining processors in H is at least (1 −
1/c)n by Lemma 4.2. At depth k = kmax of Stage 2, the sum of the labels on the live
depth-k intervals is at least (1− 1/c)n− 2mk2k, which is (1− 1/c)n− 2n

c log n . At each
depth k < kmax, the sum of the labels on the live depth-k intervals decreases by at
most (2mk + mk+1)2k, which is 5n

2c log n . Summing over all depths, we conclude that

the label at the root interval is at least
(
1− 5

2c

)
n.

4.2.2. Assigning databases. For clarity of presentation, we first assume that
G has n′ processors, where n′ is the label on the root interval of G and n′ is a
constant fraction of n by Lemma 4.3. We also assume the existence of pebbles (0, t)
and (n′ + 1, t), for all t ≥ 1, which are known to H at time step 0. This ensures that
each pebble computed by G is dependent on three pebbles.
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Algorithm Overlap assigns one database to each remaining processor of H so
that H has load one. In particular, a depth-k interval with label x is assigned x
databases. The depth-0 interval, i.e., H, has all the databases b1, . . . , bn′ . We assume
inductively that a depth-k interval I labeled x is assigned databases bi+1, . . ., bi+x.
If I has only one child I1, then Overlap assigns bi+1, . . . , bi+x to I1. If I has two
children I1 and I2 that are labeled x1 and x2, respectively, then x = x1 + x2 −mk+1

by the construction of Stage 2. Overlap assigns bi+1, . . . , bi+x1
to interval I1 and

bi+x−x2+1, . . ., bi+x to I2. Note that mk+1 databases, namely, bi+x−x2+1, . . . , bi+x1
,

are assigned to both I1 and I2. These mk+1 columns of pebbles will be redundantly
computed by both I1 and I2. At depth kmax each remaining processor of H is assigned
one database.

4.2.3. The simulation. In Overlap, H recursively simulates every m0 =
n

c log n rows of pebbles created by G as follows. If H (the depth-0 interval) has two
live depth-1 intervals I1 and I2 as children, then I1 and I2 recursively compute the
first m1 = m0/2 rows of pebbles and then repeat for the next m1 rows. In particular,
I1 (resp., I2) computes all the pebbles of the form (i, t), where I1 (resp., I2) owns
database bi and 1 ≤ t ≤ m1. Intervals I1 and I2 share m1 databases and therefore
redundantly compute these m1 columns of pebbles. If H has one live child I1, then I1
recursively computes the first m1 rows and then repeats for the second m1 rows. At
depth k = kmax, each depth-k interval computes mk = 1 row of pebbles. Theorem 4.4
explains the simulation in detail.

Let us define a set of values s
(k)
t for 0 ≤ k ≤ kmax and 1 ≤ t ≤ mk, where the

superscript k represents the depth of the recursion, and the subscript t represents

the row number. Roughly speaking, s
(k)
t corresponds to the time by which a depth-

k interval computes its pebbles in the tth row. We are interested in the slowdown

s
(0)
m0/m0, where s

(0)
m0 corresponds to the time that H takes to simulate the first m0

steps of computation by G. Recall that the delay threshold Dk defined in (7) is an
upper bound on the total delay in any live depth-k interval. The recurrences are as
follows.

s
(k)
t = s

(k+1)
t +Dk for 1 ≤ t ≤ mk+1,(10)

s
(k)
t = s

(k)
t−mk+1

+ s(k)
mk+1

for mk+1 + 1 ≤ t ≤ mk.(11)

The base of the recurrence is defined to be

s(k)
mk

= s
(k)
1 = 1 for k = kmax.(12)

Let the left endpoint of interval I be the leftmost unremoved processor in I, and let
the right endpoint be the rightmost unremoved processor in I. (See Figure 10.) For
notational simplicity, we assume that I is the leftmost live depth-k interval and is
assigned databases b1, . . ., bx. Let Bk = {(i, t) : 1 ≤ i ≤ x, 1 ≤ t ≤ mk}. The proof of
the following theorem describes how algorithm Overlap performs the simulation.

Theorem 4.4. For 1 ≤ t ≤ mk, if pebbles (0, t) and (x+ 1, t) are known by time

step s
(k)
t by the left and right endpoints of interval I, respectively, then by time step

s
(k)
t every pebble (i, t) in Bk is computed by all the processors in interval I that have

a copy of database bi.
Proof. We proceed by a backward induction on k. At level k = kmax, we have

mk = 1 and box Bk has size x× 1. Since the remaining processors of I have load one,
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Fig. 11. The box of pebbles Bk+1 has size x1 ×mk+1 and is represented by the lower left box
with a dashed boundary. B′k+1 has size x2 ×mk+1 and is represented by the lower right box with a
solid boundary. Bk is the union of all four boxes. For interval I to compute every pebble in Bk, I1
and I2 (the live children of I) recursively compute Bk+1 and B′k+1. Once the bottom half of Bk is
computed the top half is computed in a similar manner.

each processor computes one pebble in Bk. By definition, s
(k)
1 = 1. Hence, the base

of the induction holds.

Suppose that the inductive hypothesis is true for k+ 1. Note that the hypothesis
can be applied to any depth k+ 1 interval. Let us concentrate on I, the leftmost live
depth-k interval. Suppose I is labeled with x. There are two cases to consider.

Case 1. Suppose I has two live children I1 and I2 that are labeled with x1 and
x2, respectively. By construction x = x1 +x2−mk+1. Let Bk+1 = {(i, t) : 1 ≤ i ≤ x1,
1 ≤ t ≤ mk+1}. Let y = x1−mk+1 and B′k+1 = {(i, t) : y+1 ≤ i ≤ x, 1 ≤ t ≤ mk+1}.
Let column C consist of pebbles (y, t) and column D consist of pebbles (x1 + 1, t),
where 1 ≤ t ≤ mk+1. Note that boxes Bk+1 and B′k+1 have an overlap of width mk+1;
i.e., the mk+1 columns between C and D are common to both Bk+1 and B′k+1. (See
Figure 11.) Two observations can be made from the inductive hypothesis.

• Observation 1. For 1 ≤ t ≤ mk+1, every pebble (y, t) in column C can be

computed by I1 by time step s
(k+1)
t without any conditions on pebbles (0, t)

and (x1 + 1, t). Since C and D are mk+1 columns apart and x1 ≥ 2mk+1 by
the construction of Stage 2, the pebbles in column C therefore do not depend
on the pebbles (0, t) and (x1 + 1, t). (The dotted diagonal lines in Figure 11
show the dependencies of columns C and D.)
• Observation 2. Let z ≥ 0 be some constant. For 1 ≤ t ≤ mk+1, if the value

of pebbles (0, t) and (x1 + 1, t) are known at time step s
(k+1)
t + z by the left

and right endpoints of interval I1, respectively, then by time step s
(k+1)
t + z,

every pebble (i, t) in Bk+1 is computed. This is true because there is no
difference between starting the simulation at time step z and at time step 0.

Similar statements can be made about the box B′k+1 and column D. Now suppose

that the value of pebbles (0, t) and (x + 1, t) are known at time step s
(k)
t by the

left and right endpoints of interval I, respectively. Observation 1 and the inductive
hypothesis imply that any pebble (y, t) in column C can be computed by I1 by time

s
(k+1)
t . Since the total delay in interval I is at most Dk, then the left endpoint of

interval I2 can receive the pebble (y, t) (together with any relevant database changes)

by time s
(k+1)
t +Dk, which equals s

(k)
t (10). Similarly, all of the pebbles in column D

can be sent to the right endpoint of interval I1 by time s
(k)
t . Since s

(k)
t is greater than
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s
(k+1)
t by a constant amount, namely, Dk, for 1 ≤ t ≤ mk+1, Observation 2 and the

inductive hypothesis imply that pebbles (i, t) in box Bk+1 (resp., B′k+1) are computed

by I1 (resp., I2) by time s
(k)
t . Therefore, pebbles (i, t) in the bottom half of Bk are

computed by time s
(k)
t .

Once the bottom half of Bk is simulated I simulates the top half in a similar

manner. Thus, pebbles (i, t) in the top half of Bk are computed by time s
(k)
mk+1 +

s
(k)
t−mk+1

, which equals s
(k)
t (11).

Case 2. The case in which I has one live child is simpler. Let I1 be the child of I.
By construction, I1 has label x1 = x. By Observation 2 and the induction hypothesis,
if the values of the pebbles (0, t) and (x1 + 1, t), for 1 ≤ t ≤ mk+1, are known at

time steps s
(k)
t by the left and right endpoints of interval I1, respectively, then every

pebble (i, t) in Bk+1 (i.e., the bottom half of Bk) is computed by I1 by time step s
(k)
t .

Since intervals I and I1 have the same remaining processors (and hence the same
endpoints), the above statement holds for I. Interval I then computes the top half
in the same manner. Thus, pebbles (i, t) in the top half of Bk are computed by time

s
(k)
mk+1 + s

(k)
t−mk+1

, which equals s
(k)
t (11).

The inductive step is complete. Hence, given that the value of pebbles (0, t) and

(x+ 1, t) are known at time step s
(k)
t by the left and right endpoints of interval I, all

pebbles (i, t) in box Bk are computed by time step s
(k)
t .

Recall that n′ is the label of the tree root and n′ is a constant fraction of n by
Lemma 4.3. We have the following theorem.

Theorem 4.5. Suppose that guest linear array G has n′ processors and the host
linear array H has n processors and an average delay of dave. Algorithm Overlap
simulates G with H such that the load on H is one and the slowdown is O(dave log3 n).

Proof. The load on H follows directly from the database assignment. The box
B0 contains all of the pebbles for the first m0 steps of computations by G, where
m0 = n

c log n . The root interval I0 contains all the remaining processors of H. Since

pebbles (0, t) and (n′ + 1, t) are available at time step 0 by assumption, Theorem 4.4

implies that I0, i.e., H, computes the pebbles in box B0 by time s
(0)
m0 . We derive s

(0)
m0

from the recurrence of s
(k)
t in (10) and (11) and the definition of Dk in (7).

s(0)
m0

= 2ks(k)
mk

+ 2kD0 for k = kmax.(13)

Therefore, s
(0)
m0 ≤ n

c log n + 2cdaven log2 n = O(daven log2 n). Since m0 = n
c log n , the

slowdown is O(dave log3 n).

4.2.4. Bandwidth. It is clear that the bandwidth required for the communica-
tion between depth-k intervals is at most the bandwidth of G. Therefore, congestion
is not an issue if the bandwidth on H is at least log n times the bandwidth on G. If,
however, the bandwidth on G and H are comparable, then we need to pay an extra
factor of log n in the slowdown.

4.2.5. Improvements. In this section we first modify Overlap to achieve work
efficiency. So far each host processor is assigned at most one database, and the base

of the recurrence is therefore s
(k)
mk = 1 for k = kmax as defined in (12). Observe that in

(13) the second term of s
(0)
m0 dominates the first term. We can balance the two terms

by increasing the value of s
(k)
mk for the base case, i.e., increasing the load on the host

processors.
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In particular, we use an m-processor subarray of the host linear array H to sim-
ulate an n-processor guest linear array, where m = max{1, n

dave
log−3 n} and the

subarray has average delay at most dave. If m = 1, the slowdown and the load are
both n. Otherwise, we carry out the two-stage process to remove the useless proces-
sors of the m-processor subarray as as described in section 4.2.1. The only difference
is that the network size is m instead of n, and the variables such as Dk, mk, and kmax

are also defined in terms of m. Each unremoved host processor is assigned Θ
(
n
m

)
databases, and hence the base case is s

(k)
mk = Θ

(
n
m

)
for k = kmax. We obtain

s(0)
m0

= Θ

(
m

c logm
· n
m

+ 2cdavem log2m

)
from (13). Sincem = n

dave
log−3 n, we have s

(0)
m0 = O(n log−1 n

dave
). Sincem0 = m

c logm ,

the slowdown s
(0)
m0/m0 is O(dave log3 n). This implies that the simulation is work

preserving.
Theorem 4.6. In the database model, an n-processor guest linear array can be

efficiently simulated by an n-processor host linear array with a slowdown and a load
of O

(
dave log3 n

)
, where the host has average delay dave.

Combining Theorems 4.1 and 4.6 we can improve the slowdown by a factor of
O(
√
dave) while preserving efficiency. Suppose that G is an n-processor guest linear

array, and H is an n-processor host linear array with average delay dave. We make use
of an intermediate linear array H0 that has a delay of dave on every edge. Theorem 4.1
implies that networkH0 can efficiently simulateG with a slowdown ofO(

√
dave), where

max{ n√
dave

, 1} processors of H0 are used. In the simulation by H0, every O(dave)

steps of computation interleave with every O(dave) steps of communication. If we
treat every O(dave) steps as one time unit, then H0 acts like a guest linear array with
unit-delay edges and H has a normalized average delay of O(1). Theorem 4.6 implies
that H can simulate H0 with a slowdown of O(log3 n). The combined slowdown is
therefore O(

√
dave log3 n). It is obvious that the combined load is O(

√
dave log3 n).

Theorem 4.6 is improved to the following.
Theorem 4.7. In the database model, an n-processor guest linear array can be

efficiently simulated by an n-processor host linear array with a slowdown and a load
of O(

√
dave log3 n), where the host has average delay dave.

4.3. Simulating linear arrays on general networks. We generalize algo-
rithm Overlap to simulate a guest linear array on an arbitrary bounded-degree
connected host network. Given a connected bounded-degree n-processor network H
with average delay dave, we first find a linear array H that can be embedded one to
one to H and has average delay dave. As discussed in section 2.4 such H can be found,
and H is used to carry out the simulation. Combined with Theorem 4.7, we obtain
Theorem 4.8.

Theorem 4.8. An n-processor guest linear array can be efficiently simulated by a
connected bounded-degree n-processor host with a slowdown of O(

√
dave log3 n), where

the host has average delay dave.
For the same reason as in section 2.4, Theorem 4.8 does not hold when H has

unbounded degree.

4.4. Simulating two-dimensional arrays on general networks. Our tech-
niques can also be generalized to simulate a two-dimensional array on any connected
bounded-degree network.
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Theorem 4.9. In the database model, an n×n guest can be efficiently simulated
by a bounded-degree host network with a slowdown of O(n log3 n +

√
ndave log3 n),

where the host has average delay dave.
Proof. As discussed in section 2.4 there exists a linear array H such that H is

embedded one to one in H and that H has average delay O(dave). The simulation of
G on H will be performed by simulating G on H. We first show how to simulate G
on an intermediate linear array H0, where H0 has delay dave on all the edges. The
size of H0 depends on the relative sizes of dave and n.

Case 1. If dave < n, then H0 has n processors, each of which simulates one column
of processors of G. To simulate one step of G, a processor of H0 computes n pebbles
and then communicates with both of its neighbors. The communication takes at most
n+ dave steps, which is O(n) steps. Hence the slowdown of H0 simulating G is O(n).
Also, in this simulation every O(n) steps of computation interleave with every O(n)
steps of communication.

Since dave < n, if every O(n) step is treated as one time unit, then H has a
normalized average delay O(1) and H0 acts like a guest linear array with unit-delay
edges. Therefore, Theorem 4.7 implies that H can efficiently simulate H0 with a
slowdown of O(log3 n). The combined slowdown is therefore O(n log3 n).

Case 2. If dave ≥ n, then H0 has n/x processors, where x =
√
dave/n. Each

processor of H0 simulates 3x columns of G, overlapping x columns with each neigh-
bor. (The redundant computation used here is similar to that in Theorem 4.1.) To
simulate x steps of G, each processor of H0 computes at most 3x2n pebbles and
then communicates with both of its neighbors. The communication takes at most
3x2n+ dave steps, which is O(dave) steps. Hence the slowdown of simulating every x
steps is dave/x, which is O(

√
ndave). Also, in this simulation every O(dave) steps of

computation interleave with every O(dave) steps of communication.
If every O(dave) step is treated as one time unit, H has normalized average delay

O(1) and H0 acts like a linear array with unit-delay edges. If n/x processors of H are
used to simulateH0, Theorem 4.7 implies a slowdown of O(log3 n

x ), which is O(log3 n).

The combined slowdown is therefore O(
√
ndave log3 n).

The above technique can be applied to the dataflow model, where H0 simulates
G in the same manner and H simulates H0 with a slowdown of O(1) in both cases.

Theorem 4.10. In the dataflow model, an n×n guest can be efficiently simulated
by a bounded-degree host network with a slowdown of O(n+

√
ndave), where the host

has average delay dave.

4.5. Lower bounds. In this section we discuss the impact on the slowdown of
the simulation when the number of copies of each database is bounded and the load
is a constant. We consider the case in which each database can have one copy and the
case in which each database can have at most two copies. Notice that although we
are restricting the number of copies of each database to either one or two, a particular
processor in the host can have a copy of many databases.

For the case in which each database is allowed one copy we give an example to
show that the slowdown can be dmax. Let G and H1 be n-processor guest and host
linear arrays. Every

√
nth edge of H1 has a delay of

√
n, and all other edges have unit

delay. Therefore, H1 has an average delay of O(1). If at most
√
n processors of H1

have copies of databases, then by a work argument the slowdown when H1 simulates
G is at least

√
n. Otherwise, there exist databases bi and bi+1 such that they are

assigned to processors p and q of H1, respectively, and that the delay between p and
q is at least

√
n. Hence, for all time steps t, processor p cannot compute pebble (i, t)
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Fig. 12. A level-3 box. Host network H2 is a level-k box, where k = log n
d

.

until
√
n steps after q computes (i + 1, t − 1), and q cannot compute (i + 1, t) until√

n steps after p computes (i, t− 1). This implies a slowdown of dmax =
√
n, whereas

dave is a constant. Note that the above argument makes no assumption on the load.

Theorem 4.11. If each database can have at most one copy, then there exists a
host with dave = O(1) such that the slowdown is Ω(

√
n).

For the case in which each database is allowed at most two copies we construct a
host network H2 whose average delay is O(1), but for which the simulation slowdown
is Ω(log n). Network H2 is made up of Θ(n) processors and the edge delays are either
1 or d. The following is a recursive construction of H2 in which we define a series of
boxes. (See Figure 12.) We regard H2 as a level-k box, where k = log n

d . Network

H2 consists of two level k − 1 boxes that are connected by 2kd
log n edges of delay 1. In

general, a level-` box, for 1 ≤ ` ≤ k, consists of two level `−1 boxes that are connected

by 2`d
log n edges of delay 1. We say that these 2`d

log n processors are in a segment. A level-0
box consists of a single edge of delay d.

Let d = logn. Since a level-` box contains 2` edges of delay d and 2`d`
log n edges

of delay 1, H2 has Θ(n) processors and constant average delay dave. Furthermore,
Lemma 4.12 holds.

Lemma 4.12. If processors p and q are in two different segments I and J , then the
delay between p and q is at least min

{
u
2 logn, v2 logn

}
, where u and v are the numbers

of processors in segments I and J, respectively. In particular, the delay between p and
q is at least d = logn.

Theorem 4.13. If each database is allowed at most two copies and the load is
a constant c, then there exists a host with dave = O(1) such that the slowdown is
Ω(logn).

Proof. We consider the following two cases when H2 simulates G.

Case 1. There exists some “overlap” in the database assignment. In particu-
lar, suppose databases bi, bi+1, . . ., bi+j are assigned to processors in segment I and
bi+1, . . ., bi+j , bi+j+1 are assigned to segment J 6= I for some j ≥ 1. Suppose also
that the other copy of bi+j+1 is assigned to J ′ 6= I and the other copy of bi is assigned
to I ′ 6= J . Notice that pebbles of the form (i+ k, t), for 1 ≤ k ≤ j, can only be com-
puted by processors in segment I or J . Since the load is c, the number of processors
in segment I is at least j/c. The same is true for segment J . We shall find a path
of 4j pebbles such that either a delay of O(j logn) occurs, or a delay of log n occurs
O(j) times during the simulation. For simplicity we assume that j is even. The case
in which j is odd is similar.

We use a triple (i, t, p) to say that processor p computes pebble (i, t), and we use
expressions of the form (i, t, p) ← (i − 1, t − 1, q) to indicate dependency. That is,
processor p receives pebble (i − 1, t − 1) from processor q before p computes (i, t).
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Fig. 13. A path of 4j pebbles, where j is even.

(Note that p may be the same as q.) Consider the computation of the following path
of 4j pebbles, τ1 ← · · · ← τ4j , where τk is a triple of the form

τk =



(i+ k, t− k, pk) for k ∈ A, where A = {k : 1 ≤ k ≤ j},
(i+ j + 1, t− k, pk) for k ∈ B, where B = {k odd : j < k ≤ 2j},

(i+ j, t− k, pk) for k ∈ C, where C = {k even : j < k ≤ 2j},
(i− k + 3j, t− k, pk) for k ∈ D, where D = {k : 2j < k ≤ 3j},

(i+ 1, t− k, pk) for k ∈ E, where E = {k even : 3j < k ≤ 4j},
(i, t− k, pk) for k ∈ F, where F = {k odd : 3j < k ≤ 4j}.

This path goes backward in time and zigzags during time steps k for k ∈ B∪C∪E∪F .
(See Figure 13.)

By assumption, processors pk, for k ∈ C ∪ E, can only belong to segment I
or J . If processors pk, for k ∈ C ∪ E, do not belong to the same segment, then
Lemma 4.12 implies a delay of j

2c logn for the communication between segments I

and J . Hence, it takes more than j
2c logn steps to compute this path of 4j pebbles.

Otherwise, processors pk, for k ∈ C ∪E, all belong to segment I. Lemma 4.12 implies
a delay of log n in computing every τk for j < k ≤ 2j. This is because processors
pk, for k ∈ B, cannot be in segment I by assumption. Similarly, if processors pk, for
k ∈ C ∪E, all belong to segment J , then there is a delay of logn in computing every
τk for 3j < k ≤ 4j. Hence, it takes more than j logn steps to compute this path of
4j pebbles.

We can repeat this argument for every 4j steps. Hence the slowdown is Ω(log n).
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Case 2. There exists no “overlapping” of the databases as in Case 1. Let bi, . . . , bj ,
for j ≥ i, be the longest sequence of consecutive databases assigned to one segment.
Call this segment I and the sequence of databases SI . Notice that processors in I do
not have a copy of bi−1. Let J be a segment that is assigned a copy of bi−1. Let SJ be
the sequence of consecutive databases such that bi−1 is a member of SJ and that each
member of SJ has a copy in J . If bi were a member of SJ , then either the database
sequences SJ and SI would produce the “overlapping” pattern sufficient for Case 1 or
SJ would be longer than SI . This latter case contradicts the definition of SI . Hence,
any segment that has a copy of bi−1 cannot have a copy of bi. This implies that the
processors computing the pebbles in the (i − 1)st and ith column are at least log n
delay apart by Lemma 4.12. Therefore, the slowdown is Ω(log n).

5. Conclusions. In this paper we presented methods for latency hiding in sim-
ple networks such as linear arrays and two-dimensional arrays. Ultimately, we are
interested in the efficient implementation of algorithms designed for networks that
appear often in the architectures of parallel computers, such as trees, arrays, butter-
flies, and hypercubes, on a network with arbitrary topology and arbitrary link delays,
such as NOWs. The special case in which two networks have identical topology but
different link delays is a starting point where we can study the effect of latencies in
isolation. Indeed, the general case of simulating a unit-delay guest on a host with
arbitrary delays and arbitrary topology so as to minimize slowdown seems to be a
very challenging problem.
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Abstract. Several important NP-hard combinatorial optimization problems can be posed as
packing/covering integer programs; the randomized rounding technique of Raghavan and Thomp-
son is a powerful tool with which to approximate them well. We present one elementary unifying
property of all these integer linear programs and use the FKG correlation inequality to derive an
improved analysis of randomized rounding on them. This yields a pessimistic estimator , thus pre-
senting deterministic polynomial-time algorithms for them with approximation guarantees that are
significantly better than those known.
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1. Introduction. Several important NP-hard combinatorial optimization prob-
lems, such as basic problems on graphs and hypergraphs, can be posed as pack-
ing/covering integer programs; the randomized rounding technique of Raghavan and
Thompson is a powerful tool with which to approximate them well [30]. We present an
elementary property (positive correlation) of all these integer linear programs (ILPs);
we then use the FKG inequality (Fortuin, Kasteleyn, and Ginibre [14], Sarkar [31]) to
derive an improved analysis of randomized rounding on the problems. Interestingly,
this yields a pessimistic estimator , thus presenting deterministic polynomial algo-
rithms with approximation guarantees that are significantly better than those known,
in a unified way.

1.1. Previous work. Let Z+ and <+ denote the nonnegative integers and the
nonnegative reals, respectively. For a (column) vector v, let vT denote its transpose
and let vi stand for the ith component of v. We first define the packing and covering
integer programs.

Definition 1.1. Given A ∈ [0, 1]n×m, b ∈ [1,∞)n, and c ∈ [0, 1]m with
maxj cj = 1, a packing (respectively, covering) integer program (PIP) (respectively,
CIP) seeks to maximize (respectively, minimize) cT · x subject to x ∈ Zm+ and Ax ≤ b
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(respectively, Ax ≥ b). Furthermore if A ∈ {0, 1}n×m, we assume that each entry
of b is integral. We also define B = mini bi; we assume without loss of generality
(w.l.o.g.) that B ≥ 1.

Although there usually are no restrictions on the entries of A, b, and c beyond
nonnegativity, it is easily seen that the above restrictions are w.l.o.g. because of the
following. First, we may assume that ∀i, j, Aij is at most bi. If this is not true for
a PIP, then we may as well set xj := 0; if this is not true for a CIP, we can reset
Aij := bi. Next, by scaling each row of A such that maxj Ai,j = 1 for each row i
and by scaling c so that maxj cj = 1, we get the above form for A, b, and c. (In
particular, we get B ≥ 1 since Ai,j ≤ bi ∀i, j.) Finally, if A ∈ {0, 1}n×m, then for a
PIP we can always reset bi := bbic for each i, and for a CIP we can reset bi := dbie,
hence the assumption on the integrality of each bi in this case.

Remark . The reader is requested to take note of the parameter B; it will occur
frequently in the rest of the paper. Whenever we use the symbol B as a parameter for
any given problem, B will play the same role in the “natural” PIP/CIP formulation
of the problem, as it does in Definition 1.1.

As mentioned above, PIPs and CIPs model some basic problems in combinato-
rial optimization, but most of these problems are NP-hard; hence we are interested
in efficient approximation algorithms for PIPs and CIPs with a good performance
guarantee. We now turn to an important technique for approximating integer linear
programs—“relaxing” their integrality constraints and considering the resulting linear
program.

Definition 1.2. The standard linear programming (LP) relaxation of PIPs/CIPs
lets x ∈ <m+ ; given a PIP/CIP, x∗ and y∗ denote, respectively, an optimal solution to,
and the optimum value of, this relaxation. (For packing, we also allow constraints of
the form xi ∈ {0, 1, . . . , di}, where di is some positive integer; the LP relaxation sets
xi ∈ [0, di] here.)

Given a PIP or a CIP, we can solve its LP relaxation efficiently. However, how do
we handle the possibility of possibly fractional entries in x∗? We need some mechanism
to “round” fractional entries in x∗ to integers, suitably. One possibility is to round
every fractional value x∗i to the closest integer, with some tie-breaking rule if x∗i is half
of an integer. However, it is known that such “thresholding” methods are of limited
applicability.

A key technique with which to approximate a class of integer programming prob-
lems via a new rounding method—randomized rounding—was proposed in [30]. Given
a positive real v, the idea is to look at its fractional part as a probability: round v
to bvc+ 1 with probability v − bvc, and round v to bvc with probability 1− v + bvc.
This has the nice property that the expected value of the result is v. How can we
use this for packing and covering problems? Consider a PIP, for instance. Solve its
LP relaxation and set x′i := x∗i /α for some parameter α > 1 to be fixed later; this
scaling down by α is done to boost the chance that the constraints in the PIP are all
satisfied; recall that they are all ≤-constraints. Now define a random z ∈ Zm+ , the
outcome of randomized rounding, as follows. Independently for each i, set zi to be
bx′ic+ 1 with probability x′i − bx′ic and bx′ic with probability 1− (x′i − bx′ic).

We now need to show that all the constraints in the PIP are satisfied and that
cT · z is not “much below” y∗, with reasonable probability; we also need to choose α
suitably. This is formalized in [30] as follows. In what follows, let Pr(E) denote the
probability of an event E and E[X] denote the expected value of random variable X.



650 ARAVIND SRINIVASAN

As seen above, an important observation is that E[zi] = x′i. Hence,

E[(Az)i] = (Ax′)i ≤ bi/α, 1 ≤ i ≤ n; E[cT · z] = y∗/α.

For some β > 1 to be fixed later, define (n+ 1) “bad” events

Ei ≡ ((Az)i > bi), 1 ≤ i ≤ n; En+1 ≡ (cT · z < y∗/(αβ)).(1.1)

Now, z is an (αβ)-approximate solution to the PIP if

n+1∧
i=1

Ei 6= φ(1.2)

holds. How small a value for (αβ) can we achieve while still guaranteeing (1.2)?
Bounding

Pr

(
n+1∨
i=1

Ei

)
≤
n+1∑
i=1

Pr(Ei),(1.3)

we can pick α, β > 1 such that
∑n+1
i=1 Pr(Ei) < 1 holds, using the Chernoff–Hoeffding

(CH) bounds. This gives us an (αβ)-aproximation z with nonzero probability, which
is also made deterministic by Raghavan, using pessimistic estimators [28]. Similar
ideas hold for CIPs—the fractions {x∗i } are scaled up by some α > 1 here. Similar
approximation bounds are derived through different methods by Plotkin, Shmoys, and
Tardos [27]. See Raghavan [29] for a survey of randomized rounding and Crescenzi and
Kann [9] for a comprehensive collection of approximation results on NP-optimization
problems.

Although randomized rounding is a unifying idea with which to derive good ap-
proximation algorithms, there are better approximation bounds for specific key prob-
lems such as set cover (Johnson [21], Lovász [23], Chvátal [8]), hypergraph matching
(Aharoni, Erdős, and Linial [1]), and file-sharing in distributed networks (Naor and
Roth [26]), each derived through different means. (For instance, for the set cover
problem, which will be defined soon, let n denote the number of vertices of a given
hypergraph H and d ≤ n be the maximum number of vertices in any edge of H.
The analysis of randomized rounding via (1.3) for appropriately defined events Ei
yields an approximation of O(lnn). However, an O(log d) approximation is provided

in [21], [23], [8].) One reason for this slack stems from bounding Pr(
∨n+1
i=1 Ei) by∑n+1

i=1 Pr(Ei): to quote Raghavan [28],
Throughout, we naively (?) sum the probabilities of all bad events—
although these bad events are surely correlated. Can we prove a
stronger result using algebraic properties (e.g., the rank) of the coef-
ficient matrix? A tighter bound for the probabilistic existence proofs
should lead to tighter approximation algorithms.

1.2. Proposed method. We make progress in the above-suggested direction
by exploiting an elementary property—positive correlation—of CIPs and PIPs. To
motivate this idea, let us take two constraints of a PIP and let E1 and E2 be the
corresponding bad events, as defined before. For instance, suppose E1 is the event
that 0.1z1 + z3 + 0.5z4 + 0.9z6 > 1.1 and E2 stands for the event that 0.4z1 + 0.3z2 +
z5 + 0.1z6 > 1.2, where the zi are all independent 0-1 random variables. Now sup-
pose we are given that E1 holds. Very roughly speaking, this seems to suggest that
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“many” among z1, z3, z4, and z6 were “small” (i.e., zero), which seems to boost the
chance that E2 holds, too. Formally, the claim is that Pr(E2|E1) ≥ Pr(E2), i.e.,
that Pr(E1

∧
E2) ≥ Pr(E1) · Pr(E2). This “intuitively clear” fact then can be easily

generalized to

∀k ∀1 ≤ i1 < i2 < · · · < ik ≤ n, Pr

 k∧
j=1

Eij

 ≥ k∏
j=1

Pr(Eij ).(1.4)

In other words, (1.4) claims that the constraints are positively correlated—given that
all of any given subset of them are satisfied, the conditional probability that any other
constraint is also satisfied cannot go below its unconditional probability.

We prove (1.4), which seems plausible, using the FKG inequality. Thus,

Pr

(
n+1∨
i=1

Ei

)
≤ Pr

(
n∨
i=1

Ei

)
+Pr(En+1) ≤ 1−

(
n∏
i=1

(1− Pr(Ei))

)
+Pr(En+1),(1.5)

which is always as good as, and most often much better than, (1.3). (For a detailed
study of the FKG inequality, see, e.g., Graham [15] and Chapter 6 of Alon, Spencer,
and Erdős [3].)

It is not hard to verify such a property for CIPs also. Why have we been so lucky
as to have positive correlation among the constraints of PIPs and CIPs? The features
of PIPs and CIPs which guarantee this are

• all the entries of the matrix A are nonnegative, and
• all the constraints “point” in the same direction.

Of course, given that all of any given subset of the constraints are violated, the
conditional probability that any other constraint is also violated cannot go below its
unconditional probability; however, we will not have to deal with this situation! Also,
(1.4) may not hold if the zi’s are not independent.

This approach usually only guarantees that z is a “good” approximation with
very low (albeit positive) probability; it does not seem to provide a randomized algo-
rithm with any good success probability. However, the structure of PIPs and CIPs
implies a subadditivity property that yields a pessimistic estimator (a notion to be
recalled in section 2); we thus get deterministic polynomial-time algorithms achieving
these improved approximation bounds. The problem in arriving at a good pessimistic
estimator is that while the previous estimator

∑n+1
i=1 Pr(Ei) (i.e., the one used in [28]

and in related papers) is upper-bounded by E[Z] (for some random variable Z) on
applying the CH bounds, such a fact does not seem to hold here. Nevertheless, the
structure of CIPs/PIPs—in particular, the two simple properties itemized above—
help to provide a good pessimistic estimator. This is a point that we would like to
stress.

Thus we get, in a unified way, improved bounds on the integrality gap

max{(cT · z)/y∗, y∗/(cT · z)}
and hence improved approximation algorithms for all PIPs and CIPs. In particu-
lar, we improve on the above-mentioned results of [21], [23], [1], [26]; our bound is
incomparable with that of [8].

Positive correlation has been used in the context of network reliability by Esary
and Proschan [11]; see, e.g., Chapter 4.1 in [32]. It has also been used for the set
cover problem, an important covering problem, to be defined below, by Bertsimas
and Vohra [5].
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1.3. Approximation bounds achieved. Our best improvements are for PIPs.
For PIPs, the standard analysis of randomized rounding, i.e., the usage of (1.3), guar-
antees integral solutions of value t1 = Ω(y∗/n1/B) and t2 = Ω(y∗/n1/(B+1)), respec-
tively, if A ∈ [0, 1]n×m and A ∈ {0, 1}n×m. (For completeness, we prove this in the ap-

pendix.) Our method provides Ω(min{y∗, (K0t1)B/(B−1)}) and Ω(min{y∗, t(B+1)/B
2 })

bounds, respectively, where 0 < K0 < 1 is an absolute constant, thus improving on
the previous solutions. For instance, if A ∈ {0, 1}n×m, y∗ = Θ(n), and B = 1, we get
an integral solution of value Θ(n), as opposed to the previous Ω(

√
n) bound. This

method also gives Turán’s classical theorem on independent sets in graphs [39] to
within a constant factor.

An important packing problem where A ∈ {0, 1}n×m is simple B-matching in
hypergraphs [23]: given a hypergraph with nonnegative edge weights, find a maximum
weight collection of edges such that no vertex occurs in more than B of them. Usual
hypergraph matching has B = 1 and is a well-known NP-hard problem. To our
knowledge, the only known good bound for this problem, apart from the standard
analysis of randomized rounding, was provided by the work of [1], which focused on
the special case of unweighted edges. The methods of [1] can be used to show that
if f is the minimum size of an edge in the hypergraph, then there exists an integral
matching of value at least

(y∗)2

B2n− (f − 1)(y∗)2/min{m,n} ≥
(y∗)2

B2n
.

This matches our result to within a constant factor for B = 1. However, this bound
worsens as B increases, while the standard analysis, as well as our present analysis,
of randomized rounding show that the integrality gap decreases as B increases. (An
interesting point is that approximation algorithms for packing and covering often have
an approximation ratio that is independent of y∗. The work of [1], and our work here,
are exceptions.)

For covering, we prove an

1 + O(max{ln(nB/y∗)/B,
√

ln(2dnB/y∗e)/B})(1.6)

integrality gap and derive the corresponding deterministic polynomial-time approxi-
mation algorithm. (To parse the “ln(2dte)” term for t > 0, first take “t large” (say,
t ≥ 2) to be the typical case, wherein the term equals ln t+ Θ(1). If t is “small,” say,
t < 2, then the term is Θ(1).) This improves on the

1 + O(max{(lnn)/B,
√

(lnn)/B})
bound given by the standard analysis of randomized rounding. Also, Dobson [10]
and Fisher and Wolsey [13] bound the performance of a natural greedy algorithm for
CIPs; their results are as follows. For a given CIP, let γ1 = mini maxj Ai,j/cj , and
let γ2 = maxj(

∑n
i=1Ai,j/cj). Then the work of [13] shows that the greedy algorithm

produces a solution of value at most y∗(1 + ln(γ2/γ1)). Alternatively, if each row
of the linear system Ax ≥ b is scaled so that the minimum nonzero entry in the
row is at least 1, then if OPT denotes the value of the optimal integral solution to
the CIP, it is shown in [10] that the greedy algorithm produces a solution of value
at most OPT (1 + ln(maxj

∑n
i=1Ai,j)). However, more general covering problems

that have constraints of the form xj ≤ uj are also considered in [10]. Our bound
is incomparable with these previous bounds, but for any given (A, b, c), our bound
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is always better for CIP instances parametrized by (A, λb, c) if the scalar λ is more
than a certain threshold thresh(A, b, c). See [5] for a detailed study of approximating
CIPs; our work improves on all of their randomized rounding bounds except for their
weighted CIPs (wherein it is not the case that ci = 1 for all i), for which our bounds
are incomparable with theirs.

An important subclass of the CIPs models the unweighted set cover problem: ∀i, j,
Ai,j ∈ {0, 1}, bi = 1, and cj = 1, here. The combinatorial interpretation is that we
have a hypergraph H = (V,E) and wish to pick a minimum cardinality collection of
the edges so that every vertex is covered. (When viewed as an LP, this is the “dual”
of the hypergraph matching problem.) The rows correspond to V and the columns
to E. Clearly, this problem requires that x ∈ {0, 1}m, which is not guaranteed by
Definition 1.1; however, for this problem, any x ∈ Zm+ with Ax ≥ b trivially yields a
y ∈ {0, 1}m with Ay ≥ b and cT · y ≤ cT · x (set yi = min{1, xi}).

For set cover, we tighten the constants in (1.6) to derive a ln(n/y∗)+ln ln(n/y∗)+
O(1) approximation bound. Recent work of Feige [12], improving earlier results of [24],
[4], shows that for any fixed ε > 0, approximating this problem to within (1− ε) lnn
is likely to take superpolynomial time. However, this problem is important enough
to study approximations parametrized by other parameters of A, b, and c that are
at least as good as and often much better than Θ(log n); for instance, the work of
[21], [23], [8] shows a ln d + O(1) approximation bound, where d is the maximum
column sum in A; note that d ≤ n. Also, since there is a trivial solution of size n
for any set cover instance, n/y∗ is a simple upper bound on the approximation ratio.
Our bound is a further improvement—it is easily seen that n/y∗ ≤ d always and
that there is a constant ` > 0 such that for every nondecreasing function f(n) with
1 ≤ f(n) ≤ ` lnn/ ln lnn, there exist families of (A, b, c) such that

ln(n/y∗) ≤ min{n/y∗, ln d}/f(n).

Thus our bound is never more than a multiplicative (1 + o(1)) factor above the
classical bound and is usually much better; in the best case, our improvement is
by Θ(logn/ log logn). (We can construct, e.g., instances with d = nΘ(1) and y∗ =

n/ logΘ(1) n, giving a Θ(logn/ log logn) improvement.)
Another noteworthy class of CIPs is related to the B-domination problem: given

a (directed) graph G with n vertices, we want to place a minimum number of facilities
on the nodes such that every node has at least B facilities in its out-neighborhood.
This is also a key subproblem in sharing files in a distributed system [26]; under the
assumption that G is undirected and letting ∆ be its maximum degree, an

1 + O(max{ln(∆)/B,
√

ln(∆)/B})
approximation bound is presented in [26], improving on the standard analysis of
randomized rounding. Bound (1.6) improves further on this; in particular, even if
G is directed with maximum in-degree ∆, (1.6) shows that the Naor–Roth bound
holds. Furthermore, the comments regarding the Θ(logn/ log logn) improvement for
set cover hold even in the undirected case. All of this, in turn, provides better bounds
for the file-sharing problem.

Thus, the two main contributions of this work are as follows. First, we identify
a very desirable “correlation” property of all packing and covering integer programs,
which enables one to prove, quite easily, improved bounds on the integrality gap for
the linear relaxations of these problems. However, as shown in section 4, this is often
not constructive, since the probability of randomized rounding resulting in such good
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approximations can be (and usually is) negligibly small; section 4 shows a simple
family of instances where this “success probability” is as small as exp(−Ω(n + m)).
The second contribution is in showing that the structure of PIPs and CIPs presents
a suitable pessimistic estimator (see section 2 for the definition), which allows one to
obtain such approximations efficiently.

In section 2, we present some basic notions such as large-deviation inequalities,
the FKG inequality, and the idea of pessimistic estimators. Section 3 covers PIPs.
We devote section 4 to the important problem of finding a maximum independent
set problem on graphs by looking at it in the usual way as a PIP. Its analysis shows
the strengths and weaknesses of both our approach and related approaches. Sec-
tion 5 deals with CIPs; a good understanding of section 3 is essential for this section.
Section 6 concludes.

2. Preliminaries. Let r.v. abbreviate “random variable” and for any positive
integer k, let [k] denote the set {1, 2, . . . , k}. If a universe N = {a1, a2, . . . , a`} is

understood, then for any S ⊆ N , χ(S) denotes its characteristic vector: χ(S) ∈ {0, 1}`
with χ(S)j = 1 iff aj ∈ S. For a sequence s1, s2, . . . and any integer i ≥ 1, s(i) denotes
the vector (s1, s2, . . . , si). In our usage, s1, s2, . . . could be a sequence of reals or of

random variables. For any i, any vector w ∈ {0, 1}i, and for j ∈ {0, 1}, we define

wj ∈ {0, 1}i+1
as (w1, w2, . . . , wi, j). As usual, e denotes the base of the natural

logarithm. We let exp(x) denote ex.
Remark . The following is filled with formulae and calculations, many of them

routine. The real ideas of this work are contained in Lemmas 3.1, 3.5, and 3.6. The
reader might consider skipping the proofs of most of the rest of the lemmas, for the
first reading.

We first recall the CH bounds for the tail probabilities of sums of bounded inde-
pendent random variables (r.v.’s) [7], [19]. Theorem 2.1 presents these tail bounds;
see, e.g., Motwani and Raghavan [25] for the proofs.

Theorem 2.1. Let X1, X2, . . . , X` be independent r.v.’s, each taking values in
[0, 1], with R =

∑`
i=1Xi and E[R] = µ. For any δ ≥ 0,

Pr(R ≥ µ(1 + δ)) < E[(1 + δ)R−µ(1+δ)] ≤ G(µ, δ)
.
= (exp(δ)/(1 + δ)(1+δ))µ,

and if 0 ≤ δ < 1,

Pr(R ≤ µ(1− δ)) < E[(1− δ)R−µ(1−δ)] ≤ H(µ, δ)
.
= exp(−µδ2/2).

The following fact is easily seen.
Fact 1.
(a) G(µ, δ) ≤ (e/(1 + δ))(1+δ)µ.
(b) G(µ, δ) ≤ exp(−δ2µ/3) if δ ≤ 1.
(c) G(µ, δ) ≤ exp(−(1 + δ) ln(1 + δ)µ/4) if δ ≥ 1.
(d) If 0 < µ1 ≤ µ2, then G(µ1, δ) ≥ G(µ2, δ).
Call a family F of subsets of a set N monotone increasing (respectively, monotone

decreasing) if ∀S ⊆ T ⊆ N , S ∈ F implies that T ∈ F (respectively, T ∈ F implies
that S ∈ F). We next present Theorem 2.2, a special case of the powerful FKG
inequality [14], [31]; for a proof, see, e.g., Chapter 6 of [3].

Theorem 2.2. Given a set N = {a1, a2, . . . , a`} and some p = (p1, p2, . . . , p`) ∈
[0, 1]`, suppose we pick a random Y ⊆ N by placing each ai in Y independently, with
probability pi. For any F ⊆ 2N , let Prp(F)

.
= Pr(Y ∈ F). Let F1, F2, . . . , Fs ⊆ 2N



APPROXIMATIONS FOR PACKING AND COVERING 655

be any sequence of monotone increasing families, and let G1, G2, . . . , Gs ⊆ 2N be any
sequence of monotone decreasing families. Then,

Prp

(
s∧
i=1

Fi

)
≥

s∏
i=1

Prp(Fi) and Prp

(
s∧
i=1

Gi

)
≥

s∏
i=1

Prp(Gi).

Finally, we recall the notion of pessimistic estimators [28]. For our purposes,
we focus on the case of independent binary r.v.’s. Let X1, X2, . . . , X` ∈ {0, 1} be
independent r.v.’s with Pr(Xi = 1) = pi, for some p ∈ [0, 1]`. Suppose, for some

implicitly defined L ⊆ {0, 1}`, that Pr(X(`) ∈ L) < 1. Our goal is to find some

v ∈ {0, 1}` − L efficiently. Theorem 2.4 presents the idea of pessimistic estimators
applied to the method of conditional probabilities as a means to achieve this goal.
See [28] for a detailed discussion and proof. We define as follows.

Definition 2.3. A function U : [0, 1]` → <+ is a pessimistic estimator with
respect to (X1, . . . , X`) and L if

(1) U(p1, p2, . . . , p`) < 1, and

(2) ∀i ∈ ({0} ∪ [`]) ∀w ∈ {0, 1}i,
(a) U(w1, . . . , wi, pi+1, . . . , p`) ≥ Pr(X(`) ∈ L|X(i) = w), and
(b) if i ≤ `− 1, then U(w1, . . . , wi, pi+1, . . . , p`) is at least as large as

min{U(w1, . . . , wi, 0, pi+2, . . . , p`), U(w1, . . . , wi, 1, pi+2, . . . , p`)}.

Theorem 2.4 (see [28]). Let U be a pessimistic estimator with respect to (X1, . . . ,
X`) and L. The following algorithm produces a vector v 6∈ L:

For i := 0 to `− 1 do
if U(v1, . . . , vi, 0, pi+2, . . . , p`) ≤ U(v1, . . . , vi, 1, pi+2, . . . , p`), then vi+1 := 0, else

vi+1 := 1.
Proof. It is not hard to see by induction on i that ∀i ∈ {0}∪[`], Pr(X(`) ∈ L|X(i) =

v(i)) < 1. Using this for i = ` in conjunction with property 2(a) of Definition 2.3
completes the proof.

The efficiency of the algorithm depends on how efficiently we can compute U . Also
note that for the proof of Theorem 2.4, it suffices if property 2(a) of Definition 2.3
holds just for i = `.

3. Approximating PIPs. Let a PIP be given, conforming to Definition 1.1. We
assume that x ∈ Zm+ is the constraint on x. (Clearly, even if we have constraints such
as xi ∈ {0, 1, . . . , di}, we will get identical bounds since scaling down by α > 1 and
then performing a randomized rounding cannot make xi 6∈ {0, 1, . . . , di}.) Lemmas
3.1 and 3.6 are crucial, wherein the structure of PIPs is exploited. It is essential to
read this section before reading section 5—some proofs are omitted in section 5 since
they are very similar to the ones in this section.

We solve the LP relaxation and let the scaling by α, events E1, E2, . . . , En+1,
and vectors z, x′, etc., be as in section 1.1; α and β will be determined later. The
main point of this section is to show that good integral solutions exist and to present
a candidate for a pessimistic estimator (see (3.3)). We show that this estimator
satisfies the conditions of Definition 2.3, and we invoke Theorem 2.4 to show that we
can constructivize the existence proof for the improved integrality gap. The work of
this section culminates in Theorem 3.7.

We first set up some notation to formulate our “failure probability.” For every
j ∈ [m], let sj = bx′jc and pj = x′j − sj ∈ [0, 1). Let Ai denote the ith row of A. Let
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X1, X2, . . . , Xm ∈ {0, 1} be independent r.v.’s with Pr(Xj = 1) = pj ∀j ∈ [m], and let
X

.
= X(m). It is clear that

Ei ≡ “Ai ·X > µi(1 + δi)” ∀i ∈ [n] and that En+1 ≡ “cT ·X < µn+1(1− δn+1)”,

where µi = E[Ai ·X] and

δi = (bi −Ai · s)/µi − 1

for i ∈ [n], µn+1 = E[cT ·X], and

δn+1 = 1− (y∗/(αβ)− cT · s)/µn+1.

It is readily verified that δi ≥ 0 ∀i ∈ [n] and that δn+1 ≥ 0. Also, since cT · X ≥ 0
with probability 1, we may assume that β is not so large that δn+1 ≥ 1: if δn+1 ≥ 1,
then Pr(En+1) = Pr(cT ·X < µn+1(1−δn+1)) = 0, and the bad event En+1 will never
happen. Thus, we may assume that 0 ≤ δn+1 < 1.

Our first objective is to prove (1.4) and hence (1.5) using Theorem 2.2; this will
also suggest a choice for a pessimistic estimator. In the notation of Theorem 2.2,
N = [m] and Y = {i ∈ N : Xi = 1}. For each i ∈ [n], define Fi ⊆ 2N as

{S ⊆ N : (Ai · χ(S)) ≤ µi(1 + δi)}.
It is easy to see that each Fi is monotone decreasing. Since Ei ≡ (Y ∈ Fi) for each
i, we deduce (1.4) from Theorem 2.2. In fact, a similar proof shows that since the
components of X are picked independently, we have the following lemma.

Lemma 3.1. For any j ∈ {0} ∪ [m] and any w ∈ {0, 1}j,

Pr

(
n+1∨
i=1

Ei|X(j) = w

)
≤ 1−

(
n∏
i=1

(1− Pr(Ei|X(j) = w))

)
+Pr(En+1|X(j) = w).

Let

Fn+1 = {S ⊆ [m] : cT · χ(S) ≥ µn+1(1− δn+1)}.
In the notation of Definition 2.3, the set to be avoided, L, is

{x ∈ {0, 1}m : ∃i ∈ [n+ 1] χ−1(x) 6∈ Fi}.
We next upper-bound Pr(Ei) for each i. Recall, by Theorem 2.1, that for each i ∈ [n],
Pr(Ei) ≤ G(µi, δi); also, Pr(En+1) ≤ H(µn+1, δn+1). Lemma 3.2 upper-bounds these
quantities.

Lemma 3.2. (a) For every i ∈ [n], G(µi, δi) ≤ G(bi/α, α − 1) ≤ G(B/α, α − 1).
(b) H(µn+1, δn+1) ≤ H(y∗/α, 1− 1/β).

Proof. (a) Note that µi + Ai · s ≤ bi/α, with µi, Ai · s ≥ 0. Subject to these
constraints and that α > 1, we will show that G(µi, δi) is maximized when µi = bi/α
and Ai · s = 0; this will prove (a). Now,

G(µi, δi) = µbi−Ai·si exp(−µi)(e/(bi −Ai · s))bi−Ai·s.(3.1)

If Ai · s is held fixed at some γ ≥ 0, (3.1) is maximized at µi = ∆
.
= bi/α− γ, under

the constraint that µi ∈ [0,∆]. Thus,

G(µi, δi) ≤ exp(bi − bi/α)((bi/α−Ai · s)/(bi −Ai · s))bi−Ai·s,
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which is readily shown to be maximized when Ai · s = 0. A similar proof holds for
(b).

Now that we have good tail bounds, we set α, β > 1 such that (αβ) is small and
such that for the PIP, 1− (

∏n
i=1(1−Pr(Ei))) + Pr(En+1) < 1 holds. This, combined

with setting j = 0 in Lemma 3.1, will show that there exists a feasible integral solution
with objective function value at least y∗/(αβ). Observe that the bound of Lemma 3.3
makes sense only if B > 1. Lemma 3.4 handles the common case where Ai,j ∈ {0, 1}
∀i, j, to get improved bounds which, in particular, work even if B = 1. We have not
attempted to optimize the constants.

Lemma 3.3. There exist constants K1 ≥ 3 and K2 ≥ 1 such that for any PIP, if
α is taken as K1 ·max{1, (K2n/y

∗)1/(B−1)} and β = 2, then 1− (
∏n
i=1(1−Pr(Ei)))+

Pr(En+1) < 1.
Proof. Suppose we agree to guarantee

α ≥ 3(3.2)

and β = 2. By Lemma 3.2, it suffices to show that H(y∗/α, 1/2) < (1−G(B/α, α−
1))n. Furthermore, Fact 1(a) shows that

exp(−y∗/(8α)) < (1− exp(−B(lnα− 1)))n

suffices. Since B ≥ 1 and lnα− 1 ≥ ln 3− 1 > 0, there exists a fixed d > 0 such that

1− exp(−B(lnα− 1)) ≥ exp(−d exp(−B(lnα− 1)))

and hence, it suffices if y∗/(8α) > nd exp(−B(lnα− 1)). Simplifying, we see that

α ≥ K1(K2n/y
∗)1/(B−1)

suffices for certain positive absolute constants K1 ≥ 3 and K2 ≥ 1. Thus, to satisfy
the requirement (3.2), it will suffice to take α = K1 ·max{1, (K2n/y

∗)1/(B−1)}.
Lemma 3.4. There exists a constant K1 ≥ 3 for PIP instances with Ai,j ∈ {0, 1}

∀i, j, such that if α = K1 ·max{1, (n/y∗)1/B} and β = 2, then 1−(
∏n
i=1(1−Pr(Ei)))+

Pr(En+1) < 1.
Proof. Since Ai,j ∈ {0, 1}, we may assume w.l.o.g. that each bi is an integer,

as mentioned in Definition 1.1. Again, since Ai,j ∈ {0, 1}, we have, for any i ∈ [n],
((Az)i > bi) → (Az)i ≥ bi + 1. Hence, B essentially gets replaced by B + 1 in
Lemma 3.3, leading to the strengthened bounds. (We have eliminated the constant

K2 here, since K
1/B
2 ≤ K2; hence, this term can be absorbed into the constant

K1.)
As remarked in the introduction, it can be seen that the bounds (on the integrality

gap (αβ)) of Lemmas 3.3 and 3.4 significantly strengthen the corresponding bounds
achievable by the standard analysis of randomized rounding. However, as will be
seen in section 4, the probability of outputting such an integral solution through
randomized rounding can be as small as exp(−Ω(n + m)); hence, showing a good
bound on the integrality gap alone is not satisfactory from the algorithmic viewpoint.
We now show that there is indeed a suitable pessimistic estimator; we first introduce
some notation to avoid lengthy formulae.

Notation 1. ∀i ∈ [n], j ∈ {0} ∪ [m], and w ∈ {0, 1}j, let

hi(j, w)
.
= E[(1 + δi)

Ai·X−µi(1+δi)|X(j) = w],
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fi(j, w)
.
= E[(1 + δi)

Ai·X−µi(1+δi)|X(j+1) = w0], and

gi(j, w)
.
= E[(1 + δi)

Ai·X−µi(1+δi)|X(j+1) = w1].

When j and w are clear from the context, we may refer to these as hi, fi, and gi.
From Theorem 2.1 and Lemma 3.1, a natural guess for a pessimistic estimator,

U(w1, . . . , wj , pj+1, . . . , pm) ∀j ∈ {0} ∪ [m] ∀w ∈ {0, 1}j , might be

1−
(

n∏
i=1

(1− hi(j, w))

)
+ E[(1− δn+1)c

T ·X−µn+1(1−δn+1)|X(j) = w].

This might complicate matters if hi(j, w) > 1, however, so we first define h′i(j, w) =
min{hi(j, w), 1}, f ′i(j, w) = min{fi(j, w), 1}, and g′i(j, w) = min{gi(j, w), 1}. We now

let U(w1, . . . , wj , pj+1, . . . , pm) ∀j ∈ {0} ∪ [m] ∀w ∈ {0, 1}j be

1−
(

n∏
i=1

(1− h′i(j, w))

)
+ E[(1− δn+1)c

T ·X−µn+1(1−δn+1)|X(j) = w].(3.3)

At this point, we have exhibited suitable α and β such that our function U satisfies
properties (1) and 2(a) of Definition 2.3. We now turn to proving property 2(b), the
proof of which is more interesting. Before showing Lemma 3.6, which proves this, we
first establish a simple lemma which facilitates the proof of Lemma 3.6.

Lemma 3.5. ∀i ∈ [n], j ∈ {0} ∪ [m], and w ∈ {0, 1}j,
(i) 0 ≤ f ′i(j, w) ≤ g′i(j, w) ≤ 1, and
(ii) h′i(j, w) ≥ (1− pj+1)f ′i(j, w) + pj+1g

′
i(j, w).

Proof. We drop the parameters j and w for the rest of the proof. Part (i) is easily
seen. For part (ii), we first note that

0 ≤ fi ≤ gi and hi = (1− pj+1)fi + pj+1gi(3.4)

by the definition of these quantities. If hi < 1 and gi ≤ 1, then fi < 1 by (3.4) and
hence part (ii) above follows from (3.4), with equality. If hi < 1 and gi > 1, note
again that fi < 1 and furthermore that gi > g′i = 1; thus, part (ii) follows from (3.4).
Finally if hi ≥ 1, note that h′i = 1, g′i = 1 and that f ′i ≤ 1, implying (ii) again.

Remark . In many constructions of pessimistic estimators for various analyses,
equality holds in part (ii) of Lemma 3.5 (as opposed to our “≥”). This makes it easy
to prove that the function on hand is a valid pessimistic estimator. Our task is made
more challenging because of this change in our case.

Lemma 3.6. ∀j ∈ {0}∪ [m−1] ∀w ∈ {0, 1}j, U(w1, . . . , wj , pj+1, pj+2, . . . , pm) ≥
(1 − pj+1)U(w1, . . . , wj , 0, pj+2, . . . , pm) + pj+1U(w1, . . . , wj , 1, pj+2, . . . , pm). Thus,
in particular, U(w1, . . . , wj , pj+1, pj+2, . . . , pm) is at least as high as

min{U(w1, . . . , wj , 0, pj+2, . . . , pm), U(w1, . . . , wj , 1, pj+2, . . . , pm)}.
Proof. Let r

.
= pj+1, for convenience. Note that

E[(1− δn+1)c
T ·X−µn+1(1−δn+1)|X(j) = w]

equals the sum of two terms:

(1− r)E[(1− δn+1)c
T ·X−µn+1(1−δn+1)|X(j+1) = w0]
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and

rE[(1− δn+1)c
T ·X−µn+1(1−δn+1)|X(j+1) = w1].

Omitting the parameters j and w in fi, gi, etc., it is thus sufficient to show that

n∏
i=1

(1− h′i) ≤ (1− r)
n∏
i=1

(1− f ′i) + r
n∏
i=1

(1− g′i).

Thus from Lemma 3.5(ii) and since h′i ≤ 1, it suffices to show that

n∏
i=1

(1− (1− r)f ′i − rg′i) ≤ (1− r)
n∏
i=1

(1− f ′i) + r
n∏
i=1

(1− g′i),(3.5)

which we now prove by induction on n.
Equality holds in (3.5) for the base case n = 1. We now prove (3.5) by assuming

its analogue for n− 1, i.e., we show that(
(1− r)

n−1∏
i=1

(1− f ′i) + r
n−1∏
i=1

(1− g′i)
)

(1−(1−r)f ′n−rg′n) ≤ (1−r)
n∏
i=1

(1−f ′i)+r
n∏
i=1

(1−g′i).

Simplifying, we need to show that

r(1− r)(g′n − f ′n)

(
n−1∏
i=1

(1− f ′i)−
n−1∏
i=1

(1− g′i)
)
≥ 0,(3.6)

which holds in view of Lemma 3.5(i).
Since all the requirements of Definition 2.3 are satisfied, we have the following

theorem.
Theorem 3.7. There exist constants K3,K4 > 0 such that given any PIP con-

forming to the notation of Definition 1.1, we can produce, in deterministic polynomial
time, a feasible solution to it, of value at least

K3 ·min{y∗, (K4y
∗/n1/B)B/(B−1)}.

If A ∈ {0, 1}n×m, the guarantee on the solution value is at least

K3 ·min{y∗, (y∗/n1/(B+1))(B+1)/B}.

Proof. Lemmas 3.3 and 3.4 show property (1) of Definition 2.3. Properties 2(a)
and 2(b) of Definition 2.3 are shown by Lemmas 3.1 and 3.6, respectively. Theorem 2.4
now completes the proof.

4. The maximum independent set problem on graphs. We consider the
classical NP-hard problem of finding a maximum independent set (MIS) in a given
undirected graph G = (V,E) and formulate it as a packing problem. Although we do
not get improved approximation algorithms for this problem, a few observations on
this important problem are relevant, as we shall see shortly.

Turán’s classical theorem [39] shows that G always has an independent set of
size at least |V |2/(2|E|+ |V |); such a set can also be found in polynomial time. The
standard packing formulation described below, combined with our approach, shows
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the existence of an independent set of size Ω(|V |2/|E|). The constant factor hidden in
the Ω(·) is weaker than that of Turán’s theorem, however—we present this result to
show that our approach proves a few other known results, too, in a unified way. We
remark that we do not use the standard notation of graphs having n vertices and m
edges, as it will go against our notation for PIPs and CIPs; the packing formulation
has |E| constraints and |V | variables.

Define an indicator variable xi ∈ {0, 1} for each vertex i, for the presence of vertex
i in the independent set (IS). Subject to the constraint that xi+xj ≤ 1 for every edge
(i, j), we want to maximize

∑
i xi. For specific problems like this, we can get better

bounds than does the analysis for Theorem 3.7, which uses the general CH bounds.
The fractional solution x∗i = 1/2 for each i is optimal to within a factor of 2. Suppose
we scale x∗ down by some α > 1 and do the randomized rounding as before. Then
for any given edge (i, j), Pr(zi + zj > 1) ≤ 1/(4α2), a bound much better than the
CH bound. Analysis as above then shows that α = Θ(|E|/|V |) and β = Θ(1) suffice,
thus producing an IS of size Ω(y∗/(αβ)) = Ω(|V |2/|E|).

One reason for considering the MIS problem is to show that the failure probability
given by (1.5) can be extremely close to (although strictly smaller than) 1. This
would underscore the importance of the fact that a pessimistic estimator can be
constructed for PIPs and CIPs. Suppose the graph G = (V,E) is a line on the N
vertices 1, 2, . . . , N and that each vertex independently picks a random bit for itself
with the bit being one with probability q, for some q ∈ [0, 1]. Let pN be the probability
that no two adjacent vertices choose the bit 1. Setting q = 1/(2α) = Θ(|V |/|E|) =
Θ(1) above, it is then clear that the probability that randomized rounding (with the
above values for α and β) picks a valid IS in G equals pN . We now proceed to show
that pN is exponentially small in N , validating our point.

Computing pN by induction on N is standard. Let aN (respectively, bN ) denote
the probability that not only do no pair of adjacent vertices both choose 1 but also
that vertex N chooses the bit 1 (respectively, 0). Note that pN = aN + bN . The
recurrences

aN+1 = qbN ,

bN+1 = (1− q)(aN + bN )

are immediate. Letting ν
.
=
√

(1− q)(1 + 3q), it can then be seen that

aN =
q

ν

((
1− q + ν

2

)N
−
(

1− q − ν
2

)N)
.

Using the facts bN = aN+1/q and pN = aN +bN , we then see that pN = exp(−Ω(N)),
i.e., extremely small. Thus, the success probability of randomized rounding with our
chosen values for α and β can be (and usually is) extremely small, motivating the
need for a good pessimistic estimator.

The MIS problem also illustrates the well-known fact that linear relaxations are
not always tight. As seen above, this problem always has a fractional solution lying
between |V |/2 and |V |. However, the graph G can have its independence number
to be any integer in [|V |] and hence, the integrality gap of this LP formulation can
be quite bad. Furthermore, recent work of H̊astad, building on earlier research, has
shown that the MIS cannot be approximated in polynomial time to within any factor
better than |V |1−ε for any fixed ε > 0, unless some unexpected containment results
hold in computational complexity theory [17]. This shows that we cannot expect even
reasonably good approximation algorithms for all PIPs.
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5. Approximating CIPs. Given a CIP conforming to Definition 1.1, we show
how to get a good approximation algorithm for it. Since the ideas here are very similar
to those of section 3, we borrow a lot of notation from there, skim over most details,
and present only the essential differences.

The idea here is to solve the LP relaxation and, for an α > 1 to be fixed later,
to set x′j = αx∗j for each j ∈ [m]. We then construct a random integral solution z by
setting, independently for each j ∈ [m], zj = bx′jc+ 1 with probability x′j − bx′jc and
zj = bx′jc with probability 1 − (x′j − bx′jc). Let Ai, si, and X1, X2, . . . , Xm be as in
section 3. The bad events now are

Ei ≡ “Ai ·X < µi(1− δi)” ∀i ∈ [n] and

En+1 ≡ “cT ·X > µn+1(1 + δn+1)”,

where µi = E[Ai ·X] and

δi = 1− (bi −Ai · s)/µi
for i ∈ [n], µn+1 = E[cT ·X], and

δn+1 = (y∗αβ − cT · s)/µn+1 − 1.

Analogously to PIPs, 0 ≤ δi < 1 ∀i ∈ [n] and δn+1 ≥ 0.
For any i ∈ [n], let

Fi = {S ⊆ [m] : Ai · χ(S) ≥ µi(1− δi)}.
Each of these families is monotone increasing now, and thus Theorem 2.2 again guar-
antees Lemma 3.1, for the present definition of E1, E2, . . . , En+1 also.

Suppose given some j ∈ {0} ∪ [m − 1] and some w ∈ {0, 1}j we define h′i(j, w),
f ′i(j, w), and g′i(j, w) for every i ∈ [n] analogously as in Notation 1:

h′i(j, w)
.
= min{1,E[(1− δi)Ai·X−µi(1−δi)|X(j) = w]},

f ′i(j, w)
.
= min{1,E[(1− δi)Ai·X−µi(1−δi)|X(j+1) = w0]}, and

g′i(j, w)
.
= min{1,E[(1− δi)Ai·X−µi(1−δi)|X(j+1) = w1]}.

As can be expected, the pessimistic estimator U(w1, . . . , wj , pj+1, . . . , pm) ∀j ∈ {0} ∪
[m] ∀w ∈ {0, 1}j is now

1−
(

n∏
i=1

(1− h′i(j, w))

)
+ E[(1 + δn+1)c

T ·X−µn+1(1+δn+1)|X(j) = w].(5.1)

Now we address the analogue of the important Lemma 3.6. It is easily checked
that Lemma 3.5(ii) holds again and that instead of part (i) of Lemma 3.5, we have

0 ≤ g′i ≤ f ′i ≤ 1.(5.2)

Thus, (5.2) guarantees (3.6) even now! This shows that Lemma 3.6 holds for the
current definition of U also.
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Thus to establish that U is a pessimistic estimator, we only have to exhibit, as do
Lemmas 3.3 and 3.4, α, β > 1, which ensure that U(p1, . . . , pm) < 1. We first present
a lemma similar to Lemma 3.2, whose simple proof is omitted.

Lemma 5.1. For all i ∈ [n], Pr(Ei) ≤ H(Bα, 1 − 1/α). Also, Pr(En+1) ≤
G(y∗α, β − 1).

We now present the main theorem on covering problems. Since unweighted set
cover is an important problem, we present the precise approximation bound for this
problem as a distinct part of the theorem. For this problem, the term “ln ln(n/y∗)” ap-
pears in our approximation bound with the understanding that we are working in the
nontrivial range where y∗ ≤ n/e, say. Since there is always a trivial integral solution
of value at most n for this problem, the case y∗ > n/e admits an e-approximation.

Theorem 5.2. (a) Given a CIP conforming to the notation of Definition 1.1, we
can produce, in deterministic polynomial time, a feasible solution to it with value at
most

y∗(1 + O(max{ln(nB/y∗)/B,
√

ln(2dnB/y∗e)/B})).
(b) For unweighted set cover, we can improve this to y∗(ln(n/y∗) + ln ln(n/y∗) +

O(1)).
Proof. We start with the simple claim that for t ∈ (0, 1/e), 1−t > exp(−1.25t). To

see this, let u = e(1−ln(e−1)) = 1.246 · · ·. Consider the function t 7→ 1−t−exp(−ut);
we now show that for t ∈ (0, 1/e), this function is positive. The function vanishes
at t = 0, and its derivative is u exp(−ut) − 1. So as t increases from 0, the function
increases initially and then decreases. Thus since the function vanishes at t = 1/e, it
is positive for t ∈ (0, 1/e).

Recall from the above discussion that (1 − maxi∈[n] Pr(Ei))
n > G(y∗α, β − 1)

suffices. In all cases here, we will ensure that

max
i∈[n]

Pr(Ei) < 1/e and 1 < β ≤ 2.(5.3)

Thus, by the above claim and from Fact 1(b), it will suffice to show that

1.25nmax
i∈[n]

Pr(Ei) ≤ y∗α(β − 1)2/3.(5.4)

We now choose α and β appropriately for each of our cases.
(a) For general CIPs, we will use the bound maxi∈[n] Pr(Ei) ≤ H(Bα, 1 − 1/α)

of Lemma 5.1. So, assuming H(Bα, 1− 1/α) < 1/e and 1 < β ≤ 2 hold, (5.4) shows
that it will be enough to show

1.25n exp(−Bα(1− 1/α)2/2) ≤ y∗α(β − 1)2/3.(5.5)

For general CIPs, we will consider three cases: ln(nB/y∗) > B, 3 ≤ ln(nB/y∗) ≤ B,
and ln(nB/y∗) < 3. (The first and third cases are not necessarily mutually exclusive.)

Suppose ln(nB/y∗) > B. Since B ≥ 1, this shows that nB/y∗ ≥ e. We take
α = 4 ln(nB/y∗)/B and β = 2. Since α ≥ 4, (1− 1/α) ≥ 3/4; thus it is easy to check
that H(Bα, 1− 1/α) < 1/e. Therefore to prove (5.5), it is enough to show

1.25n(y∗/(nB))9/8 ≤ 4y∗ ln(nB/y∗)/(3B), i.e., 1.25(y∗/(nB))1/8 ≤ 4 ln(nB/y∗)/3,

which is true since nB/y∗ ≥ e. Thus, the approximation bound αβ in this case is
O(ln(nB/y∗)/B).
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Next, suppose 3 ≤ ln(nB/y∗) ≤ B. Thus nB/y∗ ≥ e3. We choose α = 1 +
3
√

ln(nB/y∗)/B and β = 1 +
√

ln(nB/y∗)/B ≤ 2. We have

exp(−Bα(1− 1/α)2/2) = exp(−B(α− 1)2/(2α))

= exp(−9 ln(nB/y∗)/(2α))

≤ exp(−9 ln(nB/y∗)/8),

since α ≤ 4. We see that exp(−Bα(1− 1/α)2/2) < 1/e. Hence by (5.5), it is enough
to show

1.25n(y∗/(nB))9/8 ≤ y∗α ln(nB/y∗)/(3B),

which follows from the facts that α ≥ 1 and nB/y∗ ≥ e3. The approximation bound
αβ is 1 + O(

√
ln(nB/y∗)/B) here.

Now consider the third case ln(nB/y∗) < 3. Choose α = 1 + 10/
√
B and β =

1 + 1/
√
B ≤ 2. Now,

exp(−Bα(1− 1/α)2/2) = exp(−50/α) ≤ exp(−50/11),

since α ≤ 11. So exp(−Bα(1 − 1/α)2/2) < 1/e. Hence, again by (5.5), it suffices to
show that

1.25n exp(−50/11) ≤ y∗α/(3B),

which follows from the facts that (i) α ≥ 1 and (ii) nB/y∗ ≤ exp(3) ≤ exp(50/11)/3.75.
Therefore αβ = 1 + O(1/

√
B) in this case.

(b) Thus we have proved the theorem for general CIPs. For the important un-
weighted set cover problem (see section 1.3 for the definition), we observe that for
any i ∈ [n], Ei holds iff Ai · s = Ai · X = 0; this makes the calculations eas-
ier. If Ai has j nonzeroes (ones) in it, say in columns `1, `2, . . . , `j , then it is not
hard to see that Pr(Ai · X = 0) is maximized when x′`k = α/j ∀k ∈ [j]. Thus,

Pr(Ei) ≤ (1 − α/j)j < exp(−α) and hence, by (5.4), it suffices to pick α > 1 and
1 < β ≤ 2 such that

1.25n exp(−α) ≤ y∗α(β − 1)2/3.(5.6)

It can now be verified that by choosing

α = ln(n/y∗) + ln ln(n/y∗) + O(1) and β = 1 + (ln(n/y∗))−1,

we will satisfy (5.6). Hence, the approximation guarantee αβ can be made as small
as ln(n/y∗) + ln ln(n/y∗) + O(1).

It is also worth looking at some concrete improvements over existing algorithms
brought about by Theorem 5.2. In the case of unweighted set cover, suppose d ≤ n
is the maximum column sum—the maximum cardinality of any edge in the given
hypergraph. Then, by summing up all the constraints, we can see that

y∗d ≥ n.(5.7)

Thus, our approximation bound for the set cover problem (see the second statement
of Theorem 5.2) is never more by a multiplicative (1 + o(1)) factor above the classical
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bound of min{n/y∗, ln d+ O(1)}. On the other hand, n/y∗ � d is quite likely, and it
is easy to construct set cover instances with

min{n/y∗, ln d} = Θ(logn/ log logn) ln(n/y∗).

For instance, we can arrange for just a few edges to have the maximum edge size
of nΘ(1), while keeping y∗ as high as n/ logΘ(1) n. Thus in the best case, we get a
Θ(logn/ log logn) factor improvement in the approximation ratio.

An important case of the unweighted set cover problem is the dominating set
problem: given a (directed) graph G, the problem is to pick a minimum number of
vertices such that for every one vertex v, at least one vertex in v ∪Out(v) is picked,
where Out(v) denotes the out-neighborhood of v.

We next consider a more general domination-type problem on graphs, modeling
a class of location problems. Given a (directed) graph G with n nodes and some
integral parameter B ≥ 1, we have to place the smallest possible number of facilities
on the nodes of G, so that every node u has at least B facilities in u∪Out(u); multiple
facilities at the same node are allowed. Let us call this the B-domination problem
on G.

For the case where G is undirected with maximum degree ∆, an approximation
bound of 1 + O(max{ln(∆)/B,

√
ln(∆)/B}) is presented in [26], improving on the

1+O(max{ln(n)/B,
√

ln(n)/B}) bound given by the standard analysis of randomized
rounding. Our Theorem 5.2 gives a bound of

1 + O(max{ln(nB/y∗)/B,
√

ln(2dnB/y∗e)/B}).

Even if G is directed, this new bound is as good as or better than

1 + O(max{ln(∆in)/B,
√

ln(∆in)/B}),

where ∆in denotes the maximum in-degree of G; this is easily seen from the fact that
y∗ ≥ nB/∆in, which follows from the same reasoning as for (5.7). We thus get a
generalization of the Naor–Roth result. In the case of undirected graphs, it is not
hard to show families of graphs for which the present bound is better than that of
Naor and Roth’s by a factor of up to Θ(logn/ log logn).

In addition to its independent interest, the above B-domination problem is a
crucial subproblem in the following file-sharing problem in distributed networks [26].
Given an undirected graph G = (V,E) with n vertices and maximum degree ∆ and
a file F of k bits, F must be stored in some way at the nodes of G, such that every
node can recover F by examining the contents of its and its neighbor’s memories; the
aim is to minimize the total amount of memory used. (Note that solving the above
domination problem is not sufficient for this task.) Letting y∗ be the optimum of the
(obvious) linear relaxation of the k-domination problem on G, a memory allocation
that uses a total of

1 + O(max{ln(∆)/k,
√

ln(∆)/k})(5.8)

bits is presented in [26]. (Note that y∗ is a lower bound on the total amount of memory
needed.) Briefly, the approach of [26] works as follows. Let B = k + 3dlog2 ∆e + 1.
Given a feasible integral solution (vector) x = [xv]v∈V to the B-domination problem
on G, the work of [26] shows how to come up with a feasible memory allocation for
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F , using a total of t =
∑
v∈V xv bits. Recall that our bound for CIPs shows a way of

achieving

t = y∗(B/k)(1 + O(max{ln(nB/y∗)/B,
√

ln(2dnB/y∗e)/B})),
which equals

y∗(1 + O(max{ln(∆)/k,
√

ln(2dnk/y∗e)/k})).
This is always as good as (5.8) and better if k � ln(∆).

5.1. Applications to a facility location problem. We now consider another
type of canonical facility location problem: uncapacitated facility location. Given
a directed graph G = (V,E) with nonnegative vertex-costs {d(j)} and nonnegative
edge-lengths {c(i, j)}, let Out(v) denote the out-neighborhood of vertex v. Suppose
it costs d(j) units to locate a facility at vertex j. The problem is to place facilities on
the nodes of G such that for every vertex v, at least one vertex in Out(v) houses a
facility; the aim is to minimize the sum of the total weight of the sites of the facilities
and the total distance (in terms of edge-lengths) traveled by all the vertices to their
closest facilities. By scaling, we assume w.l.o.g. that all the d(j) and c(i, j) lie in
[0, 1]. O(logn) approximation bounds are known for this problem (Hochbaum [18],
[5]). There is a known LP relaxation for the problem to be described below. Letting
n = |V | and y∗ be the optimal value of this relaxation, we now show how to obtain
an integral solution of value O(y∗(1 + log(dn/y∗e))).

We start with a known ILP formulation of the problem (Kolen and Tamir [22]).
Let ∆(i)

.
= |Out(i)|. For each i ∈ V , sort the set {c(i, j) : j ∈ Out(i)} in nondecreasing

order to obtain a sequence c′(i, 1), c′(i, 2), . . . , c′(i,∆(i)). Following [22], consider the
following variables. For all i ∈ V and all j ≤ ∆(i)− 1, let

• xi ∈ {0, 1} be the indicator variable for a facility being placed at i, and
• zi,j ∈ {0, 1} be the indicator variable for no facility being at a distance of at

most c′(i, j) from i.
Then it is not hard to see that the following ILP formulation of [22] is valid:

minimize
∑
j∈V

djxj +
∑
i∈V

c′(i, 1) +

∆(i)−1∑
j=1

(c′(i, j + 1)− c′(i, j))zi,j
 subject to

∀i ∈ V ∀k ≤ ∆(i)− 1, zi,k +
∑

j: (i,j)∈E, c(i,j)≤c′(i,k)

xj ≥ 1;(5.9)

∀i ∈ V,
∑

j: (i,j)∈E
xj ≥ 1;(5.10)

∀i ∈ V ∀k ≤ ∆(i)− 1, xi ∈ {0, 1}, zi,k ∈ {0, 1}.(5.11)

Relaxing each xi and zi,j to be a real in [0, 1], we get an LP relaxation. Let y∗

denote the optimum value of this relaxation and {x∗, z∗} be an optimal solution to
the relaxation. We now show how to round this to a feasible solution for the above
ILP. Let m = |E|. Note that a direct application of our covering results will lead to
an integral solution of value O(y∗(1+log(dm/y∗e))), since there are O(m) constraints
above. We now improve this to O(y∗(1 + log(dn/y∗e))).

For each (i, j), set z′i,j := 0 if z∗i,j < 1/2 and z′i,j := 1 if z∗i,j ≥ 1/2. For each i, set
x′i = min{2x∗i , 1}. It is not hard to check that this is a feasible fractional solution to
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the LP with objective function value at most 2y∗; crucially, we have rounded all the
zi,j to 0 and 1. Let us see how to round the vector x′ to a {0, 1}-vector. Fix i ∈ V . It
is easily seen that z∗i,1 ≥ z∗i,2 ≥ · · ·. Let k(i) be the maximum k for which z∗i,k ≥ 1/2
(if no such k exists, k(i) = 0); for all k ≤ k(i), (5.9) will be satisfied irrespective of
our rounding of x′, since z′i,k = 1. It is not hard to check that to satisfy (5.9) and
(5.10), it suffices to have ∑

j: (i,j)∈E, c(i,j)≤c′(i,k(i)+1)

xj ≥ 1.

Thus, we are left with at most one constraint per vertex i. Moreover, the
fractional vector x′ satisfies these constraints as seen above. Thus, we can invoke
our approach for CIPs to efficiently construct a feasible integral solution of value
O(y∗(1 + log(dn/y∗e))).

The reader is referred to [18], [5] for other interesting approaches to the problem.
We also mention that for the important special case where the distances c(i, j) are
symmetric (i.e., c(i, j) = c(j, i)) and satisfy the triangle inequality, work of Shmoys,
Tardos, and Aardal [33] and Guha and Khuller [16] has led to good constant-factor
approximations for this problem.

6. Concluding remarks. We have presented a simple but very useful property
of all packing and covering integer programs—positive correlation. This naturally
suggests a better way of analyzing the performance of randomized rounding on PIPs
and CIPs. However, the provable probability of success—of satisfying all the con-
straints and delivering a very good approximation—can be extremely low; therefore,
in itself, this approach may just prove an existential result. Fortunately, the struc-
ture of PIPs and CIPs in fact suggests a pessimistic estimator, thus converting this
existence proof into a (deterministic) polynomial-time algorithm. In our view, this
is very interesting and gives evidence of the utility of derandomization techniques.
A common objection to derandomization is that often it converts a fast randomized
algorithm that has a good probability of success to a somewhat slower deterministic
algorithm. In our case, the opposite is true! The randomized algorithm suggested
by the existence proof has an extremely low probability of success; second, solving
the LP relaxation heavily dominates the running time, and the time for running the
derandomization is comparatively negligible. (This observation about running the LP
relaxation also suggests that, in practice, it would be better to get quickly an approx-
imately optimal solution to the LP relaxation, since we are dealing with approximate
solutions anyway.)

The basic idea here has been that by using the correlations, we could improve on
the Boole–Bonferroni inequality for our applications. There is much interesting work
on approximating the probability of a union using the structure of the underlying
events: see, e.g., Hunter [20] and Aldous [2]. In the case of PIPs and CIPs, we have
benefited from the fact that the constraints “help each other,” by being positively
correlated. The precise reasons for such a correlation are spelled out in section 1.2. It
is a challenging open question to use the structure of correlations in more complicated
scenarios; one such problem is the set discrepancy problem [35], [3]. Given a system
of n subsets S1, S2, . . . , Sn of a ground set A with n elements, the problem is to
come up with a function ψ : A → {−1, 1}, such that the discrepancy disc(ψ)

.
=

maxi∈[n] |ψ(Si)| is small, where ψ(Si) =
∑
j∈Si ψ(j). While randomized rounding and

the method of conditional probabilities can be used to produce a ψ with discrepancy
O(
√
n logn) [35], [3], a classical nonconstructive result of Spencer shows the existence
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of a ψ with disc(ψ) = O(
√
n) [36]. This is best possible, and it is an important open

problem to make this constructive. If we write down the natural integer programming
formulation for this problem, we can see that each constraint is positively correlated
with some subsets of the constraints and negatively correlated with others. (There
is the associated observation that in several IPs with both ≤ and ≥ constraints, the
≤ constraints are often positively correlated amongst each other; this is similar for
the ≥ constraints. This idea potentially could bring improvements in some cases.) It
would be very interesting if such more complicated forms of correlation can be used
to get a constructive result here.

The set discrepancy problem, an undirected multicommodity flow problem pre-
sented in [28], and certain other NP-hard problems in very large scale integration
routing, are all modeled by a class of integer programs that are referred to as mini-
max integer programs (MIPs) in recent work of this author [37]. These are different
from PIPs and CIPs; an improved integrality gap for sparse instances of such problems
is proved in [37].

Yet another potential room for improvement lies in lower-bounding, in the context
of (1.4), the ratio

Pr

(
n∧
i=1

Ei

)
/

n∏
i=1

Pr(Ei),

at least for some particular classes of PIPs/CIPs. We know this ratio to be at least
one, by (1.4); a better lower bound (at least for particular problems) will lead to better
bounds on the integrality gap. Roughly speaking, such better lower bounds seem plau-
sible especially for PIPs/CIPs wherein several columns have several nonzero entries,
i.e., in situations where there is heavy (positive) correlation among the constraints of
the IP. This could be a difficult problem, however.

How far can such ideas be pushed? In the general setting of all PIPs and CIPs,
not much progress seems to be possible along these lines, as shown in section 4.
Also, for some important covering problems such as various “cut” problems on graphs
and some network design problems, the number of constraints is exponential in the
number of variables. Our approach will not give good approximation algorithms for
such problems, although some of these problems do admit good approximations via
other methods [5]. It would be interesting to apply our approach to get improved
approximations for some specific important packing and covering problems; one such
recent result is for edge-disjoint paths and related problems [38]. Furthermore, it will
be interesting to study the correlations involved in other relaxation approaches such
as semidefinite programming relaxations.

For the unweighted set cover problem, recent work of Slav́ik improves upon our
result, showing that a natural greedy algorithm outputs a solution of value at most
(y∗−1/2) ln(n/y∗)+y∗ [34]. Furthermore, improved approximation algorithms for the
unweighted set cover problem in many geometric settings have been obtained in [6].
If the dual set-system of a given set cover instance has Vapnik–Chervonenkis (VC)
dimension d and if c is the size of the optimal set cover, then the work of [6] presents
an algorithm that delivers a solution of value at most O(c log(cd)). Please refer to [6]
for the definitions of dual set systems and VC dimension. We just mention here that
d = O(1) in many geometric settings; thus, the work of [6] leads to an approximation
guarantee of O(log c) in such cases.

As we had seen before, our bounds are incomparable with known results for some
weighted CIPs, e.g., those considered in [8], [5]. For instance, our approximation ratio
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of O(ln(n/y∗)) for the weighted set cover problem is incomparable with the ratio
of O(ln d) obtained in [8], where d denotes the maximum column sum in A; this is
because unlike the unweighted case, n/y∗ is not necessarily at most d, in the weighted
case. Recent work of the author improves on many current results, including some
of the results on weighted PIPs and CIPs from the present paper [37]. The work of
[37] presents improved approximation guarantees for PIPs, CIPs, and MIPs, if the
coefficient matrix A does not have many nonzero entries in any column; in particular,
it generalizes the result of [8] shown above.

Appendix. Standard analysis of randomized rounding for PIPs. Choose
α = e(5n)1/B . We first handle an easy case. If y∗ ≤ 3α, we just choose any j such that
cj = 1 and set xj = 1 and xk = 0 ∀k 6= j. This is clearly an O(n1/B)-approximation
algorithm if y∗ ≤ 3α.

Suppose y∗ > 3α. Let the bad events E1, E2, . . . , En+1 be as in (1.1) with β = 3.
If we avoid all these (n+ 1) events, we would have a feasible solution with objective
function value at least y∗/(3α). The goal now is to show∑

i∈[n+1]

Pr(Ei) ≤ K4(A.1)

for say some constant K4 < 1.

For the purpose of analysis, view each zj as a sum of dx′je independent {0, 1} r.v.’s,
where the first dx′je − 1 are 1 with probability 1 and the last is 1 with probability
1 − (dx′je − x′j). Recalling that Ai,j ∈ [0, 1] ∀i, j, we see, for each i ∈ [n], that
(Az)i is a sum of independent r.v.’s, each of which takes on values in [0, 1]. Also,
E[(Az)i] = (Ax′)i/α ≤ bi/α.

Thus, for i ∈ [n], Pr(Ei) can be upper-bounded using part (a) of Fact 1,

Pr((Az)i > bi) ≤ (e/α)bi = (5n)−bi/B ≤ 1/(5n),(A.2)

since bi ≥ B. To upper-bound Pr(En+1), even Chebyshev’s inequality will suffice
here. If Y is a sum of independent r.v.’s, each taking values in [0, 1], it is easy to
check that the variance of Y is at most E[Y ]. Thus, Chebyshev’s inequality shows
that for such a Y and any a > 0, Pr(|Y −E[Y ]| ≥ a) ≤ E[Y ]/a2. Since y∗ > 3α now
by assumption, we have µ

.
= E[cT · z] = y∗/α ≥ 3. Thus by Chebyshev’s inequality

Pr(cT · z < µ/3) ≤ Pr(|cT · z − µ| > 2µ/3] ≤ 9/(4µ) ≤ 3/4.(A.3)

Bounds (A.2) and (A.3) show that∑
i∈[n+1]

Pr[Ei] ≤ 1/5 + 3/4 = 0.95;

by repeating this algorithm an appropriate constant number of times, the probability
of failure can be reduced to any desired positive constant.

Next suppose A ∈ {0, 1}n×m. Recall from Definition 1.1 that we take each bi to
be an integer here. Thus, Ei ≡ ((Az)i > bi) is equivalent to ((Az)i ≥ bi+1) now; thus
B essentially gets replaced by B + 1 in (A.2). We may thus take α = Θ(n1/(B+1))
and get an O(α) approximation as above.
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[1] R. Aharoni, P. Erdős, and N. Linial, Optima of dual integer linear programs, Combinatorica,
8 (1988), pp. 13–20.

[2] D. Aldous, The Harmonic Mean Formula for probabilities of unions: Applications to sparse
random graphs, Discrete Math., 76 (1989), pp. 167–176.
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Abstract. A k-ary necklace is an equivalence class of k-ary strings under rotation. A necklace
of fixed density is a necklace where the number of zeros is fixed. We present a fast, simple, recursive
algorithm for generating (i.e., listing) fixed-density k-ary necklaces or aperiodic necklaces. The
algorithm is optimal in the sense that it runs in time proportional to the number of necklaces
produced.
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1. Introduction. There are many reasons to develop algorithms for produc-
ing lists of basic combinatorial objects. First, the algorithms are truly useful and
find many applications in diverse areas such as hardware and software testing, non-
parametric statistics, and combinatorial chemistry. Second, the development of these
algorithms can lead to mathematical discoveries about the objects themselves, either
experimentally or through insights gained in the development of the algorithms.

The primary performance goal in an algorithm for listing a combinatorial family
is an algorithm whose running time is proportional to the number of objects pro-
duced. In this paper an efficient algorithm is one that uses only a constant amount
of computation per object, in an amortized sense. Such algorithms are also said to
be constant amortized time (CAT) algorithms.

Necklaces are a fundamental type of combinatorial object, arising naturally, for
example, in the construction of single-track Gray codes, in the enumeration of irre-
ducible polynomials over finite fields, and in the theory of free Lie algebras. Efficient
algorithms for exhaustively generating necklaces were first developed by Fredricksen
and Kessler [4] and Fredricksen and Maiorana [5], although they did not prove that
they were efficient. They were proven to be efficient by Ruskey, Savage, and Wang
[8]. Closely related algorithms for generating Lyndon words (aperiodic necklaces)
were developed by Duval [3] and shown to be efficient by Berstel and Pocchiola [1].
Subsequently, a recursive algorithm was developed that was more flexible and easier
to analyze than the earlier algorithms, which were all iterative [2]. In many appli-
cations not all necklaces are required, but rather only those of fixed density (the
number of zeros is fixed). Previous to this paper, no efficient generation algorithm for
fixed-density necklaces was known.

Previous fixed-density necklace algorithms had running times of O(n · N(n, d))
(Wang and Savage [9]) and O(N(n)) (Fredricksen and Kessler [4]), where N(n, d)
denotes the number of necklaces with length n and density d and N(n) denotes the
number of necklaces with length n. Wang and Savage base their algorithm on find-
ing a Hamilton cycle in a graph related to a tree of necklaces. The main feature
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of their algorithm is that it also generates the strings in Gray code order. The ba-
sis of Fredricksen and Kessler’s algorithm is a mapping of lexicographically ordered
compositions to necklaces. Both algorithms consider only binary necklaces, but our
results apply over a general alphabet. We take a new approach by first modifying
Ruskey’s recursive algorithm for generating necklaces [2] and then optimizing it for
the fixed-density case. Recursive algorithms have several advantages over their itera-
tive counterparts. They are generally simpler and easier to analyze. They are more
suitable to conversion to backtracking algorithms, since subtrees are easily pruned
from the computation tree. In fact, we have used just such a backtracking to discover
new minimal difference covers (sets of numbers achieving all possible differences, mod
n).

In the following section we will give some definitions related to necklaces. In sec-
tion 3 we will introduce a fast algorithm for generating fixed-density k-ary necklaces.
In section 4 we analyze the algorithm, proving the algorithm is CAT for any density.
In section 5 we conclude by outlining an application and some future work.

2. Background and definitions. A k-ary necklace is an equivalence class of
k-ary strings under rotation. We identify each necklace with the lexicographically
least representative in its equivalence class. The set of all k-ary necklaces with length
n is denoted Nk(n). For example, N2(4) = {0000, 0001, 0011, 0101, 0111, 1111}.
The cardinality of Nk(n) is denoted Nk(n).

An important class of necklaces are those that are aperiodic. An aperiodic neck-
lace is called a Lyndon word. Let Lk(n) denote the set of all k-ary Lyndon words
with length n. For example, L2(4) = {0001, 0011, 0111}. The cardinality of Lk(n) is
denoted Lk(n).

A string α is a prenecklace if it is a prefix of some necklace. The set of all k-ary
prenecklaces with length n is denoted Pk(n). For example, P2(4) = N2(4) ∪ {0010,
0110}. The cardinality of Pk(n) is Pk(n).

We denote fixed-density necklaces, Lyndon words, and prenecklaces in a similar
manner by adding the additional parameter d to represent the number of nonzero
characters in the strings. We refer to the number d as the density of the string.
Thus the set of k-ary necklaces with density d is represented by Nk(n, d) and has
cardinality Nk(n, d). For example, N3(4, 2) = {0011, 0012, 0021, 0022, 0101, 0102,
0202}. Similarly, the set of fixed-density Lyndon words is represented by Lk(n, d) with
cardinality Lk(n, d). The set of fixed-density prenecklaces is denoted by Pk(n, d)
and has cardinality Pk(n, d). In addition to these familiar terms we introduce the
set P′k(n, d), which is the elements of Pk(n, d) whose last character is nonzero. Its
cardinality is denoted P ′k(n, d).

To count fixed-density necklaces we let N(n0, n1, . . . , nk−1) denote the number of
necklaces composed of ni occurrences of the symbol i for i = 0, 1, . . . , k − 1. Let the
density of the necklace d = n1 + · · ·+ nk−1 and n0 = n− d. It is known from Gilbert
and Riordan [6] that

N(n0, n1, . . . , nk−1) =
1

n

∑
j\gcd(n0,...,nk−1)

φ(j)
(n/j)!

(n0/j)! · · · (nk−1/j)!
.(2.1)

To get the number of fixed-density necklaces with length n and density d, we sum
over all possible values of n1, n2, . . . , nk−1:

Nk(n, d) =
∑

n1+···+nk−1=d

N(n− d, n1, . . . , nk−1).
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The number of fixed-density Lyndon words is defined similarly:

L(n0, n1, . . . , nk−1) =
1

n

∑
j\gcd(n0,n1,...,nk−1)

µ(j)
(n/j)!

(n0/j)!(n1/j)! · · · (nk−1/j)!
,

Lk(n, d) =
∑

n1+···+nk−1=d

L(n− d, n1, . . . , nk−1).

In the binary case these expressions simplify as follows:

N2(n, d) =
1

n

∑
j\gcd(n,d)

φ(j)

(
n/j

d/j

)
,

L2(n, d) =
1

n

∑
j\gcd(n,d)

µ(j)

(
n/j

d/j

)
.

Currently, it is not known how to count fixed-density prenecklaces.
In the following section we will introduce a CAT algorithm to generate fixed-

density necklaces. When analyzing the performance of our algorithm we make use of
the following lemmas about prenecklaces and Lyndon words.

Cattell et al. [2] give a lemma that characterizes prenecklaces by making use of a
function lyn on strings, which is the length of the longest Lyndon prefix of the string:

lyn(a1a2 · · · an) = max{1 ≤ p ≤ n|a1a2 · · · ap ∈ Lk(p)}.
Lemma 2.1. Let k-ary string α = a1 · · · an and p = lyn(α). Then α ∈ Pk(n) if

and only if aj−p = aj for j = p+ 1, . . . , n.
Reutenauer [7] gives a useful lemma about Lyndon words. Inequalities between

words are always with respect to lexicographic order.
Lemma 2.2. If α and β are Lyndon words with α < β, then αβ is a Lyndon

word.

3. Generating fixed-density necklaces. We use a two-step approach to de-
velop a fast algorithm for generating fixed-density necklaces. First we create a new
necklace algorithm based on the recursive necklace-generation algorithm Gen(t, p)
(Figure 3.1) [2]. We then optimize this new necklace algorithm for the fixed-density
case by making a few key observations about fixed-density necklaces.

To begin we give a brief overview of Gen(t, p). The general approach of this
algorithm is to generate all length n prenecklaces. The prenecklace being generated is
stored in the array a with one position for each character. We assume that a0 = 0. The
initial call is Gen(1,1) and each recursive call appends a character to the prenecklace to
get a new prenecklace. At the beginning of each recursive call to Gen(t, p), the length
of the prenecklace being generated is t − 1 and the length of the longest Lyndon
prefix is p. As long as the length of the current prenecklace is less than n, each call
to Gen(t, p) makes one recursive call for each valid value for the next character in
the string, updating the values of both t and p in the process. This algorithm can
generate necklaces, Lyndon words, or prenecklaces of length n in lexicographic order
by specifying which object we want to generate. The function PrintIt(p) allows us to
differentiate between these various objects as shown in Figure 3.2.

The computation tree for Gen(t, p) consists of all prenecklaces of length less than
or equal to n. As an example, we show a computation tree for N2(4) in Figure 3.3.
By comparing the number of nodes in the computation tree to the number of objects
generated it was shown that this algorithm is CAT [2].
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procedure Gen ( t, p : integer );
local j : integer;
begin

if t > n then PrintIt( p )
else begin

at := at−p; Gen( t+ 1, p );
for j ∈ {at−p + 1, . . . , k − 2, k − 1} do begin

at := j; Gen( t+ 1, t );
end;

end;
end {of Gen};

Fig. 3.1. The recursive necklace algorithm.

Sequence type PrintIt(p)
Prenecklaces (Pk(n)) Println( a[1..n] )
Lyndon words (Lk(n)) if p = n then Println( a[1..n] )
Necklaces (Nk(n)) if n mod p = 0 then Println( a[1..n] )

Fig. 3.2. Different objects output by different versions of PrintIt(p).

3.1. Modified necklace algorithm. For every necklace of positive density,
the last character of the string must be nonzero. Thus, if we are concerned only with
generating necklaces or Lyndon words we can reduce the size of the computation tree
by compressing all the prenecklaces whose last character is 0. Looking at Figure 3.3,
we want to generate only the nodes in bold. This results in the modified computation
tree shown in Figure 3.4. Notice that at each successive level in this tree we are
incrementing the density of the prenecklace rather than the length. To generate this
modified tree we create a recursive routine based on the original necklace algorithm
in Figure 3.1; however, rather than determining the valid values for the next position
in the string, we need to determine both the valid positions and the values for the
next nonzero character.

To make this change we use the array a to hold the positions of the nonzero char-
acters and maintain another array b to indicate the values of the nonzero characters.
The ith element of the array a represents the position of the ith nonzero character,
and the ith element of the array b represents the value of the ith nonzero character.
Thus if we generate a necklace with length 7 with a = [3, 4, 5, 7] and b = [1, 3, 2, 1],
the corresponding necklace is 0013201. (We can also maintain the original necklace
structure by performing some extra constant-time operations.) Note that in the bi-
nary case, the second array b is not necessary since all nonzero characters must be 1.
We use the parameter t to indicate the current density of the string. The length of
the current string is at. Since all Lyndon prefixes end in a nonzero character, we let
ap indicate the length of the longest Lyndon prefix. Using these two parameters, we
can compute all valid positions and values for the next nonzero character.

To determine the valid positions and values for the next nonzero character and
to maintain the lexicographic ordering we compute the maximum position and the
minimum value for that position so that the new string still has the prenecklace
property. We compute this maximal position for the next character using the following
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0000 0001 0010 0011 0101 0110 0111 1111

111011010001000

110100

0 1

Fig. 3.3. Computation tree for N2(4) from Gen(t, p).

0011 0101

0001  01   1

011  11

1111

1110111

001

Fig. 3.4. Computation tree for N2(4) from Gen2(t, p).

expression:

b(t+ 1)/pcap + a(t+1) mod p.

The minimal value for this position is bt+1−p. By the properties of prenecklaces all
larger values at the maximal position are also valid [8]. Also, all positions before the
maximum position and greater than the position of the last assigned nonzero character
(at) can hold all values ranging from 1 to k− 1. (Note that since we want to generate
all necklaces with length n, we restrict the position to be less than or equal to n.) For
each of these valid combinations of position and value, we lexicographically assign the
position to at+1 and the value to bt+1, followed by a recursive call updating both t
and p. Finally, if the position of the last nonzero element is greater than or equal to
n, we call the PrintIt(p) function to print out either the Lyndon words or necklaces in
a similar manner to the original algorithm Gen(t, p).
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procedure Gen2 ( t, p : integer );
local i, j,max : integer;
begin

if at ≥ n then PrintIt( p )
else begin

max = at+1−p + ap;
if max ≤ n then begin

at+1 := max;
bt+1 := bt+1−p;
Gen2 ( t+ 1, p );

end else begin
max := n; at+1 := n; bt+1 := 1;
Gen2 ( t+ 1, t+ 1 );

end;
for i ∈ {bt+1 + 1, . . . , k − 2, k − 1} do begin

bt+1 := i;
Gen2 ( t+ 1, t+ 1 );

end;
for j ∈ {max− 1,max− 2, . . . , at + 1} do begin

at+1 := j;
for i ∈ {1, . . . , k − 2, k − 1} do begin

bt+1 := i;
Gen2 ( t+ 1, t+ 1 );

end; end; end;
end {of Gen2};

Fig. 3.5. Modified recursive necklace algorithm.

This modified algorithm, Gen2(t, p), for generating necklaces is given in Figure
3.5. Each initial branch of the computation tree is a result of a separate call to
Gen2(t, p), each call specifying a different combination for the position and value of
the first nonzero character. Note that the zero string is not generated by Gen2(t,p)
and must be generated separately. The nodes of the resulting computation tree for
Gen2(t, p) are all prenecklaces with length less than or equal to n whose last character
is nonzero.

A complete C program for this modified necklace algorithm is available from the
authors. A simplified program for the binary case is also available. Observe that we
are not restricted to generating the necklaces in lexicographic order. Many orders are
possible by reordering the recursive calls.

3.2. Fixed-density necklace algorithm. We now optimize our modified al-
gorithm for the fixed-density case by making several observations. First, we restrict
the position of the first nonzero character depending on the density. In particular,
there are no necklaces with density d that can have the first nonzero character in a
position after n− d+ 1 or before b(n− 1)/d+ 1c. Also, if we are generating a string
with length n and density d and have just placed the ith nonzero character, then the
(i+ 1)st nonzero character must come before the position n− (d− i) + 2. If we place
the next character at or after this position, then any resulting string with length n will
have density less than d. Also, because the last nonzero character must be in the nth
position, we stop the string generation after placing the (d− 1)st nonzero character.



GENERATING NECKLACES WITH FIXED DENSITY 677

000001 00001 0001 001 01 1

000011 000101 00011 001001 00101 0011

0001101 00100110001011 00101010000111 0011001

Fig. 3.6. Computation tree (solid edges only) for N2(7, 3) from GenFix(t, p).

Thus, the strings generated by following this last restriction are strings with length
less than n and density d − 1. By following this approach, we may generate up to
k − 1 strings for each call to PrintIt(p), since we can place up to k − 1 characters in
the nth position. However, it is not always the case that we will generate all k − 1
strings or even any strings with each call to PrintIt(p). Thus we add an additional
constant-time test to see which values can be placed in the nth position. This test is
similar to the test for finding the maximal valid position and minimum value for the
next nonzero character as outlined in the previous subsection. Once a minimum value
is determined (if there is one at all), we perform the usual tests to determine if the
string is a necklace or a Lyndon word. All larger values for the nth position will result
in a string that is a Lyndon word [8]. Thus the overall work done in the PrintIt(p)
function to determine the valid strings remains constant for each string generated.

In summary, we use our modified necklace algorithm outlined in Figure 3.5 with
the following optimizations:

1. The first nonzero character must be between n − d + 1 and (n − 1)/d + 1
inclusive.

2. The ith nonzero character must be placed at or before the (n − d + i)th
position.

3. Stop generating when we have assigned d− 1 nonzero characters.
4. Determine valid values for the nth position in the PrintIt(p) function.

The computation tree for generating N2(7, 3) is given in Figure 3.6. The dotted
lines indicate the initial branches we do not need to follow by modification 1. The
arrows indicate the strings produced by adding the final character to the nth position.
The bold strings indicate the actual necklaces produced by the PrintIt(p) function. The
remaining string (0011001) is rejected since it is not a necklace.

The algorithm for generating fixed-density necklaces and Lyndon words in lex-
icographic order is given in Figure 3.7. To generate fixed-density prenecklaces, we
generate N(n+ 1, d+ 1) and print out only the first n characters, making sure we do
not print the same string twice. A complete C program for this fixed-density necklace
algorithm is available from the authors. A simplified program for the binary case is
also available. In the latter program we make use of the fact that we can generate
binary necklaces with density d > n/2 by complementing the output from generating
necklaces with density n − d. In this case, however, the strings generated are not in
lexicographic order and are not necessarily the lexicographic representatives for their
respective equivalence classes.
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procedure GenFix ( t, p : integer );
local i, j,max, tail : integer;
begin

if t ≥ d− 1 then PrintIt(p);
else begin

tail := n− (d− t) + 1;
max := at+1−p + ap;
if max ≤ tail then begin

at+1 := max;
bt+1 := bt+1−p;
GenFix( t+ 1, p );
for i ∈ {bt+1 + 1, . . . , k − 2, k − 1} do begin

bt+1 := i;
GenFix( t+ 1, t+ 1 );

end;
tail := max− 1;

end;
for j ∈ {tail, tail − 1, . . . , at + 1} do begin

at+1 := j;
for i ∈ {1, . . . , k − 2, k − 1} do begin

bt+1 := i;
GenFix( t+ 1, t+ 1 );

end; end; end;
end {of GenFix};

Fig. 3.7. Fixed-density necklace algorithm.

4. Analysis of algorithm. In this section we show that GenFix(t, p) is CAT.
We start the analysis by analyzing several trivial cases. When the desired density
of the string is n the computation tree and strings produced are equivalent to the
generation of Nk−1(n), which we already know is CAT. When the density is zero we
simply generate the zero string, and when d = 1 we generate the k − 1 strings where
the last bit ranges from 1 to k − 1 and the rest of the string is all zeros. In each case
where the density is greater than zero the resulting strings are generated in CAT.

For the nontrivial cases we examine the number of nodes in the computation tree,
noting that the amount of work to generate each node is constant. When 1 < d < n,
the nodes in the computation tree consist only of prenecklaces that end in a nonzero
bit with density i ranging from 1 to d − 1 and length ranging from (n − 1)/d + i to
n − d + i. Recall that P′k(n, d) is the set of prenecklaces with length n and density
d, where the last bit is nonzero. Thus, the size of the computation tree for our
fixed-density algorithm (1 < d < n) is bounded by the expression

CompTreek(n, d) ≤
d−1∑
i=1

n−d+i∑
j=n−1

d +i

P ′k(j, i).

Recall that we generate binary fixed-density necklaces with density greater than n/2
by generating N(n, n − d) and complementing the output. Therefore, in the case
where k = 2 (and only in this case), we have the restriction that d is less than or
equal to n/2.

To prove that our algorithm is efficient we will show that the ratio between the
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size of the computation tree and the number of strings produced is bounded by a
constant. Since there does not appear to be a simple explicit formula for P ′k(n, d),
our approach will be to derive an upper bound in terms of Nk(n, d) and Lk(n, d).

Lemma 4.1. P ′k(n, d) ≤ Nk(n, d) + Lk(n, d).
Proof. We partition P′k(n, d) into two categories: necklaces and nonnecklaces.

Let the elements of P′k(n, d) that are not necklaces be Q′k(n, d).
We show that Q′k(n, d) ≤ Lk(n, d) by providing an injective mapping of Q′k(n, d)

to Lk(n, d). By Lemma 2.1 each element of the set Q′k(n, d) must have the form
α = (a1 · · · ap)ja1 · · · am, where p = lyn(α), j ≥ 1, and 0 < m < p. Let ni be
the number of occurrences of the symbol i in a1 · · · am and define the string γ =
0n01n1 · · · (k − 1)nk−1 . We define a function f on the set Q′k(n, d) as follows:

f(α) = γ(a1 · · · ap)j .

For example, f((002101303)70021013) = 0001123(002101303)7. This mapping pre-
serves both length and density. Since γ and a1 · · · ap are both Lyndon words and
γ < a1 · · · ap, it follows from repeated use of Lemma 2.2 that f(α) ∈ Lk(n, d).

To show that f is injective consider two unique elements of Q′k(n, d): α =
(a1 · · · ap)sa1 · · · ai and β = (b1 · · · bq)tb1 · · · bj . If i = j, then f(α) 6= f(β), since
a1 · · · ap and b1 · · · bq are both Lyndon words and a1 · · · ap 6= b1 · · · bq. Otherwise as-
sume that i < j. Since ai and bj are both nonzero, the ith element of f(α) is nonzero
and the jth element of f(β) is nonzero. Now if the ith element of f(β) is nonzero
then the (i+ 1)st element must also be nonzero if f(α) = f(β). However the (i+ 1)st
element of f(α) = a1, which is 0. Thus f(α) 6= f(β) for unique α, β ∈ Q′k(n, d). Thus
f is an injection from Q′k(n, d) to Lk(n, d).

Now since there exists an injective mapping from Q′k(n, d) to Lk(n, d) we have
Q′k(n, d) ≤ Lk(n, d). From earlier discussion we know that P ′k(n, d) = Nk(n, d) +
Q′k(n, d) and thus P ′k(n, d) ≤ Nk(n, d) + Lk(n, d).

We observe in the binary case that by taking each element from P2(n, d) and
adding a 1 to the end of the string we get the set P′2(n + 1, d + 1). Thus from the
previous lemma we also get an upper bound on P2(n, d).

Corollary 4.2. P2(n, d) ≤ N2(n+ 1, d+ 1) + L2(n+ 1, d+ 1).
We can now bound our computation tree as the sum of fixed-density necklaces

and fixed-density Lyndon words:

CompTreek(n, d) ≤
d−1∑
i=1

n−d+i∑
j=n−1

d +i

Nk(j, i) + Lk(j, i).

However, by plugging the formulas for fixed-density necklaces and Lyndon words into
the above expression we end up with a complicated quadruple sum. Therefore we
will prove two lemmas, which give simple bounds for fixed-density Lyndon words and
necklaces.

Lemma 4.3. The following inequality is valid for all 0 ≤ d ≤ n:

Lk(n, d) ≤ 1

n

(
n

d

)
(k − 1)d.

Proof. Each element of Lk(n, d) is a representative of an equivalence class of k-ary
strings, each with n elements. If we add up the elements from each equivalence class
we will get nLk(n, d) unique strings each of length n and density d. The expression
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n
d

)
(k − 1)d counts the total number of k-ary strings with length n and density d.

Therefore Lk(n, d) ≤ 1
n

(
n
d

)
(k − 1)d.

A similar bound for Nk(n, d) is more difficult to obtain. Here we bound Nk(n, d)
by Lk(n, d).

Lemma 4.4. The following inequality is valid for all 0 < d < n:

1

n

(
n

d

)
(k − 1)d ≤ Nk(n, d) ≤ 2Lk(n, d).

Proof. By considering the case when j = 1 in (2.1) and noting that the remaining
terms are all nonnegative, we have

Nk(n, d) ≥ 1

n

∑
n1+···+nk−1=d

n!

(n0!)(n1!) · · · (nk−1!)

=
1

n

(
n

d

) ∑
n1+···+nk−1=d

d!

(n1!) · · · (nk−1!)

=
1

n

(
n

d

)
(k − 1)d.

The final equality is a result of the basic multinomial expansion.
To show that Nk(n, d) ≤ 2Lk(n, d), we provide an injective mapping of the pe-

riodic necklaces to Lyndon words. If α is a periodic necklace, then α = (a1 · · · ap)j ,
where p = lyn(α) and j > 1. Since d < n we know that a1 = 0. We define a function
g on all periodic necklaces with length n and density d as follows:

g(α) = 0(a1 · · · ap)j−1a2 · · · ap.
This function simply moves the bit ap(j−1)+1 = a1 = 0 to the front of the string. This
operation preserves both length and density. Since (a1 · · · ap)j−1a2 · · · ap is a Lyndon
word, by Lemma 2.2 g(α) is a Lyndon word.

To show that g is an injection we consider two unique periodic necklaces: α =
(a1 · · · ap)i and β = (b1 · · · bq)j . If p = q and g(α) = g(β), then a1 · · · ap = b1 · · · bq,
contradicting the fact that α 6= β. If p 6= q, then assume that p < q. This implies
that i > j > 1. Now comparing the characters in positions 2, 3, . . . , q + 1 of g(α) and
g(β) we observe that if g(α) = g(β) then b1 · · · bq = (a1 · · · ap)ta1 · · · as for some t ≥ 1
and 1 ≤ s ≤ p. However, since a1 · · · ap is a Lyndon word, then (a1 · · · ap)ta1 · · · as
is periodic if s = p and is not a necklace if s < p. This contradicts the fact that
b1 · · · bq is a Lyndon word. Thus g(α) 6= g(β) for unique periodic necklaces α and β.
Therefore g is an injective mapping from the periodic necklaces to Lyndon words.

Since there exists an injective mapping from the periodic strings of Nk(n, d) to
Lk(n, d) we get the result Nk(n, d) ≤ 2Lk(n, d).

Using the previous lemmas we can simplify our upper bound on the size of the
computation tree:

CompTreek(n, d) =
d−1∑
i=1

n−d+i∑
j=n−1

d +i

P ′k(j, i)

≤
d−1∑
i=1

n−d+i∑
j=n−1

d +i

Nk(j, i) + Lk(j, i)
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≤ 3
d−1∑
i=1

n−d+i∑
j=1

Lk(j, i)

≤ 3
d−1∑
i=1

n−d+i∑
j=1

1

j

(
j

i

)
(k − 1)i

= 3
d−1∑
i=1

1

i
(k − 1)i

n−d+i∑
j=1

(
j − 1

i− 1

)

= 3
d−1∑
i=1

1

i

(
n− d+ i

i

)
(k − 1)i.(4.1)

To get the last two equalities we use some basic binomial coefficient identities.
To simplify this bound for the computation tree even more, we inductively prove

yet another upper bound for the remaining sum in (4.1). We first prove an upper
bound for the case when k > 2 and 1 < d < n. We then provide a similar proof for
the case when k = 2. In the latter case we take advantage of the fact that we can
generate binary necklaces with d > n/2 by generating necklaces with density n−d and
then complementing the output of each generated necklace to get all necklaces with
density d. Once again, this is the only situation where the strings are not generated in
lexicographic order. Thus when k = 2, we only consider the case when 1 < d ≤ n/2.

Lemma 4.5. For 2 ≤ d < n and k > 2,

d−2∑
i=1

1

i

(
n− d+ i

i

)
(k − 1)i <

2

d− 1

(
n− 1

d− 1

)
(k − 1)d−1.

Proof. We prove the lemma by induction on d. Let

Sk(n, d) =
d−2∑
i=1

1

i

(
n− d+ i

i

)
(k − 1)i.

Basis: d = 2 or 3, n ≥ 3. Observe that this covers all cases for n = 3, 4:

d = 2: Sk(n, 2) = 0 < 2(n− 1)(k − 1),

d = 3: Sk(n, 3) = (n− 2)(k − 1) <

(
n− 1

2

)
(k − 1)2.

Assume: Sk(n, d) < 2
d−1

(
n−1
d−1

)
(k−1)d−1 for 1 < d < n−1, k > 2, and n ≥ 5. Consider

Sk(n, d+ 1):

Sk(n, d+ 1) =
d−1∑
i=1

1

i

(
n− d− 1 + i

i

)
(k − 1)i

=
d−2∑
i=1

1

i

(
(n− 1)− d+ i

i

)
(k − 1)i +

1

d− 1

(
n− 2

d− 1

)
(k − 1)d−1

<
2

d− 1

(
(n− 1)− 1

d− 1

)
(k − 1)d−1 +

1

d− 1

(
n− 2

d− 1

)
(k − 1)d−1

=
3

d− 1

(
n− 2

d− 1

)
(k − 1)d−1
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=
3d

(d− 1)(n− 1)

(
n− 1

d

)
(k − 1)d−1

≤ 2

d

(
n− 1

d

)
(k − 1)d.

To show that the last inequality is correct we prove that 3d
(d−1)(n−1) ≤ 2

d (k − 1) for

n ≥ 5. By multiplying both sides by d
k−1 we get 3d2

(d−1)(n−1)(k−1) ≤ 2. The LHS of

this inequality is maximized when we maximize d = n − 2 and minimize k = 3. By
substituting these values and rearranging we get

3(n− 2)(n− 2) ≤ 4(n− 1)(n− 3),

0 ≤ 4(n2 − 4n+ 3)− 3(n2 − 4n+ 4),

0 ≤ n(n− 4).

This equality is true for n ≥ 4.
Lemma 4.6. For 2 ≤ d ≤ n/2 and k = 2,

d−2∑
i=1

1

i

(
n− d+ i

i

)
(k − 1)i <

2

d− 1

(
n− 1

d− 1

)
(k − 1)d−1.

Proof. We prove the lemma by induction on d. Let

Sk(n, d) =

d−2∑
i=1

1

i

(
n− d+ i

i

)
(k − 1)i.

Basis: d = 2 or 3, n ≥ 3. Observe that this covers all cases for n = 3, 4, 5, 6, 7:

d = 2: Sk(n, 2) = 0 < 2(n− 1)(k − 1),

d = 3: Sk(n, 3) = (n− 2)(k − 1) <

(
n− 1

2

)
(k − 1)2.

Assume: Sk(n, d) < 2
d−1

(
n−1
d−1

)
(k − 1)d−1 for 1 < d < n/2 and n ≥ 5. From the proof

of the previous lemma we know

Sk(n, d+ 1) <
3d

(d− 1)(n− 1)

(
n− 1

d

)
(k − 1)d−1

≤ 2

d

(
n− 1

d

)
(k − 1)d.

To show that the last inequality is correct we prove that 3d
(d−1)(n−1) ≤ 2

d (k − 1)

for n ≥ 8. By substituting the value 2 for k and multiplying both sides by d we get
3d2

(d−1)(n−1) ≤ 2. The LHS of this inequality is maximized when we maximize d = n
2−1.

By substituting this value for d and rearranging the terms we get

3
(n

2
− 1
)2

≤ 2
(n

2
− 2
)

(n− 1),

0 ≤ 2
(n

2
− 2
)

(n− 1)− 3
(n

2
− 1
)2

,

0 ≤ 2

(
n2

2
− 5n

2
+ 2

)
− 3

(
n2

4
− n+ 1

)
,

0 ≤ n2

4
− 2n+ 1.
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By solving this quadratic we see that the inequality holds for n ≥ 8.
We now use the previous lemmas to get a simple upper bound on the size of the

computation tree:

CompTreek(n, d) ≤ 3
d−1∑
i=1

1

i

(
n− d+ i

i

)
(k − 1)i

= 3
d−2∑
i=1

1

i

(
n− d+ i

i

)
(k − 1)i +

3

d− 1

(
n− 1

d− 1

)
(k − 1)d−1

<
6

d− 1

(
n− 1

d− 1

)
(k − 1)d−1 +

3

d− 1

(
n− 1

d− 1

)
(k − 1)d−1

=
9

d− 1

(
n− 1

d− 1

)
(k − 1)d−1.

Recall that our goal is to prove that the ratio of nodes in the computation tree to
the number of strings produced is bounded by a constant. From Lemma 4.4 we have
a lower bound on the number of strings produced:

Nk(n, d) >
1

n

(
n

d

)
(k − 1)d =

1

d

(
n− 1

d− 1

)
(k − 1)d.

Thus the ratio of our computation tree to necklaces produced is

CompTreek(n, d)

Nk(n, d)
< 9

d

(d− 1)(k − 1)
≤ 18.

Experimentally, this constant is less than 3.
Theorem 4.7. Algorithm GenFix for generating fixed-density k-ary necklaces is

CAT.

5. Future work and an application. In this paper we have presented a CAT
algorithm for generating fixed-density k-ary necklaces. This algorithm is used when
we want to generate necklaces where the number of zeros is fixed; however, if we want
all necklaces where the number of occurrences for every character is fixed, then our
algorithm works only for the binary case. An efficient algorithm for the k-ary case
would be very interesting, but currently does not exist. Another open problem is to
count the number of fixed-density prenecklaces; the number of fixed-density necklaces
and Lyndon words is known and was given in this paper.

5.1. Generating difference covers. As an application, we embed our fixed-
density necklace algorithm into a program that generates difference covers. A set D =
{a1, . . . , ak}, 1 < ai < n, is called an (n, k) difference cover if for every d 6= 0 mod n
there exists an ordered pair (ai, aj) in D such that ai − aj = d mod n. For example,
the set {1, 2, 3, 6} is a (10, 4) difference cover. An (n, k) difference cover is minimal
if an (n, k − 1) difference cover does not exist.

To generate all difference covers (n, k) we generate all fixed-density necklaces
N2(n, k) where the position of each one in the necklace represents a number in the
set D. To determine whether the necklace represents a difference cover, we keep track
of information about each ordered pair. This additional work takes at worst case
O(k) time for every node in the computation tree. Thus the overall running time for
generating all the (n, k) difference covers is O(kN2(n, k)).
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In practice, it is useful to know whether or not an (n, k) difference cover exists.
When n gets large the search space may become infeasible to work with; however, if
we have some intuition about what the first few numbers may be in the set D, we can
customize our algorithm to drastically reduce the search space. Using this strategy
we were able to prove the existence of a (131, 13) difference cover, namely

{1, 8, 27, 33, 34, 44, 57, 71, 73, 79, 88, 91}.

A complete C program for generating difference covers with equivalence under
rotation is available from the authors.
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Abstract. In this paper we show that the following problem, the even simple path (ESP)
problem for directed planar graphs, is solvable in polynomial time:

Given: a directed planar graph G = (V,E) and two nodes s (startingnode), t (targetnode) ∈
V ;

Find: a simple path (i.e., without repeated nodes) from s to t of even length. (The length
of the path is the number of edges it contains.)

Key words. labeled directed graphs, NP-completeness, polynomial-time algorithms, regular
expressions, simple paths, planar graphs
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1. Introduction. A linear-time algorithm solving this problem for general undi-
rected graphs is given in [5]; it is also shown there that the same problem (ESP) is
NP-complete [3] for directed graphs. This is achieved by polynomially reducing the
path via node problem for directed graphs to the ESP problem. The former problem
is one of the many subgraph homeomorphism problems for directed graphs that have
been shown to be NP-complete in [2].

In [6], the regular simple path (RSP) problem is investigated:

Given: a finite alphabet
∑

,
a database in the form of a edge-labeled directed graph G, with labels
taken from

∑
,

a query R in the form of a regular expression over the same alphabet
∑

,
and a pair of vertices (x, y) from G;

Find: a simple path p in G from x to y such that the concatenation of labels
along p satisfies R.

In [6], it is also shown that RSP is NP-hard in general. One of the cases used to
prove this statement is the query R = ( )∗. (Here the symbol “ ” stands for any
letter of the alphabet.) This is just the ESP problem stated in another way—in this
case the labels play no role. As has already been pointed out [5], this problem is NP-
complete for a general digraph. But in [6] several algorithms are presented which run
in polynomial time in the size of the graph for certain classes of graphs and queries.

As a result of our paper we can state that the same query, R = ( )∗, is polyno-
mially solvable if G is a planar graph. Thus, our paper broadens the knowledge of the
RSP problem—expanding the number of situations where this NP-complete problem
can be polynomially solved.

In our paper we show that the ESP problem is solvable in polynomial time by
polynomially reducing it to the following k disjoint paths problem for directed planar
graphs:
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Given: a directed planar graph G = (V,A) and k pairs (r1, s1), . . . , (rk, sk) of
vertices of G;

Find: k pairwise vertex-disjoint paths P1, . . . , Pk in G, where Pi runs from ri
to si (i = 1, . . . , k).

for the simplest case k = 2. Recently it was shown that this problem is polynomially
solvable for any fixed k [7].

In our solution we introduce two new data structures: The first one is a plane
region with oriented boundaries, called “list,” which has theoretical value only, as the
number of list structures in a planar graph might be exponential (we present such an
example in section 5). The second data structure is a special case of the first structure;
we call it “simple list.” We prove that the number of simple lists in any planar graph
is polynomial and we give a polynomial algorithm to generate all of them. In this
algorithm we also invent a special modification of depth-first search (DFS) [8] for the
case of planar graphs.

The rest of the paper is organized as follows. Section 2 gives preliminary defini-
tions. Section 3 gives the general idea of the main algorithm. Section 4 contains the
basic lemmas about list superfaces. Section 5 introduces the new modification of the
DFS algorithm for planar digraphs and gives polynomial algorithm for finding all its
simple lists. Section 6 presents the final algorithm for the ESP problem and section
7 gives possible future extensions.

2. Preliminaries. The following “basics for planar graphs” have been taken
almost directly from [4].

Consider a directed graph G = (V,E) with edge set E and vertex set V . Let
n = |V | and m = |E|. We can draw a picture G′ of G in the plane as follows: For
each vertex v ∈ V , we draw a distinct point v′; for each edge (u, v) ∈ E, we draw a
simple arc connecting the two points u′ and v′. We call this arc an embedding of the
edge (u, v). For brevity, we will sometimes identify graphs with their pictures thus
drawn in the plane. If no arcs of G′ cross each other, we call G′ a planar embedding
or embedding of G. If G has a planar embedding, then we say that G is planar.

Let G be a connected embedded planar digraph. If the edges and vertices of G are
deleted from the plane in which G is embedded, the plane is divided into disconnected
regions. Exactly one of the regions is infinite; all others are finite. Each region is called
a face of G—in this paper we will call it an elementary face to distinguish it from
a superface (defined below). The infinite region is also called the external face; the
finite regions are called internal faces. The boundary of a face f is the sequence of
edges and vertices surrounding f . Any face boundary is a simple cycle.

Definition 1. If we have a digraph G, then we will call any set of edges that
forms a simple cycle (possibly disregarding the directions of the edges), together with
its interior or exterior, a superface. We will call that simple cycle the boundary of
the superface. This interior or exterior part of the plane that is associated with the
boundary is the inside part of the superface; further, if a vertex or edge lies there, we
will say that it is inside even if it is from the exterior part of the plane.

Please note that for any given simple cycle, we have exactly two superfaces with
boundary this cycle: one with finite and one with infinite face.

Definition 2. A superface is called a list superface LS or list if its boundary
contains two special nodes b and e, the first called the beginning and the second called
the end, such that all the edges from the boundary moving clockwise from the beginning
b to the end e are in one direction—from the beginning to the end—and all the edges
from the boundary moving counterclockwise from the beginning b to the end e are in
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Fig. 1. An example of a list superface.

Fig. 2. An example of forbidden (dashed) and permitted (dotted) paths in a simple list superface.

one direction—from the beginning to the end (see Figure 1).
Definition 3. A list superface LS is called a simple list superface if for all

directed paths P = p0, p1, . . . , pn where p0 and pn lie on the boundary, p1, . . . , pn−1

are strictly from the inside, and pn is a predecessor of p0 (meaning that from pn
we can reach p0 using only the directed edges from the boundary of the LS; see Figure
2).

From now on we will assume that our graph at hand has been preprocessed so
that the following will hold:

• All vertices in the graph are reachable from s (the starting node), and t (the
target node) can be reached from any vertex. In doing this we discard all the
nodes that are irrelevant to the ESP problem between the nodes s and t. This
can be done if we run BFS(s), reverse the direction of each edge, run BFS(t)
and delete each node that hasn’t been marked by both runs of breadth-first
search algorithms.
• The graph has been tested for planarity and embedded if found planar.

3. Outline of the main algorithm. First we find one simple path from s to
t. If it has even length, we stop and print it as a final solution. From now on we will
assume that we are working on the nontrivial case—as a result of the first step, we
have a path of odd length.

We prove that if there is at least one solution—an even path between s and t—in
addition to the odd path found previously, then there exists a list superface LS with
one even and one odd border and two simple node-disjoint paths P1 and P2, the first
from s to the beginning of the list b, and the second from the end of the list e to t,
such that P1 and P2 are also node-disjoint from the boundary of LS less {b,e}.

Next we prove that if there exists a list superface LS and two simple node-disjoint
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paths P1 and P2 as above, then there exists a simple list superface LS′ and P ′1 and P ′2
with the same property. We need this because a planar graph can have an exponential
number of list superfaces, but the number of simple list superfaces is polynomial in
the size of the graph.

Based on these facts, we employ a modified DFS to construct all simple list
superfaces in G. For each found simple list superface F we check if it has one odd
and one even border; if this is the case, first we delete all the nodes on the boundary
of F (except b and e) with their associated edges. Then we employ the algorithm
from [7] to find node-disjoint paths between s and the beginning b of the simple list
superface and between the end e of the simple list superface and t. If we find at least
one such complete construct, then one solution—an even path—can be constructed
as a concatenation of these two paths and one of the two borders of the simple list at
hand. If in searching through all simple lists we fail to find such a construct, then it
will mean that we have proved that a solution doesn’t exist.

4. Basic theorem.
Lemma 1. Let F be a nonsimple list superface with one odd and one even bound-

ary. Also let there be two simple node-disjoint paths, P1 and P2, the first from s to b
(the beginning of F ) and the second from e (the end of F ) to t, such that P1 and P2

are also node-disjoint from the boundary of F less {b,e}. Then using a path P which
makes F nonsimple, we can find a list superface F ′ $ F , with one odd and one even
boundary and two simple node-disjoint paths P ′1 and P ′2, such that P ′1 and P ′2 are also
node-disjoint from the boundary of F ′ less {b′,e′}, one from s to the beginning of F ′

and one from the end of F ′ to t.
Proof. There are two general cases for the paths P1 and P2:
1. The two paths are from the same side with respect to the boundary of F ,

either outside or inside. If they are inside we can map all the nodes and edges
from the outside of F inside, and vice versa. Therefore we can treat these
two subcases as one—we will assume that the two paths are from the outside
of F .

2. The two paths are from different sides with respect to the boundary of F ,
one is outside and the other inside. Again using remapping of all the nodes
and edges from the outside of F inside and vice versa, we can treat these two
subcases as one—we will assume that the two paths are P1 outside and P2

inside F .
A. Let us consider the first case for P1 and P2: the two paths are from the outside

of F . Let the path P make F nonsimple. There are two cases for this path P with
beginning p0 and end pn. In the first case, suppose p0 lies on one boundary and pn
lies on the other (see Figure 3 (a)). Here there are two possible sublist superfaces of
F . The two boundaries are divided into four pieces, of which one is even and three
are odd, or three even and one odd. In either case there will be one sublist with
subboundaries of equal parity and one with subboundaries of different parities. If P
is even, we take as F ′ the sublist with subboundaries of different parities; if P is odd,
we take the sublist with subboundaries of equal parity. One of the two paths from s
to the beginning of F ′ and from the end of F ′ to t will stay the same; the other will be
a continuation of the path for F with one piece of the boundary (see Figure 3). The
second case where p0 and pn lie on the same boundary of F is similar (see Figure 3
(b)).

B. Let us consider the second case for P1 and P2: P1 outside and P2 inside F .
Let path P with beginning p0 and end pn make F nonsimple. In this case, P and P2
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Fig. 3. Nonsimple list and the division path.

Fig. 4. Nonsimple list with P2 inside; a division path intersects P2.

are inside F . If P is node-disjoint with P2, we repeat the logic from case A to derive
P ′1, F ′, and P ′2. Let us assume, then, that P intersect P2 and let us denote by P ′ this
part of P that starts from its beginning p0 until the first common node with P2, pk
(see Figure 4).

Let a = length (the path of the upper boundary from b up to p0). Let b =
length (the path of the upper boundary from p0 up to e). Let c = length (the lower
boundary). Let x = length (the subpath P ′). And let y = length (the subpath of P2

from e to pk). There are two possible sublists: F ′1 and F ′2 of the list F , which possibly
can lead to the solution of our lemma. Let us presume for the moment that their
boundaries are of equal parity. Then the following equations are correct:

a+ b+ c = 2k1 + 1,

x+ b+ y = 2k2,

a+ x+ c+ y = 2k3.

Adding the above three equations we get the following:

2(a+ b+ c+ x+ y) = 2(k1 + k2 + k3) + 1.

But as a, b, c, x, and y are whole numbers, this is impossible. It means that one
of the two possible subfaces of F has boundaries with different parities. If it is F ′1,
taking P ′1 = P1 and P ′2 = {the subpath of P2 from pk to t}, we have a solution of the
lemma. If F ′2 has boundaries with different parities, taking P ′1 = {P1 concatenated
with the subpath of the upper boundary from b to p0} and P ′2 = {the subpath of P2

from pk to t}, we have a correct solution of the lemma.
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Fig. 5. Two simple paths, one even and one odd, between s and t.

COROLLARY. If we have the situation of Lemma 1, we can derive F ′
⊂
6= F with

the same property as F . We can repeat this only a finite number of times, so we must
eventually reach a simple list superface with the same property as F .

Lemma 2. Suppose G is planar graph embedded in the plane, and s and t are two
vertices from G. If there are two simple paths from s to t, one of which is even and
the other odd, then there exists a simple list superface F with one odd and one even
boundary, and two simple paths P1 and P2, one from s to the beginning of F and one
from the end of F to t, such that F , P1, and P2 are mutually node disjoint.

Proof. Let the even path be s, v1, v2, . . . , vk, t and the odd path be s, u1, u2, . . . , ul, t.
Let b be the first point lying on both paths, such that P1 and P2 coincide from s up
to b and separate at b. Let e be the first vertex of P1 after b which is also on P2 (see
Figure 5 (P1 ≡ solid line, P2 ≡ dashed line)).

Let us consider the length of the subpaths of P1 and P2 between b and e. Suppose
they are of equal parity; then, because P2 does not have any point in common with
the subpath of P1 between b and e, we can replace the subpath of P2 between b and e
with the subpath of P1 between b and e. In other words, we can make the two paths
P1 and P2 coincide from s to e and still have different parities.

We cannot repeat the previous step indefinitely or we will reach two paths of
equal parity. Eventually we will reach a point where b and e are as above, but the
subpaths of P1 and P2 between b and e have different parity.

Now consider the list which starts at b and ends at e, with boundaries the subpaths
of P1 and P2 between b and e. We also have two node-disjoint paths, the coinciding
part of P1 and P2 from s to b, and the subpath of P2 from e to t. Now we have
the situation of Lemma 1. It follows that we must have a simple list superface F
with one odd and one even boundary, and two simple node-disjoint paths P ′1 and
P ′2, one from s to b′, the beginning of that simple list superface, and one from e′,
the end of the list, to t. It is also true that these two paths are node-disjoint from
F − b′ − e′.

5. Finding all simple lists. The DFS algorithm [8], [1] does not specify the
order in which the neighbors of a given vertex are to be visited. For a planar em-
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Fig. 6. A dynamically introduced order during the DFS of all outgoing edges.

bedding of a planar graph G, we introduce a right depth-first search (RDFS) and left
depth-first search (LDFS), depending initially on a starting vertex v and an elementary
face f which must have v on its boundary.

Definition 4. First we pick any point a from the interior of f and connect
it to v through a new edge a 7→ v. Since a planar embedding means that the edges
incident with every vertex can be sorted clockwise or counterclockwise, we reorder all
outgoing edges from v in counterclockwise manner starting with the first outgoing edge
counterclockwise from a 7→ v. Now we start a DFS of G from v using the new order
from above. Whenever the DFS visits a new vertex w for the first time through the
edge u 7→ w, we reorder all outgoing edges from w counterclockwise from this edge
(see Figure 6). After this reordering is done, we continue the DFS in a normal way
using this new order. This modification of DFS we will call LDFS (v,f).

RDFS (v, f) is defined similarly, using the clockwise order.
It is easy to see that the price paid for the dynamic reordering of the outgoing

edges in each vertex is not significant. Let m1,m2, . . . ,mn (note that
∑n
i=1mi = m,

the number of all edges in G) be the number of edges incident with every node of G.
Then if we perform only a binary search and the “reordering” is done by showing only
the position of the first clockwise outgoing edge in the old double-linked adjacency
list at each vertex of G, the running time of the modified DFS is

T ≤ TDFS + log2m1 + log2m2 + · · · + log2mn ≤ TDFS + log2

(
n∏
i=1

mi

)

≤ TDFS + log2

((
n∑
i=1

mi

)
/n

)n
≤ TDFS + n log2((3n− 6)/n) ≤ O(n).

Here we used the inequality
∏n
i=1mi ≤ (

∑n
i=1mi)/n)n and the fact that the sum of

all edges in a planar graph is less than or equal to 3n− 6.
We now apply the modified DFS in the following algorithm.

1. Algorithm A: Finding all simple list superfaces (G); /*G is planar digraph*/
2. begin for each edge v 7→ u in the graph G do
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/* There are two elementary faces having v 7→ u on their
boundaries.*/

/* We use the face f to guarantee the uniqueness of the simple face
output in line 12*/

3. choose the face f that contains the edge v 7→ u in the clockwise
direction;

4. build LDFSTree(v, f) with the condition that v 7→ u is the only
outgoing edge from v;

/* all other outgoing edges are temporarily deleted until the end
of this line */

5. build RDFSTree(v, f);
6. for each vertex w ∈ G, w 6= v do
7. if w ∈ both of the above trees then
8. find the path P1 from v to w made up of vertices in the first

tree;
9. find the path P2 from v to w made up of vertices in the

second tree;
10. if P1 ∩ P2 = {v, w} && the face f ∈ the finite region between

P1 and P2 then
11. print P1 ∪ P2 as a simple list superface;

end if ;
end if ;

end for ;
end for ;

end;

Lemma 3. Algorithm A gives us all simple list superfaces in G, and the number
of simple list superfaces is polynomial in the number of vertices of G.

Proof. First we will prove that the output of Algorithm A is a simple list super-
face. Consider the output of line 12. From line 11 we have P1 ∩ P2 = {v, w} and face
f ∈ the finite region between P1 and P2. Let us assume that this list superface is not
simple. But then there must be a directed path P = p0, p1, . . . , pn where p0 and pn
lie on the boundary and p1, . . . , pn−1 lie inside, such that pn is not a predecessor of
p0. There are two possible cases (see Figure 7):

a. p0 and end pn lie on opposite boundaries of F ;
b. p0 is a predecessor of pn on the same boundary.

Without loss of generality, we suppose that p0 lies on P1. Let the first vertex after p0

be p1 on P and p′ on P1. In Algorithm A, the path P1 consists of tree arcs formed
during LDFS(v, f), so the arc p0 7→ p1 will be traversed before the arc p0 7→ p′

because of the counterclockwise order induced on the outgoing arcs from p0. There
is now a path from p1 to w in the first case and from p1 to pn in the second case.
But then the DFS must have visited w or pn already when it finished with p1 and
before it returned to p0 (see [1]). Therefore, when the arc p0 7→ p′ was traversed
later, the algorithm would not have repeated its visit to w (in the first case) or pn (in
the second case).

This contradiction means that the output of line 12 of Algorithm A is a simple
list superface.

Second, let’s take any simple list superface F in G and prove that it will be found
by Algorithm A.

Let F begin at b and end at e, and let b1 and b2 be the neighbors of b on each
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Fig. 7. If we assume that F is not simple, there are two possible paths which split F .

Fig. 8. We assume that the simple list superface F is not generated by Algorithm A.

of the two boundaries of F , ordered counterclockwise. Let f be the elementary face
inside F which has b 7→ b2 on its boundary (see Figure 8).

Suppose that Algorithm A reaches b in line 2, b 7→ b2 in line 3, and e in line 7 and
that the paths found in lines 9 and 10 are such that P1 is not the upper boundary of
F (the boundary which contains b2) or P2 is not the lower boundary of F .

Let p0 be the first vertex where the upper boundary separates from the path from
LDFSTree(b, f) from b to e. There are two possibilities for P1:

1. to go counterclockwise from the upper boundary,
2. to go clockwise from the upper boundary.

In the first case let pn be the vertex where P1 and the upper boundary meet again.
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Fig. 9. An example of exponential number of list superfaces (l = 11).

As in the first part of the proof, pn will be traversed by LDFS before considering the
subpath of P1 after p0—which is a contradiction. In the second case, pn can’t be a
predecessor of p0 because P1 is a path from a tree and therefore simple. Thus pn
might be an ancestor of p0 on the same boundary or lie on the opposite boundary,
but both of these cases violate the fact that F is simple.

We have proved that the upper boundary and P1 must be identical. The proof
that the lower boundary of F is P2, the path found by RDFSTree(b, f) between b
and e, is similar.

Lemma 4. The number of simple list superfaces is polynomial.
Proof. The number of iterations of the outmost loop (line 2) will not be more

that the number of arcs in G. The innermost loop (line 6) will not execute more than
n times on each round of the outmost loop, where n is the number of vertices. Inside
the innermost loop each line will take at most O(n) time. So Algorithm A will be
O(m ∗ n ∗ n), which is O(n3) for planar graphs.

Example. It is not easy to find a case where there is an exponential number of
list superfaces with start vertex s and end vertex t. In Figure 9 the graph has the
number of vertices ≥ 5l − 6, where l is a parameter. In a list superface from s to
t, either the top or the bottom square or both (3 variant) from each vertical pair
(one top and one bottom square form one vertical pair) must be present. Thus there
are at least 3l−2 list superfaces, none of which is simple, starting at s and ending
at t. If Algorithm A is run with this example, all these superfaces will be discarded
because of the violation of the first condition in line 10 of Algorithm A.

6. Final algorithm. We are ready to formulate and prove an algorithm to find
an even simple path between vertices s and t in a planar digraph G.
1. Algorithm B: Find even simple path in planar digraph(G);
2. Find one simple directed path from s to t; if there is none, go to line 12;
3. If the path found at the previous step is even, then print the solution and exit ;
4. Use Algorithm A(G) to generate all simple list superfaces and feed them one

by one to the next line;
5. for each simple list superface F with start b and end e in G do
6. if F has one even and one odd boundary then
7. delete temporarily until end if all the nodes from the boundary of F ,

except b and e;
8. run the polynomial algorithm from [7] to find two node-disjoint paths:

one from s to b, and one from e to t;
9. if there is a solution for the latest task then
10. there is final solution—concatenation of these three pieces:

a) the path, found in line 8, from s to b
b) the subboundary of F , that is, of the same parity as

the sum of the two paths from line 8
c) the path from e to t, found in line 8

11. print this solution and exit ;
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end if ;
end if ;

end for ;
12. print THERE IS NO SOLUTION! ;

end;

Lemma 5. Algorithm B is correct and is polynomial in the size of the graph G.
Proof. Step 2 is no more than an algorithm for the shortest distance between s

and t. For step 4, we use the result from Lemma 3 that Algorithm A is polynomial
and that the number of all simple list superfaces in a planar graph is polynomial.
This means that the for cycle starting in line 5 executes a polynomial number of
times. Since all steps in the body of the for loop are polynomial (for line 8, see [7]),
and there is a polynomial number of iterations, the whole of Algorithm B is poly-
nomial.

We haven’t tried to calculate any estimation for the running time of Algorithm
B because it refers to the algorithm from [7], which has had only theoretical value up
to now.

7. Conclusion. As a result of Lemma 5 we can state that the query R = ( )∗
from RSP problem (described in the introduction) is polynomially solvable for planar
graphs. It is an open problem to find which other queries or classes of queries allow a
polynomial solution to the RSP problem in planar digraphs and digraphs embedded
onto orientable surfaces. Also there is a need for efficient polynomial algorithms for
them. It would also be interesting to investigate which classes of queries remain
NP-complete for planar graphs. Furthermore, it would be interesting if there exists a
more efficient algorithm than that presented here for finding all simple list superfaces
in a directed planar graph.
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1. Introduction. The traveling salesman problem (TSP) is one of the most
widely studied combinatorial optimization problem, to the extent that there is an
entire book [16] devoted to it. The importance of this problem is in large part due to
the richness of its structure, which has led to the development of a variety of general
paradigms and techniques for dealing with optimization problems. We further explore
this structure by formulating a natural version of the TSP problem that does not
seem to have been studied earlier in the literature [16]. The new problem, called the
Angle-TSP problem, seeks to minimize the total angle of a TSP tour for a set of points
in Euclidean space, where the angle of a tour is the sum of the direction changes at
the points. We establish the NP-hardness of this problem and the related cycle-cover
problem, provide approximation algorithms for both problems, study their extremal
properties, and give tight bounds on the trade-off between the angular and the length
performance ratio achievable by a TSP tour.

Formally, we define the optimization problem angle-TSP as follows: given a col-
lection P = {p1, . . . , pn} of n points in Euclidean space, find a tour of the points in
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P with minimum total angle. For two edges (u, v) and (v, w) incident on a vertex

v, we define the angle subtended by them as the angle between the vectors
→
uv and→

vw. Equivalently, this angle is the absolute value of the change in the direction of
motion when traveling from u to w via v, along these edges. Note that the angle
always lies in the interval [0, π]. For a path or a cycle on a subset of P , the total
angle subtended is defined as the sum over all pairs of adjacent edges of the angle
subtended by the pair. We also define an angular-metric version of the cycle cover
problem (CCP) called Angle-CCP: given a collection P = {p1, . . . , pn} of n points
in the Euclidean plane, find a cycle cover of the points in P subtending the minimum
possible total angle. As will become clear shortly, unlike the length-metric cycle cover
problem that is relatively easy, the Angle-CCP problem is as hard as the angle-TSP
problem itself.

Our main results are as follows. We show that the Angle-TSP and the Angle-CCP
problem are both NP-hard. Given this, we turn our attention to designing approxi-
mation algorithms for these problems and show that both problems can be approx-
imated to within a ratio of O(log n) in polynomial time. It should be noted that
the Angle-TSP appears easier than Angle-CCP since an approximation algorithm for
Angle-CCP would imply a similar approximation for Angle-TSP but the reverse is not
clear. We also consider the problem of simultaneously approximating both the angle
and the length measure for a TSP tour. In studying the tradeoff between the angle
and the length metric, we choose to focus on the sum of the two performance ratios
and provide tight bounds on the sum. Finally, we consider the extremal value of the
angle measure and obtain essentially tight bounds for this too. While we state our
results in context of planar angle-TSP, all our results are easily extended to higher
dimensions.

Our original motivation was a problem posed by Guibas, namely, to find a
“smooth” tour that visits a set of prescribed viewpoints of an object [12]. The smooth-
ness criteria arises naturally in the context of nonholonomic robots [2, 3, 14]. Of late,
there has been considerable interest in motion planning with “curvature constraints”
(for example, see Agarwal, Raghavan, and Tamaki [1]). This is motivated by nonholo-
nomic motion planning for steering-constrained robots that have stops on the steering
mechanisms limiting the rate of change of direction [4, 5, 10, 13, 15]. Our problem
involves a different notion of smoothness, but it could be used as a preprocessing
step for planning curvature-constrained paths as suggested by Fraichard [10]. Our
notion is of direct relevance in situations where a rotation by a robot is significantly
more expensive than a translation. For instance, this would be the case for robots
with high inertia, or where relatively large mechanical errors during rotation would
necessitate error-detection and correction process via localization [14]. Also, there are
applications in planning the trajectories of high-speed aircraft [8].

The angle-TSP is a special case of TSP problems where the cost of an edge
depends on the edges traversed earlier in the tour. Several applications can be modeled
by such TSP problems. For example, the problem of scheduling orders in a production
line can be modeled as a TSP problem where the vertices represent orders that have
to be scheduled and edges represent set-up costs in moving from one order to another.
In applications such as VLSI fabrication, steel mills and chemical plants scheduling,
the set-up cost of chemical cleansing and temperature control depend not only on
the previous order, but on several previous orders. This translates to a TSP problem
where the cost of an edge depends on previous edges.

Our work suggests many interesting and challenging directions for future work.
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Can our approximation ratio of O(log n) be improved to a constant, or be matched
by a complementary hardness result? What can be said about other forms of trade-
off such as the product of the angle and the length measures? It is also interesting
to consider other natural variants of the basic angle-TSP problem; for example, the
variant where the maximum angle change at a vertex is bounded and the goal is to
minimize the length measure.

The rest of this paper is organized as follows. We begin in Section 2 by showing
that there are polynomial time O(log n)-approximation algorithms for both angle-TSP
and Angle-CCP. In Section 3, we establish essentially tight bounds on the extremal
cost of Angle-TSP. Building on the latter result, in Section 4, we establish tight
bounds on the ability of a polynomial time algorithm to simultaneously approximate
both the optimal angle-TSP and the optimal Length-TSP. Finally, in Section 5, we
present the proof of NP-hardness of angle-TSP and Angle-CCP.

2. Approximation algorithms for angle-TSP and angle-CCP. In this sec-
tion, we describe an O(log n)-approximation algorithm for the angle-TSP problem on
an instance P containing n points, with a running time polynomial in n. But first we
need the following lemmas.

Lemma 2.1. Suppose there is a cycle C on a set of points P in the plane that
subtends a total angle of α. Then, for any subset P ′ ⊂ P , there exists a cycle C ′

subtending a total angle at most α.
The proof of Lemma 2.1 is straightforward: using short-cuts to eliminate the

points of P \ P ′ from C, we obtain a cycle C ′ of no larger total angle by the triangle
inequality for angles.

Lemma 2.2. There is a polynomial-time algorithm that finds a maximum cardi-
nality path on the points in P that subtends a total angle at most π.

Proof. We use dynamic programming similar to Boyce et al. [6]. Fix some directed
edge s in P and define the array As as follows: for each directed edge e in P and
for 1 ≤ k ≤ n, the array entry As[e, k] contains the minimum angle subtended by a
path of cardinality k starting with the edge s and ending at edge e; by convention,
the entry is ∞ if there is no such path of cost at most π. We claim that the array
entries for paths of cardinality k can be computed from the array entries for paths
of cardinality k − 1 in polynomial time, as follows: for any directed edge e and any
edge f directed into the source point of e, let θf,e be the angle between f and e;
then, As[e, k] ← minf {As[f, k − 1] + θf,e} , and As[e, k] is set to ∞ if it exceeds π.
To verify the correctness of this computation, observe that in a path with total angle
at most π, neither vertices nor edges can repeat.

It is fairly easy to modify the preceding construction to store actual paths, rather
than the angle subtended by them. The maximum cardinality path starting from the
edge s with total subtended angle at most π can be determined by finding the largest
k for which there exists an edge e such that As[e, k] is finite. Repeating this for all
choices of the starting edge s gives the desired result. It is easy to verify that this
computation can be performed in polynomial time.

We now establish the desired result.
Theorem 2.3. There is a polynomial-time algorithm which gives O(log n)-

approximation for angle-TSP.
Proof. Suppose that we are given an instance P consisting of n points {p1, . . . , pn}

in the plane. Let τ∗ be the minimum angle tour for P , where θ = θopt(P ) is the total
angle change in the optimal cycle. Define K = dθ/πe, clearly K ≥ 2. It follows that
the tour τ∗ contains a subpath of cardinality at least n/K which subtends a net angle
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change at most π.
We now claim that for any instance P with n points with θopt(P ) ≤ Kπ, it is

possible to compute in polynomial time, a cycle cover C = {C1, . . . , Cr} for P with the
following properties: r = K log n; and, each cycle Ci subtends a total angle at most
3π. It can be verified that patching together any two cycles C and C ′ subtending total
angles α and α′ gives a single cycle C ′′ subtending an angle α′′ ≤ α+ α′ + 2π. From
this, it follows that repeatedly patching together the cycles in C gives a tour τ with
θ(τ, P ) = O(πK log n). Since θopt(P ) = Ω(πK), it follows that Rθ(τ, P ) = O(log n),
giving the desired result.

It remains to validate the polynomial-time construction of the claimed cycle cover.
We do so by induction on n. The base case is trivial and is omitted. For the induction
step, first observe that by Lemma 2.2, we can find a path of cardinality at least n/K
in P with total angle at most π. Joining together the two endpoints of this path
gives a cycle C1 subtending a total angle at most 3π. Consider the instance P ′ with
n′ points obtained by deleting the points in C1 from P . From Lemma 2.1, it follows
that θopt(P

′) ≤ θopt(P ) ≤ Kπ. Since n′ ≤ n(1 − 1/K) and K log n′ ≤ K log n − 1,
we obtain from the induction hypothesis that it is possible to recursively compute in
polynomial time a suitable cycle cover for P ′ consisting at most K log n − 1 cycles.
Adding C1 to this collection of cycles gives the desired cycle cover for P .

We note that the same proof applies also to the Angle-CCP problem.
Corollary 2.4. There is a polynomial-time algorithm which gives O(log n)-

approximation for Angle-CCP.

3. The extremal cost of angle-TSP. In this section, we address the question:
What is the extremal cost of an optimal angle-TSP as a function of n? While this
question is of intrinsic interest in its own right, we will see in Section 4 that it also
enables us to analyze the trade-off between the performance ratio for the angle and
the length metrics.

Note that for any n points in the plane there is a solution for the angle-TSP
of cost O(n). We improve this upper bound and show that for any n points in the
plane there is a solution for the angle-TSP of cost O(n/ log n). On the other hand,
we are able to match this bound by showing the existence of an instance for which
the optimal cost is Ω(n/ log n).

Theorem 3.1. Given a set of n points in the plane, there exists a solution for
the angle-TSP problem of cost O(n/ log n).

Proof. Our proof relies on the following classic result of Erdős and Szekeres [9]:
Given a set of n points in general position, there exists a subset of size Ω(logn) which
induces a convex polygon. This means that the entire point set can be covered by
O(n/ log n) convex polygons. Since traversing each polygon has a cost of 2π and
linking two polygons costs at most another 2π, we can construct a tour that visits all
the n points at a total cost of O(n/ log n). This establishes the claimed result. As an
aside, one may note that the claimed Ω(log n) size convex polygon can be found in
polynomial time by a simple dynamic programming.

We now establish a matching lower bound on the extremal cost.
Theorem 3.2. There exists an instance P of angle-TSP with n points in the

plane such that the optimal cost for this instance is Ω(n/ log n).
Proof. We describe a recursive construction that achieves this lower bound. As-

sume that n = 2k, for some integer k. In the construction, we have k = log n levels of
recursion. Define an instance of level i to be the instance constructed after i levels of
recursion, and note that the final instance is the instance of level k. The instance of
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level 0 simply contains one point. The instance of level i+ 1 consists of two instances
of level i at distance 4i from each other such that the line connecting the centroids1

of these two instances makes an angle of iπ/k with the X axis. We say that these
two instances are aligned at angle iπ/k. Note that the instance of level k has 2k = n
instances of level 0, and in general 2k−i instances of level i.

Consider any solution to angle-TSP on this instance. To prove the lower bound
we show that the cost of traversing any three consecutive points in this solution is
Ω(π/k). This readily implies the desired bound.

Fix any three consecutive points, and let i be the maximum level such that these
three points do not belong to the same instance of level i. Clearly, such an i exists
since the instance of level one consists of only two points. Note that these three points
belong to the same single instance of level i+ 1.

It is not difficult to verify that the cost of traversing points in the two instances
is Ω(π/k), since: (i) the two instances of level i are aligned at angle iπ/k; (ii) all
the instances of lower levels are aligned at an angle that is at most (i − 1)π/k; and,
(iii) the distance between points in different instances of level i is at least twice the
distance between points in the same instance of level i.

4. Simultaneously approximating length and angle. In this section we
discuss the possibility of simultaneously obtaining a good approximation to both the
angle measure and the length measure for planar TSP. Fix an instance P and consider
any tour τ for it. Denote by θ(τ, P ) the total angle subtended by τ , and by `(τ, P )
the total length of τ . Further, let θopt(P ) be the angle subtended by the optimal
angle-TSP solution for P , and `opt(P ) be the total length of the optimal Length-
TSP solution for P . Note that the optimal angle-TSP and the optimal Length-TSP
solutions for P need not be the same. We define the performance ratio of τ with
respect to the two measures as:

Rθ(τ, P ) =
θ(τ, P )

θopt(P )
and R`(τ, P ) =

`(τ, P )

`opt(P )
.

Our goal is to study the tradeoff between the two ratios Rθ(τ, P ) and R`(τ, P ) over
all possible TSP solutions τ .

Theorem 4.1. There exists an instance P consisting of n points in the plane,
such that for any tour τ on P ,

Rθ(τ, P ) +R`(τ, P ) = Ω
(√

n/ log n
)
.

Proof. Consider the following scenario in the plane. Fix t =
√
n log n and let

P1, . . . , Pt be a collection of identical instances described in the proof of Theorem 3.2
each with

√
n/ log n points. Scale these instances so that the length of the path

connecting the points in each instance is of unit length. We arrange these instances
in a vertical stack so that they are perfectly aligned, and two successive instances in
the vertical sequence are at a unit distance from each other. We refer to this entire
set of points as the instance P .

We claim that: (a) `opt(P ) = O(
√
n log n); and, (b) θopt(P ) = O(

√
n/ log n). To

see (a), observe that by our scaling, there exists a Hamiltonian path of unit length
in each of the instances Pi; also, since the optimal Length-TSP tour can visit the

1The centroid of a finite set of points is their arithmetic mean.
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instances in the vertical order, the total cost of traveling between the series of
√
n log n

instances is O(
√
n log n). To see (b), observe that a set of

√
n/ log n straight lines

cover all points in P and these can be stitched together into a tour using O(
√
n/ log n)

changes in the direction of travel.

Fix any tour τ for P . Consider any three consecutive points in τ . If these points
are in the same instance Pi then, by the proof of Theorem 3.2, the angular cost of
traversing them is Ω(1/ log n). If these points belong to at least two different instances
then, because of the spacing between instances, the length cost of traversing them is
Ω(1). Consider the bn/2c consecutive triples. We either incur the angular cost for at
least half of them (≥ bn/4c), or we incur the length cost for at least half of them.
We conclude that θ(τ, P ) = Ω(n/ log n) or `(τ, P ) = Ω(n). Combining this with the
upper bounds on `opt(P ) and θopt(P ), we conclude that Rθ(τ, P ) +R`(τ, P ) =

Ω(
√
n/ log n).

We can show that there is a polynomial-time algorithm that matches the lower
bound to within a factor of

√
log n. We first show a marginally weaker upper bound

that is considerably easier to obtain.

Theorem 4.2. Given a set P of n points in the plane, there is a polynomial-time
algorithm for constructing a tour τ on P such that: Rθ(τ, P )+R`(τ, P ) = O(

√
n log n).

Proof. To find the desired tour we first compute an O(log n)-approximation to the
optimal angle-TSP tour by using the approximation algorithm described in Section 2.
Denote the resulting tour by τ . We distinguish between two cases.

Case 1. θ(τ, P ) = Ω(
√
n log n). In this case compute a constant approxima-

tion to the Length-TSP using, e.g., Christofides’ approximation [7] for TSP. De-
note the resulting tour by τ ′. We claim that Rθ(τ

′, P ) + R`(τ
′, P ) = O(

√
n log n).

Clearly, R`(τ
′, P ) = O(1). Since θ(τ, P ) = Ω(

√
n log n), we know that θopt(P ) =

Ω(
√
n/ log n). Also θ(τ ′, P ) = O(n). Hence Rθ(τ

′, P ) = O(
√
n log n).

Case 2. θ(τ, P ) = O(
√
n log n). In this case Rθ(τ, P ) = O(log n). We claim

that in R`(τ, P ) = O(
√
n log n). To see this we re-examine the approximation algo-

rithm for the angle-TSP problem. Recall that in this algorithm we find K ′ paths
each of which subtends an angle of at most π that cover all the n points. Note
that in our case K ′ = O(

√
n log n). Below, we show that the length of each such

path is a lower bound on `opt(P ). Since there are O(
√
n log n) such paths this im-

plies that R`(τ, P ) = O(
√
n log n). (Note that the stitching of these paths costs

O(
√
n log n`opt(P )).) Consider such a path Q with endpoints u and v. Clearly, the

distance between u and v is a lower bound on `opt(P ). We show that the length
of Q is at most 4

√
2 times this length. Partition Q into four segments, such that

each segment subtends an angle of at most π/4. We claim that the length of each
such segment is

√
2 times the distance from u to v. Consider such a segment. The

length of it is just the sum of the lengths of its edges. Consider the projections of all
these edges on the straight line connecting u and v. The sum of the lengths of these
projections is the distance between u and v. Since each edge has an angle of at most
π/4 with this straight line, the projection of each edge is at least

√
2/2 of its

length.

The proof of the following tighter upper bounds is much more involved.

Theorem 4.3. Given a set P of n points in the plane, there is a polynomial-time
algorithm for constructing a tour τ on P for which Rθ(τ, P ) +R`(τ, P ) is bounded as
follows:
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(1) if θopt(P ) ≤
√
n

logn , then

Rθ(τ, P ) +R`(τ, P ) = O

(
θopt(P ) log

(
n

θopt(P )

))
(2) if

√
n

logn ≤ θopt(P ) ≤ √n log n, then

Rθ(τ, P ) +R`(τ, P ) = O

(√
n

log n

)
(3) if θopt(P ) ≥ √n log n, then

Rθ(τ, P ) +R`(τ, P ) = O

(
n

θopt(P )

)
.

Thus the worst cast sum of the ratios is O(
√
n).

Proof. To find the desired tour, τ , we use two approximation algorithms: (a)
the approximation algorithm for the angle-TSP problem given in Section 2; and, (b)
a constant-factor approximation to the Length-TSP in the plane, e.g., Christofides’
approximation [7] for TSP.

We begin by finding a constant-factor approximation to the Length-TSP. Let L
be the resulting tour. Fix a parameter k; the value of k will be determined later.

The next stage consists of m = cmax{dlog(k/θopt(P ))e, 0} iterations, for some
constant c > 1. Note that since we can approximate θopt(P ) up to a logarithmic
factor, we can compute the number of iterations.

In each iteration, we find sub-paths that cover at least 3/4 of the points that
still need to be covered and concatenate them in to the desired tour τ . Let Pi be
the set of uncovered points at the beginning of iteration i, for i = 0, ...,m − 1. Let
Li be the sub-tour of L induced by Pi. In iteration i we break Li into a minimal
number of sub-paths each containing at most k/2i points. Note that the number of
such sub-paths is at most n/(k2i) (since the |Pi| ≤ n/4i). Denote these sub-paths by
Li,j , and the points on Li,j by Pi,j , for 1 ≤ j ≤ n/(k2i). In each subset Pi,j we use
the approximation algorithm of Section 2 to find a maximal path which subtends an
angle of at most π. We stitch all these paths in the order of their appearance in L,
and concatenate the resulting path to the desired path τ . We repeat this step until
at least 3/4 of the points of Pi are covered.

After terminating the iterations, we concatenate the sub-tour of L induced by the
points that are still uncovered to τ .

We now bound θ(τ, P ) and `(τ, P ); we begin with θ(τ, P ). The desired path τ is
the concatenation of the paths computed in the iterations and the final path. The
final path consists O(n/4m) = O(n/(k2m)θopt(P )) points and hence its angular cost
is O(n/(k2m)θopt(P )). Consider a path concatenated to τ in iteration i. Recall that
this path is given by stitching the maximal paths computed in each of Pi,j . Since
the angular cost of each maximal path is at most π, the angular cost of the path
concatenated to τ is O(n/(k2i)). Similar to the proof given in Section 2 it can be
shown that the number of maximal paths which subtends an angle of at most π
required to cover at least 3/4 of the points in the set Pi,j is O(θopt(Pi,j)). Hence the
number of paths (which are given by stitching the maximal paths computed in each of
Pi,j) required to cover at least 3/4 of the points in the set Pi is O(maxj{θopt(Pi,j)}) =
O(θopt(P )). Summing over the m iterations and adding the angular cost of the final
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path, we conclude that Rθ(τ, P ) = O(
∑m
i=0 n/(k2i)) = O(n/k). Since θ(τ, P ) = O(n),

we have Rθ(τ, P ) = O(min{n/k, n/θopt(P )}).
Next, we bound `(τ, P ). The desired path τ is the concatenation of the paths

computed in the iterations and the final path. We claim that the length of each such
path is O(`opt(P )). This is clearly true for the last path concatenated to τ since this
path is a sub-tour of L and L is a constant-factor approximation to the Length-TSP.
Consider a path concatenated to τ in iteration i. Recall that this path is given by
stitching the maximal paths computed in each subset Pi,j . To show that the length
of this path is O(`opt(P )), it suffices to show that: (1) the cost of the stitching is
O(`opt(P )), and (2) the total length of the sub-paths is O(`opt(P )). Statement (1)
follows since the subpaths are stitched in the order of their appearance on L. To prove
(2) consider such a sub-path Q with endpoints u and v computed in Pi,j . Similar to
the proof of Theorem 4.2 it can be shown that the length of Q is at most 4

√
2 times

the distance between u and v. This clearly implies that the length of Q is proportional
to the length of Li,j . Since each sub-path is computed in a different Li,j , the total
length of the sub-paths is proportional to the length of L, and hence, is O(`opt(P )).

It follows that R`(τ, P ) is proportional to the number of subpaths concatenated to
τ . Consider an iteration i. As above it can be shown that the number of paths required
to cover at least 3/4 of the points is O(maxj{θopt(Pi,j)}). There are two ways to bound
this maximum. First, θopt(Pi,j) ≤ θopt(P ). Second, since the cardinality of each Pi,j
is at most k/2i, by Theorem 3.1, we get that maxj{θopt(Pi,j)} = O((k/2i)/ log k).
Summing over the m iterations, we conclude that

R`(τ, P ) = O

(
min

{
k

log k
, θopt(P ) · log

k

θopt(P )

})
.

We distinguish between three possible ranges of θopt.

1. In the range θopt(P ) ≤
√
n

logn , we set

k =
n

θopt(P ) · log( n
θopt(P ) )

,

and thus get

Rθ(τ, P ) +R`(τ, P ) = O

(
n

k
+ θopt(P ) log(

k

θopt(P )
)

)
= O

(
θopt(P ) log(

n

θopt(P )
)

)
.

2. In the range
√
n

logn ≤ θopt(P ) ≤ √n log n, we set k =
√
n log n, and get that

Rθ(τ, P ) +R`(τ, P ) = O(
n

k
+

k

log k
) = O(

√
n

log n
)

3. In the range θopt(P ) ≥ √n log n, we set m = 0, and thus τ is set to be L. We
get that

Rθ(τ, P ) +R`(τ, P ) = O

(
n

θopt(P )

)
.
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5. The intractability of angle-TSP and angle-CCP. In this section we
prove that finding an optimal Angle-CCP is NP-hard. A similar reduction shows
that the Angle-TSP problem is also NP-hard. We give the proof for the Angle-CCP
problem, and then describe briefly how this proof can be modified to show the NP-
hardness of the Angle-TSP problem.

Theorem 5.1. The Angle-CCP and Angle-TSP problems are NP-hard.
We provide a reduction to Angle-CCP from the one-in-three 3SAT problem that

is known to be NP-hard (Problem LO4 of Garey and Johnson [11]). The input to one-
in-three 3SAT is a set of m clauses C1, . . . , Cm, with each clause consisting of three
literals from the set {u1, . . . , un, u1, . . . , un}, where {u1, . . . , un} are boolean variables
and {u1, . . . , un} are their negations. The problem is to decide whether there exists
a truth assignment to the variables such that each clause contains exactly one true
literal. From now on we use the notation N to denote n+m.

For an instance φ of the one-in-three 3SAT problem, we construct a corresponding
instance P of the Angle-CCP problem such that there exists a one-in-three 3SAT
solution to φ if and only if the corresponding instance P has a cycle cover of total
angle at most T , for a value T to be specified later. We index the points in P by their
coordinates along the X and Y axes.

Fig. 5.1. A U-turn gadget in direction +Y.

For the reduction we need a gadget that we call a “U-turn gadget,” although
“V-turn gadget” would perhaps be a more appropriate name for it. This consists of
points on two straight lines and on two diagonals connecting those lines as shown
in Figure 5.1. Each such gadget is characterized by its endpoints and its direction.
Intuitively, a gadget pointing in the direction +Y with endpoints s = (x, y) and
t = (x + 2, y) consists of a set of points in the plane such that in order to cover
them efficiently we have to make a U-turn after entering at s (t) in the direction
+Y and exiting at t (respectively, s) in the direction −Y . To achieve this goal, the
gadget contains 12N5 points where N = n + m. Of these, 10N5 points are spread
uniformly on the two unit-length intervals from (x, y) to (x, y+1), and from (x+2, y)
to (x + 2, y + 1). The remaining 2N5 points are spread uniformly along the two
diagonals from (x, y + 1) to (x+ 1, y + 2) and from (x+ 2, y + 1) to (x+ 1, y + 2).

We are now ready to define the instance P of Angle-CCP. In P , we have nine
points corresponding to each clause Ci. Suppose that clause Ci consists of the literals
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ua,ub, and uc. The points corresponding to this clause are: (N2i,N2a), (N2i,N2b),
(N2i,N2c + 1), (N2i + 1, N2a + 1), (N2i + 1, N2b + 1), (N2i + 1, N2c + 1), (N2i +
2, N2a+ 1), (N2i+ 2, N2b), and (N2i+ 2, N2c); see Figure 5.2.

Fig. 5.2. Illustrating the reduction.

Let us understand the reasoning behind this assignment of points. We allocate
three “columns” to each clause, where the clause Ci is associated with the columns
with X-coordinates N2i, N2i+ 1, and N2i+ 2. Similarly, we allocate three “rows” to
each variable, where the variable uj is associated with the rows with Y -coordinates
N2j, N2j + 1, and N2j + 2. In addition, we allocate the row N2j to the literal uj ,
and the row N2j+ 1 to the literal uj . (We assume that N = (n+m) is large enough,
so that N2i+ 3 < N2(i+ 1).)

Let us fix our attention on a clause Ci and the three columns associated with it.
For j ∈ {1, 2, 3}, in the jth column associated with this clause, we have the points in
its intersection with the rows corresponding to the jth literal in the clause and the
complements of the other two literals. In addition, we have the points (N2i+3, N2j+
2), for j = 1, . . . , n, and i = 1, . . . ,m. We call all the points defined so far grid points.

Finally, we add 2N U-turn gadgets. For each variable uj , 1 ≤ j ≤ n, we have two
U-turn gadgets – one with endpoints (−N5, N2j) and (−N5, N2j+ 2) pointing in the
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direction −X (the “left” gadget), and another with endpoints (N5 +N2m,N2j) and
(N5 + N2m,N2j + 2) pointing in the direction +X (the “right” gadget). Similarly,
for each clause Ci, 1 ≤ i ≤ m, we have two U-turn gadgets – one with endpoints
(N2i,−N5) and (N2i+ 2,−N5) pointing in the direction −Y (the “bottom” gadget),
and another with endpoints (N2i,N5 + N2n) and (N2i + 2, N5 + N2n) pointing in
the direction +Y (the “top” gadget).

Our goal now is to show that the instance of the one-in-three 3SAT has a satisfying
assignment if and only if the corresponding instance of Angle-CCP has a cycle cover
of total angle at most T = 2πN + 4N−4.

Lemma 5.2. If there exists a one-in-three truth assignment satisfying φ, then
there is a cycle cover for P of total angle at most T .

Proof. We will construct a cycle cover that has N cycles, one per clause and one
per variable. Consider a clause Ci and suppose that the literal that satisfies Ci is
the first literal; the other cases are similar. The cycle corresponding to Ci covers the
points on the two U-turn gadgets of Ci and also the points in two of the columns
assigned to Ci. These are the columns that do not contain the point intersecting
the row assigned to the literal satisfying Ci, i.e., the cycle covers the columns with
X-coordinates N2i+ 1 and N2i+ 2.

We bound the angle of the cycle starting from point (N2i,−N5), going counter-
clockwise. The angle cost of covering the points of the bottom gadget exiting at
(N2i + 2,−N5) is π. From here, we can cover all the points in column N2i + 2
without incurring any angle cost. Then, the angle cost of covering the top U-turn
gadget entering at (N2i+2, N5+N2n) and exiting at (N2i,N5+N2n) is again π. From
this point we traverse to point (N2i + 1, N2n) at an angle cost of (approximately)
2N−5 and then, without incurring any further angle cost, cover all the points in
column N2i+1. Finally, we traverse from (N2i+1, 0) to (N2i,−N5) at an angle cost
of (approximately) 2N−5. Overall, the angle of the cycle is 2π + 4N−5.

The remaining points are covered by the cycles corresponding to the variables.
Consider a variable uj , and suppose that the assignment of uj is true; the other case
is similar. The cycle corresponding to uj covers the points on the two U-turn gadgets
of uj . It also covers the points in two of the rows assigned to uj , viz., the row N2j
corresponding to the literal uj and row N2j + 2.

We now bound the angle of the cycle starting from point (−N5, N2j + 2), going
counterclockwise. The angle cost of covering the points of the left gadget exiting at
(−N5, N2j) is π. From here, we cover all the points in row N2j at no additional
angle cost. Then, the angle cost of covering the right U-turn gadget entering at
(N5 + N2m,N2j) and exiting at (N5 + N2m,N2j + 2) is again π. From this point,
we cover all the points in row N2j + 2 at no additional angle cost. Overall, the angle
cost is 2π. Note that in case uj is assigned false, the total angle is 2π + 4N−5.

Summing over all the N = (n+m) cycles, we obtain that total angle is bounded
by T = 2πN + 4N−4.

The following lemmas help us to establish the reverse direction.

Lemma 5.3. The angle cost of covering only the U-turn gadgets in P is 2πN . The
cover that achieves this has N cycles, each of angle 2π and each of which covers a pair
of gadgets corresponding to either a clause or a variable. Moreover, any other cover
that traverses the points in a different order has an angle cost at least 2πN+Ω(N−3).

Proof. It can be verified that the cover with N cycles in which each pair of
gadgets corresponding to either a clause or a variable is covered by one cycle indeed
achieves an angle cost of 2πN . We now prove that this is the only cover of angle
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cost 2πN + o(N−3). Clearly, any cycle cover of this angle cost has at most N cycles.
Consider such a cover C.

Recall that each gadget contains two straight line intervals. We call these lines
the spokes of the gadget. We have horizontal and vertical spokes. Each spoke has two
endpoints: internal and external. The internal endpoint is the one closer to the grid
points. For simplicity, consider first only cycle covers that cover all the points in each
such spoke consecutively; i.e., when we follow a cycle in C, the first point of a spoke
that we encounter is an endpoint, and starting from it we cover all the spoke points
ending at the other endpoint.

We now prove that any cycle cover C with the above property that covers only the
spoke points must have an angle cost of at least 2πN . Clearly, the cover described in
the lemma achieves this angle cost. To show this we prove that the “average” angle
cost of covering each spoke is at least π/2, since there are 4N spokes this implies the
bound. Consider a cycle C ∈ C. Note that by our assumption, whenever C covers
a horizontal (vertical) spoke it subtends an angle 0 or π (respectively, π/2 or 3π/2)
with the +X direction. There are two cases: either C covers only spokes of the same
orientation (horizontal or vertical), or C covers both horizontal and vertical spokes.
In the first case it is easy to see that the angle cost of covering k spokes of the same
orientation is at least dk/2eπ. Thus the average angle cost is at least π/2.

Consider a cycle C that covers alternate runs of horizontal and vertical spokes.
For each such run we distinguish whether if starts (ends) in an internal or external
endpoint. The following properties are easy to verify.

1. The angular cost subtended when moving from an external endpoint of a ver-
tical (horizontal) spoke to an external endpoint of a horizontal (respectively,
vertical) spoke is at least 3π/2− o(N−2).

2. The angular cost subtended when moving from an internal endpoint of a ver-
tical (horizontal) spoke to an internal endpoint of a horizontal (respectively,
vertical) spoke is at least π/2− o(N−2).

3. The angular cost subtended when moving from an internal endpoint of a ver-
tical (horizontal) spoke to an external endpoint of a horizontal (respectively,
vertical) spoke, or vice versa, is at least π − o(N−2).

4. The angular cost subtended while covering k spokes of the same orientation
by a path that starts and ends in external endpoints is at least d(k − 2)/2eπ.
(Note that this is only the angle cost of the path without including the angle
cost of reaching the first endpoint and leaving the last.)

5. The angular cost subtended while covering k spokes of the same orientation
by a path that starts and ends in internal endpoints is at least dk/2eπ.

6. The angular cost subtended while covering k spokes of the same orientation by
a path that starts in an internal endpoint, and ends in an external endpoint,
or vice versa, is at least d(k − 1)/2eπ.

These observations imply that the average angular cost of a spoke in such a cover is
more than π/2. We conclude that to achieve a cover C of angle cost at most 2πN all
the cycles must cover only spokes of the same orientation and in this case the cost of
the cover is at least 2πN .

We now show that the same holds even if we remove the assumption that spokes
are traversed consecutively. For each spoke ` consider the interval of length N−3

starting at its external endpoint. This interval consists of 5N2 points. Hence, there is
a cycle C ∈ C that covers at least 5N of these points; we say that this C is the main
cycle for the spoke `. We claim that C must traverse at least two points of the interval
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one after the other. This is because each time a point not in the interval is traversed
between two points in the interval, the cycle C subtends an angle cost of π− o(N−2).
Note that in case ` is horizontal (vertical), C subtends an angle 0 or π (respectively,
π/2 or 3π/2) with the +X direction. Among the points traversed consecutively, let
the external point be the one closest to the external endpoint of `, and the internal
point be the one closest to the internal endpoint. It is not difficult to verify that the
same arguments we used above would hold if we let the main cycle of ` play the role
of the cycle that traverses ` (consecutively), and the internal and external points of
the interval play the role of the internal and external endpoints.

Recall that each gadget contains also two diagonal lines. To achieve the desired
angle cost, it must be the case that all points on a diagonal are covered by the main
cycle of the spoke touching it, and that these points are traversed either just before
or just after the points of the touching spoke are traversed. To see this, recall that
every cycle covers at least two spokes and that all its covered spokes are of the same
orientation. Consider a such a cycle, and assume that it covers some points on a
diagonal line, between the traversal of two spokes not touching it. It is easy to see
that in this case the additional angular cost subtended is at least π/2. This would
make the average angular cost of a spoke π/2 + O(N−1); a contradiction. Now,
consider the leftmost gadget on the top. The cycle that covers the points on the right
diagonal of this gadget must be the main cycle of its left spoke, otherwise its angle
cost would be too large, following from arguments similar to the ones given above.
Hence, we have that both spokes of this gadget have the same main cycle, which covers
also the points on its two diagonals. Similarly, both spokes of the bottom leftmost
gadget have the same main cycle, which covers also the points on its two diagonals.
Moreover, it must be the case that the same cycle covers both gadgets. Otherwise,
the cost of the cycle would be kπ + Ω(N−3).

In the same way we can show that both gadgets corresponding to the second
clause are covered by the same cycle, and so on. It follows that in order to achieve the
desired angle cost, no cycle covers gadgets corresponding to more than one clause. In
a similar fashion, it can be shown that the gadgets corresponding to a variable must be
covered by the same cycle, and that no cycle covers the gadgets corresponding to more
than one variable. We conclude that the only cycle cover that achieves the desired
cost is the one with N cycles, each of which covers a pair of gadgets corresponding to
either a clause or a variable.

Lemma 5.4. If there exists a cycle cover P of total angle at most T , then there
is a one-in-three truth assignment satisfying φ.

Proof. Suppose that there exists a cover of the Angle-CCP instance of angle cost
at most T = 2πN + 4N−4. Since it covers all the U-turn gadgets and its cost is
bounded by 2πN + o(N−3), it must be that this cover consists of N cycles each of
which covers the two gadgets corresponding to either a clause or a variable. Consider
the cycle that covers the U-turn gadgets of a clause Ci. In addition to the points of
the two gadgets, this cycle can cover at most two of the columns corresponding to Ci.
Otherwise, the cost of the cycle would be 2π + Ω(N−3). (Note that covering more
than one column in a path connecting the two gadgets would incur a cost of Ω(N−3).)
Similarly, the cycle that covers the U-turn gadgets of a variable uj can additionally
cover at most two of the rows corresponding to uj . One of these rows must be row
N2j + 2, since none of the other cycles can cover the points on this row within the
angle bounds.

It follows that for each clause Ci, all the grid points in one of its columns are
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covered by cycles corresponding to variables. Recall that such a column consists of
points in the rows corresponding to one literal lj ∈ {uj , uj} in the clause, and to the
complements of the other two. Assign a true value to lj , and assign a false value to
the other two literals in Ci. Repeating this for all clauses implies that in the resulting
truth assignment, for each clause we have exactly one literal that is true. We claim
that this assignment is consistent, i.e., no variable is assigned both true and false.
This is because a literal is assigned the value true only if its corresponding row
is covered by the cycle corresponding to its originating variable. However, a cycle
corresponding to a variable uj can cover either the row corresponding to the literal
uj or the row corresponding to the literal uj , but not both. This implies that φ has
a one-in-three truth assignment.

We briefly sketch the modifications required to prove the NP-hardness of the
Angle-TSP problem. Again, the reduction is quite similar and is from the one-in-
three 3SAT problem. Given an instance φ of the one-in-three 3SAT problem, the
corresponding instance of the Angle-TSP problem would include the same grid points
and the left/top U-turn gadgets as before. In addition, in the “right” and the “bot-
tom” we add U-turn gadgets of a different size that are used to “stitch” the rows
(columns) corresponding to adjacent variables (respectively, clauses). Finally, we add
two other gadgets: one to connect the bottom end of the rightmost column with the
right end of the bottom row, and another to connect the bottom end of the leftmost
column with the right end of the top row. It can be shown that there exists a tour
of total angle cost at most T if and only if there is a one-in-three truth assignment
satisfying φ.
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Abstract. An Occam approximation is an algorithm that takes as input a set of samples of a
function and a tolerance ε and produces as output a compact representation of a function that is
within ε of the given samples. We show that the existence of an Occam approximation is sufficient
to guarantee the probably approximate learnability of classes of functions on the reals even in the
presence of arbitrarily large but random additive noise. One consequence of our results is a general
technique for the design and analysis of nonlinear filters in digital signal processing.
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1. Introduction. We begin with an overview of our main result. Suppose we
are allowed to randomly sample a function f on the reals, with the sample values
of f being corrupted by additive random noise ν of strength b. Let g be a sparse
but approximate interpolant of the random samples of f—sparse in the sense that it
can be compactly represented, and approximate in the sense that the interpolation
error in g with respect to the samples is at most b. Intuitively, we would expect that
the noise and the interpolation error add in their contribution to the error in g with
respect to f , i.e., ||g − f || ≈ 2b. However, our results show that the noise and the
interpolation error tend to cancel, i.e., ||g−f || ≈ 0, with the extent of the cancellation
depending on the sparseness of g and how often f is sampled.

We consider the paradigm of probably approximately correct learning of Valiant,
as reviewed in Natarajan [21] and Anthony and Biggs [3]. Broadly speaking, the
paradigm requires an algorithm to identify an approximation to an unknown target
set or function, given random samples of the set or function. Of central interest
in the paradigm is the relationship between the complexity of the algorithm, the
a priori information available about the target set or function, and the goodness
of the approximation. When learning sets, if the target set is known to belong to
a specific target class, Blumer et al. [9] establish that the above quantities are re-
lated via the Vapnik–Chervonenkis dimension of the target class, and if this dimen-
sion is finite, then learning is possible. They also show that even if the Vapnik–
Chervonenkis dimension is infinite, learning may still be possible in a generalized
sense, via the use of Occam’s Razor. Specifically, if it is possible to compress collec-
tions of examples for the target set, then a learning algorithm exists. For instance,
the class of sets composed of finitely many intervals on the reals satisfies this con-
dition and hence can be learned. Kearns and Schapire [18] extend the above results
to the case of probabilistic concepts and offer an Occam’s Razor result in that set-
ting. For the case of functions, Natarajan [20] examines conditions under which
learning is possible and shows that it is sufficient if the “graph” dimension of the
target class is finite. Haussler [13] generalizes this result to a “robust” model of
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learning and shows that it is sufficient if the metric dimension of the class is fi-
nite. Alon et al. [1] generalize these results further via the “scale-sensitive” dimen-
sion. Anthony et al. [4] give sufficient conditions linking approximate interpolation
and learning. Learning sets in the presence of noise was studied by Angluin and
Laird [2], Kearns and Li [17], and Sloan [27], amongst others. Kearns and Li show
that the principle of Occam’s Razor can be used to learn in the presence of a lim-
ited amount of noise. Bartlett, Long, and Williamson [6] link the learnability of
functions in the presence of observation noise to the “fat-shattering” function of the
class.

We consider the learning of functions, both with and without random sampling
noise. In the latter case, we mean that the function value obtained in the sampling
process is corrupted by additive random noise. In this setting, we show that if it is
possible to construct sparse but approximate interpolants to collections of examples,
then a learning algorithm exists. For instance, it is possible to construct optimally
sparse but approximate piecewise linear interpolants to collections of examples of
univariate functions. As a consequence, we find that the class of all univariate Baire
functions [10] can be learned in terms of the piecewise linear functions, with the
number of examples required to learn a particular Baire function depending on the
number of pieces required to approximate it as a piecewise linear function. In the
absence of noise, our results hold for all Lp metrics over the space of functions. In the
presence of noise, the results are for the L2 and L∞ metrics. There are two points of
significance in regard to these results: (1) the noise need not be of zero mean for the
L∞ metric; (2) for both metrics, the magnitude of the noise can be made arbitrarily
large and learning is still possible, although at increased cost.

Our results are closely related to the work in signal processing [24], [25], [16], and
[19] on the reconstruction and filtering of discretely sampled functions. However, much
of that literature is on linear systems and filters, with the results expressed in terms of
the Fourier decomposition, while relatively little is known about nonlinear systems or
filters. Our results allow a unified approach to both linear and nonlinear systems and
filters, and in that sense, we offer a new and general technique for signal reconstruction
and filtering. This is explored in [23], where we analyze a broad class of filters that
separate functions with respect to their encoding complexity—since random noise
has high complexity in any deterministic encoding and is hard to compress, it can be
separated from a function of low complexity.

Of related interest is the literature on sparse polynomial interpolation [8], [7],
[12], and [5]. These papers study the identification of an unknown polynomial that
can be evaluated at selected points.

The results of this paper appeared in preliminary form in [22].

2. Preliminaries. We consider functions f : [0, 1] → [−K,K], where [0, 1] and
[−K,K] are intervals on the reals R. A class of functions F is a set of such functions
and is said to be of envelope K. Unless we state otherwise, we assume that a class has
unit envelope. A complexity measure l is a mapping from F to the natural numbers
N. An example for a function f is a pair (x, f(x)). Our discussion will involve metrics
on several spaces. For the sake of concreteness, we will deal only with the Lp metrics,
p ∈ N, p ≥ 1, and will define these exhaustively. For two functions f and g and
probability distribution P on [0, 1],

Lp(f, g, P ) =

(∫
x

|f(x)− g(x)|pdP
)1/p

.(2.1)
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For function f and collection of examples S = {(x1, y1), (x2, y2), . . . , (xm, ym)},

Lp(f, S) =

(
1

m

∑
|f(xi)− yi|p

)1/p

.(2.2)

Let l be a complexity measure on a class G, f a function not necessarily in G, L
a metric, and P a distribution on [0, 1]. For ε > 0, lmin(f, ε, P, L) is defined by

lmin(f, ε, P, L) = min {l(g)|g ∈ G,L(f, g, P ) ≤ ε}.(2.3)

If {l(g)|g ∈ G,L(f, g, P ) ≤ ε} is empty, then lmin(f, ε, P, L) =∞.
Analogously, for a collection of examples S and metric L,

lmin(S, ε, L) = min {l(g)|g ∈ G,L(g, S) ≤ ε}.(2.4)

If {l(g)|g ∈ G,L(g, S) ≤ ε} is empty, then lmin(S, ε, L) =∞.
Using Jensen’s inequality [10], it is easy to show that

L1(f, g, P ) ≤ Lp(f, g, P ) ≤ (L1(f, g, P ))
1/p

.(2.5)

A learning algorithm A for target class F has at its disposal a subroutine EX-
AMPLE, that at each call returns an example for an unknown target function f ∈ F .
The example is chosen at random according to an arbitrary and unknown probability
distribution P on [0, 1]. After seeing some number of such examples, the learning
algorithm identifies a function g in the hypothesis class G such that g is a good
approximation to f . Formally, we have the following. Algorithm A is a learning al-
gorithm for F in terms of G, with respect to metric L, if (a) A takes as input ε and
δ; (b) A may call EXAMPLE; (c) for all probability distributions P and all functions
f in F , A identifies a function g ∈ G, such that with probability at least (1 − δ),
L(f, g, P ) ≤ ε.

The sample complexity of a learning algorithm for F in terms of G, with respect
to the complexity measure l, is the number of examples sought by the algorithm as a
function of the parameters of interest. In noise-free learning, these parameters are ε, δ,
and lmin(f, ε, P, L), where f is the target function. In the presence of random sampling
noise, the properties of the noise distribution would be additional parameters. Since
we permit our learning algorithms to be probabilistic, we will consider the expected
sample complexity of a learning algorithm, which is the expectation of the number of
examples sought by the algorithm as a function of the parameters of interest.

In light of the relationship between the various Lp metrics established in (2.5),
we focus on the L1 metric and, unless we explicitly state otherwise, we use the term
learning algorithm to signify a learning algorithm with respect to the L1 metric. We
denote the probability of an event A occurring by Pr{A} and the expected value of
a random variable x by E{x}.

With respect to a class of functions F of envelope K, ε > 0 and m ∈ N, and metric
L: The size of the minimum ε-cover of a set X = {x1, x2, . . . , xm} is the cardinality
of the smallest set of functions G from X to R such that for each f ∈ F , there exists
g ∈ G satisfying L(f, g, PX) ≤ ε, where PX is the distribution placing equal mass
1/m on each of the xi in X. The covering number N(F, ε,m,L) is the maximum of
the size of the minimum ε-cover over all {x1, x2, . . . , xm}.

The following convergence theorem will be of considerable use to us. The theorem
is predicated on mild measurability assumptions as discussed in [26].
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Theorem 2.1 (see [26, pp. 25–27]). For a class of functions F with envelope K,
the probability that the observed mean over m ≥ 8/ε2 random samples of any function
in F will deviate from its true mean by more than ε is at most

8N(F, ε/8,m, L1)e−(m/128)(ε/K)2

.(2.6)

3. Occam approximations. An approximation algorithm Q for hypothesis
class G and metric L is an algorithm that takes as input a collection S of exam-
ples and a tolerance ε > 0 and identifies in its output a function g ∈ G such that
L(g, S) ≤ ε, if such exists.

For particular values of m, t ∈ N and ε > 0, let Ĝ be the class of all functions
identified in the output of Q when its input ranges over all collections S of m examples
such that lmin(S, ε, L) ≤ t. Q is said to be an Occam approximation if there exists a
polynomial q(a, b) : N ×R → N and r : N → N such that r(m) is O(mα), for fixed
0 ≤ α < 1, and for all m, t, ε, and ζ > 0, log(N(Ĝ, ζ,m,L)) ≤ q(t, 1/ζ)r(m). We say
that (q, r) is the characteristic of Q.

The above notion of an Occam approximation is a generalization to functions of
the more established notion of an Occam algorithm for concepts [9] and its extension
to probabilistic concepts in [18].

Example 1. We consider univariate polynomials with coefficients of Euclidean
norm at most unity, i.e., polynomials of the form

∑
aix

i, where
∑
a2
i ≤ 1. Let G

be the class of such polynomials over the unit interval. As a complexity measure on
G, we choose the degree of the polynomial. Consider the following approximation
algorithm Q with respect to the L2 metric. Given is a collection of samples

S = {(x1, y1), (x2, y2), . . . , (xm, ym)},(3.1)

and tolerance ε. We shall fit the data with a polynomial of the form a0 + a1x+ · · ·+
aix

i+ · · ·+adx
d. For d = 0, 1, 2, . . . construct a linear system Xa = y, where X is the

matrix of m rows and d columns, with row vectors of the form (1, xi, x
2
i . . . , x

d
i ), y is

the column vector (y1, y2, . . . , ym), and a is the column vector (a0, a1, . . . , ad). Find
the smallest value of d for which the minimum Euclidean norm least squares solution
a of the linear system has residue at most ε in the L2 norm, and the Euclidean norm
of a is at most unity. If such a solution vector a exists, it determines the polynomial
g. This computation can be carried out efficiently [11].

Claim 1. Algorithm Q is Occam.
Proof. Fix the number of samples m, the degree d of the polynomial, and the

tolerance ε. For collection of samples S, lmin(S, ε, L2) is the degree of the lowest-
degree polynomial that fits the samples in S with error at most ε in the L2 metric.
By construction, Q outputs only polynomials of degree d on such inputs. Thus, Ĝ is
a subset of the class of polynomials of degree d. By Claim 2,

log(N(Ĝ, ζ,m,L2) ≤ (d+ 1) log(2m/ζ),(3.2)

which implies that Q is Occam.
Claim 2. If F is the class of polynomials of degree d with coefficients of Euclidean

norm at most unity,

N(F, ζ,m,L2) ≤ (2(d+ 1)/ζ)d+1.(3.3)

Proof. Let f(x) be a polynomial in F . Since f is of Euclidean norm at most unity,
each of the d+ 1 coefficients of f lie in [−1,+1]. Truncate each of the coefficients to
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the nearest multiple of ζ/(d+1) to obtain a polynomial g. The resulting function g is
clearly everywhere within ζ of f on [0, 1]. It follows that for every polynomial f ∈ F
there exists a polynomial g ∈ F within ζ of f in the L2 metric, where each coefficient
of g is one of (2(d+ 1)/ζ) values. Thus, g is one of at most (2(d+ 1)/ζ)d+1 functions.
Hence the claim.

Example 2. Another class with an Occam approximation algorithm with respect
to the L2 metric is the class of trigonometric interpolants with coefficients having
bounded Euclidean norm, and complexity measure the highest frequency, i.e., func-
tions of the form

f(x) =

∞∑
i=0

Ai cos(2πix) +
∞∑
i=0

Bi sin(2πix),(3.4)

where
∑
a2
i ≤ 1. For the class of such functions, the least squares technique described

in the context of the polynomials in Example 1 can be used to construct an Occam
approximation.

4. Noise-free learning. In this section we show that the existence of an Occam
approximation is sufficient to guarantee the efficient learnability of a class of functions
in the absence of noise. The theorem is stated for Occam approximations with respect
to the L1 metric and subsequently is extended to other metrics.

Theorem 4.1. Let F be the target class and G the hypothesis class with com-
plexity measure l, both of envelope 1. Let Q be an Occam approximation for G, with
respect to metric L1, with characteristic (q, r). Then, there exists a learning algorithm
for F with expected sample complexity polynomial in 1/ε, 1/δ, and lmin(f, ε/8, P, L1).

Proof. We claim that Algorithm A1 below is a learning algorithm for F . Let f
be the target function. In words, the algorithm makes increasingly larger guesses for
lmin(f), and based on its guesses it constructs approximations for f , halting if and
when a constructed approximation appears to be good.

Algorithm A1.
input ε, δ
begin

t = 2;
repeat forever

let m be the least integer satisfying
m ≥ (9216/ε2)q(t, 32/ε)r(m);
make m calls of EXAMPLE to get collection S;
let g = Q(S, ε/4);
let m1 = (16t2)/(ε2δ);
make m1 calls of EXAMPLE to get collection S1;
if L1(g, S1) ≤ (3/4)ε then output g and halt;
else t = t+ 1;

end
end
We first show that the probability of the algorithm halting with a function g as

output such that L1(f, g, P ) > ε is at most δ. At each iteration, by Chebyshev’s
inequality,

Pr {|L1(g, S1)− L1(g, f, P )| ≥ ε/4} ≤ 16

ε2m1
.(4.1)
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Since m1 = 16t2/(ε2δ),

Pr {|L1(g, S1)− L1(g, f, P )| ≥ ε/4} ≤ δ

t2
.(4.2)

If the algorithm halts, then L1(g, S1) ≤ (3/4)ε and hence

Pr {L1(g, f, P ) > ε} ≤ δ

t2
.(4.3)

Hence, the combined probability that the algorithm halts at any iteration with
L1(g, f, P ) > ε is at most

∑∞
t=2

δ
t2 < δ.

Let t0 = lmin(f, ε/8, P, L1). We now show that when t ≥ t0, the algorithm halts
on iteration t with probability at least 1/4. Let h ∈ G be such that L1(h, f, P ) ≤ ε/8
and l(h) = t0. Fix t ≥ t0. By Chebyshev’s inequality,

Pr {|L1(h, S)− L1(h, f, P )| ≥ ε/8} ≤ 64

ε2m
.(4.4)

Hence, if m ≥ 256/ε2 with probability at least (1− 1/4) = 3/4,

|L1(h, S)− L1(h, f, P )| ≤ ε/8.(4.5)

Since L1(h, f, P ) ≤ ε/8, it follows that with probability 3/4, L1(h, S) ≤ ε/4. In
other words, with probability 3/4, lmin(S, ε/4, L1) ≤ l(h) = t0 ≤ t.

At each iteration of A1, let Ĝ be the class of all functions that Q could output
if lmin(S, ε/4, L1) ≤ t holds. Since Q is Occam, log(N(Ĝ, ε/32,m)) ≤ q(t, 32/ε)r(m).
Let H be the class of functions H = {h : h(x) = |f(x) − g(x)|, g ∈ Ĝ}, and let h1

and h2 be any two functions in H. Now,

|h1(x)− h2(x)| = ||f(x)− g1(x)| − |f(x)− g2(x)||(4.6)

≤ |g1(x)− g2(x)|.(4.7)

Hence,

N(H, ε/32,m, L1) ≤ N(Ĝ, ε/32,m, L1) ≤ q(t, 32/ε)r(m).(4.8)

If

m ≥ (9216/ε2)q(t, 32/ε)r(m),(4.9)

m satisfies

8eq(t,32/ε)r(m)e−(m/128)(ε/4)2 ≤ 1/4,(4.10)

and then by Theorem 2.1, with probability at least (1−1/4) = 3/4, the observed mean
of each function h ∈ H will be within ε/4 of its true mean. That is, with probability
at least 3/4, for each g ∈ Ĝ,

|L1(g, S)− L1(f, g, P )| ≤ ε/4.(4.11)

If g is the function that is returned by Q(S, ε/4), then L1(g, S) ≤ ε/4. Therefore,
if lmin(S, ε/4, L1) ≤ t, with probability at least 3/4, L1(f, g, P ) ≤ ε/2. Since we
showed earlier that with probability at least 3/4, lmin(S, ε/4, L) ≤ t, we get that with
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probability at least 1/2 the function g returned by Q will be such that L1(f, g, P ) ≤
ε/2.

We now estimate the probability that the algorithm halts when Q returns a
function g such that L1(f, g, P ) ≤ ε/2. Once again by Chebyshev’s inequality,

Pr {|L1(g, S1)− L1(g, f, P )| ≥ ε/4} ≤ 16

ε2m1
.(4.12)

Given that L1(f, g, P ) ≤ ε/2 and that m1 = 16t2/(ε2δ), we have

Pr {L1(g, S1) ≥ (3/4)ε} ≤ δ

t2
≤ 1/2.(4.13)

Hence, we have Pr{L1(g, S1) < (3/4)ε} ≥ 1/2. That is, if the function g returned
by Q is such that L1(f, g, P ) ≤ ε/2, then A1 will halt with probability at least 1/2.

We have therefore shown that when t ≥ t0, the algorithm halts with probability
at least 1/4. Hence, the probability that the algorithm does not halt within some
t > t0 iterations is at most (3/4)t−t0 . Noting that the function q() is a polynomial
in its arguments, it follows that the expected sample complexity of the algorithm is
polynomial in 1/ε, 1/δ and t0.

We now discuss the extension of Theorem 4.1 to other metrics. The one ingredient
in the proof of Theorem 4.1 that does not directly generalize to the other Lp metrics
is the reliance on Theorem 2.1, which is in terms of the L1 metric. This obstacle can
be overcome by using the relationship between the various Lp metrics as given by
inequality 2.5.

5. Learning in the presence of noise. We assume that the examples for the
target function are corrupted by additive random noise in that EXAMPLE returns
(x, f(x) + ν), where ν is a random variable. The noise variable ν is distributed in
an arbitrary and unknown fashion and is independent of the target function and the
sampling distribution.

We can show that the existence of an Occam approximation suffices to guarantee
learnability in the presence of such noise, under some special conditions. Specifically
we assume that the strength of the noise in the metric of interest is known a priori
to the learning algorithm. Then a learning algorithm would work as follows. Obtain
a sufficiently large number of examples, large enough that the observed strength of
the noise is close to the true strength. Pass the observed samples through an Occam
approximation, with tolerance equal to the noise strength. The function output by
the Occam approximation is a candidate for a good approximation to the target
function. Test this function against additional samples to check whether it is indeed
close. Since these additional samples are also noisy, take enough samples to ensure
that the observed noise strength in these samples is close to the true strength. The
candidate function is good if it checks to be roughly the noise strength away from
these samples.

The essence of the above procedure is that the error allowed of the Occam ap-
proximation is equal to the noise strength, and the noise and the error subtract rather
than add. In order for us to prove that this indeed is the case, we must restrict our-
selves to linear metrics; metrics L such that in the limit as the sample size goes to
infinity, the observed distance between a function g in the hypothesis class and the
noisy target function is the sum of the strength of the noise and the distance between
g and the noise-free target function. Two such metrics are the L∞ metric and the
square of the L2 metric when the noise is of zero mean.
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5.1. Noise of known L2 measure. We assume that the noise is of bounded
magnitude, zero mean, and known L2 measure. Specifically, (1) we are given b ≥ 0
such the noise ν is a random variable in [−b,+b]; (2) the noise ν has zero mean; (3)
we are given the variance c of the noise. It is easy to see that statistical access to the
noise variable ν is sufficient to obtain accurate estimates of the variance c.

Theorem 5.1. Let F be the target class and G the hypothesis class with com-
plexity measure l, where F and G are of envelope 1 and b+ 1, respectively. Assume a
noise source of known L2 measure per our assumptions. Let Q be an Occam approx-
imation for G with respect to the L2 metric, with characteristic (q, r). Then, there
exists a learning algorithm for F with expected sample complexity polynomial in 1/ε,
1/δ, lmin(f, ε/8, P, L2

2), and the noise bound b.
Proof. Let f be the target function. Algorithm A2 below is a learning algorithm

for F in the L2
2 metric; i.e., on input ε and δ, with probability at least 1 − δ, the

algorithm will identify a function g such that L2
2(f, g, P ) ≤ ε.

Algorithm A2.
input ε, δ, noise bound b, noise variance c;
begin

t = 2;
repeat forever

let m be the least integer satisfying

m ≥ 32768 log(8)(b+1)4

ε2 q (t, (128(b+ 2)/ε)) r(m) + 4096(b+1)4

ε2 ;
make m calls of EXAMPLE to get collection S;

let g = Q(S,
√
c+ ε/4);

let m1 = 256(b+1)4t2

δε2 ;
make m1 calls of EXAMPLE to get collection S1;
if L2

2(g, S1) ≤ c+ (3/4)ε then output g and halt;
else t = t+ 1;

end
end
We first show that the probability of the algorithm halting with a function g as

output such that L2
2(f, g, P ) > ε is less than δ. Now,

L2
2(g, S1) =

1

m1

∑
S1

(g − (f + ν))2(5.1)

=
1

m1

∑
S1

(g − f)2 +
2

m1

∑
S1

ν(g − f) +
1

m1

∑
S1

ν2.(5.2)

Since E{ν(g− f)} = 0, E{ν2} = c, and E{(g− f)2} = L2
2(g, f, P ), it follows that

E{L2
2(g, S1)} = L2

2(g, f, P )+c. Noting that (g−(f+ν))2 ≤ (2(b+1))2, we can invoke
Chebyshev’s inequality to write

Pr
{∣∣L2

2(g, S1)− (L2
2(g, f, P )− c)∣∣ ≥ ε/4} ≤ 256(b+ 1)4

m1ε2
.(5.3)

If L2
2(g, f, P ) > ε, (5.3) implies that

Pr{L2
2(g, S1) ≤ c+ (3/4)ε} ≤ 256(b+ 1)4

m1ε2
.(5.4)

If

m1 =
256(b+ 1)4t2

δε2
,(5.5)
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then

Pr{L2
2(g, S1) ≤ c+ (3/4)ε} ≤ δ

t2
.(5.6)

Summing over all t ≥ 2, we get that the probability that the algorithm halts with
L2

2(g, f, P ) > ε is at most δ.
Let h ∈ G be such that L2

2(h, f, P ) ≤ ε/8 and lmin(f, ε/8, P, L2
2) = l(h) = t0. As

in (5.3) and (5.6), with Chebyshev’s inequality we can show that

Pr{L2
2(h, S) > c+ ε/4} ≤ 1024(b+ 1)4

mε2
.(5.7)

If m ≥ 4096(b+ 1)4/ε2, then Pr{L2
2(h, S) > c+ ε/4} ≤ 1/4 and as a consequence

Pr{lmin(S, c+ ε/4, L2
2) ≤ l(h) ≤ t0} ≥ 3/4.(5.8)

Let Ĝ be the class of functions that Q could output on inputs S and
√
c+ ε/4,

when S satisfies lmin(S, c+ε/4, L2
2) ≤ t0. Let H be the class of functions {(f−g)2|g ∈

Ĝ}. Then, for every pair h1 and h2 in H, there exists g1 and g2 in Ĝ such that

|h1 − h2| = |(f − g1)2 − (f − g2)2|(5.9)

= |f2 + g2
1 − 2fg1 − f2 − g2

2 + 2fg2|(5.10)

= |g2
1 − g2

2 − 2f(g1 − g2)|(5.11)

= |(g1 − g2)(g1 + g2 − 2f)|.(5.12)

Since g1 and g2 have envelope b+ 1 and f has envelope 1, we can write

|(g1 − g2)(g1 + g2 − 2f)| ≤ 2(b+ 2)|g1 − g2|.(5.13)

Hence,

|h1 − h2| ≤ 2(b+ 2)|g1 − g2|,(5.14)

and L1(h1, h2, P ) ≤ 2(b+ 2)L1(g1, g2, P ). Invoking (2.5), we get

L1(h1, h2, P ) ≤ 2(b+ 2)L1(g1, g2, P ) ≤ 2(b+ 2)L2(g1, g2, P ).(5.15)

Combining the above with the assumption that Q is Occam, it follows that

N(H, ε/64,m, L1) ≤ N
(
Ĝ,

(
ε

128(b+ 2)

)
,m, L2

)
(5.16)

≤ eq (t0, (128(b+ 2)/ε)) r(m).(5.17)

Noting that H has envelope (b + 1)4 and invoking Theorem 2.1, we have that if
t ≥ t0, lmin(S, c+ ε/4, L2) ≤ t0, and

m ≥ 32768 log(8)(b+ 1)4

ε2
q (t, (128(b+ 2)/ε)) r(m),(5.18)

then with probability at least 3/4 the observed mean over the m samples of S of each
h ∈ H will be within ε/8 of its true mean. That is,

Pr

{∣∣∣∣∣ 1

m

∑
S

(g − f)2 − L2
2(g, f, P )

∣∣∣∣∣ ≤ ε/8
}
≥ 3/4.(5.19)
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Noting that the probability estimate in the above inequality is conditional on
(5.8), we can remove the conditionality by combining it with (5.8) to get

Pr

{∣∣∣∣∣ 1

m

∑
S

(g − f)2 − L2
2(g, f, P )

∣∣∣∣∣ ≤ ε/8
}
≥ 1/2,(5.20)

when

m ≥ 32768 log(8)(b+ 1)4

ε2
q (t, (128(b+ 2)/ε)) r(m) +

4096(b+ 1)4

ε2
.(5.21)

Now,

L2
2(g, S) = (1/m)

∑
S

(g − f)2 + (2/m)
∑
S

ν(g − f) + (1/m)
∑
S

ν2.(5.22)

Once again by Chebyshev’s inequality, we can write

Pr

{∣∣∣∣∣(2/m)
∑
S

ν(g − f) + (1/m)
∑
S

ν2 − c
∣∣∣∣∣ ≥ ε/8

}
≤ 256(b+ 2)4

ε2m
.(5.23)

If

m ≥ 512(b+ 2)4

ε2
,(5.24)

then

Pr

{∣∣∣∣∣(2/m)
∑
S

ν(g − f) + (1/m)
∑
S

ν2 − c
∣∣∣∣∣ ≥ ε/8

}
≤ 1/2.(5.25)

Combining (5.20), (5.22), and (5.25), we have

Pr
{∣∣L2

2(g, S)− L2
2(g, f, P )− c∣∣ ≤ ε/4} ≥ 1/4,(5.26)

when

m ≥ 32768 log(8)(b+ 1)4

ε2
q (t, (128(b+ 2)/ε)) r(m) +

4096(b+ 1)4

ε2
.(5.27)

If g is the function output by Q(S,
√
c+ ε/4), then L2

2(g, S) ≤ c+ ε/4 and (5.26)
can be written as

Pr{L2
2(g, f, P ) ≤ ε/2} ≥ 1/4.(5.28)

If L2
2(g, f, P ) ≤ ε/2, then by (5.3) we get

Pr{L2
2(g, S1) ≤ c+ (3/4)ε} ≥ 1− 256(b+ 1)4

m1ε2
.(5.29)

If m1 is chosen as in the algorithm, then we can rewrite the above as

Pr{L2
2(g, S1) ≤ c+ (3/4)ε} ≥ 1− δ/t2 ≥ 3/4.(5.30)
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Combining (5.28) and (5.30), we get that when t ≥ t0, with probability at least
3/16, the function g output by Q(S,

√
c+ ε/4) will be such that L2

2(g, S1) ≤ c+(3/4)ε
and the algorithm will halt. Hence, the probability that the algorithm does not halt
within some t > t0 iterations is at most (13/16)t−t0 . Noting that the function q() is
a polynomial in its arguments, it follows that the expected sample complexity of the
algorithm is polynomial in 1/ε, 1/δ, t0, and b.

Our assumption that the noise lies in a bounded range [−b,+b] excludes natural
distributions over infinite spans such as the normal distribution. However, we can
include such distributions by a slight modification to our source of examples. Specifi-
cally, assume that we are given a value of b such that the second moment of the noise
variable outside the range [−b,+b] is small compared to ε. Noting that the target
function f has range [−1, 1] by assumption, we can screen the output of EXAMPLE,
rejecting the examples with values outside [−(b+ 1),+(b+ 1)] and otherwise passing
them on to the learning algorithm. Thus, the noise distribution effectively seen by the
learning algorithm is of bounded range [−b,+b]. We leave it to the reader to calculate
the necessary adjustments to the sampling rates of the algorithm.

5.2. Noise of known L∞ measure. We assume that we know the L∞ measure
of the noise in that we are given the following:

(1) b ≥ 0 such that the noise ν is a random variable in [−b,+b], not necessarily of
zero mean. Also, the symmetry is not essential; it suffices if b1 ≤ b2 are given, with
ν ∈ [b1, b2].

(2) A function γ(ε) polynomial in ε such that Pr{ν ∈ [b − ε, b]} ≥ γ(ε), and
Pr{ν ∈ [−b,−b+ε]} ≥ γ(ε). Also, b is a meaningful L∞ estimate in that for all ε > 0,
γ(ε) > 0.

It is easy to see that statistical access to the noise variable ν is sufficient to obtain
an accurate estimate of the value of γ for a particular value of ε. We now revisit
our definition of an Occam approximation to define the notion of a strongly Occam
approximation.

For a function f , let band(f, ε) denote the set of points within ε of f , i.e.,
band(f, ε) = {(x, y) : |y − f(x)| ≤ ε}. For a class F , band(F, ε) is the class of all
band sets for the functions in F , i.e., band(F, ε) = {band(f, ε)|f ∈ F}. A class of sets
F is said to shatter a set S if the set {f ∩ S : f ∈ F} is the power set of S. DV C(F )
denotes the Vapnik–Chervonenkis dimension of F and is the cardinality of the largest
set shattered by F . The Vapnik–Chervonenkis dimension is a combinatorial measure
that is useful in establishing the learnability of sets [9], [21].

Let Q be an approximation algorithm with respect to the L∞ metric. Fix m, t ∈
N, and ε > 0. Let Ĝ be the class of all functions identified in the output of Q when
its input ranges over all collections S of m examples such that lmin(S, ε, L) ≤ t. Q
is said to be strongly Occam if there exists a function q(a, b) that is polynomial in a
and 1/b and r : N→ N such that r(m) is O(mα), for fixed 0 ≤ α < 1 and for all m,
t, ε, and ζ > 0, DV C(band(Ĝ, ζ)) ≤ q(t, 1/ζ)r(m).

Example 3. Let F be the Baire functions and G the class of piecewise linear
functions with complexity measure the number of pieces.

Consider the following approximation algorithm Q with respect to the L∞ metric.
Given is a collection of samples S = {(x1, y1), (x2, y2), . . . , (xm, ym)} and tolerance
ε. Using the linear time algorithm of [15], [28], construct a piecewise linear function
g such that |g(xi)− yi| ≤ ε for each of the samples in S and g consists of the fewest
number of pieces over all such functions.

Claim 3. Algorithm Q is strongly Occam.
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Proof. Fix the number of samples m, tolerance ε, and complexity bound t. For
the set of examples S, lmin(S, ε, L2) is the fewest number of pieces in any piecewise
linear function g such that L∞(g, S) ≤ ε. By construction, Q outputs such a function.
Thus Ĝ is a subset of the class of all piecewise linear functions of t pieces. By Claim
4, for all ζ, DV C(band(Ĝ, ζ)) ≤ 7t, and the claim follows.

Claim 4. If F is the class of piecewise linear functions of at most t pieces, for all
ζ, DV C(band(F, ζ)) ≤ 7t.

Proof. Assume that we are given a set S of more than 7t points that is shattered by
band(F, ζ). Let S = {(x1, y1), (x2, y2), . . . , (xm, ym)}, where the xi are in increasing
order. We shall construct a subset S1 of S that is not induced by any set in band(F, ζ),
thereby contradicting the assumption that band(F, ζ) shatters S. Start with S1 =
{(x1, y1), (x7, y7)}. Now some three of (xi, yi) for i = 2, 3, . . . , 6 must lie on the same
side of the line joining (x1, y1) and (x7, y7). Call these points a, b, and c, in order of
their x coordinate. If b is within the quadrilateral formed by (x1, y1), (x7, y7), a, and
c, add a and c to S1, else add b to S1. Repeat this procedure with the rest of the
points in S. The resulting set S1 is such that no function g of fewer than m/7 pieces
is such that band(g, ζ) picks out S1. This is a contradiction and hence the claim.

We leave it to the reader to show that the following classes also possess efficient
strongly Occam approximation algorithms:

(1) The polynomials with complexity measure the highest degree (we can con-
struct a strongly Occam approximation via linear programming).

(2) The trigonometric interpolants with complexity measure the highest frequency
(we can construct a strongly Occam approximation via linear programming).

(3) The piecewise constant functions with complexity measure the number of
pieces (we can construct a greedy approximation algorithm that is strongly Occam).

In Claim 5 we will show that every strongly Occam approximation is an Occam
approximation as well, confirming that the strong notion is indeed stronger. In order
to prove the claim, we need the following lemma.

Lemma 5.2 (see [29]). Let X be a finite set and let F be a set of subsets of X,
with |X| > d = DV C(F ). Then,

|F | ≤ |X|d.(5.31)

Claim 5. If Q is a strongly Occam approximation for a class F , then it is also an
Occam approximation with respect to the L∞ metric.

Proof. Let Q be a strongly Occam approximation for a class G of unit envelope.
Fix m, t ∈ N, ε > 0, and ζ > 0. Let Ĝ be the class of all functions identified in
the output of Q when its input ranges over all collections S of m examples such that
lmin(S, ε, L∞) ≤ t. Let X = {x1, x2, . . . , xm} be a set of m points. We will construct
a ζ-cover C of Ĝ on X for L∞. The functions in C will be pairwise ζ apart in the
L∞ sense.

Algorithm.
Pick any f ∈ Ĝ and initialize C = {f}
while there exists f ∈ Ĝ such that for all g ∈ C, L∞(f, g,X) > ζ

C = C ∪ {f}.
end

When the algorithm halts, for every f ∈ Ĝ there exists some g ∈ C such that
L∞(f, g,X) ≤ ζ. Hence C is indeed a ζ-cover of Ĝ. Furthermore, for every pair of
functions f and g in C,

L∞(f, g,X) > ζ.(5.32)
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Since C is a ζ-cover,

log(N(Ĝ, ζ,m,L∞)) ≤ |C|.(5.33)

Let Y be the set {−nζ,−(n − 1)ζ, . . . , 0, ζ, 2ζ, . . . , nζ}, where n = b1/ζc. We
construct a class of sets D from C as follows:

D = {band(f, ζ/2) ∩X × Y : f ∈ C}.(5.34)

By virtue of (5.32), the sets in D are all distinct and in one-to-one correspon-
dence with the functions of C. Also, every set of points shattered by D will also
be shattered by band(Ĝ, ζ/2), and hence DV C(D) ≤ DV C(band(Ĝ, ζ/2)). Let d =
DV C(band(Ĝ, ζ/2)). By Lemma 1,

|D| ≤ |X × Y |d = (2mn)d ≤ (2m/ζ)d.(5.35)

Combining (5.33) and (5.35), we get

log(N(Ĝ, ζ,m,L∞)) ≤ log(|C|) = log(|D|) ≤ d log(2m/ζ).(5.36)

Since Q is strongly Occam, d is bounded as in the definition of strongly Occam.
Combining this with (5.36), it follows that Q is an Occam approximation as well.

Theorem 5.3. Let F be the target class and G the hypothesis class with complex-
ity measure l, where F and G are of envelope 1 and b+1, respectively. Assume a noise
source of known L∞ measure per our assumptions. Let Q be a strongly Occam approx-
imation for G, with characteristic (q, r). Then, there exists a learning algorithm for
F with expected sample complexity polynomial in 1/ε, 1/δ, b, and lmin(f, ε/4, Pu, L1),
where Pu is the uniform distribution on [0, 1].

Proof. Let f be the target function, and let (q, r) be the characteristic of the
Occam approximation Q. We claim that Algorithm A3 is a learning algorithm for F
with respect to the L1 metric.

Algorithm A3.
input ε, δ, b;
begin

t = 2;

η = γ(ε/4)ε
2(b+2) ;

repeat forever
let m be the least integer satisfying
m ≥ (16/η)q(t, 1/(b+ ε/4))r(m) log(m);
make m calls of EXAMPLE to get collection S;
let g = Q(S, b+ ε/4);

let m1 = 16t2

η2δ ;

make m1 calls of EXAMPLE to get collection S1;
if no more than a fraction (3/4)η of S1

is outside band(g, b+ ε/4)then output g and halt;
else t = t+ 1;

end
end
For a particular function g, let µ(g, β) be the probability that a call of EXAMPLE

will result in an example outside band(g, b + β). We now estimate µ(g, ε/4) when g
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is such that L1(f, g, P ) > ε. For such g, since F is of envelope 1 and G is of envelope
b+ 1, |f − g| ≤ b+ 2 and ∫

|f−g|>ε/2
dP > ε/(2(b+ 2)).(5.37)

It follows that

µ(g, ε/4) = Pr {f(x) + ν 6∈ band(g, b+ ε/4)}(5.38)

> Pr {f(x)− g(x) > ε/2 & ν ∈ [b, b− ε/4]}(5.39)

+ Pr {g(x)− f(x) > ε/2 & ν ∈ [−b,−b+ ε/4]}(5.40)

≥ min (Pr {ν ∈ [b− ε/4, b]} , P r {ν ∈ [−b,−b+ ε/4]})(5.41)

× Pr {|f − g| > ε/2}(5.42)

≥ γ(ε/4)ε/(2(b+ 2)) = η.(5.43)

Let µ1(g, β) denote the fraction of S1 that is outside band(g, b + β). By Cheby-
shev’s inequality,

Pr {|µ1(g, ε/4)− µ(g, ε/4)| > η/4} ≤ 16

η2m1
.(5.44)

Since m1 = 16t2/(η2δ) and the algorithm halts only when µ1(g, ε/4) ≤ (3/4)η,
when the algorithm halts

Pr {µ(g, ε/4) > η} ≤ δ

t2
.(5.45)

Summing over all t ≥ 2, we get that the probability that the algorithm halts with
µ(g, ε/4) > η is at most δ. It follows that the probability that the algorithm halts
with L1(g, f, P ) > ε is at most δ. Let Pu be the uniform distribution on [0, 1]. We now
show that when t ≥ t0 = lmin(f, ε/4, Pu, L∞) the algorithm halts with probability at
least 1/4.

Let t ≥ t0 at a particular iteration, and let Ĝ be the class of all functions that
Q could output during that iteration. Since ν ∈ [−b,+b], it is clear that lmin(S, b +
ε/4, L∞) ≤ t0 ≤ t. Since Q is strongly Occam, DV C(band(Ĝ, b + ε/4)) ≤ q(t, 1/(b +
ε/4))r(m). By Theorem 4.3 of [21], for m ≥ 8/η, the probability that m random
samples will all fall in band(g, b + ε/4) for any g ∈ Ĝ such that µ(g, ε/4) > η/2 is at
most

2

d∑
i=0

(
2m
i

)
2−ηm/4.(5.46)

Hence, if m is chosen so that the above probability is less than 1/2, then with
probability at least 1/2, Q(S, b+ε/4) will return a function g such that µ(g, ε/4) ≤ η/2.
Indeed

m ≥ 16

η
q(t, 1/(b+ ε/4))r(m) log(m)(5.47)

suffices. By assumption, r(m) is O(mα), for some 0 ≤ α < 1. It follows that
r(m) log(m) is O(mβ), for some 0 ≤ β < 1, and there exists m satisfying (5.47).
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We now estimate the probability the algorithm halts when Q returns a function g
satisfying µ(g, ε/4) ≤ η/2. Once again by Chebyshev’s inequality,

Pr {|µ1(g, ε/4)− µ(g, ε/4)| > η/4} ≤ 16

η2m1
.(5.48)

Given that µ(g, ε/4) ≤ η/2 and that m1 = 16t2/(η2δ), we have

Pr {µ1(g, ε/4) > (3/4)η} ≤ δ

t2
≤ 1/2.(5.49)

Hence, we have Pr{µ1(g, ε/4) ≤ (3/4)η} ≥ 1/2. That is, if the function g returned
by Q is such that µ(g, ε/4) ≤ η/2, then A1 will halt with probability at least 1/2.
We have therefore shown that when t ≥ t0, the algorithm halts with probability at
least 1/4. Hence, the probability that the algorithm does not halt within some t > t0
iterations is at most (3/4)t−t0 , which goes to zero with increasing t.

5.3. Application to filtering. An important problem in signal processing is
that of filtering random noise from a discretely sampled signal [24]. The classical
approach to this problem involves manipulating the spectrum of the noisy signal to
eliminate noise. This works well when the noise-free signal has compact spectral
support, but is not effective otherwise. However, the noise-free signal may have com-
pact support in some other representation, where the filtering may be carried out
effectively.

When we examine Algorithm A2, we see that the sampling rate m varies roughly
as q()r(m)/ε2, or ε2 ≈ q()r(m)/m. In a sense, q()r(m) is the support of the noise-
free target function in the hypothesis class G. While spectral filters choose G to be
the trigonometric interpolants, we are free to choose any representation, aiming to
minimize q()r(m). Furthermore, the Occam approximation Q need not manipulate
its input samples in a linear fashion, as is the case with spectral filters. In this sense,
our results offer the first general technique for the construction of nonlinear filters.

In the practical situation, our results can be interpreted thus: Pass the samples
of the noisy signal through a data compression algorithm, allowing the algorithm an
approximation error equal to the noise strength. The decompressed samples com-
pose the filtered signal and are closer to the noise-free signal than the noisy signal.
Implementations of this are pursued in [23].

6. Conclusion. We showed that the principle of Occam’s Razor is useful in the
context of probably approximate learning functions on the reals, even in the presence
of arbitrarily large additive random noise. The latter has important consequences
in signal processing in that it offers the first general technique for the design and
construction of nonlinear filters.
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NAVIGATION IN HYPERTEXT IS EASY ONLY SOMETIMES∗
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Abstract. One of the main unsolved problems confronting Hypertext is the navigation problem,
namely, the problem of having to know where you are in the database graph representing the structure
of a Hypertext database, and knowing how to get to some other place you are searching for in the
database graph. In order to tackle this problem we introduce a formal model for Hypertext. In this
model a Hypertext database consists of an information repository, which stores the contents of the
database in the form of pages, and a reachability relation, which is a directed graph describing the
structure of the database. The notion of a trail, which is a path in the database graph describing
some logical association amongst the pages in the trail, is central to our model.

We define a Hypertext query language for our model based on a subset of propositional linear
temporal logic, which we claim to be a natural formalism as a basis for establishing navigation
semantics for Hypertext. The output of a trail query in this language is the set (which may be
infinite) of all trails that satisfy the query. We show that there is a strong connection between the
output of a trail query and finite automata in the sense that, given a Hypertext database and a trail
query, we can construct a finite automaton representing the output of the query, which accepts a
star-free regular language. We show that the construction of the finite automaton can be done in
time exponential in the number of conjunctions, between the subformulas of the trail query, plus one.

Given a Hypertext database and a trail query, the problem of deciding whether there exists a
trail in the database that satisfies the trail query is referred to as the model checking problem. We
show that, although this problem is NP-complete for different subsets of our query language, it can
be solved in polynomial time for some significant special cases. Thus the navigation problem can
only be efficiently solved in some special cases, and therefore in practice Hypertext systems could
include algorithms which return randomized and/or fuzzy solutions.

Key words. Hypertext, navigation, trail query, temporal logic, finite automata, computational
complexity
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1. Introduction. Traditional text, for example in book form, has a single linear
sequence defining the order in which the text is to be scanned. In contrast Hypertext
[CONK87] (or more generally Hypermedia; see [HALA88]) is text (which may contain
multimedia) that can be read nonsequentially. Hypertext presents several different
options to readers, and the individual reader chooses a particular sequence at the time
of reading.

The inspiration for Hypertext comes from the memex machine proposed by Bush
[BUSH45] (see also [NYCE89]). The memex is a “sort of mechanized private file and
library” which supports “associative indexing” and allows navigation whereby “any
item may be caused at will to select immediately and automatically another.” Bush
emphasizes that “the process of tying two items together is an important thing.” In
addition, by repeating this process of creating links we can form a trail which can be
traversed by the user, in Bush’s words, “when numerous items have been thus joined
together to form a trail they can be reviewed in turn.” Hypertext can be viewed as
the formalization and realization of Bush’s original ideas.
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A Hypertext database [STOT89, TOMP89, FRIS92] is formalized as a directed
graph [BUCK90] (called the database graph) whose nodes represent textual units of
information (called pages) and whose arcs (also called links) allow the reader to nav-
igate from an anchor node to a destination node. The structure of a Hypertext
database changes over time and thus differs from traditional databases, such as re-
lational databases [ULLM88], which have a regular structure defined by a relational
database schema. It is evident that a Hypertext database can be implemented on
top of a relational database provided it has the facilities to store and retrieve textual
objects. A comparison of the functional characteristics of several Hypertext systems
can be found in [SCHN88].

The process of traversing links and following a trail of information in a Hypertext
database is called navigation (or alternatively link following). In graph-theoretic terms
a trail in a Hypertext database is a path in the database graph (we allow a node to
occur more than once in a path; paths are called walks in [BUCK90]).

Navigating through a Hypertext database leads to the problem of getting “lost in
hyperspace” [CONK87, VAND88], which is the problem of having to know where you
are in the database graph and knowing how to get to some other place that you are
searching for in the database graph. From now on we will refer to this fundamental
problem as the navigation problem.

In order to solve the navigation problem we can augment link following with a
query-based access mechanism [HALA88]. Such a mechanism allows users to specify
the characteristics of the information they are searching for and then to obtain the
output of their query from the Hypertext system. Two types of querying mechanism
are the following:

• Content-based search, which typically uses index-based information retrieval
technology. When searching by content, pages are searched independently of
their association with other pages in the database.
• Structure-based search, which extends content-based search by additionally

specifying a description of a subgraph [BUCK90] of the database graph.
When searching by structure, contents of pages are searched in association
with their linkage with other pages in the database according to the said
specified subgraph.

We will refer to the formal semantics of the query mechanism used in a Hypertext
system as its navigation semantics.

In a more general context of a Hypertext system the process of finding and exam-
ining the text pages associated with destination nodes is called browsing [CONK87].
The browser is the component of a Hypertext system that helps users search for the
information they are interested in by graphically displaying the relevant parts of the
database and providing contextual and spatial cues with the use of navigational aids
such as maps and guides [FRIS92]. A set of tools that aid navigation by performing
a structural analysis of the database graph is described in [RIVL94].

Herein, we are only interested in the navigation semantics of structure-based
search as a means of attempting to solve the navigation problem and thus assume
that navigational aids are available within the browser and are independent of the
navigation semantics.

Example 1. The database graph of a Hypertext database, which models a simple
Teletext system storing pages of information according to the following topics: news,
sports, travel, and weather, is shown in Figure 1.1. In a more comprehensive example
the nodes in this database graph can be expanded into subgraphs; for instance, the
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News Sports WeatherTravel

Fig. 1.1. A simple database graph.

node labeled news can be expanded into several pages, one for regional news, one for
countrywide news, one for European news, and one for worldwide news.

In our Hypertext model we separate the contents of nodes (i.e., the pages) from
the database graph. We define a Hypertext database to be an ordered pair 〈I,R〉,
where I is an array [TREN73] of pages, called the information repository, and R is
a binary relation in the indices of I, called the reachability relation; the indices of I
are referred to as the page numbers of I. Thus arrays are used to provide an indexing
mechanism for pages. This leads us to define a trail as an array of page numbers
corresponding to a path in the directed graph representing R.

In the navigation semantics that we propose, the notion of a trail is central. The
output of a query is the set of trails in the Hypertext database satisfying the query
specification; each trail in the output of a query is called an answer of the query.
Therefore, a query consists of two orthogonal parts:

(i) logical formulas composed of predicates to be satisfied by the contents of pages in
the information repository, and

(ii) the order in which the pages, satisfying the logical formulas, are to be found in
the reachability relation.

An important requirement of the query language is that users should have as
much flexibility as possible when posing a query according to their knowledge of the
contents and structure of the Hypertext database.

This suggests that a logic of positions [RESC71] would be well suited as a query
language for Hypertext due to the spatial interpretation of the database graph. As
pointed out by Rescher and Urquhart [RESC71] there is a close connection between
positional and temporal logic. Therefore, we choose to utilize propositional linear
temporal logic (PLTL) [EMER90] as the underlying semantics for navigation, where
in our context time actually means position. (We mention that temporal logic is
widely employed in the very active research area of specification and verification of
concurrent programs [EMER90, MANN92].)

In our context we view a Hypertext database as a temporal structure [EMER90],
where the page numbers of I are associated with the states of the structure and the
binary relation R is associated with the transition relation of the structure.

We define a query language, called Hypertext query language (HQL), based on a
subset of PLTL and call HQL formulas trail queries (or HQL queries). In particular,
HQL includes the temporal operators “nexttime” (denoted by ©) and “sometimes”
(denoted by 3). A fundamental difference between the semantics of PLTL and HQL is
that models of PLTL formulas are timelines, which are infinite paths describing com-
putation sequences [EMER90, THOM90], while models of HQL formulas are trails,
which are finite paths describing sequences of pages that can be traversed by users.
Thus, in addition to the temporal operators© and 3, HQL supports a novel temporal
operator “finaltime” (denoted by 4), which refers to the final page number in a trail.
(We will show that 4 adds expressive power to the query language.)
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HQL provides a natural vehicle for combining content-based querying with struc-
ture-based search via the above temporal operators. The “nexttime” operator allows
the user to navigate through the pages one step at a time, the “sometimes” operator
allows the user to skip as many pages as necessary in order to arrive at the next page
he wishes to browse through, and the “finaltime” operator allows the user to specify
the final page in a navigation session.

The output of a trail query is defined to be the set of all trails that satisfy the
query, and the problem of whether there exists an answer to a trail query with respect
to a Hypertext database is the problem of deciding whether the database is a model of
the trail query; this problem is known as the model checking problem (see [EMER90]).

In order to construct the output of a query we take advantage of the strong connec-
tion between finite automata [HOPC79, PERR90] and PLTL [VARD86a, VARD86b,
EMER90, THOM90] as follows.

First, we show that a Hypertext database, say, H, can be represented by a fi-
nite automaton MH and that the language accepted by MH is a star-free regular
language [MCNA71, PERR90]. Second, we show that a finite automatonMf can be
constructed for a trail query, say, f , with respect to the Hypertext database H, and
that the language accepted by Mf is also a star-free regular language. Finally, we
show that the output of a trail query corresponds to the intersection ofMH andMf ,
which also accepts a star-free regular language, since star-free regular languages are
closed under intersection. Thus the navigation semantics of HQL are given in terms
of star-free regular languages.

In addition, we show that constructingMH∩Mf can be done in time exponential
in the number of conjunctions, between the subformulas of f , plus one, and in the
case when the number of conjunctions between the subformulas of f is one, then the
construction can be done in time polynomial in the size of H and the length of f .
Thus, we give an exponential time upper bound for query evaluation in HQL, which
is tractable as long as the number of conjunctions in the subformulas of trail queries
is bounded by some constant.

In order to measure the difficulty of navigation in Hypertext we investigate the
computational complexity of the model checking problem for HQL queries. We prove
that in the general case the model checking problem is NP-complete, which is to be
expected by inspecting the results in [SIST85] (see also [EMER90]). We also show
that in two special cases, when trail queries do not contain any occurrences of 3,
the model checking problem can be solved in polynomial time in the length of the
information repository I and the length of the trail query f .

The rest of the paper is organized as follows. In section 2 we briefly survey related
work. In section 3 we formalize the notion of a Hypertext database. In section 4 we
present our query language, HQL. In section 5 we investigate a strong connection
between the output of a trail query and finite automata that accept star-free regular
languages. In section 6 we investigate the computational complexity of navigation in
a Hypertext database. Finally, in section 7 we give our concluding remarks.

2. A brief survey of related work. Several researchers [STOT89, STOT92,
MEND95] have recognized that the semantics of navigation in a Hypertext database
can be formalized in terms of finite automata [HOPC79, PERR90].

In [MEND95] a query language, called G+, is described in which the database
graph is defined as a finite automaton, a query is defined as a regular expression, and
the output of a query is computed from the intersection of the database graph and a
finite automaton representing the query. In particular, the output of a query is the set
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of ordered pairs, (x, y), such that x and y are nodes in the database graph and there
is a simple path from x to y (i.e., a path in which no node occurs more than once)
labeled by a word which is accepted by the query. (See [CONS89] for a description of
a later language, called GraphLog, which is an extension of G+, and for examples of
how GraphLog supports structure-based searching.)

It is shown that query evaluation is, in general, exponential time in the size of
the input database graph and that the problem of deciding whether an ordered pair
of nodes is in an answer to a given query is NP-complete. Some special cases are
exhibited when query answering can be done in polynomial time; in particular, query
answering is polynomial time when either the database graph is acyclic or the query
is a restricted regular expression [MEND95]. The contents of nodes are not discussed
in [CONS89, MEND95].

In contrast to HQL, the query language G+ [MEND95] does not utilize temporal
logic, which syntactically restricts trail queries to be equivalent to star-free regular
languages. In addition, the navigation semantics of G+ [MEND95] process only sim-
ple paths in the database graph, while the navigation semantics of HQL process trails
which may not be simple paths. Finally, we claim that HQL is a more natural for-
malism for expressing queries in Hypertext than the language of regular expressions,
since it is closer in nature to the navigational requirements of Hypertext.

In [STOT89] Petri nets [PETE81] are suggested as an underlying formalism for
the specification of navigation semantics. Since Petri nets are inherently a concurrency
model, they provide natural semantics for concurrent navigation paths. Furthermore,
finite automata are a special case of Petri nets [PETE81] and thus as a special case
simplified navigation semantics based on finite automata can be supported.

An important feature of the model presented in [STOT89] is the separation of
content from structure, in the sense that the contents of the database are described
via a mapping from the nodes of the Petri net (called places in Petri net terminology
[PETE81]) to the actual pages of information.

Although Petri nets are amenable to formal analysis and constructing the reach-
ability tree for a Petri net is decidable, in general, the complexity of the reachability
problem is intractable; in fact, it has been shown that the reachability problem for
Petri nets is EXPSPACE-hard [PETE81]; for special cases of Petri nets when the
reachability problem is easier see [ESPA94]. Thus there is a trade-off between ex-
pressiveness and complexity, which implies that in practice only special cases of the
reachability problem can be incorporated into the navigation semantics of the said
model.

In [STOT92] a Hypertext database (called a hyperdocument) is viewed as a fi-
nite automaton, called the link automaton. A branching temporal logic [EMER90]
language, called HTL*, is proposed for the specification of properties that should
be exhibited when navigating through a Hypertext database. HTL* is based on full
branching-time logic (CTL*) and a subset of HTL*, called HTL, is based on a subset
of CTL*, called computational tree logic (CTL) [CLAR86, EMER90]. HTL* adds
direction to CTL* formulas in order to allow both forward and backward navigation
paths to be specified. The propositions of HTL* are atomic predicates, which are
conditions to be satisfied at specific states of the link automaton. Correspondingly,
the formulas of HTL* are viewed as assertions about the navigation paths of the link
automaton. Model checking of an HTL* formula is then used in order to verify that
the assertions specified by the formula are satisfied in the link automaton.

Although model checking for a CTL formula can be done in linear time in the
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length of the formula and the temporal structure being verified, model checking for a
CTL* formula was shown to be PSPACE-complete [CLAR86]. In practice, it would
be useful to investigate a language whose model checking complexity is in between
HTL and HTL*, since HTL may turn out to be too restrictive.

There are several differences between the model presented in [STOT92] and our
model. First, we are interested in querying a Hypertext database while Stotts, Furata,
and Ruiz [STOT92] are interested in verifying that the Hypertext database satisfies
a set of specifications. In fact, a query can also be viewed as a specification that is
satisfied if and only if the set of trails that satisfy the query is not empty. Second,
branching temporal logic is used in [STOT92] while we use linear time temporal
logic. This difference is more fundamental, since in querying a Hypertext database
we are only interested in the set of trails that satisfies a trail query independently
of other trails in the database graph. Third, in [STOT92] results from the area
of specification and verification of concurrent programs are directly used, while as
mentioned in section 1 there is a fundamental difference between the semantics of
PLTL and HQL, in that models of HQL queries are trails which are finite paths, while
models of PLTL formulas (and also of path formulas of CTL and CTL* [CLAR86,
EMER90]) are infinite paths. Lastly, Stotts, Furata, and Ruiz [STOT92] do not
investigate any specific expressiveness or complexity results relating to their model
and concentrate mainly on the definition of their model and showing how it can
be applied to other models of Hypertext such as Trellis [STOT92] and Hyperties
[RIVL94]. On the other hand, the main aim of our work is actually to investigate the
expressiveness and complexity of HQL.

Recently Beeri and Kornatzky [BEER94] have proposed a query language for
Hypertext databases which is based on branching temporal logic, with the provision
for generalized path quantifiers (which capture natural language assertions) over the
trails that satisfy a query. Query answering in their language can be computed in
polynomial time in the size of the database graph, since only trails of some fixed
bounded length are considered. In HQL no quantifiers are allowed, since its semantics
are based on linear-time temporal logic. Moreover, we do not bound the lengths of
trails under consideration, and thus as we show herein, query answering in our model
cannot always be computed in time polynomial in the size of the database graph.
Indeed one conclusion of our results may be that for practical purposes the lengths of
trails must be bounded, but this comes at the cost of limiting the notion of a trail and
thus forcing the user to tune the bounds of the lengths of trails for specific queries.

3. A formal model for Hypertext based on temporal logic. In this section
we formalize our model for Hypertext which was motivated in the introduction. We
begin by introducing the notation.

We denote the cardinality of a set, S, by |S| and the length of a string, w, by ||w||.
In addition, we denote the maximum of two natural numbers m and n by max(m,n).
We will use the O-notation for measuring the computational complexity of algorithms
[GARE79]. Finally, we abbreviate “if and only if” to iff.

In the following we will be using the following disjoint primitive domains of count-
ably infinite sets:

1. The set of all natural numbers, denoted by ω.
2. The set of all finite length strings, Σ∗, over a finite nonempty alphabet Σ;

the empty string is denoted by ε, concatenation of two strings w and z will
be denoted by wz and a string y is a substring of a string w iff there exist
strings x and z such that w = xyz.
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3. A set of attribute names (or simply attributes), denoted by U .
4. A set of variables, denoted by V.

Definition 3.1 (projection). We define the two projection operators α and β,
such that α((x, y)) = x and β((x, y)) = y, where (x, y) is an ordered pair of values.

Definition 3.2 (page). A page is an attribute-value pair of the form (A, w),
where A ∈ U and w ∈ Σ∗.

We now give the basic definitions pertaining to arrays [TREN73].

Definition 3.3 (array). Let N = {1,. . .,n} be a finite index set, where n ∈ ω.

An array is a family {ti} of items (i ∈ N); each i ∈ N is called an index. (At
this stage the definition of the type of items in an array is left unspecified.)

We will use the usual convention whereby A[i] denotes the ith item, A(i), of an
array, A, when 1 ≤ i ≤ n; otherwise A[i] is taken to be undefined. If A[i] = t, then
we say that t ∈ A.

In the special case when n = 0, the array A is empty and ∀i ∈ ω, A[i] is taken to
be undefined; we denote the empty array by [ ].

The count of an array A, denoted as #A, is the number of items in A, i.e.,
#A = n.

Two arrays, A1 and A2, are equal, denoted as A1 = A2, if #A1 = #A2 and
∀i ∈ {1, . . . ,#A1}, A1[i] = A2[i].

An array A1 is a suffix of an array A2, if #A1 ≤ #A2 and ∀i ∈ {1, . . . ,#A1},
A1[i] = A2[(#A2 −#A1) + i]. We let Ai denote the suffix of an array, A, satisfying
#Ai = #A− i, where i ∈ {0, . . . ,#A}.

An array A1 is a prefix of an array A2, if #A1 ≤ #A2 and ∀i ∈ {1, . . . ,#A1},
A1[i] = A2[i]. We let Ai denote the prefix of an array, A, satisfying #Ai = i, where
i ∈ {0, . . . ,#A}.

The concatenation of two arrays, A1 and A2, denoted by A1A2, is an array A3

such that #A3 = #A1 + #A2, A3#A1
= A1, and A3

#A1 = A2.

An array, A, is said to be simple whenever ∀i ∈ {1, . . . ,#A}, if i 6= j, then
A[i] 6= A[j].

An information repository is a simple array of pages; i.e., it satisfies the constraint
that pages are unique within the repository. The formal definition follows.

Definition 3.4 (information repository). An information repository (or simply
a repository) is a simple array, I, whose items are pages. The indices of I are called
the page numbers of I. We let ‖I‖ denote the length of the string I[1]I[2] . . . I[#I].

The constraint that a repository be a simple array is similar to entity integrity
[CODD79] and thus avoids duplication of information. Furthermore, the assumption
that a repository is an array, which is not nested, is similar to the first normal form
assumption of tuples in relational databases [LEVE99a].

A reachability relation R over a repository, I, is a set of ordered pairs of page
numbers of I. The formal definition follows.

Definition 3.5 (reachability relation). A reachability relation, R, over a repos-
itory I (or simply a reachability relation if I is understood from context) is a binary
relation in {1, . . . ,#I}.

When R corresponds to an acyclic directed graph [BUCK90], we say that R is
acyclic; otherwise R is cyclic (unless explicitly stated otherwise, we assume that R is
cyclic).

It follows that a reachability relation corresponds to a directed graph. A trail in
a reachability relation, R, is an array of page numbers corresponding to a path in R.
The full definition follows.
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Definition 3.6 (trail). A trail, T , in a reachability relation, R, over a repository,
I (or simply a trail in R if I is understood from context), is an array of page numbers
of I such that ∀i ∈ {1, . . . ,#T − 1}, (T [i], T [i + 1]) ∈ R. The indices of T are called
the markers of T .

A trail which is a simple array is called a loop-free trail. A subtrail of a trail, T
in R, is a trail in R that is a suffix of a prefix of T (or, equivalently, a prefix of a
suffix of T ).

The string induced by a trail T in R, denoted by ρ(T ), is defined by ρ(T ) =
T [1]T [2] . . . T [#T ].

In general, a trail in a reachability relation, R, corresponds to a path in the
directed graph representing R. There are two special cases worth mentioning: a trail
of count zero, which corresponds to the empty array and a trail of count one which
corresponds to a single page number in I.

The following proposition states that the set of trails in R is suffix closed and
prefix closed (cf. [EMER90]).

Proposition 3.7. The following statements are true:
1. A trail T is in a reachability relation, R, iff ∀i ∈ {0, . . . ,#T}, T i is in R.
2. A trail T is in a reachability relation, R, iff ∀i ∈ {0, . . . ,#T}, Ti is in R.

We next define Hypertext databases.
Definition 3.8 (Hypertext database). A Hypertext database (or simply a

database) H is an ordered pair 〈I,R〉, where I is a repository and R is a reachability
relation over I.

We note that there are no constraints on the reachability relation, R . A Hypertext
database 〈I,R〉 can be viewed as a temporal structure [EMER90], where the page
numbers of I are associated with the states of the structure and the binary relation
R is associated with the transition relation of the structure (we do not assume that
R is total as is the case in [EMER90]).

From now on we will assume that H = 〈I,R〉 is a Hypertext database.

4. A query language for navigating in Hypertext. In this section we define
the syntax and semantics of HQL.

We will assume that strings in Σ∗ are distinguished by strings beginning with
lowercase letters; attribute names in U are distinguished by strings beginning with
uppercase letters excluding X,Y , and Z; and variables are distinguished by strings
beginning with the uppercase letters X,Y , or Z.

Definition 4.1 (normal and unique variables). We assume that V is parti-
tioned into two countably infinite sets of variables called normal variables and unique
variables.

Normal variables are distinguished by strings beginning with the uppercase letter
X, and unique variables are distinguished by strings beginning with the uppercase
letter Y . Variables which may be either normal or unique are distinguished by strings
beginning with the uppercase letter Z.

In an interpretation, defined below, both normal and unique variables map to page
numbers. However, unique variables restrict the mapping such that no two unique
variables can map to the same page number.

Informally, a condition is a propositional logic formula such that its atomic for-
mulas are binary predicates.

Definition 4.2 (condition). Assume a countably infinite set of binary predicate
letters. A numeric term is either a natural number or a variable and a symbolic
term is either an attribute or a string. An atomic formula is an expression of the
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form P (t1, t2), where P is a binary predicate letter, t1 is a numeric term, and t2 is a
symbolic term. An atomic formula, P (t1, t2), is said to be ground if t1 is a natural
number; otherwise if t1 is a variable, then P (t1, t2) is said to be nonground.

We recursively define the class of conditions using the following rules:

C1. A nonground atomic formula P (t1, t2) is a condition.
C2. If C is a condition, then ¬(C) is a condition.
C3. If C1 and C2 are conditions, then (C1 ∧ C2) is a condition.
C4. If C is a condition, then |V| = 1, where V is the set of variables appearing

in C; the single variable appearing in C is called the variable of C.

We note that ground atomic formulas are excluded from conditions, since pages
are identified by their content and not by their page number. As usual C1 ∨ C2

stands for ¬(¬(C1) ∧ ¬(C2)). Also, when no ambiguity arises we omit parentheses in
conditions. In addition, the length of a condition, C, is the number of symbols in C
assuming that no parentheses are omitted.

An interpretation gives meaning to the predicate letters and variables in con-
ditions such that predicate letters are mapped to polynomial-time algorithms and
variables are mapped to page numbers.

Definition 4.3 (an interpretation). An interpretation σ over a Hypertext database
H = 〈I,R〉 (or simply an interpretation σ if H is understood from context) assigns
an appropriate meaning to binary predicate letters and terms as follows:

• If P is a binary predicate letter, then σ(P ) is a mapping from ω × (U ∪ Σ∗)
to {true, false} such that σ(P ) is a polynomial-time algorithm [GARE79] in
||I||.
• If t is a natural number, an attribute, or a string, then σ(t) = t.
• If Z is a variable, then σ(Z) ∈ {1, . . . ,#I}, with the constraint that the

restriction [HALM74] of σ to unique variables is a one-to-one mapping.

Restricting σ to be a one-to-one mapping, when its domain is the set of unique
variables, implies that two distinct unique variables are mapped by σ to distinct page
numbers and this allows us to assert the inequality of page numbers.

Definition 4.4 (satisfaction in an interpretation). Let σ be an interpretation
and let C be a condition. Then we say that σ satisfies C, written σ |= C, provided C
is true under the interpretation σ in the usual sense. Specifically,

C1. σ |= P (t1, t2) iff σ(P )(σ(t1), σ(t2)) = true.
C2. σ |= ¬(C) iff σ 6|= C.
C3. σ |= (C1 ∧ C2) iff σ |= C1 and σ |= C2.

The following proposition follows by a straightforward induction on the length of
a condition.

Proposition 4.5. Let σ be an interpretation over a Hypertext database H =
〈I,R〉 and let C be a condition. Then σ |= C can be evaluated in polynomial time in
||I|| and the length of C.

Hereafter the binary predicate letters substr and att will be utilized. For all
interpretations σ over 〈I,R〉 their meaning is fixed as follows:

1. σ(substr) is the substring pattern matching algorithm; that is, σ |= substr(t1, t2)
iff σ(t2) is a substring of β(I[σ(t1)]).

2. σ(att) is the attribute equality algorithm; that is, σ |= att(t1, t2) iff α(I[σ(t1)])
= σ(t2).

Both σ(substr) and σ(att) can be evaluated in polynomial time in ||I|| (see [SEDG90]
for efficient substring pattern matching).

We next define the notion of a trail formula and its satisfaction utilizing a tem-
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poral logic framework [EMER90]. In particular, we will employ propositional linear
temporal logic (PLTL) with discrete time.

The temporal operators that will be utilized in the context of a Hypertext database
are as follows: © means “nexttime” (one step at a time navigation) and 3 means
“sometimes” (several steps at a time navigation). We also define an additional tem-
poral operator, denoted by 4, which means “finaltime” (reaching the last step of
navigation). For simplicity, in this paper, we do not consider the “until” temporal op-
erator, which would add expressive power to our query language [GABB80, EMER90].
From now on, we will refer to these temporal operators as trail operators.

Strictly speaking, when we refer to time we are actually referring to a position in
a trail. As pointed out by [RESC71] there is a close connection between positional
and temporal logic which motivates our use of a subset of PLTL as a query language
for Hypertext.

We next define trail formulas, which are similar to PLTL formulas [EMER90].
For simplicity, at this stage, we do not consider negation or disjunction in formulas.

Definition 4.6 (trail formulas). We recursively define the class of trail formulas
(or simply formulas) using the following rules:

T1. A condition C is a trail formula.
T2. If f1 and f2 are trail formulas, then (f1 ∧ f2) is also a trail formula.
T3. If f is a trail formula, then 3(f) is also a trail formula.
T4. If f is a trail formula, then ©(f) is also a trail formula.
T5. If f is a trail formula, then 4(f) is also a trail formula.
When no ambiguity arises we omit parentheses in formulas.
Example 2. We now demonstrate the usefulness of HQL with several example

formulas and their intuitive semantics, where we assume that the substring pattern
matching algorithm is case insensitive.

1. The formula

3(substr(X1, local news)) ∧3(substr(X2, world news))∧
3(substr(X3, sports)) ∧3(substr(X4, weather))

specifies the trails that have a page of local news, a page of world news, a page
of sports news and a page with the weather information.

2. The formula

substr(X1, UK news) ∧©(substr(X2, South East news))∧
©© (substr(X3, London news)) ∧4(substr(X4, North London news))

specifies the trails whose first page contains UK news, followed by a page
containing South East news, followed by a page containing London news, and
a final page containing North London news.

3. The formula

3(substr(X1, five star hotels) ∧ substr(X1, Austin Texas))∧
©(substr(X2, five star hotels) ∧ substr(X1, Dallas Texas))

specifies the trails that have a page of five star hotels in Austin, Texas, followed
by a page of five star hotels in Dallas, Texas.

4. The formula

substr(X1, underground) ∧ ¬(substr(X1, delayed))∧
4((substr(X2, buses)) ∧ ¬(substr(X2, delayed)))
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specifies the trails whose first page gives us the information about the un-
derground lines that are running normally and whose last page gives us the
information about the bus lines that are running normally.

Definition 4.7 (subformulas). The set of subformulas of a formula, f , is defined
recursively as follows:

1. f is a subformula of f.
2. If f is of the form f1 ∧ f2, then f1 and f2 are subformulas of f .
3. If f is any of the forms 3(f ′), ©(f ′), or 4(f ′), then f ′ is a subformula of
f .

We denote the set of all subformulas of a trail formula, f, by Sub(f). The length
of a formula, f , is the number of symbols in f assuming that all conditions have the
same length of one and that no parentheses are omitted. We denote the length of f
by |f |. It therefore follows that |Sub(f)| ≤ |f |.

The reason we have assumed that all conditions have the same length of one is
that, from a database point of view, the purpose of conditions is to retrieve the set of
pages satisfying the condition. Herein we are not interested in the internal structure
of conditions, since by Proposition 4.5 we can test whether a page satisfies a condition
in polynomial time.

Definition 4.8 (satisfaction of a trail formula). Let H = 〈I,R〉 be a Hypertext
database, σ be an interpretation over H, and T be a trail in R . Then we say that T
satisfies a formula, f , with respect to H and σ (or simply T satisfies f if H and σ are
understood from context), written T |= f , provided f is true under T . Specifically,

T1. T |= C iff #T > 0, σ |= C, and σ(Z) = T [1], where Z is the variable of C.
T2. T |= f1 ∧ f2 iff T |= f1 and T |= f2.
T3. T |= 3(f) iff ∃i ∈ {0, . . . ,#T − 1} such that T i |= f.
T4. T |=©(f) iff #T > 1 and T 1 |= f.
T5. T |= 4(f) iff #T > 0 and T i |= f , where i = #T − 1.
From Definition 4.8 it follows that for all trail formulas, f, [ ] 6|= f.
Definition 4.9 (a model of a trail formula). A Hypertext database H = 〈I,R〉

is a model of a trail formula, f, if ∃T in R such that T |= f with respect to H and
some interpretation σ. Whenever H is understood from context we also say that T is
a model of f .

Definition 4.10 (trail equivalence). A formula f1 trail implies (or simply im-
plies) a formula f2, written f1 ⇒ f2, if

for all Hypertext databases 〈I,R〉, for all trails T in R, if T |= f1 then T |= f2.

A formula f1 is trail equivalent (or simply equivalent) to a formula f2, written
f1 ≡ f2, if f1 ⇒ f2 and f2 ⇒ f1.

The following proposition gives the significant equivalences and implications be-
tween HQL formulas. We note that the implications given in the proposition cannot
be strengthened to equivalences.

Proposition 4.11. The following equivalences and implications are satisfied:
1. 3(f) ≡ 33(f).
2. 4(f) ≡ 44(f).
3. 3© (f) ≡ ©3(f).
4. 4(f) ≡ 43(f) ≡ 34(f).
5. ©(f1 ∧ f2) ≡ ©(f1) ∧©(f2).
6. 4(f1 ∧ f2) ≡ 4(f1) ∧4(f2).
7. 3(f1 ∧ f2)⇒ 3(f1) ∧3(f2).
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8. f ⇒ 3(f).
9. ©(f) ⇒ 3(f).

10. 4(f) ⇒ 3(f).
11. ©4(f) ⇒ 4(f).

The following definition will be useful when we consider subclasses of HQL.

Definition 4.12 (op-free trail formulas). A trail formula is op-free if it does not
contain any occurrences of op, where op ∈ {3,©,4}.

The 3 operator is declarative since it does not specify the precise navigation
sequence, while the © operator is procedural since it progresses navigation one step
at a time. Thus ©-free trail queries can be viewed as declarative queries and 3-free
trail queries can be viewed as procedural queries. On the other hand, 4-free trail
queries are queries which do not specify any condition on the final item of a trail
which satisfies the query.

The next proposition shows that the general class of trail formulas is more ex-
pressive than the class of 4-free trail formulas. That is, if we remove 4 from HQL
we lose expressive power.

Proposition 4.13. It is not the case that for all 4-free trail formulas, g, there
exists a 4-free trail formula, f, such that f ⇒4(g).

Proof. The result follows by a straightforward induction on the length of f .

(Basis): If |f | = 1, then f is a condition, say, C. Without loss of generality, let
H = 〈I,R〉 be a Hypertext database having a trail T in R with #T = 2 and such that
T |= C but T 1 6|= g. The result that T 6|= 4(g) follows by Definition 4.8 part (T5).

(Induction): Assume that the result holds when |f | = k, where k ≥ 1; we then
need to prove that the result holds when |f | > k.

We now consider in turn the different cases pertaining to the structure of f :

1. If f is the trail formula f1 ∧ f2, then by the inductive hypothesis there exists
a Hypertext database H = 〈I,R〉 and a trail T in R such that T |= f1 and
T |= f2 but T 6|= 4(g). The result follows by Definition 4.8 part (T2), since
T |= f .

2. If f is the trail formula 3(f ′), then by the inductive hypothesis there exists
a Hypertext database H = 〈I,R〉 and a trail T in R such that T i |= f ′ but
T i 6|= 4(g), where i ∈ {0, . . . ,#T − 1}. The result that T |= f but T 6|= 4(g)
follows by Definition 4.8 part (T3) and part (T5), respectively.

3. If f is the trail formula ©(f ′), then by the inductive hypothesis there exists
a Hypertext database H = 〈I,R〉 and a trail T in R such that # T > 1 and
T 1 |= f ′ but T 1 6|= 4(g). The result that T |= f but T 6|= 4(g) follows by
Definition 4.8 part (T4) and part (T5), respectively.

A trail query is a trail formula viewed as a mapping from Hypertext databases to
sets of trails, where a trail is in the output of the trail query iff it satisfies the trail
formula with respect to the input Hypertext database and some interpretation. The
formal definition follows.

Definition 4.14 (trail query). A trail query (or simply an HQL query or a
query) is a trail formula, f , viewed as a mapping from Hypertext databases to sets of
trails such that, given an input Hypertext database H = 〈I,R〉, the output f(H) is
defined by

{T | T is a trail in R and T |= f}.

A trail T in R satisfying T |= f is called an answer of f(H).
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Fig. 5.1. A finite automaton for a Hypertext database.

5. Finite automata and trail queries. In this section we utilize the theory
of finite automata [HOPC79, PERR90] in order to construct the output of a query,
which in the general case may consist of a countably infinite set of trails. In particular,
we exploit the strong connection between finite automata accepting star-free regular
languages and PLTL [VARD86a, VARD86b, EMER90, THOM90].

Definition 5.1 (Hypertext automaton). The Hypertext automaton representing
a Hypertext database, H = 〈I,R〉 (or simply the Hypertext automaton whenever H
is understood from context), is a finite automaton defined by a quintuple of the form
MH = (A, Q,∆, S, F ) (or simply M whenever H is understood from context), where

• A = {1, . . . ,m} is a finite alphabet with m = #I.
• Q = {s1, . . . , sm, sm+1, . . . , s2m} is a set of 2m states.
• ∆ ⊆ Q × A × Q is a transition relation, where (sj , δ(sj), sk) ∈ ∆ iff j ∈
{1, . . . ,m} and either k ∈ {1, . . . ,m}, with (δ(sj), δ(sk)) ∈ R, or k = m + j,
where δ is a one-to-one and onto mapping from {s1, . . . , sm} to A such that
δ(si) = i, 1 ≤ i ≤ m.
• S = {s1, . . . , sm} is the set of initial states.
• F = {sm+1, . . . , s2m} is the set of terminal states.

If S = ∅ and thus F = ∅, then M is called the empty Hypertext automaton.

We observe that the construction of MH is independent of the actual contents
of the pages in the repository I of H. It only depends on the cardinality, #I of I,
and the reachability relation R of H. In other words, a finite automaton representing
a Hypertext database is independent of the actual data stored in the repository and
thus induces an equivalence class of Hypertext databases having repositories of the
same cardinality and having the same reachability relation.

Example 3. The finite automatonMH is shown in Figure 5.1, where H = 〈I,R〉,
#I = 3 and R = {(1, 2), (2, 1), (2, 3)}.

Definition 5.2 (the language accepted by a finite automaton). A path in
the finite automaton, M = (A, Q,∆, S, F ) (or simply a path if M is understood
from context), is a nonempty sequence {(si, δ(si), si+1)} (i ∈ N) of transitions in
∆, with N = {1, . . . , n} and n ∈ ω. (We also say that there exists a path from
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(s1, δ(s1), s2) to (sn, δ(sn), sn+1).) If s1 = sn+1, then the path is a cycle. The string
w = δ(s1)δ(s2) . . . δ(sn) is called the label of the path, s1 is called its origin, and sn+1

is called its end. The length of the path is n.

A path is successful if its origin is in S and its end is in F. A string w ∈ A∗
is said to be accepted by M if it is the label of some successful path. The language
accepted by M, denoted by L(M), is the set of all strings accepted by M.

When M is the empty Hypertext automaton, L(M) = ∅, that is, the empty
language is accepted. Furthermore, there does not exist a Hypertext database H
such that L(MH) = {ε}; i.e., no finite automaton representing a Hypertext database
accepts the empty string. Thus only subsets of A+ = A∗− {ε} are accepted by finite
automata representing Hypertext databases.

We proceed to show that L(MH) is a star-free regular language [MCNA71,
PERR90] (or simply a star-free language).

Definition 5.3 (star-free languages). A regular language is star-free if it can
be generated from a finite set of strings by repeated applications of the Boolean oper-
ations, union, intersection and complementation (with respect to A∗), together with
concatenation.

The following definition is needed in order to state an alternative characterization
of star-free languages.

Definition 5.4 (aperiodic regular languages). A regular language L ⊆ A∗ is
aperiodic if ∃n ∈ ω(n > 0) such that ∀x, y, z ∈ A∗,

xynz ∈ L iff xyn+1z ∈ L,(5.1)

where yn is the concatenation of y with itself n times.

The following theorem states the equivalence of star-free and aperiodic regular
languages [PERR90, Theorem 6.1].

Theorem 5.5. A regular language is star-free iff it is aperiodic.

Theorem 5.6. L(MH) is a star-free language.

Proof. Let L = L(MH). In order to prove the result we use Theorem 5.5 to show
that (5.1) is satisfied, with n = 2. If y = ε, then the result holds trivially, so we
assume that this is not the case. Next assume that xy2z ∈ L and let y = a1 . . . ak =
δ(s1) . . . δ(sk) be the label of the path {(si, δ(si), si+1)}(i ∈ {1, . . . , k}) in MH .

It follows that si(i ∈ {1, . . . , k}) is one of the initial #I states in Q, i.e., 1
≤ i ≤ #I, since by Definition 5.1 terminal states inMH cannot be the first component
of any transition. Furthermore, sk+1 = s1, since a1. . .aka1 is a substring of y2 and
by Definition 5.1 δ is a one-to-one and onto mapping from the initial #I states in Q
to A.

Thus, the substring a1. . .ak corresponds to a cycle [BUCK90] in the directed
graph corresponding to R (where we allow a node to appear more than once in a
cycle). The result follows, since it is implied that xy2z ∈ L iff xynz ∈ L, with
n ≥ 2.

It is easy to demonstrate that the converse of Theorem 5.6 does not hold. For
example, let A = {a} and L = {aa}. L is obviously star-free, since it is a finite regular
language, but there does not exist a Hypertext database H such that L = L(MH).
Thus, the class of languages accepted by finite automata representing Hypertext
databases is a proper subclass of the class of star-free languages.

Definition 5.7 (the language induced by a trail query). The language induced
by a set T (possibly countably infinite) of trails in R, denoted by L(T), is defined by
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L(T) = {ρ(T )|T ∈ T}. The language induced by the output f(H) of a trail query f
is defined to be L(f(H)).

It follows that, if a string w = δ(s1)δ(s2) . . . δ(sn) is accepted by M, then there
exists a trail, T , in R such that ρ(T ) = w.

The following lemma states that the language induced by the output of a trail
query over a Hypertext database H is a subset of the language accepted by the finite
automaton representing H.

Lemma 5.8. L(f(H)) ⊆ L(MH), where f is a trail query and H is a Hypertext
database.

Proof. The result follows immediately from Definitions 5.1 and 5.7 on using
Definition 4.14.

The following proposition shows that the finite automaton representing a Hyper-
text database can be viewed as the output of a certain trail query.

Proposition 5.9. For all Hypertext databases, H = 〈I,R〉, there exists a trail
query f such that L(f(H)) = L(MH).

Proof. Let S = {s1, . . . , sm} be the set of initial states of MH , and let F =
{sm+1, . . . , s2m} be the set of terminal states of MH . Furthermore, let pages(S) =
pages(F ) = {I[i]|si ∈ S} be the set of pages in I corresponding to S and F , respec-
tively. Hereafter we assume that pages(S) = pages(F ) = {(A1, w1), . . . , (Am, wm)}.

Let fS be the trail formula

(att(X1, A1) ∧ substr(X1, w1)) ∨ . . . ∨ (att(X1, Am) ∧ substr(X1, wm))

and let fF be the trail formula

4((att(X2, A1) ∧ substr(X2, w1)) ∨ . . . ∨ (att(X2, Am) ∧ substr(X2, wm))),

where X1 and X2 are distinct normal variables.
Finally, let T be a trail in R and let f be the trail formula fS ∧ fF . By Defini-

tion 4.8 it follows that T |= f iff T |= fS and T |= fF . Furthermore, T |= fS iff T [1]
∈ pages(S) and T |= fF iff T [#T ] ∈ pages(F ). Thus T is an answer of f(H) iff T [1] ∈
pages(S) and T [#T ] ∈ pages(F ). Therefore, we have that L(f(H)) = L(MH) holds
as required.

We proceed to investigate the correspondence between finite automata and trail
queries.

Recall that star-free regular languages are closed under union, intersection, and
concatenation [HOPC79, PERR90]. We will assume that when taking the union, in-
tersection, or concatenation of two finite automata their sets of states are disjoint.
Furthermore, for convenience we will also assume that the concatenation of any fi-
nite automaton with the empty Hypertext automaton yields the empty Hypertext
automaton.

We next define a useful finite automaton with respect to a repository, I, which
accepts the star-free regular language A+; we call this finite automaton the complete
automaton.

Definition 5.10 (the complete automaton of a repository). The complete au-
tomaton with respect to a repository, I, is a quintuple of the formM(γ,I) = (A, Qγ ,∆γ ,
Sγ , Fγ) (or simply Mγ whenever I is understood from context), where

• A = {1, . . . ,m} is a finite alphabet with m = #I.
• Qγ = {s} is the singleton set of states.
• ∆γ = Qγ ×A×Qγ is the transition relation.
• Sγ = {s} is the initial state.
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• Fγ = {s} is the terminal state.

The finite automaton representing a trail query f , with respect to a repository
I (or simply the finite automaton representing f if I is understood from context), is
a quintuple of the form M(f,I) = (A, Qf ,∆f , Sf , Ff ) (or simply Mf whenever I is
understood from context), whereas before A = {1, . . . ,m} with m = #I.

Prior to constructing Mf we present an algorithm, which recursively constructs
an intermediate finite automaton, Mf ′ , in accordance with the subformulas of f .

We will assume that with each transition, (si, p, sj), in the transition relation
of a finite automaton, say, M, we maintain an auxiliary set, denoted by cond(M,
(si, p, sj)) (or simply cond(si, p, sj) if M is understood from context), which is ini-
tialized to the empty set. The set cond(si, p, sj) will store the conditions associated
with the said transition.

Definition 5.11 (the intermediate finite automaton representing a trail query).
As an intermediate step we present an algorithm, which recursively constructs a fi-
nite automaton Mf ′ = (A, Qf ′ ,∆f ′ , Sf ′ , Ff ′) with f and I given as its inputs; the
algorithm is designated by τ I when I is its input repository (or simply τ when I is
understood from context). For the purpose of the algorithm we will assume that τ has
an additional implicit Boolean parameter, designated by 4flag, which is initialized to
false.

The algorithm considers all of the subformulas g ∈ Sub(f) in decreasing order of
|g| in accordance with the structure of g (recall that we have assumed that all conditions
have the same length of one):

1. If g is just the condition C, with variable Z, then let {i1, . . . , ik} be the largest
subset of {1, . . . ,#I} such that there exists an interpretation σ satisfying
σ(Z) = ij, 1 ≤ j ≤ k, and σ |= C.
If k ≥ 1, then MC = (A, QC ,∆C , SC , FC), where
• QC = {sC1

, sC2
}.

• ∆C = {(sC1
, i1, sC2

), . . . , (sC1
, ik, sC2

)} and ∀j ∈ {1, . . . , k}, set
cond(sC1

, ij , sC2
) to C.

• SC = {sC1} is the initial state.
• FC = {sC2} is the terminal state.

If 4flag is true, then τ(g) returns MC ; otherwise (when 4flag is false) τ(g)
returns the concatenation of MC and Mγ . Finally, if the aforesaid subset is
empty, i.e., k = 0, then τ(g) returns the empty Hypertext automaton.

2. If g is the formula g1 ∧ g2, such that τ(g1) returns Mg1
and τ(g2) returns

Mg2 , then τ(g) returns the intersection of Mg1 and Mg2 . In addition, if
cond((si1 , si2), p, (sj1 , sj2)) is in the transition relation of the intersection of
Mg1

andMg2
, then cond((si1 , si2), p, (sj1 , sj2)) is set to cond(Mg1

, (si1 , p, sj1))
∪ cond(Mg2

, (si2 , p, sj2)).
3. If g is the formula 3(g′) and τ(g′) returns Mg′ , then τ(g) returns Mg′ if
4flag is true; otherwise (when 4flag is false) τ(g) returns the concatenation
of Mγ and Mg′ .

4. If g is the formula ©(g′) and τ(g′) returns Mg′ , then τ(g) returns the empty
Hypertext automaton if 4flag is true, otherwise (when 4flag is false) τ(g) re-
turns the concatenation ofM© andMg′ , whereM© = (A, Q©,∆©, S©, F©)
is defined as follows:
• Q© = {s©1 , s©2}.
• ∆© = {(s©1 , 1, s©2), . . . , (s©1 ,m, s©2)}, where m = #I.
• S© = {s©1

} is the initial state.
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Fig. 5.2. A finite automaton for a trail query.

• F© = {s©2
} is the terminal state.

5. If g is the formula 4(g′), 4flag is set to true, and if τ(g′) returns Mg′ , then
τ(g) returns Mg′ provided 4flag was true prior to invoking τ(g′); otherwise
(when 4flag was false prior to invoking τ(g′)) τ(g) returns the concatenation
of Mγ and Mg′ .

Example 4. Let f be the trail query ©4(C), with C being a condition such
that the only interpretation σ over H, with σ |= C, satisfies σ(Z) = 2, where Z is
the variable of C and 2 is a page number of I. In addition, let I be the information
repository of the Hypertext database H of Example 3. The finite automaton for Mf ′

is shown in Figure 5.2.

It can be verified that the regular language accepted by the finite automaton shown
in Figure 5.2 would remain the same were f to be the trail formula ©34(C). This
can also be deduced from Proposition 4.11 part (4).

We next prove that the language accepted by τ(f) is a star-free regular language.

Lemma 5.12. L(τ(f)) is a star-free regular language.

Proof. The result follows by a straightforward induction on the length of f ,
observing that L(Mγ) = A+ is star-free and by the fact that, due to the construction
of Mg via τ , L(Mg) is also star-free for all subformulas g of f . (Recall that a finite
regular language is star-free and that a finite automaton having no cycles accepts a
finite regular language.)

The following lemma gives an upper bound on the cardinality of the set of states
of the finite automaton τ(f) constructed by the algorithm given in Definition 5.11.
Note that this upper bound is independent of the repository, I, and is exponential
only in the number of conjunctions, between subformulas of f , plus one.

Lemma 5.13. |Qf ′ | ≤ O(|f |)∧(f), where f is a trail formula, τ(f) = Mf ′ =
(A, Qf ′ ,∆f ′ , Sf ′ , Ff ′) and ∧(f) is the number of conjunctions, between subformulas
of f, plus one.

Proof. We prove the result by induction on ∧(f). We observe that given two finite
automata, whose state sets are Q1 and Q2, when we concatenate, or correspondingly,
intersect the two finite automata, then the cardinality of the state set of the resulting
finite automaton is |Q1| + |Q2|, or correspondingly, |Q1| · |Q2| [HOPC79, PERR90].

Recall that we have assumed that all conditions in f have the same length of one.

(Basis): If ∧(f) = 1, then f has no conjunctions. The result that |Qf ′ | ≤ O(|f |)
follows by a straightforward induction on the length of f by inspecting Definition 5.11
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in accordance with the structure of f .

(Induction): Assume that the result holds when ∧(f) = k, where k ≥ 1; we then
need to prove that the result holds when ∧(f) = k + 1.

It follows that f must be of the form op1(. . . opq(g) . . .), where op = op1 . . . opq
is a sequence of trail operators, with q ≥ 0, and g is a subformula of f of the form
g1 ∧ g2, satisfying ∧(g1) ≤ k and ∧(g2) ≤ k.

By part (2) of the description of τ in Definition 5.11 |Qg| ≤ |Qg1 | · |Qg2 |, where
Qg1 and Qg1 are the state sets of the finite automataMg1 andMg2 , respectively. Fur-
thermore, by the inductive hypothesis |Qg1 | ≤ O(|g1|)∧(g1) and |Qg2

| ≤ O(|g2|)∧(g2).
It therefore follows that |Qg| ≤ O(|f |)∧(f), since |g1|+ |g2| < |f | and ∧(g1) +∧(g2) =
∧(f).

The result now follows by a straightforward induction on the number, q, of trail
operators in op by inspecting Definition 5.11 according to the three different cases
where the first operator, op1, is 3,©, or 4.

In order to conclude the construction of Mf we need to take into account the
semantics of normal and unique variables. To accomplish this we use the auxiliary
sets cond(si, p, sj) and modify the output of τ(f) so that it satisfies the constraints
enumerated below.

First, we define some convenient terminology. A time unit of a trail formula f
(or simply a time unit whenever f is understood from context) is defined to be a
transition, (si, p, sj), in the transition relation of the finite automaton τ(f), where
p is a page number of I and si, sj are states. The variable of a condition, C ∈
cond(si, p, sj), is said to be appearing at the time unit (si, p, sj).

The following two constraints must be enforced on variables appearing at time
units:

1. No two unique variables, which are distinct, can appear at two (not necessarily
distinct) time units having the same page number (recall Definition 4.1 and
the comment that follows).

2. If the same variable appears at two distinct time units, then its corresponding
interpretations must be the same.

In order to formalize the above constraints, let ϕ(cond(si, p, sj)) denote the set of
variables of the conditions contained in cond(si, p, sj), where (si, p, sj) is a time unit
of a trail formula f . Thus the following conditions, corresponding to the above two
constraints, must be enforced in the finite automaton τ(f).

V1. For all (not necessarily distinct) time units (si1 , p, sj1) and (si2 , p, sj2), if
there exists a path from (si1 , p, sj1) to (si2 , p, sj2), then there do not exist
two unique variables, which are distinct, included in ϕ(cond(si1 , p, sj1)) ∪
ϕ(cond(si2 , p, sj2)).

V2. For all distinct time units, (si1 , p1, sj1) and (si2 , p2, sj2), if there exists a path
from (si1 , p1, sj1) to (si2 , p2, sj2) and ϕ(cond(si1 , p1, sj1)) ∩ ϕ(cond(si2 , p2, sj2))
6= ∅, then p1 = p2.

We now present a further algorithm, designated by π, that takes as its input the
finite automaton τ(f) and transforms it into the desired finite automaton Mf .

Algorithm 1 (π(f)).

1. begin
2. Mf = (A, Qf ,∆f , Sf , Ff ) := τ(f);
3. while ∃(si1 , p1, sj1), (si2 , p2, sj2) ∈ ∆f that violate either (V1) or (V2) do
4. ∆1 := ∆f − {(si1 , p1, sj1)};
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5. M1 := (A, Qf ,∆1, Sf , Ff );
6. ∆2 := ∆f − {(si2 , p2, sj2)};
7. M2 := (A, Qf ,∆2, Sf , Ff );
8. Mf := the union of M1 and M2;
9. end while
10. return Mf ;
11. end.

Example 5. It can be verified that for the trail query f of Example 4 Mf ′ =
Mf , since both the constraints (V1) and (V2) are satisfied.

In order to prove that the regular language, accepted by the finite automaton,
Mf = π(f), output from Algorithm 1, is a star-free regular language we first prove
the following lemma.

Lemma 5.14. If L(M) is a star-free regular language, then L(M′) is also
a star-free regular language, where M = (A, Q,∆, S, F ) and M′ = (A, Q,∆ −
{(si, p, sj)}, S, F ) are finite automata.

Proof. Let L = L(M) and L′ = L(M′). Also, assume that (si, p, sj) ∈ ∆;
otherwise the result follows trivially. We note that by the construction ofM′ we have
L′ ⊆ L.

We say that an occurrence of an alphabet symbol p in a substring y of w ∈ A∗
is necessary with respect to (si, p, sj) (or simply p ∈ y is necessary if w and (si, p, sj)
are understood from context) whenever the following statement is satisfied: If w is
accepted by M and p is the ith symbol in w, then (si, p, sj) is the ith transition of
all successful paths whose label is w.

Since L is a star-free regular language, then from Theorem 5.5 ∃n ∈ ω(n > 0)
such that ∀x, y, z ∈ A∗, (5.1) is satisfied; let us fix n to be such a natural number.

In order to conclude the proof we show that ∃m(m ≥ n) such that ∀x, y, z ∈ A∗,

xymz ∈ L′ iff xym+1z ∈ L′.

Let us fix m = n+ 1 and x, y, z ∈ A∗ to be arbitrary strings.

By Theorem 5.5 xymz ∈ L iff xym+1z ∈ L. Furthermore, if xymz ∈ L, then it is
also the case that xym−1z ∈ L, since n = m− 1, and thus the mth occurrence of y in
ym must be the label of a cycle that causes the string xymz to be in L.

We have that the following two statements are equivalent:

1. xymz ∈ L′ iff xym+1z ∈ L′.
2. The number of necessary occurrences of p in the mth occurrence of the sub-

string y of xymz ∈ L is zero iff the number of necessary occurrences of p in
the (m+ 1)th occurrence of the substring y of xym+1z ∈ L is also zero.

It remains to show that statement (2) above is true.

The if part of statement (2) implies that there exists a cycle, say, θ, whose label
is y, that causes xym+1z to be in L and does not include (si, p, sj). Therefore, θ
also causes xymz to be in L, since n = m − 1, implying that there exists a cycle,
whose label is y, that causes xymz to be in L. It follows that the number of necessary
occurrences of p in the mth occurrence of the substring y of xymz ∈ L is zero, as
required.

Similarly, the only if part of statement (2) implies that there exists a cycle, whose
label is y, that causes xymz to be in L and does not include (si, p, sj). Therefore, the
number of necessary occurrences of p in the (m + 1)th occurrence of the substring y
of xym+1z ∈ L is also zero, as required.
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We proceed to show that L(Mf ) is a star-free regular language. In particular, the
class of languages accepted by finite automata representing trail queries is a proper
subclass of the class of star-free regular languages. (Recall that trail formulas do not
include the until temporal operator and that negation and disjunction are included
only in conditions; see [EMER90, Theorem 6.4].)

Theorem 5.15. L(Mf ) is a star-free regular language.

Proof. By Lemma 5.12 the regular language L(Mf ′), where Mf ′ = τ(f), is
star-free. In addition, by Lemma 5.14 the regular languages accepted by the finite
automata, M1 and M2, of Algorithm 1 are both star-free. Furthermore, the regular
language accepted by Mf , the finite automaton assigned a value at line 8 of the said
algorithm, is also star-free, since star-free regular languages are closed under union.
Thus, the transformation carried out via the while loop of Algorithm 1, beginning at
line 3 and ending at line 9, preserves star-freeness of the regular language accepted
by Mf . The result now follows.

The next theorem follows by a straightforward inspection of Algorithm 1 noting
that given the auxiliary set, cond(si, p, sj),

∑
q |Cq| ≤ |f |, where Cq ∈ cond(si, p, sj).

(See Algorithm 2 in section 6, whose polynomial-time complexity is O(|Qf | · |∆f |),
which can be used to decide whether there exists a path from (si1 , p1, sj1) to (si2 , p2, sj2),
where π(f) = Mf = (A, Qf ,∆f , Sf , Ff ).)

Theorem 5.16. The finite automaton,Mf = π(f), returned by Algorithm 1, can
be constructed in polynomial time in #I, |f |, and |Qf ′ |, where τ(f) = (A, Qf ′ ,∆f ′ , Sf ′ ,
Ff ′).

The following theorem shows that the language induced by the output of a trail
query f is equal to the regular language accepted by the intersection of the finite au-
tomaton representing f and the finite automaton representing the Hypertext database
H, which constitutes the input to f .

Theorem 5.17. L(f(H)) = L(MH ∩Mf ), where H is a Hypertext database and
f is a trail query.

Proof. (L(f(H)) ⊆ L(MH ∩Mf )): By Lemma 5.8 L(f(H)) ⊆ L(MH). Thus,
we need to show that it is also the case that L(f(H)) ⊆ L(Mf ).

Let ρ(T ) ∈ L(f(H)) implying by Definition 4.14 that T |= f . We note that
the constraint corresponding to (V1), i.e., that no two unique variables, which are
distinct, can be mapped by an interpretation to the same T [i], and the constraint
corresponding to (V2), i.e., that an interpretation maps the same variable to the
same i ∈ {1, . . . ,#I} are both satisfied by Definition 4.3 of an interpretation σ.

We show that ρ(T ) ∈ L(Mf ) by induction on the length of f . Recall that we
have assumed that all conditions in f have the same length of one.

(Basis): If |f |= 1, then f is a condition, say, C. The result follows by Definition 4.8
part (T1) and the description of τ in Definition 5.11 part (1), since there is a transition
in Mf for each page number ij with σ(Z) = ij .

(Induction): Assume that the result holds when |f | = k, where k ≥ 1; we then
need to prove that the result holds when |f | > k.

We consider the four cases according to the structure of f as follows:

1. If f is the query g1 ∧ g2, then by Definition 4.8 part (T2) T |= f iff T |= g1

and T |= g2. Furthermore, by the inductive hypothesis, ρ(T ) ∈ L(Mg1
) and

ρ(T ) ∈ L(Mg2
). Therefore, by the description of τ in Definition 5.11 part (2),

ρ(T ) ∈ L(Mf ′), where Mf ′ is the intersection of the intermediate automata
Mg′1 andMg′2 . The result follows from Algorithm 1, which implies thatMf

is equal to the intersection of Mg1
and Mg2

.



748 MARK LEVENE AND GEORGE LOIZOU

2. If f is the query 3(g), then by Definition 4.8 part (T3) T |= f iff ∃i ∈
{0, . . . ,#T −1} such that T i |= g. Furthermore, by the inductive hypothesis,
ρ(T i) ∈ L(Mg). Therefore, by the description of τ in Definition 5.11 part (3),
ρ(T ) ∈ L(Mf ′), whereMf ′ is the concatenation ofMγ and the intermediate
automaton Mg′ . The result follows from Algorithm 1, which implies that
Mf is equal to the concatenation of Mγ and Mg.

3. If f is the query ©(g), then by Definition 4.8 part (T4) T |= f iff # T >
1 and T 1 |= g. Furthermore, by the inductive hypothesis, ρ(T 1) ∈ L(Mg).
Therefore, by the description of τ in Definition 5.11 part (4), ρ(T ) ∈ L(Mf ′),
whereMf ′ is the concatenation ofM© and the intermediate automatonMg′ .
The result follows from Algorithm 1, which implies that Mf is equal to the
concatenation of M© and Mg.

4. If f is the query 4(g), then by Definition 4.8 part (T5) T |= f iff # T > 0
and T i |= g, where i = #T − 1. Furthermore, by the inductive hypothesis,
ρ(T i) ∈ L(Mg). Therefore, by the description of τ in Definition 5.11 part (5),
ρ(T ) ∈ L(Mf ′), whereMf ′ is the concatenation ofMγ and the intermediate
automaton Mg′ . Moreover, when contructing Mg′ 4flag will have been set
to true implying that ρ(T i) ∈ L(Mg′), where i = #T − 1. The result follows
from Algorithm 1, which implies that Mf is equal to the concatenation of
Mγ and Mg.

(L(MH∩Mf ) ⊆ L(f(H))): Let w ∈ L(MH∩Mf ), where w = δ(s1)δ(s2) . . . δ(sn)
(see Definition 5.2). Thus w = ρ(T ) for some trail T in R, with #T = n, since
w ∈ L(MH). Furthermore, there exists an interpretation σ over H such that ∀i ∈
{1, . . . , n} ∀Z ∈ ϕ(cond(si, δ(si), si+1)), σ(Z) = δ(si), since by Algorithm 1 both
conditions, (V1) and (V2), are satisfied by the path whose label is w.

We now show that T |= f with respect to H and σ, implying that w ∈ L(f(H))
as required, by induction on the length of f . As before, recall that we have assumed
that all conditions have the same length of one.

(Basis): If |f | = 1, then f is a condition, say, C. The result follows as in the
previous basis step.

(Induction): Assume that the result holds when |f | = k, where k ≥ 1; we then
need to prove that the result holds when |f | > k.

We consider the four cases according to the structure of f as follows:

1. If f is the query g1 ∧ g2, then by the description of τ in Definition 5.11 part
(2) ρ(T ) ∈ L(Mg′1) and ρ(T ) ∈ L(Mg′2). Moreover, by Algorithm 1, ρ(T ) ∈
L(Mg1) and ρ(T ) ∈ L(Mg2). Furthermore, by the inductive hypothesis, T |=
g1 and T |= g2. The result then follows by Definition 4.8 part (T2).

2. If f is the query 3(g), then by the description of τ in Definition 5.11 part (3)
ρ(T ) ∈ L(Mf ′), whereMf ′ is the concatenation ofMγ andMg′ . Moreover,
by Algorithm 1, ∃i ∈ {0, . . . ,#T−1} such that ρ(T i) ∈ L(Mg). Furthermore,
by the inductive hypothesis, T i |= f . The result then follows by Definition 4.8
part (T3).

3. If f is the query©(g), then by the description of τ in Definition 5.11 part (4)
ρ(T ) ∈ L(Mf ′), whereMf ′ is the concatenation ofM© andMg′ . Moreover,
by Algorithm 1, #T > 1 and ρ(T 1) ∈ L(Mg). Furthermore, by the inductive
hypothesis, T 1 |= f . The result then follows by Definition 4.8 part (T4).

4. If f is the query 4(g), then by the description of τ in Definition 5.11 part (5)
ρ(T ) ∈ L(Mf ′), whereMf ′ is the concatenation ofMγ andMg′ . Moreover,
when contructingMg′ 4flag will have been set to true implying that ρ(T i) ∈
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Fig. 5.3. A finite automaton for the output of a trail query.

L(Mg′), where i = #T − 1. By Algorithm 1 # T > 0 and ρ(T i) ∈ L(Mg),
where i = #T − 1. Furthermore, by the inductive hypothesis, T i |= f . The
result then follows by Definition 4.8 part (T5).

Example 6. The finite automatonMH ∩Mf , whereMH is shown in Figure 5.1
and Mf is shown in Figure 5.2, which accepts the same language that is induced by
f(H), is shown in Figure 5.3.

In order to test whether f(H) is nonempty, by Theorem 5.17 we can check whether
L(MH∩Mf ) is nonempty, which can be done in nondeterministic logspace [JONE75]
and thus in polynomial time in the size of MH ∩Mf .

The following corollary is an immediate consequence of Theorems 5.6, 5.15, and
5.17, since the class of regular star-free languages is closed under intersection.

Corollary 5.18. L(f(H)) is a star-free regular language.
We note that by Theorem 6.4 in [EMER90] PLTL is exactly as expressive as

the class of star-free languages which do not include ε. Corollary 5.18, in view of
Theorem 5.17, implies that L(f(H)) is actually a member of a proper subclass of
the class of star-free regular languages corresponding to the intersection of the star-
free regular languages accepted by the finite automata representing trail queries and
Hypertext databases, respectively.

The following corollary concerning the complexity of constructingMH , Mf and
the intersection thereof is an immediate consequence of Definition 5.1, Lemma 5.13,
and Theorem 5.16.

Corollary 5.19. The following statements are true:
1. MH can be constructed in linear time in #I and |R|.
2. Mf can be constructed in time exponential in the number of conjunctions,

between subformulas of f, plus one; if there are no conjunctions in f , then
Mf can be constructed in polynomial time in #I and |f |.

3. MH ∩Mf can be constructed in polynomial time in |QH | and |Qf |, where
QH and Qf are the state sets of MH and Mf , respectively.

It is interesting to compare Corollary 5.19 with a result of [LICH84] showing that
although model checking of PLTL formulas (see Definition 6.2) is exponential time in
the length of the formulas it is linear time in the size of the temporal structure being
checked.
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A special case worth considering is when R is acyclic. In this case the number of
trails in R is finite and thus the regular language defined by the output of a query
is a finite regular language and therefore trivially star-free. As we will see in the
next section, the fact that R is acyclic does not necessarily reduce the complexity of
computing the star-free regular language induced by f(H), namely, L(f(H)).

Finally, it would be useful to extend HQL to enable the specification of second-
order notions such as specifying that only the shortest trails (i.e., the trails with the
least count) would be included in f(H). Obviously for such an extension further
analysis of MH ∩Mf would have to be carried out.

6. The complexity of navigation in Hypertext. In this section we investi-
gate the complexity of deciding whether a Hypertext database is a model of a trail
formula. Our results show that, in general, this problem cannot be solved efficiently
(assuming P 6= NP). On the positive side we exhibit two significant subclasses of
3-free trail formulas for which this decision problem can be solved in polynomial
time.

Our results imply that the navigation problem is not easily solved in the general
case. In practice Hypertext systems could include algorithms which return randomized
and/or fuzzy solutions.

The following lemma shows that if a Hypertext database is a model of a given
trail formula f , then we can find a trail, which satisfies f , and whose count is no
greater than #I multiplied by |Sub(f)|.

Lemma 6.1. Let a Hypertext database, H = 〈I,R〉, be a model of the trail formula,
f. Then ∃T in R such that T |= f and #T ≤ #I · |Sub(f)|.

Proof. Let L in R be a trail such that L |= f holds; such a trail exists in R, since
H is a model of f . We prove the result by showing that there exists a subtrail (see
Definition 3.6), T of L, such that T |= f and #T ≤ #I · |Sub(f)|; the proof is by
induction on |Sub(f)|.

(Basis): If |Sub(f)| = 1, then the result follows from Definition 4.8 part (T1),
since #L > 0 and the prefix L1 satisfies L1 |= f and #L1 = 1.

(Induction): Assume that the result holds when |Sub(f)| = k, where k ≥ 1; we
then need to prove that the result holds when |Sub(f)| = k + 1.

We conclude the result by considering the form of f according to the four cases,
T2 to T5, of Definition 4.8 as follows (recalling the definition of the concatenation of
two arrays given in Definition 3.3):

1. If f is of the form f1∧f2, then L |= f1 and L |= f2. Furthermore, by the induc-
tive hypothesis T |= f1 and T |= f2, where T is a subtrail of L, and # T ≤ #I ·
max(|Sub(f1)|, |Sub(f2)|). The result follows, since max(|Sub(f1)|, |Sub(f2)|)
≤ |Sub(f)|.

2. If f is of the form 3(f ′), then ∃i ∈ {0, . . . ,#L − 1} such that Li |= f ′.
Furthermore, by the inductive hypothesis there exists a subtrail T of Li, with
#T ≤ #I ·|Sub(f ′)|, such that T |= f ′. The result follows by Proposition 4.11
part (8) which implies that T |= 3(f ′), since |Sub(f ′)| ≤ |Sub(f)|.

3. If f is of the form ©(f ′), then #L > 1 and L1 |= f ′. Furthermore, by the
inductive hypothesis there exists a subtrail T of L1 such that T |= f ′, with
#T ≤ #I · |Sub(f ′)|. Let Lj be the prefix of L such that LjT is also a prefix
of L. It follows that there exists a subtrail T ′ of L in R such that #T ′ = 1
and T ′[1] = L[j], since #Lj ≥ 1. The result follows, since by Definition 4.8
part (T4) T ′T |= f and #(T ′T ) = #T + 1.
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4. If f is of the form 4(f ′), then #L > 0 and Li |= f ′, where i = #L− 1. The
result follows, since by Definition 4.8 part (T5) Li |= 4(f ′) and #Li = 1.

Definition 6.2 (model checking). The model checking problem is the problem
of deciding whether a Hypertext database is a model of a trail formula.

We proceed to investigate the complexity of the model checking problem.

Lemma 6.3. The model checking problem is in NP.

Proof. In order to show that the model checking problem is in NP we present a
nondeterministic polynomial-time algorithm that decides the problem (cf. [SIST85,
Theorem 3.5]).

Let H = 〈I,R〉 be a Hypertext database and f be a trail formula. We first guess
a trail T in R and an interpretation σ over H. It can easily be checked in polynomial
time in |f | that the restriction of σ to the unique variables in the subformulas of f is
a one-to-one mapping. Furthermore, by Lemma 6.1 we can assume without loss of
generality that # T ≤ #I · |Sub(f)|.

We now present an algorithm, which verifies whether T |= f or not. The algorithm
maintains a set, called label(i), for each marker i of T , which is initialized to the
empty set. It then considers all of the subformulas g ∈ Sub(f) in increasing order of
|g|, assuming as before that all conditions in g have the same length of one, as follows:

1. If g is the condition C, with variable Z, then add g to label(i) iff σ |= C and
T [i] = σ(Z).

2. If g is the formula g1 ∧ g2, then add g to label(i) iff g1, g2 ∈ label(i).
3. If g is the formula 3(g′), then add g to label(i) iff ∃j ∈ {i, . . . ,#T} such that
g′ ∈ label(j).

4. If g is the formula ©(g′), then add g to label(i) iff g′ ∈ label(i+ 1).
5. If g is the formula 4(g′), then add g to label (i) iff g′ ∈ label(#T ).

At the end of the above algorithm, whose time complexity is a polynomial in #I
and |f |, it can be verified that T |= f iff f ∈ label(1).

Theorem 6.4. The model checking problem is NP-complete.

Proof. By Lemma 6.3 model checking is in NP. It remains to show that the
problem is NP-hard.

In order to show NP-hardness we reduce, in polynomial time, 3SAT [GARE79]
to the model checking problem using a reduction similar to that used in [SIST85,
Theorem 3.5].

Let J = J1 ∧ . . . ∧ Jm be a conjunction of m clauses on a finite set of variables
{x1, . . . , xn} such that ∀i ∈ {1, . . . ,m}, Ji = Li1∨Li2∨Li3 is a clause of three literals,
where each literal Lij is either xq or ¬xq, with q ∈ {1, . . . , n}.

We define an operator, denoted by φ, which returns the clauses that contain a
literal xi or ¬xi as follows:

• φ(xi) = {Jj |xi is a literal in Jj} and
• φ(¬xi) = {Jj |¬xi is a literal in Jj}.

Let H(J) = 〈I(J), R(J)〉 be the Hypertext database defined by the following:

1. The set of strings {a1, . . . , an, b1, . . . , bn, c1, . . . , cm, y0, y1, . . . , yn} ⊆ Σ∗, where
the ai’s, bi’s, ci’s, and yi’s are distinct, and A ∈ U .

2. #I(J) = 3n+ 1.
3. ∀i ∈ {1, . . . , n}, I(J)[i] = (A,wi), with wi = aic1 . . . ck, k ≤ m, and where
φ(xi) = {J1, . . . , Jk}.

4. ∀i ∈ {n + 1, . . . , 2n}, I(J)[i] = (A,wi), with wi = bi−nc1 . . . ck, k ≤ m, and
where φ(¬xi−n) = {J1, . . . , Jk}.

5. ∀i ∈ {2n+ 1, . . . , 3n+ 1}, I(J)[i] = (A, yi−(2n+1)).
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6. R(J) = {(ψ(yi−1), ψ(wi)), (ψ(wi), ψ(yi)), (ψ(yi−1), ψ(wi+n)), (ψ(wi+n), ψ(yi))
|i ∈ {1, . . . , n}}, where ∀j ∈ {1, . . . ,#I(J)}, ψ(I(J)[j]) denotes the page num-
ber j of I(J), ψ(wi) stands for ψ((A,wi)), and ψ(yi) stands for ψ((A, yi)).

The structure of R(J) is shown in Figure 6.1, where for notational convenience
the page numbers ψ((A, aic1 . . . ck)), ψ((A, bi−nc1 . . . ck)), and ψ((A, yi−(2n+1))) are
abbreviated to ai, bi, and yi, respectively.
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Fig. 6.1. The reachability relation R(J).

It can now be verified that J is satisfiable iff H(J) is a model of the trail formula,

substr(X0, y0)∧3(substr(X1, c1))∧ . . .∧3(substr(Xm, cm))∧4(substr(Xm+1, yn)),

where X0, X1, . . . , Xm, Xm+1 are m+ 2 distinct normal variables.
The following result is an immediate consequence of the reduction in the proof of

Theorem 6.4.
Corollary 6.5. The model checking problem is NP-complete for the class of

Hypertext databases having acyclic reachability relations and the class of ©-free trail
formulas whose conditions do not contain any unique variables.

The next result shows that the model checking problem does not become tractable
by allowing unique variables in conditions and disallowing normal variables.

Theorem 6.6. The model checking problem is NP-complete for the class of
Hypertext databases having acyclic reachability relations and the class of ©-free trail
formulas whose conditions do not contain any normal variables.

Proof. As in Theorem 6.4, by Lemma 6.3 the model checking problem is in NP.
It remains to show that the problem is NP-hard. In order to conclude the result we
modify the reduction of 3SAT given in the proof of Theorem 6.4. First, we modify
parts 3 and 4 of the construction of H(J) as follows:
3. ∀i ∈ {1, . . . , n}, I(J)[i] = (A,wi), with wi = ai; these pages represent the literals

xi.
4. ∀i ∈ {n + 1, . . . , 2n}, I(J)[i] = (A,wi), with wi = bi−n; these pages represent the

literals ¬xi.
Second, for each xq, q ∈ {1, . . . , n}, such that φ(xq) = {J1, . . . , Jk} we add k ad-

ditional pages to I(J). Each such additional page I(J)[i] is of the form (A, aicj), j ∈
{1, . . . , k}, where cj corresponds to the clause Jj . Similarly, for each ¬xq, q ∈ {1, . . . , n},
such that φ(¬xq) = {J1, . . . , Jk} we add another k additional pages to I(J). As in
the preceding case each such additional page I(J)[i] is of the form (A, bi−ncj), j ∈
{1, . . . , k}, where cj corresponds to the clause Jj .

As in the previous theorem the page numbers ψ((A, ai)), ψ((A, bi−n)), and
ψ((A, yi−(2n+1))) are abbreviated for notational convenience to ai, bi, and yi, re-
spectively, with i ∈ {1, . . . , n}. In addition, both the page numbers ψ((A, aicj)) and
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Fig. 6.2. The subgraph added to R(J).

ψ((A, bi−ncj)) are abbreviated to cj , with j ∈ {1, . . . , k}, where the distinction be-
tween aicj and bi−ncj is understood from context.

Moreover, for each page number i of I(J) representing xi, we add a subgraph to
the reachability relation R(J) of Theorem 6.4 (see Figure 6.1) as follows. First, we
add an arc from the page number i of I(J) to each of the page numbers cj . Second,
we add an arc from each of the page numbers cj , j ∈ {1, . . . , k}, to each of the page
numbers cp, with j < p and p ∈ {1, . . . , k}. Finally, we add an arc from each of the
page numbers cj to the page number yi. We repeat this process for each page number
i of I(J) representing ¬xi.

The subgraph added to the reachability relation R(J) of Theorem 6.4 is shown
in Figure 6.2.

It can now be verified that J is satisfiable iff H(J) is a model of the trail formula,

substr(Y0, y0) ∧3(substr(Y1, c1)) ∧ . . .(6.1)

. . . ∧3(substr(Ym, cm)) ∧4(substr(Ym+1, yn)),

where Y0, Y1, . . . , Ym, Ym+1 are m+ 2 distinct unique variables.
Specifically, if H(J) is a model of (6.1), then for some trail T ∈ R(J), T satisfies

(6.1) with respect to some interpretation σ overH. Now, for each σ(Yi), i ∈ {1, . . . ,m},
let ai or bi be the page number such that either (ai, σ(Yi)) or (bi, σ(Yi)) is in R(J).
It follows therefore that J is satisfiable under an assignment where each literal corre-
sponding to ai or bi is made true.

Correspondingly, if J is satisfiable then we need to exhibit a trail T that satisfies
(6.1) with respect to some interpretation σ over H. Now, since J is satisfiable there
is an assignment that makes each Jj in J , j ∈ {1, . . . ,m}, true. Furthermore, Jj is
true due to a literal, say, Li, being true in Jj . Let either ai or bi be the page number
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corresponding to Li and let cj be the page number corresponding to Jj such that
either (ai, cj) or (bi, cj) is in R(J). Let σ be such that σ(Y0) = y0, σm+1(Ym+1) = yn
and for j ∈ {1, . . . ,m} σ(Yj) = cj . The result now follows, since there is a trail
passing through all the cj ’s satisfying the desired trail formula.

We next show that the model checking problem is also NP-complete for the sub-
class of 3-free trail formulas.

Theorem 6.7. The model checking problem is NP-complete for the class of 3-free
trail formulas.

Proof. By Lemma 6.3 the model checking problem is in NP. It remains to show
that the problem is NP-hard. In order to show NP-hardness we reduce, in polynomial
time, the longest path problem, which is known to be NP-complete [GARE79], to the
model checking problem for the class of 3-free trail formulas.

Let G = (V,E) be a directed graph with V = {v1, . . . , vm} and s, t ∈ V. We need
to solve the problem: does there exist a simple path (that is, a path in which no node
occurs more than once) from s to t in G of length k or more?

We first let φ be a one-to-one mapping from V to {A} × Σ∗, where A ∈ U .
Next let H(G) = 〈I(G), R(G)〉 be a Hypertext database defined by
1. #I(G) = |V | = m.
2. ∀i ∈ {1, . . . ,m}, φ(vi) = I(G)[i].
3. ψ(G) = R(G), where ψ is an isomorphism fromG toR(G) such that ψ((vi, vj))

= (i, j), where i is the page number satisfying φ(vi) = I(G)[i] and j is the
page number satisfying φ(vj) = I(G)[j].

It can now be verified that there exists a simple path from s to t in G of length
k or more iff H(G) is a model of the trail formula

substr(Y0, β(φ(s))) ∧©(att(Y1, A)) ∧©2(att(Y2, A))∧
©k−1(att(Yk−1, A)) ∧4(substr(Yk, β(φ(t)))),

(6.2)

where Y0, Y1, . . . , Yk are distinct unique variables and ©p denotes the composition,
© . . .©, p times, with p ∈ ω.

The following two results follow from the reduction in the proof of Theorem 6.7.
Corollary 6.8. The model checking problem is NP-complete for the class of

3-free trail formulas whose conditions do not contain any normal variables.
The next corollary is easily shown by replacing all occurrences of © in (6.2) by

3; it also follows from Theorem 6.6.
Corollary 6.9. The model checking problem is NP-complete for the class of

©-free trail formulas whose conditions do not contain any normal variables.
We now show that model checking can be done in polynomial time for 3-free

trail formulas when the reachability relation of the Hypertext database is acyclic. In
order to prove the result we first solve the following graph-theoretic problem: Given
a directed acyclic graph (V,E) and a family {Vi} (i ∈ {0, . . . , k}) of subsets of V, does
there exist a path, 〈v0, . . . , vk〉, of length k in G such that vi ∈ Vi?

Let us call this the path of length k problem. We note that when we consider
directed acyclic graphs every path is actually a simple path.

We next show that a solution to the path of length k problem can be obtained in
O(k · |E|) time; when (V,E) is acyclic then k ≤ |V |.

Lemma 6.10. Given a directed graph (V,E) and a family {Vi} (i ∈ {0, . . . , k})
of subsets of V , then the path of length k problem can be solved in O(k · |E|) time.

Proof. In order to solve the problem we give the pseudocode of an algorithm
designated PATH((V,E), {Vi}), which takes as input a directed graph and a family
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of k + 1 subsets of V and returns YES if there is a solution to the path of length k
problem; otherwise it returns NO.

For each subset Vi ⊆ V we maintain an auxiliary set, called Pi, which stores all
the nodes that can be reached from a node in V0 via a path of length i. We also
assume that adjacent(v) denotes the set of nodes: {u|(v, u) ∈ E}.

Algorithm 2 (PATH((V, E), {Vi})).

1. begin
2. P0 := V0;
3. for i = 1 to k do
4. Pi := ∅;
5. for all v ∈ Pi−1 do
6. for all u ∈ adjacent(v) do
7. if u ∈ Vi then
8. Pi := Pi ∪ {u};
9. end if
10. end for
11. end for
12. end for
13. if Pk 6= ∅ then
14. return YES;
15. else
16. return NO;
17. end if
18. end.

It can be verified that the algorithm is correct and solves the path of length k
problem in O(k · |E|) time.

We next present a special case when model checking can be done in polynomial
time.

Theorem 6.11. The model checking problem can be solved in polynomial time
in the length of the repository and the length of the trail formula for the class of
Hypertext databases having acyclic reachability relations and for the class of 3-free
trail formulas.

Proof. Let H = 〈I,R〉 be a Hypertext database with R being acyclic and let f be
a 3-free trail formula. Since f is 3-free it follows that we can use Proposition 4.11 in
order to obtain a trail formula which is equivalent to f and is in the following normal
form:

C11 ∧ . . . ∧ Cn1 ∧4(C12) ∧ . . . ∧4(Cn2) ∧© . . .© (C13) ∧ . . .∧
© . . .© (Cn3

) ∧© . . .©4(C14
) ∧ . . . ∧© . . .©4(Cn4

),

where each Ci is a condition which is also a subformula of f , noting that for any trail
T in R it cannot be the case that T |= 4© (f).

On using Proposition 4.11 it can be verified that if a trail formula, f , is 3-free,
then f can be converted into a normal form 3-free trail formula in time polynomial
in |f |. For the rest of the proof we assume that f is in normal form.

Let©k[f ] denote the set of conditions in the conjuncts of f having no instance of
4 and exactly k instances of©, where k ≥ 0, and let max©(f) denote the maximum
number of instances of© in any conjunct of f . In addition, let 4[f ] denote the set of
conditions, {C12 , . . . , Cn2 , C14 , . . . , Cn4}, in conjuncts of f having an instance of 4.
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Finally, let F be an array of sets of page numbers such that #F = max©(f) + 2 and
such that initially ∀i ∈ {1, . . . ,#F}, F [i] = ∅.

The first step in our model checking algorithm is syntactic. If one of the following
constraints is violated, then H is not a model of f , since a contradiction arises:

1. There do not exist two unique variables, which are distinct, contained in the
set of conditions©k[f ] for any k ≥ 0; i.e., no two unique variables, which are
distinct, can appear at the same time.

2. There do not exist two unique variables, which are distinct, contained in the
set of conditions 4[f ]; i.e., no two unique variables, which are distinct, can
appear at the final time.

3. There do not exist natural numbers, k1, k2, with k1 6= k2 and 0 ≤ k1, k2 ≤
max©(f), such that the intersection of the set of variables contained in
©k1 [f ] with the set of variables contained in ©k2 [f ] is nonempty; i.e., no
variable can appear in two distinct times.

4. ∀k, 0 ≤ k < max ©(f), the intersection of the set of variables contained in
©k[f ] with the set of variables contained in 4[f ] is empty; i.e., no variable
can appear before and at the final time.

It can be verified that all of the above constraints can be checked in polynomial
time in |f |. Assuming that the above constraints are satisfied, then the following
statements are true:

1. ∀k, 0 ≤ k ≤ max©(f), if ©k[f ] is nonempty, then we can assume that there
exists only one variable in its conjuncts such that this variable does not appear
in any other set ©q[f ], where 0 ≤ k 6= q ≤ max©(f); i.e., there is only one
variable per time unit.

2. If 4[f ] is nonempty, then we can assume that there is only one variable in
its conjuncts, such that this variable does not appear in any other set ©k[f ],
where 0 ≤ k < max©(f); i.e., there is only one variable for the final time
unit.

3. If the intersection of the set of variables contained in 4[f ] and the set of
variables contained in ©k[f ] is nonempty, where k = max©(f), then the
single variable assumed to be in their conjuncts must be the same variable;
i.e., in this case the final time coincides with the time implied by max©(f).
Otherwise, we assume that their single respective variables are distinct.

We note that statements (1) and (2) above are valid, since if H is a model of f
and T is a trail in R such that T |= f with respect to some interpretation σ over H,
then for the variables Xi in the conjunctions of©k[f ] or 4[f ], σ must map Xi to the
same page number.

From now on we assume that the above statements are enforced in normal form
trail formulas by a straightforward renaming of variables. We are not concerned
whether the single variable per time unit is normal or unique due to the fact that R
is acyclic and thus all the paths in the directed acyclic graph corresponding to R are
simple.

For each page number, pn of I, we maintain an auxiliary set, called cond(pn),
which is initialized to the empty set. We then consider all the conditions C, of all the
conjuncts of f , in turn and add C to cond(pn) according to the following constraint:

• Add C to cond(pn) iff σ |= C, assuming that σ is an interpretation over H
and σ(Z) = pn, where Z is the variable of C.

Constructing the sets cond(pn) can be done in polynomial time in #I and |f |.
Next, for each page number pn of I add pn to F according to the following two
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rules:

1. If (©k[f ] 6= ∅) ⊆ cond(pn), where 0 ≤ k ≤ max©(f), then add pn to F [k+1].
2. If (4[f ] 6= ∅) ⊆ cond(pn), then add pn to F [#F ].

In the next step of our model checking algorithm we check if one of the ensuing
constraints is violated in which case H is not a model of f.

1. For any k, 0 ≤ k ≤ max©(f), if ©k[f ] 6= ∅, then F [k + 1] 6= ∅.
2. If 4[f ] 6= ∅, then F [#F ] 6= ∅.

The above constraints can be tested in polynomial time in #I and |f |. We
therefore assume that the above two constraints are satisfied.

In order to utilize Lemma 6.10, we modify F by setting F [i] to {1, . . . ,#I}∀i ∈
{1, . . . ,#F} whenever F [i] = ∅. The result now follows, on viewing R as a directed
acyclic graph, and viewing the prefix Fk+1 of F , where k + 1 = #F − 1, as a family
of k+ 1 subsets of I. The model checking problem thus reduces to the path of length
k problem, with the following final test: P ∗k ∩ F [#F ] 6= ∅, where Pk

∗ denotes the set
of nodes, Pk∪ {u|v ∈ Pk and (v, u) is an arc in the transitive closure of R}.

The following corollary, which is an immediate consequence of Theorem 6.11,
demonstrates a special case when model checking can be solved in polynomial time
even when the reachability relation is cyclic.

Corollary 6.12. The model checking problem can be solved in polynomial time
in the length of the repository and the length of the trail formula for the class of 3-free
trail formulas whose conditions do not contain any unique variables and such that the
normal variables appearing in conditions at distinct times are distinct.

Proof. The result follows, since in this special case constraints (1) to (4) in the
proof of Theorem 6.11 do not have to be satisfied. Furthermore, in this special case,
Algorithm 2 will return YES iff there exists a trail in R, which is not necessarily
loop-free; i.e., a node may appear more than once in the path corresponding to the
trail.

The following corollary, which is given for completeness, follows immediately from
Theorem 6.11 on using Algorithm 2, since we need only inspect O(#I2) pages.

Corollary 6.13. The model checking problem can be solved in polynomial time
in the length of the repository and the length of the trail formula for the classes of
3-free and ©-free trail formulas.

The next theorem shows that if we relax the condition stated in Corollary 6.12,
namely, that normal variables appearing in conditions at distinct times be distinct,
then the model checking problem is again NP-complete.

Theorem 6.14. The model checking problem is NP-complete for the class of
3-free trail formulas whose conditions do not contain any unique variables.

Proof. By Lemma 6.3 the model checking problem is in NP. It remains to show
that the problem is NP-hard. In order to show NP-hardness we reduce, in polynomial
time, the clique [BUCK90] of size k problem, which is known to be NP-complete
[GARE79], to the model checking problem for the class of 3-free trail formulas, whose
conditions do not contain any unique variables.

Let G = (V,E) be a graph with V = {v1, . . . , vm}. We need to solve the problem:
does G contain a clique of size k or more, where k ≤ |V |?

We first let φ be a one-to-one mapping from V to {A}×Σ∗, where A ∈ U . Next,
let H(G) = 〈I(G), R(G)〉 be a Hypertext database defined by

1. #I(G) = |V | = m.
2. ∀i ∈ {1, . . . ,m}, φ(vi) = I(G)[i].
3. ψ(G) = R(G), where ψ is an isomorphism from G to R (G) such that
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ψ({vi, vj}) = {(i, j), (j, i)}, where i and j are the page numbers satisfying
φ(vi) = I(G)[i] and φ(vj) = I(G)[j], respectively.

Let K = {1, . . . , k} and lex(K) = 〈(1, 2), (1, 3), . . . , (1, k), (2, 3), . . . , (2, k),
. . . , (k−1, k)〉 be the lexicographically ordered sequence [HALM74] of (k2−k)/2 pairs
in K2 such that (i, j) is in lex(K) iff i < j. Furthermore, let path(K) = 〈1, 2, 1, 3,
. . . , 1, k, 2, 3, . . . , 2, k, . . . , k − 1, k, 1〉 be the sequence of the (k2 − k) + 1 numbers in
K resulting from transforming each pair (i, j) in lex(K) into the subsequence i, j and
then adding 1 at the end of the resulting sequence.

It can be verified that G contains a clique of size k or more iff we can find k
nodes in the directed graph corresponding to R(G) numbered from 1 to k such that
path(K) is a path in this directed graph.

We next transform path(K) into the following 3-free trail formula, denoted by
f(path(K)), whose conditions do not contain any unique variables, namely,

att(X1, A) ∧©(att(X2, A)) ∧©2(att(X1, A)) ∧©3(att(X3, A)) ∧ . . .∧
©2(k−1)−2(att(X1, A)) ∧©2(k−1)−1(att(Xk, A)) ∧©2(k−1)(att(X2, A))∧
©2(k−1)+1(att(X3, A)) ∧ . . . ∧©4(k−2)(att(X2, A)) ∧©4(k−2)+1(att(Xk, A)) ∧ . . .∧
©(k2−k)−1(att(Xk−1, A)) ∧©k2−k(att(Xk, A)) ∧©(k2−k)+1(att(X1, A)),

where X1, . . . , Xk are distinct normal variables and ©k denotes the composition,
© . . .©, k times, with k ∈ ω.

It can be verified that G contains a clique of size k or more iff H(G) is a model
of the trail formula f(path(K)).

Table 6.1, shown below, summarizes the complexity results obtained in this sec-
tion; the reader can verify that all possible cases have been considered. “Yes” in the
acyclic column indicates that the reachability relation of the Hypertext database is
acyclic, “Yes” in the no-normal column indicates that trail formulas do not contain
normal variables, “Yes” in the no-unique column indicates that trail formulas do not
contain unique variables, “Yes” in the 3-free column indicates that trail formulas are
3-free, “Yes” in the ©-free column indicates that trail formulas are ©-free, “NPC”
stands for NP-complete, “P” stands for polynomial time; finally, “No†” in the no-
normal column indicates that normal variables appearing in conditions at distinct
times are distinct.

Table 6.1
Summary of the complexity results.

Acyclic No-normal No-unique 3-free ©-free Complexity
Yes No Yes No Yes NPC
Yes Yes No No Yes NPC
No Yes No Yes No NPC
No No Yes Yes No NPC
Yes No No Yes No P
No No† Yes Yes No P
No No No Yes Yes P

7. Concluding remarks. An attempt has been made to tackle the navigation
problem for Hypertext, namely, the problem of getting “lost in hyperspace.” In order
to solve this problem we utilized temporal logic and defined the navigation semantics
of Hypertext in terms of the query language HQL, which is based on a subset of PLTL.
In the navigation semantics of HQL the notion of a trail is central. The output to a
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trail query with respect to a Hypertext database is the set of all trails in the Hypertext
database which satisfy the trail query.

We investigated the evaluation of HQL queries, showing that by using the automa-
ta-theoretic approach we can construct a finite automaton representing the output
f(H) of a trail query f with respect to a Hypertext database H. We have shown
in Corollary 5.18 that the language L(f(H)) induced by f(H) is a star-free regular
language. Furthermore, in Corollary 5.19 we obtained an upper bound on the time
complexity of the construction of MH ∩Mf , which is exponential in the number of
conjunctions, between subformulas of f , plus one.

We also investigated the complexity of the model checking problem for HQL
queries and summarized our results in Table 6.1. We have shown that, in general,
this problem is NP-complete but that there are important special cases when the
problem can be solved in polynomial time.

Our conclusion is that the navigation problem in Hypertext cannot be solved
efficiently unless users have some a priori knowledge about the order in which the
pages of information are structured in the database graph. Having this knowledge
users can utilize the 3-free polynomial-time subset of HQL to pursue a one-step-at-
a-time navigation session through the database graph. Experimental research has to
be carried out in order to ascertain whether expensive queries will often be posed.
In practice, it may also be useful to seek randomized and/or fuzzy solutions to this
problem [LEVE99b].

Acknowledgments. The authors would like to thank Trevor Fenner for helping
us solve some of the complexity problems posed in section 6. We would also like
to thank the referee for his many incisive comments which helped us to improve an
earlier version of the paper.
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Abstract. Given an undirected graph with nonnegative costs on the edges, the routing cost of
any of its spanning trees is the sum over all pairs of vertices of the cost of the path between the pair in
the tree. Finding a spanning tree of minimum routing cost is NP-hard, even when the costs obey the
triangle inequality. We show that the general case is in fact reducible to the metric case and present
a polynomial-time approximation scheme valid for both versions of the problem. In particular, we
show how to build a spanning tree of an n-vertex weighted graph with routing cost at most (1 + ε)

of the minimum in time O(nO( 1
ε

)). Besides the obvious connection to network design, trees with
small routing cost also find application in the construction of good multiple sequence alignments in
computational biology.

The communication cost spanning tree problem is a generalization of the minimum routing cost
tree problem where the routing costs of different pairs are weighted by different requirement amounts.
We observe that a randomized O(logn log logn)-approximation for this problem follows directly from
a recent result of Bartal, where n is the number of nodes in a metric graph. This also yields the
same approximation for the generalized sum-of-pairs alignment problem in computational biology.

Key words. approximation algorithms, network design, spanning trees, computational biology
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1. Introduction. Consider the following problem in network design: given an
undirected graph with nonnegative delays on the edges, the goal is to find a spanning
tree such that the average delay of communicating between any pair using the tree is
minimized. The delay between a pair of vertices is the sum of the delays of the edges
in the path between them in the tree. Minimizing the average delay is equivalent to
minimizing the total delay between all pairs of vertices in the tree.

In general, when the cost on an edge represents a price for routing messages
between its endpoints (such as the delay), we define the routing cost for a pair of
vertices in a given spanning tree as the sum of the costs of the edges in the unique
tree path between them. The routing cost of the tree itself is the sum over all pairs
of vertices of the routing cost for the pair in this tree.
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Finding a spanning tree of minimum routing cost in a general weighted undirected
graph is known to be NP-hard [11]. In this paper we show that finding a minimum
routing cost tree in a general weighted graph G is equivalent to solving the same
problem on a complete graph in which the edge weights are the shortest path lengths
in G. This result implies that the minimum routing tree problem with metric inputs
is also NP-hard.

Wong [22] studied the minimum routing cost tree problem and presented a 2-
approximation algorithm even without the metric requirement. We give a better
result for the metric case, which, by the above remark, applies to the general case as
well.

Theorem 1.1. There is a polynomial-time approximation scheme (PTAS) for
finding the minimum routing cost tree of a weighted undirected graph. In particular,
on an n-vertex graph, we can find a (1+ε)-approximate solution in time O(n2d 2

ε e−2).
Our result is derived by approximating a minimum routing cost tree by a restricted

class of trees that we call k-stars. For any fixed size k, a k-star is a tree in which
at most k vertices have degree greater than one. For a given accuracy parameter ε,
we consider all d 2

ε − 1e-stars and output the one with the minimum routing cost. To
argue the performance guarantee, we show how a minimum routing cost tree can be
converted into a k-star without much degradation in its routing cost (no more than
a factor of 1 + 2

k+1 ). We also prove that for any fixed k, the minimum k-star can be

determined in polynomial time. Hence, by finding the d 2
ε −1e-star with the minimum

routing cost, we get a (1 + ε)-approximate solution.
There is an important difference between our PTAS for the routing cost tree

problem and Wong’s 2-approximation: While we show an approximation bound to
the best tree’s routing cost, Wong’s proof shows that his trees have routing cost at
most twice the value of the sum of pairwise distances between nodes in the input
graph. This stronger connection is exploited by Gusfield [9] in an application to
multiple alignments in computational biology (described later).

1.1. Optimum communication spanning trees. Hu [10] formulated a gen-
eral version of the routing cost spanning tree problem that he called optimum com-
munication spanning trees. In this problem, in addition to the costs on edges, a
requirement value rij is specified for every pair of vertices i, j. The communication
cost between a pair in a given spanning tree is the cost of the path between them in
the tree multiplied by their requirement rij . The communication cost of the tree is
the sum of all the pairwise communication costs. Thus the routing cost is a special
case of the communication cost when all the requirement values are one.1 In [10],
Hu derives weak conditions under which the optimum routing cost tree is a star. In
this paper, we demonstrate that simple generalizations of stars are indeed sufficient
to guarantee any desirable accuracy in approximating optimal routing trees.

By using a recent result of Bartal [3] on approximating metrics probabilistically
by tree metrics, we notice the following result.

Theorem 1.2. There is an O(log2 n)-approximation algorithm for the commu-
nication spanning tree problem on an n-node metric.

Recent improvements to Bartal’s original result in [4, 6] also lead to an improve-
ment of the performance guarantee in Theorem 1.2 to O(log n log log n).

The result in Theorem 1.2 is actually stronger in the same sense as Wong [22].

1Hu uses the term “optimum distance spanning trees” to denote trees with minimum routing
cost.
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Given (symmetric) requirement values rij and metric distances dij between node
pairs i, j, our approximate solution has communication cost at most O(log2 n) times∑
i,j rijdij . As in [9], we exploit this connection in the application to computational

biology.

An overview of the remainder of the paper is as follows. In section 2 we describe
the application of minimum routing cost trees to alignment problems in computational
biology. In section 3 we give some basic definitions. In section 4, we show how the
general case of the problem can be reduced to the metric one. Section 5 describes how
k-stars provide good approximations to the optimum routing cost trees in metrics.
In section 6, we discuss a polynomial algorithm for finding minimum cost k-stars in
a graph. Finally, in section 7 we describe an algorithm for approximating optimum
communication spanning trees.

2. An application to computational biology.

2.1. Multiple sequence alignments. Multiple sequence alignments are im-
portant tools for highlighting patterns common to a set of genetic sequences in com-
putational biology. A multiple alignment of a set of n strings involves inserting gaps
in the strings and arranging their characters into columns with n rows, one from each
string. The order of characters along a row corresponding to string si is the same
as that in si, with possibly some blanks inserted. The following is an example of an
alignment of three strings ATTCGAC, TTCCGTC, and ATCGTC.

A T T - C G A - C

- T T C C G - T C

A - T - C G - T C

The intent of identifying common patterns is represented by attempting as much
as possible to place the same character in every column.

The multiple sequence alignment problem has typically been formalized as an
optimization problem in which some explicit objective function is minimized or maxi-
mized. One of the most popular objective functions for multiple alignment generalizes
ideas from optimally aligning two sequences. The pairwise-alignment problem [21]
can be phrased as that of finding a minimum mutation path between two sequences.
Formally, given costs for inserting or deleting a character and for substituting one
character of the alphabet for another, the problem is to find a minimum-cost muta-
tion path from one sequence to the other. The cost of this path is the edit distance
between them. An optimal alignment of two sequences of length l can be computed
effectively by dynamic programming [14, 21] in O(l2) time. The generalization to
multiple sequences leads to the sum-of-pairs objective.

The sum-of-pairs (SP) objective for multiple alignment is to minimize the sum,
over all pairs of sequences, of the pairwise distance between them in the alignment
(where the distance of two sequences in an alignment with l columns is obtained by
adding up the costs of the pairs of characters appearing at positions 1, . . . , l).

Pioneering work of Sankoff and Kruskal [17] and Sankoff, Morel, and Cedergren
[18] led to an exponential-time dynamic programming solution to the SP-alignment
problem. A straightforward implementation requires time proportional to 2nln for a
problem with n sequences each of length at most l. Considering that in typical real-
life instances l can be a few hundred, the basic dynamic programming approach turns
out to be infeasible for all but very small problems. Carrillo and Lipman [5] have
introduced some bounding criteria which reduce the time and space requirements of
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dynamic programming and make solvable problems for n ≤ 6 and l ≤ 200. However,
constructing optimal alignments is bound to be computationally expensive, since the
problem has been shown to be NP-complete (Wang and Jiang, [20]). Despite these
very expensive solution methods, the SP-objective is implemented in several popularly
available multiple alignment packages such as MACAW [19] and MSA [13].

2.2. Approximation algorithms via routing cost trees. The first approxi-
mation algorithm for the SP-alignment problem was by Gusfield [9]. It had a perfor-
mance ratio of 2 − 2

n where n is the number of sequences aligned. This was slightly
improved to 2− 3

n by Pevzner [15]. The best-known approximation algorithm for this
problem is due to Bafna, Lawler, and Pevzner [2], which achieves a ratio of 2− r

n for
any fixed value of r. The running time is exponential in r. Notice that this is not a
PTAS for the problem, and no polynomial-time approximation scheme is known yet
for the SP-alignment problem.

Gusfield’s approximation algorithm for the SP-alignment problem is based on
the 2-approximation for minimum routing cost trees due to Wong [22]. Gusfield’s
algorithm uses a folklore approach to multiple alignment guided by a tree, due to
Feng and Doolittle [8]: Given a spanning tree on the complete graph on the sequences
to be aligned, the multiple alignment guided by the tree is built recursively as follows.
First, remove a leaf sequence l in the tree attached to sequence v by a tree edge
(l, v), and align the remaining sequences recursively. Then, reinsert the leaf sequence
into the alignment guided by an optimal pairwise alignment between the pair l and
v. If this optimal pairwise alignment introduces a gap in v, insert the same gap in
the recursively computed alignment for the tree without the leaf. Since the cost of
aligning a blank to a blank is assumed to be zero, the resulting alignment has the
property that for every pair related by a tree edge, the cost of the induced pairwise
alignment equals their edit distance. By the triangle inequality on edit-distances, the
SP-cost of the alignment derived from this spanning tree can be upper-bounded by
the routing cost of the tree.

Wong’s 2-approximation algorithm considers the shortest path tree rooted at
every vertex in turn, and picks the one with minimum routing cost. For graphs with
metric distances obeying the triangle inequality, every shortest path tree is isomorphic
to a star. Furthermore, in this case, Wong’s analysis shows that the best star has
routing cost at most twice the total cost of the graph itself. The cost of the graph
in this case is the sum of pairwise edit distances between sequences, which is a lower
bound on the SP-cost. Thus, Gusfield observed that a multiple alignment derived
from the best center-star gives a 2-approximation for the SP-alignment problem.

2.3. Tree-driven SP-alignment. Despite the popularity of the SP-objective,
most of the currently available methods for finding alignments use a progressive ap-
proach of incrementally building the alignment adding sequences one at a time with no
performance guarantee on the SP-cost. The Feng–Doolittle procedure can be viewed
as one such procedure. The advantage of such approaches is their low running time,
but the shortcoming is that the order in which the sequences are merged into the
alignment determines its cost.

In trying to define a middle ground between the SP-objective and the more prac-
tical progressive methods, we introduce the tree-driven SP-alignment method: apply
the Feng–Doolittle procedure to the best possible spanning tree in the complete graph
on the sequences. By our reasoning above, the tree that gives the best upper bound
on the SP-cost of the alignment is the one with the minimum routing cost. Thus,



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 765

our PTAS for routing cost trees may be useful in finding good trees for applying any
progressive alignment method such as the Feng–Doolittle procedure.

2.4. Generalized SP-alignments. A simple generalization of the SP objective
for multiple alignments is to weight the different sequence pairs in the alignment differ-
ently in the objective function. Given a priority value rij for the pair i, j of sequences,
the generalized sum-of-pairs objective for multiple alignment is to minimize the sum,
over all pairs of sequences, of the pairwise distance between them in the alignment
multiplied by the priority value of the pair. This allows one to increase the priority
of aligning some pairs while down-weighting others, using other information (such as
evolutionary) to decide on the priorities. An extreme case of assigning priorities is
the threshold objective.

In an evolutionary context, a multiple alignment is used to reconstruct the blocks
or motifs in a single ancestral sequence from which the given sequences have evolved.
However, if the evolutionary events of the ancestral sequence occur randomly at a
certain rate over the course of time, and independently at each location (character)
of the string, after a sufficiently long time, the mutated sequence appears essentially
like a random sequence compared to the initial ancestral sequence. If we postulate
a threshold time beyond which this happens, this translates roughly to a threshold
edit distance between the pair of sequences. The threshold objective sets rij to be
one for all pairs of input sequences whose edit-distance is less than this threshold
and zero for other pairs which are more distant. In this way we try to capture the
most information about closely related pairs in the objective function by setting an
appropriate threshold.

In the same vein as Gusfield [9], Theorem 1.2 can be used to approximate the
generalized SP objective within an O(log2 n) factor on inputs with n sequences. Let
dij denote the edit distance between sequences i and j. The theorem guarantees a
tree whose communication cost using the rij values given by the priority function is at
most O(log2 n) times

∑
i,j rijdij , which is a lower bound on the generalized SP value

of any alignment. The Feng–Doolittle procedure guarantees that the generalized SP
value of the resulting alignment is at most the communication cost of the tree which
in turn is at most O(log2 n) times the generalized SP value of any alignment.

3. Definitions. Throughout the paper we will be referring to a given weighted,
connected, undirected graph G = (V,E,w), where we assume V = {1, . . . , n} and w
is a nonnegative edge weight function, not necessarily metric. For a subset S ⊆ V , by
P(S) we denote the set of all unordered pairs of elements of S.

Definition 3.1. Let G = (V,E,w) and i, j ∈ V . Let S = (VS , ES , w) be a
subgraph of G. By SP (S, i, j) we denote a shortest path from i to j on S. When S is
a tree, SP (S, i, j) denotes the unique path between i and j.

Definition 3.2. Let S be a subgraph of G and i, j ∈ V . The weight of S
is denoted by w(S) =

∑
e∈ES w(e). The distance of i and j in S is denoted by

dS(i, j) := w(SP (S, i, j)). We define dG(i, S) = minj∈VS dG(i, j). If T is a tree and
S ⊂ T , we denote the value w(SP (T, i, j) ∩ S) by wS(T, i, j).

Definition 3.3. Let S be a subgraph of G. The routing cost of S is defined as
C(S) =

∑
(i,j)∈P(VS) dS(i, j).

Definition 3.4. Given a graph G = (V,E,w), the minimum routing cost span-

ning tree problem (MRCT) is to find a spanning tree T̂G of G such that C(T̂G) is
minimum.



766 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

Definition 3.5. A metric graph G = (V,E,w) is a complete graph in which
w(i, j) ≥ 0 and w(i, j) + w(j, k) ≥ w(i, k) for all i 6= j 6= k ∈ V .

Definition 3.6. The metric closure of G is the complete weighted graph Ḡ =
(V,P(V ), δ), where δ(i, j) := dG(i, j) for all (i, j) ∈ P(V ). Note that Ḡ is a metric
graph.

Definition 3.7. Given a metric graph G, the metric minimum routing cost
spanning tree problem (∆MRCT) is to find a spanning tree T of G such that C(T )
is minimum.

4. A reduction from the general to the metric case. Let G = (V,E,w) and
Ḡ = (V,P(V ), δ) be its metric closure. In this section, we present an algorithm which
can transfer a spanning tree of Ḡ into a spanning tree of G without increasing cost.
This implies that we can solve the MRCT problem on G by solving the same problem
on Ḡ. An edge (a, b) in Ḡ is termed a bad edge if (a, b) /∈ E or w(a, b) > δ(a, b). For
any bad edge e = (a, b), there must exist a path P 6= e such that w(P ) = δ(a, b).
Given any spanning tree T of Ḡ, the algorithm iteratively replaces bad edges (if any)
in T with edges from the path defining the weight of the edge until there are no more
bad edges in the tree. Since the resulting tree Y has no bad edge, it can be thought of
as a spanning tree of G with the same cost. It will be shown later that the iteration
will be executed at most O(n2) times and the cost is never increased while replacing
the bad edges. The algorithm listed below details how to obtain Y from T .

Algorithm Remove bad
Input: a spanning tree T of Ḡ
Output : a spanning tree Y of G (i.e., without any bad edge) such that C(Y ) ≤ C(T ).

Compute all-pairs shortest paths of G.
while there exists a bad edge in T (1)

Pick a bad edge (a, b). Root T at a.
/* assume SP (G, a, b) = (a, x, ..., b) and y is the father of x in T */
if b is not an ancestor of x then

Y1 = T ∪ (x, b)− (a, b)
Y2 = Y1 ∪ (a, x)− (x, y)

else
Y1 = T ∪ (a, x)− (a, b)
Y2 = Y1 ∪ (b, x)− (x, y)

endif
if C(Y1) < C(Y2) then

Y = Y1

else
Y = Y2

endif
T = Y (2)

endwhile

We assume that the shortest paths obtained in the beginning of the algorithm
have the following property: If the obtained shortest path between a and b is (a, x)∪P ,
then P is the obtained shortest path between x and b. Note that since x is on the
shortest a-b path, δ(a, b) = δ(a, x) + δ(x, b).

Proposition 4.1. The loop (1) is executed at most O(n2) times.
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Fig. 4.1. Remove bad edge (a, b). Case 1 (left) and Case 2 (right).

Proof. For each bad edge e = (a, b), let l(e) be the number of edges in SP (G, a, b)
and f(T ) =

∑
bad e l(e). Since l(e) ≤ n − 1, f(T ) < n2. Since l(x, b) < l(a, b) and

(a, x) is not a bad edge, it is easy to check that f(T ) decreases by at least 1 at each
loop iteration.

Proposition 4.2. Before instruction (2) is executed, C(Y ) ≤ C(T ).
Proof. For any node v, define Sv = {u|v is an ancestor of u on T} ∪ {v}. Also,

let C(T, S1, S2) =
∑
i∈S1,j∈S2

dT (i, j).
Case 1. (see Figure 4.1.) x ∈ Sa − Sb. If C(Y1) ≤ C(T ), the result follows.

Otherwise, let S1 = Sa − Sb and S2 = Sa − Sb − Sx. Since the distance between any
two vertices both in S1 (or both in Sb) does not change, we have

C(T ) < C(Y1)

⇒ C(T, S1, Sb) < C(Y1, S1, Sb)

⇒ |Sb|C(T, a, S1) + |S1||Sb|δ(a, b) < |Sb|C(T, x, S1) + |S1||Sb|δ(x, b)
⇒ C(T, a, S1) + |S1|δ(a, b) < C(T, x, S1) + |S1|δ(x, b)
⇒ C(T, a, S1) < C(T, x, S1)− |S1|δ(a, x).

The last inequality follows from the property of the shortest path lengths alluded to
earlier.

Also,

C(Y2)− C(T ) = (C(Y2, S2, Sx)− C(T, S2, Sx)) + (C(Y2, Sb, S1)− C(T, Sb, S1)) .

Since dY2
(i, j) ≤ dT (i, j) for i ∈ Sb and j ∈ S1, the second term is not positive, and

C(Y2)− C(T )

≤ C(Y2, S2, Sx)− C(T, S2, Sx)

= |Sx|C(T, a, S2) + |S2||Sx|δ(a, x)− |Sx|C(T, x, S2)

= |Sx|((C(T, a, S1)− C(T, a, Sx)) + |S2|δ(a, x)− (C(T, x, S1)− C(T, x, Sx)))

= |Sx|((C(T, a, S1)− C(T, x, S1)) + |S2|δ(a, x) + (C(T, x, Sx)− C(T, a, Sx)))

< |Sx| (−|S1|δ(a, x) + |S2|δ(a, x))

≤ 0.

Case 2. x ∈ Sb. The case is identical to Case 1 if we reroot the tree at b and
follow the analysis in Case 1 exchanging the roles of a and b.
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As a direct consequence of Propositions 4.1 and 4.2 we obtain the following lemma.

Lemma 4.3. Given a spanning tree T of Ḡ, the algorithm Remove bad constructs
a spanning tree Y of G with C(Y ) ≤ C(T ) in O(n3) time.

The above lemma implies that C(T̂G) ≤ C(T̂Ḡ). Since, for any edge, the weight
on the original graph is no less than the weight on the metric closure, it is easy to see
that C(T̂G) ≥ C(T̂Ḡ). Therefore, we have the following corollary.

Corollary 4.4. C(T̂G) = C(T̂Ḡ).

Corollary 4.5. If there is a (1 + ε)-approximation algorithm for ∆MRCT with
time complexity O(f(n)), then there is a (1 + ε)-approximation algorithm for MRCT
with time complexity O(f(n) + n3).

Proof. Let G be the input graph for a MRCT problem. We can construct Ḡ
in time O(n3) (see, e.g., [7]). If there is a (1 + ε)-approximation algorithm for the
∆MRCT problem, we can compute in time O(f(n)) a spanning tree T1 of Ḡ such

that C(T1) ≤ (1 + ε)C(T̂Ḡ). Using Algorithm Remove bad, we can then construct a

spanning tree T2 of G such that C(T2) ≤ C(T1) ≤ (1 + ε)C(T̂Ḡ) = (1 + ε)C(T̂G). The
overall time complexity is then O(f(n) + n3).

5. A PTAS for the ∆MRCT problem.

5.1. Overview. As described in the previous section, the fact that the costs w
may not obey the triangle inequality is irrelevant, since we can simply replace these
costs by their metric closure. Therefore, in this and the following sections we may
assume that G = (V,E,w) is a metric graph. We remind the reader that n = |V |.
Also, for a subgraph G′ of G, we use V (G′) to denote the vertex set of G′.

To establish the performance guarantee, we use k-stars, i.e., trees with no more
than k internal nodes. In section 6 we show that for any constant k, the minimum
routing cost k-star can be determined in polynomial (in n) time. In order to show
that a k-star achieves a (1 + ε) approximation, we show that, for any tree T and
constant δ ≤ 1/2:

1. It is possible to determine a δ-separator (a particular subtree of T to be
defined later), and the separator can be cut into several δ–paths such that
the total number of cut nodes and leaves of the separator is at most d 2

δ e − 3
(Lemma 5.9).

2. Using the separator, T can be converted into a (d 2
δ e − 3)-star X(T ), whose

internal nodes are just those cut nodes and leaves. The routing cost of X(T )
satisfies C(X(T )) ≤ (1 + δ

1−δ )C(T ) (Lemma 5.13).

By using T = T̂G, δ = ε
1+ε and finding the best (d 2

δ e − 3)-star K, we obtain

C(K) ≤ C(X(T̂G)) ≤ (1+ δ
1−δ )C(T̂G) = (1+ε)C(T̂G), i.e., the desired approximation.

5.2. The δ-spine of a tree.

Definition 5.1. Let T be a spanning tree of G and S be a connected subgraph
of T . A branch of S is a connected component of T \ S. Let δ ≤ 1/2 be a positive
number. If |V (B)| ≤ δn for every branch B of S, then S is a δ-separator of T . A
δ-separator S is minimal if any proper subgraph of S is not a δ-separator of T .

Intuitively, a δ-separator is like a “center” of the tree. Starting from any node,
there are sufficiently many nodes which cannot be reached without touching the sepa-
rator. To illustrate the concept of separator, we examine the simplest case for δ = 1/2.
For any tree T , there always exists a 1/2-separator which contains only one vertex.
That is, we can always cut a tree at a node c such that each branch contains at most
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B3

B2

B1

B7
B5

B6
B4

i P
jr1 r2

r3

Fig. 5.1. B1, . . . , B7 are branches of P . V B(T, P, i) = {i} ∪ V (B1) ∪ V (B2) ∪ V (B3). P c is
the number of vertices in {r1, r2, r3} ∪ V (B4) ∪ V (B5) ∪ V (B6).

half of the nodes. Such a node is usually called the centroid of the tree in the literature.
Note that this also shows the existence of a minimal δ-separator for any δ ≤ 0.5.

If we construct a star X centered at the centroid c, the routing cost will be at most
twice that of T . This can be easily shown as follows. First, if i and j are two nodes
not in the same branch, dT (i, j) = dT (i, c) + dT (j, c). Consider the total distance
of all ordered pairs of nodes on T . This value is exactly 2C(T ) by the definition.
For any node i, since each branch contains no more than half of the nodes, the term
dT (i, c) will be counted in the total distance at least n times, n/2 times for i to
others, and n/2 times for others to i. Hence, we have 2C(T ) ≥ n

∑
i dT (i, c). Since

C(X) = (n − 1)
∑
i dG(i, c), it follows that C(X) ≤ 2C(T ). The idea in this paper

can be thought as a generalization of the above method. However, the proof is much
more involved.

Definition 5.2. Let T be a spanning tree of G and S be a connected subgraph
of T . For any vertex i in S, V B(T, S, i) denotes the set of vertex i and the vertices
in the branches connected to i.

Definition 5.3. Let P = SP (T, i, j) in which |V B(T, P, i)| ≥ |V B(T, P, j)|.
We define P a = |V B(T, P, i)|, P b = |V B(T, P, j)|, and P c = n − |V B(T, P, i)| −
|V B(T, P, j)|. Assume P = (i, r1, r2, . . . , rh, j). Define Q(P ) =

∑
1≤x≤h

|V B(T, P, rx)| × dT (rx, i).
The above notations are defined to simplify the expressions. P a and P b are the

numbers of vertices that are hanging off the two endpoints of the path. Note that we
always assume P a ≥ P b. In the case that P contains only one edge, P c = 0. The
notations are illustrated in Figure 5.1.

Lemma 5.4. Let S be a minimal δ-separator of T . If i is a leaf of S, then
|V B(T, S, i)| > δn.

Proof. If S contains only one vertex, the result is trivial since |V B(T, S, i)| = n.
Otherwise, if |V B(T, S, i)| ≤ δn, deleting i from S we still get a δ-separator. This is
a contradiction to S being minimal.

Definition 5.5. Let 1 ≤ k ≤ n. A k-star is a spanning tree of G which has
no more than k internal nodes. The set of all k-stars is denoted by k∗(G). T is a
minimum k-star if T ∈ k∗(G) and C(T ) ≤ C(Y ) for all Y ∈ k∗(G).

We now turn to the notions of δ-path and δ-spine. Informally, a δ-path is a path
such that not too many nodes (at most δn/2) are hanging off its internal nodes. A
δ-spine is a set of edge-disjoint δ-paths, whose union is a minimal δ-separator. That
is, a δ-spine is obtained by cutting the minimal δ-separator into δ-paths. In the case
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Fig. 5.2. Trees with maximum value for the size of the minimum cut and leaf set.

that the minimal δ-separator contains just one node, the only δ-spine is the empty
set.

Definition 5.6. Given a spanning tree T of G, and 0 < δ ≤ 0.5, a δ-path of T
is a path P such that P c ≤ δn/2.

Definition 5.7. Let 0 < δ ≤ 0.5. A δ-spine Y = {P1, P2, ..., Ph} of T is a set of
pairwise edge-disjoint δ-paths in T such that S =

⋃
1≤i≤h Pi is a minimal δ-separator

of T . Furthermore, for any pair of distinct paths Pi and Pj in the spine, we require
that either they do not intersect or, if they do, the intersection point is an endpoint
of both paths.

Definition 5.8. Let Y be a δ-spine of a tree T . CAL(Y ) (which stands for the
cut and leaf set of Y ) is the set of the endpoints of the paths in Y . In the case that Y
is empty, the CAL set contains only one node which is the δ-separator of T . Formally
CAL(Y ) = {u|∃P ∈ Y, v ∈ T : P = SP (T, u, v)} if Y is not empty, and otherwise
CAL(Y ) = {u|u is the minimal δ-separator }.

Two trees achieving the maximum value for the size of the minimum CAL set
for δ = 1/3 (|CAL(Y )| = 3) and δ = 1/4 (|CAL(Y )| = 5) are depicted in Figure
5.2. Next, we show that for any tree, there always exists a (1/3)-spine Y1 such that
|CAL(Y1)| ≤ 3 and a (1/4)-spine Y2 such that |CAL(Y2)| ≤ 5.

Lemma 5.9. For any constant 0 < δ ≤ 0.5, and spanning tree T of G, there exists
a δ-spine Y of T such that |CAL(Y )| ≤ d2/δe − 3.

Proof. Let S be a minimal δ-separator of T . S is a tree. Let U1 be the set of
leaves in S, U2 be the set of vertices which have more than two neighbors in S, and
U = U1 ∪ U2. Let h = |U1|. Clearly, |U | ≤ 2h − 2. Let Y1 be the set of paths
obtained by cutting S at all the vertices in U2. For example, for the tree on the right
side of Figure 5.2, U1 = {2, 3, 4}; U2 = {1}; Y1 contains SP (T, 1, 2), SP (T, 1, 3), and
SP (T, 1, 4). For any P ∈ Y1, if P c > δn/2 then P is called a heavy path. It is easy
to check that Y1 satisfies the requirements of a δ-spine except that there may exist
some heavy paths. Suppose P is not a δ-path. We can break it up into δ-paths by the
following process. First find the longest prefix of P starting at one of its endpoints
and ending at some internal vertex, i, say, in the path, that determines a δ-path. Now
we break P at vertex i. Then we repeat the breaking process on the remaining suffix
of P starting at i stripping off the next δ-path and so on. In this way P can be cut
into δ-paths by breaking it in at most d2P c/ (δn)e − 1 vertices. Since there are at
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least δn nodes hung at each leaf,∑
P∈Y1

P c < n− hδn.

Assume U3 to be the minimal vertex set for cutting the heavy paths to result in a
δ-spine Y of T . We have

|U3| ≤ d2 (n− hδn) / (δn)e − 1 = d2/δe − 2h− 1.

So, |CAL(Y )| = |U |+ |U3| ≤ d2/δe − 3.

5.3. Lower bound.
Definition 5.10. The routing load of an edge e in T is the number eaeb of pairs

in T connected by a path containing e.
The following lemma is immediate.
Lemma 5.11. For any spanning tree T of G, C(T ) =

∑
e∈T e

aebw(e).
Lemma 5.12. Let Y be a δ-spine of a spanning tree T of G and S =

⋃
P∈Y P be

a minimal δ-separator of T . Then

C(T ) ≥ (1− δ)n
∑
v∈V

dT (v, S) +
∑
P∈Y

(
P b(P a + P c)w(P ) + (P a − P b)Q(P )

)
.

Proof. Since ea ≥ (1− δ)n for any edge e ∈ T \ S, we have

C(T ) =
∑
e∈T

eaebw(e)

≥
∑
e∈T\S

(1− δ)nebw(e) +
∑
e∈S

eaebw(e)

≥ (1− δ)n
∑
v∈V

dT (v, S) +
∑
P∈Y

∑
e∈P

eaebw(e).

Now we simplify the second term. Assume P = (r0, r1, r2, . . . , rh) in which
|V B(T, P, r0)| ≥ |V B(T, P, rh)|. Let |V B(T, P, ri)| = ni for 1 ≤ i ≤ h − 1 and
ei = (ri−1, ri) for 1 ≤ i ≤ h.∑

e∈P
eaebw(e)

=

h∑
i=1

P a + P c −
h−1∑
j=i

nj

P b +
h−1∑
j=i

nj

w(ei)

≥
h∑
i=1

P b (P a + P c)w(ei) + (P a − P b)
h∑
i=1

h−1∑
j=i

njw(ei)

+

h∑
i=1

h−1∑
j=i

nj

P c − h−1∑
j=i

nj

w(ei)

≥ P b(P a + P c)w(P ) + (P a − P b)
h−1∑
j=1

nj

(
j∑
i=1

w(ei)

)
= P b (P a + P c)w(P ) + (P a − P b)Q(P ).

This completes the proof.
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5.4. From trees to stars.

Lemma 5.13. For any constant 0 < δ ≤ 0.5, there exists a spanning tree X ∈
(d2/δe − 3)∗(G) such that C(X) ≤ 1

1−δC(T̂G).

Proof. Let T = T̂G = (V,E,w) and n = |V |. Also, let Y = {Pi|1 ≤ i ≤ h} be a δ-
spine of T in which |CAL(Y )| ≤ d2/δe−3. Note that the set of all the edges in Y form
a δ-separator S. Assume Pi = SP (T, ui, vi) and |V B(T, Pi, ui)| ≥ |V B(T, Pi, vi)|.

We construct a spanning tree whose internal nodes are exactly the CAL set of
the δ-spine we just identified. We connect these nodes by short-cutting paths along
the spine to include a set of acyclic edges with the same skeletal structure as the
spine. All vertices in subtrees hanging off the CAL nodes of the spine are connected
directly to their closest node in the spine. Along a δ-path in the spine, all the internal
nodes and nodes in subtrees hanging off internal nodes are connected to one of the
two endpoints of this path (note that both are in the CAL set of the spine) in such a
way as to minimize the resulting routing cost. This is the spanning tree used to argue
the upper bound on the routing cost in the proof.

More formally, construct a subgraph R ⊂ G with vertex set CAL(Y ) and edge
set Er = {(ui, vi)|1 ≤ i ≤ h}. Trivially, R is a tree. Let f(i) be an indicator
variable such that if

(
P ai − P bi

)
P ci w(Pi) − n (2Q(Pi)− P ci w(Pi)) ≥ 0 then f(i) = 1,

else f(i) = 0. The indicator variable f(i) determines the endpoint of Pi to which all the
internal nodes and nodes hanging off such internal nodes will be directly connected.
We construct a spanning tree X of G where the edge set Ex is determined by the
following rules:

1. R ⊂ X.
2. If q ∈ V B(T, S, r), then (q, r) ∈ Ex, for any r ∈ {ui, vi|1 ≤ i ≤ h}.
3. For the vertex set Vi = V − V B(T, Pi, ui) − V B(T, Pi, vi), if f(i) = 1, then
{(q, ui)|q ∈ Vi} ⊂ Ex, else {(q, vi)|q ∈ Vi} ⊂ Ex. That is, the vertices in Vi
are either all connected to ui or all connected to vi.

It is easy to see that X ∈ (d2/δe − 3)∗(G). Let’s consider the cost of X.

C(X) =
∑
e∈Ex

eaebw(e)

=
∑
e∈Er

eaebw(e) + (n− 1)
∑

e∈Ex−Er
w(e).

First, for any e = (ui, vi) ∈ Er,

eaebw(e) ≤ (P ai + f(i)P ci )
(
P bi + (1− f(i))P ci

)
w(Pi)

= P ai P
b
i w(Pi) +

(
f(i)P bi + (1− f(i))P ai

)
P ci w(Pi).

Recall that for subset of edges S ⊂ T , wS(T, i, j) stands for w(SP (T, i, j)∩S). Second,
by the triangle inequality,

∑
e∈Ex−Er

w(e) ≤
∑
v∈V

dT (v, S) +
h∑
i=1

∑
v∈Vi

(f(i)wS(T, v, ui) + (1− f(i))wS(T, v, vi))

=
∑
v∈V

dT (v, S) +
h∑
i=1

(f(i)Q(Pi) + (1− f(i)) (P ci w(Pi)−Q(Pi))) .
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Thus,

C(X) ≤
h∑
i=1

P ai P
b
i w(Pi) + n

∑
v∈V

dT (v, S)

+

h∑
i=1

min{P bi P ci w(Pi) + nQ(Pi), P
a
i P

c
i w(Pi) + n(P ci w(Pi)−Q(Pi))}.

Since the minimum of two numbers is not larger than their weighted mean, we
have

min{P bi P ci w(Pi) + nQ(Pi), P
a
i P

c
i w(Pi) + n (P ci w(Pi)−Q(Pi))}

≤ (P bi P ci w(Pi) + nQ(Pi)
) P ai
P ai + P bi

+ (P ai P
c
i w(Pi) + n (P ci w(Pi)−Q(Pi)))

P bi
P ai + P bi

.

Then,

C(X) ≤
h∑
i=1

P ai P
b
i w(Pi) + n

∑
v∈V

dT (v, S) +
h∑
i=1

(
2P ai P

b
i P

c
i + nP bi P

c
i

)
w(Pi)

P ai + P bi

+

h∑
i=1

(P ai − P bi )nQ(Pi)

P ai + P bi

= n
∑
v∈V

dT (v, S) +
h∑
i=1

w(Pi)

P ai + P bi

((
P ai P

b
i + P bi P

c
i

)
n+ P ai P

b
i P

c
i

)
+

h∑
i=1

(P ai − P bi )nQ(Pi)

P ai + P bi
.

The simplification in the last inequality uses the observation that for any i, we have
P ai + P bi + P ci = n. By Lemma 5.12,

C(X) ≤ C(T ) max
1≤i≤h

{
1

1− δ ,
n

P ai + P bi
+

P ai P
c
i

(P ai + P bi )(P ai + P ci )

}
.

Since P ci ≤ δn/2,
n

P ai + P bi
+

P ai P
c
i

(P ai + P bi )(P ai + P ci )

≤ n

P ai + P bi
+

P ci
P ai + P bi

=
n+ P ci
n− P ci

≤ 2 + δ

2− δ ≤
1

1− δ .

This completes the proof.
In the following section we will show that it is possible to determine the minimum

k-star of a graph in polynomial time. In fact, we have the following lemma.
Lemma 5.14. The minimum k-star of a graph G can be constructed in time

O(n2k).
The proof is delayed to the next section. The following theorem establishes the

time-complexity of our PTAS.
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Theorem 5.15. There exists a PTAS for the ∆MRCT problem, which can find
a (1+ε)-approximation solution in O(nρ) time complexity where ρ = 2 d2/εe − 2.

Proof. By Lemma 5.13, there exists a spanning tree X ∈ (d2/δe − 3)∗(G) such

that C(X) ≤ 1
1−δC(T̂G). For finding a (1+ε)-approximation solution, we set 1/δ =

(1/ε) + 1 and find a minimum k-star with k = d2/δe − 3 = d2/εe − 1. The time
complexity is O(nρ) where ρ = 2 d2/εe − 2 from Lemma 5.14.

The result in Theorem 1.1 is immediately derived from Theorem 5.15 and Corol-
lary 4.5.

6. Finding the best k-star. In this section we describe an algorithm for finding
the minimum routing cost k-star in G for a given value of k. As mentioned before,
given an accuracy parameter ε > 0, we apply this algorithm for k = d2

ε − 1e and
return the minimum routing cost k-star as a (1 + ε)-approximate solution.

For a given k, to find the best k-star, we consider all possible subsets S of vertices
of size k, and for each such choice, find the best k-star where the remaining vertices
have degree one.

6.1. A polynomial-time method. First, we verify that the overall complexity
of this step is polynomially bounded for any fixed k. Any k-star can be described by
a triple (S, τ,L), where S = {v1, . . . , vk} ⊆ V is the set of k distinguished vertices
which may have degree more than one, τ is a spanning tree topology on S, and
L = (L1, . . . , Lk), where Li ⊆ V \ S is the set of vertices connected to vertex vi ∈ S.

Let l = (l1, . . . , lk) be a nonnegative k-vector2 such that
∑k
i=1 li = n− k. We say

that a k-star (S, τ,L) has the configuration (S, τ, l) if li = |Li| for all 1 ≤ i ≤ k. For a
fixed k, the total number of configurations is O(n2k−1) since there are

(
n
k

)
choices for

S, kk−2 possible tree topologies on k vertices, and
(
n−1
k−1

)
possible such k-vectors. (To

see this, observe that every such vector can be put in correspondence with picking
k−1 among n−1 linearly ordered elements and using the cardinalities of the segments
between consecutively picked segments as the components of the vector.) Note that
any two k-stars with the same configuration have the same routing load on their
corresponding edges. We define α(S, τ, l) to be the minimum routing cost k-star with
configuration (S, τ, l).

Note that any vertex v in V \ S that is connected to a node s ∈ S contributes a
term of w(v, s) multiplied by its routing load of n−1. Since all these routing loads are
the same, the best way of connecting the vertices in V \ S to nodes in S is obtained
by finding a minimum-cost way of matching up the nodes of V \S to those in S which
obey the degree constraints on the nodes of S imposed by the configuration, where
the costs are the distances w. This problem can be solved in polynomial time for a
given configuration (by a straightforward reduction to an instance of minimum-cost
perfect matching). The above minimum-cost perfect matching problem, also called
the assignment problem, has been well studied and several efficient algorithms can be
found in [1]. For instance, by using an O(n3) algorithm for the assignment problem,
the overall complexity would be O(n2k+2) for finding the best k-star.

6.2. A faster method. We now show how the minimum k-stars for the different
configurations can be computed more efficiently by carefully ordering the matching
problems for the configurations and exploiting the common structure of two consec-
utive problems. In particular, we show how we can obtain the optimal solution of
any configuration in this order by performing a single augmentation on the optimal

2For any r ∈ Z+, an r-vector is an integer vector with r components.
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solution of the previous configuration. Thus, we show (Lemma 6.2) how to compute
α(S, τ, l) for a given configuration in time O(nk).

Let Wab be the set of all nonnegative a-vectors whose entries add up to a constant
b. In Wab ×Wab, we introduce the relation ∼ as l ∼ l′ if there exist 1 ≤ s, t ≤ a such
that

l′i =

 li − 1 if i = s,
li + 1 if i = t,
li otherwise.

For a pair l and l′ such as the above, we say that l′ is obtained from l by s and t.
Let r = |Wab| =

(
a+b−1
a−1

)
. The following proposition shows that the elements of

Wab can be linearly ordered as l1, . . . , lr so that li+1 ∼ li for all 1 ≤ i ≤ r − 1.
Proposition 6.1. For all positive integers a, b, there exists a permutation πa,b of

Wab such that πa,b1 is the lexicographic minimum, πa,br is the lexicographic maximum,

and πa,bi+1 ∼ πa,bi for all i = 1, . . . , r − 1.
Proof. By induction. The claim is clearly true when a = 1 for any b. Assume

the claim is true for all b when a = m − 1. For a = m construct the ordering as
follows: first, the elements for which l1 = 0, ordered by applying πa−1,b to (l2, . . . , la);
then the elements for which l1 = 1, ordered according to decreasing πa−1,b−1. In
general each block for which l1 = h is ordered by applying πa−1,b−h to (l2, . . . , la),

forward or backward according to the parity of h. Note that πa,bi+1 ∼ πa,bi within one
block. Furthermore, at block boundaries the part (l2, . . . , la) is either a lexicographic
minimum or maximum so that it is feasible to increase by one l1. Finally, it is obvious
that the first and the last of the constructed ordering are the lexicographic minimum
and maximum respectively.

According to Proposition 6.1 we can order the elements of Wk,(n−k) as l1, . . . , lr,

where r =
(
n−1
k−1

)
. Note that l1 = (0, . . . , 0, n − k) and lr = (n − k, 0, . . . , 0). In the

remainder of this section, we shall prove the following lemma.
Lemma 6.2. α(S, τ, li+1) can be computed from α(S, τ, li) in O(nk) time.
Proof. We shall show that α(S, τ, li+1) can be found from α(S, τ, li) by means

of a shortest path computation. A similar argument is used in [1, Exercise 10.20];
for solving a minimum cost flow problem given the solution of another minimum cost
flow problem which differs by only one unit capacity arc.

For convenience, let us rename the vertices so that S = {1, . . . , k}. Let li =
(|L1|, . . . , |Lk|) and (S, τ,L) = α(S, τ, li). Let us define an auxiliary weighted digraph
D(L) = (V,A, δ) in which the arc set is A = {(u, v)|u ∈ V \ S, v ∈ S} ∪ {(u, v)|u ∈
S, v ∈ Lu} and δ(u, v) = w(u, v) if u /∈ S, and δ(u, v) = −w(u, v) if u ∈ S. For a node
in S, the weight on an outgoing arc reflects the cost reduction for removing a leaf
from its neighbors, and the weight on an incoming arc reflects the increase in cost for
connecting a leaf to the node.

It is immediately seen that any cycle (not necessary simple) in the graph describes
a way of changing (S, τ,L) into another k-star with the same configuration, and the
difference in cost between the new and the old k-stars is given by (n − 1) times the
length of the cycle. Because (S, τ,L) is optimal for its configuration, there is no
negative length cycle in D(L).

Similarly, if li+1 is obtained from li by s and t, then any path from s to t in D(L)
changes (S, τ,L) into a k-star with configuration (S, τ, li+1). Conversely, any k-star
with configuration (S, τ, li+1) can be obtained by a path from s to t and possibly
some cycles. Since positive length cycles contribute positive cost and there is no
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negative length cycle, it is clear that there is a path P from s to t, changing α(S, τ, li)
into α(S, τ, li+1), which is simple. To see that it must be a shortest s-t path, let P ′

be any path from s to t, which changes α(S, τ, li) into a k-star K ′. Since K ′ has
the same configuration of α(S, τ, li+1), the difference between their costs is given by
(n− 1)(δ(P ′)− δ(P )). Therefore, we conclude that P must be the shortest path from
s to t in D(L). We now show how such a shortest path can be computed in O(kn)
time.

Consider any shortest path (u1, v1, u2, . . . , vh−1, uh) between two nodes ui ∈ S
and vi ∈ V \ S in D(L). Take two consecutive edges (ui, vi) and (vi, ui+1) in the
path. Since the path is shortest, vi must be such as to minimize the sum of the two
edge lengths. Recall that δ(ui, vi) = −w(ui, vi) and δ(vi, ui+1) = w(vi, ui+1). Then,
we have that the sum of the two edge lengths is minvi∈Li{w(vi, ui+1) − w(ui, vi)}.
Therefore, to find the shortest path from s to t on D(L), it is enough to construct
a complete digraph D′(L) with vertex set S and lengths δ′, in which δ′(i, j) =
minv∈Li{w(v, j) − w(i, v)}. It is easy to see that the length of the shortest path
from s to t on D′(L) is the same as the one on D(L). Given the graph D′(L), a
shortest s-t path (and also the corresponding path on D(L)) can be found in O(k2)
time. Finally, to construct D′(L), for each vertex i ∈ S, we have to find k−1 minima
(one for every other j ∈ S), each over a set of li elements. Adding up, the total time

complexity is (k − 1)
∑k
i=1 li = (k − 1)(n− k) = O(nk).

We are now able to prove Lemma 5.14, i.e., that a minimum k-star can be found
in time O(n2k).

Proof. When S and τ are fixed, to find an optimum k-star we begin by α(S, τ, l1),
which is readily obtained by setting Lk = V \S. Then, using Lemma 6.2, we compute
the optimal k-stars for configurations l2, . . . , lr, and we report the best overall.

In general, a minimum routing cost k-star in G can be found in time O(n2k),
given by

(
n
k

)
choices for S, kk−2 possible tree topologies, and for each fixed S and τ ,(

n−1
k−1

)
configurations, of cost O(nk) each.

7. Optimal communication spanning trees. We begin with a few definitions
following Bartal [3]. Let V be a set of n points and let M be a metric space defined
over V . The distance between i and j in M is denoted by dM (i, j). A metric N over
V dominates another metric M over V if for every pair i, j ∈ V , we have dN (i, j) ≥
dM (i, j).

Definition 7.1. A metric N over V α-approximates a metric M over V if it
dominates M and for every i, j ∈ V , we have dN (i, j) ≤ α · dM (i, j).

Define a tree (or additive) metric over V as a metric space corresponding to paths
in a tree which contains all the points of V . Note that we allow the tree defining the
additive metric to contain points other than those in V .

We are interested in tree metrics that approximate any given metric M . However,
even for the simple metric induced by arranging the nodes of V in a cycle, if we restrict
ourselves to approximating this by tree metrics, α = Ω(|V |) [3, 16]. Hence we turn to
the following notion.

Definition 7.2. Let M be a metric space over V . A set of metric spaces S over
V α-probabilistically-approximates M , if every metric space in S dominates M and
there exists a probability distribution over metric spaces N ∈ S such that for every
i, j ∈ V , E(dN (i, j)) ≤ α · dM (i, j).

Bartal’s main result is the following theorem.
Theorem 7.3 (see [3]). For any metric space on V , it can be O(log2 |V |)-

probabilistically approximated by a set of tree metrics on V . Furthermore, the tree
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metrics and the distribution over them can be computed in polynomial time.

As has been observed earlier [12], it is not hard to transform the tree met-
rics in this theorem into spanning tree metrics, namely, those that do not con-
tain any extra points other than those in V . We use the above theorem to ap-
proximate the given metric M by spanning tree metrics N . By using a spanning
tree N randomly picked from this collection according to the given distribution
as the solution, the expected value of its communication cost is

∑
ij rijdN (i, j) ≤

O(log2 |V |)∑ij rijdM (i, j) by linearity of expectation. By repeatedly picking a few
trees and using the best one, this bound is achieved with high probability, giving
the result in Theorem 1.2. As mentioned earlier, this bound has been improved and
derandomized in [4, 6].

Acknowledgments. Thanks to Sampath Kannan for describing the relevance of
the threshold objective for multiple alignments. We also thank Tao Jiang and Howard
Karloff for suggesting the merger of two different works to obtain this joint paper.
Finally, we thank the referees for their valuable comments.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows—Theory, Algorithms, and
Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.

[2] V. Bafna, E. L. Lawler, and P. Pevzner, Approximation algorithms for multiple sequence
alignment, Proceedings of the 5th Combinatorial Pattern Matching Conference, Lecture
Notes in Comput. Sci. 807, Springer, New York, 1994, pp. 43–53.

[3] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications,
Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science,
Burlington, VT, 1996, pp. 184–193.

[4] Y. Bartal, On approximating arbitrary metrics by tree metrics, Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998, pp. 161–168.

[5] H. Carrillo and D. Lipman, The multiple sequence alignment problem in biology, SIAM J.
Appl. Math., 48 (1988), pp. 1073–1082.

[6] M. Charikar, C. Chekuri, A. Goel, and S. Guha, Rounding via trees: Deterministic
approximation algorithms for group Steiner trees and k-median, Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998, pp. 114–123.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1994.

[8] D. Feng and R. Doolittle, Progressive sequence alignment as a prerequisite to correct
phylogenetic trees, J. Molecular Evol., 25 (1987), pp. 351–360.

[9] D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error bounds,
Bull. Math. Biology, 55 (1993), pp. 141–154.

[10] T. C. Hu, Optimum communication spanning trees, SIAM J. Comput., 3 (1974), pp. 188–195.
[11] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan, The complexity of the network

design problem, Networks, 8 (1978), pp. 279–285.
[12] G. Konjevod, R. Ravi, and F. S. Salman, On Approximating Planar Metrics by Tree

Metrics, manuscript, 1997.
[13] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu, A tool for multiple sequence align-

ment, Proc. Nat. Acad. Sci. USA, 86 (1989), pp. 4412–4415.
[14] S. B. Needleman and C. D. Wunsch, A general method applicable to search the similarities

in the amino acid sequences of two proteins, J. Molecular Biol., 48 (1970), pp. 443–453.
[15] P. A. Pevzner, Multiple alignment, communication cost, and graph matching, SIAM J. Appl.

Math., 52 (1992), pp. 1763–1779.
[16] Y. Rabinovich and R. Raz, Lower bounds on the distortion of embedding finite metric spaces

in graphs, Discrete Comput. Geom., 19 (1998), pp. 79–94.
[17] D. Sankoff and J. B. Kruskal, eds. Time Warps, String Edits and Macromolecules: The

Theory and Practice of Sequence Comparison, Addison–Wesley, Reading, MA, 1983.
[18] D. Sankoff, C. Morel, and R. J. Cedergren, Evolution of the 5S Ribosomal RNA, Nature

New Biology, 245 (1973), pp. 232–234.



778 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

[19] G. D. Schuler, S. F. Altschul, and D. J. Lipman, A workbench for multiple alignment
construction and analysis, Proteins Structure Function Genetics, 9 (1991), pp. 180–190.

[20] L. Wang and T. Jiang, On the complexity of multiple sequence alignment, J. Comput. Biol.,
1 (1994), pp. 337–348.

[21] M. S. Waterman, Introduction to Computational Biology, Chapman & Hall, London, 1995.
[22] R. Wong, Worst-case analysis of network design problem heuristics, SIAM J. Alg. Discrete

Methods, 1 (1980), pp. 51–63.



COMPLEXITY OF DECIDING SENSE OF DIRECTION∗

PAOLO BOLDI† AND SEBASTIANO VIGNA†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 779–789

Abstract. In this paper we prove that deciding whether a distributed system (represented as a
colored digraph with n nodes) has weak sense of direction is in AC1 (using n6 processors). Moreover,
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1. Introduction. The theory of distributed computing aims at understanding
the nature of cooperation in a distributed environment, where processing is carried on
by agents with autonomous computing abilities, which can communicate by exchang-
ing messages along communication links. The topological structure of such systems
can be described by a graph, with nodes representing agents and arcs representing
links. Each node has a local (partial) view of the system, and it associates a different
label (color) with each of its incident links; in general, the color assigned to a certain
link by a node may differ from the one assigned to the same link by the partner,
because colors are assigned locally.

The solution to many problems in a distributed system can be greatly simplified
by using colorings with special properties. In this paper we analyze from the point
of view of complexity theory a property known as (weak) sense of direction [FMS98];
more precisely, we study the complexity of deciding whether a network with a given
coloring has (weak) sense of direction or not.

Sense of direction can be intuitively described as follows. Suppose that every time
a message passes through a link, it picks up the color of the link. At destination, the
message will possess the entire string of colors of the links it passed through along
its route. Our problem is to tell whether two messages have been sent by the same
source or not, just by looking at their strings of colors. Since each node assigns a
different color to each of its incident links, if every agent has a complete view of the
system (and of every local coloring as well), the problem can be solved by an easy
local algorithm that uses a linear backtracking technique to single out the source. But
is there a way to solve the problem globally, with a unique function that also abstracts
partially from the overall knowledge of the system? This possibility depends on some
consistency property of the coloring.

Properties of global consistency have been known and used informally for a long
time (see, for instance, [SAN84, LMW86, AvLSZ89]), but they were not formalized
until [FMS98]: that definition, now widely accepted, allowed their systematic study.
In the present paper, we will characterize for the first time weak sense of direction
in a combinatorial manner and show that it can be decided efficiently in parallel;
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namely, we will prove that the presence of weak sense of direction can be decided in
logarithmic time using n6 processors.

However, having weak sense of direction is in general not enough for practical
purposes. What one usually wants is the possibility of coding the identity of the
source locally in each node, without using a complete path to decode it (see, for
instance, [FMS97]). In other words, each node should be able to infer the local name
of the source simply using the color of the link from which the message has arrived,
and the name under which the next-to-last node on the path knows the source. This
property is known as sense of direction: again, we will characterize it combinatorially,
and we will show that it is decidable in sequential polynomial time.

The upper bounds we derive are the first nontrivial ones for these decision prob-
lems, even though the algorithms we propose are not practical (due to the high number
of processors, in the first case, and to the high degree of the polynomial bound, in
the second case). In the last section we give some concluding remarks and notice that
our results apply also to the recognition of Cayley color graphs.

2. Definitions. A directed graph (or, in short, a graph) G is given by a set V
of n nodes and a set A ⊆ V × V of arcs. We write P [x, y] ⊆ A∗ for the set of paths
from the node x to the node y.

An (arc) coloring of a graph G is a function λ : A→ L, where L is a finite set of
colors.1 We say that λ is deterministic iff

λ(〈x, y〉) = λ(〈x, z〉) =⇒ y = z,

that is, if the automaton described by the transition graph G with coloring λ is deter-
ministic. We shall frequently shift between graph-theoretic and automata-theoretic
concepts when talking about a colored graph.

Our (colored) graphs will be always represented by (colored) adjacency matrices,
that is, n × n matrices such that the entry indexed by x, y ∈ V will contain 0 if no
arc connects x to y; otherwise, it will contain a positive integer representing the color
of the arc (or 1, if the graph has no coloring).

Given a graph G deterministically colored by λ (we shall omit in the future to
mention that λ is deterministic; all colorings in this paper are such), let

L(x, y) = {λ∗(π) | π ∈ P [x, y]},
where λ∗ : A∗ → L∗ is defined by

λ∗(〈x1, x2〉〈x2, x3〉 · · · 〈xk−1, xk〉) = λ(〈x1, x2〉)λ(〈x2, x3〉) · · ·λ(〈xk−1, xk〉).
In other words, L(x, y) is the language recognized by G when x is the initial state and
y is the final state. For all I ⊆ V 2 let

LI =
⋃

〈x,y〉∈I
L(x, y)

(of course, L(x, y) = L{〈x,y〉}). Notice that ε ∈ L(x, x) 6= ∅.
A local naming for G is a family of injective functions β = {βx : V → N }x∈V ,

with N a finite set, called the name space. Intuitively, each node x of G gives to each

1We remark that throughout this paper |L| is polynomially bounded in n. In particular, we can
restrict without loss of generality to situations in which |L| ≤ n2, for no more than n2 colors can be
actually “used” by λ.
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other node y a name βx(y) taken from the name space. Since we require injectivity, we
have that necessarily |N | ≥ n. We shall also write β : V ×V → N for the “unindexed”
local naming, that is, β(x, y) = βx(y).

Given a colored graph endowed with a local naming, a function f : LV 2 → N is
a (consistent) coding function iff

∀x, y ∈ V ∀π ∈ P [x, y], f(λ∗(π)) = βx(y).

A coding function translates the coloring of the path along which two nodes x, y are
connected into the name that x gives to y. Note that although the resulting name
is local (i.e., x and z might choose different elements of the name space for the same
node y), the coding function is global.

A coloring λ is a weak sense of direction for a graph G iff for some local naming
there is a coding function.2 We shall also say that a colored graph has weak sense of
direction, or that λ gives weak sense of direction to G.

As an example, consider a p× q torus, where the links have the standard compass
coloring (North/South/East/West). Each node with coordinates 〈i, j〉 (where i ∈ Zp,
j ∈ Zq) gives to a node with coordinates 〈h, k〉 the local name 〈i − h, j − k〉. If a
message arrives through a path colored by v, the receiver knows the sender under the
local name f(v) = 〈#N (v)−#S(v),#E(v)−#W (v)〉, where #N (v) is the number of
occurrences of the “North” color in v, and so on. On the other hand, if we reverse
the North/South coloring at just one node, then the resulting graph has no sense of
direction, because there is no global way to detect whether the string “North North
North” corresponds to a first-coordinate offset of 1 or 3.

Finally, a (consistent) decoding function is a map h : L ×N → N that satisfies

∀〈x, y〉 ∈ A ∀z ∈ V ∀π ∈ P [y, z], h(λ(〈x, y〉), f(λ∗(π))) = βx(z).

A decoding function translates the name given by y to z into the name given by x to
z, knowing only the color of the arc connecting x and y. Note that, as in the case of
the coding function, h is global.

A coloring λ is a sense of direction for a graph G iff for some local naming there
is a coding function and a decoding function. Our previous example has also trivially
sense of direction (just add the contribution of the last color).

The model of computation we use is a common crcw pram (i.e., concurrent
reads and writes are allowed, and all the processors participating to a concurrent
write must write the same value). We shall denote with ACk the class of problems
that are solvable in time O((log n)k) using a polynomial number of processors. (The
classes ACk were originally defined using boolean circuits, but they can be equivalently
characterized in terms of parallel complexity; see [KR90].)

The notions of equivalence relation and partition will be used interchangeably,
and equivalence relations will be represented using boolean matrices. Thus, if R is an
equivalence relation, we shall indifferently write x R y, R(x, y) = 1 or x, y ∈ I ∈ R
(i.e., x and y belong to the same class I of the partition induced by R). If R and
S are equivalence relations, we shall write R ≤ S whenever R is finer than S as an
equivalence relation, that is, if R ⊆ S (we shall also say that S is coarser than R). We

2Elsewhere weak sense of direction has been defined in a slightly different way by considering
only nonempty paths. It is easy to check that the algorithms described here can be immediately
adapted to that definition just by assuming ε 6∈ L(x, x) and, consequently, performing a transitive
(nonreflexive) closure of the matrix M in Proposition 4.1.
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shall use the same notation, with the same meaning, for the associated partitions and
boolean matrices. Composition of relations (or, equivalently, product of matrices) will
be denoted by juxtaposition and reflexive-transitive closure of R by R∗.

We remark a difference with the notation of [FMS98]. Instead of using undirected,
connected graphs with a coloring that is node dependent, we consider general colored
directed graphs,3 in which an arc from x to y represents the existence of a link from
y to x; this apparently unnatural convention makes our presentation much simpler,4

and it allows us to use a more standard way of coloring graphs, which highlights
naturally the connections with automata and regular languages.

3. Coding functions and internal monodromy. We will now give a purely
combinatorial condition on the coloring of a graph that will be proved equivalent to
being a weak sense of direction. From now onwards we shall work with finite graphs
and stick to the notation of section 2 without further remarks.

Definition 3.1. Given a set X, a partition Π of X2 is said to be (internally)
monodrome iff

∀I ∈ Π, 〈x, y〉, 〈x, z〉 ∈ I =⇒ y = z.

The previous definition will be extensively used throughout the paper. Note that
an equivalence relation that is finer than a monodrome one is also monodrome.

Theorem 3.2. Let T be the equivalence relation on V 2 defined as the transitive
closure of

〈x, y〉 ∼ 〈x′, y′〉 ⇐⇒ L(x, y) ∩ L(x′, y′) 6= ∅.

Then λ is a weak sense of direction iff T is monodrome.
The proof of the theorem is preceded by two lemmata. Intuitively, each element

I of T will be an element of the name space. The name under which x knows y is
precisely the (unique) I ∈ T such that 〈x, y〉 ∈ I. The idea behind the proof is that
whenever the same string v of colors appears on two different paths of the graph, say
from x to y and from x′ to y′, then necessarily βx(y) = f(v) = βx′(y

′).
Lemma 3.3. Let G = (V,A) be a graph with a weak sense of direction given by

a coloring λ, and let β and f be the corresponding local naming and coding function;
then, there exists a monodrome partition Π of V 2 such that Π ≥ T and |Π| ≤ |N |
(recall that N is the codomain of β).

Proof. We will show that the nonempty fibers of β (i.e., the nonempty counter-
images of singletons) form a monodrome partition Π of V 2 that is coarser than T
(and, of course, |N | ≥ | im(β)| = |Π|). Monodromy is trivial, as it is equivalent to
injectivity of the naming functions βx. Now suppose 〈x, y〉, 〈x′, y′〉 ∈ I ∈ T ; then
there is a chain

〈x, y〉 = 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉 = 〈x′, y′〉
such that wi ∈ L(xi, yi)∩L(xi+1, yi+1) 6= ∅ for 1 ≤ i ≤ k−1. Thus, βxi(yi) = f(wi) =
βxi+1

(yi+1), which implies that βx(y) = βx′(y
′), that is, 〈x, y〉, 〈x′, y′〉 ∈ J ∈ Π.

Lemma 3.4. For every monodrome partition Π ≥ T there exists a local naming
β and a coding function f with name space Π.

3It is easy to extend our results to graphs with parallel arcs if the set of arcs between two nodes
is represented by a vector of integers, one for each color.

4The case studied in [FMS98] can be recovered by considering graphs that are symmetric, loopless,
and strongly connected.
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Proof. First of all, note that the nonempty LI ’s form a partition of LV 2 when
I ranges over T (which is monodrome). Indeed, if w ∈ LI ∩ LJ , then w ∈ L(x, y) ∩
L(x′, y′) for some 〈x, y〉 ∈ I, 〈x′, y′〉 ∈ J . But then necessarily I = J . Of course, the
partition Π enjoys a fortiori the same property.

Now let βx(y) be the unique element of Π containing 〈x, y〉, and let f(w) be the
unique I ∈ Π such that w ∈ LI . Then, β is a local naming and f is a coding function.

1. If βx(y) = βx(z), then there is an element of Π including 〈x, y〉 and 〈x, z〉.
But the definition of monodrome partition implies y = z.

2. If π ∈ P [x, y] and λ∗(π) = w, then w ∈ L(x, y). Now, if I ∈ Π is the unique
element of Π that contains 〈x, y〉, then

f(λ∗(π)) = f(w) = I = βx(y).

The proof of Theorem 3.2 is now trivial. If G has weak sense of direction, T is the
refinement of a monodrome partition by Lemma 3.3, and it is thus monodrome. On
the other hand, by taking Π = T in Lemma 3.4 we obtain a weak sense of direction
from a graph G with T monodrome.

Note that even though monodromy and weak sense of direction are equivalent,
it might still be the case that monodrome partitions coarser than T do not give the
best possible (i.e., smallest) name spaces. Nonetheless, Lemmas 3.3 and 3.4 together
guarantee that optimal naming is equivalent to optimal partitioning: indeed, if a weak
sense of direction uses p names, then by Lemma 3.3 there is a monodrome partition
coarser than T with q ≤ p classes, and in turn this partition gives by Lemma 3.4 a
weak sense of direction using q names.

4. The decision problem for weak sense of direction. Using the results
of section 3 we will now establish that deciding whether a given colored graph G with
n nodes has weak sense of direction is in AC1 (using n6 processors).

4.1. Checking monodromy. In this section we will show how to build T using
reflexive-transitive closures of suitable matrices.

Proposition 4.1. Let G be a graph with coloring λ. Let M be the n2×n2 boolean
matrix defined by

M(〈x, x′〉, 〈y, y′〉) = 1 ⇐⇒ 〈x, y〉, 〈x′, y′〉 ∈ A ∧ λ(〈x, y〉) = λ(〈x′, y′〉).
Then

L(x, y) ∩ L(x′, y′) 6= ∅ ⇐⇒ M∗(〈x, x′〉, 〈y, y′〉) = 1.

Intuitively, the matrix M is the noncolored adjacency matrix of the (categorical)
product graph G × G, which has an arc colored by α between the nodes 〈x, x′〉 and
〈y, y′〉 iff G has arcs colored by α between x,y and between x′, y′.

Proof. We have L(x, y) ∩ L(x′, y′) 6= ∅ iff there is a string w = α1α2 · · ·αk such
that x · w = y and x′ · w = y′,5 that is, iff there are paths

〈x, x · α1〉〈x · α1, x · α1α2〉 · · · 〈x · α1α2 · · ·αk−1, x · w = y〉
and

〈x′, x′ · α1〉〈x′ · α1, x
′ · α1α2〉 · · · 〈x′ · α1α2 · · ·αk−1, x

′ · w = y′〉.
5We are again considering G as an automaton, and we are denoting by the dot operator the right

action of the alphabet L on states; in other words, x ·α is the state reached from x along the unique
arc colored by α, if it exists.
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By the definition of M , M(〈z, z′〉, 〈z · α, z′ · α〉) = 1 whenever both z ·α and z′ ·α
are defined. Thus, L(x, y) ∩ L(x′, y′) 6= ∅ is equivalent to reachability (i.e., reflexive-
transitive closure) of 〈y, y′〉 from 〈x, x′〉 in the graph having M as adjacency
matrix.

The previous proposition implies that T = N∗, where N is the matrix obtained
from M∗ using the following permutation:

N(〈x, y〉, 〈x′, y′〉) = M∗(〈x, x′〉, 〈y, y′〉).
Once the matrix T has been computed, the monodromy condition is written as follows:

∀x, y, z ∈ V, T (〈x, y〉, 〈x, z〉) = 1 =⇒ y = z.

As a matter of fact, this condition has a simple formulation in terms of submatrices:
if we divide T into n2 submatrices of size n × n, the n submatrices on the diagonal
have to be identities.

4.2. Weak sense of direction is in AC1. We are now going to show that
the operations described in the previous section can be realized using a logarithmic
number of steps and n6 processors. We first give a formal definition of our problem.

Problem 4.1. Weak Sense of Direction.
Instance: A graph G with coloring λ.
Question: Is λ a weak sense of direction?

Theorem 4.2. Weak Sense of Direction is in AC 1.
Proof. Given a colored graph G with n nodes, we can compute the matrix M

(using the notation of the previous section) in constant time using n4 processors (i.e.,
one processor per entry of M). Then we can compute M∗ in logarithmic time using
n6 processors (see [KR90]). But N can be computed from M using n4 processors and
constant time, after which T = N∗ can be computed again in logarithmic time using
n6 processors. Monodromy of T can be trivially checked in constant time using n3

processors.
An O(n4.752 log n) sequential algorithm for weak sense of direction can be easily

obtained from the results of section 4.1 by using fast boolean matrix multiplica-
tion [CW90]. With respect to this trivial sequential solution, the large number of
processors used in the algorithm of Theorem 4.2 causes a nonnegligible O(n1.248) loss
of work. We also state the following result.

Theorem 4.3. The local naming β associated to a given T can be computed in
constant time using n6 processors.

Proof. Given a row of T , we can compute the index of the column of the first
nonzero element using n4 processors and a constant number of steps.6 This index
identifies uniquely each equivalence class (of course, βx(y) is exactly the index asso-
ciated to the row 〈x, y〉), and the thesis follows computing such indices in parallel for
the n2 rows of T .

5. Decoding functions and left regularity. We now attack the problem of
characterizing colored graphs that have sense of direction, that is, a decoding function,
besides a local naming and a coding function. Note that weakness is not a “fake”
notion: there are colored graphs that have weak sense of direction but do not have a
decoding function. An example follows.

6Given a boolean vector v of m elements, we can compute the index of its first nonzero entry as
follows: we first compute (in constant time and using m(m+ 1)/2 processors) a new vector w whose
ith entry is v1 ∨ v2 ∨ · · · ∨ vi. Then we set up m processors so that the ith processor outputs its
index iff wi−1 6= wi (w0 = 0 by definition).
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Fig. 5.1. A graph with strictly weak sense of direction.

The characterization of section 3 makes it clear that the graph of Figure 5.1 has
weak sense of direction. (The only sets L(x, y) with more than one element are {bc, d}
and {ad, e}.) Moreover, we are forced to set f(bc) = f(d) for any coding function f .
But as soon as we suppose the existence of a decoding function h, we obtain

β0(1) = h(a, f(bc)) = h(a, f(d)) = β3(4) = f(e) = β0(2),

which is clearly impossible because β0 is injective. (This example can be easily modi-
fied to obtain a symmetric connected graph with the same property—just add all arcs
that are necessary assigning to each new arc a new color.)

Definition 5.1. Let G be a graph with coloring λ. A partition Π of V 2 is said
to be left regular iff

∀I ∈ Π ∀α ∈ L, ∃J ∈ Π, αLI ∩ LV 2 ⊆ LJ .
If a colored graph admits a left-regular monodrome partition Π ≥ T , the language

LI (I ∈ Π), when prefixed with α, gives a sublanguage αLI of some LJ , J ∈ Π.
In other words, if two strings v, w live in the same language LI , they cannot be
“separated” by an α-prefixing. Note that if αLI ∩ LV 2 6= ∅, then J is unique.

Theorem 5.2. A graph G with coloring λ has sense of direction iff it admits a
left-regular monodrome partition Π ≥ T .

Proof. If G admits a left-regular monodrome partition Π ≥ T , we set up f and
β as in Lemma 3.4, and we define h(α, f(v)) for α ∈ L, v ∈ LI as the unique J ∈ Π
such that αLI ∩ LV 2 ⊆ LJ (the choice of v is, of course, irrelevant). Trivially, this
definition makes h into a decoding function.

Consider now a graph G for which the coloring λ is a sense of direction. Recalling
the notation of Lemma 3.3, we write Π for the monodrome partition obtained by
considering the nonempty fibers of β. Thus, we can identify elements in Π with
elements of the image of β. We just have to prove that Π is left regular.

Given α ∈ L and I ∈ Π, consider strings w1, w2 ∈ LI such that αw1, αw2 ∈ LV 2 .
Thus, we have nodes x1, x2 such that x1 · αw1 and x2 · αw2 are both defined. Then
we have

βx1
(x1 · αw1) = h(α, f(w1)) = h(α, f(w2)) = βx2

(x2 · αw2),

so each string in αLI ∩ LV 2 belongs to the same LJ , J ∈ Π.
The problem we face when using left regularity to check for the existence of

a decoding function is that in principle we should check all possible monodrome
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partitions coarser than T , and such a test would clearly lead to a combinatorial
explosion. The next few theorems will be helpful in reducing the computational
burden of Definition 5.1.

Definition 5.3. For each α ∈ L, the relation Cα ⊆ V 2 × V 2 is defined by

〈x, y〉 Cα 〈x′, y′〉 ⇐⇒ αL(x, y) ∩ L(x′, y′) 6= ∅.

For each relation R ⊆ V 2 × V 2 and for each w = α1α2 · · ·αk ∈ L∗, we also set

(CR)w = Cα1
RCα2

R · · ·CαkR.
The operator (−)CL , which transforms relations on V 2, is defined by

RCL =
( ∑
w∈L∗

((CR)w)TR(CR)w

)∗
.

We observe that (−)CL , when applied to a symmetric relation, always gives an equiv-
alence relation. Moreover, it is monotone (i.e., R ≤ S implies RCL ≤ SCL), and
R ≤ RCL .

Proposition 5.4. A partition Π of V 2 coarser than T is left regular iff CLΠ ≤
Π.

Proof. We have that

ΠCL ≤ Π ⇐⇒
( ∑
w∈L∗

((CΠ)w)TΠ(CΠ)w

)∗
≤ Π

⇐⇒ ∀w ∈ L∗ ((CΠ)w)TΠ(CΠ)w ≤ Π

⇐⇒ ∀α ∈ L ΠCTαΠCαΠ ≤ Π

⇐⇒ ∀α ∈ L CTαΠCα ≤ Π.

Moreover, for every I, J ∈ Π and α ∈ L,

αLI ∩ LV 2 ⊆ LJ
⇐⇒

(
α

⋃
〈x,y〉∈I

L(x, y)
)
∩ LV 2 ⊆ LJ

⇐⇒ ∀〈x̄, ȳ〉 ∈ I αL(x̄, ȳ) ∩ LV 2 ⊆ LJ
⇐⇒ ∀〈x̄, ȳ〉 ∈ I ∀〈x, y〉 ∈ V 2 αL(x̄, ȳ) ∩ L(x, y) ⊆ LJ
⇐⇒ ∀〈x̄, ȳ〉 ∈ I ∀〈x, y〉 ∈ V 2 αL(x̄, ȳ) ∩ L(x, y) 6= ∅ ⇒ 〈x, y〉 ∈ J,

and the last condition is straightforwardly equivalent to CTαΠCα ≤ Π.
We are now ready to characterize graphs that admit monodrome, left-regular

partitions coarser than T .
Definition 5.5. We denote with U the least partition coarser than T and

closed under (−)CL ; said otherwise, U is the least partition coarser than T such that
UCL ≤ U .

Note that since UCL ≥ U by definition, closure under (−)CL can be equivalently
stated by saying that UCL = U . The partition U certainly exists because the class of
equivalence relations coarser than T and closed under (−)CL is nonempty and closed
under intersection.

Theorem 5.6. A graph G with coloring λ has sense of direction iff U is mon-
odrome.
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Proof. If G has sense of direction then by Theorem 5.2 there is a left-regular
monodrome partition coarser than T and, by minimality, coarser than U ; thus, U
is monodrome. For the other direction, just take Π = U and use again Theorem
5.2.

Finally, we show how to compute U explicitly.
Theorem 5.7. U = (· · · ((T )CL)CL · · · )CL (n2 times).
Proof. By a trivial argument of domain theory, U can be obtained by iterating

the (−)CL operator over T until a fixed point is reached. However, T can have at
most n2 equivalence classes, and each application of (−)CL decreases this number by
at least 1, hence the thesis.

6. The decision problem for sense of direction. Using the results of the
previous section we will now establish that one can decide in (sequential) polynomial
time whether a given colored graph G with n nodes has sense of direction.

6.1. Checking left regularity. There are two main steps for computing (−)CL :
determining the matrices (relations) Cα and computing

∑
α∈L Cα ⊗ Cα (with ⊗ we

denote the Kronecker product of matrices). This is sufficient because of the following
proposition.

Proposition 6.1. Given a relation R ⊆ V 2 × V 2, let R̂ be defined by

R̂ =

(∑
α∈L

Cα ⊗ Cα
)

(R⊗R).

Then

〈x, y〉
∑
w∈L∗

((CR)w)TR(CR)w 〈x′, y′〉(6.1)

iff there are 〈x̄, ȳ〉, 〈x̄′, ȳ′〉 such that 〈x̄, ȳ〉 R 〈x̄′, ȳ′〉 and

〈〈x̄, ȳ〉, 〈x̄′, ȳ′〉〉 R̂∗ 〈〈x, y〉, 〈x′, y′〉〉.(6.2)

Proof. Since

R̂ =

(∑
α∈L

Cα ⊗ Cα
)

(R⊗R) =
∑
α∈L

CαR⊗ CαR,

we have that (6.2) holds iff there is a word w = α1α2 · · ·αk ∈ L∗ such that

〈〈x̄, ȳ〉, 〈x̄′, ȳ′〉〉 Cα1
RCα2

R · · ·CαkR⊗ Cα1
RCα2

R · · ·CαkR 〈〈x, y〉, 〈x′, y′〉〉,
that is, such that

〈x̄, ȳ〉 (CR)w 〈x, y〉 ∧ 〈x̄′, ȳ′〉 (CR)w 〈x′, y′〉.(6.3)

But (6.1) is equivalent to the existence of a word w ∈ L∗ such that

〈x, y〉 ((CR)w)TR(CR)w 〈x′, y′〉,
which in turn is equivalent to the existence of pairs 〈x̄, ȳ〉 R 〈x̄′, ȳ′〉 satisfying (6.3),
or equivalently (6.2).

Thus, given the matrices Cα we can compute RCL as follows:



788 PAOLO BOLDI AND SEBASTIANO VIGNA

(1) compute (R⊗R)R̂∗;
(2) create a new n2 × n2 matrix S such that S(〈x, y〉, 〈x′, y′〉) = 1 iff there is a

〈x̄, ȳ〉 ∈ V 2 satisfying 〈〈x̄, ȳ〉, 〈x̄, ȳ〉〉 (R⊗R)R̂∗ 〈〈x, y〉, 〈x′, y′〉〉;
(3) compute S∗, which is exactly RCL .
We start by showing how to compute the Cα’s by means of the same techniques

we used in proving Proposition 4.1. We shall add to each node of G a bunch of
|L| incoming arcs starting from new “artificial” nodes and apply again the product
construction.

Proposition 6.2. Let the graph H = (W,B) be defined as follows: W = V +
V × L, B = A ∪ {〈〈x, α〉, x〉 | x ∈ V, α ∈ L}. Let us extend the coloring λ of G to a
coloring µ : B → L by setting µ(〈〈x, α〉, x〉) = α. Let D be the (n+n|L|)2×(n+n|L|)2

matrix

D(〈s, s′〉, 〈t, t′〉) = 1 ⇐⇒ 〈s, t〉, 〈s′, t′〉 ∈ B ∧ µ(〈s, t〉) = µ(〈s′, t′〉),

where s, s′, t, t′ range over W . Then, for all x, x′, y, y′ ∈ V ,

D∗(〈〈x, α〉, x′〉, 〈y, y′〉) = 1 ⇐⇒ αL(x, y) ∩ L(x′, y′) 6= ∅.

Proof. As in the proof of Proposition 4.1, we have that D∗(〈〈x, α〉, x′〉, 〈y, y′〉) = 1
iff there is a word w = α1α2 · · ·αk such that 〈x, α〉 · w = y and x′ · w = y′. But by
construction of H this happens iff n > 0, α1 = α, α2 · · ·αk ∈ L(x, y) and α1α2 · · ·αk ∈
L(x′, y′)—in other words, iff αL(x, y) 3 w ∈ L(x′, y′).

Corollary 6.3. Cα(〈x, y〉, 〈x′, y′〉) = D∗(〈〈x, α〉, x′〉, 〈y, y′〉).
We finally have the following theorem.
Theorem 6.4. Given a relation R ⊆ V 2 × V 2, CLR can be computed in loga-

rithmic time using a polynomial number of processors.
Proof. Recalling that |L| ≤ n2 it is easy to see that the matrix D (with the

notation of Proposition 6.2) can be built in constant time using a polynomial number
of processors. Then, we just have to perform a series of transitive closures, products,
and permutations, which can be computed in logarithmic time using a polynomial
number of processors. The details are left to the reader.

6.2. Sense of direction is in P. We now come to the main theorem of this
section. We start again by formalizing our problem.

Problem 6.1. Sense of Direction.
Instance: A graph G with coloring λ.
Question: Is λ a sense of direction?

Theorem 6.5. Sense of Direction is in P.
Proof. We can compute T in logarithmic time using n6 processors; thus, we can

a fortiori compute it sequentially in polynomial time. To compute U , we just have to
iterate n2 times (−)CL(−) over T (see Definition 5.5), and this task can be carried
out in polynomial time, since each iteration requires a fortiori polynomial sequential
time by Theorem 6.4, and the number of iterations is polynomial. By Theorem 5.6,
we can decide whether our graph has sense of direction by checking the monodromy
of U , which can be done in O(n3) steps.

Note that since the operator (−)CL is computable in parallel logarithmic time,
and the bound on the number of iterations provided by Theorem 5.7 is very rough,
it is an interesting open problem to characterize large classes of graphs for which a
(poly)logarithmic number of iterations suffices. The number of processors that are
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necessary to compute (−)CL is, however, rather large, and so is, correspondingly, the
polynomial bound on sequential time.

7. Conclusions. The positive results we presented about the decision problem
for (weak) sense of direction of a colored graph should not obscure the fact that
the next and most important open problem is to decide how many colors are really
sufficient to give (weak) sense of direction to a graph. More precisely, we could ask,
given a graph G and a positive integer k, whether there is a (weak) sense of direction
λ for G using at most k colors. Note that k is always bounded from below by the
maximum outdegree of the graph, so in particular we could also ask which graphs can
be given a (weak) sense of direction using a number of colors equal to the maximum
outdegree.

As shown in [BV97], the outregular graphs with such a (weak) sense of direction
are exactly the Cayley color graphs (i.e., Cayley graphs with the natural coloring
obtained associating to each arc the element of the group that generated it). Thus,
we can use the algorithm described in section 4 to recognize Cayley color graphs in
parallel logarithmic time. (To our knowledge, this is the first complexity result on the
recognition of Cayley color graphs.) The result above implies also that the problem of
deciding whether a given graph is a Cayley graph can be reduced to deciding whether
the graph is outregular and can be given a (weak) sense of direction using a number
of colors equal to its outdegree; surprisingly, however, no results (in particular, no
hardness results) are known about the recognition of Cayley graphs.
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Abstract. We provide rigorous time/space trade-offs for inverting any function. Given a func-
tion f , we give a time/space trade-off of TS2 = N3q(f), where q(f) is the probability that two
random elements (taken with replacement) are mapped to the same image under f . We also give a
more general trade-off, TS3 = N3, that can invert any function at any point.

Key words. cryptography, cryptanalysis, one-way functions, randomized algorithms, random
graphs, hashing data encryption standard

AMS subject classifications. 68M10, 68Q20, 68Q22, 68R05, 68R10

PII. S0097539795280512

1. Introduction. Time/space trade-offs occur in many searching tasks. Typical
examples are a TS2 = Õ(2n) time/space trade-off for knapsack-like problems [15,
17, 10], algorithms for solving the discrete log problem [16], etc. In this paper we
investigate time/space trade-offs for inverting functions.

Hellman [12] was the first to study this problem. He suggests a general time/space
trade-off to invert one-way functions. Let the domain be D = {1, . . . , N}, and let
f : D 7→ D be the function to be inverted. Suppose that f is given in a black box
manner, i.e., on input x the value f(x) appears as output. To invert f(x), a simple
exhaustive search requires time Õ(N) and constant space. (Throughout, we ignore
low-order polylogarithmic factors in time/space requirements and use the Õ notation.
We say that f ∈ Õ(g) if there exists some c such that f ∈ O(g · logc(g)).) An extreme
alternative is to precompute a table with N entries whose ith location contains the
preimage of i. Constructing such a table requires preprocessing time and space Õ(N),
but later requires only O(1) time per function inversion.

Hellman’s motivation is a chosen cleartext attack on block ciphers. Given a block
encryption algorithm, Ek(x), consider the function f that maps the encryption key k
to the encryption of a fixed cleartext block B under k, f(k) = Ek(B). Inverting such
a function is equivalent to breaking the encryption scheme under a fixed cleartext
attack. An eavesdropper that wants to listen to many communications may find
that Õ(N) time per transmission is too expensive or causes an unacceptable delay.
Because of the differing costs of time and memory, a memory of size O(N) might
be absolutely too large, while a preprocessing time of O(N) may be feasible. This

∗Received by the editors January 27, 1995; accepted for publication (in revised form) June 9,
1997; published electronically December 15, 1999. A preliminary version of this paper appeared
in Proceedings of the 23rd ACM Symposium on Theory of Computing (STOC), New Orleans, LA,
1991, pp. 534–541.

http://www.siam.org/journals/sicomp/29-3/28051.html
†Department of Computer Science, Tel Aviv University, Tel Aviv, Israel (fiat@math.tau.ac.il).

Part of this work was done while the author was visiting the International Computer Science Institute
and the IBM Almaden Research Center. The research of this author was supported by a grant from
the Israel Science Foundation administered by the Israel Academy of Sciences.
‡Incumbent of the Morris and Rose Goldman Career Development Chair, Department of Ap-

plied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel
(naor@wisdom.weizmann.ac.il). Most of this work was performed while the author was at the IBM
Almaden Research Center. The research of this author was supported by a grant from the Israel
Science Foundation administered by the Israel Academy of Sciences.

790



RIGOROUS TIME/SPACE TRADE-OFFS FOR INVERTING FUNCTIONS 791

motivates the search for time/space trade-offs that require less than Õ(N) time per
function inversion and also require less than Õ(N) space.

Hellman assumes in his analysis that the function f that is to be inverted is a
random function. He also postulates that functions obtained by minor modifications
to f (permuting the output bits) can be modeled as independently chosen random
functions. Under these presuppositions, Hellman’s scheme [12] requires Õ(N) time
for preprocessing and time/space T/S per function inversion, where T and S satisfy
TS2 = Õ(N2).

We find it difficult to give an exact characterization of the assumptions actually
required for Hellman’s scheme to work. We cannot characterize the set of functions
for which the Hellman time/space trade-off is applicable. While the construction
may work for specific functions, such as the Data Encryption Standard (DES) key to
ciphertext, it seems to be very difficult to prove this. We note that taking f to be
polynomial time indistinguishable from a random function is insufficient.

It is possible to give functions for which Hellman’s time/space construction will
fail. In fact, it is relatively simple for a cryptanalyst to design a cryptographic scheme
that causes the Hellman scheme to fail completely, paying for this through the incon-
venience that the encryption scheme is not invertible for some negligible fraction of
the keys. Our goal in this paper is to give a rigorous time/space trade-off construction
that works for any function.

In this paper we give an algorithm for constructing time/space trade-offs, denoted
A. Algorithm A consists of a preprocessing phase and an online inversion phase.

Our main result in this paper can be summarized in the following theorem.

Theorem 1.1. For any function f : D 7→ D, |D| = N , and for any choice of
values (S, T ) that obey TS3 = N3, the preprocessing phase of A requires time Õ(N)
and space Õ(S), producing a time space data structure of space Õ(S).

With probability 1 − 1/N , over the coin tosses of the preprocessing phase, the
data structure produced by the preprocessing phase allows the online inversion phase
to invert f at any point y in the range of f in time Õ(T ).

An interesting point in this trade-off is that T = S = N3/4. We also show that
this time/space trade-off can be improved for some functions where we can bound the
average number of domain elements that map to the same range value. In particular,
for functions where the maximum number of domain elements that map to any range
value is polylogarithmic in N , we can give a trade-off of TS2 = N2; an interesting
point in this trade-off is that T = S = N2/3.

The principle ideas used in this paper are as follows:

1. We build a table of high indegree points in the graph induced by f ; this table
is used to construct functions that bypass these points. This allows a better
cover of the domain by random chains.

2. We use k-wise independent functions to substitute for the random functions
assumed by the Hellman trade-off. An appropriate choice of parameters al-
lows us to do so without harm.

3. We choose a specific order of events during the inversion process and allow
dependencies between different k-wise independent functions. These changes
are harmless and allow us to compute these k-wise independent functions in
nearly constant amortized time.

Section 2 of this paper gives an overview of the Hellman trade-off; section 3
introduces the rigorous trade-off; section 4 describes our scheme and its analysis,
while restricting the function f to be not “trivial to invert in space S.” (Intuitively,



792 AMOS FIAT AND MONI NAOR

if a function f is trivial to invert in space S, it implies that f is generally not useful
for cryptographic applications in a scenario where the cryptanalyst has space S.) For
completeness, we describe how to modify our construction to deal with trivial to invert
functions in section 5; concluding the proof of Theorem 1.1, we also consider various
extensions to the scheme. The last section gives some open problems associated with
this work.

2. The Hellman construction. We now review the Hellman construction,
which is the starting point of our scheme. First suppose that the function f : D 7→ D,
D = {1, . . . , N} is a permutation. In this case there is an elegant time/space trade-off
of T · S = Õ(N): consider the graph induced by f , where vertices are points in the
domain and directed edges describe f ’s operation on the point. Since f is a permu-
tation, this graph splits into disjoint cycles. If a cycle is less than T in length, do
nothing. If the cycle is longer than T , store a set of “shortcut elements” along the
cycle so that no two are farther apart than T vertices. Each one of these shortcut
elements points to its closest predecessor; that is, if the shortcut elements are T apart,
then z points to f−T (z). Now, given y = f(x), it can be inverted by following the
directed graph. If a pointer element is found, then follow the pointer and continue as
before; stop when y is reached again. The immediate predecessor to y is its inverse.

Unfortunately, this does not work for functions f that are not permutations, and
the time/space trade-off is worse. Hellman’s breakthrough was to consider many re-
lated functions such that if any one of them can be inverted, then so can f . Hellman
dealt with a random function f : D 7→ D and postulated that functions obtained by
minor modifications to f (permuting the output bits) can be modeled as indepen-
dently chosen random functions. We describe Hellman’s functions differently, as the
composition of f with a random function.

The Hellman trade-off curve allows one to choose space S and inversion time T
subject to TS2 = N2, |D| = N . The values S and T are a function of three scheme
parameters `, m, and t, where S = `m, T = `t, and are subject to the constraints
t2m ≤ N and mt` = N .

For concreteness we’ll assume ` = m = t = N1/3, giving the most interesting
trade-off point T = N2/3, S = N2/3. Choose ` = N1/3 different functions hi : D 7→
D, where hi(x) has the form gi(f(x)) and gi is a random function. For every hi
function, 1 ≤ i ≤ `, Hellman suggests taking m = N1/3 randomly selected points
xi1, xi2, . . . , xi,m and storing a table with m entries. Let t = N1/3; every entry is a
pair: xij and the tth iterate of hi on xij , denoted hti(xij) (see Figure 2.1). The table
is sorted (or hashed) by hti(xij) so that table lookup of xij , given hti(xij), takes no

more than O(logN) time. This table requires space Õ(m) = Õ(N1/3) per hi function
and thus space Õ(m · `) = Õ(N2/3) for all ` = N1/3 tables.

To invert f at a point y, Hellman’s trade-off repeats the following process for all
1 ≤ i ≤ `. Compute the values hi(y), h2

i (y), . . . ; if you find a value hji (y) in the table
associated with function hi, then follow the link (the appropriate table entry) and
continue applying hi. If during this process you find a value z such that hi(z) = gi(y),
then check to see if f(z) = y. It can be shown that this will indeed be the case with
constant probability under the appropriate idealized assumptions.

If f and the functions gi are all independent random functions, O(1) time com-
putable, then f can be inverted at a random point with Ω(1) probability in time
Õ(`·t) = Õ(N2/3). Under the same set of assumptions, f can be inverted at a random
point with constant probability and time/space requirements obeying TS2 = Õ(N2).

The difficulty with Hellman’s construction is that it requires completely random
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Fig. 2.1. The chains for a specific function hi.

and independent gi’s, but it is not clear of course how to come up with such functions.

3. Outline of results and methodology. We do not want to assume that
f has any particular structure; specifically, we do not want to assume that f is
random. An adversary may devise f so as to cause the Hellman’s basic cryptanalytic
time/space trade-off to fail. There exist cryptographically sound functions f , e.g.,
polynomial time indistinguishable from a truly random function, for which Hellman’s
time/space trade-off fails. This occurs since the entire trade-off scheme deals with
super-polynomial values.

Consider a function f with the property that some set of N1−ε domain elements
map to the same image, ε < 1/3. Such a function may be polynomial time indis-
tinguishable from a random function. Even if one assumes that random O(1) time
computable gi functions are available, the Hellman time/space scheme fails with over-
whelming probability. A cryptographer might devise the cryptographic scheme so that
only N−N1−ε of the keys induce a permutation, while the other keys map all cleartext
values to zero. The Hellman attack on this scheme will fail.

Another assumption we wish to remove is that the random functions gi are avail-
able. If every gi function is described by a long table of truly random entries, then the
time/space trade-off above becomes meaningless. We will use k-wise independence to
limit the storage requirements of our gi functions. We will show that an appropriate
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choice of k will ensure that the cryptanalytic scheme works. However, for any con-
struction of k-wise independent functions, computing the function requires more than
Õ(1) time. We then show how to modify the scheme so that the FFT algorithm can
be used to reduce the amortized computation cost of our k-wise independent gi.

Since f can be determined by an adversary, we cannot assume anything about
the structure of f . Let I(y) denote the number of preimages for y under f , I(y) =
|{x ∈ D|f(x) = y}|. We call I(y) the indegree of y.

Images y with many preimages under f imply images gi(y) with many preimages
under hi.

Consider the sequence I(0), I(1), . . . , I(N). We are interested in the probability
that two randomly chosen elements from the domain D have the same image. We
denote this probability by

q(f) =

∑N
i=0 I(i)2

N2
.

Under the assumptions of random gi functions, and given q(f), we can modify the
parameters of the Hellman time/space trade-off of section 2 to obtain a generalized
trade-off. If the gi’s are random functions, then q(hi) = q(gi ◦ f) ≤ q(f) + 1/N with
high probability. Any point on the time/space trade-off curve

T · S2 = N3 · q(f)(3.1)

can be obtained.1

We now sketch the argument as to why the above trade-off is possible. Let `
denote the number of functions, m the number of chains per function, and t the
length of each chain. Set m and t such that m · t2 ·q(f) ≤ 1. We can argue that for all
i, the union of all m chains contains Θ(m · t) elements with high probability. Setting
` · t ·m ≥ N implies that the union of all m · ` chains contains a constant fraction of
all images with high probability.

In section 4 we show that we can obtain the trade-off of (3.1) without recourse
to unprovable assumptions on the functions gi. Instead, we give explicit provable
constructions.

We give an alternative trade-off, which works for any function f , of arbitrary q(f)
such that any point on the time/space trade-off curve

T · S3 = N3(3.2)

can be obtained.
The trade-off of (3.2) is better than the trade-off of (3.1) whenever S > 1/q(f).

This trade-off makes use of O(S) memory so as to reduce the “effective probability of
collision” to 1/S instead of 1/q(f). Thus if we modify trade-off (3.1) by replacing q(f)
with the “effective probability of collision,” trade-off (3.2) becomes a special case. As
mentioned above, we will get a low “effective probability of collision” by designing
the hi functions so as to avoid high indegree nodes under f . We give a construction
to a single data structure that obeys the above trade-offs with respect to space and
time, but each element can be inverted with constant probability. By repeating the
construction we get that all of the elements can be inverted with high probability.

1This trade-off is not the best possible at the endpoints T = N or S = N , in which case we can
do better.
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4. The construction.

4.1. Preliminaries. The function to be inverted, f , maps the domain D of size
N onto itself. We may consider D = {1, . . . , N}.

Definition 4.1. A function f : D 7→ D is said to be trivial to invert in space S
if storing the S highest indegree images in a table allows one to invert f(x) by table
lookup for all x ∈ D′ ⊂ D such that |D′| ≥ N/2.

By definition, all functions are trivial to invert in space N . Throughout this
section, we always assume that f is not trivial to invert in space S. If f is trivial to
invert, table lookup takes care of most of the cases. We can handle trivial to invert
functions as well. (See section 5.)

In the construction, we use several tables in which pairs of the form (x, y) are
stored. Given a value y we need to search to see whether a pair with y is stored in
the table. This can be implemented by either binary search or by hashing (see, e.g.,
[2, 6, 11, 9]). In any case, this is a low-order multiplicative factor that vanishes in the
Õ notation.

Definition 4.2. Let G be a family of functions such that for all g ∈ G : g : D 7→
R (where D and R are some finite sets). Let g be chosen uniformly at random from
G. We call G k-wise independent if for all distinct x1, x2, . . . xk ∈ D the random
variables g(x1), g(x2), . . . , g(xk) are independent and uniformly distributed in R.

Families of k-wise independent functions have been studied and applied exten-
sively in recent years (cf. [3, 6, 7, 8, 14, 19]). A useful property is that if G is k-wise
independent, then for all 1 ≤ i ≤ k, for all x1, x2, . . . , xi ∈ D and v1, v2, . . . vi−1 ∈ R,
the distribution of g(xi) given that (g(x1) = v1, g(x2) = v2, . . . , g(xi−1) = vi−1) is
uniform in R. For our application we will need a family of functions g : {1, . . . , N}×
{1, . . . , N} 7→ {1, . . . , N}.

4.2. The scheme. Our scheme uses the parameters `, t, and m to define a point
on the time/space trade-off curve. We have space S = Õ(` ·m) and inversion time
T = Õ(` · t). The restrictions on t, `, and m are that t ≤ `, t ≥ 8 log(4m), and
t · ` ·m = N . We also use another parameter k, which is set 8 · t in this section. This
parameter is one of the few things we have to change in order to also handle trivial
to invert functions in section 5. In order to achieve the time/space trade-off given
in (3.2) we also use the constraint mk2 ≤ S, and to achieve the time/space trade-off
given in (3.1) we use the constraint mk2 ≤ 1/q(f).

To simplify explanations, we define S̃ to be 3S · log2N ; we actually use S̃ space,
not S. For S = N δ, 0 < δ < 1, the difference between S and S̃ disappears in the Õ.
The other values in the trade-off follow trivially.

Set k = 8 · t. (This is one of the few things we have to change in order to handle
trivial to invert functions as well.) The scheme uses a family G of k-wise independent
functions g : D×{1, . . . , N} 7→ D. In all ` functions, g1, g2, . . . , g` are applied, where
each gi is uniformly distributed in G. The scheme requires that for any 1 ≤ i < j ≤ `
the random variables gi and gj are independent, i.e., given the value of gi at all the
points we learn nothing about gj . The family G and the method by which the `
functions are chosen is described in section 4.4. As we shall see, g1, g2, . . . , g` are not
completely independent.

The scheme described in the following section yields only that any element has a
constant probability (over the coin flips of the preprocessing phase) of being inverted
successfully. However, by repeating the full scheme (both preprocessing and the on-
line inversion) O(logN) times, we can get that with probability of at least 1 − 1/N
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all range members can be inverted successfully in one of the schemes (this O(logN)
term is absorbed in the Õ notation).

4.2.1. Preprocessing for one data structure. The preprocessing phase con-
sists of two stages: a choice of table A and a choice of the chains. Table A will contain
pairs of values of the form 〈x, f(x)〉, sorted or hashed so that it is easy to see if f(x)
is in the table and to find the corresponding entry x. Table A is constructed by a
random process: choose S̃ random values x1, . . . , xs̃ ∈ D, and store pairs 〈xi, f(xi)〉
in A.

Remark. Table A is used to check if a point y has high indegree. If y has high
indegree, then there is high probability that y = f(x) will appear in A. The preimage
of y under f is used only to invert y itself, but the main use of table A is to avoid
the high indegree points during the search. We use the notation y ∈ A to mean that
there is an entry of the form 〈x, y〉 in A.

The choice of A defines the functions g∗i and hi: For 1 ≤ i ≤ `, define g∗i (x) =
gi(x, j), where 1 ≤ j ≤ k/2 is the smallest value such that f(gi(x, j)) /∈ A.2 If there
is no such j, then g∗i (x) is undefined. Define hi(x) = g∗i (f(x)) (or leave undefined
if g∗i (f(x)) is undefined). Evaluating hi(x) requires j evaluations of f and gi. Note
that for any x ∈ D the expected value of j (assuming that f is not trivial to invert)
is O(1).

The second preprocessing stage consists of choosing the chains that are supposed
to cover all of the range. It is done in the following way. For all 1 ≤ i ≤ `:

1. For all 1 ≤ j ≤ m pick xij at random from D.
2. Compute pairs of the form (hti(xij), xij). If hti(xij) is undefined or if comput-

ing hti(xij) requires more than k/2 invocations of gi, then discard xij . (Recall
that evaluation of hi at different points may result in a different number of
invocations of gi. Here we are interested in the total number of invocations.)

3. Store a table Ti with m entries (hti(xij), xij).
Define a chain rooted at xij to be the set {hpi (xij)|1 ≤ p ≤ t}. Define the ith

cluster, 1 ≤ i ≤ `, to be the set

Ci = {hpi (xij)|1 ≤ p ≤ t, 1 ≤ j ≤ m}.
Every cluster Ci is the union of m chains of length t. The chains may overlap one
another. (Two chains are said to overlap if they share one or more elements.) We
say that an image y = f(x) is contained in the chain rooted at xij if for some w ∈
{hpi (xij)|0 ≤ p ≤ t − 1} we have f(w) = y. We say that y is in the ith cluster if for
some 1 ≤ j ≤ m it is contained in the chain rooted at xij .

4.2.2. On-line inversion. We now explain how the tables constructed in the
preprocessing phase are used to invert f . Given y = f(x) we apply the following
procedure to invert it:

• Search if y ∈ A. If found, then we’re done; the inverse is the x such that
〈x, y〉 is in A.

• Otherwise, for all 1 ≤ i ≤ `,
1. Set ui = g∗i (y) and hi (i.e., they do not participate in the online inver-

sion).
2. Repeat for p = 0 to t− 1:

(a) Search for ui in Ti. If found (ui = hti(xij) for some j), then set z to
be ht−pi (xij). If f(z) = y, then we have found a preimage for y.

2Recall that each gi : D×{1, . . . , N} 7→ D.
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(b) Set ui ← hi(ui) if defined. Otherwise, discard ui.
This concludes the description of the scheme, except for how the gi’s are chosen,
represented, and computed.

4.3. Analysis of the scheme. We now turn to the analysis of the scheme. In
this section, we use the assumption that computing the gi functions can be done in
O(1) time. This will be justified in section 4.4. Since f is arbitrary, all we know
about q(f) is that 1/N ≤ q(f) ≤ 1. The net result of our construction of table A is to
reduce the effective q(f) so that q(hi) ∈ O(1/S) with high probability. That is, given
a choice of table A and given that x1 and x2 are chosen at random in D, we consider

QA = Prob[f(x1) = f(x2) and f(x1), f(x2) /∈ A].

We know that QA ≤ q(f). However, we can treat QA as a random variable over
the probability space defined by choices of A according to the preprocessing phase of
the algorithm A. What we show is that with high probability QA is less than 1/S
over this probability space.

Lemma 4.1. For any function f with probability at least 1 − 1/ logN over the
random choices of A,

QA ≤ 1/S.

Proof. Let I(1), I(2), . . . , I(N) be the sequence of indegrees under f , i.e., I(j) =

|{x|f(x) = j}|. The probability that f(x) /∈ A is (1− I(f(x))/N)S̃ . Thus,

E[QA] = Prob[f(x1) = f(x2) and f(x1) /∈ A]

=

N∑
i=1

I(i)2

N2
·
(

1− I(i)

N

)S̃

=
∑

{j|I(j)> N
S logN }

I(j)2

N2
·
(

1− I(j)

N

)S̃
+

∑
{j|I(j)≤ N

S logN }

I(j)2

N2
·
(

1− I(j)

N

)S̃
.

We deal with each term separately. Recall that S̃ = S log2N .

∑
{j|I(j)> N

S logN }

I(j)2

N2
·
(

1− I(j)

N

)S̃
≤ N · 1 ·

(
1− 1

S logN

)S̃
≤ N · 1/N3

= 1/N2.

The sum
∑j
i=i x

2
i subject to the constraints

∑j
i=1 xi ≤ c and xi ≤ b is maximized

by taking c/b xi’s equal to b and setting the rest equal to zero. This is used in the
following analysis:

∑
{j|I(j)≤ N

S logN }

I(j)2

N2
·
(

1− I(j)

N

)S̃
≤

∑
{j|I(j)≤ N

S logN }

I(j)2

N2

≤ S logN
N2

N2S2 log2N

=
1

S logN
.
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Thus, from Markov’s inequality we get that Prob[QA > 1/S] is at most 1
logN , which

suffices for our purposes. By a more careful analysis we can get a much smaller
probability.

Fix y = f(x); if y ∈ A, we can invert f on y via table lookup in A. Thus, we
should handle only the case that I(y) ≤ N/S since otherwise the probability that
y /∈ A is at most 1/N . We assume from now on that y /∈ A. Let Vi be the event that
f(x) is in the ith cluster. The main lemma we require is as follows.

Lemma 4.2. For all functions f , for all y = f(x), and for all choices of m, t,
and S such that mt2 < S/2, assuming QA ≤ 1/S, then either y ∈ A or

Prob[Vi] ≥ mt

2N
.

To prove the lemma we need the following claims.
Claim 4.1. Assuming QA ≤ 1/S, the probability that a chain rooted at xij

contains less than t different elements is at most 1/2m.
Proof. We first compute the probability that the chain rooted at xij is discarded

at step 2 of the preprocessing phase and show that it is negligible. Then we bound
the probability that the chain cycles on h.

For a chain to be discarded at step 2 of the preprocessing phase it may be the
case that more than k/2 applications of gi were invoked. This occurs if through the
attempted computation of hi, k/2 invocations of gi were performed altogether, while
less than t of them gave images x such that f(x) was not in table A. Since gi is
(k = 8 · t)-wise independent, it follows that the probability that this occurs is at most
the probability that a sequence of k/2 tosses of a coin contains at least k/2 − t tails
(the event gi maps to a value x such that f(x) ∈ A) and less than t heads (the event
gi maps to a value x such that f(x) /∈ A) with probabilities p < 1/2 for tails (by the
assumption that f is not trivial to invert). By the Chernoff bound (see Theorem A.1

in [4]) this probability is at most e−t
2/k = e− t/8 ≤ 1/4m.

Even if the chain rooted at xij is not discarded, it may contain less than t different
elements in case hi cycles. This occurs if f(z1) = f(z2) 6∈ A, where z1 and z2 are two
values encountered in the development of the chain either as xij or as the outcome
of gi. From the k-wise independence of gi and the fact that gi was invoked at most
k/2 times in each chain we have that z1 and z2 are uniformly distributed at D. The
probability that two such elements collide under f and not in A is at most 1/S by

the assumption that QA ≤ 1/S is at most 1/S. There are at most
(
k/2
2

)
candidates

for such pairs, so the probability that this is the case is bounded by(
k/2
2

)
S

<
k2

8S
≤ 1

8m
.

Note that if gi(z1, j1) = gi(z2, j2) but f(gi(z1, j1)) ∈ A, where z1 6= z2 are two values
encountered in the development of the chain as the outcome of f and 1 ≤ j1, j2 ≤ N
are the appropriate indices, then a cycle does not occur.

The probability that the chain is not discarded and that it does not cycle on hi
is thus at least 1− /2m.

Let Eyij be the event that the chain rooted at xij contains y, and let py =
Prob[Eyij ].

Claim 4.2. For any y = f(x) such that I(y) ≤ N/S, and for parameters as
defined in Lemma 4.2, either y ∈ A or

py ≥ (1− 1/2m) · t
N



RIGOROUS TIME/SPACE TRADE-OFFS FOR INVERTING FUNCTIONS 799

under the assumption that QA ≤ 1/S.

Proof. Let w1, w2, . . . , wk/2 be independent random variables uniformly dis-
tributed in D. These random variables define the random choices of the chain: each
time gi is invoked at a new point we treat its value as the next wa (here we are using
the k-wise independence of gi). In case the chain cycles, the rest of the variables are
never used, as is the case following t successful hits in the set outside A. We are
interested in the event that the chain defined by w1, w2, . . . , wk/2 is not discarded and
f(wa) = y for 1 ≤ a ≤ k/2, which is among the first t elements of w1, w2, . . . , wk/2
such that f(wi) /∈ A. There are t possible places where y can appear in the chain.
For each such location the probability that y is hit is at least 1/N . Given that y is
hit in the jth position, the probability that the chain is discarded or contains less
than t elements is at most 1/2m, from the analysis of Claim 4.1 (using the facts that
QA ≤ 1/S and I(y) ≤ N/S). Therefore with probability of at least (1 − 1/2m) · tN
we have that the chain contains y and is not discarded.

From the inclusion/exclusion principle,

Prob[Vi] ≥
m∑
j=1

Prob[Eyij ]−
∑

j<j′∈{1,...,m}
Prob[Eyij ∩ Eyij′ ].(4.1)

The next claim says that although Eyij and Eyij′ are not independent, we can bound
their correlation.

Claim 4.3. Assuming QA ≤ 1/S and I(y) ≤ N/S, Prob[Eyij′ ∩Eyij ] ≤ 1
2m−1 ·py.

Proof. The probability of the event Eyij′ ∩Eyij is dominated by the following: Let
w1, w2, . . . , wk/2 and w′1, w

′
2, . . . , w

′
k/2 be random variables uniformly distributed in

D. Let qy be the probability that the following two conditions hold:

1. There exists 1 ≤ a ≤ k/2 such that f(wa) = y and wa is among the first t
elements of w1, w2, . . . , wk/2 such that f(wi) /∈ A.

2. There are 1 ≤ b, c ≤ k/2 such that f(wb) = f(w′c) /∈ A.

That is, we are adding to Eyij′ ∩Eyij all the cases that chain xij hits y but cycles and
the cases where the two chains collide after y is hit. By Claim 4.2 the probability
that condition 1 is satisfied is at most py/(1−1/2m) = py

2m
2m−1 . Given that condition

1 is satisfied, the probability that condition 2 holds is at most (k/2)2/S ≤ 1/4m.
Therefore

Prob[Eyij′ ∩ Eyij ] ≤ qy ≤
2m

4m(2m− 1)
· py < 1

2m− 1
· py.

From the last claim, it follows that (4.1) is bounded from below by

m · py −
(
m

2

)
· py · 1

2m− 1
≥ mpy

(
1− m− 1

2m− 1

)
≥ mt

2N
,

where the last inequality holds from Claim 4.2. It follows that Prob[Vi] ≥ mt
2N .

Lemma 4.3. Assuming QA ≤ 1/S, Prob[∪`i=1Vi] ≥ 1
4 .

Proof. Given table A, the events Vi and Vj are independent since the functions
gi and gj are independent. (Note that prior to the choice of A, the events may not
be independent since Vi’s imply a successful choice of A, which effects Prob[Vj ].)
We therefore have ` identical experiments where each is successful with probability
p ≥ mt

2N , and we are interested in the probability that at least one of them is successful.
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This is minimized when p = mt
2N and from inclusion/exclusion

Prob[∪`i=1Vi] ≥
∑̀
i=1

Prob[Vi]−
∑

1≤i<j≤`
Prob[Vi ∩ Vj ]

≥ ` ·m · t
2N

−
(
`

2

)
· m

2t2

4N2

≥ 1

2
· ` ·m · t

N
− 1

8
· `

2m2t2

N2

≥ 1

4
.

We now turn to the analysis of the run time of the scheme. For each cluster
1 ≤ i ≤ ` we have to apply gi and f at most k/2 times at step 2(b). In addition we
must consider the complexity of step 2(a), i.e., the number of times a chain is traced.
Fix y = f(x). Consider stage 2(a) of the inversion procedure above: For cluster i, Fi is
defined to be a random variable that counts the number of times the test “f(C) = y”
fails. This failure is called a false alarm.

Lemma 4.4. E[Fi] ≤ 1.
Proof. Any y and every hi induces a chain ui = g∗i (y), hi(ui), h

2
i (ui), . . . , h

t
i(ui).

A false alarm at the ith cluster occurs if for some 1 ≤ j ≤ m the chain rooted at y
and one of the chains rooted at xij overlap. There are m such chains, and from Claim
4.3 the probability that two chains merge is bounded by (k/2)2/S ≤ 1/4m. Hence
the expected number of false alarms is bounded by 1.

Thus, false alarms increase the time required per cluster by at most a factor of
2. Therefore the total expected complexity of online inversion is O(k · `), and the
following precursor to the main theorem holds.

Theorem 4.5. For any function f not trivial to invert in space S, and for
any image y = f(x), the probability that f−1(y) is found is Ω(1) and the expected
number of evaluations of f and the gi’s required to invert f(x) is Õ(t · `). The space
S = Õ(` ·m) and the preprocessing time is Õ(N).

4.4. Construction of the gi’s. We now specify how to choose the gi’s so that
they can be computed efficiently. We do not know how to construct a family of k-wise
independent functions so that evaluating a function in the family at a given point
requires only Õ(1) time. Instead we show how to construct a family so that the total
computation can be amortized to Õ(1) time. We change the order of operations in
the basic time/space scheme. We do not process cluster by cluster but rather advance
one step in every cluster simultaneously. In order to simplify the definition of the
gi’s, encode their domain (which is D×{1, . . . , N}) as {1, . . . , N2} and the range as
{1, . . . , N}. We actually construct functions gi : {1, . . . , N2} 7→ {1, . . . , N2}, but by
simply chopping part of the output we can obtain gi : {1, . . . , N2} 7→ {1, . . . , N} and
then consider it as an element of D.

Construct g1, g2, . . . , g` as follows: We work in the finite field GF [N2] (N is a
power of 2), and all computations are in this field. For 0 ≤ j ≤ k − 1 pick aj and bj
randomly and independently in GF [N2]. Encode i as an element of GF [N2] in some
arbitrary manner and let gi be the polynomial of degree k − 1 whose jth coefficient
is aj · i+ bj . That is,

gi(x) =
k−1∑
j=0

(aj · i+ bj)x
j .
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Proposition 4.6. A function gi chosen in this manner is k-wise independent.
Proof. Because each gi is a random polynomial of degree k − 1, the proposition

follows from [3].
From the pairwise independence of polynomials of degree 1, and the random choice

of the a and b values above, the set of the 2k coefficients of gi and gj are independent
and we have the following proposition (which was used in Lemma 4.3).

Proposition 4.7. For all 1 ≤ i < j ≤ `, the polynomials gi and gj are indepen-
dent as defined in section 4.2.

To compute g1(x1), g2(x2), . . . , g`(x`), note the following:

gi(x) =
k−1∑
j=0

(aj · i+ bj)x
j

= i ·
k−1∑
j=0

ajx
j +

k−1∑
j=0

bjx
j .

Define

A(x) =

k−1∑
j=0

ajx
j

and

B(x) =

k−1∑
j=0

bjx
j .

Thus, gi(x) = i · A(x) + B(x). Using FFT we can amortize the cost of computing
A and B. We can compute A(x1), A(x2), . . . , A(x`) and B(x1), B(x2), . . . , B(x`) at
a cost of O(k log ` + `). (See [1, Chapter 7].) Given A(x1), A(x2), . . . , A(x`) and
B(x1), B(x2), . . . , B(x`), computing gi(xi) = i ·A(xi) +B(xi) for all 1 ≤ i ≤ ` can be
done at a cost of `.

Thus, the total number of operations required to advance one function computa-
tion in all gi is O(k log `+ `) = O(t log `+ `).

Lemma 4.8. Computing g1, g2, . . . , g` at points x1, x2, . . . , x` can be done in time
O(t log `+ `).

In order to achieve the time/space trade-off (3.2), given any T and S, set t = N/S,
m = N/T , and ` = TS/N . If TS3 = N3, then the two constraints of section 4.2,
t ≤ ` and mk2 ≤ S, are satisfied, and since we may assume that S < N/8 logN , we
also have that t ≥ 8 log(4m). Therefore by Theorem 4.5 we have the desired time and
space.

In order to achieve the time/space trade-off (3.1), given any T and S such that
T · S2 = N3q(f), set t = N/S, m = N/T , and ` = TS/N . Note that we have t ≤ `,
mk2 ≤ 1/q(f), and k/S ≤ k2q(f). The conditions mk2 ≤ 1/q(f) and k/S ≤ k2q(f)
are sufficient to replace the constraint mk2 ≤ S in the proofs of Claims 4.1, 4.2, and
4.3. Therefore we have the following corollary.

Corollary 4.9. Any function f which is not trivial to invert in space S can be
inverted at any point with high probability using either time/space trade-offs:

T · S2 = N3 · q(f) or

T · S3 = N3.
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5. Extensions. For simplicity we have assumed in section 4 that the function
f is not trivial to invert in space S. To complete the proof of Theorem 1.1 we must
also deal with this case.

If the S highest indegree images cover a substantially large fraction of the domain,
then our scheme may suffer degradation in performance since we cannot claim that
when evaluating hi(x) the expected number of evaluations of f and gi is O(1). On
the other hand, in this case table A covers a larger fraction of images and thus the
effective domain size is smaller. We will see how to exploit this fact.

Suppose that following the first stage of the preprocessing phase it turns out that
the number of elements in D′ = {x ∈ D|f(x) 6∈ A} is N ′ < N/2 (i.e., the function
is trivial to invert in space S). Since all x 6∈ D′ are handled by A, we need to
construct a scheme that covers only D′, thus raising the possibility of improving only
the complexity. Our problem is that we do not know how to construct gi’s that map
into D′ and not D, so we may need more applications of the gi’s in order to assure
that we land in D′. For S and T set m = N/T and ` = TS/N as before, but set
t = N ′/S and k = 8N/N ′ · t = 8N/S. Note that t · ` ·m = N ′ and mk2 ≤ S and
given that TS3 ≥ N3, then k ≤ ` (this last point is significant for the amortization
of computing the gi’s).

Therefore almost all the analysis of sections 4.3 and 4.4 is applicable and in
particular the space is Õ(S) and the time is Õ(T ). The only point we should change
is in the proof of Claim 4.1. We must recompute the probability that a chain rooted at
xij is discarded since gi was invoked more than k/2 times. However, this means that
in order to find t members of D′ more than k/2 = 4 ·N/N ′ ·t trials were needed, where
in each time the probability of hitting a member of D′ is N ′/N . The probability that
this occurs is at most the probability that a sequence of k/2 tosses of a coin contains
at least k/2− t tails (i.e., the event gi maps to a value x such that f(x) ∈ A) and less
than t heads (the event gi maps to a value x such that f(x) /∈ A) with probability
p = N ′/N for heads (by the assumption that |D′| = N ′). By the Chernoff bound (see

Theorem A.13 of [4]) this value is at most e−9t2/4t, which is smaller than 1/m. This
concludes the proof of Theorem 1.1.

Finally, we note that q(f) need not be given explicitly in order to choose the
best time/space trade-off. We can consider an additional “proposal” stage in which
a function f is studied to determine what time/space trade-offs can be used to invert
it. By estimating q(f) we can check which trade-off to use: if S > 1/q(f), we use
the trade-off T · S3 = N3, otherwise we use T · S2 = N3 · q(f). Note that estimating
the ith bit of q(f) requires 2i time. We can obtain a slightly pessimistic trade-off by
taking a slightly higher value for q(f).

The “proposal” stage should also consider how q(hi) drops as a function of S.
We can estimate q(hi) by estimating the probability that two elements collide under
f given that they do not map to any of the S images with largest indegrees. Even if
q(f) is big, q(hi) might drop very quickly as a function of S, becoming much smaller
than 1/S.

6. Open problems. The most challenging problem in this area of investigation
is whether the time/space trade-off for inverting functions can be reduced to T ·
S = N . For permutations this is true and Yao [20] has shown that this is tight for
permutations. Shamir and Spencer [18] consider schemes of the basic Hellman form,
where functions are represented as a collection of chains indicated by their start and
end locations, and show that TS2 = N2 is optimal for these algorithms.
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Abstract.

This paper presents the first dynamic routing scheme for high-speed networks. The scheme is
based on a hierarchical bubbles partition of the underlying communication graph. Dynamic routing
schemes are ranked by their adaptability, i.e., the maximum number of sites to be updated upon a
topology change. An advantage of our scheme is that it implies a small number of updates upon
a topology change. In particular, for the case of a bounded degree network it is proved that our
scheme is optimal in its adaptability by presenting a matching tight lower bound. Our bubble
routing scheme is a combination of a distributed routing database, a routing strategy, and a routing
database update. It is shown how to perform the routing database update on a dynamic network in
a distributed manner.
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1. Introduction.

1.1. Motivation. The advent of fiber-optic technology dramatically changes the
characteristics of distributed networks. It also improves the capabilities of distributed
networks because it gives them the potential of supporting new services such as multi-
media and real-time applications. Traditional algorithms designed for the point-to-
point classical model of distributed networks may neither fit the new characteristics
of the high-speed network nor support the new tasks it is capable of achieving. The
relation between the bandwidth of a fiber-optic cable (on the order of hundreds of
Gigabits per second) and the speed of a processor implies a bottleneck in the process
time rather than in the communication time. Therefore, high-speed networks use a
fast switching subsystem in order to utilize the power of the fiber-optic cables.

Algorithms for basic tasks that match the new network structure are of interest.
In (high-speed) distributed networks, messages are used for communication between
different sites. A message sent from one site to another is transferred through the
network according to a routing scheme. The routing scheme ensures that the message
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is forwarded toward its destination. The routing scheme serves the basic communica-
tion primitive in the network—message delivery. Being such a basic component, the
performance of the distributed network as a whole may be dominated by the quality
of the routing scheme. Thus, finding an efficient routing scheme is one of the most
important tasks in dealing with distributed networks.

Imagine a network in which users may be connected and disconnected upon re-
quest. Users may migrate from one geographic region to another, causing a change
in the demand for services at different parts of the network. Assume further that
the network spans the entire world and a single user (or a network junction) changes
its location from one street in New York to another. Is it reasonable to update the
entire network with a new routing database? We would not like the entire distributed
network to be updated upon each such dynamic change. In fact we would like to
minimize the effect of a topology change as much as possible.

Beyond planned topology changes, such as user migration, some transient topol-
ogy changes may take place due to a failure of communication links or processors.
One would like the network to automatically change the routing database to reflect
the new topology upon the change. The resources used by such a distributed routing
database update (messages and time) have an inherent relation with the number of
sites that have to change their portion of the distributed routing database.

We distinguish between static and dynamic routing schemes. A static routing
scheme is a combination of a distributed routing database and a fitting routing strat-
egy. The routing database is tailored to the network topology. Whenever the network
changes its topology, a new distributed routing database is assigned to the network,
possibly changing the routing database portion of each processor. A dynamic routing
scheme has in addition a fitting routing database update. Upon a topology change
(e.g., link addition or removal) this fitting routing database update would change the
distributed database only in a limited number of sites. We rank the dynamic rout-
ing schemes by their adaptability, i.e., the maximum number of sites to be updated
upon a topology change. By this definition static routing schemes are associated with
adaptability that is in the order of the number of nodes in the network.

The efficiency of a dynamic routing scheme is measured not only by its adaptabil-
ity. It is also measured by the time and memory complexities associated with it. The
time performance is measured by a super-hop count, defined as the maximum number
of super-hops, or routing steps, needed to route a message from a given source to a
given destination, where the maximum is taken over all possible origin–destination
pairs. A more precise definition of the routing process in high-speed networks and the
notion of super-hops will be given later. The memory complexity is the total number
of bits used for the routing database. We remark that there is an interesting relation
between the adaptability and the memory requirement; i.e., it is clear that the worst
case in terms of adaptability and memory requirement is when the entire topology
is stored in the memory of each processor. Roughly speaking, both the adaptability
and the memory requirements gain when the processors have less information on the
system.

1.2. Previous work. Many clever routing schemes and lower bounds for the
resources required for routing in point-to-point networks (e.g., wide area networks)
were presented in the past. Following the pioneering work of [13, 14], which originated
the approach of using hierarchical clustering [2] strategies for memory-efficient routing,
came a number of papers which attempted to characterize and bound the resource
tradeoffs involved. The first set of studies along this line were mostly designed for
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special classes of networks like trees [16], complete networks [18], and grids [19].
Routing schemes for general networks were presented in [15, 4, 6]. These studies
focused on the design of routing schemes with compact routing tables and low stretch
factors. The stretch factor of a routing scheme is defined as the maximum ratio, over
all pairs of nodes in the network, between the length of the route provided for them
by the routing scheme, and the actual distance between them in the network.

Unfortunately, most of the success in this field is for static networks. Few papers
consider the dynamic property of the network. The following quotation is taken from
[16]: “In actual network the topology may vary in time; in particular, nodes or links
may be added or deleted.” In [16] a partial solution is present for limited cases of
topology changes that keep the network in a tree structure. In [7], the routing scheme
of [6] is extended to the dynamic case for general networks. However, as argued in [1],
network changes in static routing schemes (such as [15, 3, 6] or the derived dynamic
scheme [7]) “require expensive pre-processing to reconstruct the routing scheme over
the whole network. The newly constructed structure is used until the next change....”
In contrast, [1] contains a routing scheme for the restricted case of dynamic growing
trees. The solution of [1] can handle neither link nor processor failures, nor can it be
applied to the case of general graphs.

These papers all deal with the traditional point-to-point communication model.
Those solutions are not applicable for fiber-optic high-speed networks, since the
stretch measure (based on actual distances) is no longer the predominant cost pa-
rameter relevant to such networks, given their specific characteristics. Furthermore,
the issue of adaptability is not handled by any of the aforementioned papers. In
particular, the solutions provided in the these papers for the dynamic version of the
problem might require database updates in all the nodes of the network following a
single topology change.

Recently, static routing schemes for high-speed networks were presented in [12,
10]. The schemes statically assign links along a path to act as a virtual long link.
Both papers attempt to simultaneously optimize three cost parameters, namely, the
super-hop count, the memory size, and the link load. However, in [12, 10] adaptability
is not addressed explicitly, and in the resulting solutions a single topology change may
in some cases require the entire routing database to be updated. Hence the solution
might be impractical in a dynamically changing environment.

1.3. Contributions of this paper. In this work we present the first dynamic
routing scheme for high-speed networks. We present a family of hierarchical bubbles
schemes. The intuition behind this structure is the behavior of natural bubbles.
Assume a partition of a space into bubbles. Whereas bubbles may shrink (members
are disconnected) or expand and/or blow up (new members are inserted), we want to
avoid total change of the bubble structure upon a change at a single bubble. We define
an upper and lower threshold for the size of a bubble. When the upper threshold is
reached, the bubble is split into two bubbles. When the lower threshold is reached,
the bubble is combined with a single neighboring bubble which “swallows” the small
bubble (and then is split if necessary).

The bubbles scheme exhibits a tradeoff between the number of super-hops needed
for routing on the one hand, and the adaptability and memory requirement parameters
on the other hand. Namely, the more super-hops are allowed, the less memory is
needed to store the routing database and the more efficient it becomes to adapt the
scheme to dynamic changes. Denote by δ the maximum number of neighboring nodes
with which each node in the network may be directly connected. For the case of
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Super-hop count Memory required Adaptability Model
Multiple trees 1 O(n2 logn) n
Single leader 2 O(n2 log δ) n

Basic bubbles k O(kδn1+1/k log δ) O(3kδ2n1/k) Node failures

Basic bubbles k O(kδn1+1/k log δ) O(3kδn1/k) Link failures

Edge-bubbles k O(kn1+1/k log δ) O(3kδn1/k) Node failures

Edge-bubbles k O(kn1+1/k log δ) O(3kn1/k) Link failures

Fig. 1. Comparison of routing schemes.

constant δ we prove that our scheme is optimal in its adaptability by presenting a
matching tight lower bound. Note that this is the case in many settings in reality,
where the number of communication ports of a single processor is limited. Our bubble
routing scheme is a combination of a distributed routing database, a routing strategy,
and a routing database update. We present a distributed routing database update
strategy for dynamic changing networks.

The rest of the paper is organized as follows. The definition of the problem and
two examples for basic routing schemes appear in section 2. These two schemes are
given as examples for our complexity measures and a basis for comparison with the
bubbles scheme, which is presented in section 4. Section 5 presents an improved
scheme, based on a somewhat more involved bubble partitioning algorithm. See Fig-
ure 1 for a summary of the comparison among the different schemes. Note that we
typically choose k to be a small constant, with a value much smaller than logn.
Section 6 presents a lower bound on the adaptability of any routing scheme. The
distributed update of the bubbles routing database appears in section 7. Concluding
remarks are given in section 8.

2. Definition of the problem.

2.1. High-speed dynamic network. We consider the high-speed model of a
communication network as described in [8, 5, 9]. The network is described by an
undirected graph G = (V,E). The nodes, V = {1, . . . , n}, represent the processors of
the network (where n is essentially an upper bound on the number of processors in a
connected component). The edges of the graph represent bidirectional communication
channels between the processors.

The network is dynamic in the strong sense: processors and links may crash and
recover arbitrarily. However, the number of edges connected to a node P , which we
call the degree of P , does not exceed some predefined value. We denote the maximum
degree of nodes in the network by δ.

Each processor consists of two components, a switching subsystem and a node
control unit, which are connected by a virtual link. The switching subsystem is a
fast and simple hardware device that switches arriving packets to the appropriate
communication link or to its node control unit. Within the switching subsystem each
communication link (including the virtual link to the switching subsystems’ node
control unit) has a unique label. When a packet p arrives at a switching subsystem
and the header of p contains at least one label, then the switching subsystem removes
the first label, l, and the shortened packet is sent on the link with label l. The node
control unit of each processor contains the processing hardware and software necessary
to extract the information content of messages (delivered in the packets), do internal
computation, and generate packets to be forwarded to other nodes via the processor’s
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switching subsystem.
In this model a packet consists of the entire path from the sender to the receiver.

For example, when the packet length is 50 bytes and the degree of nodes in the
network is δ = 5, then a packet may contain 550 different addreses. This is more
than enough for every existing network. Moreover, note that the first packet in a
connection may mark the path (by the connection identifier) for the next packets
that are related to the same connection—thus not every packet contains the entire
path. Due to the above network architecture, it is assumed that a message sent from
any processor, P , to any destination, Q, in the network may arrive in one time unit
provided the labels along the entire path from P to Q are known to P . We refer to
such a routing step as a super-hop.1 In case the entire path is not known to P , the
message may be sent through a number of super-hops. In each super-hop, the sender
packs the message in a packet whose header contains the route description to the next
intermediate destination, and advancing the message to that destination. Since the
overhead of preparing the packets dominates the transmission time, the cost of the
entire routing process is proportional to the number of super-hops it involves.

2.2. Complexity measures for routing schemes. The routing of packets in
the network is done according to a distributed routing database maintained by the
node control unit and a fitting routing strategy and database update.

Super-hop count. The super-hop count of a routing scheme bounds the maximum
number of super-hops (or, packet generation and transmission steps) required in order
to send a message from one node control unit to another. Obviously, a single packet
transmission is sufficient when every processor knows the entire topology (including
the link labels). Thus, the super-hop count can be thought of as measuring the ratio
between the maximum number of packets generated by the routing scheme and the
optimal number of packets that must be generated in order to deliver a message sent
from one node control unit to another. It is interesting to note that in that sense,
the super-hop count of a routing scheme in the high-speed model essentially plays
a similar role to that played by the stretch factor measure in routing schemes for
traditional computer networks (cf. [15, 3, 6]).

Memory. The memory complexity is the total number of bits maintained by the
node control units for the routing data-structure.

Adaptability. A single topology change C occurs when a single processor or a
single link joins (or recovers) or leaves (or crashes) the system. Note that for any
two topologies G1 and G2 there exist a finite sequence of single topology changes
C1, C2, . . . that transfer G1 into G2. For example, the sequence can start with adding
all the processors that do not appear in G1 but do appear in G2, one processor at a
time. Then links are added in a similar fashion. Finally, links and then processors
are removed to form G2. Ideally a topology change causes only a very limited number
of processors to change their portion of the routing distributed database. Thus, we
choose the adaptability measure to be the maximum number of processors that have
to change their portion of the routing distributed database upon a single topology
change. A similar measure, called the adjustment measure, is proposed in [11].

We shall first ignore the issue of how the routing database is updated upon a topol-
ogy change and count only the number of processors that have to change their routing

1Certain routing models devised for asynchronous transfer mode networks use more elaborate
mechanisms and distinguish between several types of “super-hops,” e.g., routing along virtual chan-
nels or virtual paths. Here, we follow the simple, unified model of automatic network routing (ANR)
of [8, 9].
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database. Then we present a distributed update for the bubble routing scheme, which
we call bubbles update.

Distributed adaptability. This is the maximal number of node control units that
have to participate in the distributed routing database update upon a single topology
change. Clearly, the distributed adaptability is greater than the adaptability since
every node control unit that has to change its portion of the routing distributed
database participates in the distributed database update, and in addition, other node
control units may participate in the distributed update without changing their routing
database portion.

3. Examples of basic routing schemes. In this section we present two basic
routing schemes with adaptability n.

3.1. The multiple spanning trees scheme. The simplest routing scheme for
our network is the multiple spanning trees routing scheme.

Routing distributed database. The routing distributed database is a description
of a spanning tree of the entire topology at each processor.

Routing strategy. The routing strategy is to use the entire path given by the
routing distributed database.

Routing update. The routing update has to change the distributed routing database
upon every processor addition and removal as well as upon removal of a link used as
part of a spanning tree by some processor. The update would change the spanning
trees representation in an obvious way.

The following lemma states the super-hop count, memory, and adaptability prop-
erties of the multiple trees routing scheme.

Lemma 3.1. The multiple trees routing scheme has the following properties:
1. super-hop count = 1,
2. memory requirement = n2(logn+ log δ),
3. adaptability = n.
Proof. The super-hop count of this scheme is clearly 1, since a single packet is

generated for the delivery of a message.
Property 2 holds since n(logn + log δ) bits are required in order to describe a

spanning tree with link labels for every processor (say, in parenthesized form).
Property 3 follows from the fact that a single recovery of a processor or a link

requires the update of the tree of every processor.

3.2. The single leader scheme.
Routing distributed database. Only a single processor, L, has a spanning tree of

the entire topology. Every other processor, P , has the path description to L, pathL.
Thus, pathL is a list of link labels that defines a path from P to L.

Routing strategy. To deliver a message m to a processor Q, a packet (pathL, Q,m)
is sent to the leader L, and then L sends a packet (pathQ,m) to Q.

Routing update. The routing update has to change the distributed routing database
upon leader failure, processors’ addition, processors’ removal, failure of a link along a
path used by some processor to reach the leader, and addition of a link that connects
two connected components. For a given choice of a single leader, the update is defined
in a natural way.

The following lemma states the super-hop count, memory requirements, and
adaptability properties of the single leader routing scheme.

Lemma 3.2. The single leader routing scheme has the following properties:
1. super-hop count = 2,
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2. memory requirement = n(logn+ log δ) + n(n− 1) log δ,

3. adaptability = n.

Proof. The super-hop count is 2 since at most two packets are generated for each
message.

The memory requirements of the scheme are as follows. The description of a
spanning tree of the entire topology requires n(logn + log δ) bits, as in the proof of
Lemma 3.1. The description of a path from a processor P to L includes at most n
link labels. Each link label requires log δ bits. Thus, each processor but L uses at
most n log δ bits for the routing database.

Finally, if all the paths to the leader L, as well as the spanning tree stored by L,
include a certain link e (say, adjacent to L), then the failure of e (while preserving the
connectivity of the communication graph) is a topology change that will cause every
processor to change its topology database; hence the adaptability is n.

4. The bubble routing scheme. In this section we present our main result,
which is a novel dynamic graph partitioning technique, used in conjunction with a
new routing scheme for dynamic high-speed networks. We introduce a new type of
hierarchical partitioning scheme for general graphs, with certain desirable properties.
We then present a graph partitioning algorithm that constructs such a partition.
Then we explain how to maintain the properties of the partition (most notably, the
size bounds on connected components) upon a dynamic change. Finally, we present
our routing scheme, which is based on the hierarchical partition.

The partitioning scheme uses a spanning tree of the communication graph. The
partition of the spanning tree into connected components called bubbles is done in
levels. The first level is a single bubble that includes x1 = n nodes. The second
level partitions the single bubble into bubbles (i.e., connected components) of at least
x2 (where x2 < x1/δ) nodes and no more than δx2 nodes. In general, the bubble
partition of level i partitions the bubble of level i−1 into bubbles of at least xi nodes
and no more than δxi nodes. A failure of a link that belongs to the spanning tree may
disconnect a number of bubbles on several levels. We present a scheme to maintain
the bubble partition with few changes as long as the communication graph is still
connected. Assume that a bubble of level i is partitioned because of a link failure.
One or two of the resulting bubble parts may contain fewer than xi nodes. In such a
case each part is combined with a neighboring bubble. Each of the two new combined
bubbles may include more than δxi nodes and therefore require a split. This fact and
the fact that the partition on level i+1 is a refinement of the partition on level i imply
that (at most) three edges should be removed from level i+ 1, namely, the failed link
of level i and the two edges that are removed from bubbles of level i because of the
split operations. The details follow.

4.1. The bubble partition.

Definition 4.1. Given a graph G and parameters 0 < a < b, an [a, b]-bubble
partition of G is a partition of the nodes of G into disjoint connected components
called bubbles, P = {B1, . . . ,Br}, such that the size of each bubble B (i.e., the number
of nodes it contains) satisfies a ≤ |B| ≤ b.

Let us next describe a partitioning algorithm based on a technique presented in
[17]. Given a n-node graph G with maximum degree δ and a parameter 1 ≤ x ≤ n,
the algorithm produces an [x, δx]-bubble partition for G. To be more precise, as a
preprocessing step we choose an arbitrary node of the graph, R, and construct a span-
ning tree, TR, rooted at R with edges directed towards the leaves. The partitioning
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(1) While T contains more than δx nodes do:
(a) Mark every node P in T by MP , the total number of nodes in the

subtree TP rooted at P .
(b) Find a node P with the property that MP ≥ x, but all of its children

Q satisfy MQ < x.
(c) Make TP into a bubble.
(d) Remove this bubble and the edge connecting P to its parent from T .
End while

(2) Make T into a bubble and terminate.

Fig. 2. Algorithm Partition(T , x).

algorithm is then applied to this tree. The algorithm, Partition(T , x), is described
in Figure 2.

Lemma 4.1. Algorithm Partition(TR, x) produces an [x, δx]-bubble partition of
G.

Proof. Obviously, each bubble constructed in step (1c) is of size at least x and no
larger than δx.

We now show that every execution of the loop in step (1) succeeds in finding a
candidate node P as required in (1b). Since step (1) is performed only as long as
MR > δx, R itself trivially satisfies the first requirement, namely, MR > x. It now
suffices to show that every tree TQ of size MQ ≥ x has a node P as required. This
is proved by simple induction on the size of the tree, beginning at size x. For the
inductive step we note that if Q has no child with more than x nodes in its subtree
TQ, then Q can be taken as the required P ; otherwise, let S be the child of Q with
MS ≥ x and apply the inductive hypothesis to TS , to find a suitable node P in it.

The fact that any execution of the loop in step (1) results in a new bubble and
that TR is finite implies the termination of the algorithm.

Finally, we show that when the algorithm terminates, x ≤ MR ≤ δx; hence the
last bubble is legal as well. The termination condition of the loop implies that when
it terminates, MR ≤ δx. If the number of nodes in the entire graph G is also smaller
than δx, then this is the only bubble, and we are done (since x ≤ n by choice of x).
Otherwise, there exists at least one more bubble. Examine the last removal executed
at step (1d) before the termination of the algorithm. Right before this removal, MR

is at least δx+1, and as a result of the removal, no more than (δ−1)(x−1)+1 nodes
are removed from TR, leaving at least δx+ 1− (δ − 1)x+ (δ − 1)− 1 = x+ δ − 1 ≥ x
nodes that are still connected to R.

Theorem 4.2 is implied by the existence of the partition algorithm.
Theorem 4.2. For every n-node graph G with maximum degree δ and parameter

1 ≤ x ≤ n, G has an [x, δx]-bubble partition.
Next we define special hierarchies of bubble partitions. Given two partitions P

and P ′, we say that P is a refinement of P ′ if each bubble of P is fully contained in
some bubble of P ′ (or equivalently, each bubble of P ′ is partitioned into bubbles of P).

Definition 4.2. Given a graph G and a list of k integer parameters x̄ =
(x1, x2, . . . , xk, xk+1), where x1 =n, xi>δxi+1, and xk+1 = 1, an x̄-hierarchical bub-
bles partition of G is a collection of k partitions Pi, 1 ≤ i ≤ k, with the following
properties:

1. For every 1 ≤ i ≤ k, Pi is an [xi, δxi]-bubble partition.
2. For every 1 < i ≤ k, Pi is a refinement of Pi−1.
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(1) Choose an arbitrary node of the graph, R.
(2) Construct a spanning tree TR rooted at R with edges directed towards the

leaves.
(3) Let the first level partition P1 consist of a single bubble covering the entire

graph.
(4) For i = 2 to k do:

For every bubble B of partition Pi−1 do:
(a) Let T (B) be the portion of TR that spans the bubble B.
(b) Apply Algorithm Partition(T (B), xi) to T (B).
(c) Add the resulting bubbles to the current level partition Pi.

Fig. 3. Algorithm Hierarchy(x̄).

In what follows, we choose the parameters x̄ as xi = dn(k−i+1)/ke. This choice
satisfies the requirements of the definition, so long as n1/k ≥ δ. We use Bi to denote
a bubble at level i. For every bubble Bi let T (Bi) be a representation of the subtree
of the spanning tree T that spans the bubble Bi. (Hereafter we refer to both the
description of the spanning tree and the spanning tree itself as T (Bi).) Thus, each
of the k partitions Pi, 1 ≤ i ≤ k, defines a forest Fi =

⋃
B∈Pi T (B). Note that F1 is

identical to the spanning tree T .
We note the following properties of the hierarchical partition. Since each bubble

of level i is composed of the union of some bubbles of level i + 1, the spanning tree
T (Bi) is a combination of the spanning trees of those bubbles. Hence Fi+1 ⊆ Fi for
every 1 ≤ i ≤ k− 1, and F1, corresponding to the single bubble containing the whole
network, is the entire tree T .2 These properties will be maintained as invariants of
the hierarchical partition throughout the updates performed upon topology changes
and are important for the analysis of the scheme, as will be shown later on.

The hierarchical bubble partition of a graph is constructed level by level by Al-
gorithm Hierarchy(x̄), described in Figure 3.

It is clear that P1 is an [n, δn]-bubbles partition. Since for every i > 1 the partition
Pi is obtained from Pi−1 by splitting each bubble B separately, using Algorithm
Partition(T (B), xi), the requirements of Definition 4.2 are clearly met, establishing
the following theorem.

Theorem 4.3. Every graph has an x̄-hierarchical bubbles partition.
Figure 4 depicts a partition of a graph into bubbles. First, a spanning tree is

constructed (the upper part of the figure). Then the spanning tree is partitioned into
bubbles of levels 2 and 3 (lower parts of the figure).

4.2. Dynamic maintenance of the partition. In order to use the bubble
partition over time in a dynamically changing environment, it is necessary to be able
to maintain a legal partition in the presence of link and node failures and recoveries.
One point that we need to address first when dealing with the dynamic case is that
of failures that disconnect the network. Our policy in such a case is to treat each
connected component separately but still to use the global parameters, x̄. This has
the implication that certain connected components cannot be partitioned in some of
the lower levels of the hierarchy, since they are too small. In particular, if a certain
connected component G′ of the graph has less than xi (but at least xi+1) nodes,
then on levels 1 through i there is a single bubble encompassing the entire connected

2We say that Fi+1 ⊆ Fi when every tree in Fi+1 is a subtree in Fi.
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Fig. 4. Bubble partition k = 3.
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Input: Two tree-neighboring level l bubbles B′l and B′′l .
Action:

Connect T (B′l) and T (B′′l ) using their connecting link.

Output: A combined bubble Bl.

Fig. 5. Procedure Combine(B′l,B′′l ).

Input: A (typically oversized) bubble Bl.
Action:

Select one of the nodes of Bl to be the root R.
Direct T (Bl) from R towards the leaves.
Execute Algorithm Partition(T (Bl), xl).

Output: An [xl, δxl]-bubbles partition of Bl.

Fig. 6. Procedure Split(Bl).

component. This bubble is said to be illegal, since it is smaller than the allowed lower
bound. The implication of such a situation is that once a connecting link recovers, it
is necessary to reorganize the partition in order to “legalize” the bubble structure.

We now present the strategy for handling each topology change. For now, the
strategy we describe is centralized, as if an outside operator changes the distributed
routing database. Later, in section 7, we discuss a distributed implementation of our
maintenance strategy. We use the following definition.

Definition 4.3. Two bubbles B′l and B′′l , both at level l > 1, are said to be
tree-neighboring with respect to (w.r.t.) the level l − 1 forest Fl−1 if there exists an
edge of Fl−1 that connects them. We refer to this tree link as the connecting link of
T (B′l) and T (B′′l ).

Our maintenance activities are based on employing two basic operations, or “Pro-
cedures,” Combine(B′l,B′′l ) and Split(Bl), described in Figures 5 and 6, responsible
for combining and splitting bubbles, respectively. These two basic procedures are
used as building blocks for our update operations.

Let us next describe another procedure, named Procedure Remove(e,Fl,Fl−1),
that handles the removal of a link e from the forest of spanning trees of the level l > 1
bubbles partition, Fl. This removal can be the result of either the link’s failure, or
the restructuring of bubbles at the next lower level, l− 1, that caused the removal of
this link from Fl−1. In any case, it is assumed that e does not appear in Fl−1. The
computation of the new forest F ′l , that no longer contain e, is based on the current
forest for level l−1, Fl−1, in the sense that the only edges that are added to F ′l during
the procedure’s execution are also edges of Fl−1. Procedure Remove(e,Fl,Fl−1),
described next in Figure 7, relies on the assumption that both Fl−1 and Fl span legal
bubbles partitions (of level l− 1 and l, respectively). However, it is not assumed that
Fl is a refinement of Fl−1.

It is important to understand that Procedure Remove ends up not only removing
the specified link e from Fl but also removing some additional links, as well as adding
some links to Fl, in its attempt to regain the legality of the partition. In particular,
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Input: Edge e for removal, forests Fl and Fl−1 spanning legal partitions.

Action:

The removal of e causes the partition of a single bubble, say Bl, into two portions,
denoted B′l and B′′l .

For each of these two portions B̂ do:
1. If the size of B̂ is still greater than xl, then make it into an independent

bubble without change.
2. Otherwise, if it is too small, then do the following:

(a) Find some bubble B̃ of Fl that is a tree-neighbor of B̂ w.r.t. Fl−1.
(b) Merge B̃ and B̂ into B̄ by invoking procedure Combine(B̃, B̂).
(c) If B̄ includes more than δxl nodes, then split it by invoking proce-

dure Split(B̄).

Output: Forest F ′l .

Fig. 7. Procedure Remove(e,Fl,Fl−1).

the following scenario may take place during the operation of removing e on level
l. Suppose the removal of e breaks bubble Bl into two portions. We then apply
Combine operations to the broken portions, combining them with tree-neighboring
level l bubbles. The resulting combined bubbles might be too large, in which case we
apply a Split operation to each of them and thus remove additional edges from each.

In the next lemma we establish some basic properties of Procedure Remove and,
in particular, prove that the above mentioned phenomenon is bounded.

Lemma 4.4. 1. If Fl is the spanning forest of a legal [xl, δxl]-bubbles partition,
then after the execution of Procedure Remove(e,Fl,Fl−1) and removing the edge e,
the output forest F ′l represents a legal [xl, δxl]-bubbles partition as well.

2. Every edge added to F ′l during the execution of Remove(e,Fl,Fl−1) is an edge
of Fl−1.

3. The number of edges removed from Fl during the execution of Remove(e,Fl,Fl−1)
is at most 3.

Proof. It is easy to verify (by simple case by case inspection) that, assuming
we start with a legal bubble partition, then each bubble generated during the update
process is connected, and the different bubbles are disjoint and cover the entire graph.

For proving part 1, we need to argue that in the output partition every bubble is
in the right size range. For establishing the upper size bound, |B| ≤ δxl, we rely on
the fact that whenever the algorithm merges a bubble and it becomes too large, it is
split.

For proving that |B| ≥ xl, we rely on the fact that whenever the algorithm creates
a bubble B̂ that is too small (as the result of the edge removal), it is combined with
a tree-neighboring bubble B̃, such that their combined size is at least xl at this time.

The only point that needs to be verified in order to complete the above proof of
part 1 is that whenever some portion B̂ of a broken bubble is too small and needs to be
combined with a tree-neighboring bubble, the existence of a suitable tree-neighboring
bubble B̃ is guaranteed.

To see this, let Bl−1 be a level l − 1 bubble that includes at least one node of
B̂, say v. Since level l − 1 bubbles are always larger than level l bubbles, Bl−1 is a
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connected component that includes more nodes than B̂ does; hence there must be a
node w that is not within B̂ but is within Bl−1. A path from v to w in T (Bl−1) must
include a link connecting B′l to a tree-neighboring level l bubble.

Property 2 follows immediately from the procedure and the definition of a tree-
neighboring bubble.

It remains to prove property 3, namely, to show that the procedure removes at
most two more edges in addition to the intended e itself. To see this, observe that
if a bubble B̄ is created in step 2 by combining bubbles B̃ and B̂, then |B̂| ≤ xl and
|B̃| ≤ δxl; hence |B̄| ≤ (δ + 1)xl. This implies that Procedure Split(B̄) will erase a
single edge, splitting B̄ into precisely two new bubbles. This is because the very first
splitting operation in Procedure Partition(T (B̄), xl) will create a bubble of size at
least xl, leaving the remaining portion of the bubble B̄ with fewer than δxl nodes
and thus terminating the procedure. Since steps 1 and 2 of Procedure Remove are
executed at most twice, the claim follows.

The observation made just before Lemma 4.4, combined with claim 3 of the
lemma, has the following important implication. Consider a single topology change
in the form of the failure of a link e1, requiring us to remove e1 on some level l (and
possibly also in other levels). This change might in fact cause us to remove up to two
other edges, e2 and e3, on level l + 1. But removing each of these three edges ej on
level l + 1 may in turn cause the removal of two other edges, resulting in a total of
nine removals on level 2. More generally, this single topology change might result in
up to (but no more than) 3i−1 link removal operations in each level i.

Consequently, whenever we need to remove an edge from the partition of some
level i, we typically need to immediately fix the partitions of all higher levels, i + 1
through k, as well. This is done via Procedure RemoveAll. The procedure fixes
the bubble partitions Pl at each level i ≤ l ≤ k, one at a time, starting from level
i and moving up. At each level l, the procedure outputs a corrected forest F ′l . The
computation of the new bubble partition of level l, P ′l , and the corresponding forest
F ′l , is based on the recently computed forest for level l−1, F ′l−1, and the old forest Fl
of level l before the topology change. Suppose the procedure already computed the
new partition up to and including level l − 1. As a result, there is a number of edges
that appear in Fl and do not appear in F ′l−1 (since they have already been removed
on that level). The procedure removes each tree link of Fl − F ′l−1 = {e1, e2, . . . , em}
from Fl. This is done sequentially, edge by edge, and the forest Fl is modified at each
edge removal step to reflect the change. Hence the sequence of link removals creates

a sequence of forests Fl = F (0)
l ,F (1)

l , . . . ,F (m)
l = F ′l , where the update for removing

ej leads from F (j−1)
l to F (j)

l .

It remains to describe the modification of the forest F (j−1)
l due to the removal of

ej . If ej is not in F (j−1)
l , nothing need be done. Otherwise, if the removal of ej causes

the partition of some bubble, then we invoke Procedure Remove(ej ,F (j−1)
l ,Fl−1)

to remove the edge and correct F (j−1)
l into F (j)

l . Again, it is assumed that ej does
not appear in Fl−1 and that all edges added to F ′l or higher partitions during the
procedure’s execution belong to Fl−1. The procedure relies on the assumption that
initially, Fl (for every i − 1 ≤ l ≤ k) spans a legal bubbles partition. Procedure
RemoveAll is described formally in Figure 8.

Lemma 4.5. 1. If Fl is the spanning forest of a legal [xl, δxl]-bubbles partition
for every i − 1 ≤ l ≤ k, then after the execution of Procedure RemoveAll(e, i) and
removing the edge e, the output forest F ′l represents a legal [xl, δxl]-bubbles partition,
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Input: Edge e for removal,
forests Fl for i− 1 ≤ l ≤ k spanning legal partitions.

Action:

Let F ′i ← Remove(e,Fi,Fi−1).
For l = i+ 1 to k do:

1. Let {e1, e2, . . . , em} = Fl −F ′l−1.

2. Let F (0)
l ← Fl.

3. For j = 1 to m do:

If ej is in F (j−1)
l , then invoke F (j)

l ← Remove(ej ,F (j−1)
l ,Fl−1).

4. Let F ′l ← F (m)
l .

Output: Forests F ′l for i ≤ l ≤ k.

Fig. 8. Procedure RemoveAll(e, i).

as well, for every i ≤ l ≤ k.

2. The output partition P ′l is a refinement of P ′l−1 (i.e., F ′l ⊆ F ′l−1) for every
i ≤ l ≤ k.

3. The number of edges removed from Fl during the execution of RemoveAll(e, i)
is at most 3l−i+1 for every i ≤ l ≤ k.

Proof. Claim 1 follows directly from claim 1 of Lemma 4.4. Moreover, this
property holds throughout the process, that is, after the procedure completes handling
levels 1 through l and works on level l+1, in the internal stage after the procedure has
completed handling the removal of the first j edges, and has reached the intermediate
forest F (j), the claim holds for this F (j).

Claim 2 holds only for the final partition constructed for each level. That is, in
intermediate points along the computation of the procedure for some level l + 1, the

intermediate level l + 1 forest F (j)
l+1 might not obey this relationship w.r.t. Fl (i.e., it

may not be that F (j)
l+1 ⊆ Fl).

For the final partitions, the claim follows from the fact that in constructing the
new level l forest F ′l+1, the procedure removes from the original level l+ 1 forest Fl+1

any edge of Fl+1 −F ′l .
Claim 3 follows directly from claim 3 of Lemma 4.4.

Note that Lemma 4.5 holds for the case of legal bubbles; i.e., the connected
component includes at least xl nodes. Similar arguments hold for the case in which
the connected component is smaller.

Until this stage we described the algorithm used to construct the bubble parti-
tion and basic procedures for maintaining the partition. Now we detail how those
procedures are invoked in each of the four possibilities for topology changes.

Link removal. If the removal of the link e does not partition the spanning tree
of any bubble, then no change of the hierarchical bubble partition is required. If
the spanning tree of a bubble is disconnected by removing e, then the link removal
is handled at each level starting from level 1 and moving up. At level 1, if the
communication graph is still connected, then a nontree link is promoted to be a tree
link in order to retain the connectivity of the entire spanning tree, T . The removal
itself is then performed by applying Procedure RemoveAll(e, 2).

Link addition. An addition of a link that does not connect two previously sep-
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arated connected components does not change the routing database. An addition
of a link that does connect two previously disconnected components G′ and G′′ is
handled as follows. Let T (B′1) and T (B′′1 ) be the spanning trees of G′ and G′′, respec-
tively, before the link addition. Connect T (B′1) with T (B′′1 ) by invoking Procedure
Combine(B′1,B′′1 ), using the new link to form a spanning tree T (B1) of the new con-
nected communication graph.

Continue with levels 2 up to k, one at a time. For level 2 ≤ i ≤ k, if the new
link connects two legal bubbles, then no update operations are triggered by level i.
Otherwise, when the new link connects at least one illegal bubble, combine the illegal
bubble with the new tree-neighboring bubble (using Procedure Combine), and split
the combined bubble (using Procedure Split) if necessary. The split operation may
result in the need to remove a link e at the next level. This is handled by invoking
the link removal procedure RemoveAll(e, i) described above. Then the update for
level i+ 1 may be started.

Node addition or removal. Both the addition and the removal of a node can be
described in terms of addition and removal of links. The addition is handled by first
adding a link that connects two separated connected components one of which is the
single node. Then adding the rest of the links one by one. Node removal is done by
removing one link at a time and then removing the node.

In order to argue about the correctness of the dynamic update procedures, two
main claims need to be established, namely, that at the end of each update operation,
each partition Pi is a legal [xi, δxi]-bubble partition and that the entire hierarchy is
a hierarchical bubble partition. These claims are naturally implied by the properties
established earlier regarding Procedures Remove and RemoveAll.

Theorem 4.6. At the end of each update operation, each partition Pi is a legal
[xi, δxi]-bubble partition and the entire hierarchy is a hierarchical bubble partition.

Proof. We prove the theorem for link removal and addition updates since node
additions or removals are reduced to links removals or additions. Link removal employs
Procedure RemoveAll. By Lemma 4.5 the result of the procedure is a legal bubble
partition. In the case of link addition, each Combine execution is followed by Split
and RemoveAll (if required) to result in a legal partition.

4.3. The routing scheme. Next we describe the distributed routing database
by the use of the bubble partition.

Routing distributed database. Start by constructing a hierarchical bubbles par-
tition for the network. For every bubble Bk at level k, define the nodes that reside
in Bk as its members, and choose one of these nodes to be the leader of the bubble,
denoted L(Bk). In general, for level i < k, define the members of a bubble Bi to be all
the leaders of level i+ 1 bubbles that reside in the connected component of Bi. Then
choose one of these members to be the bubble’s leader, L(Bi). (The single bubble of
level 1, B1, will have no use for a leader.)

In Figure 9 we illustrate the way the members of the bubbles are chosen. The
members of a bubble at level 3 are the nodes that reside in the bubble (omitted from
the figure description). For each bubble at level 3 a single leader is chosen (e.g., A, D,
or E); this leader is a member of the bubble of level 2 in which it resides. For every
bubble at level 2 a leader is chosen among its members (e.g., D or G). These chosen
leaders are members of level 1. The tree T (Bi) is known to every member of Bi.
Note that in particular, every member of B1 maintains in its memory T (B1), which
is a spanning tree of the entire communication graph. Note that for load balancing
reasons the representation of the spanning tree can be extended to include the full
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Fig. 9. The members at level 2 and level 1.

topology of the bubble, if desired, thereby increasing the memory requirement by a
factor of δ. The precise method of choosing paths to avoid congestion is beyond the
scope of this paper.

Routing strategy. P delivers a message m to a processor Q by the following
procedure. Let i1 ≥ k be the lowest level in which P is a member, and let Bi1 be its
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home bubble. Then P searches for Q in the spanning tree description T (Bi1). If Q
is not found in T (Bi1), then P sends the packet (pathL1

, Q,m) to L1 = L(Bi1), the
leader of Bi1 . This leader, L1, repeats the process. That is, let i2 < i1 be the lowest
level in which L1 is a member, and let Bi2 be its home bubble. Then L1 searches for
Q in the spanning tree description T (Bi2), and if Q is not found, then L1 sends the
packet (pathL2

, Q,m) to L2 = L(Bi2).

This process must terminate (at a member of B1 in the worst case) since every
member of B1 has a spanning tree description of the entire communication graph,
namely, T (B1).

Routing update. Whenever we apply Procedure Combine(B′l,B′′l ), the members of
the combined bubble have to be updated regarding the new tree. Likewise, whenever
we apply Split(Bl), the members of the two split bubbles have to be updated. Finally,
upon adding a new link for reconnecting the tree T , every member of B1 (namely,
every level 2 leader) is updated with the new tree T , similar to any other Combine
operation.

Analysis. We now turn to analyzing the complexity of the routing scheme. Let
us first establish some basic properties of the hierarchical bubble partition. For uni-
formity of treatment, let us define xk+1 = 1. Recall that the size of each bubble at
level i is in the range [xi, δxi]. Define πi = δxi/xi+1. As shown in the next lemma,
πi serves as an estimate for the population of level i bubbles.

Lemma 4.7. The number of members in a bubble of level i is at most πi.

Proof. A bubble B of level i has at most δxi nodes. For i = k, every node is a
member, and we are done. Now consider i < k. The nodes of B are partitioned into
bubbles of level i+ 1, each of which contains at least xi+1 nodes. Hence the number
of level i + 1 bubbles contained in B is at most δxi/xi+1. The members of B are
precisely the leaders of these bubbles. The claim follows.

Lemma 4.8. The total number of members in all level i bubbles is at most n/xi+1.

Proof. For i = k, all nodes are members. For i < k, the members of level i bubbles
are precisely all leaders of level i+ 1 bubbles. Their number is at most n/xi+1, since
each such bubble is of size at least xi+1.

The next three lemmas state the super-hop count, the memory requirement, and
the adaptability of the bubble routing scheme.

Lemma 4.9. The super-hop count of the bubble routing scheme is bounded by k.

Proof. In the worst case a processor P that is only a member in level k sends a
packet to its bubble leader, Q, which is a member at level k − 1, and so on. With no
more than k − 1 packets a member of level 1 is reached; this member knows T (B1)
and sends a direct packet to the destination of the message.

Lemma 4.10. The memory requirement for the bubble routing scheme is bounded
from above by n(logn+ log δ)

∑
1≤i≤k πi.

Proof. Every processor maintains a spanning tree of the lowest bubble it is a
member of. The members of bubbles at level i maintain a spanning tree of at most
δxi nodes, which requires δxi(logn+ log δ) bits. There are at most n/xi+1 members
altogether at level i, so the memory requirement for the ith level is δxi(logn+ log δ) ·
n/xi+1 = n(logn+ log δ)πi bits.

Lemma 4.11. The adaptability of the bubble routing scheme is bounded from
above by δ

∑
1≤i≤k 3i−1πi and by only

∑
1≤i≤k 3i−1πi in the link-failure model.

Proof. The number of processors that change their routing database is greatest
when a processor is removed. This number is bounded from above by the effect of
removal of δ links one at a time.
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The removal of a link that partitions a spanning tree of a bubble at every level
implies the largest number of updates. On level 1, such a link removal requires at
most n/x2 updates of the members of B1.

We continue our analysis according to the description of the link removal proce-
dure. Note that by claim 3 of Lemma 4.5, at most 3i−1 edges are removed at level i as
the result of a single edge removal at level 1. Since each link belongs to at most one
bubble on each level, this bounds also the number of level i bubbles whose topology
has undergone changes as a result of this removal.

The routing database must be updated at every member of a bubble whose topol-
ogy was changed. Hence the total number of members (on all levels) whose routing
database must be updated upon a link removal is bounded by

∑
1≤i≤k 3i−1πi.

The total number of processors that are updated upon a node removal is no more
than δ

∑
1≤i≤k 3i−1πi. Both claims of the lemma follow.

We now fix xi = dn(k−i+1)/ke for 1 ≤ i ≤ k. Then
∑

1≤i≤k πi = kδn1/k and∑
1≤i≤k 3i−1πi = 1

2 (3k − 1)δn1/k. The following theorem summarizes the properties
of the bubbles routing scheme.

Theorem 4.12. The bubble routing scheme has the following properties:

1. super-hop count = k,

2. memory requirement = kδn1+1/k(logn+ log δ),

3. adaptability = 3kδ2n1/k in the node-failure model and 3kδn1/k in the link-failure
model.

5. Improved partitioning: Edge-bubble partition. The bubble routing
scheme as described above is efficient when δ is small, and in particular, for bounded
degree networks there is a little significance to this factor. However, if δ is large
(close to n) and we consider only link failures, the bubble scheme may not compare
favorably even with the simple multiple trees scheme, because of the occurrences of
δ in the expression for adaptability (and in the expression for memory). For such a
case it is desirable to get rid of the dependence of the complexities on δ. Note that
a δ factor for the adaptability is inherent to the problem if we consider a model that
allows node failures and recoveries. This δ factor is based on the fact that a node
addition can cause the connection of δ previously disconnected components.

We now present a modified partitioning scheme called the edge-bubble partition,
which eliminates a δ factor (occurring in both the bound of adaptability and memory)
at the cost of using a somewhat more complex partition and algorithm. Recall that in
order to partition the communication graph into node disjoint connected components,
the bubble scheme presented above allows the range of the bubble size to be [x, δx]. It
turns out that it is possible to form a bubblelike partition of a tree into edge-disjoint
trees (i.e., with bubbles possibly sharing nodes), such that the size (i.e., number of
edges) of each tree is between x and 3x.

Definition 5.1. Given a graph G = (V,E) and parameters 0 < a < b, an [a, b]
edge-bubble partition of G is a (possibly node-overlapping) cover of V by a collection
of edge-disjoint connected trees called bubbles, {B1, . . . ,Bq}, where Bi = (Vi, Ei), with
the property Ei ∩ Ej = ∅ for every 1 ≤ i < j ≤ q.

Intuitively, the modified scheme can be thought of as utilizing the idea of trans-
forming the tree T at hand into a logical tree T̂ of maximum degree 3 and applying the
previous solution to this logical tree. The transformation can be achieved by splitting
each node P of degree d into d copies P1, . . . , Pd, connected by a simple chain, and
hanging exactly one child Qi of P off each copy Pi (see Figure 10).
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(a) (b)

Fig. 10. (a) A node P of degree 3. (b) P is split into three logical copies P1, P2, P3.

The bubbles solution on the logical tree is simulated on the actual network by
requiring each node P to simulate the behavior of its d logical copies. Some care is still
needed with respect to the modification procedures, and in particular, it is necessary to
specify how a node P reacts to topological changes in terms of reorganizing its internal
(logical) structure—for example, as a result of a combine operation that changed its
root (and made its former parent into a child and one of its former children into its
new parent). In what follows, the resulting algorithm is described directly (rather
than via the intuitive simulation method discussed above), in order to gain better
understanding concerning its behavior.

We next present an overview of a partitioning algorithm, that given an n-node
graph G and a parameter 1 ≤ x ≤ n, produces an [x, 3x] edge-bubble partition for
G. The new algorithm is similar in nature to Algorithm Partition (Figure 2). The
essential differences between the two algorithms are that in the new algorithm (i) MP

is the total number of edges in the subtree TP , and (ii) The treatment of a node P
found in step (2) of the algorithm, namely, a node P satisfying MP ≥ x, such that
all of P ’s children Q satisfy MQ < x, is different. For a particular edge e from P to
one of its children, Q, we define a subtree, Te, rooted at e to be the subtree rooted at
Q together with e. Recall that the previous algorithm simply makes the subtree TP
rooted at P into one bubble, containing, in particular, all the subtrees rooted at P ’s
children. In contrast, the new algorithm will select some of the subtrees Te rooted at
P ’s outgoing edges of total size greater than x but not exceeding 2x. The selected
subtrees are now merged into an edge-connected bubble. This bubble is removed from
the tree. We note that the resulting bubbles are of size [x, 3x], since the partition
of the last bubble into two bubbles of size in the range [x, 2x] might not be possible
in the case of P having three outgoing edges for which the subtree rooted at each of
them is of size less than x but greater than, say, 3x/4.

We proceed with a more formal description of the algorithm. As in the previous
algorithm, a preprocessing step involves constructing a downward-directed spanning
tree TR for the graph, rooted at an arbitrary node R. The algorithm then partitions
this tree into bubbles (see Figure 11).
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(1) While T contains more than 3x nodes do:
(a) Mark every node P in T by MP , the total number of edges in the

subtree TP rooted at P .
(b) Find a node P with the property that MP ≥ x, but all of its children

Q satisfy MQ < x.
(c) Let EP = (e1, e2, . . . , ei) be the edges connecting P to its children.

Let ni be the number of edges in the subtree connected to P by
ei (including ei). Let j be the minimal index j such that x ≤∑j
i=1 ni ≤ 2x.

(d) Make the edges of the subtrees connected to P by e1, e2, . . . , ej
(including the edges e1, e2, . . . , ej themselves) into a bubble.

(e) Remove this bubble from T .
End while

(2) Make T into a bubble and terminate.

Fig. 11. Algorithm EdgePartition(x).

Lemma 5.1. Algorithm EdgePartition(x) produces an [x, 3x] edge-bubble par-
tition of G.

Proof. The proof is a variant of that of Lemma 4.1. Step (1c) guarantees, by the
choice of j, that the selected collection is of total size no greater than 2x.

Showing that every execution of step (1) succeeds in finding a candidate node P
as required in (1b) follows just as in the proof of Lemma 4.1. Hence termination of
the algorithm follows in the same way too.

Next, we show that when the algorithm terminates, x ≤MR ≤ 3x; hence the last
bubble is within the correct size range as well. The termination condition of step (1)
implies that when the algorithm terminates, MR ≤ 3x. If the number of nodes in the
entire graph G is also smaller than 3x, then this is the only bubble and we are done.
Otherwise, there exists at least one more bubble. Examine the last removal executed
at step (1c) before the termination of the algorithm. Right before this disconnection
MR is greater than 3x, and during the disconnection no more than 2x edges are
removed from TR, leaving at least (a set of) x edges that are still connected to R (i.e.,
a path from R to each of the edges in this set consists of only edges of the set).

Theorem 5.2 is implied by the existence of the partition algorithm.
Theorem 5.2. For every n-node graph G and parameter 1 ≤ x ≤ n, G has an

[x, 3x] edge-bubble partition.
Figure 12 depicts a step in the partition of a graph into edge-bubbles. The tree

of the (remaining) graph is depicted in the top portion of the figure. It is assumed
that x = 6 and hence the partition takes place only in the node of level 2 for which
every subtree has less than 6 edges. The partition gathered the first two subtrees to
be a bubble of size greater than 6 and not exceeding 12.

Again, for our routing schemes we will use hierarchies of edge-bubble partitions,
defined as follows.

Definition 5.2. Given a graph G and a list of k integer parameters x̄ =
(x1, x2, . . . , xk, xk+1), where x1 = n, xk+1 = 1, and xi > 3xi+1, an x̄-hierarchical
edge-bubbles partition of G is a collection of k edge-bubbles partitions Pi, 1 ≤ i ≤ k,
with the following properties.

1. For every 1 ≤ i ≤ k, Pi is an [xi, 3xi] edge-bubble partition.
2. For every 1 < i ≤ k, Pi is a refinement of Pi−1.
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Fig. 12. A step of the edge-bubbles partition.

Similar to the previous section, we choose the parameters x̄ as xi = dn(k−i+1)/ke.
The hierarchical edge-bubble partition of a graph is constructed by Algorithm

EdgeHier(x̄) in a manner similar to Algorithm Hierarchy(x̄) of section 4, except
that the partitioning algorithm invoked is EdgePartition rather than Partition.
The requirements of Definition 5.2 are clearly met, giving the following theorem.



BUBBLES: ADAPTIVE ROUTING 825

Input: Two edge-tree-neighboring level l bubbles B′l and B′′l .

Action: Connect T (B′l) and T (B′′l ) using their connecting node.

Output: A combined bubble Bl.

Fig. 13. Procedure EdgeCombine(B′l,B′′l ).

Input: A (typically oversized) bubble Bl and Fl+1.

Action: Select one of the nodes of Bl to be the root R.
Direct T (Bl) from R towards the leaves.
Execute steps (1) to (2) of the Algorithm EdgePartition(xl) (ordered w.r.t.

Fl+1).

Output: An [xl, 3xl] edge-bubbles partition of Bl.

Fig. 14. Procedure EdgeSplit(Bl,Fl+1).

Theorem 5.3. Every graph has a hierarchical edge-bubble partition.

5.1. Dynamic maintenance. Dynamic maintenance of the bubbles is carried
out in much the same way as with the basic algorithm of section 4.

The combine and split procedures for the edge partition bubbles appear in Figures
13 and 14. We use the following definition for edge-tree-neighboring.

Definition 5.3. Two bubbles B′l and B′′l , both at level l, are said to be edge-
tree-neighboring w.r.t. the level l − 1 forest Fl−1 if there exist two edges e′ ∈ B′l and
e′′ ∈ B′′l adjacent to the same node such that both e′ and e′′ are in the same bubble
of Fl−1. We refer to the shared adjacent node of e′ and e′′ as the connecting node of
T (B′l) and T (B′′l ).

It turns out that the order of the edges e1, e2, . . . , ei of step (1c) of Algorithm
EdgePartition is crucial in the context of dynamic maintenance of the hierarchical
partition. When a bubble of level l is split, it might split bubbles of level l + 1. We
would like to minimize the number of bubbles at level l+1 that are split because a split
of level l took place. Toward this end, we specify the order of the edges e1, e2, . . . , ei
in a way that ensures that at most one bubble of level l + 1 is split because of a
split operation of a bubble in level l. The next definition uses e0 to denote the edge
connecting P with its parent in T .

Definition 5.4. The execution of Algorithm EdgePartition is said to be or-
dered w.r.t. Fl+1 if in step (1c) of Algorithm EdgePartition, the edges EP =
(e1, e2, . . . , ei) are ordered according to Fl+1 in such a way that, for every bubble
Bl+1, the edges of EP that belong to Bl+1 appear in one contiguous subsequence of
EP . In addition, if e0 belongs to B′l+1, then the contiguous subsequence of edges in
the ordered EP that belong to B′l+1 (if any) is ordered last among the other contiguous
subsequences.

Procedures EdgeRemove and EdgeRemoveAll appear in Figures 15 and 16.
The next lemma states some basic properties of procedure Remove.

Lemma 5.4. 1. If Fl is the spanning forest of a legal [xl, 3xl] edge-bubble partition,
then after the execution of Procedure EdgeRemove(e,Fl,Fl−1,Fl+1) and removing
edge e, the output forest F ′l represents a legal [xl, 3xl] edge-bubble partition as well.
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Input: Edge e for removal, forest Fl, Fl−1 and Fl+1 spanning a legal partition.

Action:

The removal of ei causes the partition of a single bubble, say Bl, into two portions,
denoted B′l and B′′l . Let B̂l be an edge-tree-neighboring of Bl and w.l.o.g. of B′l.
For B̂ = B′l and then B̂ = B′′l do:

1. If the size of B̂ is still greater than xl, then make it into an independent
bubble without change.

2. Otherwise, if it is too small, then do the following:
(a) If B̂ = B′l then let B̃ be B̂l.

Else find some bubble B̃ of Fl that is an edge-tree-neighbor of B̂
w.r.t. Fl−1.

(b) Merge B̃ and B̂ into B̄ by invoking procedure EdgeCombine(B̃, B̂).
(c) If B̄ includes more than 3xl nodes, then split it by invoking proce-

dure EdgeSplit (ordered w.r.t. Fl+1).

Output: Forest F ′l .

Fig. 15. Procedure EdgeRemove(e,Fl,Fl−1,Fl+1).

2. Every two bubbles combined into a single bubble of F ′l during the execution of
EdgeRemove(e,Fl,Fl−1,Fl+1) resides in a single bubble of Fl−1.

Proof. It is easy to verify (by simple case-by-case inspection) that, assuming we
start with a legal bubbles partition, each bubble generated during the update process
is connected and that the different bubbles are disjoint and cover the entire graph.

For proving part 1, we need to argue that in the output partition, every bubble
is in the right size range. For establishing the upper size bound, |B| ≤ 3xl, we rely on
the fact that whenever the algorithm merges a bubble and it becomes too large, it is
split.

For proving that |B| ≥ xl, we rely on the fact that whenever the algorithm
creates a bubble B̂j that is too small (as the result of an edge removal operation), it

is combined with a tree-neighboring bubble B̃ that is of size at least xl.

The only point that needs to be verified in order to complete the above proof,
is that whenever some portion B̂ of a broken bubble is too small and needs to be
combined with a tree-neighboring bubble, the existence of a suitable tree-neighboring
bubble B̃ is guaranteed.

To see this, let Bl−1 be a level l − 1 bubble that includes at least one node of
B̂, say v. Since level l − 1 bubbles are always larger than level l bubbles, Bl−1 is a
connected component that includes more edges than B̂ does, hence there must be an
edge w that is not within B̂ but is within Bl−1. A path in T (Bl−1) from v to one of the
nodes attached to w must include a node connecting B̂ to an edge-tree-neighboring
level l bubble.

Property 2 follows immediately from the procedure and the definition of an edge-
tree-neighboring bubble.

The following lemma uses Lemma 5.4 to prove some properties of Procedure
RemoveAll.

Lemma 5.5. 1. If Fl is the spanning forest of a legal [xl, 3xl] edge-bubble partition
for every i ≤ l ≤ k, then after the execution of Procedure RemoveAll(e, i) and
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Input: Edge e for removal, forests Fl for i−1 ≤ l ≤ k spanning legal partitions.

Action:

Let F ′i ← EdgeRemove(e,Fi,Fi−1).
For l = i+ 1 to k do:

1. Let {B1,B2, . . . ,Bm} be all the bubbles such that, Bj , 1 ≤ j ≤ m, resides
in more than a single bubble of Fl−1.

2. Let F (0)
l ← Fl.

3. For j = 1 to m do:
(a) Partition Bj into {Bj1 ,Bj2 , . . . ,Bjx} such that each Bjy , 1 ≤ y ≤ x,

is the maximal portion of Bj that resides in a single bubble of Fl−1.
(b) For y = 1 to x do:

i. Make Bjy a bubble.
ii. If the size of Bjy is too small then find an edge-tree-neighboring

bubble of Bjy , B′j , EdgeCombine(Bjy ,B′j). If the resulting
bubble, B′′j , is a too big bubble then EdgeSplit(B′′j ,Fl+1)
(ordered w.r.t. Fl+1).

4. Let F ′l ← F (m)
l .

Output: Forests F ′l for i ≤ l ≤ k.

Fig. 16. Procedure EdgeRemoveAll(e, i).

removal of the edge e, the output forest F ′l represents a legal [xl, 3xl] edge-bubble
partition for every i ≤ l ≤ k.

2. The output partition P ′l is a refinement of P ′l−1 (i.e., F ′l ⊆ F ′l−1) for every
i ≤ l ≤ k.

Proof. Claim 1 follows directly from claim 1 of Lemma 5.4 and the EdgeCombine
and EdgeSplit procedures applied to the portions of the bubbles. Note that in the
execution of EdgeCombine(Bjy ,B′j), B′j is not a portion of Bj and thus is a legal-
sized bubble. Moreover, as in Lemma 4.5, this property holds throughout the process,
namely, for each intermediate forest F (j).

Claim 2 holds (again as in Lemma 4.5) only for the final partition constructed for
each level.

For the final partitions, the claim follows from the fact that in constructing the
new level l forest F ′l+1, the procedure handles every bubble portion.

The update operations are handled in a similar fashion to the first bubble partition
operations, yielding the next theorem.

Theorem 5.6. At the end of each update operation, each partition Pi is a legal
[xi, 3xi] edge-bubble partition, and the entire hierarchy is a hierarchical edge-bubble
partition.

5.2. The routing scheme. The routing proceeds as in section 4. The only
points to note are the following.

A node with adjacent edges e1, e2, . . . , ej is a member of every bubble at level k
to which one of its edges belongs. For each bubble of level k, a single leader-edge is
elected from among the edges of the bubble—then one of the adjacent node of the
leader-edge is elected to be the leader (node) of the bubble. Note that a single node
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may function as a leader of several (up to δ) bubbles.
The elected leader-edge and the elected leader (node) are members of the bubble

of level k− 1 at which the elected leader-edge resides. For each bubble of level k− 1,
Bk−1, a single leader-edge is elected from among its edge members. The elected edge
and the leader of level k − 1 attached to it are members of the bubble of level k − 2
at which the elected edge resides. This membership definition is naturally extended
to the next lower levels. Similar to the node partition bubbles, a member of a bubble
maintains the spanning tree portion of the bubble.

Analysis. The next three lemmas state the super-hop count, the memory require-
ment, and the adaptability of the edge-bubble routing scheme. The end result is very
similar to the analysis of section 4, except that πi is redefined as πi = 3xi/xi+1. The
proof of the next lemma is identical to the proof of Lemma 4.9.

Lemma 5.7. The super-hop count of the edge-bubble routing scheme is bounded
by k.

Lemma 5.8. The memory requirement for the edge-bubble routing scheme is
bounded from above by n(logn+ log δ)

∑
1≤i≤k πi.

Proof. For every edge e such that the lowest level bubble that e is a member
of is Bi there is an adjacent processor that maintains a description of T (Bi). A
bubble of level i includes at most 3xi edges. The total number of bits required for
such a description of a tree is 3xi(logn + log δ). Since there are at most n/xi+1

edge members altogether at level i, the memory requirements for the ith level is
3xi(logn+ log δ) · n/xi+1 = n(logn+ log δ)πi bits.

Lemma 5.9. The adaptability of the edge-bubble routing scheme is bounded from
above by δ

∑
1≤i≤k 3i−1πi and by only

∑
1≤i≤k 3i−1πi in the link-failure model.

Proof. The number of processors that change their routing database is greatest
when a processor is removed. This number is bounded from above by the effect of
removal of δ links, one at a time.

The removal of a link that partitions a spanning tree of a bubble at every level
implies the largest number of updates. On level 1, such a link removal requires at
most n/x2 updates of the members of B1.

We continue our analysis according to the description of the link removal proce-
dure. Since we use ordered partition whenever EdgeRemove is invoked, a partition
of a bubble at level l results with partition of up to three bubbles of level l + 1. The
bubble in which the partition of level l occurred and two other neighboring bubbles.

Thus, at most 3i−1 bubbles are partitioned at level i as the result of a single edge
removal at level 1. Hence the total number of members (on all levels) whose routing
database must be updated upon a link removal is bounded by

∑
1≤i≤k 3i−1πi.

The total number of processors that are updated upon a node removal is no more
than δ

∑
1≤i≤k 3i−1πi. Both claims of the lemma follow.

We now fix xi = dn(k−i+1)/ke for 1 ≤ i ≤ k. Then
∑

1≤i≤k πi = kδn1/k and∑
1≤i≤k 3i−1πi = 1

2 (3k − 1)δn1/k. The following theorem summarizes the properties
of the edge-bubble routing scheme.

Theorem 5.10. The edge-bubble routing scheme has the following properties:
1. super-hop count = k,
2. memory requirement = kn1+1/k(logn+ log δ),
3. adaptability = 3kδn1/k in the node-failure model and 3kn1/k in the link-failure

model.

6. Lower bound. In this section we prove a lower bound on the adaptability for
graphs with bounded degree δ and super-hop count k. For the purpose of establishing
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the lower bound, we consider a single destination for all messages and then derive a
tree of superhops, rather than of links.

Given any source-oblivious routing scheme with super-hop count k, we build a
spanning tree Tk as follows. The root of the spanning tree is a processor P . Assume
that every processor is to send a message m to P , and connect each processor Q with
the destination of its first packet when Q sends m to P . The depth of a tree is the
maximal number of edges from the root to a leaf.

Claim 6.1. Tk is of depth no more than k.
Proof. Otherwise the super-hop count is greater than k.
Claim 6.2. There exists at least one node with at least (n/2)1/k children in Tk.
Proof. There are n processors in Tk and the depth of Tk is k. Letting ∆ denote the

maximum out-degree of Tk, the number of nodes in the tree satisfies n ≤∑0≤i≤k ∆i ≤
2∆k (as ∆ ≥ 2, implied by n > k). Hence ∆ ≥ (n/2)1/k.

Theorem 6.3. Any source-oblivious routing scheme with super-hop count k has
adaptability Ω(n1/k) in a communication graph of constant degree.

Proof. Let Q be a processor that has at least (n/2)1/k children in Tk. The ex-
istence of Q is implied by Claim 6.2. The node Q is connected to the rest of the
processors in G by at most δ links. Thus, by the pigeon-hole principle there must be
a link, (Q,R), used by a set C of at least (n/2)1/k/δ processors in sending their first
packet to carry the message to P . We now show a sequence of at most three topol-
ogy changes, involving edge removals and additions only, that implies (n/2)1/k/(3δ)
adaptability.

If a disconnection of (Q,R) does not partition the communication graph, then
obviously this topology change alone forces all (n/2)1/k/δ processors of the set C to
change their routing database.

Now we analyze the case in which the removal of the link (Q,R) does partition
the graph. We need to show that there exists a sequence of changes that preserve
the bound on the degree δ and forces an omission of the link (Q,R) from the routing
tables. We claim there are two different cases.

Case 1. Before the disconnection of (Q,R), the graph G is a tree, and the number
of processors is greater than two. In this case, following the disconnection of (Q,R)
there must be at least one leaf X 6∈ {Q,R}, say, w.l.o.g. in the connected component of
Q. Then one more topology change, involving the reconnection of X to R, is possible
without exceeding δ. As a result of this change, the graph becomes connected again,
and the nodes of the set C are forced to change their routing database to use the
resulting tree for reaching P .

Case 2. Before the disconnection of (Q,R), the graph G contains at least one
cycle. In this case, following the disconnection one of the connected components must
contain a cycle (otherwise no partition would take place). Let (X,Y ) be a link in
this cycle and w.l.o.g. assume that (X,Y ) is in Q’s connected component and that
X 6= Q. Disconnect (X,Y ) and connect X to R. Again the connection of X to R is
possible without exceeding δ.

Thus at most three topology changes cause (n/2)1/k/δ processors to change their
routing database.

7. Distributed bubble update. So far we have not been concerned with the is-
sue of how to distribute the bubble update algorithm. Still the upper bound described
for the adaptability of the bubble routing scheme is useful for the case of manually
adding and removing links and nodes. This is the case for telephone networks, where
new users may be connected and existing users may be disconnected. However, our
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results are made stronger by handling topology changes automatically while keeping
the low adaptability. That is, the number of node control units that participate in
the distributed automatic update together with the number of node control units that
must change their portion of the routing distributed database is low. For the sake of
keeping a low adaptability, we introduce a distributed bubble update algorithm that
can cope with transient failures and recoveries as well as permanent disconnection
and connections.

The main idea for the distributed bubble update is to have the processors neigh-
boring a topology change to be the monitors of the change. The task of a monitor
is (1) to collect information on the tree structure it belongs to and on the existing
routing database, (2) to try to merge with other neighboring trees, and (3) to modify
the existing routing database to fit the current topology. The modification should be
performed in a way that involves the least number of node control units.

Toward this end it is assumed that each switching subsystem has a sack variable
which may be modified by the node control unit. This sack variable contains the
processor’s portion of the distributed routing database. The sack variable can be
collected by a special arriving message. We also assume that an arriving message
may be concatenated with the label of the link through which it arrived. Note that
no direct modification of the set of labels or the sack variable by an arriving message
is allowed.

The links of the spanning tree T (B1) are distributively marked on the edges of
the system. The two endpoints of a tree link are marked by a label t. In the following,
we use the term marked tree to be the graph obtained by the set of marked links and
the nodes they connect. Upon failure of a tree link the marked tree of a connected
component may essentially be a marked forest that has to be fused to a new marked
tree. Each tree in the forest is an autonomous entity with a monitor. The monitors of
trees in the forest negotiate in order to promote a nontree link into a tree link. Upon
such a promotion the number of trees (and monitors) in the forest is reduced by one.
More details follow.

A monitor is associated with the time of the topology change that created it.
We assume the existence of a synchronized clock at every processor. Each monitor
uses the marked tree it belongs to for tree broadcast with feedback (in short, TBF ).
The TBF collects the information in the sacks of every processor that belongs to the
tree and delivers the information to the monitor. The monitor initiates the TBF by
sending a message with its identifier, the timestamp of its creation, and a TB (tree-
broadcast) label on every marked tree link. Every switch that receives a message m
of type TB concatenates the unique label of the link through which m arrived to the
end of the message and forwards a copy of the message to each link that is labeled
t except the link through which m arrived. If no other tree link exists (the switch
is a leaf in the marked tree), then the switch modifies the message as follows: TB
is replaced by TF (tree feedback), the labels at the end become the address of the
message (that transfer it back to the TBF initiator), and the content of the sack is
concatenated to the end of the message. When a switch receives a TF message it
removes the first label of the message that arrived and concatenates the value of its
sack to the tail of the message.

A processor P starts to act as a monitor when either of the tree links attached
to it fails or an attached link recovers. A monitor marks the label that leads from its
switching subsystem to itself by the label m. This enables the switching subsystem to
deliver a copy of every BF message to its node control unit when the node control unit
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is a monitor. Then the monitor collects information on its tree and the distributed
routing database of this tree. This is done by the tree broadcast with feedback
mechanism. Whenever a tree broadcast with feedback of another monitor arrives
at (the node control unit of) P and the timestamp of the arriving TBF is greater
(breaking ties by the monitors identifiers), P stops being a monitor.

Upon receiving the information from the tree broadcast with feedback, P checks
whether there are neighboring processors that do not belong to its tree. If such
neighboring processor exists, then P sends a promote message to the processor Q
attached to the link with the highest lexicographic order that leads to a neighboring
tree. (For purposes of this lexicographic ordering, the name of a link is defined as
the pair of identifiers of the two processors that are attached to it, where the first
identifier in the pair is always greater than the second.) Then Q becomes the monitor
and queries the other side about the possibilities of merging. Upon receiving an accept
message, the link changes its status to a tree link, and the monitor with the smaller
identifier sends the information collected in its TBF to its neighbor. At the same
time it stops being a monitor. When there is no further possibility of merging, the
corrections of the routing database are sent by the monitor to the appropriate node
control units, and the processor that acted as a monitor resumes operation as a regular
processor.

Lemma 7.1. In every instance of time and for every connected component, if the
marked tree does not span the entire connected component, then for each tree in the
forest there exists at least one monitor.

Proof. This is true in the first instance of the system. Further topology changes
keep this invariant. A monitor stops existing only when another monitor exists in the
same tree or when the marked tree spans the entire connected component.

Lemma 7.2. If no monitor exists in a connected component, then the distributed
routing database of this connected component is correct.

Proof. For every connected component of more than a single processor, there has
been an instance in which one processor of this connected component has been a mon-
itor, i.e., the instance that follows a connection of any two neighboring processors by
a link. The last processor that stopped being a monitor in this connected component
must have finished the corrections of the distributed routing database.

Lemma 7.3. At some time following the last topology change, no monitor exists.

Proof. The tree broadcast with feedback terminates. Then the monitor may wait
for a promotion of a link into a tree link. Assume toward contradiction that the
monitor waits for some link promotion forever. This in turn implies that the monitor
of the other tree portion is waiting on another edge that has a greater identifier. Since
links that are to be promoted into tree links are chosen according to lexicographic
order, this chain of waiting monitors is finite and must end with two monitors waiting
on the same edge.

Theorem 7.4. The distributed adaptability is of the adaptability order.

Proof. Only monitors and the node control units that have to change their dis-
tributed routing database participate in the distributed bubbles update. The number
of monitors is no more than 2δ for a topology change: at most δ are directly influenced
and another δ are the result of monitor migration.

Note that, during the correction process of the distributed routing database by
one monitor, a topology change might take place, stopping the update before it is com-
pleted. Nevertheless, the partial correction process took place in a limited number of
bubbles (as explained for the centralized case), leaving most of the bubbles unaffected.
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Thus, the number of node control units that have to change their distributed routing
database following c topology changes is O(ck3k−1δ2n1/k).

The theorem is proved since the additional O(δ) monitors do not change the
O(k3k−1δ2n1/k) adaptability.

8. Concluding remarks. In this paper we defined new measures for the effi-
ciency of routing schemes for high-speed dynamic networks. We presented the concept
of the bubble partition of a graph to support routing in high-speed dynamic networks.
We believe that the resulting bubble partitioning technique may be of independent in-
terest in other contexts as well. Our routing scheme is efficient in terms of the number
of routing steps (super-hop count), memory, and adaptability. The routing scheme
also supports load balancing of traffic by allowing each processor to forward a message
along a randomly chosen path within its bubble (the path does not necessarily belong
to the bubble tree). The scheme has been proven optimal in its adaptability for a
network of bounded degree and for a small constant k by a matching lower bound.

A number of variants of our scheme are possible in different contexts. We briefly
discuss some of them next.

8.1. The programmable model. The basic model as described assumes that
the labels associated with each link are fixed and permanent. A natural variant of
this model is one in which it is assumed that the switching subsystem permits the
node control unit to configure the link labels dynamically, or in other words, that
the link labels are programmable. This assumption is commonly made in the high-
speed model, including PARIS (cf. [5]), and in fact, it is often assumed that each link
may have a set of usable labels. We shall refer to this variant of the model as the
programmable model.

A possible implementation enabling this assumption is as follows. Each port in
the processor has a permanent (hard-wired) physical id. In addition, the link has
a logical label, which can be changed from time to time. The switching subsystem
maintains a conversion mechanism, enabling it to translate any given logical label into
the appropriate physical port id. Hence upon the arrival of a message, the switch-
ing subsystem removes the first label l, consults the mechanism for the appropriate
physical port id, and forwards the message to that port for transmission.

For the programmable model, a simple variant of the single-leader routing scheme
can be implemented with O(n logn) memory requirements (as opposed to O(n2 logn)
of the original single-leader scheme). The necessary modifications are as follows.
Given the spanning tree, each processor labels its link upward in the tree (toward the
root L) by 0. (The rest of the links may be labeled arbitrarily with a nonzero value.)
A message with zero in its header that arrives at a nonroot is forwarded through the
link labeled zero without shortening the message. For the first part of each message
transmission, namely, the path from v to L, the processor v attaches the label zero
to the message header. The root maintains the entire tree topology and forwards
arriving messages to their destinations, using nonzero labels.

8.2. Constrained bubble partitions. The second variant is related to special
restrictions on the bubble partition. For some cases the bubble partition might be
restricted due to other constraints, e.g., geographic constraints. For instance, one
would not like to have two bubbles (say, at level 2) cover the network in the United
States, such that one of the bubbles includes Japan and the other includes the United
Kingdom; instead a single bubble for the United States is preferred. Our bubble parti-
tion can take into account such considerations by ignoring some of the communication
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links during the bubble partition in some levels.

REFERENCES

[1] Y. Afek, E. Gafni, and M. Ricklin, Upper and lower bounds for routing schemes in dynamic
networks, in Proceedings of the 30th Symposium on Foundations of Computer Science,
1989, pp. 370–375.

[2] B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804–823.
[3] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Compact distributed data structure for

adaptive routing, in Proceedings of the 21th Symposium on Theory of Computing, 1989,
pp. 479–489.

[4] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Improved routing strategies with
succinct tables, J. Algorithms, 11 (1990), pp. 307–341.

[5] B. Awerbuch, I. Cidon, I. Gopal, M. Kaplan, and S. Kutten, Distributed control for
PARIS, in Proceedings of the 9th PODC, Quebec, 1990, pp. 145–159.

[6] B. Awerbuch and D. Peleg, Routing with polynomial communication-space trade-off, SIAM
J. Discrete Math., 5 (1992), pp. 151–162.

[7] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Saks, Adapting to asynchronous dynamic
networks, in Proceedings of the 24th Symposium on Theory of Computing, 1992, pp. 557–
570.

[8] I. Cidon and I. Gopal, PARIS: An approach to private integrated networks, Journal of Analog
and Digital Cabled Systems, 1 (1988), pp. 77–86.

[9] I. Cidon, I. Gopal, and S. Kutten, New models and algorithms for future networks, IEEE
Trans. Inform. Theory, 41 (1995), pp. 769–780.

[10] I. Cidon, O. Gerstel, and S. Zaks, A scalable approach to routing in ATM networks, in
Proceedings of the 8th International Workshop on Distributed Algorithms, 1994.

[11] S. Dolev and T. Herman, Superstabilizing protocols for dynamic distributed systems, Chicago
J. Theoret. Comput. Sci., (1997), special issue on self-stabilization, article 4.

[12] O. Gerstel and S. Zaks, The virtual path layout problem in fast networks, in Proceedings of
the 13th ACM Symposium on Principles of Distributed Computing, 1994.

[13] L. Kleinrock and F. Kamoun, Hierarchical routing for large networks, Computer Networks,
1 (1977), pp. 155–174.

[14] L. Kleinrock and F. Kamoun, Optimal clustering structures for hierarchical topological design
of large computer networks, Networks, 10 (1980), pp. 221–248.

[15] D. Peleg and E. Upfal, A tradeoff between size and efficiency for routing tables, J. ACM, 36
(1989), pp. 510–530.

[16] M. Santoro and R. Khatib, Labeling and implicit routing in networks, The Computer Journal,
28 (1985), pp. 5–8.

[17] L. G. Valiant, Universality consideration in VLSI circuits, IEEE Trans. Comput., 30 (1981),
pp. 135–140.

[18] J. van Leeuwen and R.B. Tan, Routing with compact routing tables, in The Book of L, G.
Rozenberg and A. Salomaa, eds., Springer-Verlag, New York, 1986, pp. 259–273.

[19] J. van Leeuwen and R.B. Tan, Interval routing, The Computer Journal, 30 (1987), pp. 298–
307.



RANDOMLY SAMPLING MOLECULES∗

LESLIE ANN GOLDBERG† AND MARK JERRUM‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 834–853

Abstract. We give a polynomial-time algorithm for the following problem: Given a degree
sequence in which each degree is bounded from above by a constant, select, uniformly at random,
an unlabelled connected multigraph with the given degree sequence. We also give a polynomial-time
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Key words. Pólya theory, random graphs, structural isomers

AMS subject classifications. 05C80, 20B25, 20B40, 60C05, 68Q20, 92E10

PII. S0097539797318864

1. Introduction. In this paper, we give a polynomial-time algorithm for the
following problem: Given a degree sequence in which each degree is bounded from
above by a constant, select, uniformly at random (u.a.r.), an unlabelled connected
multigraph with the given degree sequence. We also give a polynomial-time algorithm
for the following related problem: Given a molecular formula, select, u.a.r, a structural
isomer having the given formula. A molecular formula [18] simply gives the number
of atoms of each kind that occur in a molecule. A structural formula [17] is a method
of representing the way in which the atoms in a molecule are linked together. A
structural isomer is a structural formula, viewed as an unlabelled multigraph in which
the vertices are of several different kinds.

Some of the structural isomers corresponding to a given molecular formula are
chemically irrelevant due to geometric (and other) constraints. Nevertheless, count-
ing all of the structural isomers corresponding to a given formula is a long-standing
open problem for which no practical general solution has been found [18]. Solutions
do exist for certain restricted cases of chemical compounds [16, 17, 18]. Benecke et
al. [2], Faulon [8], and Wieland, Kerber, and Laue [21] have developed (and coded)
algorithms for listing all of the structural isomers corresponding to a given molecular
formula. These programs typically allow the user to prescribe and forbid substruc-
tures and some of the programs deal with geometric constraints. These programs are
useful if the number of structural isomers corresponding to the relevant formula is
sufficiently small, so the isomers can all be listed. Faulon has argued [10] that ran-
domly sampling structural isomers is useful for structural elucidation and molecular
design in cases in which the number of isomers is too large to list them all. He [9]
has developed a program for randomly sampling structural isomers and has used it
for chemical applications such as a statistical study of the potential energy distribu-
tion of the isomers of C8H10 and the structural elucidation of several compounds.
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Faulon’s program applies to a realistic chemical problem including 3-D simulation of
molecules and chemical analysis. However, his methods are heuristic. By contrast, we
study an idealization of the problem (randomly sampling structural isomers without
regard to geometric and other chemical constraints) but we achieve rigorous per-
formance guarantees—polynomial-time computation and exactly uniform generation.
Thus, we describe the first polynomial-time algorithm that uniformly samples struc-
tural isomers given a molecular formula. Our isomer-sampling algorithm is based on
our algorithm for uniformly sampling unlabelled connected multigraphs with a given
degree sequence.

1.1. Previous work. Uniformly sampling labelled multigraphs with a given
bounded-degree sequence can be done in polynomial time by dynamic programming.
More sophisticated techniques exist for a wider class of degree sequences—see, for ex-
ample, Jerrum and Sinclair [13] and McKay and Wormald [14]—but it is not known
how to apply these techniques to the problem of sampling unlabelled multigraphs.
Nijenhuis and Wilf [15] showed how to uniformly sample unlabelled rooted trees with
a specified number of vertices. This approach was extended by Wilf [22], who showed
how to uniformly sample free (unrooted) trees. Their algorithms are based on an
inductive definition (i.e., a generating function) for the trees. This approach will be
systematized by Flajolet, Zimmerman, and Van Cutsem in a forthcoming paper [12].

More complicated techniques are required when the graphs to be sampled are not
trees. Dixon and Wilf [7] were the first to give an algorithm for uniformly sampling
unlabelled graphs with a specified number, n, of vertices. Their algorithm is based
on Burnside’s lemma. First, a permutation of the n vertices is chosen with the ap-
propriate probability and then a graph is chosen u.a.r. from those graphs which are
fixed by the chosen permutation. The choice of the permutation requires a calcula-
tion of the number of unlabelled graphs with n vertices. Wormald’s algorithm [25]
avoids doing this expensive calculation. Instead, it achieves a uniform distribution
by restarting itself when appropriate. Wormald’s method can also be used to sample
r-regular graphs u.a.r. for any fixed degree r ≥ 3. The method relies on the fact
that most unlabelled r-regular graphs are rigid (without nontrivial symmetries) when
r ≥ 3. This is not true for r = 1 or r = 2.

1.2. Outline of our algorithm. Our algorithm for sampling unlabelled con-
nected multigraphs with a given degree sequence combines the above ideas with
other ideas from the field of random graphs. A natural approach to the problem
is the approach of Wormald—first generate a permutation of the vertices, then gen-
erate a random connected multigraph fixed by the permutation, and finally use re-
jection/restarting to obtain the correct distribution. However, this approach relies
heavily on the fact that many of the desired structures are rigid (so the algorithm
will be likely to choose the identity permutation, which leads to a quick result with-
out restarting). This is not the case for the set of unlabelled connected multigraphs
with a given degree sequence, because the degree sequence may have many vertices
of degree 1 and 2. Thus, we first reduce our problem to that of sampling unlabelled
connected multigraphs with degree sequences that do not have any vertices of degree 1
or 2. Every multigraph G is associated with a unique “core” which has no vertices of
degree 1 or 2. To generate G, we will generate the core of G and we will then extend
the core by adding trees and chains of trees to obtain G.

For the generation of the core, we work in the configuration model of Bender
and Canfield [1], Bollobás [4], and Wormald [23]. The correctness of our algorithm
follows from a careful analysis of unlabelled configurations in which all block sizes are
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at least 3. This analysis extends Bollobás’s analysis of unlabelled regular graphs [3].
Our algorithm rejects the generated core if it is not connected. The fact that this
does not happen too often follows from a result of Wormald [24]. After generating
the core of our random multigraph, we extend the core by adding trees and chains
of trees. This part of our algorithm is based on the generating function approach
mentioned earlier. An alternative approach, also based on generating functions, is to
use Pólya’s theorem. This approach was used to enumerate molecules with certain
specified “frames” (a frame is somewhat similar to a core) by Pólya and Read [16]
and others.

1.3. Outline of this paper. Section 2 sets up the machinery that we will use to
reduce the general multigraph problem to the problem in which the degree sequence
has no vertices of degree 1 or 2. Section 3 solves the problem when there are no
vertices of degree 1 or 2. Section 4 describes the tools that we will use to lift the
solution from section 3 to a solution for general degree sequences. Section 5 gives
our sampling algorithm and proves that it is correct. Section 6 extends our result to
the chemical problem—given a molecular formula, select, u.a.r., a structural isomer
having the given formula.

2. Cores and colored configurations. A d-rooted multigraph is a tuple G =
(V,E, r0, . . . , rd−1), in which V is the vertex set of G, E is the edge multiset of G,
and r0, . . . , rd−1 are distinct roots in V . Each element of E is an unordered pair
of vertices. The expression E(v, w) denotes the multiplicity of (v, w) in E. A cycle
of G is a (closed, simple) path from a vertex v to itself that uses each edge (x, y) at
most E(x, y) times. (If any edge is used twice then the path is in fact of length 2.)
We use the term rooted multigraph to refer to any d-rooted multigraph (for any d,
including d = 0), and we use the term multigraph to refer to any 0-rooted multigraph.
A rooted tree is a connected rooted multigraph (in fact a graph) with no cycles. The
definitions imply that a connected unicyclic multigraph is either a connected unicyclic
graph or a multigraph obtained from a tree by doubling one of its edges.

The degree of vertex v in a rooted multigraph G = (Vn, E) is

d(v) = 2E(v, v) +
∑

w∈V,w 6=v
E(v, w).

Let ∆ be any fixed constant. In this paper we will be concerned with rooted multi-
graphs whose vertices have degree at most ∆. The degree sequence of such a rooted
multigraph G is the sequence n = n0, . . . , n∆, where ni denotes the number of vertices
of G with degree i. The integers n0, . . . , n∆ are represented in unary, so the input
size of the degree sequence n = n0, . . . , n∆ is n = n0 + · · ·+n∆. (Similarly, the input
size of degree sequence n′ = n′0, . . . , n

′
∆ will be denoted n′ = n′0 + · · ·+ n′∆.) Let Vn

be the set {v1, . . . , vn}, and Gn the set containing
• every connected multigraph with degree sequence n and vertex set Vn that

has at least two cycles, and
• every 1-rooted connected tree with degree sequence n and vertex set Vn, and
• every 1-rooted connected unicyclic multigraph with degree sequence n and

vertex set Vn, in which the root is part of the cycle.
Two d-rooted multigraphs G = (V,E, r0, . . . , rd−1) and G′ = (V ′, E′, r′0, . . . , r

′
d−1)

are said to be isomorphic (written G ∼= G′) if there is a bijection π from V to V ′ such
that, for all unordered pairs (v, w) of vertices in V , E(v, w) = E′(π(v), π(w)), and
for all roots rj of G, π(rj) = r′j . Note that if V = V ′ then π can be viewed as a
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permutation of the vertices in V . Isomorphism induces an equivalence relation on Gn

and the equivalence classes are called isomorphism classes. We use the notation G̃n to
denote the set of isomorphism classes of Gn. If a rooted multigraph G is isomorphic
to some G′ ∈ Gn then we use the notation Ψ(G) to denote the isomorphism class

of G′. For any isomorphism class U ∈ G̃n we use the notation Ψ−1(U) to denote the
lexicographically least member of U .

We consider two nondeterministic transformations which may be applied to a
rooted multigraph G with vertex set V and edge multiset E. Similar transformations
were used by Zhan in [26].

T1: Choose a degree-1 vertex v other than the root of G. Remove v from V and
the edge containing v from E.

T2: If T1 cannot be applied to G, choose a degree-2 vertex v other than the root
of G such that for vertices w 6= v and x 6= v, (v, w) and (v, x) are in E.
(We allow w = x, but naturally insist that (v, w) and (v, x) are taken to be
distinct elements from the edge multiset.) Remove v from V . Remove (v, w)
and (v, x) from E and add (w, x) to E.

Note that the transformations T1 and T2 do not change the labels of vertices. A
rooted multigraph G ∈ Gn is irreducible if neither transformation T1 nor T2 can be
applied to it.

Observation 2.1. If G ∈ Gn and G can be transformed into G′ by T1 or T2 then,
for some n′ with n′ < n, Ψ(G′) ∈ G̃n′ .

Informally, Observation 2.1 says that the transformations T1 and T2 preserve the
properties of being connected and of having at least two cycles.

Observation 2.2. If G ∈ Gn and some sequence of T1 and T2 transform G
into G′, then the sequence is of length less than n.

We say that a degree sequence n is irreducible if any of the following applies, and
that it is degenerate if one of the first two possibilities applies.

1. n describes the single-vertex multigraph. That is, n0 = 1 and ni = 0 for
i 6= 0.

2. n describes the single-self-loop multigraph. That is, n2 = 1 and ni = 0 for
i 6= 2.

3. n describes multigraphs without low-degree vertices. That is, n0 = n1 =
n2 = 0 and ni > 0 for some i ∈ [3, . . . ,∆].

We say that a rooted multigraph is degenerate if its degree sequence is degenerate.

Observation 2.3. G ∈ Gn is irreducible iff its degree sequence is irreducible.

Lemma 2.4. If G ∈ Gn and G can be transformed into irreducible rooted multi-
graphs G1 and G2 using a sequence of transformations T1 and T2, then G1 = G2.

Proof. Suppose G has vertex set V and edge multiset E. We will show that
if G can be transformed into distinct rooted multigraphs G1 and G2 by a single
transformation, then there is a rooted multigraph G3 such that a (possibly empty)
sequence of transformations transforms G1 into G3 and another (possibly empty)
sequence of transformations transforms G2 into G3. Thus, the transformation process
is locally confluent [20]. As the process terminates in finite time (see Observation
2.2), it is confluent, which implies the result [20].

Suppose that T1 with choice v transforms G into G1 and T1 with choice w 6= v
transforms G into G2. Note that (v, w) 6∈ E (otherwise, either v or w would be the
root of G). Let G3 be the result of applying T1 to G1 with choice w. Then T1 with
choice v transforms G2 into G3.

Suppose that T2 with choice v transforms G into G1 and T2 with choice w 6= v
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transforms G into G2. Note that (v, w) does not appear twice in E (otherwise, either
v or w would be the root of G). Let G3 be the result of applying T2 to G1 with choice
w. Then T2 with choice v transforms G2 into G3.

Note that the proof of Lemma 2.4 would have failed if we had included unrooted
trees and unicyclic graphs in Gn. It is for this reason that the definition of Gn is
slightly more complicated that might be expected. As we observed in Observation 2.2,
a rooted multigraph G can only be transformed a finite number of times before an
irreducible rooted multigraph G′ is reached. G′ is called the core of G and is denoted
by Core (G). Core (G) is uniquely defined, by Lemma 2.4.

Lemma 2.5. If G1 and G2 are in Gn and π(G1) = G2, then π(Core (G1)) =
Core (G2).

Proof. Consider a sequence of transformations that transforms G1 into Core (G1).
Now apply this sequence of transformations to G2, but choose π(v) instead of v for
each vertex v that is chosen. Clearly, the result is Core (G2). Thus, v 6∈ Core (G1)
exactly when π(v) 6∈ Core (G2).

Lemma 2.5 implies that if G1
∼= G2, then Core (G1) ∼= Core (G2). (This prop-

erty was also used by Zhan [26].) We use the notation G̃n,n′ to denote the set

{U ∈ G̃n | Ψ(Core (Ψ−1(U))) ∈ G̃n′}; loosely, G̃n,n′ is the set of unlabelled connected
multigraphs with degree sequence n whose cores have degree sequence n′. We will
need the following definitions. Let B be an (infinite) set containing one representative
from each isomorphism class of the set of 1-rooted trees. A tree-chain with two roots is
constructed from any sequence T1, . . . , Tk of 1-rooted trees as follows: If the sequence
is empty, then the tree-chain consists of r0 and r1 and an edge between them. Oth-
erwise, the tree-chain graph is constructed as follows: Choose distinct labels for the
vertices of T1, . . . , Tk. Let r′1, . . . , r

′
k be the roots of T1, . . . , Tk. For i ∈ [1, . . . , k − 1],

add edge (r′i, r
′
i+1). Add the new roots r0 and r1 and edges (r0, r

′
1) and (r′k, r1). For

every tree-chain G, we use the notation R(G) to denote the tree-chain constructed
from G by swapping r0 and r1. Let P be a set containing one representative from
each isomorphism class of tree-chains. (Note that the two roots of a tree-chain are
distinguishable, and any isomorphism of tree-chains must respect this distinction.)

In the following definition of “coloring,” colors will encode information that is lost
while forming the core. We will use colorings to recover an original rooted multigraph
from its core. A coloring of a rooted multigraph G is a function λ that maps each
vertex in the vertex set of G to an element of B and each edge in the edge multiset
of G to an element of P.

We will describe a function Γ that maps each colored rooted multigraph (G,λ) to
an isomorphism class. Γ(G,λ) is constructed as follows, where V denotes the vertex
set of G and E denotes the edge multiset of G: Start with the collection of rooted
trees {λ(v) | v ∈ V } ∪ {λ(e) | e ∈ E}. Let the roots of the resulting forest be the
roots of those trees that correspond to the roots of G. For each edge (u,w) ∈ E with
u ≤ w, identify root r0 of λ(u,w) with the root of the tree λ(u) and root r1 of λ(u,w)
with the root of the tree λ(w). Relabel to avoid name clashes. Let Γ(G,λ) be the
isomorphism class of the resulting rooted multigraph.

Given a degree sequence n, let m = 1
2

∑
i i ni and let Bn be the lexicographically

least partition of the point set Rn = {1, . . . , 2m} into blocks (subsets) such that, for
each i, there are ni blocks of size i. A d-rooted configuration C with degree sequence n
[1, 4] is a tuple (Rn, Bn, P, r0, . . . , rd−1) where P is a partition of the points in Rn

into pairings, which are unordered pairs of points and r0, . . . , rd−1 are distinct blocks
(roots). We use the phrase configuration to mean a 0-rooted configuration and the
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phrase rooted configuration to mean a d-rooted configuration for any d (including
d = 0). We let Multigraph (C) denote the rooted multigraph obtained from C by
identifying the points in each block. We say that C is connected if Multigraph (C) is
connected. If n is degenerate, let Cn be the set containing the 1-rooted configuration
with degree sequence n. For all other irreducible degree sequences n, let Cn be the
set containing all connected unrooted configurations with degree sequence n.

A coloring of a rooted configuration C = (R,B, P ) is a function λ that maps each
block b ∈ B to an element of B and each pairing p ∈ P to an element of P. The
function Γ is defined in terms of the corresponding function for rooted multigraphs.
In particular, Γ(C, λ) is defined to be equal to Γ(Multigraph (C), λ). We use the

notation Cn,n′ to denote the set {(C, λ) | C ∈ Cn′ and Γ(C, λ) ∈ G̃n,n′}.
For degree sequence n′ let Kn′ denote the Kranz group [6] operating on the

points in Rn′ . Each permutation π in Kn′ is associated with a tuple (π0, . . . , π|Bn′ |)
where π0 is a permutation of blocks and πi for i > 0 is a permutation of the points
within block i. To apply π to Rn′ , one first permutes the blocks using π0, and then
permutes the points within block i (for each i) using πi. A rooted configuration
C1 = (Rn′ , Bn′ , P1, r0,1, . . . , rd−1,1) is said to be isomorphic to a rooted configuration
C2 = (Rn′ , Bn′ , P2, r0,2, . . . , rd−1,2) if there is a permutation π = (π0, . . . , π|Bn′ |) ∈
Kn′ such that for all pairings (u, v) ∈ P1 we have (π(u), π(v)) in P2 and for all
j ∈ [0, d− 1] we have π0(rj,1) = rj,2. The colored rooted configuration C ′1 = (C1, λ1)
is said to be isomorphic to the colored rooted configuration C ′2 = (C2, λ2) if there is an
isomorphism π = (π0, . . . , π|Bn′ |) between C1 and C2 such that for all blocks b ∈ Bn′ ,
λ1(b) = λ2(π0(b)) and for all pairings (u, v) ∈ P1, λ1(u, v) = λ2(π(u), π(v)). Note that
if (C1, λ1) ∼= (C2, λ2) and (C1, λ1) ∈ Cn,n′ , then (C2, λ2) ∈ Cn,n′ . We use the notation

C̃n,n′ to denote the set of isomorphism classes in Cn,n′ . The automorphism group of
rooted configuration C (denoted Aut(C)) is the group of isomorphisms between C
and itself. The colored automorphism group of rooted colored configuration (C, λ)
(denoted Aut(C, λ)) is the group of isomorphisms between (C, λ) and itself.

Lemma 2.6. If G ∈ Gn and C is a rooted configuration such that Multigraph (C) ∼=
Core (G), then there is a coloring λ such that Ψ(G) = Γ(C, λ).

Proof. The process of forming core Core (G) with vertex set V and edge multiset E
can be viewed as deleting a tree h(v) for each node v ∈ V and a tree-chain h(u, v)
for each edge (u, v) ∈ E. Suppose that π(Multigraph (C)) = Core (G). Let λ be a
coloring of Multigraph (C) defined by λ(v) = h(π(v)) and

λ(u, v) =

{
h(π(u), π(v)) if π(u) < π(v),
R(h(π(u), π(v))) otherwise,

where we assume the endpoints of the edge (u, v) are normalized so that u < v. Then
G ∈ Γ(Multigraph (C), λ) so G ∈ Γ(C, λ).

Lemma 2.7. Suppose that C1 and C2 are rooted configurations with irreducible
degree sequence n′. If Γ(C1, λ1) = Γ(C2, λ2), then (C1, λ1) ∼= (C2, λ2).

Proof. Let G1 be the multigraph obtained in the construction of Γ(C1, λ1). Make
sure that the relabelling that occurs in the construction of G1 does not change the
labels of the vertices of Multigraph (C1). Similarly, let G2 be the multigraph obtained
in the construction of Γ(C2, λ2) in which the labels of the vertices of Multigraph (C2)
are unchanged. Now, by the definition of Γ, Core (G1) = Multigraph (C1) and
Core (G2) = Multigraph (C2). Suppose that π(G1) = G2. Then π(Multigraph (C1)) =
Multigraph (C2), by Lemma 2.5. Thus, λ1(v) = λ2(π(v)) for any vertex v in the ver-
tex set of Multigraph (C1). Furthermore, for any unordered pair (u, v) of vertices,
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and any color `, the number of copies of (u, v) in the edge multiset of Multigraph (C1)
that are colored ` by λ1 is equal to the number of copies of (π(u), π(v)) in the edge
multiset of Multigraph (C2) that are colored ` by λ2. Hence, π can be extended to an
isomorphism mapping (C1, λ1) to (C2, λ2).

Corollary 2.8. There is a bijection between G̃n,n′ and C̃n,n′ .
Proof. The corollary follows from Lemmas 2.6 and 2.7.
Lemma 2.9. Each isomorphism class in C̃n,n′ comes up |Kn′ | times in

{(C, λ, π) | (C, λ) ∈ Cn,n′ and π ∈ Aut(C, λ)}.

Proof. This is a straightforward application of Burnside’s Lemma [6].

3. Sampling irreducible multigraphs. The goal of this section is a poly-
nomial-time algorithm that takes as input an irreducible degree sequence, n, and
samples, u.a.r., a pair (C, π), where C ∈ Cn is a rooted connected configuration with
degree sequence n, and π ∈ Kn is an automorphism of C. This is straightforward if
n is degenerate, so we focus on the nondegenerate case in which n0 = n1 = n2 = 0
and ni > 0 for some i ∈ [3, . . . ,∆]. In this case, Cn is the set of connected unrooted
configurations with degree sequence n. (The configurations are unrooted because
every connected multigraph in which each vertex has degree at least 3 has more than
one cycle.) Thus, our goal is equivalent to generating, u.a.r., an unlabelled connected
multigraph (possibly with self-loops) with degree sequence n. So we obtain a solution
to our basic problem in the special case in which all vertex degrees are at least 3. The
techniques described in section 2 provide a reduction from the case of general degrees
sequences to the restricted ones considered here, as we shall see in section 5.

Our approach borrows freely from Bollobás’s treatment of unlabelled regular
graphs [3], though we find it more convenient to work throughout with configura-
tions in place of (multi)graphs. Recall that 2m =

∑
i ini. We say that a triple

(s, s2, s3) of nonnegative integers is legal if 2s2 + 3s3 ≤ s ≤ 2m. For every legal triple
(s, s2, s3), let Kn(s, s2, s3) denote the set of permutations in Kn that contain exactly
s2 transpositions, s3 3-cycles, and move exactly s points in all. For convenience,
we introduce s4 = (s − 2s2 − 3s3)/4; note that s4 is not necessarily an integer. Of
course, only three of the four parameters need to be specified in any situation, but
the freedom to move between different triples according to context is convenient.

To generate the pair (C, π) we first select a legal triple (s, s2, s3), then a permuta-
tion π = Kn(s, s2, s3), and finally a configuration C ∈ Fixπ, where Fixπ denotes the
set of configurations with degree sequence n that are fixed by π. In the unlikely event
that C is not connected, we return ⊥ (see Figure 1 and Theorem 3.3). (Informally,
we say that the algorithm “rejects” if ⊥ is returned, and that it “accepts” otherwise.)
For every legal triple (s, s2, s3), define

Fn(s, s2, s3) =

⌈
4× (2m)!

m! 2m
×
(

6s2

m2

)s2/2(3s3

m3

)s3/2(21s4

m4

)s4/2⌉
.(1)

The significance of Fn(s, s2, s3), as we shall see presently, is that it is a uniform upper
bound on |Fixπ| over all π ∈ Kn(s, s2, s3). Note that in (1), and throughout the
proof of Lemma 3.1 below, we shall encounter expressions such as(

6s2

m2

)s2/2
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that are formally undefined when s2 (or s3 or s4 or s) is equal to 0. The intended
meaning is the limit as the variable in question (here s2) tends to 0 from above. In
all cases the upshot is that the factor concerned is 1 when the variable is 0. Note that
Fn(s, s2, s3) is the square-root of a rational number, rounded up, and hence can be
computed exactly in polynomial time. Define

Wn(s, s2, s3) = |Kn(s, s2, s3)| × Fn(s, s2, s3),(2)

and let

Wn =
∑
s,s2,s3

Wn(s, s2, s3),(3)

where the sum is over all legal triples (s, s2, s3). Observe that Wn is a bound on the
size of the set of pairs (C, π) we wish to sample from.

The proposed sampling procedure is conceptually very simple and is presented in
Figure 1 towards the end of this section. Its analysis rests on the following technical
lemma.

Lemma 3.1. With Fn(s, s2, s3), Wn(s, s2, s3), and Wn defined as above,
1. |Fix()| = 1

4Fn(0, 0, 0), where () denotes the identity permutation in Kn;
2. |Fixπ| ≤ Fn(s, s2, s3), for all π ∈ Kn(s, s2, s3);
3. Wn ≤ AWn(0, 0, 0), where A depends only on ∆.

Proof. The total number of configurations with degree sequence n is equal to the
number of ways of choosing m pairings in a set of size 2m. All configurations are fixed
by the identity permutation, so we have

|Fix()| = (2m− 1)(2m− 3) · · · 3 · 1 =
(2m)!

m! 2m
.

Comparing the above expression with the definition of Fn(s, s2, s3) already gives us
part 1 of the lemma.

An asymptotic expression for the number of configurations can be obtained using
the usual Stirling’s approximation. For our purposes, it is convenient to have abso-
lute upper and lower bounds, which can be obtained using a more refined version of
Stirling’s approximation due to Robbins [19] (or see [5, p. 4]):(

2m

e

)m
≤ (2m)!

m! 2m
≤
√

2

(
2m

e

)m
.(4)

While we are on the subject of Stirling’s formula, let us note for future reference the
following slight strengthening of a familiar bound on binomial coefficients:

t∑
i=0

(
n

i

)
≤
(

en

t

)t
.(5)

To verify this inequality, first observe that the right-hand side is monotonically in-
creasing (viewed as a real function) for t ∈ (0, 1) and is greater than 2n for t ≥ n/3. In
the case t < n/3, the ratio between successive terms on the left-hand side exceeds 2,
so the sum is bounded by the sum of a geometric series with common ratio 1/2. Thus

t∑
i=0

(
n

i

)
≤ 2

(
n

t

)
≤ 2nt

t!
≤ nt

(
e

t

)t
,
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again using a sufficiently strong form of Stirling’s approximation.
Consider C ∈ Fixπ, with π ∈ Kn(s, s2, s3). Each point in a 3-cycle of π must be

paired with a point in a different 3-cycle, and the other two pairings of C incident at
the first cycle are then forced. Thus |Fixπ| = 0 unless s3 is even, in which case C
induces a set of “higher level pairings” on the 3-cycles of π. Given these higher level
pairings, there are 3s3/2 ways to choose the pairings themselves. In all there are

s3! 3s3/2

(s3/2)! 2s3/2
≤
√

2

(
3s3

e

)s3/2
ways to choose the restriction of C to the 3-cycles of π. For transpositions, the
calculation is similar, except we must now allow for the pairing to join the two points
in a single transposition. But this new freedom can only blow up the number of
choices by (crudely) a factor 2s2 , so that there are at most

√
2

(
8s2

e

)s2/2
ways to choose the restriction of C to the transpositions of π. An optimization over
the distribution of cycle lengths greater than 3 confirms that the number of ways of
choosing the restriction of C to those cycles is at most

√
2

(
16s4

e

)s4/2
,

the bound we would obtain by assuming all the remaining cycles have length exactly 4.
The number of ways of extending C to the fixed points of π is clearly bounded by

√
2

(
2m

e

)(2m−s)/2
≤
√

2× (2m)!

m! 2m
×
(

2m

e

)−s/2
,

where we have used the other part of inequality (4). Multiplying these four bounds
together, recalling s = 2s2 + 3s3 + 4s4, yields the following upper bound on |Fixπ|:

|Fixπ| ≤ 4× (2m)!

m! 2m
×
(

2es2

m2

)s2/2(3e2s3

8m3

)s3/2(e3s4

m4

)s4/2
;

comparing this expression with (1) defining Fn(s, s2, s3) gives us the second part of
Lemma 3.1.

For the third part, we introduce a more refined partitioning of the group Kn

according to cycle structure. For each cycle of a permutation π ∈ Kn, we distinguish
whether the cycle touches more than one block of Rn (type 1), or whether its action is
entirely confined to a single block (type 2). We write, for example, s2 = s′2 +s′′2 , where
s′2 is the number of type 1 transpositions and s′′2 the number of type 2 transpositions.
The prime and double prime convention is applied consistently, so that we write
s = s′+s′′, where s′ is the total number of points contained in all type 1 cycles and s′′

the number in all type 2 cycles. Naturally, s′4 and s′′4 are defined by s′ = 2s′2+3s′3+4s′4
and s′′ = 2s′′2 + 3s′′3 + 4s′′4 . Denote by

Kn(s, s′2, s
′
3; s′′, s′′2 , s

′′
3) ⊆ Kn(s′ + s′′, s′2 + s′′2 , s

′
3 + s′′3)
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the set of permutations with s′2 type 1 transpositions, s′′2 type 2 transpositions, and
so on.

The strategy for establishing the final part of the lemma is to (i) compute an upper
bound on |Kn(s′, s′2, s

′
3; s′′, s′′2 , s

′′
3)|, (ii) optimize over the feasible region to obtain an

upper bound on |Kn(s, s2, s3)| and hence on Wn(s, s2, s3), and (iii) sum over feasible
s, s2, s3 to obtain an upper bound on Wn. Our upper bound for (i) will be of the form
κ′(s′2, s

′
3, s
′
4) × κ′′(s′′2 , s′′3 , s′′4), where κ′ and κ′′ are bounds on the number of ways of

choosing the type 1 cycles and type 2 cycles, respectively. The latter is more tractable,
so we deal with it first.

Let π ∈ Kn(s′, s′2, s
′
3; s′′, s′′2 , s

′′
3). The number of ways of choosing the i ≤ s′′2

blocks containing the s′′2 type 2 transpositions in π is at most

s′′2∑
i=0

(
n

i

)
≤
(

en

s′′2

)s′′2
,

using inequality (5), and so the total number of ways of choosing the transpositions
themselves is at most (

ecn

s′′2

)s′′2
,

where c = ∆!. Similar bounds hold for the longer cycles, yielding an overall bound of

κ′′(s′′2 , s
′′
3 , s
′′
4) =

(
ecn

s′′2

)s′′2(ecn

s′′3

)s′′3(ecn

s′′4

)s′′4
(6)

on the number of ways of choosing all the type 2 cycles.
We now consider the type 1 cycles of π. Denote by B = B(s′, s′2, s

′
3) the set of

integer triples (b, b2, b3) satisfying

b2, b3 ≥ 0, 2b2 + 3b3 ≤ b, 3b+ [2s′2 − 6b2] + [3s′3 − 9b3] ≤ s′,(7)

where [x] = max{x, 0}. The intended interpretation of (b, b2, b3) is as follows: b is the
total number of blocks moved by π, b2 is the number of transpositions of blocks induced
by π, and b3 is the number of 3-cycles on blocks induced by π. The significance of B
is that it contains, as we shall demonstrate, all feasible choices for (b, b2, b3) consistent
with (s′, s′2, s

′
3).

Only the final inequality of (7) requires explanation. The weaker inequality 3b ≤
s′ is easy enough to justify, as each block contains at least 3 points, so we just have
to account for the other two terms. If a block contains p ≥ 4 points, regard p − 3
of the points as constituting an “excess.” All s′2 type 1 transpositions in π must be
contained within the 2b2 blocks that are transposed by π. If 2s′2 > 6b2, then 2s′2−6b2
points in type 1 cycles must be in the excess. Similarly, if 3s′3 > 9b3, then 3s′3 − 9b3
further points in type 1 cycles must be in the excess. This justifies the final inequality
in (7).

Applying a crude bound on the number of ways of choosing the type 1 cycles,
given (b, b2, b3), we have

∑
(b,b2,b3)∈B

(cn)b

b2! b3!
≤ (s′ + 1)3 max

{
(cn)b

b2! b3!
: (b, b2, b3) ∈ B

}
(8)
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as a bound on the number of ways of choosing the type 1 cycles. The right-hand
side of (8) presents a small optimization problem. We claim that at the maximum,
b2 ≥ bs′2/3c (otherwise b2 ← b2 + 1 and b ← b + 2 leads to an improvement), and
b3 ≥ bs′3/3c (otherwise b3 ← b3 + 1 and b← b+ 3 does), and in any case b ≤ s′/3. So,
from (8), and using the lower bound b! ≥ (b/e)b, the number of ways of choosing the
type 1 cycles is at most κ′(s′2, s

′
3, s
′
4), where

κ′(s′2, s
′
3, s
′
4) = (s′ + 1)5(cn)s

′/3
(

3e

s′2

)s′2/3(3e

s′3

)s′3/3
(9)

= (s′ + 1)5

(
3ec2n2

s′2

)s′2/3(3ec3n3

s′3

)s′3/3
(cn)4s′4/3.(10)

The extra factor (s′+1)2 in (9) takes account of the floor functions. Our upper bound
for |Kn(s′, s′2, s

′
3; s′′, s′′2 , s

′′
3)| is thus

|Kn(s′, s′2, s
′
3; s′′, s′′2 , s

′′
3)| ≤ κ′(s′2, s′3, s′4)× κ′′(s′′2 , s′′3 , s′′4),

where κ′(s′2, s
′
3, s
′
4) and κ′′(s′′2 , s

′′
3 , s
′′
4) are as defined in (6) and (10).

The next stage is to bound |Kn(s, s2, s3)|. Clearly we have

|Kn(s, s2, s3)| ≤
∑
S

κ′(s′2, s
′
3, s
′
4)× κ′′(s′′2 , s′′3 , s′′4)

≤ (s+ 1)3 max
S

{
κ′(s′2, s

′
3, s
′
4)× κ′′(s′′2 , s′′3 , s′′4)

}
,(11)

where S is the region

S =
{

(s′2, s
′
3, s
′
4, s
′′
2 , s
′′
3 , s
′′
4) ∈ (R+)6 :

s′2 + s′′2 = s2, s
′
3 + s′′3 = s3, and s′4 + s′′4 = s4

}
.

If we bound the (s′ + 1)5 factor in κ′ simply by (s+ 1)5, then the factors in s′2, s
′′
2 , in

s′3, s
′′
3 , and in s′4, s

′′
4 appearing in the objective function of (11) separate out, and we

can optimize over each pair separately.
• The s4 factor is

(cn)4s′4/3
(
cen

s′′4

)s′′4
≤ (cn)4s4/3,(12)

since the maximum is achieved at s′4 = s4 and s′′4 = 0.
• The s3 factor is(

3ec3n3

s′3

)s′3/3(e3c3n3

(s′′3)3

)s′′3 /3
≤ 2

(
e3c3n3

s′3

)s′3/3(e3c3n3

s′′3

)s′′3 /3
(13)

≤ 2

(
2e3c3n3

s3

)s3/3
.(14)

Inequality (13) uses the fact that x−x ≤ 2x−x/3 for all positive x, and in-
equality (14) follows from symmetry and unimodality.
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• The s2 factor is(
3ec2n2

s′2

)s′2/3(e3c3n3

(s′′2)3

)s′′2 /3
≤ 2

(
e3c3n3

(s′2)2

)s′2/3(e3c3n3

(s′′2)2

)s′′3 /3
≤ 2

(
4e3c3n3

s2
2

)s2/3
,(15)

by similar considerations to the previous case.
Plugging (12), (14), and (15) into (11) gives

|Kn(s, s2, s3)| ≤ 4(s+ 1)8

(
4e3c3n3

s2
2

)s2/3(2e3c3n3

s3

)s3/3
(cn)4s4/3,

which, on recalling the definitions (1) and (2) of Fn(s, s2, s3) andWn(s, s2, s3), leads to

Wn(s, s2, s3) ≤ 32(s+ 1)8 × (2m)!

m! 2m
×
(
c2
s2

)s2/6(c3s3

n3

)s3/6(c4s3
4

n4

)s4/6
,(16)

where c2, c3, and c4 are constants depending only on c and hence only on ∆. (The
multiplicative factor has been boosted from 16 to 32 to allow for the ceiling function
in the definition of Fn(s, s2, s3).)

To finish off the proof of the final part of Lemma 3.1, we merely need to sum (16)
over all legal triples (s, s2, s3):

Wn =
∑
s,s2,s3

Wn(s, s2, s3)

≤ 32× (2m)!

m! 2m
×
∑
s2

(
c2
s2

)s2/6 ∑
s3,s4

(2s2 + 3s3 + 4s4 + 1)8

(
c3∆

3n2

)s3/6(c4∆3

64n

)s4/6

≈ 32× (2m)!

m! 2m
×
∑
s2

(
c2
s2

)s2/6
(2s2 + 1)8

≈ 4c′ × (2m)!

m! 2m
= c′Wn(0, 0, 0),

where c′ depends only on c2, hence only on ∆.
Lemma 3.2. There is a polynomial-time algorithm for computing |Kn(s, s2, s3)|,

and hence for computing Wn(s, s2, s3) and Wn. There is also a polynomial-time al-
gorithm for sampling, u.a.r., a permutation from Kn(s, s2, s3).

Proof. By partitioning |Kn(s, s2, s3)|, first according to the length of the first
induced cycle on blocks, and then on the exact pattern of cycles within those blocks
(at most ∆! possibilities), we obtain an inductive formula for |Kn(s, s2, s3)|. Only
polynomially many distinct assignments to the parameters n, s, s2, and s3 arise
during the induction, so |Kn(s, s2, s3)| can be computed in time polynomial in n by
dynamic programming.

Theorem 3.3. The procedure ConfigSample presented in Figure 1 is correct:
(a) the probability that the algorithm returns a value other than ⊥ is bounded away
from 0; (b) for any configuration C ∈ Cn with degree sequence n, and any automor-
phism π ∈ Aut(C) of C, the probability that the pair (C, π) is returned by Config-
Sample is a constant, namely W−1

n , independent of C and π; and (c) the procedure
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Step 1. If n is degenerate, let C be the sole member of Cn, choose
π ∈ Aut(C) u.a.r., and output (C, π). Otherwise, perform Steps
2–6.

Step 2. Choose the triple (s, s2, s3) with probability
Wn(s, s2, s3)/Wn.

Step 3. Choose π ∈ Kn(s, s2, s3), u.a.r.
Step 4. Choose C ∈ Fixπ, u.a.r.
Step 5. If C is not connected, output ⊥ and halt.
Step 6. With probability |Fixπ|/Fn(s, s2, s3) output (C, π); other-

wise output ⊥.

Fig. 1. Procedure ConfigSample for sampling a pair (C, π).

ConfigSample runs in time polynomial in n, provided the maximum degree ∆ is
bounded. Indeed, we have the following strengthening of the first part: (d) the proba-
bility that a pair with π = () is returned is bounded away from 0.

Proof. By the second part of Lemma 3.1, the acceptance probability in Step 6 is
well defined. By the third part of Lemma 3.1, the particular triple (0, 0, 0) is selected
in Step 2 with probability at least A−1, which is bounded away from 0. This forces
the identity permutation to be selected in Step 3. In this case, the probability of
acceptance in Step 5 is bounded away from 0. By Bollobás (see [5, page 48] and
Bender and Canfield [1], the probability that a random configuration with degree
sequence n corresponds to a simple graph is bounded away from 0. Each simple
graph corresponds to an equal number of configurations, and by Wormald [24], the
probability that a simple graph with degree sequence n is connected is bounded away
from 0.) By the first part of Lemma 3.1, we know that the pair (C, ()) survives Step 6
with probability 1

4 . This deals with (a) and its strengthening (d).
Now consider an arbitrary pair (C, π) satisfying C ∈ Fixπ, and suppose π ∈

Kn(s, s2, s3). For (C, π) to be generated, a certain well defined event must occur at
each step of the algorithm. The probability that (C, π) is generated is simply the
product of these four probabilities:

Wn(s, s2, s3)

Wn
× 1

|Kn(s, s2, s3)| ×
1

Fixπ
× Fixπ

Fn(s, s2, s3)
=

1

Wn
,

which is clearly independent of C and π, as asserted in (b).
According to Lemma 3.2 the procedure can be implemented to run in polynomial

time.

4. Sampling unlabelled trees. The previous section showed how to sample,
u.a.r., an unlabelled connected multigraph with a specified irreducible nondegenerate
degree sequence. In section 5 we will show how to sample, u.a.r., an unlabelled con-
nected multigraph with any specified degree sequence n. Our basic strategy will be to
select an irreducible degree sequence n′ such that n′ ≤ n with the “appropriate” prob-
ability, sample u.a.r. an unlabelled connected multigraph G′ with degree sequence n′,
and finally color G′ to obtain a multigraph G with degree sequence n. (G′ will be the
core of G as defined in section 2.) Instead of constructing G′ directly, we will select
a pair (C ′, π) as described in section 3 such that C ′ ∈ Cn′ and π ∈ Aut(C ′). Then we

will choose a coloring λ such that Γ(C ′, λ) ∈ G̃n. The process of choosing n′ and λ
involves counting and sampling unlabelled rooted trees. We provide the relevant tree
results in this section.
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The basic framework in which we will work is as follows: We will consider “struc-
tures” (trees with one or more root), each of which has a “weight” (a (∆ + 2)-tuple
of integers). The weight of a d-rooted n-vertex tree G (which is denoted µ(G)) is the
tuple (n− d, i0, . . . , i∆), where ir is the number of vertices of degree r, excluding the
roots. We let T1 denote the 1-rooted tree consisting of a single vertex and T2 denote
the 2-rooted tree consisting of a single edge. We define the following operations on
trees. If G is a 1-rooted tree, we let [d]G denote the 1-rooted tree obtained by taking
d copies of G, identifying the roots of the d copies, and then relabelling the remaining
vertices of trees 2, . . . , d to avoid name clashes. If G and G′ are 1-rooted trees, we
let G×G′ denote the tree obtained by identifying their roots and relabelling the re-
maining vertices of G′ to avoid name clashes. If G is a tree-chain and G′ is a 1-rooted
tree then we let G ∗ G′ denote the tree-chain constructed from G and G′ as follows.
Root r1 of G is disconnected from its neighbor, v, in G, and is connected to the root
of G′. The root of G′ is connected to v. The vertices in G′ are then relabelled to
avoid name clashes. If G is a d-rooted tree and G′ is a d′-rooted tree, we let G+G′ be
the (d + d′)-rooted tree obtained by relabelling the vertices and roots of G′ to avoid
name clashes.

Following Flajolet, Zimmerman, and Van Cutsem [11], we form sets of structures
inductively from {T1} and {T2} using the following constructors.

• S + S′: The disjoint union of S and S′.
• For d > 1, [d]S: {[d]G | G ∈ S}.
• S × S′: {G×G′ | G ∈ S,G′ ∈ S′}.
• If all structures in S′ have a single root of a given degree, S ∗ S′: {G ∗G′ |
G ∈ S,G′ ∈ S′}.
• S · S′: {G+G′ | G ∈ S,G′ ∈ S′}.

The constructors + and · are from [11], which also considers other constructors. We
use the notation m · S as an abbreviation for the disjoint union of m copies of S,
S+ · · ·+S, and we use the notation Sm as an abbreviation for the Cartesian product
of m copies of S, S · · ·S.

A specification of sets S0, . . . , Sr (which is sometimes referred to as a specification
of Sr) is defined to be a sequence of equations

m0 · S0 = Ψ0() , m1 · S1 = Ψ1(S0) , . . . , mr · Sr = Ψr(S0, . . . , Sr−1) ,

where m0, . . . ,mr are positive integers and, for i ∈ [0, . . . , r], Ψi is a term built
from {T1}, {T2}, and S0, . . . , Si−1 using the constructors. An `-specification is a
specification using ` constructors.1 For every set S of structures, we use the notation
S(i0, . . . , ij) to denote the set

{s ∈ S | for some ij+1, . . . , i∆+1, µ(s) = (i0, . . . , i∆+1)}.

The generating function for the set S is a function s(x0, . . . , x∆+1) such that the

coefficient of xi00 · · ·xi∆+1

∆+1 in s(x0, . . . , x∆+1), which is denoted

[xi00 · · ·xi∆+1

∆+1 ] s(x0, . . . , x∆+1),

is equal to |S(i0, . . . , i∆+1)|. The following is a straightforward extension of the results
of Flajolet, Zimmerman, and Van Cutsem [11].

1For this, we count the constructor [d] in [d]S as d constructors.
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Theorem 4.1. Given an `-specification for sets S0, . . . , Sr, a set of equations
for the corresponding generating functions is obtained automatically by the following
translation rules:

m · S = S′ + S′′ ⇒ s(x0, . . . , x∆+1) = (1/m)(s′(x0, . . . , x∆+1) + s′′(x0, . . . , x∆+1));
m · S = [d]S′ ⇒ s(x0, . . . , x∆+1) = (1/m)s′(xd0, . . . , x

d
∆+1);

m · S = S′ × S′′ ⇒ s(x0, . . . , x∆+1) = (1/m)(s′(x0, . . . , x∆+1) · s′′(x0, . . . , x∆+1));
m · S = S′ ∗ S′′ ⇒ s(x0, . . . , x∆+1) =

(xr+2/m)(s′(x0, . . . , x∆+1)× s′′(x0, . . . , x∆+1)),
where r is the degree of the roots of the structures in S′′;

m · S = S′ · S′′ ⇒ s(x0, . . . , x∆+1) = (1/m)(s′(x0, . . . , x∆+1)× s′′(x0, . . . , x∆+1)).

Furthermore, there is a polynomial p such that all coefficients

[x
i′0
0 . . . x

i′∆+1

∆+1 ]Sj(x0, . . . , x∆+1)

for which j ∈ [0, . . . , r] and every i′γ is at most iγ can be computed in at most
p(i0, . . . , i∆+1, r, `) steps and a member of Sj(i0, . . . , i∆+1) can be sampled u.a.r. in
p(i0, . . . , i∆+1, r, `) steps.

Proof. The coefficients of S0, . . . , Sr can be computed in order and stored in a
table. Sampling u.a.r. from Sj(i0, . . . , i∆+1) is accomplished as follows. If m · Sj =
{T1} or m ·Sj = {T2}, this is straightforward. If m ·Sj = Sa +Sb, sample u.a.r. from
Sa(i0, . . . , i∆+1) with probability

|Sa(i0, . . . , i∆+1)|/|Sj(i0, . . . , i∆+1)|,
and from Sb(i0, . . . , i∆+1) with the remaining probability. If m·Sj = [d]Sa, then recur-
sively sample from Sa(i0/d, . . . , i∆+1/d) and make d copies of the resulting structure.
If m · Sj = Sc × Sd, evaluate

Ni′ = |Sc(i′0, . . . , i′∆+1)| × |Sd(i0 − i′0, . . . , i∆+1 − i′∆+1)|
for all tuples i′ = (i′0, . . . , i

′
∆+1) (other than i′ = (0, . . . , 0) and i′ = (i0, . . . , i∆+1))

in which every i′γ satisfies 0 ≤ i′γ ≤ iγ . Choose i′ with probability Ni′/
∑

j′ Nj′ .
Recursively sample structures from Sc(i

′
0, . . . , i

′
∆+1) and Sd(i0 − i′0, . . . , i∆+1 − i′∆+1)

and combine the structures. The cases in which m · Sj = Sc ∗ Sd and m · Sj = Sc · Sd
are handled similarly, except that in the case m · Sj = Sc ∗ Sd we replace ir+2 with
ir+2 − 1.

We will now use the above framework to show how to count and sample unlabelled
rooted trees. Let Sr be the set containing one representative from each isomorphism
class in the set of 1-rooted trees with degree-r roots. We will first give a sequence
of equations to define the sets Sr(n) in terms of the constructors and we will then
argue that the definition is a specification (that is, the equations can be ordered in
such a way that each equation depends only on sets previously defined). The set of
equations is adapted from Nijenhuis and Wilf [15]. First, note that S0(0) = {T1} and
S0(n) = ∅ for n 6= 0. Furthermore, Sr(0) = ∅ for r 6= 0. For n > 0, we have

S1(n) =
∑

0≤r≤∆−1
i0+···+i∆=n−1

Sr(n− 1, i0, . . . , ir, ir+1 − 1, ir+2, . . . , i∆), and

n · Sr(n) =
∑

1≤s≤r
1≤sd≤n

d · ([s]S1(d+ 1)× Sr−s(n− sd)) for r > 1.
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The first equation expresses the correspondence between n+1-vertex trees rooted
at a vertex of degree 1 and n-vertex trees with unrestricted root degree. The second
equation expresses a construction for trees which has the property that each unlabelled
n+ 1-vertex tree is represented n times: choose numbers s, d satisfying 1 ≤ s ≤ r and
1 ≤ sd ≤ n; choose a tree τ ′ with n + 1 − sd vertices, rooted at a vertex of degree
r − s, and a tree τ ′′ with d + 1 vertices rooted at a vertex of degree 1; take s copies
of τ ′ and one copy of τ ′′ and identify all the roots (the identified vertices constitute
the new root). Make d copies of the resulting rooted tree. Nijenhuis and Wilf [15,
p. 274] give a combinatorial proof of the equation by establishing an explicit bijection
between the figures enumerated by the left and right sides.

To see that the sequence of equations given is a specification, consider a 2-
dimensional table. The first r + 1 entries of column n correspond to sets S0(n), . . . ,
Sr(n) (in the given order). The remaining entries correspond to the sets [s]S1(n/s+1),
where s > 1 divides n. Note that the equation corresponding to each table entry only
uses sets corresponding to smaller rows or columns of the table. Thus, we have a
specification for the sets Sr(n).

As we described in the beginning of this section, our algorithm in section 5 will
sample u.a.r. a coloring λ of a configuration C = (Rn′ , Bn′ , P ) such that Γ(C, λ) ∈ G̃n.
Recall that a coloring λ of C is a mapping from Bn′ to B (the set of block-colors),
and from P to P (the set of pairing-colors). The blocks in Bn′ are ordered and the
pairings in P can be ordered according to the ordering of the blocks, so a coloring may
be specified as a sequence of n′ block-colors followed by a sequence of m′ = 1

2

∑
i in
′
i

pairing colors. Thus, the set of available colorings depends only on n and n′. Let
Λn,n′ denote the set of available colorings. Given the specification for the set Sr(n),
we can derive specifications for B, P, and therefore, Λn,n′ . We start by observing
that B = S0 + · · · + S∆. Let P` denote the set containing one representative from
each isomorphism class of length-` tree-chains (thus, P = P0 + P1 + P2 + · · ·). A
specification for P is as follows:

P0 = {T2},
P` = (P`−1 ∗ S0) + · · ·+ (P`−1 ∗ S∆−2).

Let Ln′,r0,...,rn′ denote the set of colorings of a configuration with degree se-
quence n′ in which the block-coloring for the ith block is a tree whose root has
degree ri. Then the set Ln′,r0,...,rn′ can be specified using the equation

Ln′,r0,...,rn′ = Pm′ · Sr0 · · ·Srn′ .

Finally, note that Λn,n′ is the disjoint union, over all (polynomially many) choices of
r0, . . . , rn′ of Ln′,r0,...,rn′ (n− n′′, n0 − n′′0 , . . . , n∆ − n′′∆), where

n′′i =
∣∣{j : 1 ≤ j ≤ n′ and vj + rj = i

}∣∣,
where vi denotes the size of the ith block in Bn′ .

Thus, we have a specification for Λn,n′ . While some of the sets used in the
specification such as P and S0, . . . , S∆ are infinite, these sets are made up by taking the
disjoint union of finite subsets. Accordingly, there is a polynomial-sized specification
for Λn,n′ and the following is a corollary of Theorem 4.1.

Corollary 4.2. There is a polynomial p such that computing |Λn,n′ | and sam-
pling u.a.r. from Λn,n′ take at most p(n) steps.
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Step 1. Select a degree sequence n′ such that n′ ≤ n according to
the probability distribution pn.

Step 2. Select a pair (C, π) using the procedure ConfigSample
developed in section 3 (see Figure 1), with parameter n′. If
that procedure returns ⊥, then output ⊥ and halt; otherwise
the result is a pair selected u.a.r. from the set of pairs (C, π),
with C ∈ Cn′ and π ∈ Aut(C).

Step 3. Select a coloring λ u.a.r. from Λn,n′ .
Step 4. If π ∈ Aut(C, λ) then let G be any rooted multigraph in

Γ(C, λ); otherwise output ⊥ and halt.
Step 5. If G has at least two cycles then output Ψ(G). Otherwise,

let k be the number of nonisomorphic 1-rooted multigraphs with
the same vertex and edge set as G. (The choice of root is arbi-
trary in the case of trees, but must be on the cycle in the case
of unicyclic multigraphs.) With probability k−1 output Ψ(G);
otherwise output ⊥.

Fig. 2. Procedure MultiSample for sampling u.a.r. from H̃n.

5. Sampling unlabelled multigraphs. Let Hn be the set of connected multi-
graphs with degree sequence n and vertex set Vn and let H̃n be the set of isomorphism
classes of Hn. In this section, we will describe a procedure MultiSample that sam-
ples u.a.r. from H̃n. The procedure will first (see Steps 1–4 of Figure 2) sample u.a.r.

from G̃n and will then use rejection to obtain a uniform distribution on H̃n.
All the components of MultiSample are now ready: section 2 introduced the

machinery that we will use to reduce the general problem to the special case in which
n is irreducible, section 3 solved the irreducible case, and section 4 described the tools
that we will use to lift the solution for the irreducible case up to a solution for general
degree sequences. It remains only to assemble the pieces.

Given a degree sequence n, let the probability distribution pn assign probability

pn(n′) =
Wn′ |Λn,n′ |
M |Kn′ |(17)

to irreducible degree sequences satisfying n′ ≤ n, and zero probability to the others.
Here,

M =
∑
n′

Wn′ |Λn,n′ |
|Kn′ |

is the normalizing factor required to form a probability distribution. (The sum is
over irreducible degree sequences n′ such that n′ ≤ n. The fact that this is the right
summation follows from Observation 2.3.) The significance of pn is that it is the
“correct” distribution from which to sample the degree sequence of the core. This is
the final ingredient in the sampling procedure MultiSample, which is presented in
Figure 2.

Lemma 5.1. The procedure MultiSample presented in Figure 2 is correct:
(a) the probability that the algorithm produces an output other than ⊥ is Ω(n−1);

(b) for each isomorphism class U ∈ H̃n, the probability that U is returned by Multi-
Sample is a constant, namely M−1, independent of U ; and (c) the procedure Multi-
Sample runs in time polynomial in n, assuming the maximum degree ∆ is bounded.
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Proof. The procedure successfully completes Step 2 precisely if some value other
than ⊥ is returned by procedure ConfigSample; the probability of this event is
bounded away from 0, by part (a) of Theorem 3.3. Indeed, part (d) of that theorem
tells us more: namely that the automorphism π ∈ Aut(C) returned by Config-
Sample is the identity with probability bounded away from 0. But if π = (), Step 4
is guaranteed to be successful. The probability that Step 5 is successful is at least 1/n.
This completes the proof of (a).

We now proceed to compute the probability that a certain isomorphism class U ∈
H̃n appears as output. We start by showing that, after Step 4, the probability that
G is in any given class in G̃n is M−1. Let U be a class in G̃n. By Lemma 2.4, U has a
uniquely defined core with degree sequence n′, say. By Lemma 2.7, a condition for U to
be returned in Step 4 is that the degree sequence n′ is selected in Step 1, an event which
occurs with the probability pn(n′), given in (17). Now fix attention on a particular
triple (C, π, λ), satisfying C ∈ Cn′ and π ∈ Aut(C, λ). By Theorem 3.3, the probability
that (C, π, λ) is selected in Steps 2 and 3, conditioned on the particular choice of
degree sequence n′, is (Wn′ |Λn,n′ |)−1. By Corollary 2.8 and Lemma 2.9, exactly
|Kn′ | of these triples correspond to the desired output U . Thus, again conditioned on
the choice of n′, the probability that U is returned is

|Kn′ |
Wn′ |Λn,n′ | .

Multiplying this expression by the probability (17) that degree sequence n′ is selected
in Step 1, we see that the overall probability that U is returned at the end of Step 4
is a constant, in fact M−1. If U ∈ H̃n has at least 2 cycles, it comes up once in G̃n.
Otherwise, it appears k times in G̃n, where k is as in Figure 2. By accepting U only
with probability k−1, the output distribution after Step 5 is uniform on H̃n.

Step 1 is polynomial time by Lemma 3.2 and Corollary 4.2; Step 2 is polynomial
time by Theorem 3.3; and Step 3 by Corollary 4.2. Step 4 is clearly polynomial
time. Step 5 is reducible to isomorphism of 1-rooted trees, which can conveniently be
decided by a recursive canonical labelling scheme: if the root is the only vertex, assign
it label (); otherwise let l1, l2, . . . , lt be the labels of the t subtrees of the root, ordered
lexicographically, and assign label (l1l2 . . . lt) to the root. By induction, two 1-rooted
trees are isomorphic iff their root labels are equal. Thus, we have established (c).

6. Sampling molecules. In this section we extend our results to the chemical
problem—given a molecular formula, select, u.a.r., a structural isomer having the
given formula. We start by extending the algorithm in section 5 so that it can be
used to uniformly sample unlabelled connected self-loop-less multigraphs with a given
degree sequence. For this we use procedure MultiSample, except that if the output
has a self-loop, it is rejected. If the degree sequence of the core is nondegenerate,
then the core will be a simple graph with probability bounded away from 0 (see
section 3) so the probability of rejection is not too high. If the degree sequence of the
core is degenerate, then the rejection probability will also be low, provided that n is
sufficiently large.

The modified version of procedure MultiSample, which uniformly samples un-
labelled connected self-loop-less multigraphs with a given degree sequence, solves the
following problem: Given a molecular formula in which each atom has a distinct va-
lence, select, u.a.r., a structural isomer having the given formula.2 We can further

2For some chemical applications, such as applications in which valences are variable, it may be
appropriate to modify the rejection phase so that some self-loops are allowed in the final output.
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modify procedure MultiSample so that it can be used to uniformly sample struc-
tural isomers even when the molecular formula has different atoms with the same
valence. Formally, we fix t types of vertices and we interpret a typed degree sequence

n0,1, . . . , n0,t, . . . , n∆,1, . . . , n∆,t

as a requirement that a multigraph have ni,j degree-i vertices of type j. An iso-
morphism between typed multigraphs must map each vertex to a vertex of the same
type. Procedure MultiSample can be extended in a straightforward way to give a
polynomial-time algorithm that takes as input a typed degree sequence and selects,
u.a.r., an unlabelled connected multigraph with the given degree sequence. The gen-
eration of the core is as before, except that the definition of the group Kn changes
since blocks can only be mapped to other blocks of the same type. The inductive
specifications in section 4 must be modified slightly to account for the types, so the
choice of n′ is modified accordingly. The choice of the coloring λ is also modified
slightly. The coloring of each block must have a root that has the same type as the
block and a coloring of a pairing between blocks of types i and j must have roots of
types i and j, respectively. Everything else is as before.

Acknowledgments. We thank Jean-Loup Faulon for proposing the problem and
explaining the chemical applications. We also thank Alan Frieze for suggesting the
use of the core.
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Abstract. In a variety of PAC learning models, a trade-off between time and information seems
to exist: with unlimited time, a small amount of information suffices, but with time restrictions,
more information sometimes seems to be required. In addition, it has long been known that there are
concept classes that can be learned in the absence of computational restrictions, but (under standard
cryptographic assumptions) cannot be learned in polynomial time (regardless of sample size). Yet,
these results do not answer the question of whether there are classes for which learning from a small
set of examples is computationally infeasible, but becomes feasible when the learner has access to
(polynomially) more examples.

To address this question, we introduce a new measure of learning complexity called computational
sample complexity that represents the number of examples sufficient for polynomial time learning
with respect to a fixed distribution. We then show concept classes that (under similar cryptographic
assumptions) possess arbitrarily sized gaps between their standard (information-theoretic) sample
complexity and their computational sample complexity. We also demonstrate such gaps for learning
from membership queries and learning from noisy examples.
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1. Introduction. In this work, we examine the effects of computational re-
strictions on the number of examples needed for learning from random examples or
membership queries. It has long been known that there are concept classes, contain-
ing only concepts that are implementable by “small” Boolean circuits, which can
be learned in the absence of computational restrictions, yet cannot be learned (us-
ing any hypothesis class) in polynomial time (under standard cryptographic assump-
tions) [Val84, KV94, AK91, Kha93]. Yet, these results do not answer the question of
whether there are classes for which learning from a small set of examples is computa-
tionally infeasible, but becomes feasible when the learner has access to (polynomially)
more examples. Such a phenomenon seems to be present in various learning problems
(described below) and we focus on this trade-off between information and computa-
tion.

The most common method of learning from examples in the PAC setting is
through the use of Occam algorithms [BEHW87, BEHW89]. These are algorithms
that take as input a set of labeled examples and output a concept from the target
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class that is consistent with the given set of examples. Blumer et al. give an upper
bound on the number of examples sufficient for an Occam algorithm to provide a good
hypothesis. This bound depends on the PAC accuracy and confidence parameters and
the Vapnik–Chervonenkis dimension (VC-Dimension) [VC71] of the target class. The
general lower bound on the number of examples required for learning [EHKV89] nearly
matches (within a logarithmic factor) the upper bound for Occam algorithms. Thus,
the sample complexity for learning is essentially tight when we have an algorithm that
finds a consistent concept from the target class.

While Occam algorithms exist for all classes,1 not all such algorithms are com-
putationally efficient. Yet, for some of these classes learning is still feasible, although
the known computationally efficient algorithms use more examples than does the Oc-
cam algorithm for the class. In these situations, computational restrictions appear
to impair learning by requiring more data, but do not completely preclude learning.
For example, it is NP-hard to find a k-term-DNF formula2 consistent with a set of
data labeled by a k-term-DNF formula [PV88]. The computationally efficient algo-
rithm most commonly used for learning k-term-DNF works by finding a consistent
hypothesis from a hypothesis class (kCNF) that strictly contains the target class. In
using this larger class, the Occam algorithm requires a sample size dependent on nk

(the VC-Dimension of kCNF) as opposed to k ·n (the VC-Dimension of k-term-DNF)
as would be possible if the hypothesis class were k-term-DNF itself. Thus, although
k-term-DNF learning is feasible, there is a gap between the sample size sufficient for
learning k-term-DNF in the absence of computational restrictions and the sample size
of known algorithms for computationally efficient learning.3

When the learner is allowed to make queries, we again see the phenomenon in
which efficient learning seems to require more information than learning without such
restrictions. One such example is the learning of deterministic finite automata (DFAs).
Angluin’s algorithm for this class [Ang87] can be viewed as drawing the standard
Occam-sized sample and outputting a DFA consistent with it. But in order to effi-
ciently find this consistent DFA, the algorithm makes many additional membership
queries.

We also find computational restrictions to effect sample size when learning from
examples corrupted with noise. In the absence of computational restrictions, any
PAC-learnable class can also be learned in the presence of classification noise rate η =
1/2−γ < 1/2 using a factor of Θ(1/γ2) more examples than the noise-free case [Lai88,
Tal94]. This increase is information theoretically required [Sim93, AD96]. Yet for many
classes, when computation is restricted in the presence of noisy data, the sample
complexity of known algorithms is increased by more than Θ(1/γ2). Furthermore,
this larger increase occurs even for classes that have computationally efficient noise-
free Occam algorithms with optimal sample complexity, i.e., classes with no gap in
their noise-free sample complexities. One very simple class exhibiting these properties
is the class of monotone Boolean conjunctions.

Thus, it appears that in a variety of learning models (PAC, PAC with queries,
and PAC with noise) there may exist a trade-off between time and information—with
unlimited time, a small amount of information will suffice, but with time restrictions,

1In this work, we restrict our attention to classes of functions that can be represented by poly-
nomially sized circuits.

2A k-term-DNF formula is a disjunctive normal form Boolean formula with at most constant k
terms.

3Note that the possibility remains of there being an algorithm that learns using the “Occam
number of examples” but does not learn by outputting a consistent k-term-DNF formula.
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more information is required. None of the cases described above provably requires
the additional examples, yet researchers have been unable to close these gaps. In this
work, we describe classes of functions for which we prove (based on cryptographic
assumptions) a quantitative gap between the size of the sample required for learning
a class and the size of the sample required for learning it efficiently.

Our main results. We focus our attention on learning under the uniform distri-
bution. As discussed later in this section, this seems to be an appropriate and natural
choice for demonstrating sample complexity gaps. Let C =

⋃
n Cn be a concept class,

where each Cn consists of Boolean functions over {0, 1}n. The (information theoretic)
sample complexity of C, denoted itsc(C;n, ε), is the sample size (as a function of n and
ε) needed for learning the class (without computational limitations) under the uniform
distribution with approximation parameter ε and confidence 9/10. The computational
sample complexity of C, denoted csc(C;n, ε) is the sample size needed for learning the
class in polynomial time under the uniform distribution with approximation parame-
ter ε and confidence 9/10. In both cases, when the class is clear, we may omit it from
the notation.

Definition 1.1 (admissible gap functions). A function g : N×R7→R is called
admissible if

1. g(·, ·) is polynomial-time computable;
2. (bounded growth in n) for every ε > 0, 1 ≤ g(n, ε) ≤ poly(n);
3. (monotonicity in ε) for every ε, ε′ > 0 such that ε < ε′, g(n, ε) ≥ g(n, ε′);
4. (smoothness in ε) there exists a constant a ≥ 1 so that for every ε > 0, g(n, ε)
≤ a · g(n, 2ε).

For example, the function g(n, ε)
def
= nd

εd′
is admissible for every d, d′ ≥ 0. Our

main result is that any admissible function can serve as a gap between the sample
complexity of some concept class and the computational sample complexity of the
same class. This gives the following theorem.

Theorem 1.2 (basic model). Let g : N×R7→R be an admissible function, and

k : N×R7→R be of the form k(n, ε) = nd

ε , where d ≥ 2. Suppose that one-way
functions exist (cf. [Gol95]).4 Then there exists a concept class C that has sample
complexity

itsc(n, ε) = Θ(k(n, ε))

and computational sample complexity

csc(n, ε) = Θ(g(n, ε) · k(n, ε)).

Furthermore, log2 |Cn| = O(nd+1) and each function in Cn has a poly(n)-size
circuit.

In the above, and in all subsequent theorems, one-way functions are merely used
to construct pseudorandom functions [HILL, GGM86]. Assuming either that RSA is a
one-way function or that the Diffie–Hellman key exchange is secure, one can construct
pseudorandom functions in NC (cf. [NR95]), and so all of our “gap theorems” will
follow with concept classes having NC circuits.

4Here and in all our other conditional results, the computational sample complexity lower bounds
hold for ε = 1/poly(n) under standard complexity assumptions (i.e., the existence of one-way func-
tions.) For smaller values of ε these bounds hold assuming slightly nonstandard yet reasonable
complexity assumptions.
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noise free noise rate η = 0.25
ITSC CSC ITSC CSC

Item 1 k(n, ε) g1 · g2 · k(n, ε) k(n, ε) g1 · g2
2 · k(n, ε)

Item 2 k(n, ε) k(n, ε) k(n, ε) 1
n2 · (k(n, ε))2

Fig. 1.1. The results of Theorem 1.4 (with Θ-notation omitted). For general noise rate η =
0.5− γ ≥ 0.25, both ITSC and CSC increase linearly in 1/γ2.

We next consider classification noise at rate η < 1
2 . That is, the label of each

example is flipped with probability η, independently of all other examples. In this

case we add γ
def
= 1

2 − η > 0 as a parameter to the sample complexity functions (e.g.,
itsc(C;n, ε, γ)). We obtain the next theorem.

Theorem 1.3 (noisy model). Let g : N×R7→R be an admissible function and

k : N×R7→R be of the form k(n, ε) = nd

ε , where d ≥ 2. Suppose that one-way
functions exist. Then there exists a concept class C which, in the presence of noise at
rate η = 1

2 − γ, has sample complexity

itsc(n, ε, γ) = Θ
(
k(n, ε)/γ2

)
and computational sample complexity

csc(n, ε, γ) = Θ
(
g(n, ε) · k(n, ε)/γ2

)
.

Furthermore, each function in Cn has a poly(n)-size circuit.
We stress that the above holds for every noise rate and in particular for the

noise-free case (where η = 0 and γ = 1/2). Thus, we have for every γ > 0

csc(n, ε, γ)

itsc(n, ε, γ)
= Θ

(
csc(n, ε)

itsc(n, ε)

)
= Θ (g(n, ε)) .

In particular, the computational sample complexity for moderate noise is of the same
order of magnitude as in the noise-free case (i.e., csc(n, ε, 1

4 ) = Θ(csc(n, ε))). This
stands in contrast to the following theorem in which the ratio between the two (i.e.,
csc(n,ε, 14 )

csc(n,ε) ) may be arbitrarily large, while itsc(n, ε, 1
4 ) = Θ(itsc(n, ε)) still holds (as it

always does). See Figure 1.1.
Theorem 1.4 (noise, revisited). Let g1, g2 : N×R7→R be admissible functions

and k : N×R7→R be of the form k(n, ε) = nd

ε , where d ≥ 2. Suppose that one-way
functions exist. Then

1. there exists a concept class C which,
• in the presence of noise at rate η = 1

2 − γ ≥ 1
4 , has sample complexity

itsc(n, ε, γ) = Θ(k(n, ε)/γ2)

and computational sample complexity

csc(n, ε, γ) = Θ(g1(n, ε) · (g2(n, ε))2 · k(n, ε)/γ2);

• whereas the noise-free complexities are

itsc(n, ε) = Θ(k(n, ε)) and csc(n, ε) = Θ(g1(n, ε) · g2(n, ε) · k(n, ε)),

respectively;
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Information Theoretic Computational Measures
ITSC = ITQC CQC CSC

k(n, ε) g1 · k(n, ε) g1 · g2 · k(n, ε)

Fig. 1.2. The results of Theorem 1.5 (with Θ-notation omitted).

2. there exists a concept class C which,
• in the presence of noise at rate η = 1

2 − γ ≥ 1
4 , has sample complexity

itsc(n, ε, γ) = Θ(k(n, ε)/γ2)

and computational sample complexity

csc(n, ε, γ) = Θ

(
(k(n, ε))2

n2 · γ2

)
;

• whereas the noise-free complexities are

csc(n, ε) = Θ(itsc(n, ε)) = Θ(k(n, ε)).

Furthermore, each function in Cn has a poly(n)-size circuit.
Theorem 1.3 follows as a special case of item 1 by setting g2 ≡ 1. Using item 2

we get that for every α > 0 and for every γ ≤ 1/4, csc(n, ε, γ) = Ω(csc(n, ε)2−α/γ2).
We now turn to learning with membership queries. The (information theoretic)

query complexity of C, denoted itqc(C;n, ε), is the number of membership queries (as a
function of n and ε) needed for learning the class (without computational limitations)
under the uniform distribution with approximation parameter ε and confidence 9/10.
The computational query complexity of C, denoted cqc(C;n, ε), is the number of queries
needed for learning the class in polynomial time under the uniform distribution with
approximation parameter ε and confidence 9/10. We obtain (see also Figure 1.2) the
following.

Theorem 1.5 (query model). Let g1, g2 : N×R7→R be two admissible functions

and k : N×R7→R be of the form k(n, ε) = nd

ε , where d ≥ 2. Suppose that one-way
functions exist. Then there exists a concept class C which has query complexity

itqc(n, ε) = Θ(k(n, ε)) = Θ(itsc(n, ε)),

computational query complexity

cqc(n, ε) = Θ(g1(n, ε) · k(n, ε)),

and computational sample complexity

csc(n, ε) = Θ(g1(n, ε) · g2(n, ε) · k(n, ε)).

Furthermore, each function in Cn has a poly(n)-size circuit.
Note that we may set g2 ≡ 1 and obtain

csc(n, ε) = Θ(cqc(n, ε)) = Θ(g1(n, ε) · itqc(n, ε))

(and itsc(n, ε) = Θ(itqc(n, ε))).



COMPUTATIONAL SAMPLE COMPLEXITY 859

Uniform vs. distribution-free learning. Above, we show that in a variety
of settings there exists a concept class exhibiting a sample complexity gap when
learning occurs with respect to the uniform distribution. We note that in all our
theorems the information theoretic upper bounds hold, within a factor of n, with
respect to distribution-free learning.5 Thus, there exist concept classes for which
efficient learning under the uniform distribution (is possible but) requires vastly larger
sample sizes than the distribution-free information theoretic upper bound.

One may wonder whether there exists a concept class exhibiting similar sample
complexity gaps with respect to every distribution. Clearly, degenerate distributions
preclude such results. Alternatively, one may wonder whether, for every distribution,
there exists a class that exhibits sample complexity gaps. Again, such results are
precluded by degenerate distributions. Thus, we believe that an appropriate goal is
to demonstrate gaps on fixed distributions, the uniform distribution being the most
natural and well studied.6

Although the above notion of a gap cannot exist for a single concept class across
all distributions, a different notion of distribution-free gap can exist. Specifically,
we may consider a gap between: (1) an upper bound on the information-theoretic
distribution-free sample complexity and (2) a lower bound on the distribution-free
sample complexity of an efficient learner that is tight (i.e., has a matching upper
bound). More precisely, let the (distribution-free information theoretic) sample com-
plexity of C, denoted IT SC(C;n, ε), be the sample size (as a function of n and ε) needed
for learning the class (without computational limitations); and let the distribution-free
computational sample complexity of C, denoted CSC(C;n, ε), be the sample size needed
for learning the class in polynomial time. We stress that an upper bound for any of
these measures refers to all possible distributions, whereas a lower bound merely refers
to one (possibly “pathological”) distribution. In fact, such pathological distributions
are used in the result below.

Theorem 1.6 (distribution-free). Let p be a polynomial so that p(n) ≥ n, and
suppose that one-way functions exist. Then there exists a concept class C so that
IT SC(n, ε) = O(n/ε), whereas CSC(n, ε) = Θ(p(n)/ε). Furthermore, each function
in Cn has a poly(n)-size circuit.

Note that the gap shown in the theorem is polynomially in n (independent of
ε). Thus, we do not get arbitrary admissible gaps as in Theorem 1.2. We note that
the computational sample complexity under the uniform distribution for this class is
Θ(p(n) ·min{log(1/ε), log p(n)}).

Techniques. The basic idea is to consider concepts that consist of two parts: The
first part of the concept is determined by a pseudorandom function (cf. [GGM86]),
while the second part encodes the seed of such a function. Since it is infeasible
to infer a pseudorandom function, the computational-bounded learner is forced to
retrieve the seed of the function which is sparsely encoded in the second part. This
sparse encoding makes retrieval very costly in terms of sample complexity; yet, the
computationally-unbounded learner is not affected by it.

The basic idea described above suffices for establishing a gap between the com-
putational sample complexity and the information-theoretic sample complexity for a
fixed ε. Additional ideas are required in order to have a construction that works for
any ε, and for which one may provide tight (up to a constant factor) bounds on each

5In Theorem 1.5 the upper bounds hold in the distribution-free case, without any extra factor.
6We note that our techniques may be used to show similar sample complexity gaps on distribu-

tions other than the uniform distribution.
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of the two complexities. One of these ideas is the construction of concept classes,
called equalizers, for which the computational sample complexity upper bound is of
the same order as the information-theoretic lower bound. A result of this form follows.

Theorem 1.7 (equalizers). Let p(·) be any polynomial.
1. (noisy-sample equalizer) There exists a concept class S = ∪nSn, with concepts

realizable by polynomial-size circuits, such that

itsc(S;n, ε, γ) = Θ(csc(S;n, ε, γ)) = Θ(p(n)/εγ2).

2. (query equalizer) There exists a concept class S = ∪nSn, with concepts real-
izable by polynomial-size circuits, such that

itqc(S;n, ε) = Θ(csc(S;n, ε)) = Θ(p(n)/ε).

Another idea used in our proofs is the introduction and utilization of a novel
(probabilistic) coding scheme. In addition to the standard coding theoretic require-
ments, this scheme has the property that any constant fraction of the bits in the
(randomized) code word yields no information about the message being encoded. We
also use this coding scheme to obtain efficient constructions for the wire-tap channel
problem (cf. [Wyn75])—see Proposition 2.3. We believe that this probabilistic coding
scheme is of independent interest.

Organization. After introducing the cryptographic tools we shall need, we es-
tablish the separation of computational sample complexity from (information theo-
retic) sample complexity in the basic model. This result (i.e., Theorem 1.2) may be
derived as a special case of the other results, but we chose to present a self-contained
and simpler proof of the separation in the basic model: All that is needed are our
new coding scheme (presented in section 2) and the basic construction (presented in
section 3).

To establish separation in the noise and query models, we use a more general
construction. This construction utilizes the equalizers of Theorem 1.7 (presented in
section 4). The general construction itself is presented in section 5 and is used to
derive Theorems 1.2 through 1.5.

Theorem 1.6 is proven in section 6. We note that this proof is much simpler than
any other proof in the paper and that it can be read without reading any of the other
sections.

2. Cryptographic tools. In subsection 2.1 we review known definitions and re-
sults regarding pseudorandom functions. In subsection 2.2 we present a computation-
ally efficient (randomized) coding scheme which on top of the standard error-correction
features has a secrecy feature. Specifically, a small fraction of (the uncorrupted) bits
of the code word yield no information about the message being encoded.

2.1. Pseudorandom functions. Loosely speaking, pseudorandom functions
are easy to evaluate yet look like random functions to any computationally restricted
observer who may obtain their value at inputs of its choice.

Definition 2.1 (pseudorandom functions [GGM86]). Let ` : N 7→N be a poly-
nomially-bounded length function and F = {Fn : n ∈ N} where Fn = {fα : α ∈
{0, 1}n} is a (multi)set of 2n Boolean functions over the domain {0, 1}`(n). The
family F is called a pseudorandom family if

• (easy to evaluate) there exists a polynomial-time algorithm A so that A(α, x) =
fα(x) for every α ∈ {0, 1}∗ and x ∈ {0, 1}`(|α|); the string α is called the seed
of fα;
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• (pseudorandomness) for every probabilistic polynomial-time oracle machine
M, every positive polynomial p, and all sufficiently large n’s,∣∣Prf∈Fn(Mf (1n)=1)− Prg∈Rn(Mg(1n)=1)

∣∣ < 1

p(n)
,

where Rn denotes the set of all (22`(n)

) Boolean functions over the domain
{0, 1}`(n).

Pseudorandom functions exist if and only if there exist one-way functions (cf.
[GGM86] and [HILL]). Pseudorandom functions that can be evaluated by NC circuits
(one circuit per each function) exist7, assuming either that RSA is a one-way function
or that the Diffie–Hellman key exchange is secure (cf. [NR95]).

2.2. A probabilistic coding scheme. We present an efficient probabilistic
encoding scheme having constant rate (information/code word ratio), constant (ef-
ficient) error-correction capability for which a (small) constant fraction of the code
word bits yield no information about the plain message. Note that a scheme as de-
scribed above cannot be deterministic (as each bit in a deterministic coding scheme
carries information).

Theorem 2.2. There exist constants crate, cerr, csec < 1 and a pair of probabilistic
polynomial-time algorithms, (E,D), so that

1. (constant rate) |E(x)| = |x|/crate for all x ∈ {0, 1}∗;
2. (linear error correction) for every x ∈ {0, 1}∗ and every e ∈ {0, 1}|E(x)| that

has at most cerr · |E(x)| ones,

Pr(D(E(x)⊕ e) = x) = 1,

where α ⊕ β denotes the bit-by-bit exclusive-or of the strings α and β; Algo-
rithm D is in fact deterministic;

3. (partial secrecy) loosely speaking, a substring containing csec · |E(x)| bits of
E(x) does not yield information on x. Namely, let I be a subset of {1, . . . , |α|},
and let αI denote the substring of α corresponding to the bits at locations
i ∈ I. Then for every n ∈ N , m = n/crate, x, y ∈ {0, 1}n, I ⊂ {1, . . . ,m},
|I| ≤ csec ·m, and α ∈ {0, 1}|I|,

Pr(E(x)I = α) = Pr(E(y)I = α).

Furthermore, E(x)I is uniformly distributed over {0, 1}|I|.
In addition, on input x, algorithm E uses O(|x|) coin tosses.

Items 1 and 2 are standard requirements of coding theory, first met by Justesen
[Jus72]. What is nonstandard in the above is item 3. Indeed, item 3 is impossible if
one insists that the encoding algorithm (i.e., E) be deterministic.

Proof. Using a “nice” error correcting code, the key idea is to encode the informa-
tion by first augmenting it by a sufficiently long random padding. To demonstrate this
idea, consider an 2n-by-m matrix M defining a constant-rate/linear-error-correction
(linear) code. That is, the string z ∈ {0, 1}2n is encoded by z ·M . Further suppose
that the submatrix defined by the last n rows of M and any csec ·m of its columns
is of full rank (i.e., rank csec ·m). Then, we define the following probabilistic coding,
E, of strings of length n. To encode x ∈ {0, 1}n, we first uniformly select y ∈ {0, 1}n,
let z = xy and output E(x) = z ·M . Clearly, the error-correction features of M are

7 Actually, these circuits can be constructed in polynomial-time given the seed of the function.
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inherited by E. To see that the secrecy requirement holds consider any sequence of
csec ·m bits in E(x). The contents of these bit locations is the product of z by the
corresponding columns in M ; that is, z ·M ′ = x · A + y · B, where M ′ denotes the
submatrix corresponding to these columns in M, and A (resp., B) is the matrix re-
sulting by taking the first (resp., last) n rows of M ′. By hypothesis B is full rank,
and therefore y ·B is uniformly distributed (and so is z ·M ′ regardless of x).

What is missing in the above is a specific construction satisfying the hypothe-
sis as well as allowing efficient decoding. Such a construction can be obtained by
mimicking Justesen’s construction [Jus72]. Recall that Justesen’s code is obtained by
composing two codes: Specifically, an outer linear code over an n-symbol alphabet is
composed with an inner random linear code.8 The outer code is obtained by viewing
the message as the coefficients of a polynomial of degree t − 1 over a field with ≈ 3t
elements and letting the code word consist of the values of this polynomial at all field
elements. Using the Berlekamp–Welch Algorithm [BW86], one can efficiently retrieve
the information from a code word provided that at most t of the symbols (i.e., the
values at field elements) were corrupted. We obtain a variation of this outer-code

as follows: Given x ∈ {0, 1}n, we set t
def
= 2n/ log2(3n), and view x as a sequence

of t
2 elements in GF(3t).9 We uniformly select y ∈ {0, 1}n and view it as another

sequence of t
2 elements in GF(3t). We consider the degree t − 1 polynomial defined

by these t elements, where x corresponds to the high-order coefficients and y to the
low-order ones. Clearly, we preserve the error-correcting features of the original outer
code. Furthermore, any t/2 symbols of the code word yield no information about
x. To see this, note that the values of these t/2 locations are obtained by multiply-
ing a t-by-t/2 Vandermonde with the coefficients of the polynomial. We can rewrite
the product as the sum of two products, the first being the product of a t/2-by-t/2
Vandermonde with the low-order coefficients. Thus, a uniform distribution on these
coefficients (represented by y) yields a uniformly distributed result (regardless of x).

Next, we obtain an analogue of the inner code used in Justesen’s construction.

Here the aim is to encode information of length `
def
= log2 3t (i.e., the representation

of an element in GF(3t)) using code words of length O(`). Hence, we do not need an
efficient decoding algorithm, since maximum likelihood decoding via exhaustive search
is affordable (as 2` = O(t) = O(n)). Furthermore, any code that can be specified by
log(n) many bits will do (as we can try and check all possibilities in poly(n)-time),
which means that we can use a randomized argument provided that it utilizes only
log(n) random bits. For example, we may use a linear code specified by a (random)
2`-by-4` Toeplitz matrix.10 Using a probabilistic argument one can show that with
positive probability such a random matrix yields a “nice” code as required in the
motivating discussion.11 In the rest of the discussion, one such good Toeplitz matrix
is fixed.

We now get to the final step in mimicking Justesen’s construction: the compo-
sition of the two codes. Recall that we want to encode x ∈ {0, 1}n and that using a
random string y ∈ {0, 1}n we have generated a sequence of 3t values in GF(3t), de-
noted x1, . . . , x3t, each represented by a binary string of length `. (This was done by

8 Our presentation of Justesen’s code is inaccurate but suffices for our purposes.
9Here we assume that 3t is a prime power. Otherwise, we use the first prime power greater than

3t. Clearly, this has a negligible effect on the construction.
10 A Toeplitz matrix, T = (ti,j), satisfies ti,j = ti+1,j+1 for every i, j.
11 The proof uses the fact that any (nonzero) linear combination of rows (columns) in a random

Toeplitz matrix is uniformly distributed.
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the outer code.) Now, using the inner code (i.e., the Toeplitz matrix) and additional
3t random `-bit strings, denoted y1, . . . , y3t we encode each of the above xi’s by a
4`-bit long string. Specifically, xi is encoded by the product of the Toeplitz matrix
with the vector xiyi.

Clearly, we preserve the error-correcting features of Justesen’s construction [Jus72].
The secrecy condition is shown analogously to the way in which the error correction
feature is established in [Jus72]. Specifically, we consider the partition of the code
word into consecutive 4`-bit long subsequences corresponding to the code words of
the inner code. Given a set I of locations (as in the secrecy requirement), we consider
the relative locations in each subsequence, denoting the induced locations in the ith
subsequence by Ii. We classify the subsequences into two categories depending on
whether the size of the induced Ii is above the secrecy threshold for the inner code.
By a counting argument, only a small fraction of the subsequences have Ii’s above
the threshold. For the rest we use the secrecy feature of the inner code to state that
no information is revealed about the corresponding xi’s. Using the secrecy feature of
the outer code, we conclude that no information is revealed about x.

Efficient coding for the wire-tap channel problem. Using Theorem 2.2,
we obtain an efficient coding scheme for (a strong version of) the wire-tap channel
problem (cf. [Wyn75]). Actually, we consider a seemingly harder version introduced
by Csiszár and Körner [CK78]. To the best of our knowledge no computationally
efficient coding scheme was presented for this problem before.12

Proposition 2.3. Let (E,D) be a coding scheme as in Theorem 2.2 and let
bscp(α) be a random process that represents the transmission of a string α over a
binary symmetric channel with crossover probability13 p. Then,

1. (error correction) for every x ∈ {0, 1}∗

Pr(D(bsc cerr
2

(E(x))) = x) = 1− exp(−Ω(|x|));

2. (secrecy) for every x ∈ {0, 1}∗∑
α∈{0,1}|E(x)|

∣∣∣Pr(bsc 1
2− csec

4
(E(x)) = α) − 2−|E(x)|

∣∣∣
is exponentially vanishing in |x|.

Proof. Item 1 follows by observing that, with overwhelmingly high probability,
the channel complements less than a cerr fraction of the bits of the code word. Item 2
follows by representing bsc(1−γ)/2(α) (where γ = csec/2) as a two-stage process: In the
first stage each bit of α is set (to its current value) with probability γ, independently of
the other bits. In the second stage each bit that was not set in the first stage is assigned
a uniformly chosen value in {0, 1}. Next, we observe that, with overwhelmingly high
probability, at most 2γ|E(x)| = csec|E(x)| bits were set in the first stage. Suppose
that this is indeed the case. Then, applying Item 3 of Theorem 2.2, the bits set in
Stage 1 are uniformly distributed regardless of x, and due to Stage 2 the bits that are
not set in Stage 1 are also random.

12We note that Maurer has shown that this version of the problem can be reduced to the original
one by using bidirectional communication [Mau91]. Crépeau (private communication, April 1997) has
informed us that, using the techniques in [BBCM95, CM97], one may obtain an alternative efficient
solution to the original wire-tap channel problem, again by using bidirectional communication.

13The crossover probability is the probability that a bit is complemented in the transmission
process.
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Remark 2.1. The above proof can be easily adapted to assert that, with over-
whelmingly high probability, no information about x is revealed when obtaining both
csec

2 · |E(x)| of the bits of E(x) as well as the entire bsc 1
2− csec

8
(E(x)).

3. Proof of Theorem 1.2. We start by describing a construction that satisfies
the gap requirement of Theorem 1.2 for a fixed ε, say ε = 0.1. That is, we only show
that there exists a concept class C which for ε = 0.1 has sample complexity itsc(n, ε) =
Θ(k(n, ε)) and computational sample complexity csc(n, ε) = Θ(g(n, ε) · k(n, ε)). The
construction is later generalized to handle variable ε.

3.1. Motivation: Construction for constant ε. We view a function f ∈ Cn
as an array of 2n bits. This array is divided into the following three (consecutive)
slices which have sizes 2n−1, 2n−2, and 2n−2, respectively.
Slice I: This slice, called the pseudorandom slice, is determined by a pseudorandom

function fs : {0, 1}n−1 → {0, 1}, where the seed s is of length n. (See subsec-
tion 2.1.)

Slice II: This slice, called the seed encoder, is determined by the above-mentioned
seed s and an additional string r of length O(n). More precisely, first we
employ the probabilistic encoding scheme of subsection 2.2 to encode the
message s using r as the randomness required by the scheme. The result is a

code word of length m
def
= O(n). Next we repeat each bit of the code word in

2n−2

g(n,0.1)·k(n,0.1) specified locations. All other locations in this slice are set to
zero.

Slice III: This slice, called the sample equalizer, is determined by a binary string
u of length k(n, 0.1). The slice consists entirely of k(n, 0.1) blocks of equal
length, each repeating the corresponding bit of u. The purpose of this slice
is to dominate the (information theoretic) sample complexity and allow us to
easily derive tight bounds on it.

Information theoretic bounds. Applying Occam’s Razor [BEHW87] to the
class C, we obtain itsc(C;n, 0.1) = O(log |Cn|) = O(n+O(n)+k(n, 0.1)) = O(k(n, 0.1)),
where the last equality is due to k(n, 0.1) > n. On the other hand, in order to learn
a function in the class with error at most 0.1, it is necessary to learn Slice III with
error at most 0.4. Thus, by virtue of Slice III alone, we have

itsc(C;n, 0.1) ≥ itsc(Slice III;n, 0.4) ≥ 0.2 · k(n, 0.1)

where the last inequality is due to the fact that learning a random string with error
ε requires obtaining at least 1 − 2ε of its bits. Thus, we have established the desired
information-theoretic bounds. We now turn to analyzing the computational sample
complexity.

Computational lower bound. The computationally bounded learner cannot
learn Slice I from examples (or even queries) in the slice. Still, it must learn Slice I with
error at most 0.2. Hence, the role of Slice I is to force the computationally bounded
learner to obtain the function’s seed from Slice II. By Item 3 of Theorem 2.2, in order
to attain any information (from Slice II) regarding the seed, the learner must obtain
Ω(n) bits of the code word (residing in Slice II). By Item 1 of Theorem 2.2, this means
obtaining a constant fraction of the bits of the code word. Recall that the probability

of getting any bit in the code word is O(n)
g(n,0.1)·k(n,0.1) . Therefore, by a Chernoff bound,

for every fraction α < 1 there exists a constant β < 1 such that the probability of
obtaining a fraction α of the code word given (β · g(n, 0.1) · k(n, 0.1)) examples is
exponentially small. Thus, csc(C;n, 0.1) = Ω(g(n, 0.1) · k(n, 0.1)).
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Fig. 3.1. Construction for Theorem 1.2.

Computational upper bound. By Chernoff bound a sample of O(g(n, 0.1) ·
k(n, 0.1)) examples contains, with overwhelmingly high probability, an occurrence
of each bit of the code word of the seed. Thus, by (a special case of) Item 2 of
Theorem 2.2, the learner can efficiently retrieve the seed and so derive all of Slices I
and II of the concept. However, by g(n, 0.1) ≥ 1, the above sample will also allow
obtaining (with high probability) all but at most a 0.1 fraction of the bits in Slice III,
and thus csc(C;n, 0.1) = O(g(n, 0.1) · k(n, 0.1)).

3.2. General construction—variable ε. We adopt the basic structure of the
construction above, except that each of the three slices is further subpartitioned into

blocks. Specifically, each slice has t
def
= n− log2O(n) (consecutive) blocks, so that each

block corresponds to a different possible value of ε = 2−i, for i = 1, . . . , t. We start
with a detailed description of each of the three slices (see Figure 3.1).

Slice I: The pseudorandom part. The ith block has size 2n−1−i and is determined
by a pseudorandom function fsi : {0, 1}n−1−i → {0, 1}, where the seed si is of length
n. Note that the blocks are shrinking in size and that they are all pseudorandom.

Slice II: The seeds encoder. Here the blocks are of equal size B
def
= 1

t · 2n−2.
The ith block encodes the ith seed, si, using an additional string ri of length O(n).
Let ei be the code word obtained by employing the probabilistic encoding scheme

(of Theorem 2.2) on input si using randomness ri. Recall that m
def
= |ei| = O(n).

The ith block is further divided into m (consecutive) information fields, each of size
2n−2

g(n,2−i)·k(n,2−i) , and an additional empty field (of size B− m·2n−2

g(n,2−i)·k(n,2−i) ). Thus the

m information fields have relative density m·t
g(n,2−i)·k(n,2−i) = Θ( n2

g(n,2−i)·k(n,2−i) ) with

respect to the total size B of the block. All bits in the jth information field are set
to the value of the jth bit of ei, and all bits in the empty field are set to zero.

Slice III: The sample equalizer. The ith block has size Bi
def
= 2n−2−i and is de-

termined by a binary string ui of length K
def
= 2−i · k(n, 2−i) = nd. The ith block is

further divided into K (consecutive) subblocks, each of size Bi
K . All bits in the jth

subblock are set to the value of the jth bit of ui. Note that the blocks are shrinking in
size and that for each block it is possible to obtain most bits in the block by viewing
Θ(K) random examples residing in it.

We first observe that Slice III above gives rise to a concept class for which tight
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bounds of the form k(n, ε) = poly(n)/ε, on the information theoretic and computa-
tional sample complexities, can be given.

Proposition 3.1. For Slice III described above we have
1. itsc(Slice III;n, 4ε) = Ω(k(n, ε));
2. csc(Slice III;n, ε) = O(k(n, ε)).

Proof. Item 1. Let i
def
= blog2(1/8ε)c. In order to learn Slice III with error at

most 4ε, one must learn the ith block reasonably well. Specifically, one must obtain
examples from at least half of the K subblocks of the ith block, and hence must have
at least K/2 examples in the ith block. By Chernoff bound, this implies that the total
number of random samples must be at least 2i · K4 = 2i−2ε · k(n, ε) > 2−7 · k(n, ε).
Item 1 follows.

Item 2. On the other hand, we consider the fraction of the third slice that is
determined (with constant probability close to 1) given a sample of 16·k(n, ε) = 16K/ε
random examples. It suffices to show that the total area left undetermined in the first

`
def
= dlog2(4/ε)e blocks is at most an ε/2 fraction of the total domain (since the

remaining blocks cover at most an ε/2 fraction of the total). Fixing any i ≤ `, we
consider the expected number of subblocks determined in the ith blocks (out of the
total K subblocks). A subblock is determined if and only if we obtain a sample in it,
and the probability for the latter event not to occur in 16K/ε trials is(

1− 2−i

K

)16K/ε

= exp

(
− 16

2i · ε
)
.(3.1)

It follows that the expected fraction of bits that are not determined in the first `
blocks is bounded above by

∑̀
i=1

2−i · 2− 16

2iε =
`−1∑
j=0

2−(`−j) · 2− 16

2`−j ·2−`+2(3.2)

= 2−` ·
`−1∑
j=0

2j · 2−2j+2

(3.3)

<
ε

4
· 2−4

∞∑
j=0

2−j(3.4)

<
ε

32
(3.5)

where (3.4) follows from the fact that ∀j ≥ 0, 2j−4·2j ≤ 2−4 · 2−j . Item 2 fol-
lows.

Lemma 3.1. The concept class described above has (information theoretic) sample
complexity itsc(n, ε) = Θ(k(n, ε)).

Proof. Clearly, it suffices to learn each of the three slices with error ε. Applying
Occam’s Razor [BEHW87] to Slices I and II of the class, we obtain

itsc(Slices I and II;n, ε) = O(n2/ε) = O(k(n, ε)),

where the last equality is due to the hypothesis regarding the function k(·, ·) (i.e.,
that it is Ω(n2/ε)). Using Item 2 of Proposition 3.1, we obtain itsc(Slice III;n, ε) ≤
csc(Slice III;n, ε) = O(k(n, ε)), and itsc(n, ε) = O(k(n, ε)) follows. (Note that in order
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to obtain the desired tight bound we cannot simply apply Occam’s Razor to Slice III
since it is determined by roughly 2n ·K = 2n · ε · k(n, ε) bits.)

On the other hand, in order to learn a function in the class, we must learn Slice III
with error at most 4ε. Using Item 1 of Proposition 3.1, we obtain itsc(Slice III;n, 4ε) =
Ω(k(n, 4ε)), and itsc(n, ε) = Ω(k(n, 4ε)) = Ω(k(n, ε)) follows.

Lemma 3.2. The concept class described above has computational sample com-
plexity csc(n, ε) = Θ(g(n, ε) · k(n, ε)).

Proof. Using Item 2 of Proposition 3.1, we have that csc(Slice III;n, ε) = O(k(n, ε)),
and using g(n, ε) ≥ 1 we infer that Slice III can be efficiently learned with ε error given
a sample of size O(g(n, ε) ·k(n, ε)). Next we show that such a sample suffices for learn-
ing Slice I and Slice II as well. Since the information fields in the ith block of Slice II
have density bounded above by 2−i, in order to learn Slice II with error at most ε, it

suffices to learn the first `
def
= dlog2(4/ε)e with error at most ε/2. However, such an

approximation might not suffice for learning Slice I sufficiently well. Nonetheless, we
next show that a sample of size O(g(n, ε) · k(n, ε)) suffices for efficiently determining
(exactly) the first ` seeds (residing in the first ` blocks of Slice II) and thus determining
the first ` blocks of Slice I.

Let i ≤ ` and consider them information fields in the ith block of the seed encoder.
Suppose that for some constant c′ (to be specified), we have 2c′ · (g(n, ε) · k(n, ε))
random examples. Then the expected number of examples residing in the information
fields of the ith block is

2c′ · (g(n, ε) · k(n, ε)) · m

g(n, 2−i) · k(n, 2−i)
.(3.6)

Since g(n, ε) · k(n, ε) = Ω(g(n, 2−i)k(n, 2−i)), for a suitable constant c′′ (that depends
on c′ and on the constants in the Ω(·) notation), this expected number is 2c′′m.
With overwhelmingly high probability (i.e., 1− exp(−Ω(m))), there are at least c′′m
examples in the information fields of the ith block (for every i ≤ `). We set c′ so that
c′′ will be such that, with overwhelmingly high probability, such a sample will miss at
most cerr ·m of these fields, where cerr is the constant in Item 2 of Theorem 2.2 (e.g.,
c′′ = 2/cerr will suffice). Invoking Item 2 of Theorem 2.2 (for the special case in which
there are no errors but part of the code word is missing), we obtain the seed encoded
in the ith block of Slice II. Since the probability of failure on a particular block is
negligible, with very high probability we obtain the seeds in all the first ` blocks of
Slice II. This concludes the proof of the upper bound.

We now turn to the lower bound and let i
def
= blog2(1/4ε)c. Considering the ith

block of Slice I, we will show that too small a sample does not allow information
regarding the ith seed to be obtained from Slice II. This will lead to the failure of
the computational bounded learner, since without such information the ith block of
Slice I looks totally random (to this learner). Specifically, let csec be the constant in
Item 3 of Theorem 2.2, and let c′ = 2/csec. Suppose the learner is given

c′′ · g(n, ε) · k(n, ε) < c′ · g(n, 2−i)k(n, 2−i)(3.7)

random examples. (The constant c′′ is such that the last inequality holds.) Then,
using a Chernoff bound we infer that, with overwhelmingly high probability, we will
have at most

2c′ · (g(n, 2−i) · k(n, 2−i)) · m

g(n, 2−i) · k(n, 2−i)
= 2c′m = csecm(3.8)
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random examples in the information fields of the ith block of Slice II. Invoking Item 3
of Theorem 2.2, this yields no information regarding the seed encoded in the ith block
of Slice II. Thus, the computationally bounded learner cannot predict any unseen point
in the ith block of Slice I better than at random. This means that its error is greater
than allowed (i.e., ≥ 2−i−1 > ε). Thus, csc(n, ε) > c′′ · g(n, ε)k(n, ε), where c′′ is a
constant as required.

4. The two equalizers (proof of Theorem 1.7). In this section we show that
(1) the sample equalizer (i.e., Slice III) described in section 3.2 can be used to prove
the first item in Theorem 1.7 (noisy-sample equalizer); (2) another construction, based
on interval functions, can be used to prove the second item of the theorem (query
equalizer).

4.1. Noisy-sample equalizer (item 1 of Theorem 1.7). As noted above, we
use Slice III of the construction in section 3.2. Here we think of a concept in the class
S = ∪nSn as being an array of size 2n (as opposed to 2n−2 when it serves as the third
slice of a concept). The number of subblocks in each of the t = n−O(log(n)) blocks
is p(n). The proof follows the structure of the proof of Proposition 3.1.

Lemma 4.1. itsc(S, n, ε, γ) = Ω
(
p(n)
εγ2

)
.

Proof. Let i
def
= blog2(1/2ε)c. In order to learn a function in the class Sn, one

must learn the ith block reasonably well. Specifically, one must obtain sufficiently
many examples from the ith block or else the information we obtain on the bits
residing in this block is too small. In particular, we claim that we must have at
least Ω(p(n)/γ2) examples in the ith block. We prove the claim by noting that it
corresponds to the classical information theoretic measure of the mutual information
(cf., [CT91]) that these samples provide about the string residing in this block. Each
example provides information on a single bit residing in the block and the amount
of information is merely the capacity of a binary symmetric channel with crossover
probability η = 1

2 − γ. That is, each example yields 1 − H2(η) bits of information,
where H2 is the binary entropy function, which satisfies 1−H2(0.5−γ) ≈ Θ(γ2). The
claim follows by additivity of information.

Let c > 0 be a constant so that we must have at least p(n)/cγ2 examples in the
ith block. Then, in order to have (with high probability) at least p(n)/cγ2 examples

in the ith block, the total number of random samples must be at least 2i · p(n)
2cγ2 =

Ω
(
p(n)
εγ2

)
.

Lemma 4.2. csc(S, n, ε, γ) = O
(
p(n)
εγ2

)
.

Proof. We consider the fraction of a concept in Sn that can be correctly inferred
by a sample of O(p(n)/εγ2) random examples. It suffices to show that the total area

left incorrectly inferred in the first `
def
= dlog2(4/ε)e blocks is at most an ε/2 fraction

of the total domain (since the remaining blocks cover at most an ε/2 fraction of the
total). Fixing any i ≤ `, we consider the expected number of subblocks incorrectly
inferred in the ith block (out of the total p(n) subblocks). We use the obvious in-
ference rule—a majority vote. Thus, a subblock is correctly inferred if and only if
a strict majority of the examples obtained from it are labeled correctly. (Having
obtained examples from this subblock is clearly a necessary condition for having a
strict majority.) Using a Chernoff bound, the probability that we do not have the
correct majority in O(p(n)/εγ2) trials is at most exp(−Ω(2−i+1/ε)). As in the proof
of Proposition 3.1, it follows that the expected fraction of bits that are incorrectly
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inferred in the first ` blocks is bounded above by ε/20, and the lemma follows.

4.2. Query equalizer (Item 2 of Theorem 1.7). For every n, we consider
the following concept class Sn. Each concept in the class consists of p(n) blocks of

equal size Q
def
= 2n−2/p(n). Each block corresponds to an interval function. Namely,

the bit locations in each block are associated with [Q]
def
= {1, . . . , Q}, and the bits

themselves are determined by a pair of integers in [Q]. If the ith block is associated
with a pair (ui, vi), then the jth bit in this block is 1 if and only if ui ≤ j ≤ vi. Note
that pairs (ui, vi) with ui > vi determine an all-zero block.

Lemma 4.3. itqc(S, n, ε) = Ω(p(n)/ε) .

Proof. We start by bounding the expected relative error of the algorithm on
a single block when making at most q queries to this block. Later we discuss the
implication of such a bound on the total error on Sn.

The single block case. Suppose first that the learner is deterministic. Then,
no matter how it chooses its q queries, there exists an interval of relative length 1/q
that is never queried. Hence the algorithm cannot distinguish the case in which the
target concept is all 0’s and the case in which the target concept has 1’s only in the
nonqueried interval, and it must have error at least 1/2q on at least one of these
concepts.

Next, we consider a probabilistic learner that makes q queries, all of them an-
swered by 0 (as would be the case for the all-zero concept). Then, for every δ > 0,
there must exist an interval of relative length δ/q (i.e., actual length δQ/q) so that
the probability that a query was made in this interval is below δ. We again consider
the all-zero concept and the concept that has 1’s only in this interval. We consider
a 1− δ fraction of the runs of the algorithm in which no query is made to the above
interval. In these runs the algorithm cannot distinguish the all-zero concept from the
other concept. Thus, with probability 1−δ

2 the algorithm has error at least δ/2q (on
some concept). If we set δ = 0.2 and q = 1

100ε , then we have that with probability at
least 0.4 the error is at least 10ε on one of the two concepts.

Back to the concept class Sn. To analyze the execution of a learning (with
queries) algorithm on a (complete) concept in Sn, we consider the following game,
consisting of two stages. In the first stage, the algorithm makes q queries in each
block. The algorithm is not charged for any of these queries. In the second stage,
the algorithm makes a choice, for each block, whether to output a hypothesis for this
block or to ask for additional queries. In the latter case it is supplied with an infinite
number of queries (for this block) and gets charged only for the q original queries
made in the first stage. At the end of the second stage the algorithm must output
a hypothesis for each of the remaining blocks. The algorithm is required to output
hypotheses which together form an ε-approximation of the target. Clearly, the charges
incurred in the above game provide a lower bound on the actual query complexity of
any learning algorithm. The following claim refers to our charging convention.

Claim: Any algorithm that learns Sn with ε error and confidence 0.9 incurs a
charge of at least 0.04 · p(n) · q.

Proof. Consider the following mental experiment in which an algorithm executes
only the first stage, and all its queries are answered “0” (as if each block corresponds
to the empty interval function). For each i, let Ii be an interval (of maximum length)
in the ith block such that the probability that a query is made (in the above mental
experiment) to this interval is below δ (for δ = 0.2). Employing the analysis of the
single-block case, it follows that |Ii| ≥ δ

q ·Q for every i.
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We next define a distribution on 2p(n) possible target concepts: For the ith block,
independently, with probability 1/2, the interval Ii is chosen (to determine the ith
block), and with probability 1/2, the empty interval is chosen. Now consider a full
(two-stage) execution of an algorithm that learns Sn with ε error and confidence 0.9,
when the target is chosen according to the above distribution. Since the bound on the
error and confidence of the algorithm are with respect to a worst-case choice of a target
concept, it must still hold that, with probability at least 0.9 over the randomization
of the algorithm and the random choice of the target, the error of the algorithm is at
most ε.

Suppose, in contradiction, that this algorithm incurs charge less than 0.04p(n) · q
(where q = (100ε)−1 is as above). Then, for at least a 0.96 fraction of the blocks, the
algorithm outputs a hypothesis at the end of the first stage. By our assumption on
the algorithm, with probability at least 0.9, the overall error in these hypotheses must
be bounded by ε, and so at most one-ninth of these blocks may have relative error
greater than 10ε (as otherwise the overall error is at least 0.96 · 1

9 · 10ε > ε). But this
implies that, on a uniformly selected block, with probability at least 0.9 ·0.96 · 89 > 0.6,
the algorithm has relative error smaller than 10ε while making at most q queries to
the block. However, the last assertion contradicts our analysis of the single block
case. Specifically, the algorithm queries the relevant interval I = Ii of the ith block
with probability at most δ = 0.2, and so for a random concept assigned to this block
(uniformly chosen to be either I or the empty interval), with probability at least 0.8/2,

the algorithm error will be at least |I|/2Q ≥ 0.1
q = 10ε.

Combining the above discussion with the claim, the lemma follows.

Lemma 4.4. csc(S, n, ε) = O(p(n)/ε) .

Proof. The computationally bounded learner simply finds a minimal consistent
hypothesis for each block in the concept. Namely, for the ith block it lets ûi ∈ [Q]
be the smallest index of an example labeled 1 that belongs to ith block, and it lets
v̂i ∈ [Q] be the largest index of an example labeled 1 in the ith block. If no example
in the block is labeled 1, then it lets ûi = [Q], and v̂i = 1 (so the hypothesis is all 0).

Assume the learner is given a sample of size bp(n)/ε (= b · k(n, ε)) for some
constant b > 1. Then, for any particular block, the expected number of examples that
fall in the block is b/ε, and the probability that fewer than b/(2ε) belong to the block
is exp(−Ω(b/ε)). Thus, by Markov’s inequality, for sufficiently large b, the probability
that the fraction of blocks receiving fewer than b/2ε examples exceeds ε/2 is a small
constant. It remains to show that with high probability the total error in the blocks
receiving a sufficient number of examples is at most ε/2. To this end we show that for
each such block, the expected error, relative to the size of the block, is at most ε/b′

for some constant b′.
Consider a particular block that receives at least s = b/(2ε) examples. Let the

interval defining the block be [u, v], and let the hypothesis of the learner be [û, v̂].
First note that by definition of the algorithm, [û, v̂] is always a subinterval of [u, v],
and hence we have only one-sided error. In particular, in the case that u > v (i.e., the
target interval is empty), the error of the hypothesis is 0. Thus assume u ≤ v. For the
sake of the analysis, if û > v̂ (i.e., the learner did not observe any positive example
in the block, and the hypothesis is all 0), redefine û to be v + 1 and v̂ to be v. By

definition, the hypothesis remains all 0. Let ζL
def
= (û − u)/Q, and ζR

def
= (v − v̂)/Q.

The error of the hypothesis (relative to the block) is the sum of these two random
variables. We next bound the expected value of ζL (the expected value of ζR is bounded
analogously).
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Fig. 5.1. The general construction with the query equalizer (analyzed in Item 2 of Theorem 1.7).

For any integer a, the probability that ζL > a· 1s is the probability that no example
fell between u and u+ (a/s) ·Q, which is (1− a/s)s < exp(−a). Therefore,

Exp(ζL) <
s−1∑
a=0

Pr

(
a

s
< ζL ≤ a+ 1

s

)
· a+ 1

s
(4.1)

<

s−1∑
a=0

Pr
(
ζL >

a

s

)
· a+ 1

s
(4.2)

<
1

s

∞∑
a=0

(a+ 1)e−a(4.3)

< 3/s = 6ε/d.(4.4)

Thus, the (total) expected error of the algorithm on all blocks that receive at least
s = b/(2ε) examples is bounded by 12ε/b.

5. The general construction. We adopt the structure of the construction pre-
sented in section 3. Specifically, the pseudorandom slice remains the same here, and
the sample equalizer is one of the two equalizers analyzed in section 4 (depending on
the application). The main modification is in the seed encoder slice (Slice II). For an
illustration of the construction, see Figure 5.1.

As in section 3, we encode each seed using the probabilistic coding scheme of
Theorem 2.2. In section 3 we repeated each resulting bit (of each encoded seed) in each
bit of a corresponding information field, where the information fields occupied only a
small fraction of Slice II and their locations were fixed. Here we augment this strategy
by having only a few of the bits of these information fields equal the corresponding
bit and the rest be set to zero. Thus, only a few locations in each information field
are really informative. Furthermore, the locations of the informative bits will not be
known a priori but will rather be “random” (as far as the computational bounded
learner is concerned). This strategy effects the computational bounded learner both
in the query and noisy models. Using queries the computational bounded learner may
focus on the informative fields but it cannot hit informative bits within these fields
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any better than at random. In the presence of noise, the learner has an even harder
time determining whether an informative bit is obtained or not.

Suppose that a ρ fraction of the bits in an information field are really informa-
tive. Then to distinguish a 0 from a 1 (with constant confidence) the learner must
observe Θ(1/ρ) examples from the information field. Things become even harder in
the presence of classification noise at rate η = 0.5 − γ, say, greater than 0.2. In this
case, when getting an example in the information field, or even making a query to the
information field, the answer may be 0 both in case the bit is not informative (and
the answer is correct) and in case the bit is informative. The latter case happens with
probability 0.5 + γ (resp., 0.5− γ) when the real information is 0 (resp., 1). Thus, in
case the information bit is 0 (resp., 1), the answer is 0 with probability 1− η (resp.,
with probability (1− ρ) · (0.5 + γ) + ρ · (0.5− γ) = 1− η− 2ργ). As 1− η is bounded
away from (both 0 and 1), distinguishing an encoding of 0 from an encoding of 1 (with
constant confidence) requires Θ(1/(ργ)2) queries/examples from the information field.

The above discussion avoids the question of how we can make the informative
locations be “random” (as far as the computational bounded learner is concerned).
These “random” locations must be part of the specification of the concepts in the
class. We cannot have truly random locations if we want to maintain a polynomial-
size description of individual concepts. The use of pseudorandom functions is indeed a
natural solution. There is still a problem to be resolved—the computational bounded
learner must be able to obtain the locations of “information” for those blocks that
it needs to learn. Our solution is to use the (i + 1)st pseudorandom function (from
Slice I) in order to specify the locations in which information regarding the ith seed
is given (in Slice II).

The following description is in terms of two density functions, denoted ρ1, ρ2 :
N×R7→R. Various instantiations of these functions will yield all the results in the
paper. Each function in the concept class consists of the three slices, and each slice is
further subpartitioned into blocks as described below.

Slice I: The pseudorandom part. This is exactly as in section 3. That is, the ith
block has size 2n−1−i and is determined by a pseudorandom function fsi : {0, 1}n−1−i →
{0, 1}, where the seed si is of length n.

Slice II: The seeds encoder. As in section 3, this slice is partitioned into t =

n − log2 n − O(1) blocks (of equal size) so that the ith block has size B
def
= 1

t · 2n−2

and encodes the ith seed, si, using an additional string ri of length O(n). Let ei be
the code word obtained by employing the probabilistic encoding scheme on input si

using randomness ri. Recall that m
def
= |ei| = O(n). The ith block is further divided

into m (consecutive) information fields, each of size ρ1(n, 2−i) · Bm , and an additional
empty field (of size (1− ρ1(n, 2−i) ·B).

A ρ2(n, 2−i) fraction of the bits in the jth information field are set to the value of
the jth bit of ei. These bits are called informative and their locations are determined
(“randomly”) by a pseudorandom function, hsi+1

: {0, 1}n 7→ {0, 1}n (this function
uses the (i + 1)st seed!). The remaining bits in each information field as well as all
bits of the empty field are set to zero.

A few details are to be specified. First, bit locations in Slice II are associated with
strings of length n− 2. Thus, bit location α ∈ {0, 1}n−2 that is inside an information
field is informative if and only if hsi+1

(11α) is among the first 2n · ρ2(n, 2−i) strings
in the lexicographic order of all n-bit long strings. The pseudorandom functions
(over the domain {0, 1}n−i−1) used in Slice I are determined by the same seeds by
letting fsi(z) = lsb(hsi(0

i+1z)), where lsb(σn · · ·σ1) = σ1 is the least significant bit
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of σn · · ·σ1.14 Thus, there is no “computational observable” interference between the
randomness used for determining informative locations and the randomness used in
Slice I.

Note that Slice II in the construction of section 3 is obtained by setting ρ1(n, ε) =
tm

g(n,ε)k(n,ε) and ρ2 ≡ 1.

Slice III: The equalizer. In this slice we use one of the two equalizers analyzed in
Theorem 1.7 (depending on the application).

5.1. Analysis of Slices I and II. It will be convenient to analyze the concept
class that results from the above by omitting Slice III (the equalizer). We refer to the
resulting class as to the core class.

Fact 5.1. The core class has information theoretic sample complexity itsc(n, ε, γ) =
O(n2/εγ2), which in turn is O(k(n, ε)/γ2).

Proof. The proof follows from the “noisy Occam razor” [Lai88].
We are not interested in an information theoretic lower bound for the core class

since the equalizer will dominate the information theoretic complexities. Thus, we
turn to analyze the computational complexities of the core class.

Lemma 5.2. The core class has
1. computational (noiseless) sample complexity csc(n, ε) = Θ( n2

ρ1(n,ε)·ρ2(n,ε) ), pro-

vided that 1
(ρ1·ρ2) is an admissible function and that it is lower bounded by 1/ε.

2. for γ ≤ 1
4 , computational (noisy) sample complexity csc(n, ε, γ) =

Θ( n2

ρ1(n,ε)·ρ2(n,ε)2·γ2 ), provided that 1
ρ1·ρ2

2
is an admissible function and that it

is lower bounded by 1/ε.
3. computational query complexity cqc(n, ε) = Θ( n

ρ2(n,ε) ), provided that 1
ρ2

is an

admissible function and that it is lower bounded by 1/ε.
Proof. Item 1 (noiseless sample complexity). This item follows by observing that

arguments used in Lemma 3.2 can be modified to obtain the desired bound. Consider
the ith block of Slice II. We first note that a random example hits an information
field of the ith block with probability ρ1(n, 2−i)/t (i.e., with probability 1/t it falls in
the ith block and conditioned on being in the ith block it falls in an information field
with probability ρ1(n, 2−i)). Thus, the probability of hitting a specific information

field (out of the m = Θ(n) fields) is ρ1(n,2−i)
tm = Θ(ρ1(n,2−i)

n2 ). We also know that a
random example in an information field is informative (i.e., depends on the encoded
bit) with probability ρ2(n, 2−i) and is set to zero otherwise.

For the lower bound, consider the ith block for i
def
= blog(1/4ε)c. Similar to what

was shown in the lower bound of Lemma 3.2, for an appropriate constant c′′, a sample

of size c′′ · n2

(ρ1(n,ε)·ρ2(n,ε) will contain informative examples in less than csecm of the

information fields in the ith block (where csec is the constant in Item 3 of Theorem 2.2).
As a result, the ith seed cannot be obtained and the error of the learner on Slice I is
too large.

The proof of the upper bound is easily adapted as well. As in the proof of
Lemma 3.2 we have that for a sufficiently large constant c′, with very high probability,
a sample of size c′ ·n2/(ρ1(n, ε) ·ρ2(n, ε)) will contain at least one informative example
in all but a small constant fraction of the m information fields in the ith block, for

14Our description assumes “pseudorandom functions” mapping n-bit strings to n-bit strings,
whereas the definition given in section 2.1 refers to functions mapping n-bit strings to a single
bit. However, given pseudorandom functions of the latter type, one can easily construct functions as
used here; see [Gol95].
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every i ≤ `
def
= dlog(8/ε)e. The only difference here is that while seeing a 1 in an

information field in fact means that the bit encoded in it is 1, seeing only 0’s in
the field only provides statistical evidence towards 0. Thus, while in Lemma 3.2 we
only had to deal with missing informative examples (that encode seeds), here we
might have errors when inferring that the bit encoded is 0. However, the coding
scheme (of Theorem 2.2) allows a constant fraction (i.e., cerr) of errors, and hence
we can handle a constant fraction of errors in each of the first ` blocks. Note that
the ` corresponding seeds determine not only the first ` blocks of Slice I but also the
locations of informative bits in the first `− 1 blocks of Slice II.

Item 2 (noisy sample complexity). The additional difficulty we encounter here
(as compared to Item 1 above) is that due to the noise it does not suffice to “hit” infor-
mative examples inside information fields in order to infer the encoded bit. Namely,
each example (informative or not) has an incorrect label with probability η = 1

2 − γ.
Therefore, seeing a 1 in an information field does not necessarily mean that it is an
informative example and the field encodes the bit 1, but rather it could be a noisy bit
in an information field encoding the bit 0.

However, there is clearly still a difference between information fields that encode 1,
and those that encode 0: In case an information field encodes 0, a random example in
it will be labeled 1 with probability η. On the other hand, in case an information field
encodes 1, a random example in it will be labeled 1 with probability ρ2(n, 2−i) · (1−
η) + (1−ρ2(n, 2−i)) · η = η+ 2γρ2(n, 2−i). Thus, we need to distinguish a 0–1 sample
with expectation η from a 0–1 sample with expectation η + Θ(γ ρ2(n, 2−i)). This is
feasible (with high probability) using O(1/(γ2 ρ2(n, 2−i)) examples. Since our coding
scheme can suffer a constant fraction of errors, we can allow that a small fraction
of information fields will receive fewer than the required number of examples, and
that among those receiving the desired number, a small fraction will be determined
incorrectly. The upper bound follows.

For η that is bounded below by some constant (say, η ≥ 1/4), a sample of size
Ω(1/(ρ2(n, 2−i)γ)2) is also required to distinguish between the two cases discussed
above with probability greater than, say 1/2+csec/8, where csec is the constant defined
in Item 3 of Theorem 2.2. Suppose that a sample of size c′m/(ρ2(n, 2−i)γ)2 falls in
the ith block of Slice II. Then, for sufficiently small c′, at most csec/2 information
fields receive a sufficient number of examples. Hence, even if all these information
fields are correctly inferred, by Remark 2.1, with very high probability no information
about the ith seed will be revealed. In particular, this holds for i = blog2(1/4ε)c. We
conclude that, for γ ≤ 1/4,

csc(n, ε, γ) = Θ

(
n2

ρ1(n, ε)
· 1

(ρ2(n, ε) · γ)2

)
.(5.1)

Item 3. Using arguments similar to those applied above we show thatO(n/ρ2(n, ε))

queries suffice for efficiently determining the first `
def
= dlog2(8/ε)e seeds residing in the

first ` blocks of Slice II. Specifically, we use a 2−`−4+i fraction of the c′ · (n/ρ2(n, ε))
queries as a random sample into the information fields of the ith block, for i = 1, . . . , `
(and ignore the empty fields in all blocks). Thus, we have c′ · 2−`−4+i · (n/ρ2(n, ε)) =
2c′′ ·m/ρ2(n, 2−i) random examples in the ith block, where c′′ is a constant related
to the constant c′. With overwhelmingly high probability we’ll obtain at least c′′m
informative bits. For a suitable choice of the constants (c′ and c′′), this suffices to
recover the ith seed for every i ≤ `. Observe that the only part in which we have used
queries is in the skewing of the random examples among the various blocks.
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We now turn to the lower bound and let i
def
= blog2(1/4ε)c. Considering the ith

block of Slice I, we show that, as long as the informative locations in the ith block of
Slice II are unknown, too few queries do not allow us to obtain information regarding
the ith seed. This will lead to the failure of the computational bounded learner, since
without such information the ith block of Slice I looks totally random (to this learner).
The actual argument starts from the last block (i.e., tth block) and proceeds up to
the ith block. Assuming that the learner has no knowledge of the jth seed, for j > i,
we show that he obtains no knowledge of the j − 1st seed. On top of what is done
in the analogous part of the proof of Lemma 3.2, we need to argue that having no
knowledge of the jth seed puts the learner in the same situation as if it has selected
its queries at random: We can think of it making a query and then having a random
biased coin determine if this query (into the seed encoder) carries information.

5.2. Applications of Lemma 5.2. Combining the analysis of the core class
(i.e., Lemma 5.2) with the adequate equalizer of Theorem 1.7, we derive all main
results of this paper. Before we do so, recall that Theorem 1.2 is a special case of
Theorem 1.3 (i.e., with noise equals zero; γ = 1/2), whereas the latter is a special
case of the first item of Theorem 1.4 (i.e., with g2 ≡ 1). Thus, we focus on proving
Theorems 1.4 and 1.5.

Proof of Theorem 1.4. In order to prove the first item, we set ρ1(n, ε)
def
= n2

g1(n,ε)·k(n,ε)

and ρ2(n, ε)
def
= 1

g2(n,ε) . By Item 1 of Theorem 1.7 and Fact 5.1, we have itsc(n, ε, γ) =

Θ(k(n, ε)/γ2). Invoking Item 1 of Lemma 5.2, we have csc(n, ε) = Θ(g1(n, ε)g2(n, ε) ·
k(n, ε)). Invoking Item 2 of Lemma 5.2, we have csc(n, ε, γ) = Θ(g1(n, ε)g2(n, ε)2 ·
k(n, ε)/γ2), for every γ ≤ 1/4. Thus, the first item follows.

In order to prove the second item, we set ρ1(n, ε)
def
= 1 and ρ2(n, ε)

def
= n2

k(n,ε) .

Again, we have itsc(n, ε, γ) = Θ(k(n, ε)/γ2), and invoking Items 1 and 2 of Lemma 5.2,
we have csc(n, ε) = Θ(k(n, ε)) and csc(n, ε, γ) = Θ(k(n, ε)2/n2γ2)), for every
γ ≤ 1/4. Thus, the second item of the theorem follows. (Actually, we can obtain a

more general result by setting ρ1(n, ε)
def
= n−(d−a−2)ε1−β and ρ2(n, ε)

def
= n−dεβ , for

any a ∈ [0, d− 2] and β ∈ [0, 1].)

Proof of Theorem 1.5, for g2 ≥ n. Here we set ρ1(n, ε)
def
= n

g2(n,ε) and ρ2(n, ε)
def
=

n
g1(n,ε)·k(n,ε) , and the hypothesis g2(n, ε) ≥ n guarantees that ρ1(n, ε) ≤ 1 as re-

quired by the admissibility condition. By Item 2 of Theorem 1.7 and Fact 5.1, we
have itqc(n, ε) = Θ(k(n, ε)) = Θ(itsc(n, ε)). Invoking Item 1 of Lemma 5.2, we
have csc(n, ε) = Θ(g1(n, ε)g2(n, ε) · k(n, ε)). Invoking Item 3 of Lemma 5.2, we have
cqc(n, ε) = Θ(g1(n, ε) · k(n, ε)). The theorem follows.

5.3. Proof of Theorem 1.5 (for arbitrary g2). The core class (analyzed in
Lemma 5.2) provides a computationally bounded learner that uses queries, which is
an advantage over a computationally bounded learner that uses only uniformly dis-
tributed examples. Whereas the former may focus its queries on the first log2(2/ε)
blocks of Slice II, the latter may not. Thus, typically, using queries entitles an ad-
vantage of a factor of n/ log(1/ε) in trying to learn Slice II above. To close this gap
(and allow us to establish Theorem 1.5 for arbitrary g2), we modify Slice II as follows.
The basic idea is to randomly permute the locations of the information fields of the
various blocks. Thus the query-learner is forced to look for the bits it needs in all
possible locations (rather than “zoom-in” on the appropriate block).
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Slice II (modified). Let t
def
= n/ log2 n (rather than t = n−log2 n). This slice is par-

titioned into t ·m fields of equal size, F
def
= 1

tm ·2n−2, where m is (as before) the length
of the encoding of an n-bit long seed. Unlike the above construction, we do not have
a common empty field (instead each field contains an informative part and an empty
part as described below). We use m permutations over {1, . . . , t}, denoted π1, . . . , πm,
to determine the correspondence between fields and seed-information. Specifically,
the jth bit of the ith seed is “encoded” in field number (j − 1) · t + πj(i). (The per-
mutations are part of the description of the concept.) Each field corresponding to
one of the bits of the ith seed consists of two parts. The first part, containing the
first ρ1(n, 2−i) · F bits of the field, carries information about the corresponding bit
of the seed; whereas the second part (the rest of the field’s bits) is uncorrelated to
the seed. Loosely speaking, the informative part contains the results of independent
coin flips each with bias ρ2(n, 2−i) towards the correct value of the corresponding
bit (i.e., the probability that the answer is correct is 0.5 + bias); whereas the rest
contains the results of independent unbiased coin flips. Actually, the random choices
are implemented by a pseudorandom function determined by the i+ 1st seed.

Lemma 5.3. Assume that 1
ρ1

and ε
ρ2

2
are admissible functions. Then the modified

core class has

1. computational (noise-less) sample complexity csc(n, ε) = Θ
(

n2

ρ1(n,ε)·ρ2(n,ε)2

)
.

2. computational query complexity cqc(n, ε) = Θ
(

n2

ρ2(n,ε)2

)
.

Proof. We follow the structure of the proof of Lemma 5.2, indicating the necessary
modifications.

Item 1. Considering Slice II, we note that a random example hits an information
part of a field belonging to the ith seed with probability ρ1(n, 2−i)/t. Intuitively,
Θ(ρ2(n, 2−i)−2) such hits are required for obtaining reliable information from this
field.

For the lower bound, we assume that the learner is given the permutations πj for
free. Still, the arguments used in Lemma 5.2 imply that it needs Ω(ρ2(n, 2−i)−2 ·m)
hits in the fields of the ith seed in order to recover this seed. Using t,m = Ω(n), the
lower bound follows.

The proof of the upper bound is to be adapted as here we cannot assume that
the permutations πj are known to the learner. For i = 1, . . . , log2(8/ε), the learner
determines the ith seed as follows. For j = 1, . . . ,m, the learner determines the
value of the jth bit in the encoding of the ith seed. It considers only examples in
the ρ1(n, 2−i) · F prefix of each of the relevant fields; that is, fields with indices
(j−1) ·t+1, . . . , (j−1) ·t+t. For each such field it estimates the bias of the field. With
high constant probability, the estimated bias of field (j−1)·m+πj(i) is approximately
ρ2(n, 2−i) and, under our assumption on ρ2, every other field corresponding to the jth
bit of an encoding of some other seed, has significantly different bias in its ρ1(n, 2−i) ·
F prefix. Thus, this bit is obtained correctly with high constant probability. As
usual, this allows us to decode correctly the entire seed. Having the ith seed we may
determine the ith pseudorandom function as well as the “encoding” of the bits of the
i− 1st code word (i.e., one may efficiently determine the value of each bit in each of
the fields corresponding to the i− 1st seed). The upper bound follows.

Item 2. The upper bound follows easily by the obvious adaptation of the above
learning strategy (i.e., when trying to determine the jth bit in the encoding of the ith
seed the learner makes queries only to the ρ1(n, 2−i) ·F prefix of each of the relevant
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fields).

For the lower bound we need to modify the argument given above (as here we
cannot afford giving away the permutations πj for free). In fact, the whole point of
the modification was to deprive the learner of such information. Still, when arguing
about the ith seed, for i = log2(4/ε), we may give the learner πj(1), . . . , πj(i−1) (∀j)
for free. We may assume without loss of generality that the learner does not make
queries to these fields (i.e., to a field with index (j − 1) · t + πj(`) for ` < i and any
j). Based on our encoding scheme, the learner must infer Ω(m) of the bits in the

encoding of the ith seed. For each bit it must discover πj(i) and make Ω
(

1
ρ2(n,2−i)

)
queries. However, for every j and ` ≥ i, the field corresponding to the jth bit of the
encoding of the `th seed has bias (in its ρ1(n, 2−i) · F prefix) that is bounded above
by ρ2(n, 2−i). Hence, for each j, the learner must perform Ω(n/(ρ2(n, 2−i)2) queries
to these fields in order to infer the desired bit. The lower bound follows.

Deriving Theorem 1.5. To prove Theorem 1.5 (in its general form), we set

ρ1(n, ε)
def
= 1

g2(n,ε) and ρ2(n, ε)
def
=
√

n2

g1(n,ε)·k(n,ε) . Invoking Item 1 of Lemma 5.3, we

have csc(n, ε) = Θ(g1(n, ε)g2(n, ε) · k(n, ε)). Invoking Item 2 of Lemma 5.3, we have
cqc(n, ε) = Θ(g1(n, ε) · k(n, ε)). So all that is left is to analyze itsc(n, ε) and itqc(n, ε),
the information theoretic sample and query complexity of the entire class. By Item 2
of Theorem 1.7, both information theoretic complexities of Slice III are Θ(k(n, ε)).
By Occam’s Razor [BEHW87], the (information theoretic) sample complexity is at
most O(s/ε), where 2s is the number of concepts in the core class. Here we have
s = t · n + m · log2(t!), where the term t · n < n2 is due to the t seeds and m ·
log2(t!) = O(mt log t) is due to the m = O(n) permutations. We use15 t = O(n/ logn)
to obtain mt · log t = O(n2), which in turn yields s/ε = O(k(n, ε)). Hence, itqc(n, ε) =
Θ(k(n, ε)) = Θ(itsc(n, ε)), and the theorem follows.

6. Proof of Theorem 1.6. Here we merely use a pseudorandom generator [BM84,
Yao82]. Specifically, we need a generator, G, which stretches seeds of length n into
sequences of length p(n). The concept class, C = {Cn}, will correspond to all possible
choices of a seed for the generator. Specifically, for every seed s ∈ {0, 1}n, we get a

concept fs ∈ Cn defined so that fs(x)
def
= σi, where σi is the ith bit of G(s) and x

belongs to the ith subset in a “nice” p(n)-way partition of {0, 1}n (e.g., a partition
by lexicographic order in which all parts are of about the same size).

By Occam’s Razor [BEHW87], the above concept class has IT SC(n, ε) = O(n/ε).
On the other hand, considering a variation of the standard lower-bound distribution
(i.e., which assigns probability 1−4ε uniformly to all instances in a single subset and is
uniform on all other instances), we derive the computational lower bound. Specifically,
using 0.1 ·p(n)/ε samples, with overwhelmingly high probability, the learner only sees
p(n)/2 different bits of the pseudorandom sequence. As far as a computationally
bounded learner is concerned, the rest of the sequence is random and so it will fail
with probability at least 1

2 when trying to predict any example corresponding to an
unseen bit. Thus, CSC(n, ε) > 0.1 · p(n)/ε.

It is not hard to see that 10 · p(n)/ε samples allow efficient learning up to error ε
(with respect to any distribution) and so CSC(n, ε) ≤ 10 · p(n)/ε.

15Alternatively, we could use t = n − O(logn) (as in previous constructions) and derive the
theorem for k(n, ε) = Ω(n2 logn)/ε.
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Abstract. We give a quadratic time algorithm for finding the minimum number of reversals
needed to sort a signed permutation. Our algorithm is faster than the previous algorithm of Han-
nenhalli and Pevzner and its faster implementation by Berman and Hannenhalli. The algorithm
is conceptually simple and does not require special data structures. Our study also considerably
simplifies the combinatorial structures used by the analysis.
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1. Introduction. In this paper we study the problem of sorting signed permu-
tations by reversals. A signed permutation is a permutation π = (π1, . . . , πn) on the
integers {1, . . . , n}, where each number is also assigned a sign of plus or minus. A
reversal, ρ(i, j), on π transforms π to

π′ = πρ(i, j)

= (π1, . . . , πi−1,−πj ,−πj−1, . . . ,−πi, πj+1, . . . , πn).

The minimum number of reversals needed to transform one permutation to an-
other is called the reversal distance between them. The problem of sorting signed per-
mutations by reversals is to find, for a given signed permutation π, a sequence of rever-
sals of minimum length that transforms π to the identity permutation (+1,+2, . . . ,+n).

The motivation for studying the problem arises from molecular biology: Con-
current with the fast progress of the human genome project, genetic and DNA data
on many model organisms are accumulating rapidly, and consequently the ability to
compare genomes of different species has grown dramatically. One of the best ways of
checking similarity between genomes on a large scale is to compare the order of ap-
pearance of identical genes in the two species. In the thirties, Dobzhansky and Sturte-
vant [7] had already studied the notion of inversions in chromosomes of drosophila.
In the late eighties, Jeffrey Palmer demonstrated that different species may have es-
sentially the same genes, but the gene order may differ between species. Taking an
abstract perspective, the genes along a chromosome can be thought of as points along
a line. Numbers identify particular genes and, since genes have directionality, the
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signs correspond to their direction. Palmer and others have shown that the differ-
ence in order may be explained by a small number of reversals [17, 18, 19, 20, 12].
These reversals correspond to evolutionary changes during the history of the two
genomes, so the number of reversals reflects the evolutionary distance between the
species. Hence, given two such permutations, their reversal distance measures their
evolutionary distance.

Mathematical analysis of genome rearrangement problems was initiated by Sankoff
[22, 21]. Kececioglu and Sankoff [16] gave the first constant-factor polynomial ap-
proximation algorithm for the problem and conjectured that the problem is NP-hard.
Bafna and Pevzner [3] and more recently Christie [6] improved the approximation
factor, and additional studies have revealed the rich combinatorial structure of re-
arrangement problems [15, 14, 2, 9, 10]. Quite recently, Caprara [5] has established
that sorting unsigned permutations is NP-hard, using some of the combinatorial tools
developed by Bafna and Pevzner [3].

In 1995, Hannenhalli and Pevzner [11] showed that the problem of sorting a signed
permutation by reversals is polynomial. They proved a duality theorem that equates
the reversal distance with the sum of three combinatorial parameters (see Theorem 2.3
below). Based on this theorem, they proved that sorting signed permutations by
reversals can be done in O(n4) time. More recently, Berman and Hannenhalli [4]
described a faster implementation that finds a minimum sequence of reversals in
O(n2α(n)) time, where α is the inverse of Ackerman’s function [1] (see also [23]).

In this study we give an O(n2) algorithm for sorting a signed permutation of n
elements, thereby improving upon the previous best-known bound [4]. In fact, if the
reversal distance is r, our algorithm requires O(r · n + nα(n)) time. In addition to
giving a better time bound, our work considerably simplifies both the algorithm and
the combinatorial structure needed for the analysis, as follows:
• The basic object we work with is an implicit representation of the overlap graph,
to be defined later, in contrast with the interleaving graph in [11] and [4]. The
overlap graph is combinatorially simpler than the interleaving graph. As a result,
it is easier to produce a representation for the overlap graph from the input, and
to maintain it while searching for reversals.
• As a consequence of our ability to work with the overlap graph, we need not
perform any “padding transformations,” nor do we have to work with “simple
permutations” as in [11] and [4].
• We deal with the unoriented and oriented parts of the permutation separately,
which makes the algorithm much simpler.
• The notion of a hurdle, one of the combinatorial entities defined by [11] for the
duality theorem, is simplified and is handled in a more symmetric manner.
• The search for the next reversal is much simpler and requires no special data struc-
tures. Our algorithm computes connected components only once, and any simple
implementation of it suffices to obtain the quadratic time bound. In contrast, in [4]
a logarithmic number of connected component computations may be performed per
reversal, using the union-find data structure.

The paper is organized as follows: Section 2 gives the necessary preliminaries. Section
3 gives an overview of our algorithm. Sections 4 and 5 give the details of our algorithm.
We summarize our results and suggest some further research in section 6.

2. Preliminaries. This section gives the basic background, primarily the theory
of Hannenhalli and Pevzner, on which we base our algorithm. The reader may find
it helpful to refer to Figure 2.1, in which the main definitions are illustrated. We
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start with some definitions for unsigned permutations. Let π = (π1, . . . , πn) denote a
permutation of {1, . . . , n}. Augment π to a permutation on n+ 2 vertices by adding
π0 = 0 and πn+1 = n+ 1 to the permutation. A pair (πi, πi+1), 0 ≤ i ≤ n, is called a
gap. Gaps are classified into two types. A gap (πi, πi+1) is a breakpoint of π if and only
if |πi − πi+1| > 1; otherwise, it is an adjacency of π. We denote by b(π) the number
of breakpoints in π.

A reversal, ρ(i, j), on a permutation π transforms π to

π′ = πρ(i, j)

= (π1, . . . , πi−1,−πj ,−πj−1, . . . ,−πi, πj+1, . . . , πn).

We say that a reversal ρ(i, j) acts on the gaps (πi−1, πi) and (πj , πj+1).

1211141334 15
a

c

b 11

10

2

1

5

4

9 8

6

7

0

3

13

12

1514

9

10,11 8,9 6,7

0,14,52,312,13

14,15

0 10215687

Fig. 2.1. (a) The breakpoint graph, B(π), of the permutation π = (4,−3, 1,−5,−2, 7, 6). Black
edges are solid, gray edges are dashed, and oriented edges are bold. (b) B(π) decomposes into two
disjoint alternating cycles. (c) The overlap graph, OV (π). Black vertices correspond to oriented
edges.

2.1. The breakpoint graph. The breakpoint graph B(π) of a permutation
π = (π1, . . . , πn) is an edge-colored graph on n + 2 vertices {π0, π1, . . . , πn+1} =
{0, 1, . . . , n+ 1}. We join vertices πi and πj by a black edge if (πi, πj) is a breakpoint
in π and by a gray edge if (i, j) is a breakpoint in π−1.

We define a one-to-one mapping u from the set of signed permutations of order
n into the set of unsigned permutations of order 2n as follows. Let π be a signed
permutation. To obtain u(π), replace each positive element x in π by 2x− 1, 2x and
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each negative element −x by 2x, 2x − 1. For any signed permutation π, let B(π) =
B(u(π)). Note that in B(π) every vertex is either isolated or incident to exactly one
black edge and one gray edge. Therefore, there is a unique decomposition of B(π) into
cycles. The edges of each cycle alternate between gray and black. Refer to a reversal
ρ(i, j) such that i is odd and j even as an even reversal. The reversal ρ(2i+ 1, 2j) on
u(π) mimics the reversal ρ(i+ 1, j) on π. Thus, sorting π by reversals is equivalent to
sorting the unsigned permutation u(π) by even reversals. Henceforth we will consider
the latter problem, and by a reversal we will always mean an even reversal. Let
b(π) = b(u(π)) and let c(π) be the number of cycles in B(π).

Figure 2.1(a) shows the breakpoint graph of the permutation π = (4,−3, 1,−5,−2,
7, 6). It has eight breakpoints and decomposes into two alternating cycles, i.e., b(π) = 8
and c(π) = 2. The two cycles are shown in Figure 2.1(b). Figure 2.2(a) shows the
breakpoint graph of π′ = (4,−3, 1, 2, 5, 7, 6), which has seven breakpoints and decom-
poses into two cycles.

For an arbitrary reversal ρ on a permutation π, define ∆b(π, ρ) = b(πρ) − b(π)
and ∆c(π, ρ) = c(πρ) − c(π). When the reversal ρ and the permutation π are clear
from the context, we will abbreviate ∆b(π, ρ) by ∆b and ∆c(π, ρ) by ∆c. As Bafna
and Pevzner [3] observed, the following values are taken by ∆b and ∆c depending on
the types of the gaps ρ(i, j) acts on:

(1) two adjacencies: ∆c = 1 and ∆b = 2;
(2) a breakpoint and an adjacency: ∆c = 0 and ∆b = 1;
(3) two breakpoints each belonging to a different cycle: ∆b = 0, ∆c = −1;
(4) two breakpoints of the same cycle C :

(a) (πi, πj+1) and (πi−1, πj) are gray edges: ∆c = −1, ∆b = −2,
(b) exactly one of (πi, πj+1) and (πi−1, πj) is a gray edge: ∆c = 0, ∆b = −1,
(c) neither (πi, πj+1) nor (πi−1, πj) is a gray edge, and when breaking C at i and
j vertices i− 1 and j + 1 end up in the same path: ∆b = 0, ∆c = 0,
(d) neither (πi, πj+1) nor (πi−1, πj) is a gray edge, and when breaking C at i and
j vertices i− 1 and j + 1 end up in different paths: ∆b = 0, ∆c = 1.

Call a reversal proper if ∆b − ∆c = −1, i.e., it is either of type 4a, 4b, or 4d.
We say that a reversal ρ acts on a gray edge e if it acts on the breakpoints which
correspond to the black edges incident with e. A gray edge is oriented if a reversal
acting on it is proper; otherwise it is unoriented. Notice that a gray edge (πk, πl) is
oriented if and only if k + l is even. For example, the gray edge (0, 1) in the graph of
Figure 2.1(a) is unoriented, while the gray edge (7, 6) is oriented.

2.2. The overlap graph. Two intervals on the real line overlap if their inter-
section is nonempty but neither properly contains the other. A graph G is an interval
overlap graph if one can assign an interval to each vertex such that two vertices are
adjacent if and only if the corresponding intervals overlap (see, e.g., [8]). For a permu-
tation π, we associate with a gray edge (πi, πj) the interval [i, j]. The overlap graph
of a permutation π, denoted OV (π), is the interval overlap graph of the gray edges
of B(π). Namely, the vertex set of OV (π) is the set of gray edges in B(π), and two
vertices are connected if the intervals associated with their gray edges overlap. We
shall identify a vertex in OV (π) with the edge it represents and with its interval in the
representation. Thus, the endpoints of a gray edge are actually the endpoints of the
interval representing the corresponding vertex in OV (π). Note that all the endpoints
of intervals in this representation are distinct integers. A connected component of
OV (π) that contains an oriented edge is called an oriented component; otherwise, it
is called an unoriented component.
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Fig. 2.2. (a) The breakpoint graph of π′ = (4,−3, 1, 2, 5, 7, 6). π′ was obtained from π of
Figure 2.1 by the reversal ρ(7, 10) or, equivalently, by the reversal defined by the gray edge (2, 3).
(b) The overlap graph of π′.

Figure 2.1(c) shows the interval overlap graph for π = (4,−3, 1,−5,−2, 7, 6). It
has only one oriented component. Figure 2.2(b) shows the overlap graph of the per-
mutation π′ = (4,−3, 1, 2, 5, 7, 6), which has two connected components, one oriented
and the other unoriented.

2.3. The connected components of the overlap graph. Let X be a set of
gray edges inB(π).Define min(X) = min{i | (πi, πj) ∈ X},max(X) = max{j |(πi, πj)
∈ X}, and span(X) = [min(X),max(X)]. Equivalently, one can look at the interval
overlap representation of OV (π) mentioned above and define the span of a set of
vertices X as the minimum interval which contains all the intervals of vertices in X.

The major object our algorithm will work with is OV (π), though for efficiency
considerations we will avoid generating it explicitly. In contrast, Pevzner and Han-
nenhalli worked with the interleaving graph Hπ, whose vertices are the alternating
cycles of B(π). Two cycles C1 and C2 are connected by an edge in Hπ if and only if
there exists a gray edge e1 ∈ C1 and a gray edge e2 ∈ C2 that overlap.

The following lemma and its corollary imply that the partition imposed by the
connected components of OV (π) on the set of gray edges is identical to the one
imposed by the connected components of Hπ.

Lemma 2.1. If M is a set of gray edges in B(π) that corresponds to a connected
component in OV (π), then min(M) is even and max(M) is odd.

Proof. Assume min(M) is odd. Then πmin(M) + 1 and πmin(M) − 1 must both
be in span(M) (i.e., there exist l1, l2 ∈ span(M) such that πl1 = πmin(M) + 1 and
πl2 = πmin(M) − 1). Thus πmin(M) is neither the maximum nor the minimum element
in the set {πi | i ∈ span(M)}. Hence, either the maximum element or the minimum
element in span(M) is πj for some min(M) < j < max(M). By the definition of
B(π) there must be a gray edge (πj , πl) for some l 6∈ span(M), contradicting the
fact that M is a connected component in OV (π). The proof that max(M) is odd is
similar.

As an illustration of Lemma 2.1, consider Figure 2.2(a). Let M1 = {(0, 1), (4, 5),
(8, 9), (6, 7)} and M2 = {(10, 11), (12, 13), (14, 15)}. Then span(M1) = [0, 9] and
span(M2) = [10, 15].

Corollary 2.2. Every connected component of OV (π) corresponds to the set of
gray edges of a union of cycles.
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Proof. Assume by contradiction that C is a cycle whose gray edges belong to
at least two connected components in OV (π). Assume M1 and M2 are two of these
components such that there are two consecutive gray edges e1 ∈ M1 and e2 ∈ M2

along C. Since the spans of different connected components in OV (π) cannot overlap
there are two different cases to consider.

(1) span(M2) ⊆ span(M1) (the case span(M1) ⊆ span(M2) is symmetric). Since
e1 and e2 are in different components they cannot overlap. Thus, either the
right endpoint of e2 is even and equals max(M2) or the left endpoint of e2 is
odd and equals min(M2). In both cases we have a contradiction to Lemma 2.1.

(2) span(M2) and span(M1) are disjoint intervals. Without loss of generality
assume that max(M1) < min(M2). The right endpoint of e1 is even and
equals max(M1), which contradicts Lemma 2.1.

Note that, in particular, Corollary 2.2 implies that an overlap graph cannot con-
tain isolated vertices.

2.4. Hurdles. Let πi1 , πi2 , . . . , πik be the subsequence of 0, π1, . . . , πn, n+1 con-
sisting of those elements incident with gray edges that occur in unoriented compo-
nents of OV (π). Order πi1 , πi2 , . . . , πik on a circle CR such that πij follows πij−1

for
2 ≤ j ≤ k and πi1 follows πik . Let M be an unoriented connected component in
OV (π). Let E(M) ⊂ {πi1 , πi2 , . . . , πik} be the set of endpoints of the edges in M. An
unoriented component M is a hurdle if the elements of E(M) occur consecutively on
CR.

This definition of a hurdle is different from the one given by Hannenhalli and
Pevzner [11]. It is simpler in the sense that minimal hurdles and the maximal ones do
not have to be treated in different ways. Using Corollary 2.2 above, one can prove that
the hurdles as we have defined them are identical to the ones defined by Hannenhalli
and Pevzner. Let h(π) denote the number of hurdles in a permutation π.

A hurdle is simple if when one deletes it from OV (π) no other unoriented compo-
nent becomes a hurdle, and it is a super hurdle otherwise. A fortress is a permutation
with an odd number of hurdles all of which are super hurdles.

The following theorem was proved by Hannenhalli and Pevzner.

Theorem 2.3 (see [11]). The minimum number of reversals required to sort a
permutation π is b(π)− c(π) + h(π), unless π is a fortress, in which case exactly one
additional reversal is necessary and sufficient.

3. Overview of our algorithm. Denote by d(π) the reversal distance of π, i.e.,
d(π) = b(π)−c(π)+h(π)+1 if π is a fortress and d(π) = b(π)−c(π)+h(π) otherwise.

Following the theory developed in [11], it turns out that given a permutation
π with h(π) > 0 one can perform t = dh(π)/2e reversals and transform π into a
permutation π′ such that h(π′) = 0 and d(π′) = d(π) − t. If OV (π) has unoriented
components then our algorithm first finds t such reversals that transform π into a π′

which has only oriented components.

Our method of “clearing the hurdles” uses the theory developed by Hannenhalli
and Pevzner. In section 5 we describe an efficient implementation of this process
which uses the implicit representation of the overlap graph OV (π). Our implemen-
tation runs in O(n) time assuming OV (π) is already partitioned into its connected
components. Recently, Berman and Hannenhalli [4] gave an O(nα(n)) algorithm for
computing the connected components of an interval overlap graph given implicitly by
its representation. Using their algorithm we can clear the hurdles from a permutation
in O(nα(n)) time.
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The overlap graph of π′, OV (π′), has only oriented components. In section 4 we
prove that in the neighborhood of any oriented gray edge e there is an oriented gray
edge e1 (e1 could be the same as e) such that a reversal acting on e1 does not create
new hurdles. Call such a reversal a safe reversal. We develop an efficient algorithm
to locate a safe reversal in a permutation with at least one oriented gray edge. Our
algorithm uses only an implicit representation of the overlap graph and runs in O(n)
time.

The second stage of our algorithm repeatedly finds a safe reversal and performs
it as long as OV (π) is not empty. Clearly the overall complexity is O(r · n+ nα(n)),
where r is the number of reversals required to sort π′.

3.1. Representing the overlap graph. We assume that the input is given as
a sequence of n signed integers representing π0. First the permutation π = u(π0) is
constructed as described in section 2.1 and stored in an array. We also construct an
array representing π−1. It is straightforward to verify that with these two arrays we
can determine for each element in π whether it is a left or a right endpoint of a gray
edge in constant time. In case the element is an endpoint of a gray edge, we can also
find the other endpoint and check whether the edge is oriented in constant time.

Thus the arrays π and π−1 comprise a representation of OV (π). Our algorithm
will maintain these two arrays while carrying out the reversals that it finds. The time
to update the arrays is proportional to the length of the interval being reversed, which
is O(n). We shall give a high-level presentation of our algorithm and use primitives
like “Scan the oriented gray edges in increasing left endpoint order.” It is easy to
see how to implement these primitives using the arrays π and π−1; we shall omit the
details.

It is easy to produce a list of the intervals in the representation of OV (π) sorted
by either the left or right endpoint from the arrays π and π−1. It is also possible to
maintain them without increasing the asymptotic time bound of the algorithm. In
practice it may be faster to maintain such lists instead of, or in addition to π and
π−1.

4. Eliminating oriented components. First we introduce some notation. Re-
call that the vertices of OV (π) are the gray edges of B(π). In order to avoid confusion
we will usually refer to them as vertices of OV (π). Hence a vertex of OV (π) is oriented
if the corresponding gray edge is oriented, and it is unoriented otherwise. Let e be a
vertex in OV (π). Denote by r(e) the reversal acting on the gray edge corresponding
to e. Denote by N(e) the set of neighbors of e in OV (π) including e itself. Denote by
ON(e) the subset of N(e) containing the oriented vertices and by UN(e) the subset
of N(e) containing the unoriented vertices.

In this section we prove that if an oriented vertex e exists in OV (π) then there
exists an oriented vertex f ∈ ON(e) such that r(f) is proper and safe. We also
describe an algorithm that finds a proper safe reversal in a permutation that contains
at least one oriented edge.

We start with the following useful observation.
Observation 4.1. Let e be a vertex in OV (π) and let π′ = πr(e). OV (π′) could be

obtained from OV (π) by the following operations. (1) Complement the graph induced
by OV (π) on N(e)− {e}, and flip the orientation of every vertex in N(e)− {e}. (2)
If e is oriented in OV (π), then remove it from OV (π). (3) If there exists an oriented
edge e′ in OV (π) with r(e) = r(e′), then remove e′ from OV (π).

Note that if e is an oriented vertex in a component M of OV (π), M − {e} may
split into several components in OV (π′). (Compare Figures 2.1(c) and 2.2(b).) Denote
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these components by M ′1(e), . . . ,M ′k(e), where k ≥ 1. We will refer to M ′i(e) simply
as M ′i whenever e is clear from the context.

Let C be a clique of oriented vertices in OV (π). We say that C is happy if for
every oriented vertex e 6∈ C and every vertex f ∈ C such that (e, f) ∈ E(OV (π)) there
exists an oriented vertex g 6∈ C such that (g, e) ∈ E(OV (π)) and (g, f) 6∈ E(OV (π)).
For example, in the overlap graph shown in Figure 2.1(c) {(2, 3), (10, 11)} and {(6, 7)}
are happy cliques, but {(2, 3), (10, 11), (8, 9)} is not. Our first theorem claims that one
of the vertices in any happy clique defines a safe proper reversal.

Theorem 4.1. Let C be a happy clique and let e be a vertex in C such that
|UN(e′)| ≤ |UN(e)| for every e′ ∈ C. Then the reversal r(e) is safe.

Proof. Let π′ = πr(e) and assume by contradiction that M ′i(e) is unoriented for
some 1 ≤ i ≤ k. Clearly N(e) ∩M ′i 6= ∅.

Assume there exists y ∈ N(e) ∩M ′i such that y 6∈ C. Clearly y must be oriented
in OV (π) and, since C is happy, it must also have an oriented neighbor y′ such that
(y′, e) 6∈ E(OV (π)). Since y′ is not adjacent to e in OV (π) it stays oriented and
adjacent to y in OV (π′), in contradiction with the assumption that M ′i is unoriented.
Hence we may assume that N(e) ∩M ′i ⊆ C.

Let y ∈ N(e) ∩M ′i and let z ∈ UN(e). Vertex z is oriented in OV (π′) and if it is
adjacent to y in OV (π′) we obtain a contradiction. Hence, z and y are not adjacent in
OV (π′), so they must be adjacent in OV (π). Hence we obtain that UN(e) ⊆ UN(y)
in OV (π). Corollary 2.2 implies that component M ′i cannot contain y alone. Thus y
must have a neighbor x in M ′i . Since N(e) ∩M ′i ⊆ C, vertex x is not adjacent to e
in OV (π). Thus we obtain that (x, y) ∈ OV (π), (x, e) 6∈ OV (π), and x is unoriented
in OV (π). Since we have already proved that UN(e) ⊆ UN(y), this implies that
UN(e) ⊂ UN(y), in contradiction with the choice of e.

For example, Theorem 4.1 implies that the reversal defined by the gray edge
(10, 11) is a safe proper reversal for the permutation of Figure 2.1 (a) since it corre-
sponds to the vertex with maximum unoriented degree in the happy clique {(2, 3), (10,
11)}. On the other hand, the reversal defined by (2, 3) creates a new unoriented com-
ponent, as it yields the permutation shown in Figure 2.2.

The following theorem proves that a happy clique exists in the neighborhood of
any oriented edge.

Theorem 4.2. Let e be an oriented vertex in OV (π). There exists an oriented
vertex f ∈ ON(e) such that for π′ = πr(f), all the components in OV (π′) are ori-
ented.

Proof. By Theorem 4.1 it suffices to show that there exists a happy clique C in
ON(e).

Let Ext(e) = {x ∈ ON(e) | there exists y ∈ ON(x) such that y 6∈ ON(e)}. That
is, Ext(e) contains all oriented neighbors of e which have oriented neighbors outside
of ON(e).

Case 1. Ext(e) = ON(e)− {e}. Set C = {e}.
Case 2. Ext(e) ⊂ ON(e)− {e}. Let D0 = ON(e)− Ext(e). For j ≥ 0, while Dj

is not a clique let Kj be a maximal clique in Dj and define Dj+1 = Dj − Kj . Let
Dk, k ≥ 0 be the final clique and set C = Dk.

It is straightforward to verify that in each of the two cases C is indeed a happy
clique.

In the next section we describe an algorithm that will find an oriented edge e
such that r(e) is safe given the representation of OV (π) described in section 3.1. The
algorithm first finds a happy clique C and then searches for the vertex with maximum
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unoriented degree in C. According to Theorem 4.1 this vertex defines a safe reversal.
Even though Theorem 4.2 guarantees the existence of a happy clique in the neigh-

borhood of any fixed oriented vertex, our algorithm does not search in one particular
such neighborhood. We will prove that the algorithm is guaranteed to find a happy
clique assuming that there exists at least one oriented edge. Therefore the algorithm
provides an alternative proof to a weaker version of Theorem 4.2 that claims only the
existence of a happy clique somewhere in the graph.

4.1. Finding a happy clique. In this section we give an algorithm that locates
a happy clique in OV (π). Let e1, . . . , ek be the oriented vertices in OV (π) in increasing
left endpoint order. The algorithm traverses the oriented vertices in OV (π) according
to this order. Let L(e) and R(e) be the left and right endpoints, respectively, of
vertex e in the realization of OV (π). After traversing e1, . . . , ei, 1 ≤ i ≤ k, the
algorithm maintains a happy clique Ci in the subgraph of OV (π) induced by these
vertices. Assume |Ci| = j, j ≤ i and let ei1 , . . . , eij be the vertices in Ci where
i1 < i2 < . . . < ij . The vertices of Ci are maintained in a linked list, ordered in
increasing left endpoint order. If there exists an interval that contains all the intervals
in Ci, then the algorithm maintains a minimal such interval ti. The clique Ci and the
vertex ti (if it exists) satisfy the following invariant.
Invariant 4.1.

(1) Every vertex el 6∈ Ci, l ≤ i, such that L(ei1) < L(el) must be adjacent to ti,
i.e., R(el) > R(ti).

(2) Every vertex el 6∈ Ci, L(el) < L(ei1) that is adjacent to a vertex in Ci is either
adjacent to an interval ep such that R(ep) < L(ei1) or adjacent to ti.
The fact that Ci is happy in the subgraph induced by e1, . . . , ei follows from this

invariant. We initialize the algorithm by setting C1 = {e1}. Initially, t1 is not defined.
Let the current interval be ei+1. If R(eij ) < L(ei+1) then Ci is guaranteed to be
happy in OV (π) since all remaining oriented vertices are not adjacent to Ci. Hence
the algorithm stops and returns Ci as the answer. See Figure 4.1(a).

We now assume that L(ei+1) ≤ R(eij ) and show how to obtain Ci+1 and ti+1.
We have to consider the following cases.

Case 1. The interval ti is defined and R(ti) < R(ei+1). Continue with Ci+1 = Ci
and ti+1 = ti. See Figure 4.1(b).

Case 2. The interval ti is not defined or R(ei+1) ≤ R(ti).
(a) R(eij ) < R(ei+1) and L(ei+1) ≤ R(ei1). Ci+1 is obtained by adding ei+1 to Ci

and ti+1 = ti. See Figure 4.1(c).
(b) R(eij ) < R(ei+1) and L(ei+1) > R(ei1). The clique Ci+1 consists of ei+1 alone

and ti+1 = ti. See Figure 4.1(d).
(c) R(ei+1) < R(eij ). As in the previous case Ci+1 = {ei+1}. In this case ti+1 is

set to eij , the last interval in Ci. See Figure 4.1(e).
The following theorem proves that the algorithm above produces a happy clique.
Theorem 4.3. Let Cl be the current clique when the algorithm stops. Then Cl

is a happy clique in OV (π).
Proof. A straightforward induction on the number of oriented vertices traversed

by the algorithm proves that Cl and tl satisfy Invariant 4.1.
The algorithm stops either when R(eij ) < L(el+1) or when l is equal to the

number of oriented vertices. In either case since Cl is happy in the subgraph induced
by e1, . . . , el it must be happy in OV (π).

The running time of the algorithm is proportional to the number of oriented
vertices traversed since a constant amount of work is performed for each such vertex.
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Fig. 4.1. The various cases of the algorithm for finding a happy clique. The topmost interval
is always ti. The three thick intervals comprise Ci. The dotted interval corresponds to ei+1.

4.2. Searching the happy clique. After locating a happy clique C in OV (π)
we need to search it for a vertex with a maximum number of unoriented neighbors.
In this section we give an algorithm that performs this task.

Let e1, . . . , ej be the intervals in C ordered in increasing left endpoint order.
Clearly, L(1) < L(2) < · · · < L(j) < R(1) < R(2) < · · · < R(j). Thus the endpoints
of the j vertices in C partition the line into 2j+ 1 disjoint intervals I0, . . . , I2j , where
I0 = (−∞, L(1)], Il = (L(l), L(l + 1)] for 1 ≤ l < j, Ij = (L(j), R(1)], Il = (R(l −
j), R(l − j + 1)] for j < l < 2j and I2j = (R(j),∞). The algorithm consists of the
following three stages.

Stage 1. Let e be an unoriented vertex that has a nonempty intersection with the
interval [L(1), R(j)]. Mark each of e’s endpoints with the index of the interval that
contains it.

Stage 2. Let o be an array of j counters, each corresponding to a vertex in C. The
intention is to assign values to o such that the sum

∑l
i=1 o[i] is the unoriented degree

of the vertex el ∈ C. The counters are initialized to zero. For each unoriented vertex
e that overlaps with the interval [L(1), R(j)] we change at most four of the counters
as follows. Let Il and Ir be the intervals in which L(e) and R(e) occur, respectively.
We may assume l < r as otherwise e is not adjacent to any vertex in C and we can
ignore it. We continue according to one of the following cases.

Case 1. r ≤ j. All the vertices from el+1 to er are adjacent to e: we increase
o[l + 1] and decrease o[r + 1] (if r < j).

Case 2. j ≤ l. All the vertices from el−j+1 to er−j are adjacent to e: we increase
o[l − j + 1] and decrease o[r − j + 1] (if r < 2j).

Case 3. l < j and j < r. Let m = min{l, r − j}. If m > 0 then all the vertices
from e1 to em are adjacent to e: we increase o[1] and decrease o[m+ 1]. Similarly let
M = max{l, r − j}. If M < j then the vertices from el+1 to ej are adjacent to e: we
increase the counter o[l + 1].

Stage 3. Compute f = maxl{
∑l
i=1 o[i]|1 ≤ l ≤ j}. Return ef .

The following theorem summarizes the result of this section. We omit the proof,
which is straightforward.



890 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

Theorem 4.4. Given a clique C, the vertex ef ∈ C computed by the algorithm
above has maximum unoriented degree among the vertices in C.

The complexity of the algorithm is proportional to the size of C plus the number
of unoriented vertices in OV (π), and hence is O(n).

5. Clearing the hurdles. In case there are unoriented components in OV (π),
there exists a sequence r1, . . . rt of t reversals that transform π into π′ such that
d(π′) = d(π)−t, where t = dh(π)/2e. In this section we summarize the characterization
given by Hannenhalli and Pevzner for these t reversals and outline how to find them
using our implicit representation of OV (π).

We will use the following definitions. A reversal merges hurdles H1 and H2 if it
acts on two breakpoints: one incident with a gray edge in H1 and the other incident
with a gray edge in H2. Recall the circle CR defined in section 2, in which the
endpoints of the edges in the unoriented components ofOV (π) are ordered consistently
with their order in π. Two hurdles H1 and H2 are consecutive if their sets of endpoints
E(H1) and E(H2) occur consecutively on CR; i.e., there is no hurdle H such that
E(H) separates E(H1) and E(H2) on CR.

The following lemmas were essentially proved by Hannenhalli and Pevzner though
stated differently in their paper.

Lemma 5.1 (see [11]). Let π be a permutation with an even number (say 2k)
of hurdles. Any sequence of k − 1 reversals each of which merges two nonconsecutive
hurdles followed by a reversal merging the remaining two hurdles will transform π into
π′ such that d(π′) = d(π)− k and π′ has only oriented components.

Lemma 5.2 (see [11]). Let π be a permutation with an odd number (say 2k+1) of
hurdles. If at least one hurdle H is simple, then a reversal acting on two breakpoints
incident with edges in H transforms π into π′ with 2k hurdles such that d(π′) = d(π)−
1. If π is a fortress then a sequence of k− 1 reversals merging pairs of nonconsecutive
hurdles followed by two additional merges of pairs of consecutive hurdles (one merges
two original hurdles and the next merges a hurdle created by the first and the last
original hurdle) will transform π into π′ such that d(π′) = d(π)− (k + 1) and π′ has
only oriented components.

We now outline how to turn these lemmas into an algorithm that finds a particular
sequence of reversals r1, . . . , rt with the properties described above. First OV (π) is
decomposed into connected components as described in [4]. Then one has to identify
those unoriented components that are hurdles. This task can be done by traversing the
endpoints of the circle CR, counting the number of elements in each run of consecutive
endpoints belonging to the same component. If a run contains all endpoints of a
particular unoriented component M, then M is a hurdle.

In a similar fashion one can check for each hurdle, whether it is a simple hurdle or
a super hurdle. While traversing the cycle, a list of the hurdles in the order they occur
on CR is created. At the next stage this list is used to identify the correct hurdles to
merge.

We assume that, given an endpoint, one can locate its connected component in
constant time. It is easy to verify that the data can be maintained so that this is
possible.

Theorem 5.3. Given OV (π) decomposed into its connected components, the
algorithm outlined above finds t reversals such that when we apply them to π we obtain
a π′ which is hurdle-free and has d(π′) = d(π)− t. The algorithm can be implemented
to run in O(n) time.

Proof. Correctness follows from Lemmas 5.1 and 5.2. The time bound is achieved
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if we always merge hurdles that are separated by a single hurdle. If the ith merge
merged hurdles H1 and H2 that are separated by H, then H should be merged in
the (i + 1)st merge. Carrying out the merges this way guarantees that the span of
each hurdle H overlaps at most two merging reversals, the second of which eliminates
H.

6. Summary. Figure 6.1 gives a schematic description of the algorithm.

algorithm Signed Reversals(π);
/* π is a signed permutation */
1. Compute the connected components of OV (π).
2. Clear the hurdles.
3. while π is not sorted do :

/* iteration */
begin

a. find a happy clique C in OV (π).
b. find a vertex ef ∈ C with maximum unoriented
degree, and perform a safe reversal on ef ;
c. update π and the representation of OV (π).

end
end 4. output the sequence of reversals.

Fig. 6.1. An algorithm for sorting signed permutations.

Theorem 6.1. Algorithm Signed Reversals finds the reversal distance r in
O(nα(n) + r × n) time, and in particular in O(n2) time.

Proof. The correctness of the algorithm follows from Theorem 2.3, Theorem 4.1,
and Lemmas 5.1 and 5.2.

Step 1 takes O(nα(n)) time by the algorithm of Berman and Hannenhalli [4].
Step 2 takes O(n) time by Theorem 5.3. Step 3 takes O(n) time per reversal, by the
discussion in section 4.

It is an intriguing open question whether a faster algorithm for sorting signed
permutations by reversals exists. It certainly might be the case that one can find an
optimal sequence of reversals faster. To date, no nontrivial lower bound is known for
this problem.

Acknowledgments. We thank Donald Knuth, Sridhar Hannenhalli, Pavel
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Abstract. We compare the compression ratio of the Lempel–Ziv algorithms with the empirical
entropy of the input string. This approach makes it possible to analyze the performance of these
algorithms without any assumption on the input and to obtain worst case results. We show that
in this setting the standard definition of optimal compression algorithm is not satisfactory. In fact,
although Lempel–Ziv algorithms are optimal according to the standard definition, there exist families
of low entropy strings which are not compressed optimally. More precisely, the compression ratio
achieved by LZ78 (resp., LZ77) can be much higher than the zeroth order entropy H0 (resp., the first
order entropy H1).

For this reason we introduce the concept of λ-optimal algorithm. An algorithm is λ-optimal
with respect to Hk if, loosely speaking, its compression ratio is asymptotically bounded by λ times
the kth order empirical entropy Hk. We prove that LZ78 cannot be λ-optimal with respect to any
Hk with k ≥ 0. Then, we describe a new algorithm which combines LZ78 with run length encoding
(RLE) and is 3-optimal with respect to H0. Finally, we prove that LZ77 is 8-optimal with respect to
H0, and that it cannot be λ-optimal with respect to Hk for any k ≥ 1.
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1. Introduction. The most widely used data compression algorithms are based
on the well known procedures LZ77 and LZ78 [23, 24]. These procedures compress the
input string by replacing phrases with a pointer to a previous occurrence of the same
phrase. This simple scheme achieves a good compression ratio and both coding and
decoding can be done on-line very efficiently.

Given the practical relevance of Lempel–Ziv algorithms, many efforts have been
done to analyze their performance. In [23] it is shown that LZ77 is optimal for a
certain family of sources, and in [24] it is shown that LZ78 achieves asymptotically
the best compression ratio attainable by a finite-state compressor. Other results have
been obtained assuming that the input string is a random sequence {Xi}+∞−∞ which is
stationary, ergodic, and takes values from a finite alphabet. Under these hypotheses,
it has been shown that LZ77 and LZ78 are optimal, that is, their compression rate
approaches the entropy of the random sequence [16, 20, 24]. Similar results have been
obtained also for other variants of the Lempel–Ziv algorithms [2, 10, 18, 19, 22] and
considering different probability distributions for the input string [6, 8].
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‡Dip. Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, I-15100 Alessandria,

Italy, and Istituto di Matematica Computazionale, CNR, Pisa, Italy (manzini@mfn.al.unipmn.it).
The work of this author was supported by a CNR short term fellowship and by MURST 40% and
60% funds. Part of this work was done when the author was visiting the Department of Computer
Science of the Johns Hopkins University, Baltimore, MD.

893



894 S. RAO KOSARAJU AND GIOVANNI MANZINI

More recently, a careful analysis of the Lempel–Ziv parsing rules (see, for exam-
ple, [7, 17, 21]) and the use of renewal theory have made it possible to estimate the
redundancy of Lempel–Ziv algorithms, that is, the amount by which the expected com-
pression ratio exceeds the entropy of the source (the redundancy is therefore a measure
of the speed at which the compression ratio approaches the entropy). In [9, 14] it is
shown that for LZ78 and many of its variants the redundancy is O

(
(logn)−1

)
, where

n is the length of the input string. In [15] it is shown that for two variants of LZ77
the redundancy is O(log logn/ logn). Note that for both families of algorithms we
also have bounds on the size of the constants hidden in the big-o notation. Finally,
in [21] it is shown that for the fixed database version of LZ78 the redundancy is lower
bounded by Ω(log logn/ logn).

Although these results have great theoretical value, they are not completely sat-
isfying since the same string s can be generated by ergodic sources with different
entropies. In addition, most of these results do not hold for every string but only in
the average case or for a set of strings which has probability one in the underlying
probabilistic model.

In order to get results which hold for every string, in this paper we analyze the
performance of the Lempel–Ziv algorithms under a different perspective. Instead of
making assumptions on the input, we consider the so-called empirical entropy which
is based on a probability distribution defined implicitly by the input string. More
precisely, for any string s, we define the kth order entropy Hk(s) by looking at the
number of occurrences of each symbol following each k-length substring inside s. We
say that an algorithm is coarsely optimal if, for all k, there exists a function fk, with
limn→∞ fk(n) = 0, such that for any string s the compression ratio ρ(s) is bounded
by

ρ(s) ≤ Hk(s) + fk(|s|).(1)

In other words, an algorithm is coarsely optimal if its compression ratio differs from
Hk(s) by a quantity which depends only on the length |s| and vanishes as |s| → ∞.
The coarse optimality of LZ78 has been proven by Plotnik et al. [11, Corollary 3] and
in section 4 we show that LZ77 is coarsely optimal as well.

Having defined optimality using (1), we can analyze an important phenomenon
which went undetected using the previous approaches. If a string s is such that
lim|s|→∞Hk(s) = 0, it is possible that (1) holds with a function fk such that Hk(s) =
o(fk(|s|)). Hence, we could have a coarsely optimal algorithm with a compression
ratio much higher than the entropy. To avoid this counterintuitive phenomenon, it
is natural to require that the function fk is such that fk(|s|) = o(Hk(s)). Unfortu-
nately, it is possible to prove that, even for k = 0, neither LZ78 nor LZ77 is optimal
according to this more satisfactory definition (Lemmas 3.1 and 4.7). For this reason
we introduce the concept of λ-optimality with respect to the kth order entropy Hk.
Loosely speaking, the compression ratio of a λ-optimal algorithm must be bounded
by λHk(s) + o(Hk(s)). Therefore, a λ-optimal algorithm is guaranteed to compress
efficiently also the low entropy strings, that is, those strings such that Hk(s)→ 0.

In this paper we prove that LZ78 cannot be λ-optimal with respect to any Hk

with k ≥ 0. This is not surprising since it is well known that LZ78 is not able to
compress efficiently long runs of identical symbols. Then, we describe an algorithm
which combines LZ78 with RLE which is 3-optimal with respect to H0. Finally, we
prove that LZ77 is 8-optimal with respect to H0, and that it cannot be λ-optimal with
respect to Hk for any k ≥ 1. Our techniques are of general interest since they rely on
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properties of LZ78 and LZ77 which are shared by other compression algorithms based
on parsing such as LZW, LZC, and LZSS (see [1, 13] for a description of these variants).

In [14, 15] Savari analyzes several variants of LZ78 and LZ77 and compares their
output size to the empirical entropy of the string. For the compression ratio of these al-
gorithms Savari proves a bound of the form g

(
k, |s|, Hk(s)

)
Hk(s)+lower order terms.

The function g is given explicitly for each algorithm, and additional bounds are given
for the case Hk(s) = 0. The analysis is not limited to the case in which each symbol
depends on the k previous symbols, but considers also more general models. How-
ever, the results in [14, 15] are valid only if Hk(s)/|s| is bounded away from zero and
therefore do not apply to the low entropy strings. For this reason these bounds com-
plement the coarse optimality results for LZ78 and LZ77, but are not directly related
with the concept of λ-optimality, which is mainly concerned with the compression of
the low entropy strings.

The results of this paper do not aim to substitute results based on probabilistic
assumptions. The latter are very deep and rich and they provide information also for
the nonprobabilistic setting (see, for example, the results on the empirical entropy
in [11, 14, 15]). One of the merits of our worst case analysis is that, as we will see, it
provides new insight on Lempel–Ziv algorithms by revealing strengths and weaknesses
which cannot be properly analyzed in the probabilistic setting.

2. Definitions and notation. Let s be a string of length n over the alphabet
A = {α1, . . . , αh}, and let ni denote the number of occurrences of the symbol αi
inside s. We define the zeroth order entropy as

H0(s) = −
h∑
i=1

ni
n

log
(ni
n

)
,

where we assume 0 log 0 = 0. The value |s|H0(s) represents the output size of an ideal
compressor which uses − log ni

n bits for coding the symbol αi. Although, as we will
see, it is by no means easy to compress a string up to its zeroth order entropy, often
even this is not enough. For example, suppose we want to compress an English text.
Clearly, we would like to take advantage not only of the different frequencies of the
single letters, but also of the fact that these frequencies depend upon the context.
The degree of compression that we can achieve by considering a context of length k,
is expressed by the conditional kth order entropy Hk(s) defined as follows. For any
string w and αi ∈ A, let nwαi denote the number of occurrences in s of the string w
followed by αi. Let nw =

∑
i nwαi . We define

Hk(s) = − 1

|s|
∑
w∈Ak

(
h∑
i=1

nwαi log

(
nwαi
nw

))
.(2)

The value |s|Hk(s) is the output size of an ideal algorithm which uses − log(nwαi/nw)
bits for the symbol αi when it appears after the “context” w. This means that the
code for αi depends on the k characters preceding it. Note that we are assuming that
this algorithm codes the first k characters of s for free. As k increases, the entropy
Hk(s) is defined in terms of longer, and therefore more accurate, contexts. It is not
difficult to prove that Hk is a decreasing function of k.

Formula (2) is not the only possible definition of entropy in terms of frequencies
of characters. Another definition found in the literature is

H ′k(s) = −1

k

∑
w∈Ak

nw
n

log
(nw
n

)
,
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that is, H ′k is the first order entropy of the k-letter words. Disregarding low order
terms, we have H ′k(s) ' 1

k [H1(s) + · · · + Hk(s)] (we get an equality if we consider
also the k-letter words which wrap around the string s). Since Hk(s) decreases with
k, we have H ′k(s) ≥ Hk(s). Since we are interested in bounding the output size of
compression algorithms in terms of the entropy, by considering Hk we get stronger
results.

Having defined the kth order entropy, we can define the class of optimal com-
pression algorithms. The natural extension of the definition given in the information
theoretic setting (see, for example, [5]) is the following.

Definition 2.1. A compression algorithm A is coarsely optimal, if for all k ≥ 0
there exists a function fk, with limn→∞ fk(n) = 0, such that for all strings s we have

A(s)

|s| ≤ Hk(s) + fk(|s|),(3)

where A(s) denotes the output size of algorithm A on input s.
As we have already pointed out, the above definition is not completely satisfactory

since, if Hk(s) � fk(|s|), we can have an optimal algorithm for which the compres-
sion ratio is much greater than the entropy. For this reason, we introduce a more
restrictive definition of optimality in which we require that the difference between the
compression ratio and the kth-order entropy is a lower order term.

Definition 2.2. A compression algorithm A is λ-optimal with respect to Hk, if
it is coarsely optimal and there exists a function gk, with gk(t) = o(t), such that for
any string s with Hk(s) 6= 0

A(s) ≤ λ|s|Hk(s) + gk(A(s)),(4)

where A(s) denotes the output size of algorithm A on input s.
Note that (4) implies that gk(A(s)) = o(|s|Hk(s)). We use (4) since it is easier

to prove that a certain quantity is a lower order term with respect to the output size
of the algorithm rather than with respect to the usually unknown kth order entropy.
Note also that λ-optimality is defined with respect to a single entropy Hk. As we will
see, to ask (4) to hold for every k ≥ 0 would be too strong a requirement. However, a
λ-optimal algorithm must be coarsely optimal; hence (3) must hold for every k ≥ 0.
By studying the λ-optimality of an algorithm we measure how well it behaves when
the input is a low entropy string; this is something which is not possible using the
concept of coarse optimality alone.

In this paper we make use of the following lemma which is a generalization of a
similar result proven in [5] for stationary ergodic sequences.

Lemma 2.3. Let y1, . . . , yt denote a parsing of the string s such that each word
yi appears at most M times. For any k ≥ 0 we have

t log t ≤ |s|Hk(s) + t log

( |s|
t

)
+ t logM + Θ(kt+ t) .(5)

The proof of this lemma is given in the appendix. Note that if the words in the
parsing are all distinct the above inequality becomes

t log t ≤ |s|Hk(s) + t log

( |s|
t

)
+ Θ(kt+ t) .(6)
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In the rest of the paper we use the following notation. The length of the output
produced by the compression algorithm A on input s is denoted by A(s). The compres-
sion ratio achieved is ρ(s) = A(s)/|s|. Given a nonempty string s, s− will denote the
string obtained from s by removing the last character. If |s| > 1, we set s−− = (s−)−.
Given k words w1, w2, . . . , wk, their concatenation will be denoted by w1w2 · · ·wk.

3. Compression of low entropy strings with LZ78. In this section we con-
sider the algorithm LZ78. First, we show that for certain strings LZ78 compression
ratio is well above the zeroth order entropy H0. Then we prove that by combining
LZ78 with RLE we get a new algorithm which is 3-optimal with respect to H0.

The algorithm LZ78 works as follows (see [1] for details). Assuming the words
w1, w2, . . . ,wi−1 have been already parsed, LZ78 selects the ith word as the longest
word that can be obtained by adding a single character to a previous word. Hence,
w−i = wj for some j < i, but unless wi is the last word in the parsing, we have
wi 6= wk, for all k < i. As soon as wi has been found, LZ78 outputs an encoding of
the pair (j, αi), where j is such that w−i = wj and αi is the last character of wi. If we
are working with an alphabet with h symbols, such encoding takes dlog ie + dlog he
bits (all logarithms in this paper are taken to the base 2). Hence, if the input string is
parsed into t words, the output of LZ78 has size t log t+ t log h+O(t). In the following
we assume that all the words are distinct since this greatly simplifies our analysis and
changes the word count by at most one.

Lemma 3.1. There exists a constant c > 0 such that for every n ≥ 1 there exists
a string s of length n satisfying LZ78(s)/|s| ≥ c√nH0(s).

Proof. Consider the string s = 01(n−1). LZ78 parses s into Θ(
√
n) words, hence

the compression ratio is Θ((log n)/
√
n), whereas H0(s) = (logn)/n.

Despite all the optimality results for LZ78, we can hardly say that it compresses
optimally the string s. As we have already pointed out, using the standard definition
of optimal compression given by (3), the problem is that if Hk(s) → 0 and Hk(s) =
o(fk(|s|)), the compression ratio ρ(s) can be much higher than Hk(s).

Lemma 3.1 suggests that the inability of LZ78 to compress efficiently low entropy
strings is due to the inability to cope with long runs of identical symbols. In view
of this, it is natural to ask if we can compress optimally also the low entropy strings
by combining LZ78 with RLE. RLE is a technique frequently used when the input
may contain long runs of identical symbols. RLE is used either as a fast stand-alone
compressor, or as a preprocessing step for more complex compression procedures. We
now present an algorithm, which we call LZ78RL, which follows the latter approach
and uses RLE as a preprocessing step for LZ78.

3.1. The algorithm LZ78RL. In this section we describe and analyze an algo-
rithm which combines LZ78 with RLE. We underline that our analysis does not rely
on the particular parsing realized by LZ78. Indeed, the analysis is based only on the
two facts that LZ78 parses the input string into distinct words, and that its output
size is t log t+O(t), t being the number of words in the parsing. Hence, our analysis
can be applied also to other parsing-based compression algorithms. With some addi-
tional work it can be applied also to the algorithms LZW and LZC (the core of the Unix
utility compress) in which the same word can appear in the parsing more than once.

Let s denote a string over the alphabet A, and let s′ be a substring of s. We
call s′ an α-segment if it contains only the symbol α, and the two symbols adjacent
to s′ are different from α. Let 0 denote a symbol not belonging to A. For m > 0,
α ∈ A, let B(αm) denote the string obtained by writing m in binary using α as 1 and
0 as 0. For example, B(ααααα) = α0α. Given the string s, we define the run length
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encoding of s as the string s̃ obtained from s by replacing each δ-segment δm with
the string B(δm). For example, if s = αααββαγγγγ, then

s̃ = ααβ0αγ00.

Clearly, given s̃ we can obtain s. In fact, δ is always the first symbol in B(δm), and
we know that we have reached the end of a δ-segment when we encounter a symbol
different from δ or 0. Note that, since |B(δm)| = blogmc+ 1 ≤ m, we have |s̃| ≤ |s|.
In the following LZ78RL will denote the algorithm which applies LZ78 to the string s̃.

Our implementation of RLE is certainly somewhat different from the more com-
mon strategy to use a byte to store a repetition count for the last seen character.
However, this simpler strategy is not powerful enough to make LZ78 overcome the
problem outlined in Lemma 3.1. An obvious drawback of our RLE implementation
is that it requires an extra character not belonging to A. Note that this is not a
problem when RLE is used together with algorithms like LZW and LZC which never
output single characters. We have also devised a RLE strategy in which we do not
need to extend the alphabet. However, this alternative encoding is less efficient, and
when combined with LZ78 it produces an algorithm which is 6-optimal with respect
to H0 (LZ78RL is 3-optimal with respect to H0; see Theorem 3.6).

Theorem 3.2. The algorithm LZ78RL is coarsely optimal with respect to the
entropy Hk(s), for any k ≥ 0.

Proof. Let t denote the number of words in the LZ78 parsing of the string s̃. In
the Appendix (Lemma B.1) we show that this parsing induces a t-word parsing of the
string s in which each word appears at most 2 log |s| times. By (5) we get

t log t ≤ |s|Hk(s) + t log

( |s|
t

)
+ t log log |s|+ Θ(kt) .(7)

Since LZ78 parses s̃ into distinct words, we have (see, for example, [5, Lemma 12.10.1])

t = O
(
|s̃|

log |s̃|
)

= O
(
|s|

log |s|
)

. Hence, log |s| = O
(
|s|
t

)
, and (7) becomes

t log t ≤ |s|Hk(s) + 2t log

( |s|
t

)
+ Θ(kt) .

Since t = O
(
|s|

log |s|
)

, we get

t log t

|s| ≤ Hk(s) +O

(
log log |s|

log |s| +
k

log |s|
)
,

which proves the coarse optimality of LZ78RL.
We now show that, in addition to being coarsely optimal, the algorithm LZ78RL

compresses almost optimally (with respect to H0) also the low entropy strings. In
our analysis we will use the following notation. Given a string s over the alphabet
A = {α1, . . . , αh}, for i = 1, . . . , h, let ni denote the number of occurrences of αi in

s. We assume that n1 = maxi ni, we set r = n2 + n3 + · · ·+ nh, and τ = |s|
r . Define

G(n1, n2, . . . , nh) = |s|H0(s) = −
h∑
i=1

ni log

(
ni
|s|
)
.(8)

By setting F (x) = x log x, we get the following alternative representation of G:

G(n1, . . . , nh) = F (n1 + n2 + · · ·+ nh)− [F (n1) + F (n2) + · · ·+ F (nh)] .(9)
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In the following, we will use the two forms |s|H0(s) and G(n1, . . . , nh) interchangeably.
Let t denote the number of words into which LZ78 parses the string s. By (6), we

know that

LZ78(s) ≤ |s|H0(s) + t log

( |s|
t

)
+ Θ(t) .(10)

Using elementary calculus one can easily prove that

t log(|s|/t) ≤ t log τ + max[G(n1, . . . , nh)− t log t, t log log t+ 2t],

which yields

LZ78(s) ≤ |s|H0(s) + t log τ +O(t log log t) .(11)

The following lemma formalizes the intuitive notion that as τ = |s|
r increases, the

value |s|H0(s) becomes much smaller than |s|.
Lemma 3.3. For any string s, we have H0(s) ≤ log(τhe)

τ .
Proof. Let n = |s|. Using elementary calculus we get

G(n1, . . . , nh) = G(n1, n− n1) +G(n2, . . . , nh)

≤ G(n− n/τ, n/τ) + (n/τ) log h

= (n/τ)[F (τ)− F (τ − 1) + log h]

≤ (n/τ)[log(τe) + log h],

where we have used that F is convex and F ′(t) = log(et).
The following two lemmas bound the entropy and the length of the “encoded”

string s̃ in terms of the entropy of s.
Lemma 3.4. For any string s, we have |s̃|H0(s̃) ≤ |s|H0(s) + |s̃|.
Proof. For i = 1, . . . , h, let mi denote the number of occurrences of αi inside s̃,

and zi denote the number of 0’s created converting the αi-segments. Let vi = mi+zi.
By (9), we have

|s̃|H0(s̃) = G

(
m1, . . . ,mh,

h∑
i=1

zi

)

= F

(
m1 + · · ·+mh +

h∑
i=1

zi

)
−
[

h∑
i=1

F (mi) + F

(
h∑
i=1

zi

)]

≤ F (v1 + · · ·+ vh)−
h∑
i=1

[F (mi) + F (zi)].

By Jensen inequality, we know that F (mi) + F (zi) ≥ 2F (vi/2) = F (vi)− vi, hence

|s̃|H0(s̃) ≤ F (v1 + · · ·+ vh)−
h∑
i=1

[F (vi)− vi]

= G(v1, . . . , vh) +
h∑
i=1

vi

≤ |s|H0(s) + |s̃|.
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Lemma 3.5. For any string s, we have |s̃| ≤ 2|s|H0(s).
Proof. Let n1 = maxi ni, r = |s| − n1 = n2 + · · ·+ nh. If n1 ≤ |s|/2, we have

|s|H0(s) =
h∑
i=1

ni log

( |s|
ni

)
≥

h∑
i=1

ni = |s| ≥ |s̃|,

and the lemma follows. If n1 > |s|/2, then

|s|H0(s) ≥ n1 log

(
n1 + r

n1

)
+

h∑
i=2

ni log

( |s|
r

)

= r log

(
1 +

r

n1

)n1
r

+ r log

( |s|
r

)
.

Since, (1 + 1/t)t ≥ 2, for t ≥ 1, we have

|s|H0(s) ≥ r + r log

( |s|
r

)
.(12)

In order to bound |s̃|, we note that the string s contains at most r + 1 α1-segments.
Hence,

|s̃| ≤
r+1∑
i=1

(log qi + 1) +
h∑
i=2

ni,

with q1 + · · ·+ qr+1 = n1. From the concavity of log t we obtain

|s̃| ≤ (r + 1) log

(
n1

r + 1

)
+ 2r + 1.

For r = 1, we have

|s̃|
2|s|H0(s)

≤ 2 logn1 + 1

2 + 2 log(n1 + 1)
≤ 1.

For r ≥ 2, we set t = n1/r, and we get

|s̃|
2|s|H0(s)

≤ 2r + (r + 1) log t+ 1

2r + 2r log(1 + t)
.

A straightforward computation shows that for t ≥ 1, 2r log(1 + t) ≥ (r + 1) log t+ 1,
and the lemma follows.

We are now ready to establish the main result of this section.
Theorem 3.6. The algorithm LZ78RL is 3-optimal with respect to H0.
Proof. We have already shown that LZ78RL is coarsely optimal (Theorem 3.2).

Hence, we need to prove that for any string s with H0(s) 6= 0 we have

LZ78RL(s) ≤ 3|s|H0(s) + lower order terms.

By (11) we know that

LZ78RL(s) ≤ |s̃|H0(s̃) + t log τ +O(t log log t) ,
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where t denotes the number of words in the LZ78 parsing of the string s̃. If τ ≤ 16h the
theorem trivially holds, since, by Lemmas 3.4 and 3.5, we have |s̃|H0(s̃) ≤ 3|s|H0(s).
Assume now τ > 16h. By (10), we know that

LZ78RL(s) ≤ |s̃|H0(s̃) + t log

( |s̃|
t

)
+O(t) .

It is straightforward to verify that, for 0 < x < |s̃|, we have x log(s̃/x) ≤ (|s̃| log e)/e ≤
(2|s̃|)/3. Hence, we can write

LZ78RL(s) ≤ |s̃|H0(s̃) + (2|s̃|)/3 +O(t) .

Since τ > 16h, we have log(τhe)
τ ≤ 5

6 . Thus, by Lemmas 3.3 and 3.5 we have

LZ78RL(s) ≤ |s̃|
(

log(τhe)

τ

)
+

2

3
|s̃|+O(t)

≤ 3

2
|s̃|+O(t)

≤ 3|s|H0(s) +O(t) .

This completes the proof.

4. Compression of low entropy strings with LZ77. In this section we con-
sider the algorithm LZ77. First, we prove that this algorithm is coarsely optimal
according to Definition 2.1. This is not surprising since it is known that LZ77 com-
presses much better than LZ78. In view of the results of section 3, what is more
interesting is to understand how well LZ77 compresses the low entropy strings. To
this end, we prove that LZ77 is 8-optimal with respect to H0. We also show that this
result cannot be substantially improved: we present a family of low entropy strings
for which LZ77(s) ≥ 2.5|s|H0(s) and we prove that LZ77 cannot be λ-optimal with
respect to H1.

The algorithm LZ77 works as follows (see [1] for details). Assuming the words w1,
w2, . . . , wi−1 have been already parsed, LZ77 selects the ith word as the longest word
that can be obtained by adding a single character to a substring of (w1w2 · · ·wi)−−.
Hence, wi has the property that w−i is a substring of (w1 · · ·wi)−−, but wi is not a
substring of (w1 · · ·wi)−. Note that although this is a recursive definition there is no
ambiguity. In fact, if |wi| > 1 at least the first character of wi belongs to w1w2 · · ·wi−1.
Once wi has been found, LZ77 outputs an encoding of the triplet (pi, li, αi), where
pi is the starting position of w−i within w1w2 · · ·wi−1, li = |wi|, and αi is the last
character of wi.

Compared to LZ78, the algorithm LZ77 parses the input into fewer words and
generally achieves a better compression. In addition, it still has the nice property
that both coding and decoding can be done in O(|s|) time (see [12]). Note that in
the original formulation of LZ77 [23] pi is allowed to denote a position only within
the last L characters of w1w2 · · ·wi−1 (the so called “sliding window”). The use of
a sliding window makes the coding procedure faster, and in most cases it affects the
compression ratio only slightly. However, as we will see (Lemma 4.3), if the window
has a fixed size the algorithm cannot be coarsely optimal.

4.1. Coarse optimality of LZ77. To analyze the compression ratio achieved
by LZ77 we need to specify the encoding of the triplet (pi, li, αi) representing the ith
word in the parsing of s. For our analysis we assume the following simple scheme.
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Since 1 ≤ pi ≤
∑
j<i lj , we use

⌈
log(

∑
j<i lj)

⌉
bits for encoding pi. Assuming the

input alphabet has h symbols, we use dlog he bits for encoding αi. Finally, since we
cannot bound in advance the size of li, we use a scheme which allows the encoding of
unbounded integers. More precisely, we code li using 1 + blog lic+ 2 blog(1 + blog ic)c
bits (for details on this and other similar schemes, see, for example, [3]). Although
there are other possible methods for describing these triplets, we believe our analysis
can be adapted to all “reasonable” encodings.

Assuming we use the above encoding scheme for each word in the parsing, the
output of LZ77 has size

LZ77(s) =

t∑
i=1

(
log(

∑
j<i

lj) + log li + 2 log(1 + log li)
)

+O(t) .

Obviously, (
∑
j<i lj) ≤ |s|. In addition, from the concavity of the function log x +

2 log(1+log x), we get
∑
i(log li+2 log(1+log li)) ≤ t[log(|s|/t)+2 log(1+log(|s|/t))].

Hence,

LZ77(s) ≤ t log |s|+ t log

( |s|
t

)
+O(t log log(|s|/t)) ,

or, equivalently,

LZ77(s) ≤ t log t+ 2t log

( |s|
t

)
+O(t log log(|s|/t)) .(13)

Since LZ77 parses its input into distinct words, we can use (6) which yields

LZ77(s) ≤ |s|Hk(s) + 3t log

( |s|
t

)
+O

(
kt+ t log log

( |s|
t

))
.(14)

We can now easily prove that LZ77 is optimal according to Definition 2.1.
Theorem 4.1. The algorithm LZ77 is coarsely optimal.
Proof. Let t denote the number of words in the LZ77 parsing. Since the words

are distinct, we have t = O
(
|s|

log |s|
)

. From (14) we get

LZ77(s)

|s| ≤ Hk(s) +O

(
log log |s|

log |s| +
k

log |s|
)
,

which proves the optimality of LZ77.
Despite the above optimality result, the following lemma shows that, ifH1(s)→ 0,

LZ77 compression ratio can be asymptotically greater than H1.
Lemma 4.2. There exists a constant c > 0 such that for every n > 1 there exists

a string s of length |s| ≥ n satisfying

LZ77(s)

|s| ≥ c log |s|
log log |s|H1(s).

Proof. Consider the following string:

s = 1 0k 22k 1 101 1021 1031 1041 · · · 10k1.
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We have |s| = 2k+O
(
k2
)
. A simple computation shows that |s|H1(s) = k log k+O(k).

The LZ77 parsing of s is

1 0 0(k−1)2 2(2k−1)1 101 1021 1031 · · · 10k1.

For i ≥ 5, we have
∑
j<i lj > 2k. Hence, the encoding of pi takes Ω(k) bits. Since

there are k + 4 words, we have LZ77(s) = Ω
(
k2
)

and the lemma follows.
Let us comment on the above lemma. We can clearly see that the inefficiency of

LZ77 is due to the cost of encoding pi, and it is possible that, using a clever encoding,
we can reduce LZ77 output size significantly. However, for any encoding scheme we
have been able to think of, it was always possible to find a “bad” string which LZ77

is not able to compress up to the first order entropy. Lemma 4.2 also shows that it
is sometimes not convenient to search for the longest match over the entire parsed
portion of the input string. Indeed, a common practice is to restrict the search to a
sliding window containing the last L characters seen by the algorithm (this is in fact
the original formulation of LZ77 found in [23]). This strategy, which we call LZ77L,
usually reduces dramatically the cost of encoding the pointers pi’s, at the expense of
a moderate increment in the number of words. For example, for k < L < 2k, LZ77L
parses the string given in the proof of Lemma 4.2 in k + 5 words. The output size
is ≈ k(log k + logL) which, for L = kO(1), differs from |s|H1(s) only by a constant
factor. Unfortunately, the following lemma shows that LZ77L is not coarsely optimal
since it sometimes fails to compress up to the kth order entropy when k ≥ L− 1.

Lemma 4.3. The algorithm LZ77L is not coarsely optimal for any L > 0.
Proof. For k = L− 1 and n > 0, we exhibit a string s of length 2kn+ 1 such that

|s|Hk(s) = Θ(logn) and LZ77L(s) = Θ(n). Let

s = (0k1k)n1.

The LZ77L parsing of s consists of the following 2n+ 1 words

0 0k−11 1k−10 0k−11 · · · 1k−10 0k−11 1k.

To see this, consider for example the situation after the parsing of the third word. The
unparsed portion of the string is 0k−11k0k1k0k · · ·. Since at that moment the sliding
window contains 1k0, the only possible match is the one starting at the last character
of the sliding window. Hence, every word has length at most k and LZ77L(s) = Θ(n).
Note that LZ77 parses the above string into four words only.

For the computation of Hk(s) we notice that s contains only 2k distinct k-letter
words, namely

0i1k−i, i = 1, . . . , k and 1i0k−i i = 1, . . . , k.

In addition, every occurrence of a word 0i1k−i is always followed by a 1, and, for
i < k, every occurrence of 1i0k−i is followed by a 0. Finally, the word 1k is followed
n− 1 times by a 0 and once by a 1. As a result, we have |s|Hk(s) = Θ(logn) and the
lemma follows.

4.2. λ-optimality of LZ77. We now show that LZ77 is 8-optimal with respect
to H0. We start our analysis with the following lemma which establishes an optimality
result for the number of words in the LZ77 parsing.

Lemma 4.4. Let w1, w2, . . . , wt denote the LZ77 parsing of the string s. Suppose
y1, y2, . . . , yt′ is another parsing of s such that, for i = 1, . . . , t′, |yi| = 1 or y−i is a
substring of (y1 · · · yi)−−. Then, t ≤ t′.
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Proof. One can easily prove by induction that, for j = 1, . . . , t, the string
y1y2 · · · yj is a prefix of w1w2 · · ·wj .

Given a string s, in the following ni will denote the number of occurrences of αi
in s. We assume n1 = maxi ni, and we set r = |s|−n1. The following lemma provides
a bound on the number of words in the LZ77 parsing in terms of r. The bound is
tight when r � |s|.

Lemma 4.5. Let t denote the number of words in which the algorithm LZ77 parses
the string s. We have t ≤ 2(r + 1).

Proof. We prove the lemma by showing that there exists a parsing y1y2 · · · yt′ ,
t′ ≤ 2(r + 1), for s which satisfies the hypothesis of Lemma 4.4. Let k denote the
number of α1-segments appearing inside s. Since there are r characters different from
α1 we have 1 ≤ k ≤ r + 1. Consider the following parsing. Each α1-segment and the
character following it is parsed in two words: the first consisting of the single character
α1, the second of the form αk1αj . After this, we are left with at most r−k+1 unparsed
characters, all of them different from α1. By parsing these characters using length-one
words, we get a parsing for s consisting of 2k + (r − k + 1) ≤ 2(r + 1) words.

We are now ready to establish the main result of this section.
Theorem 4.6. The algorithm LZ77 is 8-optimal with respect to H0.
Proof. We have already shown that LZ77 is coarsely optimal (Theorem 4.1).

Hence, we need to prove that, for any string s with H0(s) 6= 0, we have

LZ77(s) ≤ 8|s|H0(s) + lower order terms.

Let t denote the number of words in the LZ77 parsing of s, and let r be defined
as in Lemma 4.5. We consider four cases.

Case 1. 1 ≤ r < 6.
By Lemma 4.5 we know that t ≤ 12. Using (13) we get

LZ77(s) ≤ 2t

(
log
|s|
t

)
+O(t log log(|s|/t)) .(15)

Let g(x) = x log(|s|/x). For 0 < x < (|s|/e), we have g′(x) > 0. Since r + 1 ≤ 2r, we
get

t log

( |s|
t

)
≤ 4r log

( |s|
r

)
≤ 4

[
h∑
i=2

ni log

( |s|
ni

)]
≤ 4|s|H0(s).

Combining this inequality with (15) we get the thesis.
Case 2. 6 ≤ r < 3|s|/7e.
By Lemma 4.5 we know that t ≤ 2(r + 1) ≤ 7

3r ≤ |s|/e. Reasoning as in Case 1
we get

t log

( |s|
t

)
≤ 7

3

[
r log

( |s|
r

)]
≤ 7

3
|s|H0(s).

Substituting this inequality into (14) we get the thesis.
Case 3. 3|s|/7e ≤ r < |s|/2.
Let G(n1, n2) be defined as in (8). We have

|s|H0(s) ≥ G(|s| − r, r) = |s|G(1− r
|s| ,

r
|s| ) ≥ |s|G (1− 3/(7e), 3/(7e)) ≥ |s|/2.
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By elementary calculus we know that, for 0 < x < |s|, x log(|s|/x) ≤ (|s|/e) log e ≤
2|s|/3. Hence

t log

( |s|
t

)
≤ 2|s|

3
≤ 4

3
|s|H0(s).

Substituting this inequality into (14) we get the thesis.
Case 4. r ≥ |s|/2.
Since, for i = 1, . . . , h, ni < |s|/2 we have

|s|H0(s) =
h∑
i=1

ni log

( |s|
ni

)
≥ |s|.

Combining this inequality with the fact that t log(|s|/t) ≤ 2|s|/3 we get LZ77(s) ≤
3|s|H0(s) +O(t log log( |s|t )), and the theorem follows.

Finally, we show that the above theorem cannot be substantially improved since
there exists an infinite family of strings such that the compression ratio of LZ77 is
greater than 2.5H0.

Lemma 4.7. For every n, there exists a string s of length |s| ≥ n such that
LZ77(s)
|s| ≥ 2.5H0(s).

Proof. Consider the following string

s = 01041091 · · · 10i
2

1 · · · 10k
2

1.

We have |s| = k3/3 +O
(
k2
)
, and |s|H0(s) = 2k log k+O(k). The LZ77 parsing of s is

0 1 00 02105 041010 · · · 02(i−1)10i
2+1 · · · 02(k−2)10(k−1)2+1 02(k−1)1.

Let pi and li denote, respectively, the starting position and the length of the ith
word. We have li = Θ

(
i2
)
. Hence, neglecting the log log term, encoding li takes

≈ 2 log i + log log i bits. Similarly, since
∑
j<i lj = Θ

(
i3
)
, encoding pi takes ≈ 3 log i

bits. Neglecting lower order terms, the output size of LZ77 is therefore 5(
∑
i≤k log i) ≈

5k log k bits, and the lemma follows.

5. Conclusions. In order to analyze the performance of the Lempel–Ziv algo-
rithms without any assumption on the input, we have compared the compression
ratio of LZ77 and LZ78 with the so-called empirical entropy of the input string. We
have shown that the standard definition of optimal compression does not take into
account the performance of compression algorithms when the input is a low entropy
string. For this reason we have introduced the concept of λ-optimality which makes it
possible to measure how well an algorithm performs when the input is a low entropy
string. We have proven that by combining LZ78 with RLE we get an algorithm which
is 3-optimal with respect to H0, and that LZ77 is 8-optimal with respect to H0.

A natural open question is whether there exist parsing-based compression algo-
rithms which are λ-optimal with respect to Hk for k ≥ 1. Theorem 4.2 shows that
LZ77 is not λ-optimal for k ≥ 1 and one can easily verify that the same is true for
LZ78RL as well. Theorem 4.2 also shows that to improve LZ77 performance one should
try to reduce the cost of the backward pointers. Some interesting ideas in this direc-
tion are described in [1, section 3.4] and [4]. Lemma 4.3 shows that the simple use of
a fixed size sliding window does not yield an optimal algorithm. However, the algo-
rithm LZ77L deserves further investigation for several reasons. First, it is the variant
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which is the basis for the most popular compressors (zip, gzip, arj, lha, zoo, etc.).
Second, we have been able to show that its compression ratio can be higher than Hk

only when k ≥ L− 1. Since in typical implementations L ≈ 105, our result has only a
theoretical value. An interesting open problem is to prove or disprove that for LZ77L
inequalities (3) and (4) hold for k ≤ θ(L) for some appropriate function θ.

Appendix A. Proof of Lemma 2.3. In this appendix we prove Lemma 2.3.
Our proof follows closely the proof given in [5, section 12.10] for a similar result
involving the entropy of a stationary ergodic source.

Let s = x1x2 · · ·xn+k be a string of length n + k. For w ∈ Ak and α ∈ A let
nwα and nw be defined as in section 2. We define the empirical probability P (wα) as
P (wα) = nwα/nw (if nw = 0 we set P (wα) = 0). For i > k let si denote the length-k
string preceding xi in s. Using this notation, the kth order entropy can be written as

|s|Hk(s) = −
n+k∑
i=k+1

logP (sixi).(16)

Let v = v1v2 · · · vh and w = w1 · · ·wk be two strings over A. For i = 1, . . . , h let
w(i) denote the length-k string preceding the symbol vi in wv (for example, w(2) =
w2 · · ·wkv1). We define

P(wv) =
h∏
i=1

P (w(i)vi).(17)

The value P(wv) corresponds to the conditional probability P (v|w) introduced in
Lemma 12.10.3 of [5]. The following lemma shows that, in some sense, P does behave
as a conditional probability.

Lemma A.1. For any string w and l ≥ 1 we have
∑
v∈Al P(wv) ≤ 1.

Proof. We prove the result by induction on l. If l = 1 we have
∑
α∈A P(wα) =∑

α∈A P (wα) ≤ 1. For l > 1, let v = v1 · · · vl and v′ = v2 · · · vl. We have∑
v∈Al

P(wv) =
∑
v∈Al

P (wv1)P(w(2)v′)

=
∑
α∈A

P (wα)

( ∑
v′∈Al−1

P(w(2)v′)
)

≤
∑
α∈A

P (wα)

≤ 1.

Corollary A.2. Let V = {v1, . . . , vm} be a collection of length-l strings in
which each vi appears at most M times. For any string w we have∑

v∈V
P(wv) ≤M.

Let y1, . . . , yc denote any parsing of the string xk+1 · · ·xn+k, and let zi denote the
length-k substring preceding yi in s = x1 · · ·xn+k. For l ≥ 1 and w ∈ Ak we define
clw as the number of words yi such that |yi| = l and zi = w. By construction, the
values clw satisfy ∑

l,w

clw = c,
∑
l,w

lclw = n.(18)
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The following lemma is a generalization of Ziv’s inequality [5, Lemma 12.10.3].
Lemma A.3. Let y1, . . . , yc denote a parsing of the string xk+1 · · ·xn+k in which

each word appears at most M times. We have

|s|Hk(s) ≥
∑

w∈Ak, l≥1

clw log clw − c logM.

Proof. By (16) and (17) we have

|s|Hk(s) = −
n+k∑
i=k+1

logP (sixi)

= −
c∑
i=1

logP(ziyi)

= −
∑
l,w

∑
|yi|=l, zi=w

logP(ziyi)

= −
∑
l,w

clw

( ∑
|yi|=l, zi=w

1

clw
logP(ziyi)

)
.

By Jensen’s inequality and Corollary A.2 we get

|s|Hk(s) ≥ −
∑
l,w

clw log

( ∑
|yi|=l, zi=w

1

clw
P(ziyi)

)

≥ −
∑
l,w

clw

(
log

1

clw
+ log

( ∑
|yi|=l, zi=w

P(ziyi)

))
≥
∑
l,w

clw log clw − c logM.

Theorem A.4. Let y1, . . . , yc denote a parsing of the string xk+1 · · ·xn+k in
which each word appears at most M times. We have

c log c ≤ |s|Hk(s) + c logM + c
(
k log |A|+ log

n

c

)
+ Θ(c) .

Proof. Let πlw = clw/c. We have∑
l,w

clw log clw = c

(∑
l,w

clw
c

(log
clw
c

+ log c)

)

= c log c+ c

(∑
l,w

πlw log πlw

)
.

By (18), the values πlw satisfy∑
l,w

πlw = 1,
∑
l,w

lπlw = n/c.(19)

Using Lagrange multipliers to maximize −∑l,w πlw log πlw under the constraint (19),
or reasoning as in the proof of [5, Theorem 12.10.1] we get

−
∑
l,w

πlw log πlw ≤ k log |A|+ log
(

1 +
n

c

)
+
n

c
log
(

1 +
c

n

)
.
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Combining the above inequalities with Lemma A.3 we get

c log c ≤ |s|Hk(s) + c logM + c
(
k log |A|+ log

(
1 +

n

c

)
+
n

c
log
(

1 +
c

n

))
.

The thesis follows observing that log(1+c/n)(n/c) ≤ log e and log(1+n/c) ≤ log(n/c)+
(c/n) log e.

Proof of Lemma 2.3. Let s = x1 · · ·xn with n > k. Let y1, . . . , yt denote a parsing
of s in which each word appears at most M times. This parsing induces a parsing of
xk+1 · · ·xn in which each word appears at most M + 1 times. The thesis follows by
Theorem A.4.

Appendix B. LZ78RL-induced parsing.

Lemma B.1. Let s̃ be derived from s as described in section 3, and let w1, w2, . . . ,
wt denote the LZ78 parsing of s̃. Then, it is possible to build a parsing w′1, w

′
2, . . . , w

′
t

of s such that each word appears at most 2 log |s| times.

Proof. The parsing of w′1, w
′
2, . . . , w

′
t is defined as follows. For i = 1, . . . , |s̃|, we

associate to the ith character of s̃ a nonempty string ωi with the property that

s = ω1ω2 · · ·ω|s̃|.(20)

Then, from each word wj in the parsing of s̃ we get the word w′j by simply concate-
nating the strings ωi’s corresponding to the characters of wj .

The strings ωi’s are defined by partially reversing the binary encoding utilized
for the construction of the string s̃. More precisely, let b = blbl−1 · · · b1b0, bi ∈ {α, 0}
denote the encoding of the α-segment αm (that is, with the notation of section 3
bl · · · b0 = B(αm)). We associate to each character bj the string ω(bj) defined by

ω(bj) =


α if j = l;
α2j if j < l and bj = 0;

α2j+1

if j < l and bj = α.
(21)

Note that, for j < l, ω(bj) contains 2j more α’s than if we simply had reversed the
binary encoding. This is done at the expense of bl (which translates to a single α)
with the purpose of ensuring that every ω(bj) is nonempty. One can easily verify that
ω(bl)ω(bl−1) · · ·ω(b0) = αm, which proves that the strings ωi’s satisfy (20).

We now show that in the parsing w′1, w
′
2, . . . , w

′
t each word appears at most 2 log |s|

times. Since the words wj ’s are distinct, we need to show that when we replace the
single characters with the strings ωi’s, at most 2 log |s| distinct words translate into
the same word. To prove this we introduce the following notation. For each substring
σ of s̃ we denote by ω(σ) the string obtained by replacing each character of σ with
the corresponding ωi’s. For α ∈ A, we denote with Bij(α

m) the string obtained by
removing from B(αm) the first i and the last j characters. For example,

B10(α5) = 0α, B01(α4) = α0, B00(α17) = α000α.

Finally, given any string σ ∈ {α, 0}∗ we denote with Bin(σ) the integer we get by
replacing α with 1 and interpreting the result as a binary number. For example,

Bin(α) = Bin(00α) = 1, Bin(α00) = 4.
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By construction we know that s̃ consists in a concatenation of “compressed” α-
segments. Hence, a generic word wi in the parsing of s̃ has the form1

wi = Br0(αn1
i1

)B(αn2
i2

) · · ·B(α
nk−1

ik−1
)B0s(α

nk
ik

).

We have

ω(wi) = ω(Br0(αn1
i1

))ω(B(αn2
i2

)) · · · ω(B(α
nk−1

ik−1
))ω(B0s(α

nk
ik

))

= ω(Br0(αn1
i1

))αn2
i2
· · · αnk−1

ik−1
ω(B0s(α

nk
ik

)).(22)

Thus, in order to count how many distinct wi’s translate into the same word, we need
to study when two distinct strings σ1, σ2 of the form

σ1 = Bi0(αn1) σ2 = Bj0(αn2)

or

σ1 = B0i(α
m1) σ2 = B0j(α

m2),

are such that ω(σ1) = ω(σ2).
Consider first the case σ1 = Bi0(αn1), σ2 = Bj0(αn2). By (21) we know that the

number of α’s in ω(σ1) is given by

|ω(σ1)| = |ω(Bi0(αn1))| =
{
Bin(σ1), if i = 0;
Bin(σ1) + 2|σ1| − 1, if i > 0;

and a similar result holds for ω(σ2). We now show that ω(σ1) = ω(σ2) with σ1 6= σ2

only if i = 0 and j 6= 0 or, vice versa, i 6= 0 and j = 0. If i = j = 0, then

|ω(σ1)| = |ω(σ2)| ⇒ Bin(σ1) = Bin(σ2) ⇒ σ1 = σ2.

In fact, we cannot have, say, σ1 = 000σ2, since σ1 = B00(αn1) and its leading character
is different from 0 by construction. Assume now i, j 6= 0. If |σ1| = |σ2|, then

|ω(σ1)| = |ω(σ2)| ⇒ Bin(σ1) = Bin(σ2),

which again implies σ1 = σ2 since the two strings have the same length. Finally, if
i, j 6= 0 and |σ1| 6= |σ2|, for example, |σ1| > |σ2|, we have

|ω(σ1)| = Bin(σ1) + 2|σ1| − 1

≥ 2|σ2| + 2|σ2| − 1

> Bin(σ2) + 2|σ2| − 1

= |ω(σ2)|,
which implies ω(σ1) 6= ω(σ2). In summary, we can conclude that there exist at most
two distinct strings σ1 = Bi0(αn1), σ2 = Bj0(αn2) such that ω(σ1) = ω(σ2).

Consider now the case σ1 = B0i(α
m1), σ2 = B0j(α

m2). By (21) we get that the
number of α’s in ω(σ1) is given by

|ω(σ1)| = |ω(B0i(α
m1))| = Bin(σ1)2i − 2i − 1 = 1 + (Bin(σ1)− 1)2i.(23)

1We are assuming that wi contains at least two distinct characters of A. Therefore, we do not
consider the case wi = Bjk(αn) which, however, can be handled with a similar analysis.
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We observe that we can have ω(σ1) = ω(σ2) with σ1 6= σ2 only if i 6= j. In fact, if
i = j, by (23) we have

|ω(σ1)| = |ω(σ2)| ⇒ Bin(σ1) = Bin(σ2),

which implies σ1 = σ2, since the leading character of both strings is different from 0.
Note that, by construction, the length of every “compressed” α-segment B(αn) is at
most log |s|. Hence, the above observation implies that there can be at most log |s|
distinct strings σ1, . . . , σk, σi = B0ji(α

ni), such that ω(σ1) = ω(σ2) = · · · = ω(σk).
In fact, the indices ji’s must be distinct and none of them can be greater than log |s|.

We can now conclude our analysis of the induced parsing w′1, . . . , w
′
t. Since there

are only two possible distinct prefixes and log |s| possible distinct suffixes which trans-
late to the same substring, by (22) we have that at most 2 log |s| (distinct) words, wi’s,
can translate to the same w′j .

This completes the proof.
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VERTICAL DECOMPOSITION OF SHALLOW LEVELS
IN 3-DIMENSIONAL ARRANGEMENTS

AND ITS APPLICATIONS∗
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Abstract. Let F be a collection of n bivariate algebraic functions of constant maximum degree.
We show that the combinatorial complexity of the vertical decomposition of the (≤k)-level of the
arrangement A(F) is O(k3+εψ(n/k)) for any ε > 0, where ψ(r) is the maximum complexity of the
lower envelope of a subset of at most r functions of F . This bound is nearly optimal in the worst case
and implies the existence of shallow cuttings, in the sense of [J. Matoušek, Comput. Geom., 2 (1992),
pp. 169–186], of small size in arrangements of bivariate algebraic functions. We also present numerous
applications of these results, including (i) data structures for several generalized 3-dimensional range-
searching problems; (ii) dynamic data structures for planar nearest- and farthest-neighbor searching
under various fairly general distance functions; (iii) an improved (near-quadratic) algorithm for
minimum-weight bipartite Euclidean matching in the plane; and (iv) efficient algorithms for certain
geometric optimization problems in static and dynamic settings.

Key words. arrangements, divide-and-conquer, range searching, nearest-neighbor searching,
parametric searching, geometric optimization

AMS subject classifications. 57N80, 68Q20, 68Q40, 68R05, 68U05
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1. Introduction. In this paper we extend the recent range-searching techniques
of Matoušek [52] and of Agarwal and Matoušek [6] to arrangements of bivariate alge-
braic functions and derive many applications of the new techniques. As one motiva-
tion, consider the following dynamic nearest-neighbor searching problem: We dynam-
ically maintain a set S of points in the plane under some metric δ. At any time, we
wish to answer nearest-neighbor queries, in which we specify a point q and ask for the
point of S nearest to q under the metric δ.

If δ is the Euclidean metric, a standard lifting transformation to R3 (as in [30])
reduces the problem to that of dynamically maintaining the lower envelope of planes
in R3 so that, at any time during the maintenance, we can answer efficiently queries
in which we specify a point q ∈ R2 and ask for the plane attaining the lower envelope
at q. Using the parametric-searching technique of [4], this problem can be solved
by a dynamic range-searching mechanism in which we wish to determine whether
a query point in R3 lies below all the planes in the current set. The techniques
in [6, 52] are based on the notion of shallow cuttings: Given an arrangement A of
n planes in R3 and parameters k, r ≤ n, there exists a (1/r)-cutting of the first k
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levels of A of size O(r(1 + kr/n)2), i.e., there exists a decomposition of the (union
of the) cells constituting these levels into O(r(1 + kr/n)2) simplices, so that the
interior of each simplex is intersected by at most n/r planes. Using the existence of
such shallow cuttings, Matoušek [52] constructs an efficient static data structure for
halfspace-emptiness queries in R3; it requires O(n log logn) storage and O(n logn)
preprocessing time and answers a halfspace-emptiness query in O(log2 n) time (see
also [11]). This structure was later dynamized in [6]. These techniques also apply to
arrangements of hyperplanes in higher dimensions.

Although these techniques can be extended to arrangements of curves in the plane,
they fail for arrangements of general surfaces in three and higher dimensions. Such an
arrangement does arise, for example, in the nearest-neighbor searching problem if the
underlying distance function δ is not Euclidean. A specific case of this kind, which we
will face in one of our applications (minimum-weight bipartite Euclidean matching in
the plane), is where each point s ∈ S has an additive weight w(s) and the distance
from a query point q to s is defined as |qs|+w(s), where |qs| is the Euclidean distance
between these points. To tackle such cases efficiently, we need to extend the results
of [6, 52] to the case of arrangements of more general functions, and this is one of the
main goals of this paper.

The main technical result that we establish is the existence of shallow cuttings
of small size in arrangements of (the graphs of) low-degree algebraic bivariate func-
tions. To obtain such cuttings, we use the technique of vertical decomposition of
cells in arrangements. This technique, described in detail in [18], is the only known
general-purpose technique for decomposing cells in such arrangements into a small
number of subcells of constant description complexity (that is, semialgebraic subcells,
each defined by a constant number of polynomial equalities and inequalities, each
of constant maximum degree). It is well known that the complexity of the vertical
decomposition of a cell (2-face) C in a planar arrangement of low-degree algebraic
curves is proportional to the number of vertices of C. However, this property does
not hold in higher dimensions (even for an arrangement of planes in R3): One can
construct a cell in an arrangement of n planes in R3 that has O(n) vertices and whose
vertical decomposition consists of Ω(n2) subcells. In three dimensions, the complex-
ity (number of subcells) of the vertical decomposition of the entire arrangement of
n low-degree algebraic bivariate functions is shown in [18] to be close to O(n3) and
is thus almost optimal (in higher dimensions, though, the bounds are considerably
weaker; see [18, 24, 28, 37] for some partial results). No similarly sharp bounds were
known for the vertical decomposition of the cells that lie only in the first k levels of
the arrangement (even for arrangements of planes). Using a standard probabilistic
analysis technique by Clarkson and Shor ([25]; see also [66]), one can easily show that
the combinatorial complexity of these (undecomposed) cells is O(k3ψ(n/k)), where
ψ(r) is the maximum combinatorial complexity of the lower envelope of any subset
of at most r of the given surfaces. For low-degree algebraic bivariate functions, the
results of [38, 65] imply that ψ(n) = O(n2+ε), for any ε > 0,1 but in certain favorable
cases, such as the case of planes, this complexity is smaller.

The first main result of the paper, derived in section 2, is that the combinato-
rial complexity of the vertical decomposition of the cells in the first k levels of the

1Throughout this paper, ε denotes an arbitrarily small positive constant and g(n) = O(f(n) ·nε)
means that for any given ε > 0, we can choose a constant cε so that g(n) ≤ cεf(n) ·nε. A complexity
bound of the form O(f(n) · nε) for an algorithm means that for any prespecified ε > 0, we can tune
the algorithm so that its complexity is bounded by cεf(n) · nε for an appropriate constant cε.
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arrangement is O(k3+εψ(n/k)). This bound is close to optimal in the worst case.
We then apply this bound to obtain a sharp bound on the size of shallow cuttings in
arrangements of bivariate functions. Specifically, we show, in Theorem 3.1, that there
exists a (1/r)-cutting of the first k levels in an arrangement of n low-degree, algebraic,
bivariate functions in R3, as above, whose size is O(q3+εψ(r/q)), where q = k(r/n)+1.
This bound is almost tight in the worst case and almost coincides with the bound
given in [52] for the case of planes. The proof adapts the analysis technique of [52].
If r = O(1), a (1/r)-cutting of this size can be computed in O(n) time.

An immediate consequence of Theorem 3.1 is an efficient algorithm for the fol-
lowing problem: Preprocess a set F of n bivariate functions into a data structure so
that all functions whose graphs lie below a query point in R3 can be reported effi-
ciently. We present a data structure of size O(ψ(n)nε), which can be constructed in
O(ψ(n)nε) time, so that a query can be answered in O(logn+ ξ) time, where ξ is the
output size. If we are interested only in determining whether w lies below the graphs
of all functions of F , the query time is O(logn). (Here we are assuming a model of
computation in which various operations involving a constant number of fixed-degree
algebraic functions can be performed in O(1) time; see below for details.) We can
also modify this structure to obtain an efficient data structure for maintaining a set
of bivariate algebraic functions dynamically, as above, so that we can efficiently de-
termine whether a query point lies below all the function graphs in the current set.
The modified data structure also requires O(ψ(n)nε) storage, the cost of an update
is O(ψ(n)/n1−ε), and a query can be answered in O(logn) time.2 The technique for
constructing these data structures adapts ideas from [6, 52]. Data structures with
similar bounds are given in [6, 11, 21, 52] for a set of linear functions.

We also obtain an efficient algorithm for constructing and searching in the first
k levels of an arrangement of n bivariate functions, as above. These levels can be
constructed in O(k3+εnεψ(n/k)) time, in an appropriate model of computation, and
can be stored into a data structure of similar size so that we can determine, in O(logn)
time, whether the level of a query point p ∈ R3 with respect to the arrangement is at
most k and, if so, return the level of p.

We next apply the new mechanisms to a variety of geometric problems. First, in
section 6, we derive an efficient technique for dynamically maintaining a set S of points
(or more general objects) in the plane so that we can efficiently compute the nearest
neighbor (or the farthest neighbor) of a query point in the current set of points, under
any “reasonable” distance function δ (defined more precisely later), which can be fairly
arbitrary and does not have to satisfy any metric-like properties. Assume that the
complexity of the lower (or upper) envelope of the functions fi(x) = δ(pi,x), over all
objects pi in the current set S, is at most g(|S|). (This is the same as the complexity
of the nearest (or farthest) neighbor Voronoi diagram of S if δ is a metric or a convex
distance function.) Then our solution requires O(g(n)nε) storage, O(g(n)/n1−ε) time
for each update, and O(logn) time for each nearest- (or farthest-)neighbor query. We
give applications of this technique to dynamic maintenance of a bichromatic closest
pair between two planar point sets, under any “reasonable” metric, and of a minimum
spanning tree of a planar point set under any Lp metric.

Another application of our technique is an improved algorithm for computing a

2Throughout this paper, the update-time bounds are amortized. We believe that the same
bounds can be achieved in the worst case, using the known (albeit complicated) techniques of [60].
Nevertheless, for the sake of simplicity we will stick to amortized bounds, which will not affect the
applications that we study here.
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minimum-weight bipartite Euclidean matching for point sets in the plane (see sec-
tion 7). That is, we are given a set of n blue points and a set of n red points in the
plane, and we wish to find a matching between the blue points and the red points
that minimizes the sum of the distances between the pairs of matched points. Our
solution is based on the algorithm of Vaidya [70], which requires a data structure for
answering nearest-neighbor queries in a dynamic setting, where the distance to each
of the maintained sites is the Euclidean distance plus some additive weight associ-
ated with the site. Using our dynamic nearest-neighbor searching technique, we can
improve the running time of Vaidya’s algorithm from O(n2.5 logn) to O(n2+ε). We
also obtain an O(n7/3+ε) algorithm for an arbitrary “reasonable” metric. Recently,
Varadarajan [72] has obtained an improved algorithm for the nonbipartite case, for
which the above nearest-neighbor searching mechanism is not sufficient.

Another application of our results is to dynamic maintenance of the intersection
of congruent balls in R3, in the strong sense that we wish to determine, after each
update, whether the current intersection is empty. For this, we combine our technique
with the variant of parametric searching recently proposed in [69]. We obtain a data
structure of size O(n1+ε), which can be updated in O(nε) time per insertion/deletion
and which supports “intersection-emptiness” queries in O(log4 n) time.

We next apply our technique in section 9 to another problem in geometric opti-
mization, namely, the dynamic smallest stabbing-disk problem: We maintain dynam-
ically a set C of (possibly intersecting) simply shaped, compact, convex sets in the
plane, and we wish to compute, after each insertion or deletion of such a set, the small-
est disk, or the smallest homothetic copy of any compact convex set of simple shape,
that intersects all the sets in the current C. The case in which we have points instead
of general convex sets was recently studied in [6]. Our solution requires O(n1+ε) stor-
age and preprocessing and recomputes the smallest stabbing disk after each update
in O(nε) time. A byproduct of our analysis, which we believe to be of independent
interest, is a near-linear bound on the complexity of the farthest-neighbor Voronoi
diagram of (possibly intersecting) simply shaped, compact, convex sets in the plane,
under any simply shaped, convex distance function. The bound is linear for (possibly
intersecting) line segments under the Euclidean distance.

We finally present, in section 10, a few more applications, where most of the
details are omitted. The paper concludes in section 11 with a discussion of our results
and with some open problems. The collection of applications described in this paper
is by no means exhaustive, and the new techniques obtained in this paper have many
additional applications. The main message of this paper, in our opinion, is that
there is a real need to adapt and extend range-searching and related techniques that
were originally developed for arrangements of planes or hyperplanes to arrangements
of algebraic surfaces. This adaptation is by no means easy, and the present study
achieves it only for 3-dimensional arrangements, but it significantly enlarges the scope
of range-searching applications.

2. Vertical decomposition of levels in 3-dimensional arrangements. Let
F be a collection of n bivariate functions satisfying the following conditions:3

(F1) Each f ∈ F is a continuous, totally defined, algebraic function of constant
maximum degree b.

(F2) The functions in F are in general position. This excludes degenerate con-

3Abusing the notation slightly, we will not distinguish between a function and its graph. We will
use F to denote a collection of functions as well as the family of surfaces representing their graphs.
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figurations where four function graphs meet at a point, a pair of graphs are
tangent to each other, etc.

With some modifications of the analysis, we can also handle the case in which the
functions in F are only partially defined and the boundary of the domain of each
function is defined by a constant number of polynomial equalities and inequalities of
constant maximum degree, say, b, too. The simplest way of doing this is to extend
each f ∈ F to a totally defined function by forming the Minkowski sum of the graph
of f with a sufficiently narrow vertical cone, whose equation is z = c

√
x2 + y2, for

a sufficiently large c and by taking the lower boundary of this sum as the graph of
the extended function. The resulting extended functions are easily seen to be totally
defined continuous functions, each of whose graphs is a semialgebraic set of constant
description complexity. One can then check that the analysis given below also applies
to collections of such functions. Concerning the general position assumption, we refer
the reader to the papers [38, 65] for more details about the definition and properties
of this concept. Following arguments given in these papers, it will follow that no
real loss of generality is made by assuming general position, in the sense that the
maximum combinatorial complexity of the structures we study here is attained when
functions are in general position.

The arrangement of F , denoted as A(F), is the subdivision of R3 induced by
the graphs of the functions in F (see [66] for more details). We will refer to the
3-dimensional cells of A(F) simply as the cells of A(F). The complexity of a cell C,
denoted as |C|, is the number of faces of all dimensions on the boundary of C. The
level in A(F) of a point p = (xp, yp, zp) ∈ R3, denoted as µ(p) = µF (p), is defined as
the number of functions f ∈ F for which zp > f(xp, yp). The level of all points lying
on a face φ (of any dimension) of A(F) is the same, which we denote by µ(φ). The
k-level of A(F), for any 0 ≤ k ≤ n− 1, is the closure of the union of all 2-dimensional
faces of A(F) whose level is k; the 0-level (resp., (n − 1)-level) is the graph of the
lower (resp., upper) envelope of F . The (≤k)-level of A(F), denoted as A≤k(F), is
the collection of all cells of A(F) whose level is at most k. Let

ψ(F , k) =
∑

C∈A≤k(F)

|C|

denote the combinatorial complexity of A≤k(F). Let F denote a (possibly infinite)
family of bivariate functions that satisfies (F1), and let

ψ(n, k) = ψF(n, k)

be any upper bound on the quantity maxF ψ(F , k), where the maximum is taken
over all collections F ⊆ F of at most n functions (that satisfy (F1) and (F2)). To
simplify the presentation, we will also use ψ(n) to denote ψ(n, 0) and will allow n in
this notation to be any real nonnegative number.

A straightforward application of the probabilistic analysis technique of Clarkson
and Shor [25] (see also [66]) implies that

ψ(n, k) = O(k3ψ(n/k)).(2.1)

We also note that, by the results of [38, 65], we always have ψ(n) = O(n2+ε), where
the constant of proportionality depends on ε and on the maximum degree of the given
surfaces. Hence, in the worst case we have ψ(n, k) = O(k1−εn2+ε). However, these
bounds can be much smaller for certain favorable underlying families F. A typical
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Fig. 2.1. Vertical decomposition: A subcell created in step I.

Fig. 2.2. Vertical decomposition: step II.

example is the case of Voronoi diagrams, where each function f ∈ F has the form
f(x, y) = ρ((x, y), q). Here ρ is a fixed metric and q is an arbitrary point in the plane.
In this case ψ(n) = O(n), so ψ(n, k) = O(nk2).

Because of technical reasons, we make the following assumption on F.
(F3) The upper bound ψ(n) on the complexity of the lower envelope (and also of

the upper envelope) of any collection F ⊆ F of n functions is of the form
ψ(n) = nαβ(n), where α ≤ 2 is a constant and β(n) is a positive function
so that for any δ > 0, the sequence β(n)/nδ is eventually nonincreasing and
limn→∞ β(n)/nδ = 0.

This assumption involves no real loss of generality. In fact, all known bounds for ψ(n)
have this form with either α = 1 or α = 2.

The vertical decomposition of a (3-dimensional) cell C ∈ A(F), denoted as C?, is
defined in the following standard manner (see [18, 66] for more details):

I. For each edge e of ∂C, we erect a z-vertical wall from e, which is the union of
all maximal z-vertical segments passing through points of e and lying within
(the closure of) C. The collection of these walls partitions C into subcells,
each of which has a unique top facet (2-dimensional face) and a unique bottom
facet, each contained in some facet of C. Every z-vertical line cuts such a
subcell in a (possibly empty) interval; see Figure 2.1.

II. We take each of the cells ∆ generated in the first step, project it onto the
xy-plane, and construct the 2-dimensional vertical decomposition of the pro-
jection ∆2 of ∆ by erecting, from each vertex of ∆2 and from each locally
x-extreme point of ∂∆2, a maximal y-vertical segment contained in the clo-
sure of ∆2. These segments partition ∆2 into trapezoidal-like subcells; each
subcell τ2 ⊆ ∆2 induces a subcell τ of ∆, obtained by intersecting ∆ with the
vertical cylinder τ2 × R (see Figure 2.2).

The cells obtained in this two-step decomposition form the vertical decomposition
of C. We define A?≤k(F) (resp., A?(F)), the vertical decomposition of A≤k(F) (resp.,
of A(F)), as the union of the vertical decompositions of all cells in A≤k(F) (resp., in
A(F)). The complexity of such a vertical decomposition is the total number of its
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cells. Abusing the notation slightly, we will use A?(F) to denote a spatial subdivision
as well as a set of cells. Notice that for each cell τ ∈ A?(F), there is a subset
D = D(τ) of at most six functions of F so that τ ∈ A?(D). Since all the functions
in F have constant maximum degree, it follows that each cell of A?(F) has constant
description complexity (in the sense defined above) [18], a property that is crucial for
the construction of cuttings, which will be studied in the next section. We refer to
the set D(τ) as the set of functions defining the cell τ . The main result of this section
is the following theorem.

Theorem 2.1. Let F be a collection of n bivariate functions satisfying conditions
(F1)–(F3). For any integer k ≤ n and any ε > 0, the combinatorial complexity of
A?≤k(F) is O(k3+εψ(n/k)), where the constant of proportionality depends on ε and
on the maximum degree of the functions in F .

Proof. Let C be a cell of A≤k(F), and let ∆ be a subcell of C created in step I of
the vertical decomposition. If |∆| is the number of vertical edges in ∆ plus the number
of locally x-extremal points of edges of A≤k(F) on ∂∆, then step II partitions ∆ into
O(|∆| + 1) subcells. Indeed, each vertical edge of ∆ (resp., each locally x-extremal
point as above) corresponds to a vertex of ∆2 (resp., to a locally x-extremal point on an
edge of ∂∆2), and the number of subcells in the 2-dimensional vertical decomposition
of ∆2 is easily seen to be proportional to 1 plus the number of vertices of ∆2 plus the
number of locally x-extremal points on the edges of ∂∆2. Summing over all cells of
A≤k(F), the number of subcells in A?≤k(F) is proportional to the sum of the number
of vertical edges in the subcells created in step I, the number of edges of A≤k(F), and
the number of subcells created in step I that do not contain any vertical edge or any
locally x-extremal point on an edge of A≤k(F). The third quantity is bounded by
O(k3ψ(n/k)) because each such subcell contains at least one edge or face of A≤k(F)
and each such feature of A≤k(F) can be incident to O(1) subcells.

Hence, it suffices to bound the number of vertical edges in the subcells created in
step I. There are two types of vertical edges of ∆:

(V1) a z-vertical segment erected from a vertex of C, or
(V2) the intersection segment of two z-vertical walls erected from two edges e, e′

of C, where e lies on the top portion of ∂C and e′ lies on the bottom portion
of ∂C.

Since the number of vertical edges of type (V1) is bounded by the number of vertices
in C, the total number of such edges, over all cells of A≤k(F), is at most O(k3ψ(n/k)).
Hence, it suffices to bound the number of vertical edges of type (V2).

If two edges e, e′ of C generate a vertical edge of type (V2), then their xy-
projections must intersect. Furthermore, every intersection point between the xy-
projections of any two edges of ∂C, one on the upper portion and one on the bottom
portion of ∂C, generates exactly one vertical edge of type (V2) (this follows from the
fact that the cell C is xy-monotone). We obtain an upper bound on the number of
these intersection points over all cells in A≤k(F), which in turn yields an upper bound
on the number of cells in A?≤k(F).

For a fixed pair of edges e, e′ ∈ A(F) such that µ(e′) < µ(e), we define (e, e′, σ) to
be an edge-crossing if σ is an intersection point of the xy-projections of the (relative
interiors of the) edges e and e′; see Figure 2.3. Let `σ denote the z-vertical line passing
through σ. We define the crossing number of (e, e′, σ) to be µ(e)− µ(e′)− 2, which,
by our general position assumption, is equal to the number of functions whose graphs
intersect `σ strictly between e and e′. For an integer ρ ≤ µ(e)−2, let Cρ(e) = Cρ(e,F)
denote the set of edge-crossings of the form (e, e′, σ) whose crossing number is ρ; we
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σ

`σ

e

e′

Fig. 2.3. An edge-crossing (e, e′, σ).

put Cρ(e,F) = ∅ for ρ > µ(e)− 2. Set

ωρ(e,F) = |Cρ(e,F)| and ω≤ρ(e,F) =

ρ∑
i=0

ωi(e,F).

Define

ϕρ(F , k) =
∑

e∈A≤k(F)

ωρ(e,F)

to be the number of edge-crossings in A≤k(F) whose crossing number is ρ. Set

ϕρ(n, k) = max ϕρ(F , k),

where the maximum is taken over all subsets F ⊆ F of size at most n. The corre-
sponding quantities ϕ≤ρ(F , k) and ϕ≤ρ(n, k) are defined in an obvious and analogous
manner.

As follows from the above considerations, our goal is to show that

ϕ0(n, k) ≤ ck3+εψ(n/k)(2.2)

for some appropriate constant c (depending on ε and on the maximum degree of
the functions in F). This will be achieved by deriving a recurrence relationship for
ϕ0(n, k), whose solution will yield the desired bound. The recurrence is obtained using
the following counting argument, which borrows ideas from Agarwal, Schwarzkopf,
and Sharir [8].

Let e be an edge of A≤k(F), and let C be the cell of A(F) lying immediately
below e. Let Ve be the vertical 2-manifold obtained as the union of all z-vertical rays
emanating from the points of e in the negative z-direction. The intersection of the
graph of each function f ∈ F with Ve is an algebraic arc f (e) of constant maximum



920 PANKAJ K. AGARWAL, ALON EFRAT, AND MICHA SHARIR

Ve

e

(e, e′, σ)

e′

Fig. 2.4. The arrangement A(e)(F); the shaded region consists of points whose levels are
between 3 and 6.

degree, so each pair of these arcs intersect in at most a constant number of points, say,
s, which depends only on the maximum degree b of the functions of F . Let A(e)(F)
denote the cross section of A(F) with Ve. See Figure 2.4 for an illustration. The
following lemma is a simple but crucial observation.

Lemma 2.2. Let e′ be an edge of A≤k(F) such that µ(e′) < µ(e). Then (e, e′, σ)
is an edge-crossing with crossing number ξ if and only if the intersection point e′ ∩ `σ
is a vertex at level µ(e)− ξ − 2 in A(e)(F).

The lemma implies that each edge-crossing of the form (e, e′, σ) with zero crossing
number corresponds to a vertex of the cross section C(e) of C with Ve (which lies on
the lower portion of ∂C). Let F (e) ⊆ F be the set of functions that appear on the
lower portion of ∂C(e), and let te = |F (e)|. For each function f ∈ F (e), we consider
the cross section f (e) of f within Ve, as defined above. It is easily seen that the lower
portion of ∂C(e) is the upper envelope of the functions in F̃ (e) ≡ {f (e) | f ∈ F (e)}.
By the standard Davenport–Schinzel theory [9, 39, 66],

ω0(e,F) ≤ λs(te),(2.3)

where s is as above and where λs(t) is the (near-linear) maximum length of a (t, s)-
Davenport–Schinzel sequence.

Since the endpoints of all arcs in F̃ (e) lie on the vertical boundary of Ve and
µ(e) ≤ k, it is easily seen that te ≤ k, and thus ω0(e,F) ≤ λs(k). Summing these
bounds over all edges of A≤k(F), we get

ϕ0(F , k) =
∑

e∈A≤k(F)

ω0(e,F) ≤ λs(k)ψ(F , k).

This yields the following weaker bound on ϕ0(n, k):

ϕ0(n, k) ≤ λs(k) · ψ(n, k) ≤ c1λs(k)k3ψ(n/k)(2.4)

for some constant c1. The bound in (2.4) is asymptotically what we want for k = O(1),
and it is at most k times the desired bound for larger values of k.

We proceed now to prove the sharper bound that we are after. We fix (a suf-
ficiently small) ε > 0 and choose some threshold constant k0 (depending on ε) so
that

4εk < cλs(k) < k1+ε2/2(2.5)
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for all k > k0 and for some absolute constant c whose value will be determined later
(the upper and lower bounds on λs(k) in [9] imply that such a k0 exists). If k ≤ k0,
then the bound asserted in Theorem 2.1 follows from (2.4) with an appropriate choice
of the constant of proportionality. Henceforth, we assume that k > k0. Put

q =
⌈
(cλs(k)/k)1/ε

⌉
;

q ≥ 4, provided that k0 is sufficiently large.
As above, fix an edge e of A≤k(F), and continue to use the notations introduced

above. If te ≤ q, then, by Lemma 2.2, ω0(e,F), which is the same as the number of
vertices of C(e), is at most λs(q). Since the number of edges in A≤k(F) is at most
ψ(n, k), the overall number of edge-crossings with crossing number 0 and involving
such edges e is at most λs(q)ψ(n, k).

Next, assume that te > q. Let f , f ′ be a pair of distinct functions in F (e).
By continuity, f and f ′ must intersect within Ve at least once. Thus each function
f ∈ F (e) must cross at least te − 1 other functions of F within Ve; that is, each
function f ∈ F (e) is incident to at least te − 1 vertices of A(e)(F). Since the graph of
f contains points at level µ(e) − 2 in this cross section, it follows that f is incident
to at least q vertices of A(e)(F) whose levels are between µ(e) − q − 2 and µ(e) − 2.
The number of vertices of A(e)(F) whose levels fall in this range is therefore Ω(teq),
which, by (2.3), implies that

ω≤q(e,F) = Ω(teq) = Ω

(
qte · ω0(e,F)

λs(te)

)
≥ q

β(k)
· ω0(e,F),(2.6)

where β(k) = Θ(λs(k)/k) is an extremely slowly growing function of k [9, 39].
Summing (2.6) over all edges e of A≤k(F) for which te > q, adding the bound for

the other edges of A≤k(F), and observing that each edge-crossing between any two
edges of A≤k(F) with crossing number at most q is counted in this manner exactly
once, we obtain

ϕ0(F , k) =
∑

e∈A≤k(F)

ω0(e,F) ≤ β(k)

q
ϕ≤q(F , k) + λs(q)ψ(n, k),

which implies

ϕ0(n, k) ≤ β(k)

q
ϕ≤q(n, k) + λs(q)ψ(n, k) .(2.7)

In Lemma 2.3 below, we obtain the following upper bound on ϕ≤q(n, k):

ϕ≤q(n, k) ≤ A(q + 1)4ϕ0

(⌈
2n

q + 1

⌉
,

⌈
2k

q + 1

⌉)
(2.8)

for a constant A > 0. Substituting (2.1) and (2.8) in (2.7) and using the fact that
q > 4, we obtain that

ϕ0(n, k) ≤ B
[
(q + 1)3β(k)ϕ0

(⌈
2n

q + 1

⌉
,

⌈
2k

q + 1

⌉)
+ λs(q)k

3ψ
(n
k

)]
,(2.9)
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where B > 0 is another constant. The solution of (2.9) is

ϕ0(n, k) ≤ Dk3+εψ
(n
k

)
,(2.10)

where D = D(ε) is a sufficiently large constant depending on ε. The proof is by
double induction on k and n. First, as already noted, the bound holds for k ≤ k0

with an appropriate choice of D. For k > k0 and for n = k, we have

ϕ0(n, k) = O(n3β(n)) = O(k3β(k)) ≤ Dk3+εψ(n/k),

provided D is chosen sufficiently large.
For k > k0 and n > k, we have, by the induction hypothesis,

ϕ0(n, k) ≤ B
[

(q + 1)3β(k)D

⌈
2k

q + 1

⌉3+ε

ψ

(⌈
2n

q + 1

⌉ / ⌈ 2k

q + 1

⌉)
+ λs(q)k

3ψ
(n
k

)]
.

Since ⌈
2n

q + 1

⌉ / ⌈ 2k

q + 1

⌉
≤ 2n

k
(2.11)

and, by condition (F3), ψ(2n/k) ≤ c′ψ(n/k) for a constant c′ > 0, we obtain

ϕ0(n, k) ≤ Dk3+εψ
(n
k

)[
Bc′

β(k)

(q + 1)ε
+
B

D

λs(q)

kε

]
.

Since

q =

⌈(
cλs(k)

k

)1/ε
⌉

and k1+ε2/2 > cλs(k) (see (2.5)), we have

(q + 1)ε > c
λs(k)

k
= Ω(β(k)) and q ≤

⌈
kε/2

⌉
.

Hence, λs(q) = o(kε), and we thus obtain

Bc′
β(k)

(q + 1)ε
+
B

D

λs(q)

kε
< 1,

provided that c and k0 are chosen sufficiently large. Hence,

ϕ0(n, k) ≤ Dk3+εψ
(n
k

)
.

This establishes Theorem 2.1.
To complete the above proof, we establish the promised lemma.
Lemma 2.3. Let n > k > q be three natural numbers. There exists a constant

A > 0 such that

ϕ≤q(n, k) ≤ A(q + 1)4ϕ0

(⌈
2n

q + 1

⌉
,

⌈
2k

q + 1

⌉)
.
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Proof. We prove the lemma using a probabilistic argument that is similar to,
though slightly different from, the one used by Clarkson and Shor [25]; see also [64].

Set p = 1/(q + 1). We choose a subset R ⊆ F by selecting each function of F
independently with probability p, so the expected size of R is np. Set k′ = d2kpe,
and let us bound from below the expected value of ϕ0(R, k′). For an edge-crossing
(e, e′, σ), let I(e, e′, σ) denote the indicator function whose value is 1 if the level of
e∩ `σ in A(R) is at most k′ and (e, e′, σ) ∈ C0(e,R). Otherwise, I(e, e′, σ) = 0. Then

E[ϕ0(R, k′)] =
∑

e∈A(F)

µ(e)−2∑
j=0

∑
(e,e′,σ)∈Cj(e,F)

Pr[ I(e, e′, σ) = 1 ]

≥
∑

e∈A≤k(F)

q∑
j=0

∑
(e,e′,σ)∈Cj(e,F)

Pr[ I(e, e′, σ) = 1 ].(2.12)

Fix an edge-crossing (e, e′, σ) ∈ Cj(e,F) with e ∈ A≤k(F), and j ≤ q. Let f1, f2

(resp., f3, f4) be the functions of F whose intersection curve contains e (resp., e′).
Notice that f1, . . . , f4 are distinct. It is easily seen that I(e, e′, σ) = 1 if and only if
the following three events occur simultaneously:

(E1) {f1, f2, f3, f4} ⊆ R.
(E2) None of the j functions of F whose graphs intersect `σ between e and e′ is

chosen in R.
(E3) Among the µ(e)− j−2 functions whose graphs intersect `σ below e′, at most

k′ − 2 are chosen in R. That is, µR(e′ ∩ `σ) ≤ k′ − 2.
Since the subevents E1, E2, E3 are independent, we have

Pr[ I(e, e′, σ) = 1 ] = Pr[E1 ] · Pr[E2 ] · Pr[E3 ].

We have Pr[E1 ] = p4 and Pr[E2 ] = (1 − p)j . Therefore, it suffices to obtain a
lower bound on Pr[E3].

First consider the case where q ≥ k/6. µR(e′ ∩ `σ) is obviously at most k′ − 2 if
none of the functions whose graphs intersect `σ below e′ are chosen in R. Therefore

Pr[E3 ] ≥ (1− p)µ(e)−j−2 > (1− p)k−j ≥ (1− p)6q−j .

Consequently,

Pr[ I(e, e′, σ) = 1 ] ≥ p4(1− p)j(1− p)6q−j

=
1

(q + 1)4

(
1− 1

q + 1

)6q

>
1

e6
· 1

(q + 1)4
.(2.13)

The last inequality follows from the fact that (1− 1/(q + 1))q > 1/e.
Next, assume that q < k/6. First, observe that Pr[E3] = 1 for µ(e) ≤ k′, so we

may assume that µ(e) > k′. If we let g1, . . . , gm, for m = µ(e)− j− 2 < k, denote the
functions whose graphs intersect `σ below e′, and define Xi to be the random variable
whose value is 1 if gi ∈ R and 0 otherwise, then

µR(e′ ∩ `σ) =
m∑
i=1

Xi.
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By definition, Xi is 1 with probability p and 0 with probability 1− p. Therefore

E[µR(e′ ∩ `σ) ] = mp < kp

and, by Markov’s inequality,

Pr[µR(e′ ∩ `σ) > k′ − 2 ] <
kp

k′ − 2
≤ kp

2kp− 2
.

Hence,

Pr[E3 ] = 1− Pr[µR(e′ ∩ `σ) > k′ − 2 ]

> 1− 1

2(1− 1/kp)
.

Since q < k/6, we have

kp =
k

q + 1
≥ k

2q
> 3,

which implies

Pr[E3 ] > 1− 1

2(1− 1/3)
=

1

4
.

Therefore

Pr[ I(e, e′, σ) = 1 ] ≥ p4(1− p)q · 1

4
.

Since p = 1/(q + 1) and (1− 1/(q + 1))q > 1/e, we have

Pr[ I(e, e′, σ) = 1 ] ≥ 1

4e
· 1

(q + 1)4
>

1

e6
· 1

(q + 1)4
.(2.14)

Substituting (2.13) and (2.14) into (2.12), we get

E[ϕ0(R, k′) ] ≥
∑

e∈A≤k(F)

q∑
j=0

1

e6(q + 1)4
· ϕj(e,F)

=
1

e6(q + 1)4
ϕ≤q(F , k).(2.15)

On the other hand,

E[ ϕ0(R, k′) ] ≤
∑
i≥0

Pr[2ipn ≤ |R| < 2(i+ 1)pn] · ϕ0 (d2(i+ 1)pne, k′)

≤ ϕ0 (d6pne, k′) +
∑
i≥3

Pr[|R| ≥ 2ipn] · ϕ0(d2(i+ 1)pne, k′).(2.16)

The weak bound on ϕ0(m, k) in (2.4) and the fact that ψ(m) = O(m2+ε) imply that
for any ρ ≥ 1,

ϕ0(ρm, k′) ≤ ρ3ϕ0(m, k′).(2.17)
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We use the following form of Chernoff’s bound to estimate the second term in (2.16);
see [57, p. 72]. Let n be an integer, and for 1 ≤ i ≤ n, let Xi be a random variable
which is 1 with probability p and 0 with probability 1− p. Assume that the Xi’s are
independent, and put X =

∑n
i=1Xi. Then for any δ > 2e,

Pr[X > δnp ] < 2−δnp.(2.18)

If we let Xi be a random variable which is 1 if the ith function in F is in R and 0
otherwise, then |R| = X. Since p = 1/(q + 1) ≥ 1/n, (2.18) implies that for i ≥ 3,

Pr[ |R| > 2inp ] < 2−2i.(2.19)

Substituting (2.17) and (2.19) into (2.16), we obtain

E[ ϕ0(R, k′) ] ≤ 33ϕ0(d2pne, k′) +
∑
i≥3

2−2i(i+ 1)3 · ϕ0(d2pne, k′)

≤ A′ϕ0

(⌈
2n

q + 1

⌉
,

⌈
2k

q + 1

⌉)
,(2.20)

where

A′ = 33 +
∑
i≥3

(i+ 1)32−2i > 0

is a constant. Combining (2.15) and (2.20), we obtain

ϕ≤q(n, k) ≤ e6(q + 1)4 ·A′ϕ0

(⌈
2n

q + 1

⌉
,

⌈
2k

q + 1

⌉)
≤ A(q + 1)4ϕ0

(⌈
2n

q + 1

⌉
,

⌈
2k

q + 1

⌉)
(2.21)

for an appropriate constant A. This completes the proof of the lemma and thus also
of Theorem 2.1.

As promised in the beginning of the section, an inspection of the proof of Theo-
rem 2.1 shows that it continues to apply, with minor and straightforward modifica-
tions, to the cases of partially defined or piecewise-algebraic functions. We therefore
obtain the following result.

Corollary 2.4. Let F be a collection of n partially defined, or piecewise-
algebraic, bivariate functions, each of constant description complexity and satisfying
conditions (F2)–(F3). For any integer k ≤ n, the combinatorial complexity of A?≤k(F)

is O(k3+εψ(n/k)) for any ε > 0, where the constant of proportionality depends on ε
and on the maximum complexity of any of the functions in F .

3. Shallow cuttings. In this section we first define (1/r)-cuttings of A≤k(F)
and then prove the existence of such cuttings with small size.

Let F be a collection of bivariate functions satisfying conditions (F1) and (F3).
We call a region (or cell) ∆ ⊆ R3 primitive if there exists a set D = D(∆) of at most
six functions in F such that ∆ ∈ A?(D) and weakly primitive if it is the intersection
of two primitive cells. For a primitive or a weakly primitive cell ∆, let F∆ ⊆ F be the
set of functions whose graphs intersect the interior of ∆ and put n∆ = |F∆|. A set Ξ
of pairwise openly disjoint weakly primitive cells is called a (1/r)-cutting of A≤k(F)
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if the union of Ξ contains A≤k(F) and if n∆ ≤ n/r for every ∆ ∈ Ξ. We also refer to
such a cutting as a shallow cutting in the arrangement A(F).

By the ε-net theory [40] and the result of [18], there exists a (1/r)-cutting of
the entire A(F) that consists of O(r3β(r) log3 r) primitive cells, where β(r) is the
extremely slowly growing function defined in the previous section. Moreover, if r is
a constant, such a cutting can be constructed in O(n) deterministic time, using the
technique of [50]. We now prove the existence of small-size (1/r)-cuttings of A≤k(F).

Theorem 3.1. Let F be a collection of n bivariate functions, as above, and let
k, r < n be integers. Set q = k(r/n) + 1. Then there exists a (1/r)-cutting Ξ of
A≤k(F) whose size is at most C1q

3+εψ(r/q), where C1 = C1(ε) is an appropriate
constant. Moreover, if r = O(1), a (1/r)-cutting of this size can be computed in O(n)
time.

Matoušek [52] proved a similar result for the case of linear functions. We follow
his proof, but we need to enhance it with additional machinery.

Proof. For a subset G ⊆ F and an integer j < n, let Tj(G) be the set of primitive
cells ∆ in A?(G) that lie completely in A≤j(F) (i.e., the level of all points in ∆ with
respect to F is at most j). In other words,

Tj(G) = {∆ ∈ A?(G) | µF (p) ≤ j for all p ∈ ∆}.

Let Tj =
⋃
G⊆F Tj(G).

Fix p = r/n. Choose a subset R ⊆ F by selecting each function of F indepen-
dently with probability p. For each cell ∆ ∈ A?(R) that has a point whose level
with respect to F is at most k, we do the following. If |n∆| ≤ n/r, we add ∆ to Ξ.
Otherwise, suppose that (t−1)n/r < n∆ ≤ tn/r for some integer t > 1. (We then say
that the excess of such a ∆ is t.) We compute a (1/t)-cutting Ξ∆ of A(F∆), which
consists of O(t3β(t) log3 t) primitive cells, clip each cell of Ξ∆ within ∆, and add the
resulting (weakly primitive) cells to Ξ. This yields a (1/r)-cutting Ξ of A≤k(F). We
now show that the expected size of Ξ is as asserted in the theorem.

Let η(p, t, j) denote the expected number of those cells ∆ in Tj(R) whose excess
is at least t. If any cell ∆ ∈ A?(R) with excess t intersects A≤k(F), then the level of
all points of ∆ with respect to F is at most k + tn/r. This is easily seen to imply

E[|Ξ|] ≤ η(p, 0, k) +
∑
t≥1

O(t3β(t) log3 t) · η
(
p, t, k +

⌈
tn

r

⌉)
.

A primitive cell ∆ ∈ Tj appears in Tj(R) if and only if D(∆) ⊆ R and F∆ ∩ R = ∅.
Using the same argument as in [52] (see also [7, 20]), one can show that for t ≥ 1,

η(p, t, j) ≤ c2−t · η
(p
t
, 0, j

)
(3.1)

for a constant c > 0. We prove in Lemma 3.2 below that for any 0 < p < 1 and for
any integer l < n,

η(p, 0, k) = O

(
(1 + kp)ε(kp)3ψ

(n
k

)
+ (kp)2 min

{
ψ
(n
k

)
,
(n
k

)2
})

.(3.2)
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By (3.1) and (3.2), for t ≥ 1, we obtain

η

(
p, t, k +

⌈
tn

r

⌉)
= O

(
2−t

(
1 +

p(k + dtn/re)
t

)ε(
p(k + dtn/re)

t

)3

ψ

(
n

k + tn/r

))

= O

(
2−tq3+εψ

(
r

q

))
.

(3.3)

The last two inequalities follow because

p(k + dtn/re)
t

=

(
pk

t
+
dtn/re
tn/r

)
≤ 2 + kp = 2q

and
n

k + tn/r
=

r

t+ kp
≤ r

1 + kp
=

r

q
;

in particular, the second term in (3.2) is dominated by the first term.
Next, we prove that

η(p, 0, k) = O

(
q3+εψ

(
r

q

))
.

If kp ≥ 1, then by (3.2),

η(p, 0, k) = O
(

(1 + kp)ε(kp)3ψ
(n
k

))
.

Condition (F3) allows us to write

ψ
(n
k

)
=
(n
k

)α
β
(n
k

)
for some constant α ≤ 2 and an appropriate small function β. Therefore,

(1 + kp)ε(kp)3ψ
(n
k

)
= (1 + kp)3+ε

(
kp

1 + kp

)3(
np

kp

)α
β

(
np

kp

)
= O

(
q3+ε

(
kp

1 + kp

)3−α
ψ

(
np

1 + kp

))

= O

(
q3+εψ

(
r

q

))
.

The first inequality follows because (F3) is easily seen to imply that β(ρm) = O(β(m))
for any ρ ≤ 2, say.

On the other hand, if kp < 1 and α = 2− δ, for some δ > 0, then q ≤ 2 and (3.2)
implies that

η(p, 0, k) = O
(

(1 + kp)ε(kp)2ψ
(n
k

))
= O

(
q2+ε

(
kp

1 + kp

)2(
np

kp

)2−δ
β

(
np

kp

))

= O

(
q2+ε

(
kp

1 + kp

)δ (
r

q

)α
β

(
r

q
· 1 + kp

kp

))

= O

(
q3+εψ

(
r

q

))
.
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The last inequality follows because, by (F3), β(ρm) ≤ ρδβ(m) for any ρ ≥ 1 and for
any δ > 0, provided that m is sufficiently large.

Finally, if kp < 1 and α = 2, then again q ≤ 2 and (3.2) implies that

η(p, 0, k) = O

(
(1 + kp)ε(kp)3ψ

(n
k

)
+ (kp)2

(n
k

)2
)

= O

(
q3+ε

(
kp

1 + kp

)(
np

1 + kp

)2

β

(
np

kp

)
+ r2

)

= O

(
q3+εψ

(
r

q

)
+ q2

(
r

q

)2
)

= O

(
q3+εψ

(
r

q

))
.

Hence,

E[ |Ξ| ] = O

(
q3+εψ

(
r

q

))
+
∑
t≥1

O(t32−tβ(t) log3 t) ·O
(
q3+εψ

(
r

q

))

= O

(
q3+εψ

(
r

q

))
.

Finally, observe that the proof of this theorem is constructive, so we immediately
obtain a randomized algorithm for computing Ξ. If r = O(1), then the expected
running time is O(n). The algorithm can be made deterministic using the method of
conditional probabilities, as described in [16, 50].

To complete the analysis, we establish the promised lemma.
Lemma 3.2. For any real number 0 < p < 1 and for any integer k < n,

η(p, 0, k) = O

(
(1 + kp)ε(kp)3ψ

(n
k

)
+ (kp)2 min

{
ψ
(n
k

)
,
(n
k

)2
})

.

Proof. Let R be, as above, a random subset of F obtained by choosing each
element of F independently with probability p. We want to bound the expected
number of those primitive cells ∆ in A?(R) that belong to Tk(R), i.e., the level of all
points in ∆ with respect to F is at most k. Each cell ∆ ∈ A?(R) is of one of the
following three types (these types are not mutually exclusive):

(C1) ∆ contains a vertex v of A(R); if ∆ ∈ Tk(R), then µF (v) ≤ k.
(C2) ∆ has a vertical face parallel to the yz-plane and tangent to an edge e of

A(R) at some point w; if ∆ ∈ Tk(R), then µF (w) ≤ k.
(C3) ∆ has a vertical edge induced by an edge-crossing (e, e′, σ) ∈ C0(e,R) for

some e ∈ A(R). If ∆ ∈ Tk(R), then µF (e ∩ `σ) ≤ k.
A vertex v ∈ A≤k(F) appears as a vertex of A(R) if and only if the three func-

tions whose graphs contain v are chosen in R. Moreover, under the general position
assumption, each vertex of A(R) appears in O(1) cells of A?(R). Therefore, the
expected number of cells in Tk(R) of type (C1) is at most

O

( ∑
v∈A≤k(F)

Pr [ v is a vertex of A(R) ]

)
= O(p3ψ(n, k)) = O((kp)3)ψ

(n
k

)
= O((1 + kp)ε(kp)3)

(n
k

)
.
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Similarly, the number of cells in Tk(R) of type (C2) can be bounded by

O

(∑
w

Pr [w appears in A(R) ]

)
,

where the sum is taken over all locally x-extremal points on the edges of A≤k(F).
The probability of such a point appearing in A≤k(F) is p2. By conditions (F1) and
(F2), the number of x-extremal points in the relative interior of the edges of A≤k(F)
is O(n2). On the other hand, another application of the Clarkson–Shor technique [25]
implies that the number of such x-extremal points is O(k2ψ′(n/k)), where ψ′(n/k)
is the number of x-extremal points in the relative interior of the edges of the lower
envelope of at most n/k functions of F . Since ψ′(n/k) ≤ ψ(n/k), we can bound the
number of type (C2) cells by

O

(
(kp)2 min

{
ψ
(n
k

)
,
(n
k

)2
})

.

Next, consider the cells of type (C3). Let

Φ(R, k) =
⋃

e∈A(R)

{(e, e′, σ) ∈ C0(e,R) | µF (e ∩ `σ) ≤ k} .

In order to bound the expected number of cells of type (C3), it suffices to obtain an
upper bound on the expected value of |Φ(R, k)|.

We proceed as in the proof of Lemma 2.3. Let e be an edge of A≤k(F), and let
(e, e′, σ) ∈ Cj(e,F) for some 0 ≤ j ≤ k − 2. The edge-crossing (e, e′, σ) contributes
(exactly) one edge-crossing to Φ(R, k) if and only if the four functions of F defining
e and e′ are chosen in R and none of the j functions whose graphs intersect the line
`σ between e and e′ is chosen in R. The probability that (e, e′, σ) gives rise to one
edge-crossing in Φ(R, k) is thus p4(1− p)j . Since every edge-crossing of Φ(R, k) is of
this form, we obtain

E
[|Φ(R, k)|] =

k−2∑
j=0

∑
e∈A≤k(F)

∑
(e,e′,σ)∈Cj(e,F)

p4(1− p)j

=
k−2∑
j=0

p4(1− p)jϕj(F , k)

= p4ϕ0(F , k) +
k−2∑
j=1

p4(1− p)j (ϕ≤j(F , k)− ϕ≤j−1(F , k))

≤ p4(1− p)k−2ϕ≤k−2(n, k) +
k−3∑
j=0

p5(1− p)jϕ≤j(n, k)

≤ p4(1− p)k−2 ·A(k − 1)4ϕ0

(⌈
2n

k − 1

⌉
,

⌈
2k

k − 1

⌉)
+

k−3∑
j=0

p5(1− p)j ·A(j + 1)4ϕ0

(⌈
2n

j + 1

⌉
,

⌈
2k

j + 1

⌉)
(applying Lemma 2.3)
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≤ Ap4(1− p)k−2(k − 1)4 ·D
⌈

2k

k − 1

⌉3+ε

ψ

(
2n

k

)
+

k−3∑
j=0

Ap5(1− p)j(j + 1)4 ·D
⌈

2k

j + 1

⌉3+ε

ψ

(
2n

k

)
(applying (2.10))

= O
(

(kp)3+εψ
(n
k

))p(k − 1)(1− p)k−2 +
k−3∑
j=0

p2(j + 1)(1− p)j


= O
(

(1 + kp)ε(kp)3ψ
(n
k

))
.

The last inequality follows from the fact that the sum in the square brackets is
1− (1−p)k−1 ≤ 1. This completes the proof of the lemma and thus the proof of The-
orem 3.1.

Remark 3.3. We note that if F is a collection of n univariate functions, then
A?(F) has only O(n2) cells and ψ(n, k) = O(k2λs(n/k)), where s is the maximum
number of intersections between the graphs of any pair of functions in F . Following
the preceding analysis, one can obtain the following result.

Theorem 3.4. Let F be a collection of n univariate algebraic functions, each of
constant maximum degree, and let k, r < n be integers. Set q = k(r/n)+1. Then there
exists a (1/r)-cutting Ξ of A≤k(F) whose size is at most O(q2λs(r/q)). Moreover, if
r = O(1), a (1/r)-cutting of this size can be computed in O(n) time.

4. Range searching. An immediate consequence of Theorem 3.1 is an efficient
solution of the following problem: Given a set F ⊆ F of n bivariate functions satisfying
the conditions (F1) and (F3), preprocess it into a (static) data structure, so that for
a query point p = (xp, yp, zp), the subset {f ∈ F | f(xp, yp) < zp} can be reported
efficiently. We also want to update F dynamically by inserting and deleting functions
of F into/from F .

Chazelle et al. [18] have shown that F can be preprocessed in time O(n3+ε) into a
(static) data structure of size O(n3+ε) so that a query can be answered in O(logn+ξ)
time, where ξ is the output size. In this section we present a data structure that uses
O(ψ(n) · nε) storage and preprocessing time, answers a query in O(logn + ξ) time,
and can be updated dynamically at a small (amortized) cost. We first present a static
data structure and then explain how to dynamize it.

4.1. A static data structure. We construct a tree data structure T to answer
queries of the above form. Each node v of T is associated with a subset Fv ⊆ F and
a weakly primitive cell ∆v ⊆ R3. The root is associated with F and with the entire
R3. Fix a sufficiently large constant r and set k = b2n/rc. If |F| is less than some
prespecified constant n0, then T consists of just the root. Otherwise, we compute a
(1/r)-cutting Ξ of A≤k(F), whose size, by Theorem 3.1 and (F3), is O(ψ(r)) (where
the constant of proportionality is independent of r). For each cell ∆ ∈ Ξ, let F−∆ ⊆ F
be the set of functions whose graphs either intersect ∆ or lie below ∆. If |F−∆ | > 3n/r,
we discard ∆ because ∆ lies completely above A≤k(F). Otherwise, we create a child
v = v∆ of the root, corresponding to ∆, put ∆v = ∆ and Fv = F−∆ , and recursively
preprocess Fv (in this recursive processing, we use the same parameter r and set
k = b2|Fv|/rc). The recursion stops when we reach nodes v with |Fv| ≤ n0. If S(n)
denotes the maximum space used by the data structure, on any set F of n functions
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of F, then we obtain the recurrence

S(n) ≤
{

c0, n ≤ n0,

c1ψ(r) · S(3n/r) + c2n, n > n0,

where c0, c1, c2 are appropriate constants (independent of r). Recall that, by (F3),
the bound ψ(n) can be written as nαβ(n), where 1 ≤ α ≤ 2 is some constant and
where lim supn→∞ β(n)/nδ = 0 for any δ > 0. The solution of the recurrence is

S(n) ≤ Bψ(n) · nε,
for any ε > 0, where B depends on ε. The proof is by induction on n. The claim
holds for all n ≤ n0, provided that B is chosen sufficiently large. For larger values of
n we have, by the induction hypothesis,

S(n) ≤ c1ψ(r) ·Bψ
(

3n

r

)
·
(

3n

r

)ε
+ c2n

≤ c1Brαβ(r)

(
3n

r

)α
β

(
3n

r

)
·
(

3n

r

)ε
+ c2n

≤ B · nαβ(n) · nε
[

3α+εc1β(r)

rε
+
c2n

1−α−ε

Bβ(n)

]
≤ Bψ(n)nε,

provided that r and B are chosen sufficiently large (as functions of ε). The prepro-
cessing time of the data structure is also easily seen to be O(ψ(n) · nε).

Let p be a query point. To answer the query for p, we trace a path in T , starting
from the root. Suppose we are at a node v. If v is a leaf or if there is no child w of v
for which p ∈ ∆w, we explicitly check for each f ∈ Fv (the set of functions associated
with v) whether p lies above the graph of f , and we report those functions which
satisfy this condition. The time spent at v is then O(|Fv|), but then either |Fv| ≤ n0

or p lies above the b2|Fv|/rc-level in A(Fv), so we report at least b2|Fv|/rc functions.
If there is a child w of v such that p ∈ ∆w, we recursively visit that child. The overall
query time is O(logn+ ξ), where ξ is the output size of the query. Hence, we obtain
the following result.

Theorem 4.1. Given a family F of bivariate functions satisfying (F1) and (F3)
and a set F ⊆ F of size n, we can preprocess F (in an appropriate model of computa-
tion) in time O(ψ(n) ·nε) into a data structure Π(F) of size O(ψ(n) ·nε), so that all ξ
functions whose graphs lie below a query point p can be reported in time O(logn+ξ).

Remark 4.2. If we are interested only in determining whether a query point lies
below the graphs of all the functions of F , we can construct the minimization diagram,
M(F), of F and preprocess M(F) for planar point-location queries. The size of the
data structure is O(ψ(n)), and a query can be answered in time O(logn); see, for
example, [66].

4.2. A dynamic data structure. We can dynamize the above data structure
using the technique of Agarwal and Matoušek [6]. Since the basic idea is the same, we
give only a brief description of the structure. For the sake of simplicity, we describe
a data structure that handles only deletions; insertions can then be handled using
standard decomposition techniques [6, 15].

We need the following lemma, which is an easy consequence of a result by Chazelle
et al. [18], but we give a somewhat simpler proof.
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Lemma 4.3. Let Ξ be a cutting in R3 consisting of t cells. Ξ can be preprocessed
in time O(t3) into a data structure of size O(t3), so that we can determine in O(log t)
time the cell of Ξ containing a query point p, or we can conclude that there is no such
cell.

Proof. Assume that the faces of Ξ are xy-monotone, which will hold in our
applications. (However, the proof also holds when this is not the case, by appropriately
decomposing each face of the cutting cells (each of which is assumed to have constant
description complexity) into a constant number of xy-monotone subfaces.) Project
each face onto the xy-plane. Let Ξ∗ be the set of the resulting planar patches. For a
point p ∈ R2, let Λ(p) be the list of faces of Ξ, sorted in the +z-direction, that intersect
the z-vertical line passing through p. We compute the arrangement A(Ξ∗). Since the
interiors of all cells of Ξ are pairwise disjoint, Λ(p) is same for all points within a
face of A(Ξ∗). For each face φ ∈ A(Ξ∗), we store this sorted list, denoted by Λ(φ).
This requires a total of O(t3) space and can be computed in time O(t3). (In fact, the
storage and preprocessing time can be improved to O(t2) and O(t2 log t), respectively,
using persistent data structures, but the weaker bounds suffice for our purpose.)
To locate a point w ∈ R3 in Ξ, we first find the face of A(Ξ∗) that contains the
xy-projection of w and then search with w in the appropriate list Λ(φ) to determine
the cell of Ξ containing w. If Ξ does not cover the entire R3, then the search in Λ(φ)
can also determine whether w lies outside Ξ. For example, in the case of shallow
cuttings, if w lies above all faces in Λ(φ), we can conclude that w does not lie in any
cell of Ξ.

We are now in position to describe the data structure. The overall data structure,
denoted as Ψ(F), is a tree of constant depth. Each node v of Ψ(F) is associated with a
subset Fv ⊆ F . The subtree rooted at any node of Ψ(F) is reconstructed periodically
after performing some deletions. Let mv (resp., m) be the size of Fv (resp., F) when
the structure was last reconstructed, and let nv (resp., n) denote the size of the current
set Fv (resp., F). Set r = mδ for some sufficiently small δ > 0. (The value of r is the
same for all nodes of the tree, and it is updated only when the entire structure Ψ(F)
is reconstructed.) We reconstruct the subtree rooted at v after performing mv/2r
deletions from that subtree. Hence, nv ≥ mv(1− 1/2r). A function f ∈ F is said to
be relevant for a cell ∆ if the graph of f either intersects ∆ or lies below ∆.

If |F| ≤ r, Ψ(F) consists of a single node at which we preprocess F into the
range-searching data structure, Π(F), provided in Theorem 4.1. Otherwise, the root
u of Ψ(F) stores the following information:

(i) a partition of Fu into pairwise-disjoint sets F1, . . . ,Ft, where t ≤ ⌈1/δ2
⌉
;

(ii) a cutting Ξi for each 1 ≤ i ≤ t. Initially, Ξi is a (1/r)-cutting ofA≤k(
⋃
j≥i Fj),

where k = bm/rc and each function of Fi is relevant for at most

κ = 2C1
ψ(r)

r1−δ(4.1)

cells of Ξi, where C1 is the constant arising in (4.2) below;
(iii) a data structure for point-location queries for each Ξi, as in Lemma

4.3;
(iv) a pointer to the subtree Ψ(Fi,∆) for every i and for every ∆ ∈ Ξi, where

Fi,∆ ⊆ Fi is the set of functions relevant for ∆;
(v) for each 1 ≤ i ≤ t and for every f ∈ Fi, we store the set L(f) of cells ∆ ∈ Ξi

for which f is relevant;
(vi) a counter dcountu, which is initially set to m/2r;
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(vii) the range-searching data structure Πu = Π(Fu) on Fu, as provided in Theo-
rem 4.1.

This information is computed as follows. We first construct Πu in O(ψ(m)mε)
time, using Theorem 4.1. Next, we construct the Fi’s and Ξi’s. Suppose we have
already computed F1, . . . ,Fi−1. Let F i = Fu − (F1 ∪ · · · ∪ Fi−1), and let mi = |F i|.
If mi ≤ m/r, then Ξi consists of just one sufficiently large primitive cell and Fi = F i.
Otherwise, set

ri = r
mi

m
and k =

⌊m
r

⌋
=

⌊
mi

ri

⌋
.

Using Theorem 3.1, we compute a (1/ri)-cutting Ξi for A≤k(F i) whose size is at most
C1ψ(ri). For each cell ∆ ∈ Ξi, let F i,∆ ⊆ F i be the set of functions relevant for ∆.
We have |F i,∆| ≤ k +mi/ri ≤ 2mi/ri. Therefore∑

∆∈Ξi

|F i,∆| ≤ C1
2mi

ri
ψ(ri) = 2C1mi

ψ(ri)

ri
.(4.2)

We call a function “good” if it is relevant for at most κ cells. Then (4.2) implies that
the number of “bad” functions is at most

2C1mi
ψ(ri)

ri

/
2C1

ψ(r)

r1−δ =
mi

rδ
· ψ(ri)

ri

/
ψ(r)

r
≤ mi

mδ2 .

Let Fi be the set of good functions of F i. We now repeat the construction for
F i+1 = F i − Fi. The above analysis implies that |F i| ≤ m1−iδ2

, so the process
terminates after at most

⌈
1/δ2

⌉
steps. The construction of the structure is now

completed by recursively building the data structure Ψ(Fi,∆) for each ∆ ∈ Ξi. (The
remaining pointers, lists, and counters are trivial to produce.) The size of the data
structure and the preprocessing time are both O(ψ(n)nε), arguing as in [6], and the
choice of r ensures that the depth of Ψ(F) is O(1).

Deleting a function. We first describe how to delete a function f from F . We
traverse Ψ(F) in a top-down fashion. Suppose we are at a node v. If v is a leaf or
dcountv = 1, we reconstruct Ψ(Fv), including Πv, with the current set of functions
in Fv. Otherwise, we decrease the variable dcountv by 1, and for each cell ∆ ∈ L(f),
we delete f from Ψ(Fi,∆) recursively. In this case, we do not modify Πv, so it may
contain some of the functions that have been deleted. Following the same analysis as
in [6], we can show that the (amortized) deletion time is O(ψ(n)/n1−ε).

Answering a query. Let p be a query point. We again traverse Ψ(F) in a top-
down fashion. Suppose we are at a node v. If v is a leaf, we report in O(logn+ξ) time
all ξ functions of Fv whose graphs lie below p, using the secondary range-searching
data structure Πv. (Note that if v is a leaf, then Πv does not store any function
that has already been deleted.) If v is an internal node, then for each i, we find in
O(logn) time the cell ∆i ∈ Ξi that contains p, using the point-location data structure
of Lemma 4.3. If ∆i is defined for every i, we recursively search in Ψ(Fi,∆) for all
i ≤ t. Otherwise, there is an i ≤ t such that p does not lie in any cell of Ξi. Let ξv
(resp., ξ′v) be the number of functions in Fv at present (resp., when Ψ(Fv) was last
constructed) whose graphs lie below p. Then ξ′v > mv/r. At most mv/2r functions
have been deleted since Ψ(Fv) was last constructed; therefore

ξv ≥ ξ′v −mv/2r > ξ′v − ξ′v/2 = ξ′v/2.
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We query Πv and report those functions of the query output that have not been
deleted so far. The time spent at v is O(logn+ ξ′v) = O(logn+ ξv). The total query
time is thus O(logn + ξ), where ξ is the total output size. We have thus shown the
following.

Theorem 4.4. Given a family F of n bivariate functions satisfying (F1) and
(F3) and a subset F ⊆ F of size n, we can preprocess F (in an appropriate model of
computation) in time O(ψ(n)·nε) into a data structure of size O(ψ(n)·nε), so that all ξ
functions whose graphs lie below a query point can be reported in time O(logn+ξ) and
a function f ∈ F can be inserted into or deleted from F in O(ψ(n)/n1−ε) (amortized)
time. The same dynamic data structure can be used to determine in O(logn) time
whether a query point lies below the graphs of all the functions in the current set F .

5. Computing the (≤k)-level. Next, consider the problem of computing
A≤k(F), where F ⊆ F is a set of n bivariate functions satisfying (F1) and (F3)
and k is any integer < n. If F is a set of linear functions in R3, this can be done
by the randomized algorithm of [1] (see also [27, 58, 59]), whose expected time is
O(nk2 +n log3 n), but this algorithm does not extend to nonlinear functions. The al-
gorithm that we present below computes all 0-, 1-, and 2-dimensional faces of A≤k(F),
along with their incidence relations. A slight enhancement of the algorithm can store
A≤k(F) into a data structure, so that for a query point p, we can determine in
O(logn) time whether µF (p) ≤ k, and, if so, we return the value of µF (p). We
construct A≤k(F) using a divide-and-conquer algorithm, based on our shallow cut-
ting theorem, as follows. A similar algorithm was developed by Clarkson [23] for
computing the (≤k)-level in an arrangement of hyperplanes.

Choose a sufficiently large constant integer parameter r. If k ≥ n/r, construct the
entire arrangement A(F) and output the first k levels. The time and storage required
are O(n3 logn) and O(n3), respectively. This can be done using one of several known
techniques; e.g., for each function f ∈ F , we compute the intersection curves of f
with all the other functions of F and then compute, by a line-sweep algorithm that
takes O(n2 logn) time, all the faces of A≤k(F) that lie on the graph of f .

Otherwise, the parameter q = 1 + kr/n is at most 2. Using Theorem 3.1, we
compute in O(n) time a (1/r)-cutting Ξ of size O(ψ(r)) for A≤k(F). For each cell
∆ ∈ Ξ, compute the set F∆ of the functions whose graphs cross ∆ and the set
F−∆ of the functions whose graphs pass fully below ∆. If |F−∆ | > k, then discard
∆. For the remaining cells, we have |F∆| ≤ n/r and k′ = |F−∆ | ≤ k. We now
construct recursively A≤k−k′(F∆), repeat this construction over all cells of Ξ, and
glue together the resulting outputs. The gluing step involves merging those faces
which are computed by separate subproblems and which are portions of the same face
of A(F). This can be accomplished in time proportional to the total output size by a
rather straightforward procedure, operating on each surface separately, whose details
are omitted.

Let T (n, k) denote the maximum time needed to construct A≤k(F), where |F| =
n. Then we obtain the following recurrence:

T (n, k) ≤
{

c1ψ(r) · T
(n
r
, k
)

+ c2n, for k < n/r,

c3n
3 logn, for k ≥ n/r,

where c1, c2, c3 are appropriate constants. It is easily seen, arguing as in the analysis
leading to Theorem 4.1, that the solution of this recurrence is

T (n, k) = O(k3nεψ(n/k)),
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which is close to optimal in the worst case. Hence, we obtain the following result.
Theorem 5.1. Let F be a family of bivariate functions satisfying (F1) and (F3).

Given a set F ⊆ F of size n and an integer parameter k ≤ n, we can construct
A≤k(F) in time O(k3nεψ(n/k)) in an appropriate model of computation.

If we want to store A≤k(F) into a data structure for answering point-location
queries of the form described above, we keep the cuttings obtained during the above
recursive construction in a tree-like structure T . This yields a data structure similar
to the one described in the previous section.

For a point p, we answer a query as follows. We trace a path in T from the root
down, maintaining a global count of the number of functions that are known to pass
below p. Initially we set this count to 0. When we visit a node v, we locate p (by brute
force) in the cutting Ξv associated with v. If no cell of the cutting contains p, we report
that p lies above the k-level and stop. Otherwise, let ∆ be the cell of Ξv containing
p. We add k′ = |F−∆ | to the global count and continue the search at the child of v
associated with ∆. When we reach a leaf of T , we explicitly test each of the constant
number of functions stored at that leaf whether it passes below p, update the global
count accordingly, and output its final value. We thus obtain the following result.

Theorem 5.2. Given a collection F of n bivariate functions satisfying (F1)–(F3)
and an integer parameter k < n, we can preprocess A≤k(F) into a data structure of
size O(k3nεψ(n/k)), in time O(k3nεψ(n/k)), so that for any query point p, we can
determine in O(logn) time whether µF (p) ≤ k and, if so, we compute the value of
µF (p).

6. Nearest-neighbor searching. Let S = {p1, . . . , pn} be a set of n points in
the plane, and let δ(·, ·) be a given “distance function” defined on R2×R2. Normally,
we would take δ to be a metric or a convex distance function, but many of the results
obtained below apply for more general “reasonable” functions δ. The function δ is
called reasonable if the family

F = {δ((x, y), (a1, a2)) | (a1, a2) ∈ R2}

satisfies conditions (F1) and (F3) of section 2. For example, all Lp metrics, for integer
1 ≤ p ≤ ∞, are reasonable. Here we do not assume any metric-like properties of δ,
so δ can be fairly arbitrary. We want to store S into a data structure so that points
can be inserted into or deleted from S and for any query point q, we can efficiently
compute a nearest neighbor of q in S under the function δ (i.e., we want to return
a point pi ∈ S so that δ(q, pi) = min1≤j≤n δ(q, pj)). We may also want to return k
nearest neighbors of a query point for some k ≥ 1. Let

F = {fi(x, y) = δ((x, y), pi) | 1 ≤ i ≤ n}.

For a given point q, finding a nearest neighbor of q in S is equivalent to computing a
function of F that attains the lower envelope EF of F at q. Notice that the complexity
of the lower envelope EF is the same as the complexity of the Voronoi diagram of S
under the distance function δ [31] if δ is indeed a metric or a convex distance function.

The nearest-neighbor searching problem, also known as the post-office problem,
has been widely studied because of its numerous applications [4, 6, 23, 53], but most of
the work to date deals with the case where δ is the L1, L2, or L∞ metric and where S
does not change dynamically. If δ is a reasonable function, then we can construct the
minimization diagram of the resulting envelope EF and preprocess it for planar point-
location queries. Therefore a nearest-neighbor query can be answered in O(logn) time
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using O(n2+ε) storage, but this data structure is difficult to dynamize. On the other
hand, using the range-searching data structures of Agarwal and Matoušek [5], S can
be preprocessed in O(n logn) time into a linear-size data structure so that a query
can be answered in O(n1/2+ε) time. This data structure can be updated in O(log2 n)
time per insertion or deletion. Since the Agarwal–Matoušek technique will be useful
for our applications, we describe it briefly. Let

Γ = {δ((x, y), (α, β)) ≤ r | α, β, r ∈ R}

be the set of all “disks” under the distance function δ. We preprocess S, in O(n logn)
time, into a linear size data structure for the counting version of Γ-range searching
(in which, for any given γ ∈ Γ, we want to compute |S∩γ|), as described in [5]. Using
this data structure for a query point q and a real parameter r, we can determine
in O(n1/2+ε) time whether the distance between q and its nearest neighbor in S is
less than, greater than, or equal to r. Plugging this procedure into the parametric-
searching technique of Megiddo [55] (in the same manner as in [4]), we can answer a
nearest-neighbor query, under the distance function δ, in O(n1/2+ε) time. This struc-
ture, however, fails to answer a query in O(logn) time even for the Euclidean metric.

In this section we present a data structure, based on Theorem 4.4, that uses
only O(ψ(n) · nε) space and preprocessing time, answers a query in O(logn) time,
and inserts or deletes a point in O(ψ(n)/n1−ε) time. Moreover, it can also report k
nearest neighbors of a query point in time O(logn+k). These bounds are significantly
better than the previously mentioned bounds if we allow insertions/deletions or if we
want to answer k-nearest-neighbor queries. As an example, for the case of Lp metrics,
we can obtain a nearest-neighbor searching data structure of size O(n1+ε) that can
answer a query in O(logn) time (or a k-nearest-neighbor query in time O(logn+ k))
and that can insert/delete a point in O(nε) time. Compared with the data structure
described in [6], we improve the query time significantly at a slight increase in the
update time and in the size of the data structure.

6.1. A static data structure. As in section 4, we first describe a static data
structure. This data structure is more complicated than simply storing the Voronoi
diagram of S (or, more generally, the minimization diagram of the envelope EF ),
but it allows us to answer efficiently k-nearest-neighbor queries. We preprocess S,
or, rather, the associated collection F , into the range-searching data structure Π(F)
of Theorem 4.1. For a point q ∈ R2, we find a function of F that attains EF at
q, and thus find a nearest neighbor of q in S, as follows. Let ~̀ be the vertical line
in R3 passing through q and oriented in the (+z)-direction. We trace a path in the
tree-structure T = Π(F), starting from the root. Suppose we are at a node v ∈ T ;
v is associated with a subset Fv ⊆ F and a weakly primitive cell ∆v. Inductively,
assume that EF (q) = EFv (q). If v is a leaf, we explicitly search for a function of Fv
that attains EFv at q, report that function, and terminate the query. Recall that if
v is not a leaf, then each child of v is associated with a cell of a (1/r)-cutting Ξv of
A≤k(Fv) (for appropriate parameters r and k). We determine the highest cell ∆ of

Ξv (in the (+z)-direction) intersected by ~̀. Since Ξv covers A≤k(Fv), ∆ is the last

cell in Ξv intersecting ~̀, and F−∆ contains all functions of Fv whose graphs either
intersect ∆ or lie below ∆, it easily follows that EF−∆ (q) = EFv (q) = EF (q). Hence,

we can recursively search at the child w corresponding to ∆ (where Fw = F−∆ ). The
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overall query time is obviously O(logn).

6.2. A dynamic data structure. If S is allowed to change dynamically, we
use the dynamic data structure described in section 4 with the following modification.
For a (1/r)-cutting Ξ, we now need a data structure that, for a given query point q in
the xy-plane, can determine in O(log |Ξ|) time the highest cell of Ξ intersected by the

vertical line ~̀ passing through q. As in Lemma 4.3, we project the facets of cells in
Ξ onto the xy-plane, let Ξ∗ be the set of resulting regions in the plane, and compute
the arrangement A(Ξ∗). Since the (interiors of) cells in Ξ are pairwise disjoint, the
highest cell of Ξ intersected by a vertical line erected from any point within a face
φ ∈ A(Γ) is the same. By storing this cell for each face φ and by preprocessing A(Ξ∗)
for planar point location queries, we can compute in O(log |Ξ|) time the highest cell
of Ξ intersected by a vertical line.

A query is answered as follows: Suppose we are at a node v. If v is a leaf, we
compute EFv (q), using the procedure just described (or the simpler one that stores
explicitly the lower envelope). Otherwise, for each Ξi, we find in O(logn) time the

highest cell ∆ intersected by ~̀ by locating q in A(Ξ∗i ) (as in Lemma 4.3). For each
1 ≤ i ≤ t, we recursively compute the function fi that attains the lower envelope
EFi,∆ at q. Finally, we return the function that attains the envelope of {f1, . . . , ft}
at q. Since the procedure visits O(1) nodes and spends O(logn) time at each node,
the overall query time is O(logn). Updating the structure is done as in section 4.

Theorem 6.1. Let S be a set of n points in the plane and let δ be any rea-
sonable distance function, as above. We can preprocess S in time O(ψ(n)nε) into
a data structure of size O(ψ(n)nε) so that a nearest-neighbor query in S can be an-
swered in O(logn) time. Moreover, we can insert and delete points into/from S in
O(ψ(n)/n1−ε) time per update operation. Here ψ(n) is an upper bound, satisfying
(F3), for the maximum complexity of the envelope EF , as defined above (if δ is a
metric or a convex distance function, then ψ(n) is also (an upper bound for) the max-
imum complexity of the Voronoi diagram of a set of n points in the plane, under the
distance function δ).

Remark 6.2. For a point q, finding a farthest neighbor of q in S is equivalent to
finding a function of F that attains the upper envelope of F at q. By reversing the
direction of the z-axis, we can use the same data structure for answering farthest-
neighbor queries.

6.3. Reporting the κ nearest (farthest) neighbors. The above query pro-
cedures can be modified, so that for a query point q and an integer κ ≤ n, we can
compute the κ nearest (or farthest) neighbors of q in S in time O(logn+κ). Consider
the static data structure, for instance. We again follow a path of the tree, starting
from the root. If we are at a leaf v or at a node v with |Fv| ≤ 3κr, we explicitly
check all functions of Fv to determine the κ nearest neighbors of q in S and terminate
the query. Otherwise, we find the highest cell of Ξv intersected by the corresponding
vertical line ~̀ and recursively visit that child. For the dynamic version, the query pro-
cedure is somewhat more involved, but a query can still be answered in O(logn+ κ)
time. Hence, we have the following theorem.

Theorem 6.3. Let S be a set of n points in the plane, and let δ be any reasonable
distance function, as above. We can preprocess S in time O(ψ(n)nε) into a data
structure of size O(ψ(n)nε), so that for a given point p and an integer κ ≤ n, the κ
nearest (or farthest) neighbors of p can be computed in O(logn+ κ) time. Moreover,
a point can be inserted into or deleted from S in O(ψ(n)/n1−ε) time.
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6.4. Some special cases. If δ is an Lp-metric, for any integer 1 ≤ p ≤ ∞, then
ψ(n) = O(n) [45]. Similarly, if δ is an (additive) weighted Euclidean metric, i.e., each
point pi ∈ S has a weight wi and δ(q, pi) = d(q, pi) +wi, where d(·, ·) is the Euclidean
distance, then also ψ(n) = O(n) [46]. A linear bound also holds when the sites are
pairwise-disjoint line segments [47]. Hence, we obtain the following result.

Corollary 6.4. Let S be a set of n points in the plane, and let δ be any Lp-
metric or any weighted Euclidean metric. We can preprocess S in O(n1+ε) time into a
data structure of size O(n1+ε) so that points can be inserted into or deleted from S in
time O(nε) per update and a nearest-neighbor query can be answered in O(logn) time.
We can also construct a data structure with the same performance bounds for the case
when S is a set of n pairwise disjoint segments (or other simply shaped objects) in the
plane and δ is the Euclidean metric. In all these cases, the k nearest neighbors of a
query point in the plane can be reported in time O(logn+ k).

Space/query-time trade-off. If the bound ψ(n) is rather large, say, O(n2+ε), we
can obtain a space/query-time trade-off by combining Theorem 6.1 with the linear-
size data structure of [5] for nearest-neighbor searching, mentioned at the beginning
of this section, in a rather standard manner [22]. For example, if ψ(n) = O(n2+ε),
then for any parameter n ≤ m ≤ n2, we can store S into a data structure of size
O(m1+ε) so that a nearest-neighbor query can be answered in time O(n1+ε/

√
m).

Insertions and deletions can be performed in O(m1+ε/n) time, per update. Hence,
we can conclude the following.

Theorem 6.5. Let S be a set of n points in the plane, n ≤ m ≤ n2 be a real
parameter, and δ be a reasonable distance function, as above. We can preprocess S
in time O(m1+ε) into a data structure of size O(m1+ε) so that a nearest-neighbor (or
a farthest-neighbor) query can be answered in O(n1+ε/

√
m) time. Moreover, we can

insert and delete points in O(m1+ε/n) time per update.
Remark 6.6. If the number of queries and the number of updates are both O(n),

then an optimal choice for m is n4/3, for which the entire sequence of operations can
be performed in O(n4/3+ε) time.

The dynamic bichromatic closest-pair problem. Next, we consider the following
dynamic bichromatic closest-pair problem: Let R and B be two sets of points in the
plane, of a total of at most n points. We wish to update R and B dynamically and
to return the closest pair between R and B after each update operation.4 We use the
following result of Eppstein [35].

Lemma 6.7. Let R and B be two sets of points in the plane, with a total of at most
n points. Let δ be a distance function for which we can store a set of n points into
a data structure that supports insertions, deletions, and nearest-neighbor queries in
O(T (n)) time per operation. Then a closest pair between R and B can be maintained
in O(T (n) logn) time per insertion and in O(T (n) log2 n) time per deletion.

If δ is an Lp metric or any weighted Euclidean metric, then by Corollary 6.4,
T (n) = O(nε). On the other hand, if δ is any reasonable distance function, then by
choosing m = n4/3 in Theorem 6.5, T (n) = O(n1/3+ε). Plugging these values into the
above lemma, we obtain the following result.

Theorem 6.8. Let R and B be two sets of points in the plane, with a total
of n points. We can store R ∪ B in a dynamic data structure of size O(n1+ε) that
maintains a closest pair in R × B, under any Lp-metric or any weighted Euclidean
metric, in O(nε) time per insertion or deletion. If we use an arbitrary, reasonable

4A closest pair between R and B under a distance function δ is a pair of points p ∈ R, q ∈ B
such that δ(p, q) = minp′∈R,q′∈B δ(p′, q′).
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distance function, then the storage increases to O(n4/3+ε) and the update time to
O(n1/3+ε).

Using this theorem and extending the analysis of Agarwal et al. [2], as done in
[35], we can obtain an efficient procedure for maintaining a minimum spanning tree
T of a set of points under any Lp metric, as follows. For an angle α ≤ π/2 and a
unit vector d, let Cone(d, α) = {x | ∠(x, d) ≤ α}. We call a pair of point sets P,Q
α-separated if there exist a point z and a direction d such that P ⊆ z + Cone(−d, α)
and Q ⊆ z + Cone(d, α). Let α0 be a sufficiently small angle, and let

C = {(P1, Q1), . . . , (Pu, Qu)}
be a family of α0-separated pairs such that for every pair p, q ∈ S, there is an i with
p ∈ Pi and q ∈ Qi; we will refer to C as an α0-cover of S. Consider the graph G whose
vertices are the points of S and whose edges are pairs of points (pi, qi), 1 ≤ i ≤ u,
so that (pi, qi) is a δ-closest pair between Pi and Qi, where δ is an Lp-metric. The
weight of an edge (pi, qi) is δ(pi, qi). Following the same argument used by Agarwal
et al. [2, Lemmas 1–4], but extending their Lemma 3 to the case of an Lp-metric, one
can show that G contains a minimum spanning tree of S as a subgraph.

Using a standard divide-and-conquer approach, an α0-cover C of S, with the
property that each point of S is contained in O(log2 n) pairs, can be constructed in
O(n log2 n) time; see, e.g., [2]. Moreover, C can be maintained in O(log2 n) time per
insertion or deletion. Insertion or deletion of a point changes O(log2 n) edges of the
graph G, and Theorem 6.8 implies that the new edges can be found in O(nε log2 n)
time. The problem of maintaining a minimum spanning tree of S now reduces to
maintaining the family C, a closest pair for each pair (Pi, Qi) ∈ C, and a minimum
spanning tree of the resulting graph G. Holm, de Lichtenberg, and Thorup [41] have
shown that a minimum spanning tree of a graph with n vertices can be updated in
O(log4 n) time for each insertion or deletion of an edge into/from the graph. Hence
we obtain the following result.

Theorem 6.9. A minimum spanning tree of a set of n points in the plane,
under any Lp-metric, can be maintained in O(nε) time for each insertion or deletion
operation using O(n1+ε) storage.

Remark 6.10. We believe that Theorem 6.9 also holds for more general metrics,
but we did not attempt such a generalization in this paper.

7. Minimum-weight bipartite Euclidean matching. Let P = {p1, . . . , pn}
and Q = {q1, . . . , qn} be two sets of points in the plane. We wish to compute a
minimum-weight bipartite Euclidean matching M of P and Q. A matching of P and
Q is a set of n pairs (p, q) ∈ P ×Q such that each point of P ∪Q appears in exactly
one pair. The weight of a pair is the Euclidean distance between its points, and the
weight of a matching is the sum of the weights of its pairs. The standard Hungarian
method [43, 44] yields an O(n3)-time algorithm for computing M . Exploiting the
fact that the weights are Euclidean distances, Vaidya obtained an O(n2.5 logn)-time
algorithm for computingM [70]. A number of efficient algorithms have been developed
for computing a minimum-weight bipartite Euclidean matching when P and Q have
some special structure [10, 17, 49], but no progress has been made when P and Q are
arbitrary sets of points in the plane. Recently, Efrat and Itai [33] have proposed an
O(n1.5+ε)-time algorithm for computing a bottleneck Euclidean bipartite matching,
in which one wishes to minimize the maximum weight of an edge in the matching.

In this section, we show that Vaidya’s algorithm, for arbitrary sets P,Q, can be
modified so that its running time improves to O(n2+ε). One can equally consider the
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nonbipartite version of the problem, where we are given just one set P of 2n points
in the plane and wish to compute a minimum-weight Euclidean matching in P , that
is, a partition of P into n pairs of points so that the sum of the intrapair Euclidean
distances is minimized. Vaidya has also given in [70] an O(n2.5 logn)-time algorithm
for the nonbipartite case. Recently, the bound was improved by Varadarajan to
O(n1.5 logn) [72].

For the sake of completeness, we first give a brief sketch of Vaidya’s algorithm for
the bipartite case and then show how it can be improved using the new machinery of
this paper.

The bipartite matching problem can be formulated as a linear program:

min
∑
i,j

d(pi, qj)xij subject to

n∑
j=1

xij = 1, i = 1, . . . , n,

n∑
i=1

xij = 1, j = 1, . . . , n,

xij ≥ 0, i, j = 1, . . . , n,

where (pi, qj) is an edge of M if and only if xij = 1. The dual linear program is

max
∑
i

αi +
∑
j

βj subject to

αi + βj ≤ d(pi, qj), i, j = 1, . . . , n,

where αi (resp., βj) is the dual variable associated with the point pi (resp., qj).
The Hungarian method computes a matching in n phases, each of which augments

the matching by one edge and updates the dual variables. Let X be the current
matching computed so far by the algorithm. Initially, we set X = ∅, αi = 0, and
βj = mini d(pi, qj) for all i, j. An edge (pi, qj) is called admissible if d(pi, qj) = αi+βj .
A vertex of P∪Q is called exposed if it is not incident to any edge of X. An alternating
path is one that alternately traverses edges of X and edges not in X, starting with
an edge not in X. An alternating path between two exposed vertices is called an
augmenting path.

During each phase, we search for an augmenting path consisting only of admissible
edges, as follows. For each exposed point q ∈ Q, we grow (in an implicit manner) an
“alternating tree” whose paths are alternating paths starting at q. More precisely,
each point of P ∪Q in an alternating tree is reachable from its root by an alternating
path that consists only of admissible edges. For a point w of P (resp., Q), the path
leading to w ends at an edge not in X (resp., in X). Let S (resp., T ) denote the set
of points of Q (resp., P ) that lie in any alternating tree. In the beginning of each
phase, S is the set of exposed vertices of Q and T = ∅. Let

δ = min
pi∈P−T,qj∈S

{d(pi, qj)− αi − βj}.

At each step, the algorithm takes one of the following actions, depending on whether
δ = 0 or δ > 0:

Case 1. δ = 0. Let (pi, qj), for pi ∈ P−T and qj ∈ S be an admissible edge (δ = 0
implies that such an edge must exist). If pi is an exposed vertex, an augmenting path
has been found, so the algorithm moves to the next phase (see below for more details).
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Otherwise, let qk be the vertex such that (pi, qk) ∈ X. The algorithm adds the edges
(pi, qj) and (pi, qk) to all the alternating trees that contain the vertex qj . It also adds
the point pi to T and the point qk to S.

Case 2. δ > 0. The algorithm updates the dual variables, as follows. For each
vertex pi ∈ T , it sets αi = αi − δ, and for each qj ∈ S, it sets βj = βj + δ.

The algorithm repeats these steps until it reaches an exposed vertex of P , thereby
obtaining an augmenting path. If an augmenting path Π is found, we delete the edges
of Π ∩ X from the current matching X, add the other edges of Π to X (thereby
increasing the size of the current matching by 1), and move to the next phase. This
completes the description of the algorithm. Further details of the algorithm and the
proof of its correctness can be found in [44, 70].

For arbitrary graphs, each step can be implemented in O(n) time. Since there
are at most n phases and each phase consists of O(n) steps, the total running time of
the above procedure is O(n3). Vaidya suggested the following approach to expedite
the running time of each step. Maintain a variable ∆ and associate a weight w(·)
with each point in P ∪ Q. In the beginning of each phase, ∆ = 0 and w(pi) = αi,
w(qj) = βj for each 1 ≤ i, j ≤ n. During each step, the weights and ∆ are updated,
but the values of the dual variables remain unchanged. This is done as follows. If
Case 1 occurs, then we set w(pi) = αi + ∆ and w(qk) = βk −∆ and do not change
the value of ∆. If Case 2 occurs, then we set ∆ = ∆ + δ and do not change the
weights. Notice that for each qj ∈ S, the current value of βj is equal to w(qj) + ∆,
and, similarly, for each pi ∈ T , the current value of αi is equal to w(pi) − ∆. Also,
the current value of the dual variables for other points is equal to their values at the
beginning of the phase. At the end of each phase, the value of the dual variables can
be computed from ∆ and from the weights of the corresponding points. The weight
of each point changes only once during a phase, namely, when it is added either to S
or to T . Moreover, at any time during a phase,

δ = min
pi∈P−T,qj∈S

{d(pi, qj)− w(pi)− w(qj)} −∆.

Hence, δ can be computed during each step by maintaining the weighted closest
pair between S and P − T . Since each step requires at most two update operations
(inserting a point into S and deleting a point from P−T ), each step can be performed
in O(nε) time by the algorithm provided in Theorem 6.8. (The current setup is slightly
different than that of section 6, because here the weighted distance between two points
subtracts weights associated with both points. Nevertheless, the analysis of section 3
leading to Theorem 4.4 and the way in which this theorem is used in section 6 still
apply.) If the distance between two points is measured by an arbitrary reasonable
distance function, each step of the above algorithm will require O(n1/3+ε) time with
an appropriately increased storage (the distance function continues to be reasonable
when weights are added to the points, as above). We can thus conclude the following.

Theorem 7.1. Given two sets P , Q, each consisting of n points in the plane, a
minimum-weight bipartite Euclidean matching between P and Q can be computed in
O(n2+ε) time, using O(n1+ε) space. If we use an arbitrary, reasonable distance func-
tion for computing distances between points of P and Q, a minimum-weight bipartite
matching between P and Q can be computed in time O(n7/3+ε), using O(n4/3+ε)
space.

The above algorithm can be extended to obtain faster algorithms for several
other problems related to the bipartite matching. For example, consider the following
Euclidean transportation problem, which is a generalization of the minimum-weight
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bipartite Euclidean matching problem: Let P = {p1, . . . , pu} be a set of u “supply”
points in the plane, each with a supply value ai, and let Q = {q1, . . . , qv} be a set of
v “demand” points in the plane, each with a demand value bj , such that

∑u
i=1 ai =∑v

j=1 bj . Assume that the cost of transporting unit commodity from pi to qj is
d(pi, qj). We wish to find out how to satisfy all the demands at the minimum cost.
Atkinson and Vaidya [13] gave an O((u+v)2.5 log(u+v) logN)-time algorithm, where
N = max{maxi ai,maxj bj}. Plugging Theorem 6.8 into their algorithm, we can
improve the running time to O((u + v)2+ε logN). See [14, 44, 70] for some other
applications.

8. Maintaining the intersection of congruent balls in three dimensions.
The next application of our techniques is an efficient algorithm for dynamically main-
taining the intersection of congruent balls in R3, under insertions and deletions of
balls. With no loss of generality, we assume that the balls have radius 1. For a point
p ∈ R3, let B(p) denote the ball of radius 1 centered at p. Let S be a set of n points
in R3. Let B = B(S) = {B(p) | p ∈ S}, and let K(S) =

⋂
p∈S B(p) be the common

intersection of B. We wish to maintain K(S) as we update S dynamically by inserting
and deleting points. Although the complexity of K(S) is O(n) [36], a sequence of m
updates in S may cause Ω(mn + m2) changes in the structure of K(S), even if we
perform only insertions. Consequently, we cannot hope to maintain K(S) explicitly
if we seek fast update time. Instead, we store K(S) into a data structure so that a
number of different types of queries can be answered efficiently. The simplest query
is whether a query point p lies in K(S). A stronger type of query is to determine
efficiently, after each update, whether K(S) is empty. In this section, we present a
data structure that answers these two queries efficiently.

Let B+(p) (resp., B−(p)) denote the region consisting of all points that lie in or
above (resp., in or below)B(p). LetK+(S) =

⋂
p∈S B

+(p) andK−(S) =
⋂
p∈S B

−(p).

If we regard the boundary of each region B+(p) for p ∈ S as the graph of a partially
defined bivariate function, then (the nonvertical portion of) ∂K+(S) is the graph of
the upper envelope of these functions restricted to the domain, D(S), of intersection
of the xy-projections of the balls B(p), p ∈ S. We denote this upper envelope by
z = F+(x). The same argument as in [36] implies that K+(S) also has linear com-
plexity. In fact, the surfaces ∂B+(p) behave similar to a family of pseudoplanes—any
pair of them intersects in a single connected unbounded curve (or does not intersect
at all), and, assuming general position, any triple of them intersects at a single point
(or does not intersect at all). Similar and symmetric properties hold for the region
K−(S), and we use the notation z = F−(x) to denote the graph of its (nonvertical)
boundary.

A query point p = (px, py, pz) lies in K(S) if and only if F+(px, py) ≤ pz ≤
F−(px, py). Therefore, the problem of determining whether p ∈ K(S) reduces to
evaluating F+(px, py) and F−(px, py). By Theorem 6.1, we can store {B+(p) | p ∈ S}
and {B−(p) | p ∈ S} into two data structures, each of size O(n1+ε), so that a point
can be inserted into or deleted from S in O(nε) time and so that for a query point
p = (px, py, pz), the functions F+(px, py) and F−(px, py) can be evaluated in O(logn)
time.5

The same data structure can be used to determine whether K(S) is empty, al-
though this is a considerably more involved operation. Observe that the boundaries

5This is an example where the given bivariate functions are only partially defined, so we use
Corollary 2.4 instead of Theorem 2.1.
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of the regions K+(S) and K−(S) are both (weakly) xy-monotone—one of them is a
convex surface and the other is concave. These properties can be exploited to obtain
a fast procedure for detecting (after each update) whether K+(S) and K−(S) inter-
sect by applying a variant of the parametric searching technique [55], as proposed by
Toledo [69]. For the sake of completeness, we include here a brief description of this
technique in the context of the problem under consideration.

We wish to find a point x∗ ∈ R2 such that F+(x∗) ≤ F−(x∗); this point will
serve as a witness to the fact that K+(S) and K−(S) intersect. In fact, we will seek
a point x∗ at which

F∆(x∗) def
= F+(x∗)− F−(x∗)

is minimized; the minimum is negative if and only if the regions K+(S) and K−(S)
intersect. Let As denote the query procedure that computes F∆(x) for a given x in
O(logn) time.

We first consider the 1-dimensional problem, where for a given line ` : x =
c, we wish to find a point y∗ = (c, y∗) ∈ ` that minimizes F∆. We execute the
query procedure As without knowing the value y∗. This procedure makes O(logn)
comparisons, each of which involves computing the sign of a univariate, constant-
degree polynomial g(y) in the y-coordinate y∗ of y∗. We compute the roots y1, . . . , yp
of g, and evaluate F∆(c, yi) for 1 ≤ i ≤ p. Set y0 = −∞ and yp+1 = +∞. Since F∆ is
convex, by examining the local behavior of F∆(c, ·) at each yi (using an appropriate
straightforward extension of the preceding procedure), we can determine whether
y∗ = (c, yi) for some 0 ≤ i ≤ p+1; if not, we can determine the open interval (yi, yi+1)
that contains y∗. We can thus compute the sign of g at y∗. Proceeding in this manner,
we can compute the value of y∗. Since F∆ is convex over the entire xy-plane (or rather
over the convex 2-dimensional domain D(S)), the above procedure can be extended
to determine whether the global minimum x∗ of F∆ lies to the left of `, to the right of
`, or on `, simply by examining the local behavior of F∆ in the neighborhood of y∗.
In the third case, the procedure can return the value of x∗ = y∗ and terminate. The
total running time of this procedure is O(log2 n), because we spend O(logn) time at
each comparison and the algorithm makes O(logn) comparisons.

Using the above 1-dimensional procedure as a subroutine, we can compute x∗

as follows. We now run the query procedure of Theorem 6.1 in a generic manner
at x∗. Each comparison now involves computing the sign of a bivariate, constant-
degree polynomial π(x). Let ∨π denote the set of roots of π. We compute Collins’s
cylindrical algebraic decomposition Π of R2 so that the sign of π is invariant within
each cell of Π [12, 26, 61]. Our aim is to determine the cell τ ∈ Π that contains x∗,
thereby determining the sign of π at x∗.

The cells of Π are delimited by O(1) y-vertical lines—each passing through a self-
intersection point of ∨π or through a point of vertical tangency of ∨π; see Figure 8.1.
For each vertical line `, we run the standard 1-dimensional parametric-searching pro-
cedure to determine which side of ` contains x∗. If any of these substeps returns x∗,
we are done. Otherwise, we obtain a vertical strip σ that contains x∗. We still have
to search through the cells of Π within σ, which are stacked one above the other in
the y-direction, to determine which of them contains x∗. We note that the number of
roots of π along any vertical line ` : x = x0 within σ is the same, that each root varies
continuously with x0, and that their relative y-order is the same for each vertical line.
In other words, the roots of ∨π in σ constitute a collection of disjoint, x-monotone
arcs γ1, . . . , γt whose endpoints lie on the boundary lines of σ. We can regard each γi
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(i) (ii)
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σ œ

Fig. 8.1. (i) The set ∨π of roots of π. (ii) The cylindrical algebraic decomposition of π. (iii)
The curves g = 0 and γ1.

as the graph of a univariate function γi(x).
Next, for each γi we determine whether x∗ lies below, above, or on γi. Let x∗ be

the (unknown) x-coordinate of x∗, and let ` be the vertical line x = x∗. If we knew
x∗, we could have run As at each γi ∩ ` and could have located x∗ with respect to
γi, as desired. Since we do not know x∗, we execute the 1-dimensional procedure,
described above, generically, on the line `, with the intention of simulating it at the
unknown point xi = γi ∩ `. This time, performing a comparison involves computing
the sign of some bivariate, constant-degree polynomial g at xi (we prefer to treat g as
a bivariate polynomial, although we could have eliminated one variable by restricting
x to lie on γi). We compute the roots r1, . . . , ru of g that lie on γi, and set r0 and
ru+1 to be the left and right endpoints of γi, respectively. As above, we compute the
index j so that x∗ lies in the vertical strip σ′ bounded between rj and rj+1. Notice
that the sign of g is the same for all points on γi within the strip σ′, so we can now
compute the sign of g at xi.

When the generic algorithm being simulated at xi terminates, it returns a constant-
degree polynomial Fi(x, y), corresponding to the value of F∆ at xi (i.e., Fi(xi) =
F∆(xi)), and a vertical strip σi ⊆ σ that contains x∗. Let ρi(x) = Fi(x, γi(x)). Let
γ+
i (resp., γ−i ) be the copy of γi translated by an infinitesimally small amount in the

(+y)-direction (resp., (−y)-direction), i.e., γ+
i (x) = γi(x)+ε (resp., γ−i (x) = γi(x)−ε),

where ε > 0 is an infinitesimal. We next simulate the algorithm at x+
i = γ+

i ∩ ` and
x−i = γ−i ∩ `. We thus obtain two functions ρ+

i (x), ρ−i (x) and two vertical strips
σ+
i , σ

−
i . Let σ̂i = σi ∩ σ+

i ∩ σ−i . We need to evaluate the signs of ρi(x
∗)− ρ+

i (x∗) and
ρi(x

∗) − ρ−i (x∗) to determine the location of x∗ with respect to γi (this is justified
by the convexity of F∆). We compute the x-coordinates of the intersection points
of (the graphs of) ρi, ρ

+
i , ρ

−
i that lie inside σ̂i. Let x1 ≤ x2 ≤ · · · ≤ xs be these

x-coordinates, and let x0, xs+1 be the x-coordinates of the left and right boundaries
of σ̂i, respectively. By running As on the vertical lines x = xj , for 1 ≤ j ≤ s, we
determine the index 0 ≤ j ≤ s so that the vertical strip σi = [xj , xj+1] × R contains
x∗. Notice that the signs of polynomials ρi(x)− ρ+

i (x), ρi(x)− ρ−i (x) are fixed for all
x ∈ [xj , xj+1]. By evaluating ρi, ρ

+
i , ρ

−
i for any x0 ∈ [xj , xj+1], we can compute the

signs of ρi(x
∗)− ρ+

i (x∗) and of ρi(x
∗)− ρ−i (x∗).

Repeating this procedure for all γi’s, we can determine the cell of Π that contains
x∗ and thus resolve the comparison involving π. We then resume the execution of the
generic algorithm.
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The execution of the 1-dimensional procedure takes O(log2 n) steps, which implies
that its generic simulation requires O(log3 n) time. The total time spent in resolving
the sign of π at x∗ is therefore O(log3 n). Hence, the total running time of the
2-dimensional algorithm is O(log4 n).

Theorem 8.1. The intersection of a set of congruent balls in R3 can be main-
tained dynamically, by a data structure of size O(n1+ε), so that each insertion or
deletion of a ball takes O(nε) time and the following queries can be answered: (a) For
any query point p, we can determine in O(logn) time whether p lies in the current
intersection, and (b) after performing each update, we can determine in O(log4 n)
time whether the current intersection is nonempty.

Remark 8.2. (i) The same data structure can be used to answer other queries,
such as determining whether a line intersects K(S), computing the highest (or the
lowest) vertex of K(S), etc.

(ii) The same technique can also be used to maintain the intersection of other
simply-shaped, convex objects in R3. The technique will be most effective in cases
where the complexity of such an intersection can be shown to be small.

(iii) The problem studied in this section arises in the 3-dimensional 2-center prob-
lem, where we are given a set S of n points in R3 and wish to cover them by the union
of two congruent balls whose radius is as small as possible. Extending to three di-
mensions the standard approach to this problem [29], we face a main subproblem in
which we need to maintain dynamically the intersection of a set of congruent balls
and to determine after each update whether this intersection is nonempty. The main
difference, though, is that in the 2-center problem the sequence of updates is known
in advance, which makes the problem easier to solve. Still, using the method of this
section, we obtain an O(n3+ε)-time algorithm for the 3-dimensional 2-center problem.

9. Smallest stabbing disk. Let C be a (possibly infinite) family of simply
shaped compact strictly-convex sets (called objects) in the plane. By “simply shaped”
we mean that each object is described by a Boolean combination of a constant
number of polynomial equalities and inequalities of constant maximum degree. Let
C = {c1, . . . , cn} be a finite subset of C. We wish to update C dynamically, by inserting
objects c ∈ C into C or by deleting such objects from C, and maintain a smallest disk
or, more generally, a smallest homothetic copy of some given simply shaped compact
convex set P that intersects all sets of C. This study extends recent work by Agarwal
and Matoušek [6], who have obtained an algorithm that takes O(nε) time per update
operation for the case where C is a set of points and P is a disk.

9.1. Farthest-neighbor Voronoi diagrams. The set P induces a convex dis-
tance function defined by

dP (x, y) = min {λ | y ∈ x+ λP}.

We assume here that P contains the origin in its interior. The function dP is a metric
if and only if P is centrally symmetric with respect to the origin. We define the
farthest-neighbor Voronoi diagram VorP (C) of C, under the distance function dP , in
a standard manner (see [48, 56, 63] for details). In what follows, we assume that P
is strictly convex; the results can be extended to more general sets with some extra
care. We first prove the following theorem, which is of independent interest. (We are
not aware of any previous proof of this result.)

Theorem 9.1. Let C be a set of n (possibly intersecting) simply shaped compact
convex objects in the plane. Then the complexity of the farthest-neighbor Voronoi
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Fig. 9.1. Anti-star-shape property of Voronoi cells.

diagram of C, under a convex distance function dP induced by any simply shaped
compact strictly convex set P , is O(λs(n)). Here s is a constant depending on the
shape of P and of the objects in C. If C is a set of n line segments and dP is the
Euclidean distance function (i.e., P is a disk), the complexity of the farthest-neighbor
Voronoi diagram is O(n).

Proof. Let R be one of the Voronoi cells of VorP (C), and let c ∈ C be the farthest
neighbor of all points of R. We show that R has the following “anti-star-shape”
property: Let x ∈ R, and let q ∈ c be the nearest point to x (i.e., dP (x, q) = dP (x, c));
the convexity of c and the strict convexity of P imply that q is unique. Let ρ be the
ray emanating from q towards x, and let y be any point on ρ past x (i.e., x lies
in the segment qy). We claim that c is the farthest neighbor of y; see Figure 9.1.
Indeed, suppose to the contrary that the farthest neighbor of y in C is c′ 6= c (so that
dP (y, c′) > dP (y, c)), and let r ∈ c′ be the nearest point to x. Let ` be the (unique)
line passing through q and tangent to x+ dP (x, c)P there. The convexity of c implies
that c is contained in the (closed) halfplane bounded by ` and not containing x. Since
` is also tangent to y + dP (y, q)P , it easily follows that dP (y, c) = dP (y, q). Now, by
the triangle inequality we have

dP (y, c′) ≤ dP (y, r)

≤ dP (y, x) + dP (x, r)

= dP (y, x) + dP (x, c′)
≤ dP (y, x) + dP (x, c)

= dP (y, x) + dP (x, q)

= dP (y, q)

= dP (y, c),

a contradiction that establishes the claim.
This implies that R is unbounded, and so VorP (C) is an outerplanar map. It is

easy to verify that every vertex of VorP (C) has degree at least three. Hence, by Euler’s
formula for planar graphs, the complexity of VorP (C) is proportional to the number
of its faces. We bound the number of faces in VorP (C), as follows. By a compactness
argument, there exists a sufficiently large r such that the circle σr of radius r about the
origin cuts the cells of VorP (C) in the same sequence as does the circle at infinity. For
each c ∈ C, let fc(θ) = dP ((r, θ), c), and let F (θ) = maxc∈C fc(θ). Clearly, the number
of edges of VorP (C) crossed by σr, which is an upper bound on the number of faces
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Fig. 9.2. Partition of the circle σr into maximal arcs.

in VorP (C), is equal to the number of breakpoints in the upper envelope F . Since we
have assumed P and each set c ∈ C to be simply shaped, it follows that for each pair
c, c′ ∈ C, the functions fc and fc′ have at most some constant number, s, of intersection
points. Hence, the number of breakpoints of F is, by standard Davenport–Schinzel
theory [39, 66], at most λs(n). This establishes the first part of the claim.

For the case of line segments and Euclidean distance, the bound improves to O(n).
To see this, let C be a set of n line segments in the plane. Traverse the circle σr, as
defined above, and decompose it into maximal arcs so that the following conditions
are satisfied for each arc ζ:

(i) The farthest segment from all points q ∈ ζ is the same segment e,
(ii) the nearest endpoint of e from q is fixed, and
(iii) ζ lies fully in one of the halfplanes bounded by the line containing e.
We label each arc ζ by the endpoint of the corresponding segment e, but we

use different labels for arcs that lie on different “sides” of e (as in (iii) above); see
Figure 9.1. We call an arc ζ, labeled by endpoint a, a left arc (and label it by aL) if it
lies on the left side of the segment incident to a when this segment is directed towards
a; otherwise, ζ is a right arc (and we label it aR). Let S (resp., SR, SL) denote the
cyclic sequence consisting of the labels of all (resp., all the right, all the left) arcs in
the clockwise order along σr. Note that S is obtained by merging SL and SR and it
does not contain any pair of equal adjacent elements (SL and SR may contain such
pairs). Each of SL and SR is composed of at most 2n symbols. We claim that SL
cannot contain an alternating subcycle of the form 〈aL · · · bL · · · aL · · · bL〉, where a
and b are two segment endpoints.

In order to prove this claim, it suffices to rule out the existence of such a subcycle
in the partition of σr induced by the one or two segments incident to a and b. First,
such a subcycle is impossible if a and b are endpoints of the same segment e because
all arcs labeled by a are separated from all arcs labeled by b by the perpendicular
bisector of e.

Suppose then that a and b are endpoints of two distinct respective segments e1,
e2. Let a′ be the other endpoint of e1, and let b′ be the other endpoint of e2. Since r
is sufficiently large, the perpendicular bisector of any two endpoints of segments in C
partitions σr into two arcs, each of which is larger than, say, 3πr/4. Both appearances
of a (resp., of b) in the assumed subcycle occur within an arc γ1 (resp., γ2), bounded
by the perpendicular bisector e1 (resp., e2) and by the line containing e1 (resp., e2).
See Figure 9.3. An easy calculation shows that the lengths of γ1, γ2 are both less than
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Fig. 9.3. Segments e1, e2 and arcs γ1, γ2.

3πr/4 (each of the arcs is approximately a quarter circle, so the above property will
hold if r is chosen sufficiently large), and, by definition, a is the nearest endpoint of e1

within γ1 and b is the nearest endpoint of e2 within γ2. By assumption, γ1 contains
three disjoint subarcs labeled aL, bL, aL in the clockwise order.

This, however,+ implies that the perpendicular bisector, `ab, of a and b intersects
γ1 twice, which is impossible because the length of γ1 is less than 3πr/4 and the
length of each of the two arcs into which σr is partitioned by `ab is more than 3πr/4.
This completes the proof of the claim.

A symmetric argument shows that SR too cannot contain such a subcycle. Hence,
if we erase from SL and from SR every element equal to its predecessor, we obtain
two (cyclic) Davenport–Schinzel sequences of order 2, each composed of at most 2n
symbols, which are thus of length at most 4n − 2 each. It is now a fairly standard
exercise to show that the total length of S is also linear in n (see, e.g., [66]). This
completes the proof.

For each object ci ∈ C, define a bivariate function

fi(x) = −min
q∈ci

dP (x, q)

for x ∈ R2. Let F = {fi | 1 ≤ i ≤ n}. The minimization diagram of F is the
farthest-neighbor Voronoi diagram of C under the distance function dP . Following
the same argument as in Theorem 6.1 and using Theorem 9.1, we obtain the following
corollary.

Corollary 9.2. Let C be a set of n (possibly intersecting) simply shaped compact
convex sets in the plane and dP be a convex distance function as above. C can be
preprocessed into a farthest-neighbor-searching data structure of size O(n1+ε) so that
a query can be answered in O(logn) time and an object (of the same form) can be
inserted into or deleted from C in O(nε) time.

9.2. Maintaining the smallest stabbing disk. Returning to the smallest
stabbing disk problem, we need to compute the highest point w∗ on the lower envelope
EF of F . In view of Corollary 9.2 and the easily established fact that the cell of
A(F) lying below EF is convex, a natural approach to computing w∗ is to use the
multidimensional parametric-searching technique of Toledo [69] in a manner similar
to that described in the preceding section. Omitting further details, which can be
worked out by the reader, we have the next theorem.

Theorem 9.3. A set C of n (possibly intersecting) simply shaped compact convex
sets in the plane can be stored in a data structure of size O(n1+ε) so that a smallest
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homothetic placement of some given simply shaped compact strictly convex set P that
intersects all objects of C can be computed in O(nε) time, after each insertion or
deletion of a set into/from C.

Remark 9.4. A related problem is that of maintaining the smallest disk (or ho-
mothetic copy of some given P ) enclosing all but at most k objects of a dynamically
changing collection C. The same technique as above can be used, except that now
we need to replace VorP (C) by a different farthest-neighbor diagram, where the dP -
distance to an object c is the maximum distance to a point of c. See [68] for a recent
study of such Voronoi diagrams.

10. Other applications. In this section, we list some other applications of the
techniques developed in this paper. To keep the length of the paper under control,
we omit most of the details concerning these applications; some of these details are
fairly routine, but some are more technical and problem-specific. Some of the details
can be found in [32]. We are confident that the new techniques will also find many
additional applications.

10.1. Smallest stabbing disk with at most k violations. Let C and P be as
in section 9, and let 1 ≤ k ≤ n be an integer parameter. We consider the problem of
finding a smallest homothetic placement of P that stabs at least n− k of the objects
of C. This problem extends the problem studied by Matoušek [51], in which one seeks
the smallest disk stabbing all but at most k points of a given set of points in the
plane.

Let F = {fi | 1 ≤ i ≤ n} be the set of bivariate functions as defined in section 9.
As easily seen, our goal is to find a point in A≤k(F) with the maximum z-coordinate.
In view of Corollary 9.2, this can be done in time O(n1+εk2) by explicitly computing
A≤k(F), as in Theorem 5.1. However, one can do much better. Note that the problem

max z subject to

z ≤ fi(x, y), i = 1, . . . , n,

is an LP-type problem (see [54, 67]). Matoušek [51, Theorem 2.2] showed that the
number of local maxima in the first k levels of A(F) is O((k + 1)3). Note that each
local maxima w of the jth level lies on at most three function graphs and is the
unique maximum of the lower envelope of a subcollection F ′ of n− j functions of F .
Moreover, there exists a local maximum w′ of the (j − 1)st level that “hides” w in
the sense that w′ is the unique maximum of the lower envelope of F ′ ∪ {f}, where f
is one of the functions whose graph contains w′.

Matoušek also proposed a method for computing all these maxima, which proceeds
in a depth-first-search fashion, starting from the unique maximum p in A≤0(F) (i.e.,
the lower envelope of F). Suppose the algorithm is currently at a local maxima q
of the jth level for some j ≤ k; q is the unique maximum of the lower envelope of
a subset F ′ ⊆ F of n − j functions. If j < k, the algorithm removes one of the (at
most) three constraints defining q, say, f , and finds the maximum q′ of the LP-type
problem defined by the constraints in F ′ \ {f}, using an appropriate dynamic data
structure. Applying this step repeatedly, we find all local maxima violating at most
k constraints. The cost of this algorithm is proportional to the preprocessing cost for
constructing the data structure plus the number of maxima (i.e., O((k + 1)3)) times
the cost of a query and an update of the structure.

In our setting, a point q in R3 represents a homothetic copy of P that misses
exactly k objects of C if and only if it lies at the kth level of A(F). Hence, to
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implement Matoušek’s technique for our problem, we first construct the data structure
of Theorem 9.3 in time O(n1+ε). This also yields a smallest homothetic copy of P
that stabs all the objects of C. Then we compute each of the O((k + 1)3) maxima of
A≤k(F), using the above technique. Each step of the algorithm starts at some local
minimum q on one of the first k levels so that the data structure currently represents
all the objects of C not violating q. It then deletes one of the (at most 3) objects
defining q and queries the structure to obtain the minimum for the resulting set of
remaining constraints (as in Theorem 9.3). The cost of such a query is O(nε). We
thus obtain the following theorem.

Theorem 10.1. Let C be a family of n (possibly intersecting) simply shaped
compact convex sets in the plane, and let 0 ≤ k ≤ n be a parameter. We can find a
smallest homothetic placement of some given simply shaped, compact, strictly convex
set P , which stabs all except at most k of the sets of C, in time O(n1+ε + k3nε).

Remark 10.2. Note that this approach can be generalized to many other optimiza-
tion problems, where the optimizing object has three degrees of freedom and we seek
an optimum solution that violates at most k of the given constraints. The machinery
developed in this paper is powerful enough to allow such extensions, requiring only
that the lower envelope of any subcollection of objects is a convex surface and that
the relevant constraints satisfy some rather mild conditions.

10.2. Segment center with at most k violations. Let S be a set of n points
in the plane, and let e be a fixed-length segment. A placement e∗ of e is called
a segment center of S if the maximum distance between the points of S and e∗ is
minimized. We call e∗ a segment center of S with k violations if the (k + 1)st largest
distance between e∗ and the points of S is minimized. The problem of computing the
segment center (without violations) has been studied in [3, 34, 42]; the best algorithm,
given in [34], computes the segment center in O(n1+ε) time.

Applying the machinery developed in section 5 and extending the result of [34],
one can obtain the following result.

Theorem 10.3. The segment center with k violations of a set S of n points in
the plane can be computed in time O(n1+εk2).

Here is a brief sketch of the proof. We first solve the fixed-size problem: Given a
real d > 0, determine whether there exists a placement of e for which the (k + 1)st
largest distance to the points of S is ≤ d. As follows from the analysis of [34], this
is equivalent to the problem of determining whether there exists a (translated and
rotated) placement Z of the hippodrome H(e, d), defined as the Minkowski sum of e
and a (closed) disk of radius d, that contains all but at most k points of S.

Extending the technique of [34], one can reduce this latter problem to the following
one: We are given two collections F and G of n partially defined fixed-degree algebraic
bivariate functions, and we wish to determine whether there exists an intersection
between the first k lower levels of A(F) and the first k upper levels of A(G) so that
the sum of the levels of such an intersection does not exceed k. This can be solved
efficiently using the machinery developed in section 5. As shown in [34], we have
ψ(n) = O(n logn) for the collections F and G, which then implies that the asymptotic
running time of the algorithm is O(n1+εk2).

Once the fixed-size problem is solved, the segment center problem can be solved
by parallelizing the decision algorithm under Valiant’s model [71] and by applying
the parametric searching technique of [55]. The bound on the running time remains
asymptotically the same.
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11. Conclusions. In this paper we have extended known range-searching tech-
niques to arrangements of low-degree algebraic bivariate functions in R3. By estab-
lishing sharp bounds on the vertical decomposition of the first k levels of such an
arrangement, we were able to extend the construction of [52] of shallow cuttings to
such arrangements. This in turn has yielded a collection of static and dynamic range-
searching techniques for problems that involve such arrangements, from which we
have obtained new and efficient solutions to several geometric optimization problems,
including minimum weight Euclidean bipartite matching.

The main open problem that the paper raises is to extend our results to higher
dimensions. The first obstacle that we face here is the lack of really sharp bounds on
the complexity of vertical decompositions in arrangements of surfaces, even for the
whole arrangement, which prevents our technique from “taking off” at all. Recently
Schwarzkopf and Sharir [62] have shown that the complexity of the vertical decom-
position of a single cell in an arrangement of surfaces in R3 is O(n2+ε). It is an open
problem whether these techniques can be extended to bound the complexity of the
vertical decomposition of the lower envelope of trivariate functions.

Another open problem is to extend our results to other cases involving shallow
levels in 3-dimensional arrangements. For example, we may want to maintain dynam-
ically a single cell in an arrangement of surfaces in R3 or the union or intersection of
a collection of 3-dimensional objects, etc. Extending the analysis of section 2 to these
situations seems considerably more difficult.
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[1] P. K. Agarwal, M. de Berg, J. Matoušek, and O. Schwarzkopf, Constructing levels in
arrangements and higher order Voronoi diagrams, SIAM J. Comput., 27 (1998), pp. 654–
667.

[2] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl, Euclidean minimum
spanning trees and bichromatic closest pairs, Discrete Comput. Geom., 6 (1991), pp. 407–
422.

[3] P. K. Agarwal, A. Efrat, M. Sharir, and S. Toledo, Computing a segment-center for a
planar point set, J. Algorithms, 15 (1993), pp. 314–323.

[4] P. K. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J. Comput.,
22 (1993), pp. 794–806.
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Abstract. Given a set of strings S = {s1, s2, . . . , sn} over a finite alphabet Σ, a superstring of
S is a string that contains each si as a contiguous substring. The shortest superstring (SS) problem
is to find a superstring of minimum length.

This problem has important applications in computational biology and in data compression (see,
respectively, [A. Lesk, ed., Computational Molecular Biology, Sources and Methods for Sequence
Analysis, Oxford University Press, Oxford, 1988]; [J. Storer, Data Compression: Methods and The-
ory, Computer Science Press, Rockville, MD, 1988]). SS is MAX SNP-hard [A. Blum et al., Proc.
23rd Annual ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 328–336] so
it is unlikely that the length of a shortest superstring can be approximated to within an arbitrary
constant. Several heuristics have been suggested and it is conjectured that GREEDY achieves an
approximation factor of 2. This, unfortunately, remains an open question.

Several linear approximation algorithms for SS have been proposed. The first, by Blum et al.
[Proc. 23rd Annual ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 328–336],
guarantees a performance factor of 3. The factor has been successively improved to 2 8

9
, 2 5

6
, 2 50

63
,

2 3
4

, 2 2
3

, and 2.596 (see, respectively, [S. Teng and F. Yao, Proc. 34th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Piscataway, NJ, 1993, pp. 158–
165]; [A. Czumaj et al., Proc. First Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Comput. Sci. 824, Springer-Verlag, Berlin, 1994, pp. 95–106]; [R. Kosaraju, J. Park, and C. Stein,
Proc. 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Piscataway, NJ, 1994, pp. 166–177]; [C. Armen and C. Stein, Proc. 5th Internat. Workshop
on Algorithms and Data Structures, Lecture Notes in Comput. Sci. 955, Springer-Verlag, Berlin,
1995, pp. 494–505]; [C. Armen and C. Stein, Proc. Combinatorial Pattern Matching, Lecture Notes
in Comput. Sci. 1075, Springer-Verlag, Berlin, 1996, pp. 87–101]; and [D. Breslauer, T. Jiang, and
Z. Jiang, J. Algorithms, 24 (1997), pp. 340–353]). In this paper we give an algorithm that guarantees
a 2 1

2
-approximation factor.
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1. Introduction. Let S = {s1, . . . , sn} be a set of strings. A superstring of S
is a string containing each si ∈ S as a contiguous substring. The shortest superstring
(SS) problem is to find a minimum length superstring of the input set S. We use
OPTS to denote a shortest superstring of S and |OPTS | to denote the string’s length.

SS has important applications in computational biology [6], [8]. For example,
DNA is a (double-stranded) sequence of four types of nucleotides: adenine, cytosine,
guanine, and thymine. The sequence has an orientation and can be viewed as a
string over the alphabet {A,C,G, T}. The sequencing problem in molecular biology
is to “read” a string of DNA. There are laboratory methods to read fairly short
pieces of DNA. To read a longer piece, many copies are made that are then cut into
smaller, overlapping pieces that can be read. A typical approach to reassembling
them is finding a short superstring; intuitively, short superstrings preserve important
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biological structure and are good models of the original DNA sequence. SS also has
applications in data compression [9], as data may be stored efficiently as a superstring.

In practice, biologists tend to use heuristics to find short superstrings. Probably
the most widely used heuristic is GREEDY. It merges two strings in the input set
with largest overlap, repeating until only one string remains. There are examples in
which GREEDY produces a string of length (2 − o(1))|OPTS | and it is conjectured
that this bound is tight.

SS is MAX SNP-hard [3], so it is unlikely that |OPTS | can be approximated
to within an arbitrary constant. A p-approximation algorithm for SS produces a
superstring of length at most p · |OPTS |; p is called the approximation factor of the
algorithm. Blum et al. [3] gave the first linear approximation bound for SS; they
showed that GREEDY is a 4-approximation algorithm and also gave a GREEDY
variant that gives a 3-approximation. The 3-approximation factor was improved in
a series of papers yielding approximation ratios of 28

9 by Teng and Yao [11]; 25
6 by

Czumaj et al. [5]; 2 50
63 by Kosaraju, Park, and Stein [7]; 23

4 by Armen and Stein [1];
2 2

3 by Armen and Stein [2]; and 2.596 by Breslauer, Jiang, and Jiang [4]. Here we
give a 2 1

2 -approximation algorithm.
The general approach of these algorithms is a two-stage process. They first parti-

tion the input set S into sets S1, S2, . . . , Sk and construct a superstring αi for each Si.
In the second stage they construct a superstring α on the set S′ = {α1, α2, . . . , αk}; α
is also a superstring of S. The strings in S′ enjoy some nice properties that generally
don’t hold for S; Blum et al. are able to show that |α| ≤ |OPTS′ | + |OPTS |. The
3-approximation proof is completed by showing that |OPTS′ | ≤ 2|OPTS |.

The partition of S described above is defined by a cycle cover on the distance/overlap
graph. This graph, denoted GS , is a complete digraph with vertex set S; each edge of
the graph is assigned a positive length. A cycle cover of GS is a set of simple cycles
that partition the vertices of the graph. A minimum-length cycle cover of GS , denoted
CS∗, can be found in polynomial time, and the length of such a cover is no more than
|OPTS |. Each set Si described above corresponds to a distinct cycle c ∈ CS∗.

Subsequent improvements in the approximation factor for SS have been achieved
primarily by improving the |α| ≤ |OPTS′ |+ |OPTS | bound; by more careful construc-
tion of the superstrings αi in S′, [2] and [4] show that |α| ≤ |OPTS′ |+ 2

3 |OPTS |. This
general approach has obvious limitations: one needs to give an optimal superstring
algorithm for the set S′ in order to achieve a 2-approximation for the input set S, and
the superstring problem remains MAX-SNP hard when restricted to input sets with
the properties of S′.1

Our algorithm begins by constructing CS∗; then it merges cycles in CS∗ to produce
a new cycle cover C, and finally it opens each cycle of C to produce a set of strings. The
concatenation of these strings yields a superstring of S; we denote this approximately
optimal superstring as AOPTS . Unlike the superstrings produced by the previous
algorithms, AOPTS is not necessarily a superstring over some S′ as described earlier.
As a consequence we are able to avoid the problematic bound; there is no obvious
reason our approach can’t be improved to give a 2-approximation.

To analyze the length of AOPTS we define a generalized distance/overlap multi-
graph, GS . We also define an integer-valued function f . Our result is given in the
following theorem; we call CL the lower bound cycle cover and CU the upper bound
cycle cover.

1The property is that the self-loops of GS′ are a minimum-length cycle cover of the graph.
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Theorem 1.1. Let S be a set of strings. There exist cycle covers CU and CL of
GS such that

|AOPTS | ≤ |CU | ≤ 5

2
f(CL) ≤ 5

2
|OPTS |.

Our algorithm runs in time O(n3 + LS), where LS =
∑
s∈S |s|, which is the

same as the other approximation algorithms for this problem. We conjecture that our
algorithm can be modified slightly and the analysis improved to show a 21

3 or better
approximation bound. In addition, our techniques seem to shed light on GREEDY
and may lead to better bounds for that algorithm.

In section 2 we give some basic definitions and lemmas related to strings. We
also define the distance/overlap graph and give an algorithm that finds a minimum-
length cycle cover of the graph. In section 3 we define the generalized distance/
overlap multigraph and discuss properties of its cycles and cycle covers. In section 4
we describe our approximation algorithm and prove Theorem 1.1, subject to two
lemmas which are proved in sections 5 and 6.

2. Background. In this section we give some basic definitions and well-known
lemmas relating string overlap to periodic structure. We also define the distance/overlap
graph and describe some properties of its cycles and cycle covers. In the following,
s, t, u, v, and w refer to strings and S refers to a set of strings.

The string sq (where q|s| is integral) is defined recursively as the prefix of s of
length q|s| when q < 1 and the string ssq−1 otherwise. For example, (ba)0 is the
empty string, which we denote as ε, (ba)1/2 = b, (ba)3/2 = bab, and (ba)2 = baba.

We say the string v is an overlap of s with respect to t if v is a proper suffix of s and
a proper prefix of t. OV (s, t) is the set of overlaps of s with respect to t, and ov `(s, t)
denotes the string in OV (s, t) of length `, provided such a string exists. OV (s, t)
always contains the empty string ε and thus is nonempty for any s, t. When ov`(s, t)
exists we denote the strings u and w, where s = u · ov `(s, t) and t = ov `(s, t) · w, as
pref `(s, t) and suff `(s, t). We use ov(s, t) to denote the longest string in OV (s, t);
pref (s, t) and suff (s, t) denote the corresponding prefix of s and suffix of t. Finally,
we define ovmax(s, t) = max(|ov(s, t)|, |ov(t, s)|).

Example 2.1. Consider the strings u1 = c(ab)j and u2 = (ba)k for integers

j, k ≥ 1. Then OV (u1, u2) = {ε, (ba)i−
1
2 , i = 1, . . . ,min(j, k)}, OV (u2, u1) = {ε},

OV (u1, u1) = {ε}, and OV (u2, u2) = {(ba)i, i = 0, . . . , k − 1}.
Note that in this example ui, i = 1, 2, is not in OV (ui, ui) since the self-overlap

of ui must be a proper prefix and proper suffix of ui. Lemma 2.2 is due to [12] and
[13]. The proof follows from Figure 1. Lemma 2.3 follows by a similar argument.

Lemma 2.2. Let s, t, u, and v be strings. If ovk(s, t), ov `(s, u), and ov j(v, t)
exist for k ≥ max(j, `), then ovm(v, u) exists for m = max(0, j + `− k).

Lemma 2.3. Let s, t, and u be strings. If ovk(s, t) and ov j(t, u) exist, then so
does ov `(s, u), where ` = max(0, j + k − |t|).

If s = uv, then vu is a cyclic rotation of s. If all the cyclic rotations of s are
distinct, then s is irreducible. If not, then s is reducible. We say that s ≡ t if s is a
cyclic rotation of t; ≡ is an equivalence relation and [s] denotes the equivalence class
of cyclic rotations of s. Thus s is irreducible if and only if ||[s]|| = |s|. We say that s
is periodic in t if s = tq for some q. We also say that s is periodic in [t] to mean that s
is periodic in some cyclic rotation of t. Any string s is periodic in pref (s, s). We call
pref(s, s) the period of s and use the shorthand δs to denote this string. It is easy
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Fig. 1. Overlap relationships.

to see that δs is irreducible. In Example 2.1 δu1
= u1 and δu2

= ba. The following
lemmas and corollary are explicit or implicit in [3].

Lemma 2.4. For any string s, δs is the shortest string in which s is periodic.
Furthermore, for v ∈ OV (s, s), either |v| ≡ |s| mod |δs| or |v| < |δs|.

Lemma 2.5. Let δ1 and δ2 be irreducible strings such that [δ1] 6= [δ2]. If s is
periodic in [δ1] and in [δ2], then |s| < |δ1|+ |δ2|.

Since ov(s, t) is a substring of s and t and thus periodic in [δs] and [δt], we get
the following corollary.

Corollary 2.6. If s and t are strings such that [δs] 6= [δt], then |ov(s, t)| <
|δs|+ |δt|.

We say the set of strings S = {u0, . . . , un−1} is substring free if s is not a substring
of t for any distinct strings s, t ∈ S. We assume, without loss of generality, that our
input set S is substring free. Then for some permutation π of [0, n− 1], the string

pref (uπ0
, uπ1

) · pref (uπ1
, uπ2

) · · · pref (uπn−2
, uπn−1

) · uπn−1

is a shortest superstring in S. We let π∗S denote some such permutation for a substring-
free set of strings S.

The distance/overlap graph for S is a digraph with vertex set S, and for every
s, t ∈ S an edge e from s to t with length |e| = |pref (s, t)| and overlap ov(e) = |ov(s, t)|.
As is standard in weighted graphs, the weight, in this case either length or overlap, of
a cycle or cycle cover in GS is the sum of the weights of its edges. Any permutation
π of [0, n − 1] defines a Hamiltonian cycle cπ in GS , cπ = (uπ0 , uπ1

, . . . , uπn−1
, uπ0

).
The following theorem given by Blum et al. [3] follows from the facts that cπ∗

S
is a

cycle cover of GS and that |cπ∗
S
| ≤ |OPTS |.

Theorem 2.7. Let C be a minimum-length cycle cover of GS. Then |C| ≤
|OPTS |.

Note that a minimum-length cycle cover of GS is also a maximum-overlap cover.
Blum et al. [3] show that the following algorithm constructs a maximum-overlap cover
of GS .

GREEDY-COVER(GS)

Let CS∗ = φ. Order the edges of GS as e1, . . . , en2 so that ov(ei) ≥ ov(ei+1).

For i = 1, . . . , n2

Add ei = 〈s, t〉 to CS∗ if s does not have an out-edge and t does not have an
in-edge in CS∗.
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Fig. 2. GSj,k for 1 ≤ j ≤ k with edge overlaps shown.

Example 2.8. Consider the class of sets

Sj,k = {u0 = (ab)jc, u1 = c(ab)j , u2 = (ba)k}
for integers k ≥ j ≥ 1. The graph GSj,k is shown in Figure 2. For this example

1. OPTS = c(ab)k+1c, |OPTS | = 2k + 4,
2. cπ∗

S
= (u0, u1, u2, u0), |cπ∗

S
| = 2k + 3,

3. CS∗ = {c1 = (u0, u1, u0), c2 = (u2, u2)}, |CS∗| = 2j + 3.
As the previous example illustrates, |CS∗| may be a very good lower bound for

|OPTS | or an arbitrarily bad lower bound; e.g., set j = k or fix j and let k be
arbitrarily large.

Throughout this paper we describe various features of the simple cycles ofGS (and
later describe simple cycles of the generalized graph GS); we use cycle synonymously
with simple cycle. Let c = (s0, s1, . . . , sj−1, s0) be a cycle of GS . The periods of c,
denoted [c], are the equivalence class of cyclic rotations of the string

pref (s0, s1), . . . , pref (sj−2, sj−1), pref (sj−1, s0).

For any `, the string

x = pref (s`, s`+1) · pref (s`+1, s`+2) · · · pref (s`+j−2, s`+j−1) · s`+j−1,

where the indices are taken modulo j, is called an open of c. The vertices s` and
s`+j−1 are called, respectively, xfirst and xlast. The edge 〈xlast, xfirst〉 is called the
opening edge of x. We use op(c) to denote a shortest open of c.

Fact 2.9. Let c be a cycle in GS and let x be an open of c with opening edge e.
Then |x| = |c|+ ov(e).

For c ∈ CS∗, we define OP(c) to be the set of opens of c and U∗S = ∪c∈C∗
S

OP(c).
For x ∈ U∗S , we use cx to denote the cycle for which x is an open and ex to de-
note the opening edge of x in cx. Thus CS∗ consists of the edges {ex | x ∈ U∗S}.
For x, y ∈ U∗, cx 6= cy, we define emax(x, y) to be the maximum-overlap edge in
{〈xlast, yfirst〉, 〈ylast, xfirst〉}.

Example 2.8 (continued).
1. The set U∗S for this example is

U∗S = {x0 = (ab)jc(ab)j , x1 = c(ab)jc, x2 = (ba)k}.
2. The opening edges for x ∈ U∗S are ex0 = 〈u1, u0〉, ex1 = 〈u0, u1〉, and ex2 =
〈u2, u2〉.
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3. The shortest opens of the cycles in CS∗ are op(c1) = x1, op(c2) = x2.
Blum et al. [3] proved the following lemmas. The second of these lemmas, to-

gether with Theorem 2.7, provides the bound described in the introduction, OPTS′ ≤
2OPTS , when S′ contains an open for each c ∈ CS∗.

Lemma 2.10. Let cx and cy be distinct cycles in CS∗ with opens, respectively, x
and y. Then

1. [δx] = [cx] 6= [cy] = [δy],
2. OV (x, x) = OV (xlast, xfirst) and OV (x, y) = OV (xlast, yfirst),
3. ov(emax(x, y)) = ovmax(x, y) < |cx|+ |cy|.

Lemma 2.11. Let X be a subset of the cycles in CS∗, let T ⊆ S be the strings
corresponding to c ∈ X, and let V contain exactly one x ∈ OP (c) for each c ∈ X.
Then

OPTS−T∪V ≤ OPTS +
∑
c∈X
|c|.

Sweedyk [10] proved the following lemma. Since finding a shortest open of a cycle
in GS is easy, we can assume that CS∗ consists of more than one cycle.

Lemma 2.12. If CS∗ consists of a single cycle c, then op(c) is a shortest super-
string of S.

We now define the edge exchange, which is a general purpose tool used throughout
our proof.

Definition 2.13. Let C be a cycle cover and let e = 〈s, t〉 be an edge of GS.
Assume e1 = 〈s, u〉 and e2 = 〈v, t〉 are, respectively, the out-edge of s and the in-
edge of t in C. The edge exchange of e in C, denoted X (C, e), is the cycle cover
C − {e1, e2} ∪ {e, e3}, where e3 = 〈v, u〉.

Note that the in- and out-degrees of each vertex are unchanged by the edge
exchange, so if C is a cycle cover and e an edge of GS , then X (C, e) is in fact a cycle
cover of GS . Also, we make no assumptions about distinctness of the strings u, v, s,
and t in this definition.

Definition 2.14. Let C be a cycle cover and let e = 〈s, t〉 be an edge of GS.
Assume e1 = 〈s, u〉 and e2 = 〈v, t〉 are, respectively, the out-edge of s and the in-edge of
t in C. We say that e = 〈s, t〉 is a winning edge for C if ov(e) ≥ max(ov(e1), ov(e2)).

Lemma 2.15. Let C be a cycle cover of GS and let e be a winning edge for C.
Then |X (C, e)| ≤ |C|.

This follows directly from Lemmas 2.2 and 2.10. In Example 2.8 the edge e =
〈u1, u0〉 is a winning edge for cπ∗

S
= (u0, u1, u2, u0) and X ({cπ∗

S
}, e) = CS∗. If k > j,

then 〈u2, u2〉 is also a winning edge and the corresponding edge exchange also produces
CS∗. The next fact follows from the construction in GREEDY-COVER.

Fact 2.16. Let 〈s, t〉 be any edge in GS and let 〈s, u〉 and 〈v, t〉 be, respectively,
the out-edge of s and the in-edge of t in CS∗. Then max(ov(s, u), ov(v, t)) ≥ ov(s, t).

Lemma 2.15 and Fact 2.16 form the basis of the following optimality proof of CS∗.
We generalize this proof in section 6.

1. Color the edges of CS∗ white and the remaining edges of GS black. Let C0 be
any cycle cover of GS and set i = 0.

2. While Ci contains a black edge, choose the maximum overlap white edge e
that is not in Ci and set Ci+1 = X (Ci, e) and i = i+ 1.

The construction produces a series of covers C0, C1, . . . , Cm. By Fact 2.16 each edge
selected as the basis of an edge exchange is a winning edge for the current cover so
|Ci+1| ≤ |Ci|. The final cover consists entirely of white edges and thus is CS∗.
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Fig. 3. GSj,k with edge overlaps shown, where i ∈ [0, j], ` ∈ [0, j−1], and m ∈ [0, k−1]. (Recall

u0 = (ab)jc, u1 = c(ab)j , u2 = (ba)k.)

3. The string functions and lemmas. In this section we introduce several
definitions that capture some of the structure of the overlaps of strings in U∗S . To
analyze this structure we generalize the distance/overlap graph as follows.

Definition 3.1. The distance/overlap multigraph GS for a set of strings S is a
digraph with vertex set S and, for every s, t ∈ S, and every v ∈ OV (s, t), an edge
〈s, t, |v|〉 from s to t with length |s| − |v| and overlap |v|.

Figure 3 shows GS for the set of strings in Example 2.8. An edge 〈s, t, k〉 of GS
is tight if k = |ov(s, t)| and loose otherwise. The tight edge 〈s, t, |ov(s, t)|〉 may be
denoted simply as 〈s, t〉. Edge e = 〈s, t, k〉 and e′ = 〈s, t, k′〉 are versions of each other
and if |e| ≥ |e′| we say that e is an expansion of e′. These definitions extend to cycles
(as before, we mean simple cycles) and to cycle covers in the natural way; e.g., c is
an expansion of c′ if every edge of c is an expansion of an edge of c′. Any edge of a
maximum-overlap cover of GS must be tight, so CS∗ is an optimal cover of GS .

We call a cycle ĉ of GS a 1-expansion of c ∈ CS∗ if ĉ is an expansion of c; fur-
thermore, it has at most one loose edge. When we refer to a 1-expansion of cx for
x ∈ U∗S we mean that the only possible loose edge in the 1-expansion is from xlast to
xfirst. There is a 1-expansion of cx for each expansion of ex in GS . We could define
1-expansions for arbitrary cycles in GS , but we never need this broader definition, so
by 1-expansion we implicitly mean a 1-expansion of some cycle c ∈ CS∗. (We will use
the more general notion of expansion for arbitrary simple cycles of GS .)

The definitions of period and open extend in the natural way for cycles in GS .
For a cycle

c = 〈s0, s1, k0〉, 〈s1, s2, k1〉, . . . , 〈sj−1, s0, kj−1〉

in GS [c] = [pref k0
(s0, s1) · pref k1

(s1, s2) · · · pref kj−1
(sj−1, s0)], and for any `,

x = pref k`(s`, s`+1) · pref k`+1
(s`+1, s`+2) · · · pref k`+j−2

(s`+j−2, s`+j−1) · s`+j−1

is an open of c, where the indices are taken modulo j. Furthermore, |x| = |c|+ ov(e),
where e = 〈s`+j−1, s`, k`+j−1〉 is the opening edge of x. It follows that if a cycle c is
an expansion of c′ in GS , then |op(c)| ≥ |op(c′)|. Also, for x ∈ U∗S , x is an open of any
1-expansion ĉx of cx and its opening edge in ĉx is an expansion of ex.

Definition 2.14 for a winning edge does not change for covers in GS ; an edge
e = 〈s, t, k〉 of GS is a winning edge for a cycle cover C of GS if k is at least as large
as the overlap of the out-edge of s and the in-edge of t in C. We continue to use the
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Fig. 4. The cycle cπ∗
S

is shown on the left and the cycle cover X̃ (cπ∗
S
, e) on the right. If

e = ex0 , then j′ = 2j and k′ = 2j − 2. If e = 〈u2, u2, 2m〉 for some 2k > 2m > 2j − 1, then
j′ = max(0, 2(2j − 1−m)) and k′ = 2m.

edge exchange function X from Definition 2.13, which uses tight edges, but we define
another edge exchange function, X̃ , which exploits the loose edges of GS .

Definition 3.2. Let C be a cycle cover and e = 〈s, t, k〉 be an edge of GS. Assume
e1 = 〈s, u, j〉 and e2 = 〈v, t, `〉 are, respectively, the out-edge of s and the in-edge of t
in C. The parsimonious edge exchange of e in C, denoted X̃ (C, e), is the cycle cover
C − {e1, e2} ∪ {e, e3}, where if k ≥ max(j, `), then e3 = 〈v, u,max(0, j + ` − k)〉;
otherwise e3 = 〈v, u〉.

The existence of the edge e3 in this definition is guaranteed by Lemma 2.2 when
k ≥ j, `. We call e3 the losing edge of the edge exchange.

Lemma 3.3. Let C be a cycle cover of GS and let e be a winning edge for C. Then
|X̃ (C, e)| ≤ |C|. Also, the overlap of the losing edge of the exchange is no more than the
minimum overlap of the edges eliminated by the exchange. Finally, if |X̃ (C, e)| < |C|,
then the losing edge of the exchange has zero overlap.

Example 2.8 (continued). The edge ex0 = 〈u1, u0〉 is a winning edge for cπ∗
S

.
When k > j and 2k > 2m ≥ 2j− 1, the edge em = 〈u2, u2, 2m〉 is also a winning edge
for cπ∗

S
. Figure 4 shows cπ∗

S
and X̃ ({cπ∗

S
}, e) for this example.

To motivate the remaining definitions in this section we describe the general
strategy of our proof relative to Example 2.8. We focus on two specific cases: case
1, where j = 1 and k >> j; and case 2, where j = k > 1. Our first objective is to
establish the existence of a cover CL whose length gives a good lower bound for |OPTS |;
for the moment good means that |OPTS |/|CL| is bounded. In case 2, setting CL = CS∗
suffices since |CS∗| = |OPTS | − 1. In case 1, however, |OPTS |/|CS∗| is unbounded
and the cover CL must be a strict expansion of CS∗. We argue that, since cπ∗

S
is a

Hamiltonian cycle, it does not contain 〈u2, u2〉 and thus must include either the edges
〈u1, u2〉 and 〈u2, u0〉 or the edges 〈u0, u2〉 and 〈u2, u1〉. In either case, e = 〈u2, u2, 2〉
is a winning edge for cπ∗

S
. The cover CL = X̃ (cπ∗

S
, e) includes the 1-expansion ĉ1 of c1

containing the loose edge 〈u1, u0, 0〉 and the 1-expansion ĉ2 of c2 containing the loose
edge 〈u2, u2, 2〉. The length of CL is exactly |cπ∗

S
| = |OPTS | − 1.

Our general argument is complicated by the fact that CS∗ typically contains more
than two cycles, and the cycles may have many different opens. Nevertheless, our
argument hinges on the fact that, for any c ∈ CS∗, there are vertices s and t in c
whose in-edge and out-edge connect to vertices not in c; by analyzing the possibilities
we can, when necessary, get a better bound for |OPTS | than that provided by |CS∗|.
To this end we want to identify for x and y in U∗S , cx 6= cy, the expansions of ex and ey
that are winning edges for the cycle cx,y = X ({cx, cy}, emax(x, y)); by this somewhat
abusive notation we mean that cx,y is the tight cycle created by the edge exchange to
the cover {cx, cy} on the vertex-induced subgraph of GS containing the vertices of cx
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and cy. We are also interested in the forms of the 1-expansions resulting from edge
exchanges to cx,y.

Our second objective is to establish an appropriate upper bound on AOPTS . In
case 1 our algorithm would set AOPTS = x1 · x2. The cover CL for this case has
the shallow property—by that we mean2 |op(ĉi)| ≤ 2|ĉi|, i = 1, 2. Thus we get the
following bound:

|AOPTS | = |x1|+ |x2| ≤ |x0|+ |x2| =
∑
i=1,2

|op(ĉi)| ≤ 2
∑
i=1,2

|ĉi| = 2|CL| ≤ 2|OPTS |.

The construction of CU for this case is trivial and we omit the details. In case 2,
however, the cover CL does not have the shallow property and our bound is more
complicated. For this case our algorithm would output the shortest open of the cycle
X (C∗S , emax(x0, x2)), which just happens to be the string OPTS . We cannot argue
that strict expansions of ex0

and ex2
are winning edges for cπ∗

S
because of the relatively

large overlap of emax(x, y). However, we can argue that there is an expansion CU of
of CL such that |CU | ≤ 5

2 |CL|, emax(x0, x2) is a winning edge for CU , and the cover

X̃ (CU , emax(x0, x2)) has a zero overlap edge. Because CU is an expansion of CL and
thus of CS∗, X̃ (CU , emax(x0, x2)) is an expansion of X (CS∗, emax(x0, x2)) so we get

|op(X (CS∗, emax(x0, x2)))| ≤ |op(X̃ (CU , emax(x0, x2)))| ≤ 5

2
|CL| ≤ 5

2
|OPTS |.

To establish upper bounds for AOPTS we are interested in pairs x, y ∈ U∗S , cx 6= cy,
and the expansions of cx and cy for which the edge emax(x, y) is a winning edge.

For the remainder of this section let x and y be strings in U∗S , cx 6= cy. Throughout
this section we will use Lemma 2.10, which relates the self-overlaps and overlaps
of x and y to the edges between xfirst, xlast, yfirst, ylast in GS ; i.e., OV (x, x) =
OV (xlast, xfirst) and OV (x, y) = OV (xlast, yfirst). Next we develop some notation
for describing the 1-expansion in GS .

Definition 3.4. Let x be a string in U∗S and let êx be an expansion of ex. We
denote the 1-expansion of cx corresponding to êx as cdx, where

d =
|x| − ov(êx)

|cx| .

The quantity d|cx| is called the pseudolength of the edge ê and d is called the normal-
ized pseudolength of the edge.

Fact 3.5. Let x be a string in U∗S.
1. The 1-expansion cdx exists for some d if and only if there is an expansion of
ex with pseudo-length d|cx|

2. If êx is an expansion of ex with pseudolength d|cx|, then d ≥ 1 with equality
if and only if êc = ex.

Throughout our analysis we make the assertion that certain 1-expansions of cx
exist based on the definitions, lemmas, and corollaries of this section. In particular we
define the string functions on U∗S and U∗S×U∗S as shallow, trade-off, stop, and squeeze.
We also prove various properties of the strings in U∗S and their overlaps based on these
functions: Lemmas 3.7, 3.10, 3.12, and 3.15. We call these the string lemmas.

Definition 3.6. Let x be a string in U∗S. The shallow of x, denoted sh(x), is the
quantity (|x|−|v|)/|δx|, where v is the longest string in OV (x, x) such that |v| ≤ |δx|.

2Note that the opens of ĉ1 are x0 and c(ab)2jc.
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Note that sh(x) is well defined since ε ∈ OV (x, x) and |ε| = 0 < |δx|. The next
lemma follows directly from Lemma 2.10.

Lemma 3.7. Let x be a string in U∗S. Then c
sh(x)
x exists and |x| ≤ (sh(x)+1)|cx|.

By Lemma 2.4, the structure of the 1-expansions of cx ordered by increasing
length is

cx = c1x, c
2
x, . . . , c

k
x, c

sh(x), cq1x , c
q2
x , . . . , c

qj
x , c

|x|/|cx|
x

for some integer k ≥ 1, j ≥ 0 and some values q1 < q2, . . . , < qj−1 < qj < |x|/|cx|,
where possibly cx = c

sh(x)
x and/or c

sh(x)
x = c

|x|/|cx|
x . Thus we get the following corollary

to Lemma 2.4.
Corollary 3.8. Let x be a string in U∗S. Then ckx exists for any integer 1 ≤ k ≤

|x|/|cx|. If cqx exists for some nonintegral q, then sh(x) ≤ q ≤ |x|/|cx| ≤ sh(x) + 1.
The trade-off function allows us to identify the expansions of ex and ey that are

winning edges for cx,y.
Definition 3.9. Let x and y be strings in U∗S, cx 6= cy. The trade-off of x with

respect to y, denoted tr(x, y), is defined as

tr(x, y) =
1

|δx| (|x| − ovmax(x, y)).

Lemma 3.10. Let x and y be strings in U∗S, cx 6= cy. Then
1. ckx exists for k = max(btr(x, y)c, 1),
2. |x| < (tr(x, y) + 1)|cx|+ |cy|,
3. either tr(x, y) ≥ 1 or tr(y, x) ≥ 1,
4. any expansion of ex with pseudolength at most tr(x, y)|cx| has overlap at least

ov(emax(x, y)), and
5. emax(x, y) is a winning edge for any 1-expansions cqx and cry that exist, where
q ≥ tr(x, y) and r ≥ tr(y, x).

In the last point of the lemma, cqx and cry exist for q = |x|/|cx| ≥ tr(x, y) and
r = |y|/|cy| ≥ tr(y, x), so the claim is never vacuous. The proof of this lemma follows
directly from point 3 of Lemma 2.10 and from Fact 2.16. If tr(y, x) < 1, then no
expansion of ey is a winning edge for cx,y. In this case, by point 4 of Lemma 3.10,
ex is a winning edge for cx,y. The following definition identifies the largest expansion
of ex that is guaranteed to be a winning edge for cx,z for any z, cz 6= cx, such that
tr(z, x) < 1.

Definition 3.11. Let x be a string in U∗S. The stop of x, denoted st(x), is
defined as

st(x) = min{btr(x, y)c : y ∈ U∗S , cy 6= cx, tr(y, x) < 1},

where min over an empty set is ∞. When st(x) is finite, ST (x) denotes an arbitrary
y ∈ U∗S that determines st(x). If st(x) =∞, then ST (x) is undefined.

Lemma 3.12. Let x be a string in U∗S such that st(x) is finite. Then c
st(x)
x exists

and, for y = ST (x),
1. |y| < 2|cy|+ |cx|,
2. |x| < (st(x) + 2)|cx|+ |cy|, and

3. emax(x, y) is a winning edge between the 1-expansions c
min(st(x)+1,|x|/|cx|)
x and

cy.
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The proof follows from Lemma 3.10. If tr(y, x) ≥ 1, then ey is a winning edge

for cx,y, and X̃ ({cx,y}, ey) consists of cy and some 1-expansion of cx. The following
definition identifies the smallest 1-expansion of cx that can be produced by such an
edge exchange over all z, cz 6= cx, where tr(z, x) ≥ 1.

Definition 3.13. Let x be a string in U∗S. The squeeze of x, denoted sq(x), is
defined to be

sq(x) =
1

|δx| min{|cx,y| − |cy| : y ∈ U∗S , cy 6= cx, |ov(y, y)| ≥ ovmax(y, x)},

where min over an empty set is ∞. When sq(x) is finite, SQ(x) denotes an arbitrary
y ∈ U∗S that determines sq(x). If sq(x) =∞, then SQ(x) is undefined.

Before we give the string lemma for the squeeze function, we give a technical
lemma that will be useful here and later.

Lemma 3.14. Let x and y be strings in U∗S such that cx 6= cy. If ovk(y, y) exists
for some ovmax(x, y) ≤ k < |ov(x, y)|+ |ov(y, x)| − |δx|, then ovk(y, y) is periodic in
[δx]. Furthermore, ovmax(x, y) > k −min(|δx|, |δy|).

Proof of Lemma 3.14. To see the proof of the first point refer to Figure 1 and
let s = t = y, u = v = x, j = |ov(y, x)|, ` = |ov(x, y)|, and let k be the self-
overlap of y as defined in the lemma. Then k ≥ max(j, `), so ovm(x, x) exists for
m = |ov(y, x)|+ |ov(x, y)| − k. By the upper bound on k in the lemma, m > |δx| and
by Lemma 2.4 pref m(x, x) · x is periodic in δx. Referring again to Figure 1, ovk(y, y)
is a substring of pref m(x, x) · x and thus periodic in [δx].

Now consider the second point of the lemma and suppose that |δx| ≤ |δy|. By
the previous point and the fact that x is periodic in [δx], if ov `′(x, y) exists for some
`′ ≤ k− |δx|, then ov `′+|δx|(x, y) also exists. Thus ovmax(x, y) ≥ |ov(x, y)| > k− |δx|.

Now suppose that |δy| < |δx| and ovmax(x, y) ≤ k−|δy|. Then, using Lemma 2.2,
ovm′(x, x) exists for m′ = |ov(y, x)| + |ov(x, y)| − k + |δy| = m + |δy|, where m
is obtained from the proof of the first point of the lemma. By the upper bound
assumption of the lemma, m > |δx| so by Lemma 2.4 m′ −m ≡ 0 mod |δx|. However,
m−m′ = |δy| < |δx|, which is a contradiction.

The next lemma follows from Lemmas 3.10 and 3.14; to use Lemma 3.14 let
k = |ov(y, y)| and notice that |cx,y| = |x| + |y| − |ov(x, y)| − |ov(y, x)| and |cy| =
|y| − |ov(y, y)|.

Lemma 3.15. Let x be a string in U∗S such that sq(x) is finite. Then c
sq(x)
x

exists and |x| < (sq(x) + 1)|cx| + |cSQ(x)|. Furthermore, if sq(x) < sh(x), then for
y = SQ(x)

1. ov(y, y) is periodic in [δx],
2. |y| < 2|cy|+ |cx|,
3. the edge emax(x, y) is a winning edge between the 1-expansions c

sq(x)
x and cqy,

where q = 1 +
min(|cx|,|cy|)

|cy| .

We are primarily concerned with sq(x) when sq(x) < sh(x) because of the prop-
erties guaranteed by the previous lemma for SQ(x).

Example 2.8 (continued). The 1-expansions in this example are c
1+ 2`

2j+1
x0 , ` =

0, 1, . . . , j, cx1
, c
|x1|/|cx1 |
x1 , and c`x2

, ` = 1, 2, . . . , k. The string functions are
1. shallow: sh(x0) = 1, sh(x1) = 1, and sh(x2) = k − 1;
2. trade-off: tr(x0, x2) = 1, tr(x2, x0) = k − j, tr(x1, x2) = 1, tr(x2, x1) = 1;
3. stop: st(x1) = st(x2) = ∞; if j = k, then st(x0) = 1 and ST (x0) = x2; if
j > k, then st(x0) =∞;
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1. Construct GS and find CS∗. Compute U∗S and the string functions.
2. Build the set of merging edges W .
3. Let C = CS∗.

While W is nonempty do
Let e = 〈s, t〉 be a minimum-overlap edge in W .
If s and t are in different cycles of C, then C = X (C, e).
W = W \ {e}

4. Set AOPTS to the concatenation of op(c), c ∈ C.

Fig. 5. The approximation algorithm.

4. squeeze: sq(x0) ≥ sh(x0), sq(x1) ≥ sh(x1), and either sq(x2) ≥ sh(x) or
sq(x) = 2(k − j − 1) ≥ 1 and SQ(x2) = x0.

4. The approximation algorithm. The approximation algorithm is given in
Figure 5. In step 2 the algorithm builds a set of merging edges W ; these are a subset of
the tight edges of GS . In step 3 the algorithm merges cycles of CS∗ by edge exchanges
in GS based on the edges in W . The cycles of the resulting cover are opened and
concatenated to produce the string AOPTS .

During the course of step 2, the algorithm constructs an expansion value function
and, implicitly, the lower bound cover CL.

Definition 4.1. A function VS : U∗S → Q is an expansion value function if for
any x ∈ U∗S there is an expansion of ex with pseudolength VS(x)|cx|. Furthermore, we
say that VS is valid if it satisfies the following conditions:

1. For any x ∈ U∗S, VS(x) ≤ min(sh(x), sq(x), st(x)).
2. For any x, y ∈ U∗S, cx 6= cy, either VS(x) ≤ tr(x, y) or VS(y) ≤ tr(y, x).

Fact 4.2. Let VS be an expansion value function. Then the edges

{êx | x ∈ U∗S and êx is an expansion of ex with pseudolength VS(x)|cx|}

form a cycle cover that is an expansion of CS∗.
During step 2, the algorithm also assigns each cycle in CS∗ to a color class in

{blue, red , yellow}, and for each red and yellow cycle c selects an x ∈ OP (c) as repre-
sentative, denoted rep(c). The red and yellow cycles are the ones for which we need
a better bound in CL. The cover CL will include each blue cycle and a 1-expansion of
crep(c) for each red and yellow cycle c. In section 6 we prove that |CL| ≤ |OPTS′ |, where
S′ is constructed from S by replacing the strings associated with each red cycle c by
rep(c). This reduces the constraints that CL must satisfy, but at a price, since the best
bound we have for OPTS′ is, by Lemma 2.11, |OPTS′ | ≤ |OPTS |+

∑
c∈R |c|, where R

denotes the set of red cycles. The function f in Theorem 1.1 is f(CL) = |CL|−
∑
c∈R |c|.

We begin by discussing VS , the coloring, and the representatives. Then we define the
cover CL. Finally, we discuss the selection of edges for W .

Step 2 is broken down into two parts. Part 1 is shown in Figure 6. Let N be
the number of cycles in CS∗. The algorithm begins by ordering the cycles of CS∗ by
increasing length. We use c < c′ (resp., c > c′) to denote the fact that c precedes
(resp., follows) c′ in the order. Throughout our discussion of part 1 of step 2, ci,
1 ≤ i ≤ N , refers to the ith cycle in the algorithm’s order. The algorithm initializes
VS(x) = 1 for every x ∈ U∗S . The algorithm then proceeds in rounds (j, i), j = 1, 2
and i = 1, . . . , N ; in each round it selects zero or more cycles to color. For notational
purposes, each x ∈ U∗S adopts the color of cx and is uncolored while cx is uncolored.
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Order the cycles of CS∗ so |c1| ≤ |c2| ≤ · · · ≤ |cN |. Each cycle is initially uncolored.
For each x ∈ U∗S , VS(x) = 1.
For j = 1, 2 {

For i = 1, . . . N {
If ci is uncolored, then

For each x in OP (ci) compute fo(x) and set

g(x) = min(sh(x), sq(x), st(x), of(x)).

Color ci by the first rule, if any, that holds for some w ∈ OP (ci).

Rule 1: g(w) ≤ 3
2 and stopping condition 1 holds:

Color ci blue.
If G(w) is defined and G(w) is uncolored, then color cG(w) blue .
If G(w) is defined, then add emax(w,G(w)) to W .

Rule 2: g(w) > 3
2 and some uncolored u > w conflicts with

w and stopping conditions 2 holds and if G(w) is defined, then
cu 6= cG(w):
Color ci red, VS(w) = g(w), and rep(ci) = w.
Color cu blue and add emax(w, u) to W .
*If G(w) is defined and G(w) is colored and ci is unmatched,
then add emax(w,G(w)) to W .

If G(w) is defined and G(w) is uncolored, then color cG(w)

blue and add emax(w,G(w)) to W .

Rule 3: g(w) > 3
2 and G(w) is defined and G(w) is uncolored

and G(w) > w and stopping condition 3 holds:
Color ci red, VS(w) = g(w), and rep(ci) = w.
Color cG(w) blue and add emax(w,G(w)) to W .

Rule 4: j = 2:
Color ci yellow.
For each x ∈ OP (ci) {
VS(x) = g(x).
*If x = rep(ci) and ci is unmatched and G(x) is defined and
G(x) is colored non-yellow, then add emax(x,G(x)) to W .

If ST (x) is defined and ST (x) is uncolored, then color cST (x)

blue and add emax(rep(ci), ST (x)) to W .
}

}

Fig. 6. Construction of the merging set W, part 1.

Also for x, y ∈ U∗S , we use x < y to denote the fact that cx < cy. Similarly x > y
denotes cx > cy.

Let ci be a cycle in CS∗. If ci is colored when round (j, i) begins, the algorithm
takes no action during the round. If ci is uncolored when the round begins, the
algorithm computes two functions fo(x) and g(x) = min(sh(x), sq(x), st(x), fo(x))
for each x ∈ OP (ci).
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Definition 4.3. Let x be a string in U∗S. The force of x during round (j, i) of
the algorithm is defined as

fo(x) = min{max(btr(x, y)c, 1) | y ∈ U∗S is colored, cy 6= cx, and VS(y) ≥ tr(y, x)},
where min over an empty set is ∞. If fo(x) is finite in some round, then FO(x) is
set to ST (x) if st(x) = fo(x) and to an arbitrary y ∈ U∗S that determines the value
of fo(x) otherwise.

Lemma 4.4. Let x be a string in U∗S. Suppose the algorithm computes g(x)
during some round. Then g(x) ≥ 1 and there is an expansion of ex with pseudolength
g(x)|cx|.

The proof follows from the string functions and lemmas. Hereafter we include
fo(·) when we refer to the “string functions.” After computing fo(x) and g(x) for
x ∈ OP (ci) the algorithm may choose to color ci blue, red, or yellow. If the algorithm
colors ci it may take additional action as well; it may select additional uncolored
cycles and color them blue, it may set VS(x) = g(x) for some strings x ∈ OP (ci), it
may add edges incident to vertices of ci to W , and it may choose an x ∈ OP(ci) as
the representative of ci. The next fact follows from the construction.

Fact 4.5. Let x be a string in OP (ci) for some ci ∈ CS∗. If VS(x) 6= 1 at the
end of some round of the algorithm, then ci is colored. Furthermore, ci was colored
in round (j, i), where j is either 1 or 2, and VS(x) is set to g(x) as computed at the
beginning of round (j, i).

Lemma 4.6. At every point of the algorithm after initialization, VS is a valid
expansion value function.

Proof. Let x be a string in U∗S . We first show that there is an expansion of ex with
pseudolength VS(x)|cx|. By Fact 4.5, VS(x) is either 1 or is set to g(x) as computed
in the round when x is colored. In the first case ex satisfies the claim. The claim
follows in the second case by Lemma 4.4.

Consider the first condition for validity. By the definition of the string functions
and lemmas, 1 ≤ min(sh(x), q(x), st(x), fo(x)). Then the claim follows from Fact 4.5.

Finally, we show that the second condition for validity holds. Let y be a string
in U∗S such that cx 6= cy. First consider the case where VS(x) = 1. If tr(x, y) ≥ 1, we
are done, so assume tr(x, y) < 1. Then st(y) ≤ tr(y, x) and since VS is an expansion
value function, VS(y) ≤ st(y). A symmetric argument holds if VS(y) = 1. Thus we
need only consider the case where VS(x) > 1 and VS(y) > 1. By Fact 4.5 and the
fact that cx 6= cy, x and y are colored in different rounds. Assume, without loss of
generality, that y is colored before x. Then in the round when x is colored, VS(x)
is set to g(x), where 1 < g(x) ≤ fo(x) ≤ max(btr(x, y)c, 1) = btr(x, y)c, and the
condition is satisfied.

Definition 4.7. Let x be a string in OP (ci), ci ∈ CS∗, and let y be a string in
U∗S, cy 6= ci. Suppose ci is uncolored when round (j, i) begins. Then we say that y
conflicts with x during the round if tr(x, y) ≤ g(x) and tr(y, x) ≤ 2.

Lemma 4.8. Let x be a string in U∗S such that in some round the algorithm
computes fo(x) = 1. Assume cFO(x) = ck. If FO(x) is uncolored when round (j, k)
begins, then x conflicts with FO(x) during round (j, k).

Proof. When the algorithm computes fo(x) = 1, FO(x) is colored, VS(FO(x)) ≥
tr(FO(x), x), and tr(x, FO(x)) ≤ fo(x) + 1 = 2. Assume VS(FO(x)) = q. Then in
round (j, k), g(FO(x)) ≥ q ≥ tr(FO(x), x) and tr(x, FO(x)) ≤ 2, so x conflicts with
FO(x).

The algorithm is complicated by the possible presence of strings x ∈ U∗S such
that st(x) = 1 or 2; we handle these cases carefully and are not always able to do so
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seamlessly. These cases necessitate the stopping conditions in the first three rules of
the algorithm.

Definition 4.9. Let ci be a cycle in CS∗ and let x be a string in OP (ci). If ci
is uncolored when round (j, i) begins, we say that g(x) is set by f during the round,
where f = sh, sq, fo, or st, according to the following rules:

1. If j = 2, g(x) = st(x) = 2, and ST (x) > x is uncolored, then g(x) is set by
st.

2. Otherwise, f is the highest priority function such that g(x) = f(x), where the
functions are prioritized as sh, sq, fo, and st with sh having highest priority.

We also may say that g(x) is set by f(x) = q to mean that g(x) is set by f and
f(x) = q.

In Figure 5 G(w) should be read by replacing G with SH, SQ,FO, or ST where
g(w) is set by sh, sq, fo, or st. We include SH for convenience of notation but leave
SH(x) undefined. Any action on G(w) by the algorithm is explicitly conditioned by
the fact that G(w) is defined.

Definition 4.10. The statement “stopping condition i holds” is logically equiv-
alent to the following statements:

1. Stopping condition 1 holds ↔ If g(w) is set by st(w) = 1, then ST (w) > w.
2. Stopping condition 2 holds ↔ If g(w) is set by st(w) = 2, then ST (w) > w.
3. Stopping condition 3 holds ↔ g(w) is not set by st(w) = 2.

The two lines of the algorithm marked by * rely on the definition of unmatched
and on the choice of representative of yellow cycles; these lines affect only the choice
of edges of W . We delay discussion until later and assume, for the moment, that
the algorithm ignores these lines when it is executed. Under this assumption the
algorithm clearly concludes. The next fact follows from the construction of Rule 4.

Fact 4.11. Let ci be a cycle of CS∗. Then ci is colored by the algorithm no later
than round (2, i) of Rule 4.

The next three lemmas describe important features of the coloring and VS . Proof
of the last two are given in the appendix.

Lemma 4.12. Let x be a string in OP (ci) for some ci ∈ OP (ci). Suppose ci is
uncolored when round (j, i) begins. If g(x) is nonintegral, then g(x) is set by sh(x).

Suppose ci is uncolored when round (2, i) begins. If g(x) is set by sh(x) = q (resp.,
sq(x) = k, st(x) = k) in round (1, i), then g(x) is set by sh(x) = q (resp., sq(x) = k,
st(x) = k) or fo(x) < q (resp., fo(x) < k, fo(x) ≤ k) in round (2, i). If g(x) is set by
sh(x) = q (resp., sq(x) = k, st(x) = k) in round (2, i), then g(x) is set by sh(x) = q
(resp., sq(x) = k, st(x) = k) in round (1, i).

Proof. The first point follows from Corollary 3.8, Lemma 4.6, and our priority
rule. The remaining points follow from our priority rule and the fact that for any
x ∈ U∗S the functions sh(x), sq(x), and st(x) are constant over the course of the
algorithm.

Lemma 4.13. Let ci be a cycle in CS∗. Suppose ci is colored in round (j, i). Let
x be a string in OP (ci) where, if ci is colored by Rules 1, 2, or 3, then x is the string
by which the rule is chosen.

1. If g(x) is set by sq, then SQ(x) is colored no later than round (j, i). Further-
more, if j = 2, then SQ(x) is colored before the round begins.

2. If g(x) is set by fo, then FO(x) is colored before round (j, i) begins.
3. If g(x) is set by st, then ST (x) is colored during round (j, i).

Lemma 4.14. Let ci be a cycle of CS∗. Suppose that ci is colored in round (2, i).
Let x be a string in OP (ci) where, if ci is colored by Rules 1, 2, or 3, then x is the
string by which the rule is chosen.
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Construct the graph G(VS) and find a minimum-weight matching M∗.
1. For each yellow c set rep(c) to w ∈ OP (c) that determines the edge incident

to c in M∗. Add emax(rep(c), G(rep(c))) as required by part 1, to W .
2. For each matched pair (c, c′) add emax(rep(c), rep(c′)) to W .

Fig. 7. Construction of the merging set W , part 2.

1. If ci is colored by Rule 1, then g(x) is set by fo(x) = 1 and FO(x) is colored
nonyellow (in a previous round).

2. If ci is colored by Rule 2, then g(x) is set by fo(x) = 2 and FO(x) = ST (x).
3. If ci is colored by Rule 3 we get a contradiction. This case cannot occur.
4. If ci is colored by Rule 4, then g(x) > 3

2 . If g(x) is set by sq or fo and G(x)
is yellow , then |x| ≤ 5

2g(x)|ci|. If ST (x) is defined and colored during the
round, then g(x) is set by sh(x) < 2 or by st(x) = 2.

After constructing VS the algorithm builds the graph G(VS) and finds a minimum-
weight matching M∗; see part 2 in Figure 7. The purpose of this step is to select
representatives for the yellow cycles and to identify red and yellow cycles that have
large overlap edges between them. As described earlier R is the set of cycles colored
red by the algorithm. Let R1 be the red cycles such that VS(rep(c)) ≤ 2 and let R2

be the red cycles such that VS(rep(c)) > 2. Let Y be the set of cycles colored yellow.
(Note that we drop the convention used in the discussion of part 1 that ci refers to
the ith cycle in the algorithm’s order.)

Definition 4.15. Let c1 and c2 be distinct cycles of CS∗ in R2∪Y. For i = 1, 2,
let Xi = {rep(ci)} if ci ∈ R2 and let Xi = OP (ci) otherwise. For i = 1, 2, let xi be a
string in Xi. Then pair(x1, x2) is a cycle in GS constructed as follows:

1. Set pair(x1, x2) to the tight cycle X ({c1, c2}, emax(x1, x2)). Assume that ei
is the out-edge of xi,last in pair(x1, x2).

2. For i = 1, 2, if ci is red and ov(ei) > 0, then replace ei in pair(x1, x2) by its
maximum-overlap expansion êi such that ov(êi) < ov(ei).

Notice that if the edge ei in the above definition has positive overlap, then the
zero-overlap edge of ei has overlap strictly less than ei. Thus the replacement edge êi
always exists. Also, notice that pair(·, ·) is a symmetric function.

Definition 4.16. G(VS) is an undirected, weighted graph with vertex set CS∗.
Each vertex c of the graph has a self-loop with weight |c| if c is blue, max(VS(rep(c)), 2)|c|
if c is red, and minx∈OP (c) VS(x)|c| if c is yellow. Each pair c1 6= c2, ci ∈ R2 ∪ Y,
i = 1, 2, shares an edge with weight minxi∈Xi |pair(x1, x2)|, where Xi = {rep(ci)} if
ci is red and Xi = OP (ci) if ci is yellow.

After constructing G(VS) the algorithm finds a minimum-weight matching M∗.
For vertices c1 6= c2 in G(VS), the matching algorithm chooses the self-loops of c1 and
c2 over the edge (c1, c2) in the event of a tie. Because of the self-loops each vertex c
is incident to some edge in M∗; if the edge incident to c is a self-loop we say that c is
unmatched; otherwise we say that c is matched. For each yellow cycle c the algorithm
sets rep(c) to an x ∈ OP(c) that determines the weight of the edge incident to the
vertex c in M∗ subject to the following:

1. Suppose that c is yellow, unmatched; the self-loop incident to c in M∗ has
weight 2|c|; and some c′ 6= c is colored in the same round as c in part 1. Then
c′ = cST (x) for some x ∈ OP(c). In this case the algorithm sets rep(ci) to such
an x. (Note that by Lemma 4.14 st(x) = 2, so this is purely a tie-breaking
rule.)
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2. If (c, c′) is in M∗, c′ 6= c, then rep(c) is chosen consistently with rep(c′) in the
sense that the weight of the edge (c, c′) in G(VS) is |pair(rep(c1), rep(c2))|.

The following fact is obvious from the construction. We will use this fact frequently
in the next section.

Fact 4.17. Let c be a matched cycle of CS∗. Then c is red or yellow. In the first
case VS(rep(c)) > 2 and in the latter case VS(rep(c)) > 3

2 .
Let (c1, c2) be an edge of M∗, c1 6= c2. We call c1 the max-overlap cycle of the

pair if |rep(c1)| − VS(rep(c1))|c1| ≥ |rep(c2)| − VS(rep(c2))|c2|, i.e., if the expansion
of erep(c1) corresponding to VS(rep(c1)) has overlap at least as large as the expansion
of erep(c2) corresponding to VS(rep(c2)). Otherwise we call c2 the max-overlap cycle
of the matched pair.

Lemma 4.18. Let M∗ be a minimum-weight matching of G(VS). Suppose (c1, c2)
is an edge of M∗, c1 6= c2, where c1 is the max-overlap cycle of the pair. Then ckx2

exists for the integer k = |pair(rep(c1), rep(c2))| − VS(rep(c1))|c1|. Furthermore, if
cx2 is red , then k ≥ 2.

Proof. Assume that rep(ci) = xi, i = 1, 2. Since VS is an expansion value
function there exists an expansion of exi , i = 1, 2, with pseudolength VS(xi)|ci|. Let
êi, i = 1, 2, denote the expanded edge. Cycle c1 is the max-overlap cycle of the pair,
so ov(ê1) ≥ ov(ê2). Since VS is a valid expansion value function, ê1 is a winning

edge for the cycle pair(x1, x2). Then X̃ ({pair(x1, x2)}, ê1) consists of c
VS(x1)
x1 and a

1-expansion ĉx2 of cx2 of length at most |pair(x1, x2)| − VS(x1)|c1|. Next we show
that equality holds. Suppose that |ĉx2

| < |pair(x1, x2)| − VS(x1)|c1|. By Lemma 3.3,
the expansion of ex2

in ĉx2
has zero-overlap and thus |ĉx2

| = |x2|. Since c1 and c2 are
in R2 ∪ Y, the self-loops of c1 and c2 in G(VS) have total weight no more than

VS(x1)|c1|+ VS(x1)|c2| ≤ VS(x1)|c1|+ sh(x2)|c2| ≤ VS(x1)|c1|+ |x2| ≤ |pair(x1, x2)|
which contradicts the matching algorithm’s tie-breaking rule; i.e., self-loops are cho-
sen over nonloop edges. Thus equality must hold. By the same argument, |ĉx2

| <
sh(x2)|cx2 | so by Corollary 3.8 ĉx2 = ckx2

for some integer k.
Now suppose that cx2 is red. By construction the out-edge of x2,last in pair(x1, x2)

has either zero-overlap or overlap strictly less than ov(ex2
). In the first case the

matching algorithm would choose the self-loops of c1 and c2. Thus ĉx2
= ckx2

for some
integer k > 1.

Definition 4.19. The cover CL consists of the following cycles:
1. If c is blue , then c ∈ CL.
2. If c is red and unmatched, then cqrep(c) is in CL where

q = min(|rep(c)|/|c|,max(VS(rep(c)), 2)).

3. If c is yellow and unmatched, then c
VS(rep(c)
rep(c) is in CL.

4. If c1 6= c2 are matched, where (c1, c2) is an edge in M∗ and c1 is the max-

overlap cycle of the pair, then c
VS(rep(c1))
rep(c1) and the 1-expansion of crep(c2) with

length |pair(rep(c1), rep(c2))| − VS(rep(c1))|c1| are in CL.
The existence of these cycles is guaranteed by Lemma 4.6, Corollary 3.8, and

Lemma 4.18. In section 6 we prove the following lemma.
Lemma 4.20. |CL| −

∑
c∈R |c| ≤ |OPTS |.

The selection of the edges W is shown in Figures 6 and 7. Several choices in
part 1 (i.e., the lines marked by *) depend on the outcome of the matching and on
representatives selected in part 2. We assume that the algorithm records the current
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Table 1
Summary of alloc(c).

Color of c c Matched ? Allocation

blue N/A 5
2
|c|

red Yes |m(c)| − 1
2
|c|

No 5
2

(max(VS(rep(c)), 2)− 1)|c|
yellow Yes |m(c)|

No 5
2
VS(rep(c))|c|

status when these lines are invoked and then in part 2 goes back and adds the necessary
edges to W . In part 2 the algorithm also adds edges for matched cycles to W .

The proof of Theorem 1.1 follows from Lemma 4.20 and the next lemma which
we prove in section 5.

Lemma 4.21. There exists a cover CU of GS such that |AOPTS | ≤ |CU | ≤
5
2 (|CL| −

∑
c∈R |c|).

5. The upper bound cover CU . To prove Lemma 4.21, we explicitly construct
CU . We begin with CU and W empty and simulate the construction of W by the
algorithm. In a round of part 1, where the algorithm colors a cycle c ∈ CS∗, we add
an expansion of c, denoted m(c), to CU . We may also expand an existing cycle in CU ,
i.e., replace some edge of the cycle by one of its expansions.

Lemma 5.1. At each point of the construction, CU and W satisfy the following
invariants:

1. CU is a cycle cover of the graph GS′ , where S′ = {s ∈ S | s is a vertex of
a colored c ∈ CS∗}. Furthermore, for any colored c ∈ CS∗, CU contains an
expansion of m(c).

2. Every weakly connected component of the subgraph CU ∪ W of GS, that is,
every connected component where the edges are considered in an undirected
sense, contains a zero-overlap edge or an expansion of m(c), c ∈ CS∗, such
that c is matched.

3. Every edge of W is a winning edge for CU .
4. |CU | ≤

∑
colored c alloc(c), where alloc(·) is defined in Table 1.

For any (c, c′) ∈ M∗, c 6= c′, the algorithm adds emax(rep(c), rep(c′)) to W
in part 2. Thus, the next fact and invariant 2 imply that when the construction
concludes, every weakly connected component of CU ∪W has a zero-overlap edge.

Fact 5.2. Suppose (c, c′) is an edge of M∗, where c 6= c′. Then either m(c) or
m(c′) has a zero-overlap edge.

Thus Lemma 5.1 together with the next lemma implies that |AOPTS | ≤ |CU |.
Lemma 5.3. Let C̃ be an expansion of CS∗ and let W be the set of merging

edges constructed by the algorithm. If every edge of W is a winning edge for C̃ and
every weakly connected component of the subgraph C̃ ∪W has a zero-overlap edge, then
|AOPTS | ≤ |C̃|.

When the construction concludes, invariant 4 implies that |CU | ≤
∑
c∈CS∗ alloc(c).

By the next lemma, the length of CU satisfies the bound of Lemma 4.21.
Lemma 5.4. For alloc(c), c ∈ CS∗, defined in Table 1,

∑
c∈CS∗

alloc(c) ≤ 5

2

(
|CL| −

∑
c∈R
|c|
)
.
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Table 2
Construction of m(c).

Case Construction

g(w) cw cz colored emax(w, z) m(cw) m(cu) m(cz) m(cv)
set by matched in curr round added to W Rule 2 Rule 4

sh no NA NA w c2u NA c2v
yes NA NA See Tbl. 3 c2u NA c2v

sq no no no w c2u NC c2v

no no yes c
sq(w)
w c2u Expand m(cz) c2v

no yes yes c
sq(w)
w c2u z c2v

yes no no See Tbl. 3 c2u NC c2v
yes yes yes See Tbl. 3 c2u c2z c2v

fo no no no w c2u NC c2v

no no yes c
fo(w)+1
w c2u NC c2v

yes no no See Tbl. 3 c2u NC c2v
st no yes yes w c2u cz c2v

yes yes yes See Tbl. 3 c2u cz c2v

Table 3
Construction for matched cycles (cx, cy), where cx is the max-overlap cycle of the pair and

x = rep(cx), y = rep(cy).

Color of cx Expansion Value of x m(cx) m(cy)
yellow VS(x) < 2 x y

VS(x) ≥ 2 c
VS(x)+2
x

red VS(x) < 3 c
VS(x)+

|cy|
|cx|

x

VS(x) ≥ 3 c
VS(x)+1
x

Thus, to complete the proof of Lemma 4.21 it suffices to demonstrate Fact 5.2 and
prove Lemmas 5.1, 5.3, and 5.4. The proofs of Lemmas 5.1 and 5.4 are very technical;
they are given in the appendix. The proof of Lemma 5.3 is given at the end of this
section.

Next we describe the construction in detail. The construction of m(c) is given
in Table 2, with reference to Table 3. For ease of notation throughout this section,

we use cqx to mean c
min(q,|x|/|cx|)
x for x ∈ U∗S . With some abuse of notation in these

tables we also let x, x ∈ U∗S , denote the 1-expansion of cx with length |x|, i.e., the
1-expansion of cx that includes the zero-overlap version of ex. We refer to this policy
as our naming convention. Fact 5.2 is obvious from Table 3. NC and NA in Table 2
mean no change and not applicable .

We now describe the construction in round (j, i). If ci is not colored in the round
we do not change CU . So assume ci is colored in round (j, i). If ci is colored by
Rule 1, 2, or 3, let w be the string by which the rule is chosen. If ci is colored by
Rule 4, let w = rep(ci). Thus ci = cw. If cw is colored by Rule 2 then cu, where u
conflicts with w, is also colored in the round. If G(w) is defined, then for convenience
of notation we let z denote G(w). If cw is colored by Rule 4 and a cycle c, c 6= cw
and c 6= cz, and is also colored in round (j, i), then j = 2 and c = cST (x) for some
x ∈ OP (cw), x 6= w. Let v denote such a string ST (x). There may be several such
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v in a round corresponding to different x ∈ OP(cw); the construction is identical for
each.

We first describe the construction of m(cw). Suppose g(w) is set by sh. The
construction of m(cw), as shown in Table 2, depends on whether cw is unmatched or
matched. If cw is unmatched then m(c) = w, where w denotes the 1-expansion of cw
of length |w| as described earlier. If cw is matched, the construction of m(cw) is given
in Table 3. It depends on whether or not cw is the winning cycle of the matched pair,
on the color of cw, and on the value of VS(w).

Now suppose that g(w) is set by sq, fo, or st. Then z is defined. In this case
m(cw) depends on whether cw is unmatched or matched, whether cz is colored in the
current round, and whether emax(w, z) is added to W . (Note that by Lemma 4.13 cz
is colored in either round (j, i) or in an earlier round.) Thus there are eight possible
cases, but not all of them can occur. Specifically, if cz is colored in round (j, i), then
the algorithm always adds emax(w, z) to W . Also, if cw is matched, and thus colored
in Rules 2–4, and cz is colored in a previous round, emax(w, z) is never added to W .
The remaining five cases can occur when g(w) is set by sq, and Table 2 handles each
possibility. If g(w) is set by fo, then by Lemma 4.13 cz is colored in a previous round
so there are only three possible cases. If g(w) is set by st, then by Lemma 4.13 cz is
colored in the current round and so there are only two possible cases. Table 2 handles
every possibility, with reference to Table 3 when cw is matched.

When u is defined, Table 2 gives the construction of m(cu). When z is defined, the
column labeled m(cz) gives the new construction for m(cz) for the cases where cz is
colored in round (j, i). If cz is colored in a previous round, then CU already contains
an expansion of m(cz) and the table describes any necessary modifications to this
cycle; expanding this cycle by |cw| should be interpreted as replacing the version êz
of ez in the cycle by its expansion with overlap max(ov(êz)− |cw|, 0). Finally, if v is
defined, the column labeled m(cv) gives the appropriate construction.

Proof of Lemma 5.3. Let the edge ofW ordered by increasing overlap be e1, . . . , ek.
We define a sequence of cycle covers C0, C1, C2, . . . , Ck of GS as follows. C0 = C̃. Assume
ei = 〈s, t〉. If s and t are in the same cycle of Ci−1, then Ci = Ci−1 and otherwise
Ci = X̃ (Ci−1, ei). We claim that |Ci| ≤ |Ci+1|, every edge in {ei+1, . . . , ek} is a winning
edge for Ci, and every weakly connected component of Ci ∪ {ei+1, . . . , ek} has a zero-
overlap edge.

The claim is true by assumption when the construction begins. Suppose it is true
for Ci−1, i ≥ 1, and assume ei = 〈s, t〉. If s and t are in the same cycle in Ci−1, then
Ci = Ci−1 and the claim holds. Now suppose s and t are in different cycles. Assume
these cycles are, respectively, cs and ct. Then Ci = X̃ (Ci−1, ei) = Ci − {cs, ct} ∪
X̃ ({cs, ct}, ei). Since ei is a winning edge for Ci−1, |Ci| ≤ |Ci−1|. If ej , j > i, is a
winning edge for Ci−1 but not for Ci, then by Lemma 3.3 ej must be an out-edge of
s or an in-edge of t. However, ov(ej) < ov(ei), which contradicts the fact that the
edges are ordered by increasing overlap. Thus each edge of {ei+1, . . . , ek} is a winning
edge for Ci. Finally, consider the last point. The only edges of Ci−1∪{ei, . . . , ek} that
are not in Ci ∪ {ei+1, . . . , ek} are the edges removed by the edge exchange. If either
of these edges has zero-overlap, then by Lemma 3.3 the losing edge of the exchange
does as well. Thus the component of Ci containing the cycle X̃ ({cs, ct}, ei) includes
a zero-overlap edge. The remaining components satisfy the claim by the inductive
hypothesis. The final cover Ck has the property that |Ck| ≤ |C̃| and furthermore, each
cycle c of Ck has a zero-overlap edge so |op(c)| = |c|.

Notice that our construction simulates step 4 of the algorithm (see Figure 5) but
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Construction Protocol

1. Color the edges of CS∗ white and the remaining edges of GS black.

2. Initialize C0 to a Hamiltonian cycle of Gs and set i = 0.

3. Each cycle of c ∈ CS∗ is initially unmarked.

4. While Ci contains a mixed cycle.

(i) Mark: If c is unmarked and represented in a mixed cycle in Ci, then
mark c “represented.” Recolor the missing edge ex black and its expansion

ẽx with pseudolength VS(x)|cx| white.
(ii) Edge exchange: Let eW be the maximum overlap white edge of GS such

that (1) eW is not in Ci, and (2) Ci is not uniform for c(eW ).

Set Ci+1 = X̃ (Ci, eW ) and i = i+ 1.

(iii) Eliminate-uniform-cycle: While Ci includes a mixed cycle ĉmixed with
a vertex s and a uniform cycle ĉuniform with the vertex next(s) such that
|join(ĉuniform, ĉmixed, s)| ≤ |ĉuniform|+ |ĉmixed|
Set Ci+1 = Ci−{ĉuniform, ĉmixed}∪{join(ĉuniform, ĉmixed, s)} and i = i+1.

(iv) Reorder-path: While Ci includes a mixed cycle ĉmixed such that for some
c ∈ CS∗, the vertices of c comprise a path in ĉmixed, c is not represented in
ĉmixed, and |represent(ĉmixed, c)| ≤ |ĉmixed|

Set Ci+1 = Ci − {ĉmixed} ∪ {represent(ĉmixed, c)} and i = i+ 1.

Fig. 8.

beginning with an expansion of CS∗, i.e., C̃, and using parsimonious edge exchanges.
At each point our current cover Ci is an expansion of the algorithm’s current cover C.
When the construction concludes,

|AOPTS | =
∑
c∈C

op(c) ≤
∑
c∈Ck

op(c) =
∑
c∈Ck
|c| = |Ck| ≤ |C̃|.

6. The lower bound cover. In this section we prove Lemma 4.20. Our strategy
is similar to the proof of Theorem 2.7 given at the end of section 2. The construction
protocol for the proof of Lemma 4.20 is given in Figure 6. We construct a series of
covers of GS that are nonincreasing in length beginning with a Hamiltonian cycle C0.
After we’ve described the general construction, we choose C0 so as to get the desired
bound of Lemma 4.20.

We begin by coloring the edges of CS∗ white and the remaining edges of GS black.
At each point in the protocol, CW denotes the set of white edges of GS . We may recolor
edges during the protocol but we’ll see that the construction satisfies the following
invariant.

Fact 6.1. CW is always an expansion of CS∗. For any Ci and Ci+1 constructed
by the protocol,

1. if e is a white edge in Ci, then e is a white edge of Ci+1, and
2. Ci+1 has strictly more white edges than Ci.

At any point in the protocol the current cover is the cover Ci for the current value
of i. The protocol continues as long as the current cover includes a mixed cycle. A
cycle ĉ of GS is mixed if it includes vertices s and t such that cs 6= ct, where cv denotes



A 2 1
2

-APPROXIMATION ALGORITHM FOR SHORTEST SUPERSTRING 975

the cycle of CS containing the vertex v. A cycle ĉ of GS that is not mixed is uniform.
If ĉ is uniform, then for some c ∈ Cs every vertex of ĉ is also a vertex of c and we may
also say that ĉ is uniform for c. The cycle ĉ need not include every vertex of c and
need not include any edges of c. A cycle cover C of GS is uniform for c ∈ CS∗ if every
vertex of c is in a cycle uniform for c in C. By our earlier assumption CS∗ consists of
more than one cycle so the Hamiltonian cycle C0 is mixed. Fact 6.1 guarantees that
the protocol concludes. The final cover of the protocol, which we denote as Cfinal, is
uniform for every c ∈ CS∗.

Step (i) of the protocol marks cycles of CS∗ that are represented in a mixed cycle
of the current cover. We say that a cycle ĉ of GS represents x ∈ U∗S if order(cx, xfirst)
is a tight path of ĉ; here order(c, s), for a cycle c ∈ CS∗ and a vertex s ∈ c, is a list of
the vertices of c in the order they occur in c beginning at vertex s. If a cycle ĉ of GS
represents x ∈ U∗S we also say it represents cx. Note that if a cycle ĉ of GS represents
c ∈ CS∗ and ĉ 6= c, then ĉ represents a unique x ∈ OP (c).

Let c be a cycle of CS∗. Initially c is unmarked. In step (i) we mark c “represented”
if c is still unmarked and some mixed cycle of the current cover represents c. The
protocol maintains the following invariant.

Fact 6.2. Let c be a cycle of CS∗. If c is unmarked at some point in the protocol,

then c ∈ CW . If c is marked “represented,” then c
VS(x)
x ∈ CW for some x ∈ OP (c).

Suppose we mark c in some round. Let ĉ be the cycle of the current cover that
represents c. Since ĉ is mixed (and hence ĉ 6= c), ĉ represents a unique x ∈ OP (c).
Since c ∈ CW when the step begins, by Fact 6.2 ex is white. When we mark c in step
(i) we also recolor ex black and recolor the expansion of ex with pseudolength VS(x)|c|
white. Since ĉ is a mixed cycle and represents c, the current cover does not contain
ex or any of its expansions. Thus the recoloring has no effect on the current cover.

After the recoloring, c
VS(x)
x ∈ CW . By Facts 6.1 and 6.2 if Ci represents x ∈ U∗S , then

Ci+1 represents x.

In step (ii) the protocol performs an edge exchange based on a maximum overlap
white edge eW that satisfies two conditions. The first condition is that eW is not in
the current cover. By Fact 6.1 eW is an expansion of an edge of some c ∈ CS∗; we
use c(eW ) to denote the cycle c. The second condition is that the current cover is not
uniform for c(eW ).

Lemma 6.3. Suppose the protocol constructs Ci+1 = X̃ (Ci, eW ) in some round.
Then eW is a winning edge for Ci.

Proof. Assume that eW = 〈s, t, k〉, the out-edge of s in the current cover is
e = 〈s, u, j〉, and the white in-edge of u is e′ = 〈v, u, `〉. Suppose that cs = cu, where
cv is the cycle of CS∗ containing the vertex v. Since 〈s, u〉 is not an edge of CS∗, cs is
not represented in the current cover, cs is not marked “represented,” and eW and e′

are tight edges. Since k ≥ `, by Fact 2.16 k ≥ j. Now suppose that cs 6= cu. Then
s and u are xlast and yfirst for some x, y ∈ U∗S , cx 6= cy. The edge eW is either tight
or has pseudolength VS(x)|cx|; in either case k ≥ |x| − VS(x)|cx|. By a symmetric
argument ` ≥ |y| − VS(y)|cy|. Since k ≥ `, k ≥ max(|x| − VS(x)|cx|, |y| − VS(y)|cy|).
By Lemma 4.6 VS is a valid expansion value function so k ≥ max(|x|−VS(x)|cx|, |y|−
VS(y)|cy|) ≥ ovmax(x, y) ≥ ov(s, t′) = j.

By a symmetric argument k is at least as large as the overlap of the in-edge of t
in the current cover. Thus eW is a winning edge for the current cover.

The previous proof relies on the fact that if the edge eW = 〈s, t, k〉 is loose, then
for some x ∈ OP (cs), s = xlast, t = xfirst, the out-edge of s in the current cover is
to some u such that cu 6= cs, and a symmetric statement holds for the in-edge of t.
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These conditions hold when c(eW ) is represented in a mixed cycle. In steps (iii) and
(iv) we attempt to force the representation of each c ∈ CS∗ in a mixed cycle at some
point in the protocol. We can guarantee this only for cycles in CS∗ with depth at least
3; the depth of c of GS , denoted dc, is defined as dc = |op(c)|/|c|. We’ll see, however,
that this is enough. In the next lemma, lenfinal(c) is the total length of the cycles
uniform for c ∈ CS∗ in the final cover Cfinal.

Lemma 6.4. Let c be a cycle of CS∗. If c is not marked “represented” when the
protocol concludes, then dc < 3 and lenfinal(c) ≥ sh(x)|c| for some x ∈ OP (c).

The proof of this lemma is given in the appendix. Next we describe steps (iii)
and (iv). Let c be a cycle of CS∗ and suppose that when step (iii) begins, the current
cover Ci contains a cycle uniform for c and a mixed cycle containing a vertex of c.
In this case there must be vertices s and t of c such that 〈s, t〉 is an edge of c, s is
in a mixed cycle of Ci, and t is in a cycle uniform for c in Ci. In step (iii) we insert
the vertices of the uniform cycle into the mixed cycle provided we can do so without
increasing cover length. We use next(s), s ∈ S, to denote the vertex t (possibly s = t)
such that 〈s, t〉 is in CS∗.

Definition 6.5. Let c be a cycle of CS∗, let

cuniform = 〈t0, t1, k0〉, . . . , 〈tj , t0, kj〉
be a cycle of GS that is uniform for c, and let

cmixed = 〈s0, s1, `0〉, . . . , 〈sm, s0, `m〉
be a mixed cycle of GS that includes a vertex s such that next(s) is in cuniform.
Assume s = s0 and next(s) = t0. The cycle join(cuniform, cmixed, s) is defined as

〈s0, t0〉, 〈t0, ti1〉, . . . , 〈tim−1,tim
〉, 〈tim , s1, `

′〉, 〈s1, s2, `2〉, . . . , 〈sm, s0, `m〉,
where the vertices of cuniform occur in c in order t0, ti1 , . . . , tij and `′ is the maximum
overlap of any edge from tim to s1 such that `′ ≤ `0.

Let c be a cycle of CS∗. Suppose at the beginning of step (iv) the vertices of c
comprise a path in some mixed cycle of the current cover. If c is not represented by ĉ,
then the vertices of c may be out of order or the path may include some loose edges.
If so, we reorganize the path so that c is represented provided we can do so without
increasing cover length.

Definition 6.6. Let c be a cycle of CS∗ and let

cmixed = 〈s0, s1, k0〉, 〈s1, s2, k1〉, . . . , 〈sj , t0, kj〉〈t0, t1, `0〉, . . . , 〈tm, s0, `m〉
be a mixed cycle such that s0, . . . , sj are the vertices of c. Assume that order(c, s0) =
s0, si1 , si2 , . . . , sij . The cycle represent(cmixed, c) is defined as

〈s0, si1〉, 〈si1 , si2〉, . . . , 〈sij−1 , sij 〉, 〈sij , t0, k′〉, 〈t0, t1, `1〉, . . . , 〈tm, s0, `m〉,
where k′ is the maximum overlap of any edge from sij to t0 such that k′ ≤ kj.

We can assume, without loss of generality, that if some c ∈ C0 satisfies the condi-
tions of step (iv), then c is represented in C0.

Lemma 6.7. Let c be a nonblue cycle of CS∗ such that lenfinal(c) < VS(x)|c| for
every x ∈ OP(c). Then for some covers Ci and Ci+1 constructed by the protocol

Ci+1 = X̃ (Ci, êy) = Ci − {ĉ} ∪ {cqx, cVS(y)
y },
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where x ∈ OP (c), y ∈ U∗S, cy 6= c, êy is a strict expansion of ey with pseudolength
VS(y)|cy|, ĉ is some expansion of X ({cx, cy}, emax(x, y)), and q|c| = lenfinal(c).

Proof. Let Ci be the first cover that is uniform for c. By Lemma 6.4 dc ≥ 3 and c
is represented in a mixed cycle ĉ in Ci−1. Assume ĉ represents x ∈ OP (c). The only
step that can create a uniform cycle is the edge exchange so

Ci = X̃ (Ci−1, e) = Ci−1 − {ĉ} ∪ {c1, c2},

where c2 is a 1-expansion cqx with length lenfinal(c). If e is the expansion of ex

with length VS(x)|c|, then c2 = c
VS(x)
x , which is a contradiction. Thus e is an edge

from ylast to yfirst for some y ∈ U∗S , cy 6= c and the losing edge of the exchange êx
is an expansion of ex. If ov(êx) < |x| − sh(x)|c|, then |c2| ≥ sh(x)|c| ≥ VS(x)|c|,
which is a contradiction. So assume that ov(êx) ≥ |x| − sh(x)|c|. If e is tight,
then ov(êx) ≤ |x| − sq(x)|c| so |ĉx| ≥ sq(x)|c| ≥ VS(x)|c|, which is a contradiction.
Thus e is a loose edge. By Fact 6.2 ĉ also represents y. Since ĉ must also include
edges from xlast to yfirst and from ylast to xfirst, ĉ is an expansion of X ({cx, cy},
emax(x, y)).

Proof of Lemma 4.20. To prove this theorem we construct a cover C̃L such that

|CL| ≤ |C̃L| ≤ OPTS +
∑
c∈R
|c|.

First consider the case where R is empty. Set C0 = {cπ∗
S
} and construct Cfinal by

the construction protocol. By construction and Lemma 6.3 |Cfinal| ≤ |cπ∗
S
| ≤ OPTS .

For each c ∈ CS∗ such that Cfinal does not include a 1-expansion of c, replace the

cycles uniform for c by the 1-expansion c
sh(x)
x for the x defined by Lemma 6.4; these

modifications do not increase the length of Cfinal. Let C̃L = Cfinal. Lemma 6.7 implies
a matching between yellow cycles cx and cy such that lenfinal(cx) < VS(x)|cx| and
lenfinal(cx)+ lenfinal(cy) ≥ pair(x, y). For any remaining cycle c, lenf (c) ≥ VS(x)|c|
for some x ∈ OP (c). Thus C̃L corresponds to a matching of G(VS) with length at most
|C̃L| ≤ |OPTS |. Our claim then follows since |CL| is the weight of a minimum-weight
matching M∗ of G(VS).

Now consider the case where R1 is empty. We begin by setting C0 = cπ∗
S
. For each

c ∈ R2 do the following. Delete the vertices of c, except for rep(c)first, from C0 using
Lemma 2.3. Duplicate the vertex rep(c)first and insert the deleted vertices between
the two copies in the order the vertices occur in c using tight edges. Delete the second
copy of rep(c)first. When the construction concludes, |C0| ≤ |OPTS | +

∑
c∈R2

|c|.
Also by the construction, for any c ∈ R2, the out-edge of rep(c)last in C0 is either
zero or strictly less than ov(rep(c)last, rep(c)first). Construct C̃final as above. The
same arguments hold for this case except for matched pairs where one or both of
cx and cy are red. To prove this case it is sufficient to show that the cycle ĉmixed
which represents x and y in the proof of Lemma 6.7 is an expansion of pair(x, y). By
Lemma 3.3 and the construction of steps (iii) and (iv) the overlap of the out-edge of
xlast (resp., ylast) is nonincreasing over the construction, so the claim holds.

Now suppose that R1 is nonempty. Construct C0 as in the last case. We will treat
c ∈ R1 as a blue cycle in the construction, i.e., set VS(x) = 1 for every x ∈ OP(c).
Construct C̃L as in the previous case. Then for each c ∈ R1, replace the expansion of
c in C̃L by the cycle c2x where x = rep(c). Then |C̃L| ≤ |OPTS | +

∑
c∈R |c| and, as

above, C̃L corresponds to a matching of G(VS).
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7. Conclusions. Probably the most interesting open question in superstring
study is whether GREEDY yields a 2-approximation. GREEDY has an (almost)
obvious interpretation relative to the protocol we described in section 6. At each
point in its operation, the strings in GREEDY’s current set defines a collection of
simple, disjoint paths in GS . When GREEDY merges x and y (i.e., replaces them
by pref (x, y) · y) we perform an edge exchange based on the edge from the end of
x’s path to the beginning of y’s path. The difficulty with analyzing GREEDY in
this way is that these edges are not always winning edges and thus we must account
for the cost increases along the way. The construction protocol in section 6 may be
useful in analyzing these increases. In addition, the stop and squeeze functions seem
important for the study of GREEDY. If for every x ∈ U∗, st(x) > sh(x), there is a
simple algorithm that gives a 2 1

3 -approximation bound (see [10]).
Of course the other important question in this area is whether OPTS can be ap-

proximated within a factor of 2 by any algorithm. We conjecture that our algorithm
can be modified slightly and the analysis improved to prove a 21

3 bound. Unfor-
tunately the analysis is even more complicated and, perhaps worse, the algorithm
becomes extremely complex.

Appendix. Proofs of Lemmas 4.13, 4.14, 5.1, 5.3, 5.4, and 6.4.
Proof of Lemma 4.13. 1. Suppose g(x) is set by sq. Consider the case where ci is

colored by Rules 1, 2, or 3. By Lemma 4.12 ci is colored in round (1, i). In every rule
G(x) = SQ(x) is colored during the round if it is not already colored. Now suppose
that ci is colored by Rule 4. In this case j = 2. Since Rule 1 is not used in round
(1, i), sq(x) > 3

2 . Then since Rule 3 is not used in round (1, i), SQ(x) < x. However,
by Fact 4.11, SQ(x) is colored when round (2, i) begins.

2. The second point follows by the definition of force.
3. Now suppose that ci is set by st. In any rule by which ci can be colored, ST (x)

is also colored during the round if it isn’t already colored when the round begins. Thus
it suffices to show that ST (x) is uncolored when the round begins. Suppose ST (x)
is colored in an earlier round. Referring to the definition of set by, since ST (x) is
colored the first rule does not apply. Thus the second must. By definition of stop
tr(ST (x), x) < 1, and by Lemma 3.10, tr(x, ST (x)) ≥ 1. Then since VS(ST (x)) ≥
1, fo(x) ≤ max(btr(x, ST (x))c, 1) = st(x). However, this contradicts our priority
rule.

Proof of Lemma 4.14. 1. If g(x) is set by sh, sq, or st, then by Lemma 4.12 the
same conditions hold in round (1, i), which is a contradiction. Thus g(x) is set by
fo in round (2, i). Also by this lemma fo(x) is integral, and since Rule 1 applies,
fo(x) < 3

2 so fo(x) = 1.
Assume that cFO(x) = ck. By Lemma 4.13, FO(x) is colored when round (2, i) be-

gins. Suppose FO(x) is yellow. Then FO(x) is colored in round (2, k) of Rule 4. Since
FO(x) is colored before round (2, i) begins, k < i and FO(x) < x. By Lemma 4.8 x
conflicts with FO(x) in round (2, k). Since Rule 2 is not chosen, one of the following
three conditions holds:

(a) g(FO(x)) ≤ 3
2 . However, FO(x) is colored blue in Rule 1, which is a contra-

diction.
(b) Stopping condition 2 fails to hold. Then g(FO(x)) is set by st(FO(x)) = 2

and ST (FO(x)) < FO(x). This contradicts either Fact 4.11 or Lemma 4.13.
(c) G(FO(x)) is defined and G(FO(x)) ∈ OP (ci). Then by Lemma 4.13 ci is

colored no later than round (2, k), which is a contradiction.
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2. Suppose ci is colored by Rule 2 in round (2, i). Since g(x) > 3
2 in round (2, i)

and since g(x) in nonincreasing, g(x) > 3
2 and u > x is uncolored and conflicts with

x in round (1, i). Since x is not colored by Rule 2 in round (1, i), one of the following
conditions holds in round (1, i):

(a) Stopping condition 2 fails to hold. Then g(x) is set by st(x) = 2 and ST (x) <
x. By Lemma 4.12 g(x) is set by st(x) = 2 or by fo(x) ≤ 2 in round (2, i).
In the first case we get a contradiction to either Fact 4.11 or Lemma 4.13.
Thus g(x) is set by 3

2 < fo(x) ≤ 2; by Lemma 4.12 fo(x) = 2. Furthermore,
since st(x) = 2 and ST (x) is colored (by Fact 4.11), FO(x) = ST (x).

(b) G(x) is defined and cu = cG(x). Since G(x) is uncolored in round (2, i), by
Lemma 4.13 g(x) is set by sq or st in round (1, i). Since G(x) ∈ cu and
cu > ci but Rule 3 is not used in round (1, i), g(x) is set by st(x) = 2 in that
round. By Lemma 4.12 g(x) = 2 in round (2, i), and since ST (x) > x, this is
the special case of set by. Thus g(x) is set by st. However, stopping condition
2 fails to hold in round (2, i), which is a contradiction.

3. Suppose ci is colored by Rule 3 in round (2, i). By Lemma 4.12 the same
conditions hold in round (1, i), which is a contradiction.

4. Suppose that for some x ∈ OP (ci) g(x) ≤ 3
2 . Since Rule 1 is not used, g(x) is

set by st(x) = 1 and ST (x) < x. Then we get a contradiction to either Fact 4.11 or
Lemma 4.13.

Now suppose that g(x) is set by sq or fo in the round. By Lemma 4.12 and the
fact that g(x) > 3

2 , g(x) ≥ 2. Let y = G(x) and assume cy = ck. By Lemma 3.10
|x| ≤ (tr(x, y) + 1)|ci| + |ck|. By Lemma 4.13 y is colored when the round begins.
Suppose it is colored yellow. Then y is colored in round (2, k) by Rule 4, and since it
is colored when round (2, i) begins, k < i, |ck| ≤ |ci|. Hence |x| ≤ (tr(x, y) + 2)|cx|. If
g(x) is set by sq, then by definition of squeeze tr(x, y) ≤ sq(x). If g(x) is set by fo,
then by the definition of force tr(x, y) ≤ fo(x) + 1. Thus |x| ≤ (g(x) + 3)|cx|. Then
since g(x) ≥ 2, |x| ≤ 5

2g(x)|cx|.
Now suppose that ST (x) is defined and colored during the round. Since st(x) ≥

g(x) > 3
2 , by Lemma 4.12, st(x) ≥ 2. By Fact 4.11, ST (x) > x. If st(x) ≥ 3, then ci

is colored no later than round (1, i) of Rule 3, which is a contradiction, so st(x) = 2.
If g(x) = 2, then this is the special case of set by and g(x) is set by st. If g(x) < 2,
then by Lemma 4.12 g(x) is set by sh.

Proof of Lemma 5.1. The invariant holds when the construction begins. Suppose
it holds at the beginning of round (j, i). If ci is not colored in the round, the algorithm
takes no action during the round and CU is unchanged. So assume ci is colored in
round (j, i). Let w, u, z, and v be defined as above (conditioned on the various cases).

Invariant 1. To show that invariant 1 holds we need to show that the construc-
tion is correct in the sense that the newly created cycles and modified cycles exist in
GS . Each new m(c) construction in Table 2 exists by the string lemmas, Lemma 4.6,
Corollary 3.8, and our naming convention. Now consider the case where an existing
cycle of CU is modified in the round. The only possibility is that g(w) is set by sq, cz
is colored in an earlier round, and emax(w, z) is added to W . Since g(w) is set by sq,
sq(w) < sh(w). Thus by Lemma 3.15, ov(z, z) is periodic in [cw]. Then if ovk(z, z)
exists, so does ovmax(k−|cw|,0)(z, z). The correctness of the modification to CU then
follows from Lemma 2.10.

Now suppose that cw is matched. Each construction in Table 3 exists by Lemma 4.6,
Corollary 3.8, and our naming convention, except the case when cw is the winning
cycle of the matched pair, cw is red, and VS(w) < 3. We now prove the correctness



980 Z. SWEEDYK

of this last case. Assume (cw, cy) is an edge of M∗, where y = rep(cy). Consider
the cycle pair(w, y) that determines the weight of the edge (cw, cy). Let e be the
version of ew with pseudolength VS(w)|cw| and assume its overlap is k. Since cw is
the winning cycle of the pair, e is a winning edge for the cycle pair(w, c). Further-

more, X̃ ({pair(w, y)}, e) consists of the 1-expansion c
VS(w)
w and the 1-expansion ĉy of

cy with length |pair(w, y)| − VS(w)|cw|. Since the self-loops of cw and cy are chosen
by the matching algorithm over the edge (cw, cy) in the event of a tie in weight, it
must be the case that |ĉy| = |pair(w, y)| − VS(w)|cw| < VS(y)|cy|. By Lemma 4.6
VS(y) ≤ sh(y). Thus the expansion of ey in ĉy has overlap more than |y| − sh(y)|cy|.
Then by Lemma 3.14 ovk(w,w) is periodic in [δy]. Of course, it is also the case that

ovk(w,w) is periodic in [δw]. Then by Lemma 4.6 c
VS(w)
w exists, so using Lemma 2.10

c
VS(w)+min(|cw|+|cy|)/|cw|
w exists as well.

Invariant 2. Now consider invariant 2. Our modifications to existing cycles
of CU never eliminate a zero-overlap edge, so any weakly connected component of
CU ∪W that satisfies the invariant at the beginning of round (j, i) also satisfies the
invariant at the end of the round. Thus we need only be concerned with the new cycles
added to CU during round (j, i). If m(c) is created in round (j, i) for some c 6= cw, then
emax(w, y) is added to W for some y ∈ OP (c). Thus it suffices to show that at the end
of round (j, i) the weakly connected component of CU ∪W containing m(cw) satisfies
the invariant. If cw is matched we are done, so assume cw is unmatched. Referring to
Table 2, the only cases in which one of the created cycles does not explicitly have a
zero-overlap edge is when g(w) is set by sq or fo, cz is colored in a previous round, and
emax(w, z) is added to W . However, in these cases, m(cw) is attached via emax(w, z)
to the existing weakly connected component of CU containing the expansion of m(cz);
this component satisfies the invariant by our induction hypothesis.

Invariant 3. Now consider invariant 3. We point out that our naming convention
does not affect our arguments in the proof of this invariant; i.e., in the case of a 1-
expansion cqx where q > |cx|/|x|, the edge from xlast to xfirst has zero-overlap and any
out-edge of xlast or in-edge of xfirst has at least as much overlap. In proving that this
invariant holds we will repeatedly use the fact that if cx is non-yellow , then m(cx) is

an expansion of c
VS(x)
x , which obviously holds if VS(x) = 1 and when VS(x) > 1 holds

by construction since x must in fact be rep(cx). Also for the string w, m(cw) is an

expansion of c
g(w)
w .

Suppose e is added to W during round (j, i). Then e = emax(w, u) or e =
emax(w, z) or e = emax(w, v).

1. e = emax(w, u): In this case cw is colored by Rule 2. As pointed out above,

m(cw) is an expansion of c
g(w)
w and, referring to Table 2, m(cu) = c2u. By the definition

of conflict, tr(w, u) ≤ g(w) and tr(u,w) ≤ 2. Thus by Lemma 3.10, e is a winning
edge for CU .

2. e = emax(w, z): Since z is defined, g(w) is not set by sh. Suppose g(w) is set
by sq. Then VS(w) = sq(w). Referring to Tables 2 and 3 for the three cases where

emax(w,z) is added to W , m(cw) is an expansion of c
sq(w)
w and the version of m(cz) in

CU is always an expansion of c
1+min(|cw|,|cz|)/|cz|
z . By Lemma 3.15 e is a winning edge

for CU .

Suppose g(w) is set by fo. In the only case where emax(w, z) is added to W ,

m(cw) = c
fo(w)+1
w . By definition fo(w) + 1 > tr(w, z). Since z is colored in an earlier

round, CU includes an expansion of cz and we claim that it is in fact an expansion
of cqz where q ≥ tr(z, w), so e is a winning edge by Lemma 3.10. If z is non-yellow,
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then let q = VS(z) and the claim holds; note that earlier we argued that m(cz) is an

expansion of c
VS(z)
z if z is non-yellow. Now suppose that z is yellow. If cw is colored

by Rules 1–3, then by Lemma 4.14 cw is colored by Rule 2, z = ST (w), and so q = 1
satisfies the claim. If cw is colored in Rule 4, then since cz is yellow the algorithm
does not add emax(w, z) to W .

Finally, suppose that g(w) is set by st. When cw is unmatched m(cw) = w. Now
suppose cw is matched. If cw is yellow, then st(w) ≥ 2 and if cw is red, then cw is in

R2 and st(w) ≥ 3. In each case m(cw) is an expansion of c
st(w)+1
w . Also, m(cz) = cz.

By the definition of stop, 1 > tr(z, w) and st(w) + 1 > tr(w, z). By Lemma 3.10 e is
a winning edge for CU .

3. e = emax(w, v): Now cw is yellow, the round is (2, i), w = rep(cw), 3
2 <

VS(w) ≤ 2, and v = ST (x) for some x ∈ OP(cw) such that st(x) = 2. By Lemma 2.10
δw ∈ [δx]. Since cv is uncolored when round (2, i) begins, by Lemma 4.13 |cv| ≥ |cw|.
Thus tr(v, w) < tr(v, x) + 1. By definition of stop tr(v, x) < 1 so tr(v, w) < 2. In
every case m(cv) = c2v. Similarly, tr(w, v) ≤ tr(x, v) + |cw|/|cv| ≤ tr(x, v) + 1. By
definition of stop tr(x, v) < st(x) + 1. Thus tr(w, v) < st(x) + 2 = 4. Referring to
Table 2 for the cases where cw is unmatched, m(c) = w. If cw is matched, then m(cw)

is either w or c
VS(w)+2
w , where VS(w) ≥ 2. By Lemma 3.10 e is a winning edge for CU .

Invariant 4. Finally, consider Invariant 4. We analyze the lengths and alloca-
tions depending on the rule by which cw is colored. The analysis is summarized in
Table 4.

1. Suppose that cw is colored by Rule 1. Then cw is blue and, by Fact 4.17, it is
unmatched. Also, 1 ≤ g(w) < 3

2 and if g(w) is not set by sh, then by Lemma 4.12
g(w) = 1. Furthermore, if z is defined then emax(w, z) is added to W in the round.
If in addition cz is colored during the round, then cz is blue. The possible cases are
shown in Table 4 for Rule 1. This table also gives the construction of m(cw) and,
when applicable, the column length bound gives an upper bound on the increase in
|CU | during the round. The length increase is due to the newly created cycles and any
expansions to existing cycles. The bound in each case is obvious from the construction
and the length bounds given by the string lemmas. The column allocation gives the
total allocation to cw and, if cz is colored in the round, to cz. In each case the
total allocation is at least as large as the total length increase. In the first case, by
Lemma 3.7, |w| ≤ (sh(w)+1)|cw|. Since cw is blue, its allocation is alloc(cw) = 5

2 |cw|.
Since sh(w) ≤ 3

2 , |w| ≤ alloc(c). In the second case |csq(w)
w | = sq(w)|cw| (by definition)

and cz is expanded by up to |cw|. Thus the total length increase is no more than
(sq(w) + 1)|cw|. This is no more than alloc(cw) = 5

2 |cw| since sq(w) = 1. In the third

case |csq(w)
w | = sq(w)|cw|, and by Lemma 3.15 |z| ≤ 2|cz| + |cw| for a total length

increase of no more than (sq(w) + 1)|cw| + 2|cz|, which is no more than the total
allocation. The fourth case follows in a similar way using Lemma 3.10. The last case
also uses Lemma 3.10 for its length bound, which is no more than the total allocation
since |cz| ≥ |cw|; this last fact holds because stopping condition 1 holds.

2. Suppose cw is colored by Rule 2. Then cw is red, VS(w) = g(w) as computed
at the beginning of the round, and g(w) > 3

2 . If cw is matched, then by Fact 4.17
g(w) > 2. As before, by Lemma 4.12 g(x) is integral if set by something other
than sh. The no/no/no cases of Table 2 are not applicable under this rule since
emax(z, w) is added to W provided z is defined and ci is unmatched. The table gives
the construction for m(cw) and, if z is defined, for m(cz). For this rule u is defined,
colored blue in the round, and m(cu) = c2u. If z is defined and colored in the round it
is also blue.
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Table 4
Cost accounting.

Construction Analysis
Case from Table 2 m(cw) m(cz) Length bound Allocation

Rule 1 - All cycles blue.

1 ≤ sh(w) ≤ 5
2

no/NA/NA w NA (sh(w)+1)|cw| 5
2
|cw|

sq(w) = 1 no/no/yes c
sq(w)
w expand (sq(w)+1)|cw| 5

2
|cw|

no/yes/yes c
sq(w)
w z (sq(w)+1)|cw|+2|cz | 5

2
(|cw|+|cz |)

fo(w) = 1 no/no/yes c
fo(w)+1
w NC (fo(w)+1)|cw| 5

2
|cw|

st(w) = 1 no/yes/yes w cz (st(w)+2)|cw|+2|cz | 5
2

(|cw|+cz |)
Rule 2 - cw is red and all other cycles are blue, m(cu) = c2u.

sh(w) > 3
2

no/NA/NA w NA (sh(w)+1)|cw|+2|cu| 5
2

(max(sh(w), 2)−1)|cw|
+ 5

2
|cu|)

sh(w) > 2 yes/NA/NA m(cw) NA |m(cw)|+2|cu| |m(cw)|− 1
2
|cw|+ 5

2
|cu|

sq(w) ≥ 2 no/no/yes c
sq(w)
w expand (sq(w)+1)|cw|+2|cu| 5

2
((sq(w)−1)|cw|+|cu|)

no/yes/yes c
sq(w)
w z (sq(w)+1)|cw| 5

2
((sq(w)−1)|cw|+|cz |+|cu|)

+2|cz |+2|cu|
sq(w) ≥ 3 yes/no/no m(cw) NC |m(cw)|+2|cu| |m(cw)|− 1

2
|cw|+ 5

2
|cu|

yes/yes/yes m(cw) c2z |m(cw)|+2|cz |+2|cu| |m(cw)|− 1
2
|cw|+ 5

2
(|cz |+|cu|)

fo(w) ≥ 2 no/no/yes c
fo(w)+1
w NC (fo(w)+1)|cw|+2|cu| 5

2
((fo(w)−1)|cw|+|cu|)

fo(w) ≥ 3 yes/no/no m(cw) NC |m(cw)|+2|cu| |m(cw)|− 1
2
|cw|+ 5

2
|cu|

st(w) ≥ 2 no/yes/yes w cz |w|+|cz |+2|cu| 5
2

((st(w)−1)|cw|+|cz |+|cu|)
st(w) ≥ 3 yes/yes/yes m(cw) cz |m(cw)|+|cz |+2|cu| |m(cw)|− 1

2
|cw|+ 5

2
(|cz |+|cu|)

Rule 3 - cw is red and cz is blue.

sq(w) ≥ 2 no/yes/yes c
sq(w)
w z (sq(w)+1)|cw|+2|cz | 5

2
((sq(w)−1)|cw|+|cz |)

sq(w) ≥ 3 yes/yes/yes m(cw) c2z |m(cw)|+2|cz | |m(cw)|− 1
2
|cw|+ 5

2
(|cz |)

st(w) ≥ 3 no/yes/yes w cz (st(w)+2)|cw|+2|cz | 5
2

((st(w)−1)|cw|+|cz |)
st(w) ≥ 3 yes/yes/yes m(cw) cz |m(cw)|+|cz | |m(cw)|− 1

2
|cw|+ 5

2
|cz |

Rule 4 - cw is yellow and all other cycles are blue.
For each v colored in the round |m(cv)| = 2|cv | < 5

2
|cv | = alloc(cv).

sh(w) > 3
2

no/NA/NA w NA (sh(w)+1)|cw| 5
2
sh(w)|cw|

yes/NA/NA m(cw) NA |m(cw)| |m(cw)|
sq(w) ≥ 2 no/no/no w NC |w| 5

2
sq(w)|cw|

no/no/yes c
sq(w)
w expand (sq(w)+1)|cw| 5

2
sq(w)|cw|

yes/no/no m(cw) NC |m(cw)| |m(cw)|
fo(w) ≥ 2 no/no/no w NC |w| 5

2
fo(w)|cw|

no/no/yes c
fo(w)+1
w NC (fo(w)+1)|cw| 5

2
fo(w)|cw|

yes/no/no m(cw) NC |m(cw)| |m(cw)|
st(w) ≥ 2 no/yes/yes w cz (st(w)+2)|cw|+2|cz | 5

2
(st(w)|cw|+|cz |)

yes/yes/yes m(cw) cz |m(cw)|+|cz | |m(cw)|+ 5
2
|cz |
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In every case the length bound is obvious using the case and the string lemmas.
In every case the allocation is clearly as large as the length bound, using the fact
that |cu| ≥ |cw| and the range for g(w), except the case st(w) ≥ 2 no/yes/yes. We
prove this case next. Using the definition of stop we get the bound |w| ≤ (st(w) +
2)|cw| + |cz| from Lemma 3.10. This gives a total length increase of no more than
(st(w) + 2)|cw|+ 2|cz|+ 2|cu|, which is no more than the allocation when st(w) ≥ 3.
Now suppose st(w) = 2. Since stopping condition 2 holds, cz > cw. Using the length
bound of Lemma 3.10 with the definitions of stop and conflict we get

|w| ≤ 1

2
((st(w) + 2)|cw|+ |cz|+ (st(w) + 1)|cw|+ |cu|)

≤
(
st(w) +

3

2

)
|cw|+ 1

2
|cz|+ 1

2
|cu|.

Then the total length increase is no more than(
st(w) +

3

2

)
|cw|+ 3

2
|cz|+ 5

2
|cu|,

which is no more than the allocation since |cz| ≥ |cw|, |cu| ≥ |cw|, and st(w) = 2.
3. Suppose cw is colored by Rule 3. In this case g(w) is set by sq or st, z is

defined, cz > cw, cz is colored in the round, and emax(w, z) is added to W . If g(w) is
set by st, then st(w) ≥ 3. If g(w) is set by sq, then sq(w) ≥ 2 with equality only if
cz ∈ R1, in which case cw is unmatched. The table handles all the possibilities. The
bound and allocation arguments follow as before.

4. Suppose cw is colored by Rule 4. In this case cw is yellow, w = rep(cw), and
g(w) > 3

2 subject to the integrality constraints of Lemma 4.12. By Lemma 4.13, if
g(w) is set by sq, then SQ(w) is colored in an earlier round so the ∗/yes/∗ cases do
not apply. Furthermore, by our choice of representative, if g(w) is set by st(w), then
ST (w) > w and is colored during the round. The analysis follows as described for the
previous rules except for the no/no/no cases; these follow from Lemma 4.14. Finally,
for every v that is defined, |m(cv)| = 2|cv| ≤ 5

2 |cv|.
Proof of Lemma 5.4. Let c be a cycle of CS∗ and let ĉ be the 1-expansion of c in

CL. In each of the first three cases of Definition 4.19, the allocation in Table 1 satisfies
the following:

alloc(c) =
5

2
(|ĉ| − 1c∈R · |c|),

where 1c∈R is 1 if c ∈ R and 0 otherwise. Thus it suffices to show that for matched
pairs (c1, c2) ∈M∗,∑

i=1,2

|m(ci)| − 1

2
· 1c∈R2 · |c| ≤

5

2

∑
i=1,2

(|ĉi| − 1ci∈R2 · |ci|).

Note that by construction of G(VS) if c ∈ R1, then c is unmatched.
Let c1 and c2 be a matched pair in M∗. Assume for i = 1, 2 that xi = rep(ci), ĉi is

the 1-expansion of ci in CL, êi is the expansion of erep(ci) in ĉi, and ki = ov(êi). Also
assume that c1 is the max-overlap cycle of the pair. Next we assemble the following
facts about these cycles:

1. k2 > |c2|: This was argued in the proof of invariant 1 for Lemma 5.1 when
cw is red, but the proof doesn’t rely on the coloring.
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2. ovk1
(x1, x1) is periodic in [δx1

]: This also was in the proof cited above.
3. k1 ≤ |c1|+ |c2|: This follows from the previous fact by Lemma 2.10.
4. If VS(x1) is nonintegral, then k1 < |c1|. This holds by Corollary 3.8 and

Lemma 4.6.
5. k2 ≤ k1: This holds by Lemma 3.3.
6. If c2 is red, then |ĉ2| = `|c2| for some ` ≥ 2: This holds by Lemma 4.18.

7. ĉ1 = c
VS(x1)
x1 : This holds by Definition 4.19.

We now consider the four possible constructions in Table 3.
1. c1 is yellow and 3

2 < VS(x1) < 2: In this case 1c1∈R2 = 0, m(ci) = xi, and by
points 4 and 5 above |xi| ≤ |ĉi|+ |c1|. These facts give the first inequality below. By
this case and point 7 above, 3

2 |c1| < |ĉ1| < 2|c1|, and by point 6 |ĉ2| − 1c2∈R2
· |c2| =

k|c2| for some k ≥ 1. These facts yield the second inequality, where we again use
1c1∈R2

= 0:

|m(c1)|+ |m(c2)| − 1
2 · 1c2∈R2 · |c2| = |x1|+ |x2| − 1

2 · 1c2∈R2 · |c2|
≤ |ĉ1|+ |ĉ2|+ 2|c1| − 1

2 · 1c2∈R2
· |c2|

≤ 5
2

∑
i=1,2(|ĉi| − 1ci∈Ri · |ci|).

2. c1 is yellow and VS(x1) ≥ 2: In this case 1c1∈R2
= 0, m(c1) = c

VS(x1)+2
x1 ,

and m(c2) = x2, so by point 7 we get the equality below. By points 3 and 5 above,
|x2| ≤ |ĉ2|+ |c1|+ |c2| so we get the following first inequality. By this case and point 7
above |ĉ1| ≥ 2|c1|, and by point 6 |ĉ2| − 1c2∈R2 · |c2| = k|c2| for some k ≥ 1. These
facts yield the second inequality, where we again use 1c1∈R2

= 0:

|m(c1)|+ |m(c2)| − 1
2 · 1c2∈R2

· |c2| = |ĉ1|+ 2|c1|+ |x2| − 1
2 · 1c2∈R2

· |c2|
≤ |ĉ1|+ 3|c2|+ |ĉ2|+ |c2| − 1

2 · 1c2∈R2
· |c2|

≤ 5
2

∑
i=1,2(|ĉi| − 1ci∈Ri · |ci|).

3. c1 is red and 2 < VS(x1) < 3: In this case 1c1∈R2
= 1, m(c1) = c

VS(x1)+
|c2|
|c1|

x1 ,
and m(c2) = x2. These facts plus point 7 yield the equality below. By points 4 and 5
|x2| ≤ |ĉ2|+ |c1|, giving us the first inequality below. By point 7, 2|c1| ≤ |ĉ1| ≤ 3|c1|,
and by point 6, |ĉ2|−1c2∈R2 · |c2| = k|c2| for some k ≥ 1. These facts yield the second
inequality:

|m(c1)| − 1
2 |c1|+ |m(c2)| − 1

2 · 1c2∈R2
· |c2| = |ĉ1|+ |c2| − 1

2 |c1|+ |x2| − 1
2 · 1c2∈R2

· |c2|
≤ |ĉ1|+ 1

2 |c1|+ |ĉ2|+ |c2| − 1
2 · 1c2∈R2

· |c2|
≤ 5

2

∑
i=1,2(|ĉi| − 1ci∈Ri · |ci|).

4. c1 is red and VS(x1) ≥ 3: In this case 1c1∈R2
= 1, m(c1) = c

VS(x1)+1
x1 , and

m(c2) = x2. These facts plus point 7 yield the equality below. By points 3 and 5
|x2| ≤ |ĉ2| + |c1| + |c2|, giving us the first inequality below. By point 7, |ĉ1| ≥ 3|c1|,
and by point 6, |ĉ2|−1c2∈R2

· |c2| = k|c2| for some k ≥ 1. These facts yield the second
inequality:

|m(c1)| − 1
2 |c1|+ |m(c2)| − 1

2 · 1c2∈R2
· |c2| = |ĉ1|+ 1

2 |c1|+ |x2| − 1
2 · 1c2∈R2

· |c2|
≤ |ĉ1|+ 3

2 |c1|+ |ĉ2|+ |c2| − 1
2 · 1c2∈R2

· |c2|
≤ 5

2

∑
i=1,2(|ĉi| − 1ci∈Ri · |ci|).

To prove Lemma 6.4 we need the following lemma and corollaries.
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Lemma A.1. If c is a cycle of CS∗ such that dc ≥ 3, then for any vertex s of c,
[δs] = [c].

Proof. Suppose [δs] 6= [c]. By definition, δs is irreducible. By Lemma 2.10, every
α ∈ [c] is irreducible. Furthermore, s is periodic in [δs] and [c] so, using Lemma 2.5,
|s| < |δs| + |c|. Let x be the open of c such that xfirst = s. Then |x| < |s| + |c| <
|δs|+ 2|c|. Since s is periodic in [c], |δs| < |c|. Thus |x| < 3|c| and dc < 3.

Corollary A.2. Let c be a cycle in CS∗ and let ĉ be a cycle of GS that is uniform
for c. If dc ≥ 3, then |ĉ| ≥ |c|.

Proof. This follows from the fact that any cycle including a vertex s must have
length at least |δs|.

The length of a path in GS is the sum of the edge lengths of the path.

Corollary A.3. Let c be a cycle in C∗ containing an edge 〈s, t〉, s 6= t. Let p
be any simple path in GS from t to s. If dc ≥ 3, then |p| ≥ |c| − |pref (s, t)|.

Proof. Consider the tight cycle on the vertices s and t; this cycle has length
|pref (s, t)|+ |pref (t, s)|. By the previous corollary the length of this cycle is at least
|c|. Thus |pref (t, s)| ≥ |c| − |pref (s, t)|. The tight edges of GS satisfy the triangle
inequality so any path from t to s has length at least |c| − |pref (s, t)|.

Proof of Lemma 6.4. Let c be a cycle of CS∗ such that dc ≥ 3. Since Cfinal is
uniform for c and C0 is not, there is some smallest i > 0 such that Ci is uniform for
c. Steps (i), (iii), and (iv) cannot create a uniform cycle, so it must be the case that
Ci = X̃ (Ci−1, e) for some edge e in GS . Since Ci−1 is not uniform for c, some vertex
s of c is in a mixed cycle in Ci−1. Furthermore, an edge exchange can increase the
number of cycles uniform for some c by at most 1. Thus if i = 1, by our assumptions
on C0, c is represented in C0 and marked in the first step. Suppose i > 1. Then Ci−1

is produced during the previous round. By step (iii) we can assume that Ci−1 does
not contain any cycles uniform for c. Thus Ci contains exactly one cycle uniform for
c. It must be the case that the vertices of c comprise a path in a mixed cycle of Ci−1.
By step (iv) c is represented in the mixed cycle. Thus c is marked in step (i) of the
current round.

Let c be a cycle of CS∗ such that dc < 3. Suppose that c ∈ Cfinal. As argued above

there are covers Ci−1 and Ci, where Ci is uniform for c, Ci−1 is not, and Ci = X̃ (Ci−1, e)
for some e of GS . By construction, no subsequent steps modify the cycles uniform
for c, so since c ∈ Cfinal, c ∈ Ci. Then it is easy to see that the edge exchange must
replace a mixed cycle in Ci−1 by two cycles, one of which is c. However, it must be
the case that c is represented in the mixed cycle in Ci−1 and thus is marked in step
(i).

Now suppose that c 6∈ Cfinal. Then Cfinal includes cycles ĉ1, . . . , ĉk that are
uniform for c and partition its vertices. Suppose (k = 1 and) ĉ1 is a 1-expansion cqx
of c. If q is nonintegral, then by Corollary 3.8 q ≥ sh(x). Now suppose q is integral.
Since cqx 6= c, by Corollary 3.8, q ≥ 2. Since dc < 3, there is some open y of c such
that |y| < 3|c| and so sh(y) ≤ 2.

If the above case does not hold, we can perform edge exchanges based on the edges
of c (in order by increasing overlap) until we reach some final exchange producing a
1-expansion of c. If this 1-expansion is different from c, the proof follows as above.
Otherwise c is produced by an edge exchange X̃ ({c̃1, c̃2}, e), where c̃1 and c̃2 partition
the vertices of c, |c̃1| + |c̃2| = |c|, and e = 〈s, t〉 for some s in c̃1 and t in c̃2. If
[c̃1] = [c̃2], then every vertex in c is periodic in [c̃1] and there is a cycle on these
vertices with length |c̃1|; this contradicts the optimality of CS∗. Thus [c̃1] 6= [c̃2].
Then by Corollary 2.6 ov(e) < |c̃1|+ |c̃2| = |c|. The edge e is ex for some x ∈ OP(c)
and |x| = |c|+ ov(e) < 2|c| so sh(x) = 1.
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Abstract. We investigate hierarchical properties and logspace reductions of languages recog-
nized by logspace probabilistic Turing machines, Arthur–Merlin games, and games against nature
with logspace probabilistic verifiers. Each logspace complexity class is decomposed into a hierarchy
based on corresponding two-way multihead finite-state automata and we (eventually) prove the sepa-
ration of the hierarchy levels (even for languages over a single-letter alphabet); furthermore, we show
efficient reductions of each logspace complexity class to, or between, low levels of its corresponding
hierarchy.

We find probabilistic and probabilistic-plus-nondeterministic variants of Savitch’s maze threading
problem which are logspace complete for PL (the class of languages recognized by logspace proba-
bilistic Turing machines) and, respectively, P (the class of languages recognized by polynomial-time
deterministic Turing machines), and which can be recognized by one-way non-sensing two-head (or
one-way one-head one-counter) finite-state automata with probabilistic and both probabilistic and
nondeterministic states, respectively.

Key words. multihead finite automata, heads hierarchy, probabilistic computation, probabilis-
tic Turing machines, Arthur–Merlin games, games against nature, logspace reductions
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1. Introduction. Deterministic and nondeterministic multihead finite(-state)
automata were studied primarily in the 1970s. Several results were published, includ-
ing characterizations of hierarchies of multihead finite automata, their connections
with logspace Turing machines, and transformations of languages recognized by one
type of devices to languages recognized by the same or different types of devices
[16, 18, 44, 30, 39, 40, 46, 31]. More specifically, some of these results show that the
classes recognized by deterministic and nondeterministic logspace Turing machines
(i.e., L and NL, respectively) can be represented as proper hierarchies defined by
deterministic and, respectively, nondeterministic two-way multihead finite automata
[30, 31]. Other results provide variants of Savitch’s maze threading problem that are
logspace complete for NL and can be solved by simple nondeterministic automata
(more exactly, by one-way non-sensing two-head or one-way one-head one-counter
nondeterministic finite automata [44]). The corresponding relations hold for alternat-
ing computation as well [24]. In the probabilistic settings only some of the analogous
results have been reported so far. All that is currently known are characterizations
of logspace probabilistic complexity classes in terms of hierarchies defined by the cor-
responding two-way multihead finite automata and separations of head hierarchies
for two-way multihead unbounded-error and one-sided-error probabilistic finite au-
tomata [29].
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One goal of this paper is to further investigate properties of logspace probabilis-
tic Turing machines, focusing on their connection with multihead one-way proba-
bilistic finite automata. We show that the languages recognized by polynomial-time
logarithmic-space (bounded-error and one-sided-error) probabilistic Turing machines
are logspace reducible to languages recognized by the corresponding one-way non-
sensing four-head probabilistic finite automata that move at least one head at each
computation step. In the setting of unbounded-error probabilistic computation we
obtain the even stronger reductions to languages recognized by one-way non-sensing
two-head probabilistic finite automata (or one-way one-head one-counter probabilis-
tic finite automata) that move at least one head at each computation step. (See
section 4.) These last reductions parallel the reductions of Sudborough for nondeter-
ministic computation [44]. They imply immediately Jung’s well-known result which
states the equivalence, with respect to the language recognition, of logspace proba-
bilistic Turing machines and polynomial-time logspace probabilistic Turing machines
[20]. As a consequence of these reductions it follows that PL (the class of languages
recognized by logspace probabilistic Turing machines) can be characterized as the
class of languages logspace reducible to languages recognized by these simple one-way
probabilistic finite-state automata. These reductions are quite surprising to hold in
the setting of probabilistic computation. For instance, it is known that several versions
of matrix inversion are logspace complete for PL [2, 20, 28]. The above-mentioned
reductions show that PL is efficiently reducible to classes of languages recognized by
one-way one-head one-counter or one-way non-sensing two-head probabilistic finite
automata although these devices do not seem to have enough computational power
to invert matrices.

Another goal of this paper is to generalize these separations and reductions ob-
tained for traditional probabilistic devices to the settings of Arthur–Merlin games
(AM-games) and games against nature having as verifiers logspace probabilistic Tur-
ing machines or two-way and one-way multihead probabilistic finite automata (see
sections 3 and 4). We obtain that P (the class of languages recognized by polynomial-
time deterministic Turing machines) is logspace reducible to the class of languages
recognized by one-way one-head one-counter or one-way non-sensing two-head finite
automata with both probabilistic and nondeterministic states.

The structure of the paper is as follows.

In section 2 we give some definitions and notations, and we state the new results
in terms of these notations. Table 2.1 contains a summary of these results and shows
some of the remaining open problems.

In section 3 we notice the equalities between the classes of languages recognized
by AM-games (and games against nature) with logspace probabilistic Turing machines
as verifiers and the classes of languages recognized by the same games with two-way
multihead probabilistic finite-state verifiers. Next we show that for several AM-games
(and games against nature) with two-way non-sensing multihead probabilistic finite-
state verifiers, some of the corresponding head hierarchies are proper.

In section 4 we present efficient reductions of logspace probabilistic complexity
classes to classes of languages recognized by simple probabilistic finite automata. Also,
we generalize these results and show similar reductions in the settings of AM-games
and games against nature. To prove some of these results, we design probabilistic and,
respectively, probabilistic-plus-nondeterministic variants of Savitch’s maze threading
problem that are logspace complete for the corresponding logspace complexity classes.
These problems can be solved by one-way non-sensing two-head or one-way one-
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Table 2.1
Hierarchy properties of logspace complexity classes.

No. of heads of
1-way automata

Head-hierarchy Properness of recognizing logspace
characterization the hierarchy complete problems

L [16] [30, 31] N/A
NL [16] [30, 31] 2 [44]
AL [24] [24] 2 [24]

PL [29] [29] 2 [Theorem 4.4]
PLpoly [29] [29] 2 [Theorem 4.4]
BPL [29] not known not known

BPLpoly [29] not known 4 [Theorem 4.3]
RL [29] [29] not known

RLpoly [29] not known 4 [Theorem 4.3]

AML [Theorem 1] [Theorems 3.2, 3.7] not known
AMLpoly [Theorem 1] not known 4 [Theorem 4.9]
UAML [Theorem 1] [Theorems 3.2, 3.7] 2 [Theorem 4.9]

UAMLpoly [Theorem 1] [Theorems 3.2, 3.7] 2 [Theorem 4.9]

head one-counter finite-state automata with probabilistic and both probabilistic and
nondeterministic states, respectively.

2. Background. This section presents the definitions and notations used in this
article. In its final part we summarize our results in terms of these notations. Also
see Table 2.1.

A two-way (non-sensing)1 k-head probabilistic finite (-state) automaton is a prob-
abilistic finite automaton having k heads on the input string, which is delimited by
two distinct endmarkers. A configuration of the probabilistic automaton is defined by
its state and the positions of the k heads on the input string. From each configuration
the automaton executes transitions to next configurations with probabilities from the
set {0, 1/2, 1}.2 The transition probability to another configuration depends on the
present state and the symbols scanned by the k heads (and not on the fact that some
heads do or do not have the same position). The acceptance probability of a proba-
bilistic finite automaton for an input w is the probability of eventually reaching the
accepting states when processing w. The automaton accepts the input string if this
probability is larger than 1/2.

Formally, the definition for two-way (non-sensing) multihead probabilistic au-
tomata is as follows.

Definition 2.1. A two-way (non-sensing) k-head probabilistic finite automaton
is a structure

S = (Q,Σ, δ, q0, Qacc, Qrej),

where
• Q is a finite, nonempty set of states;
• q0 ∈ Q is the initial state;

1All the multihead finite automata used in this paper have non-sensing heads, i.e., heads that
do not detect each other’s position. Sometimes we drop the word “non-sensing,” but this should not
create misunderstanding.

2See [29] for results concerning probabilistic automata with transition probabilities from more
general sets.
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• Qacc and Qrej are disjoint sets of accepting and rejecting states (Qacc, Qrej ⊂
Q);
• Σ is a nonempty input alphabet that does not contain the symbols (left and

right endmarkers) 6 c and $;
• δ : Q× (Σ ∪ {6 c, $})k ×Q× ({−1, 0, 1})k → {0, 1/2, 1} is the transition func-

tion that, depending on the current state and the symbols scanned by the k
heads, may change the automaton state and increment, decrement, or leave
unchanged its head positions with probabilities from the set {0, 1/2, 1}. More
precisely, the meaning of δ(q, s1, . . . , sk, q

′, d1, . . . , dk) is as follows: if the
automaton is in state q scanning the symbols s1, . . . , sk, then with probabil-
ity δ(q, s1, . . . , sk, q

′, d1, . . . , dk) it enters state q′ and moves each input head
i ∈ {1, . . . , k} one symbol in direction di (left if di = −1, right if di = 1,
stationary if di = 0). There are the following restrictions on δ:

– ∀(q, s1, . . . , sk) ∈ Q× (Σ ∪ {6 c, $})k, it holds that

∑
q′,d1,...,dk

δ(q, s1, . . . , sk, q
′, d1, . . . , dk) = 1

(i.e., δ is a probability function).
– δ(q, s1, . . . , sj−1, 6 c, sj+1, . . . , sk, q

′, d1, . . . , dj−1,−1, dj+1, . . . , dk) = 0 (i.e.,
no head can move to the left of the left endmarker 6 c) and δ(q, s1, . . . , sj−1,
$, sj+1, . . . , sk, q

′, d1, . . . , dj−1, 1, dj+1, . . . , dk) = 0 (i.e., no head can
move to the right of the right endmarker $).

Without loss of generality, we can assume that the accepting (Qacc) and rejecting
(Qrej) states are halting states (i.e., the automaton stops when it enters them). For an
input string x, the acceptance probability of a k-head probabilistic finite automaton
is the probability to reach the accepting state when processing x. The input x is
accepted, if its acceptance probability is larger than 1/2.

The definition of probabilistic Turing machine is standard [13].

We recall a classification of probabilistic automata depending on the type of
acceptance. If there is an interval around 1/2 such that for every input string the
acceptance probability never falls inside, then the automaton is called (two-sided)
bounded-error. If this is not the case, it is called unbounded-error. If for every input
string the acceptance probability is either 0 or above 1/2, the automaton is called
one-sided error (or randomized).

Several equivalent definitions of AM-games or interactive proof systems with pub-
lic coins have been published in the literature [1, 15]. See [4] for an extensive survey.
For our purpose, the most appropriate is the definition based on automata with guess
(i.e., nondeterministic) states and random (i.e., probabilistic) states [15]. Such an
automaton A accepts an input string x if there is a strategy such that if the non-
deterministic transitions are decided according to this strategy, then the acceptance
probability of x by A is larger than 1−ε, for some ε < 1/2. A rejects x if for any strat-
egy (used to “decide” the nondeterministic transitions) the acceptance probability of x
by A is less than 1/2. If ε = 1/2, we obtain an unbounded-error variant of AM-games
(UAM-games) called games against nature [33]. In this paper, we focus on cases where
the machine A is a multihead finite automaton or a logspace Turing machine with
both nondeterministic and probabilistic states that recognizes with bounded-error or
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unbounded-error.3 We call these devices either probabilistic-plus-nondeterministic
automata or automata with both probabilistic and nondeterministic states.

The formal definition of a two-way multihead finite automaton with both nonde-
terministic and probabilistic states and of its (nondeterministic) strategy is a straight-
forward generalization of the definition for the corresponding two-way one-head finite
automaton [6].

Definition 2.2. A two-way (non-sensing) k-head finite automaton with nonde-
terministic and probabilistic states is a structure S = (Q,Σ, δ, q0, N,R,Qacc, Qrej),
where

• Q is a finite, nonempty set of states partitioned into the (disjoint) sets N,R,
Qacc, Qrej;
• Σ is the input alphabet and does not contain the symbols (left and right end-

markers) 6 c and $;
• q0 ∈ Q is the initial state;
• N is the subset of nondeterministic states;
• R is the subset of probabilistic states;
• Qacc and Qrej are the sets of accepting and rejecting states;
• δ : Q×(Σ∪{6 c, $})k×Q×({−1, 0, 1})k → {0, 1/2, 1} is the transition function;

the meaning of δ(q, s1, . . . , sk, q
′, d1, . . . , dk) is as follows: if q ∈ R and the

automaton is in state q reading the symbols s1, . . . , sk, then with probability
δ(q, s1, . . . , sk, q

′, d1, . . . , dk) the automaton enters state q′ and moves each
head j ∈ {1, . . . , k} one symbol in direction dj (left if dj = −1, right if
dj = 1, stationary if dj = 0); if the current state is q ∈ N and the symbols
read are s1, . . . , sk, then the automaton nondeterministically chooses some
q′ and d1, . . . , dk such that δ(q, s1, . . . , sk, q

′, d1, . . . , dk) = 1, enters state q′,
and moves each head j ∈ {1, . . . , k} one symbol in direction dj. There are the
following restrictions on δ:

– ∀q ∈ R,∀(s1, . . . , sk) ∈ (Σ ∪ {6 c, $})k, it holds that∑
q′,d1,...,dk

δ(q, s1, . . . , sk, q
′, d1, . . . , dk) = 1

(i.e., δ is a transition probability function);
– ∀q ∈ N, ∀(s1, . . . , sk) ∈ (Σ∪{6 c, $})k, ∀(q′, d1, . . . , dk) ∈ Q×(Σ∪{6 c, $})k

it holds that δ(q, s1, . . . , sk, q
′, d1, . . . , dk) ∈ {0, 1} (i.e., δ is a nondeter-

ministic transition);
– δ(q, s1, . . . , sj−1, 6 c, sj+1, . . . , sk, q

′, d1, . . . , dj−1,−1, dj+1, . . . , dk) = 0 (i.e.,
no head can move to the left of the left endmarker 6 c) and δ(q, s1, . . . , sj−1,
$, sj+1, . . . , sk, q

′, d1, . . . , dj−1, 1, dj+1, . . . , dk) = 0 (i.e., no head can
move to the right of the right endmarker $).

Definition 2.3. For any input string x = x0x1 . . . xn+1 (where x0 = 6 c and
xn+1 = $ are the endmarkers) a (nondeterministic) strategy on x is a function

Sx : N × ({0, . . . , n+ 1})k → Q× ({−1, 0, 1})k

such that δ(q, s1, . . . , . . . , sk, q
′, d1, . . . , dk) = 1 whenever Sx(q, p1, . . . , pk) =

(q′, d1, . . . , dk) and xpl = sl,∀l ∈ {1, . . . , k}. (Discussions on other possible defini-
tions for (nondeterministic) strategy and their equivalence can be found in [3].)

3Using a different terminology, we investigate properties of interactive proofs with public coins
and multihead probabilistic finite automata or logspace probabilistic Turing machines as verifiers
that recognize with bounded-error or unbounded-error.
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We recall that an automaton A with nondeterministic and probabilistic states ac-
cepts an input string x if there is a strategy by which the nondeterministic transitions
are decided such that the acceptance probability of x by A is larger than 1− ε, where
ε < 1/2 for AM-games and ε = 1/2 for UAM-games. A rejects x if for any strategy
(used to “decide” the nondeterministic transitions) the acceptance probability of x
by A is less than 1/2. Without loss of generality, we can assume that Qacc and Qrej
contain only halting states.

A multihead automaton has sweeping heads if it may reverse the direction of
motion of any head only when that head is scanning the right or left endmarker of
the input string. A multihead automaton has non-sensing heads if they cannot detect
each other’s position. We recall that all the multihead automata used in this article
have non-sensing heads and that we sometimes omit the word “non-sensing.”

Our notations are as follows:

• 2pfa(k) and 2bpfa(k) (1pfa(k) and 1bpfa(k)) denote two-way (one-way) k-
head unbounded-error and respectively bounded-error probabilistic finite au-
tomata.
• 2PFA(k), 2BPFA(k), and 2RPFA(k) (1PFA(k), 1BPFA(k), and 1RPFA(k))

denote the classes of languages recognized by the corresponding two-way (one-
way) unbounded-error, bounded-error, and one-sided-error probabilistic finite
automata, respectively.
• 1PCM(1) is the class of languages recognized by one-way one-head one-

counter unbounded-error probabilistic finite automata.
• 2DFA(k) and 2NFA(k) denote the classes of languages recognized by two-

way k-head deterministic and nondeterministic finite automata, respectively.
• DSPACE(S) is the class of languages recognized by O(S)-space-bounded

deterministic Turing machines.
• DTIME(t) is the class of languages recognized by O(t)-time bounded deter-

ministic Turing machines.
• L, NL, and AL are the classes of languages recognized by logspace determin-

istic, nondeterministic, and alternating Turing machines, respectively.
• PL, BPL, and RL are the classes of languages recognized by unbounded-

error, bounded-error, and one-sided-error probabilistic Turing machines, re-
spectively.
• 2pnfa(k) denotes two-way k-head (unbounded-error) finite automata with

both probabilistic and nondeterministic states (or, equivalently, UAM-games
with a two-way k-head probabilistic finite automaton as verifier).

• (P+N)TM denotes Turing machines with both probabilistic and nondeter-
ministic states.
• AM(2pfa(k)) and AM(1pfa(k)) (UAM(2pfa(k)) and UAM(1pfa(k))) are

the classes of languages recognized by AM-games (UAM-games) with two-
way and one-way k-head probabilistic finite automaton, respectively, as veri-
fier.
• UAM(1pcm(1)) is the class of languages recognized by UAM-games with

one-way one-head one-counter probabilistic finite automaton as verifier.
• AML and UAML denote the classes of languages recognized by AM-games

(UAM-games) with logspace probabilistic Turing machines as verifiers.
• Cpoly is the subclass of languages recognized by the machines that define the

class C but are restricted to work in polynomial time.

• For any complexity class C,
︷︸︸︷
C is the subclass of unary languages defined
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by
︷︸︸︷
C = {L1 |L1 ⊆ {12n | n ∈ N}, L1 ∈ C}.

• ⊂ and $ denote inclusion (possible not proper) and proper inclusion, respec-
tively.
• |x| is the length of the string x.
• N is the set of natural numbers (note that we use N to denote the set of

nondeterministic states of an automaton).
• By probabilistic-plus-nondeterministic automata we mean automata with both

probabilistic and nondeterministic states.

Using the notations introduced above, the results presented in this article are as
follows.

• The “equivalence” between the exact space (as opposed to big “O” only)
of logspace Turing machines with probabilistic and nondeterministic states,
and the number of heads of multihead finite automata with the same kind of
states:
AML =

⋃∞
k=1 AM(2pfa(k)), UAML =

⋃∞
k=1 UAM(2pfa(k)),

AMLpoly =
⋃∞
k=1 AMpoly(2pfa(k)), and

UAMLpoly =
⋃∞
k=1 UAMpoly(2pfa(k)) (Theorem 3.1).

These relations parallel those recently noticed in the setting of probabilistic
computation [29]. The proofs of these decompositions are straightforward
adaptations of the proofs of their corresponding deterministic and nondeter-
ministic results [16].
• For AM-games and UAM-games with two-way multihead probabilistic fi-

nite-state verifiers the head hierarchy is proper (even for languages over a
single-letter alphabet), i.e., for k ≥ 2,
AM(2pfa(k)) $ AM(2pfa(k+ 1)), UAM(2pfa(k)) $ UAM(2pfa(k+ 1)),
UAMpoly(2pfa(k)) $ UAMpoly(2pfa(k + 1)) (Theorems 3.2 and 3.7).
The proofs of these separations are less straightforward adaptations of their
deterministic and nondeterministic variants obtained by Monien [30, 31]. Sim-
ilar separations hold for multihead unbounded-error and one-sided-error prob-
abilistic finite automata [29].
• Using various techniques, we show logspace reductions (≤log) among proba-

bilistic (probabilistic-plus-nondeterministic) complexity classes, as follows:
– Logspace (bounded-error and one-sided-error) complexity classes are re-

ducible to classes of languages recognized by the corresponding two-way
(non-sensing and sweeping) two-head finite automata:
BPL ≤log 2BPFA(2), BPLpoly ≤log 2BPFApoly(2),
RL ≤log 2RPFA(2), RLpoly ≤log 2RPFApoly(2) (Theorem 4.1), and
P = AML ≤log AM(2pfa(2)) (Theorem 4.9).

– Polynomial-time logspace (bounded-error and one-sided-error) complex-
ity classes are reducible to languages recognized by the corresponding
one-way non-sensing multihead finite automata that additionally move
at least one head at each computation step:
BPLpoly ≤log 1BPFA(4), RLpoly ≤log 1RPFA(4) (Theorem 4.3) and
AMLpoly ≤log AM(1pfa(4)) (Theorem 4.9).

– Logspace unbounded-error complexity classes are reducible to classes
of languages recognized by the corresponding one-way non-sensing two-
head finite automata and one-way one-head one-counter finite automata
that additionally move at least one head at each computation step:
PL ≤log 1PFA(2), PL ≤log 1PCM(1) (Theorem 4.4) and
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P = UAML ≤log UAM(1pfa(2)), P ≤log UAM(1pcm(1)) (Theo-
rem 4.9).
It follows that PL (and P) can be defined as the classes of languages
logspace reducible to languages recognized by one-way two-head or one-
way one-head one-counter finite automata that recognize with unbounded-
error and have probabilistic (probabilistic and nondeterministic, respec-
tively) states.

Some of these results parallel reductions proven by Hartmanis [16] and Sud-
borough [44] for the nondeterministic setting. However, our proofs are more
complex and require a number of innovations.
• To prove the logspace reductions of PL we design probabilistic variants of Sav-

itch’s maze threading problem that are logspace complete for PL, and can be
recognized by simple one-way automata. Surprisingly, these natural variants
have not been noticed so far, despite the lack of natural problems known to
be complete for PL. (Note that several nondeterministic variants of maze
threading problems were already known in the early 1970s.) Similarly, to
prove logspace reductions of P, we present probabilistic-plus-nondeterministic
variants of the maze threading problem that are logspace complete for P.
Each of these complete problems can be recognized by some corresponding
one-way non-sensing two-head or one-way one-head one-counter finite au-
tomata. These one-way machines use a new recognition technique: during
their computation on an input string the automata simulate nondetermin-
istic guesses by “probabilistic guesses” (in a standard way); however, this
method alone may change the acceptance probability of the input string and,
consequently, can change the recognized languages; fortunately, the automata
have an elegant way to compensate for the acceptance probability changes,
using only a small amount of additional randomness.

We conclude this section with some additional comments on the results we have
listed.

• We show that translational methods used in the 1960s and the 1970s for
separating complexity classes [34, 30, 31] can be adapted to the settings
of probabilistic and probabilistic-plus-nondeterministic computations. Here
is a further example of the strength of these methods: Dwork and Stock-
meyer proved that the set of palindromes, i.e., {x ∈ Σ∗|x = xR}, separates
AM(2pfa(1)) from AML = P [8]; we prove that there are entire natural
hierarchies between AM(2pfa(1)) and P, which can be separated even by
languages over a one-letter alphabet.
• Our reductions BPLpoly ≤log 1BPFA(4), RLpoly ≤log 1RPFA(4), and

AMLpoly ≤log AM(1pfa(4)) are somewhat surprising because the reduction
of two-way bounded-error probabilistic computation to one-way probabilis-
tic computation does not naturally preserve the separation from 1/2 of the
error-bound (see [22], for example).
• Our reduction PL ≤log 1PFA(2) is stronger than the well-known result

PL = PLpoly [21]. Note that PL contains several matrix inversion prob-
lems whose solutions seem to require rather complex computations. It is
surprising that these problems can be reduced to languages recognized by
one-way non-sensing two-head or one-way one-head one-counter probabilistic
finite automata, which do not seem to have strong computational capabilities.
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• Using our result P = UAML ≤log UAM(1pfa(2)), we can reason that

P ⊂ DSPACE(logk n)⇔ AM(2pfa(2)) ⊂ DSPACE(logk n)

⇔ UAM(1pfa(2)) ⊂ DSPACE(logk n)

⇔ UAM(1pcm(1)) ⊂ DSPACE(logk n).

This apparent simplification might eventually lead to the possible inclusion
of P in a small-space-bounded complexity class, and to its separation from
PSPACE.

3. Heads hierarchy. This section presents analogues, in the setting of probabil-
istic-plus-nondeterministic computation, of results presented in [29] for probabilistic
computation.

First, we notice the equality of the class of languages recognized by AM-games
and UAM-games with two-way multihead probabilistic finite-state verifiers and the
class of languages recognized by the same games with logspace probabilistic Turing
machines as verifiers. Next, we separate head hierarchies for AM-games and UAM-
games with two-way multihead probabilistic finite-state verifiers.

Theorem 3.1. AMLpoly =
⋃∞
k=1 AMpoly(2pfa(k)),

UAMLpoly =
⋃∞
k=1 UAMpoly(2pfa(k)),

AML =
⋃∞
k=1 AM(2pfa(k)), UAML =

⋃∞
k=1 UAM(2pfa(k)).

Proof. Adapt the proof for the nondeterministic case [16]. See the appendix,
section 6.

In what follows we show separations of head hierarchies. The main result is the
following theorem.

Theorem 3.2. ∀ k ∈ N, k ≥ 2,
AM(2pfa(k)) $ AM(2pfa(k + 1)), UAM(2pfa(k)) $ UAM(2pfa(k + 1)),
UAMpoly(2pfa(k)) $ UAMpoly(2pfa(k + 1)).

This theorem follows trivially from Theorem 3.7, i.e., from its stronger version
over a single-letter alphabet. To prove Theorem 3.7 we follow the same outline as in
Monien’s proof for the deterministic and nondeterministic automata [31]. We prove
first a coarse separation (Theorem 3.3) and then we refine this separation using Lem-
mas 3.4–3.6.

The proofs of Lemmas 3.4–3.6 are only sketched since they are adaptations of
Monien’s proofs in the deterministic and nondeterministic settings. In these proofs
we use languages X ⊆ {12n | n ∈ N} and the family of padding functions

fk : {12n |n ∈ N} → {12n | n ∈ N}defined byfk(12n) = 12kn .

The advantage of using these particular languages is in simplifying the unpadding,
encoding, and decoding procedures. Note that checking whether a string is of the form
12n can be done deterministically with finite control and only two non-sensing heads.
(Repeatedly moving one head twice as fast as the other, in the opposite direction, we
can achieve division of the input string length by 2, 22, 23, etc. Each result of this
division is trivially encoded by the position of one head on the input string.)

We recall that, for every class of languages C,
︷︸︸︷
C denotes the languages of type

X contained in C.

We show only
︷ ︸︸ ︷
AM(2pfa(k)) $

︷ ︸︸ ︷
AM(2pfa(k + 1)) ∀k ≥ 2 since the proofs for

the relations
︷ ︸︸ ︷
UAM(2pfa(k)) $

︷ ︸︸ ︷
UAM(2pfa(k + 1)) and

︷ ︸︸ ︷
UAMpoly(2pfa(k)) $︷ ︸︸ ︷

UAMpoly(2pfa(k + 1)) are similar.
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Theorem 3.3 (coarse separation). For every natural number k,︷ ︸︸ ︷
AM(2pfa(k)) $

︷ ︸︸ ︷
AML .

Proof. We show that ∃α > 0 such that for any k ∈ N it holds AM(2pfa(k)) ⊆
DTIME(nkα). From

︷ ︸︸ ︷
DTIME(nkα) $

︷︸︸︷
P =

︷ ︸︸ ︷
AML, we obtain the coarse separa-

tion.
In what follows we present more details. Let L ∈ AM(2pfa(k)). Deciding

whether a length-n input string x belongs to L is equivalent to solving a linear
programming problem with O(nk) variables. (A detailed proof for the similar case
AML ⊂ P can be found in [3].) Using the result of Khachiyan [23], this can be deter-
ministically done in timeO((nk)α), for some constant α. It follows L ∈ DTIME(nkα).

We obtain AM(2pfa(k)) ⊂ DTIME(nkα). As a corollary, we have
︷ ︸︸ ︷
AM(2pfa(k)) ⊂︷ ︸︸ ︷

DTIME(nkα). To prove
︷ ︸︸ ︷
DTIME(nkα) $

︷︸︸︷
P , we use a universal deterministic

Turing machine that stops its computation after n2kα+1 steps and diagonalizes over
all one-tape deterministic Turing machines that run in time less than n2kα+1. (We
recall that any multitape deterministic Turing machine that runs in time O(nkα) can
be simulated by a one-tape deterministic Turing machine that runs in time O(n2kα).)
The witness language consists of all the strings of the form 12m , where m is a valid
encoding of a one-tape deterministic Turing machine Mm, and 12m is not accepted by
Mm in time (2m)2kα+1.

Lemma 3.4. For all languages X ∈
︷ ︸︸ ︷
AML there is a natural number u such that

fu(X) ∈
︷ ︸︸ ︷
AM(2pfa(3)) .

Proof (sketch). For every language X ∈
︷ ︸︸ ︷
AML we modify the Turing machine

with probabilistic and nondeterministic states (i.e., a (P+N)TM ) that recognizes it
in the following way: The worktape of the new (P+N)TM has four tracks that store
the binary representation of the input string, the position of the input-tape head, the
content of the worktape of the original (P+N)TM, and the position of the worktape
head on the original work tape. (Without loss of generality we suppose that the
original Turing machine has only one head on its worktape.) All this information can
be represented in binary using space c logn, where c is a computable constant. After
the deterministic computation of the binary representation of the input string, the new
(P+N)TM uses only the worktape head in simulating the original (P+N)TM. This new
(P+N)TM can be simulated by a three-counter machine with both probabilistic and
nondeterministic states that uses two counters to encode the worktape contents from
the left and right, respectively, of the work head and another counter to implement
divisions and multiplication by 2 and to increment and decrement of the first two
counters. The only problem is the capacity requirement of the three counters. We
notice that these counters can be simulated by three heads that move on a “stretched”
version of the input. If we choose u = c, then the padding function fu can perform
the needed “stretch” operation.

Lemma 3.5. For all languages X ∈
︷ ︸︸ ︷
AML and for u, v ≥ 1,

fu(X) ∈
︷ ︸︸ ︷
AM(2pfa(v))⇒ X ∈

︷ ︸︸ ︷
AM(2pfa(u · v)) .
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Proof (sketch). A natural number in the interval [0, 2u·n) can be represented
in base 2n by u integers from the interval [0, 2n). Therefore, the position on the
“stretched” input of each head of a 2pnfa(v) that recognizes a language of the form
fu(X) can be encoded by the positions on a normal (“unstretched”) input of u heads
of a 2pnfa(u · v). The simulation is straightforward.

Lemma 3.6. For all languages X ∈
︷ ︸︸ ︷
AML and for u > v > 1,

fu+1(X) ∈
︷ ︸︸ ︷
AM(2pfa(v))⇒ fu(X) ∈

︷ ︸︸ ︷
AM(2pfa(v + 1)) .

Proof (sketch). LetA be a 2pnfa(v) that recognizes fu+1(X). We build a 2pnfa(v+
1) (called B) that recognizes fu(X). In order to simulate A’s moves, B encodes each
head position hi of A (hi ∈ [0, 2(u+1)n+1]) by the position of a corresponding head gi
(gi ∈ [0, 2u·n+1]) and by an additional number xi ∈ [0, 2n) such that hi = gi+xi ·2u·n
(∀ i = 1, . . . , v). All the numbers xi, i = 1, . . . , v are stored as the coefficients of the
representation in base 2n of a number encoded by the (v + 1)st head of V . The
condition u > v guarantees that the (v+ 1)th head of V can represent a number that
is large enough to make that representation possible. The details of this simulation
are similar to those from Monien’s simulation for the deterministic case [31].

Using the relations P = AML = UAML = UAMLpoly [3], we can prove that
Theorem 3.3 and Lemmas 3.4–3.6 hold for UAM-games as well. Furthermore, by
adapting the technique of Monien [31], we obtain the following theorem.

Theorem 3.7. ∀ k ∈ N, k ≥ 2,︷ ︸︸ ︷
AM(2pfa(k)) $

︷ ︸︸ ︷
AM(2pfa(k + 1)),

︷ ︸︸ ︷
UAM(2pfa(k)) $

︷ ︸︸ ︷
UAM(2pfa(k + 1)),︷ ︸︸ ︷

UAMpoly(2pfa(k)) $
︷ ︸︸ ︷
UAMpoly(2pfa(k + 1)).

Proof (sketch). We prove the first claim, the other proofs being similar. Suppose

that for some h ≥ 2 we have
︷ ︸︸ ︷
AM(2pfa(h)) =

︷ ︸︸ ︷
AM(2pfa(h+ 1)). We prove that this

assumption implies
︷ ︸︸ ︷
AM(2pfa(h(h+ 1))) =

︷ ︸︸ ︷
AML, which contradicts Theorem 3.3.

LetH ∈
︷ ︸︸ ︷
AML. There is p ∈ N such that fp(H) ∈

︷ ︸︸ ︷
AM(2pfa(3)) (by Lemma 3.4).

As a result fp(H) ∈
︷ ︸︸ ︷
AM(2pfa(h)). If p > h + 1, then, by Lemma 3.6, fp−1(H) ∈︷ ︸︸ ︷

AM(2pfa(h+ 1)) =
︷ ︸︸ ︷
AM(2pfa(h)), and so on, until p = h + 1. If p ≤ h + 1, by

Lemma 3.5 it follows that H ∈
︷ ︸︸ ︷
AM(2pfa(h(h+ 1))).

4. Efficient reductions of logspace probabilistic complexity classes. In
this section we present logspace reductions of logspace probabilistic (probabilistic-
plus-nondeterministic) complexity classes to classes of languages recognized by one-
way or two-way multihead probabilistic (probabilistic-plus-nondeterministic) automata.
Our simulations could also help to investigate space upper bounds for determinis-
tic space simulation of probabilistic (probabilistic-plus-nondeterministic) automata.
Some of our results parallel reductions obtained in the nondeterministic setting by
Hartmanis [16] and Sudborough [44] and in the alternating setting by King [24].

The main steps in proving our reductions are as follows. The classes of languages
recognized by polynomial-time logspace Turing machines can be recognized by the
corresponding two-way multihead finite-state automata; these languages are logspace
reducible to languages recognized by O(n2)-time-bounded two-way non-sensing and
sweeping two-head finite-state automata that move at least one head at each computa-
tion step, which languages, in turn, are reducible to languages recognized by one-way
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non-sensing multihead finite-state automata that have only a small number of heads
and move at least one head at each computation step.

First we state a general theorem that relates the classes of languages recognized by
logspace Turing machines to the classes of languages recognized by the corresponding
two-way two-head finite-state automata.

Theorem 4.1. For any of the computation modes nondeterministic, probabilis-
tic, alternating, and probabilistic-plus-nondeterministic, the languages recognized by
logspace Turing machines are logspace reducible to languages recognized, with only
a multiplicative polynomial-time loss, by the corresponding two-way two-head non-
sensing and sweeping finite-state automata that move at least one head at each com-
putation step.

Proof. We use the following transformation defined by Monien [30].
Let Σ be an alphabet and ` and a be (pseudo-endmarker) symbols not in Σ. For

any h ≥ 1, the transformation gΣ,h : Σ∗ −→ ((Σ∪{`,a})h)∗ is defined as follows: For
any positive integer m and any length-m string a1 . . . am ∈ Σm,

gΣ,h(a1 . . . am) = b0b1 . . . bnh−1,

where n = m+ 2, a0 =`, an−1 =a, and bj = (ai1 , . . . , aih) for any j = i1 + i2n+ · · ·+
ihn

h−1 with 0 ≤ ip ≤ n− 1, ∀p ∈ {1, . . . , k}.
First we recall that, for all the computation modes mentioned above, a language

L recognized by a logspace Turing machine can be recognized by a corresponding two-
way non-sensing multihead finite automaton with only polynomial-time loss [16, 24,
29]. It remains to show that for any h ∈ N and any language L over Σ∗, recognized
in O(f(n))-time by a two-way non-sensing h-head finite automaton, the language
gΣ,h(L) is recognized in O(f(n)nh)-time by a two-way non-sensing and sweeping two-
head finite automaton that moves at least one head at each computation step.

More precisely, we prove that any two-way non-sensing h-head finite automaton
processing a string a1 . . . am ∈ L can be simulated (with a multiplicative O(nh)-time
loss) by a two-way non-sensing and sweeping two-head finite automaton processing
the string gΣ,h(a1 . . . am).

First, at the beginning of its computation, the simulating automaton checks
whether the length-u input string b0b1 . . . bu−1 is of the form gΣ,k(a1 . . . am). This
check can be done deterministically in O(u) time with two sweeping heads. If the
input string is not of the right form the automaton rejects it. Otherwise it starts the
simulation. Note that in this case u = (m+ 2)h.

In the transformation gΣ,h(a1 . . . am) = b0b1 . . . bnh−1 each symbol bj encodes h
ordered symbols ai1 , . . . , aih . Thus, one head scanning the string b0b1 . . . bnh−1 (called
the “encoding head”) keeps track of the symbols scanned by h heads on the string
a0 . . . an. Incrementing (decrementing) the position of the ith head on the string
a0 . . . an is equivalent to moving the encoding head ni−1 symbols right (left) on the
string b0b1 . . . bnh−1. To perform these operations, the encoding head deterministically
cooperates with an auxiliary head, whose normal position is at one end of the input
string. Note that the auxiliary head can easily count ni−1 steps using the particular
form of gΣ,k(a1 . . . am) and then move to the other end of the input string. The
number of computation steps required to perform such an operation is O(nh). When
the encoding head needs to change direction inside the input string, it switches roles
with the auxiliary head coming from the opposite direction. To perform this operation
the auxiliary head moves first at the end of the input string currently headed toward
by the encoding head. Next both heads move toward each other with the same speed
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until the encoding head reaches the end of the string. At that moment the auxiliary
head is in the position where the encoding head had to change direction and it becomes
the new encoding head.

It follows that both the encoding and auxiliary heads can be non-sensing and
sweeping. Also, we can pad the computation so that at least one head moves at each
computation step. To achieve this, it suffices to move the auxiliary head from one
end of the input string to the other end for each computation step when the encoding
head does not move. The time required to perform this operation is O(nh).

Overall, the running time of the simulation is O(nh) times the running time of
the simulated automaton.

Observation 1. Theorem 4.1 can be stated in the following, more precise, form:
For any h ∈ N and any of the computation modes nondeterministic, probabilistic,
alternating, and probabilistic-plus-nondeterministic, the languages recognized by two-
way non-sensing h-head finite automata are logspace reducible (by a transformation
that converts a length-n string into a length-nh string) to languages recognized, with
only a multiplicative O(nh)-time loss, by the corresponding two-way non-sensing and
sweeping two-head finite-state automata that move at least one head at each compu-
tation step.

For our purpose this form is more useful. These reductions to languages recognized
by automata having at least one moving head at each computation step are used in
the proof of Proposition 4.2.

As in the nondeterministic setting, we can ask whether PL, BPL, RL are
logspace reducible to classes of languages recognized by the corresponding one-way
multihead probabilistic finite automata. Sudborough proved NL ≤log 1NFA(2). Un-
fortunately, his technique uses properties of nondeterministic computation (like par-
ticular forms of some logspace complete problems for NL) that are not known to hold
for probabilistic computation. However, by adding to his proofs ([44], Theorem 1) the
idea to “reuse one-way heads,” we obtain the following proposition.

Proposition 4.2. For any integer k, k > 1, and any language L recognized in
O(nk)-time by a two-way non-sensing and sweeping two-head finite automaton that
moves at least one head at each computation step, there is a logspace transformation
f such that f(L) is recognized by a one-way non-sensing (k+2)-head finite automaton
that moves at least one head at each computation step.

Proof. Without loss of generality we consider a language L recognized in time
less than nk by a two-way (sweeping, non-sensing) two-head finite automaton A, for

some k ∈ N. We chose the transformation f defined by f(x) = u = (axbbxRa)n
k

,
where a, b are symbols not contained in the alphabet of L and xR is the reverse of the
length-n string x.

We show that f(L) is recognized by a one-way (k + 2)-head automaton. First,
notice that the form of each input string u can be deterministically checked using only
k + 1 one-way heads as follows:

• Two one-way heads check whether u is of the form ax1bbx2aax3bbx4aa . . . bx2ma
and whether x1 = x3 = · · · = x2m−1 and x2 = x4 = · · · = x2m. (All they
have to do is to keep a constant distance of |x1| + |x2| + 4 between them.)
The head from behind is also used for the next check.
• Two one-way heads check that |x1| = |x2| (assuming that the previous check

is done this is equivalent to |x2i−1| = |x2i|, ∀ i ∈ {1, · · · ,m}). (In what
follows, n denotes |x1|.) Then, the same heads check whether x2i is the
reverse of x2i+1, ∀ i ∈ {1, · · · ,m}. Assuming that x1 = x3 = · · · = x2m−1
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and x2 = x4 = · · · = x2m, this is equivalent to checking whether the symbol
from position i of x2i is equal to the symbol from position n− i+ 1 of x2i+1,
for i = 1, . . . , n. To do this check, for each i = 1, . . . , n one head scans the
ith symbol from the beginning of the string x2i and compares it with the
ith symbol from the end of the string x2i+1 (which is scanned by the second
head), as follows: When the two heads sweep the substring bx2iaax2i+1b,
they maintain a constant distance between them equal to 2n + 3 − i; when
the left head scans the b before x2i then the right head scans the symbol from
position i from the end of x2i+1; when the right head scans the first b after
x2i+1 then the left head scans the symbol from position i of x2i. Note that
using more finite control it is possible to check the equality of many pairs of
symbols during one sweeping of the substring bx2iaax2i+1b. The front head
used in this check is the same as the head from behind used in the previous
check. After sweeping xi, i = 1, . . . , 2n+ 1 the two heads are available for the
next check.
• k one-way heads can check whether m = nk; each head i counts the number

of blocks xj scanned by head i− 1, for i = 2, . . . , k. The first head just scans
the symbols of each block xj . Two heads become available from the check
described above (in fact after sweeping xi, i = 1, · · · , 2n + 1, but this is an
insignificant inconvenience) so we need only k− 2 extra heads for this check.

If during one of the above checks B discovers that u is not of the right form (i.e.,
u 6∈ f(L)), then B rejects the string. While checking whether u is of the right form
(i.e., whether u = f(x) for some x ∈ L), with two one-way heads scanning u, B tries
to simulate the computation of A on x. Also, the head from behind used for the last
check can be used as one head simulating one of the two heads of A. In fact, the moves
of this head trigger the moves of the heads performing the check of the input string,
so we have to make sure that, in case of acceptance, this head will move up to the end
of the input string. To finish the proof, one other detail remains to be clarified: When
the two one-way heads of B “simulate” the sweeping heads of A, the automaton B
does not know yet whether u = f(x). In fact if u 6= f(x), B does not even simulate
A on x. However, in this case B is going to reject u since it knows whether both
its heads, used to simulate the heads of A, stop moving before reaching the end of
u. In this case, if B has reached a state corresponding to an accepting state of A
and if the check whether u = f(x) is not yet done, B continues the check, by moving
its heads up to the end of the input string and accepting u only if u = f(x). At
this moment it becomes obvious why in Theorem 4.1 we use reductions to languages
recognized by two-way two-head finite automata having at least one moving head at
each computation step.

Using this proposition we obtain the next relations.

Theorem 4.3. BPLpoly ≤log 1BPFA(4), RLpoly ≤log 1RPFA(4).

Proof. We prove only the first relation, since the proof of the second relation
is similar. It is enough to show that BPLpoly is logspace reducible to languages
recognized by (non-sensing, sweeping) 2bpfa(2) that run in subquadratic time and
move at least one head at each computation step. Using the proof of Proposition 4.2
with k = 2 it follows our claim.

For any language L ∈ BPLpoly over the alphabet Σ, we consider a 2bpfa(h) A that
recognizes any length-n input string from L in time less than np, for some constants
p and h. As in the proof of Theorem 4.1, we choose a transformation gΣ,l, where l
is much larger than max(p, h). We denote by B the corresponding (sweeping, non-
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sensing) 2bpfa(2) that recognizes gΣ,l(L). The computation time of B on a length-m
input string w is O(m) if w 6= gΣ,l(x) for any x ∈ Σ∗, and is O(npm) if w = gΣ,l(x)
for some string x of length n. In the latter case |w| = nl and nl is much larger than
np and thus it follows that the computation time of B is o(m2).

Theorem 4.4. PL ≤log 1PFA(2), PL ≤log 1PCM(1).
Proof. The proof follows from Lemmas 4.7 and 4.8 stated after the following

definitions.
We define two languages that are logspace complete for PL and can be recognized

by “simple” probabilistic finite automata, i.e., by one-way two-head and respectively
one-way one-head one-counter unbounded-error probabilistic finite automata. These
languages may be seen as probabilistic versions of the Savitch’s Maze threading prob-
lem [38] and of the languages LP and LQ of Sudborough [44]. There are several
interesting aspects involved in the design of these languages since they have to be
quite complex in order to be complete for PL, but they also have to be relatively
simple in order to be recognized by simple one-way devices.

Definition 4.5. PMT1 is the language over the alphabet {[, ], a,#} containing
the strings of the following form, denoted by (*):

[ap1#am1(1)#am2(1)] · · · [apt#am1(t)#am2(t)]av1# . . .#avh1 ##ar1# . . .#arh2 #

with the properties ∑
(q,i1,...,iq)∈Acc

1/2q−1 >
∑

(r,i1,...,ir)∈Rej
1/2r−1,

where mi : N→ N, i ∈ {1, 2}, and Acc and Rej are sets satisfying the relations

(q, i1, . . . , iq) ∈ Acc ⇔


q, i1, . . . , iq ∈ N,
i1 = 1, i2 > 1, and ik > ik−2 for 3 ≤ k ≤ q,
∀k ∈ {2, . . . , q},∃l ∈ {1, 2} such that pik = ml(ik−1),
∃l ∈ {1, 2} such thatml(iq) ∈ {v1, . . . , vh1

},

(r, i1, . . . , ir) ∈ Rej ⇔


r, i1, . . . , ir ∈ N,
i1 = 1, i2 > 1, and ik > ik−2 for 3 ≤ k ≤ r,
∀k ∈ {2, . . . , r},∃l ∈ {1, 2} such that pik = ml(ik−1),
∃l ∈ {1, 2} such thatml(ir) ∈ {r1, . . . , rh2

}.

For each string of the form (*), p1 is the initial index, vi, i ∈ {1, . . . , h1} and
ri, i ∈ {1, . . . , h2} are the accepting and respectively rejecting indices, and Acc and
Rej are all the “almost one-way” paths that connect the index p1 to the accepting
and respectively rejecting indices. A string belongs to PMT1 if the weight of all the
“almost one-way” paths connecting the initial index to accepting indices is larger than
the weight of all the almost one-way paths connecting the initial index to rejecting
indices.

Definition 4.6. PMT2 is the language over the alphabet {[, ], a,#} defined in a
similar way as PMT1 with the following difference: In the definitions of Acc and Rej
the conditions “ik > ik−2 for 3 ≤ k ≤ q” and “ik > ik−2 for 3 ≤ k ≤ r” are replaced by
“ik > ik−1 for 2 ≤ k ≤ q”and “ik > ik−1 for 2 ≤ k ≤ r,” respectively. In this case, Acc
and Rej contain all the “one-way” paths that connect the index p1 to the accepting
and respectively rejecting indices.
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To summarize, PMT1 and PMT2 are the encodings of the languages recognized
by probabilistic devices whose computation successive steps can be encoded in “almost”
increasing order and increasing order, respectively. Also note that PMT1 and PMT2

are incomparable.
Lemma 4.7. PL ≤log PMT1, PL ≤log PMT2.
Proof. Using Proposition 4.2 and some standard techniques from probabilistic

computation [36], it can be easily shown that each language in PL is logspace re-
ducible to a language recognized by a one-way multihead probabilistic finite automa-
ton which reaches halting (i.e., accepting or rejecting) configurations with probability
1, moves at least one head at every computation step, and from each nonhalting (i.e.,
nonaccepting or nonrejecting) configuration goes with probability 1/2 to the next two
configurations.

Let Σ be a finite alphabet and L ∈ Σ∗ be an arbitrary language recognized by such
a multihead probabilistic finite automaton A. We show how to reduce (in logspace)
L to PMT1 and PMT2.

For each input string x, the configurations of a one-way multihead finite automa-
ton A can be indexed in lexicographically increasing order of input heads positions.
(Note that during the computation of A on x, the sequence of indices assigned to
consecutive configurations is strictly increasing.) For each configuration we build a
“configuration transition block” containing the configuration and its successors. The
logspace transformation f we are looking for maps each string x to the string con-
sisting of the sequence of “configuration transition blocks” (corresponding to all the
configurations of A on x, enumerated in increasing order of their indices) concate-
nated with the sequences of accepting and rejecting configurations of A on x. It can
be checked that f(x) ∈ PMT1 iff f(x) ∈ PMT2 iff A accepts x.

More exactly, the transformation fA : Σ∗ −→ {[, ], a,#}∗ is

fA(x) = [ap1#am1(1)#am2(1)] · · · [apt#am1(t)#am2(t)]av1# . . .#avh1 ##ar1# . . .#arh2 ##,

where
• t is the number of nonhalting configurations of A, h1 and h2 are the number

of accepting and, respectively, rejecting configurations of A;
• p1 is the index of the initial configuration of A;
• ∀ i ∈ [1, t], from the configuration with index pi, A moves with probability

1/2 in one of the configurations with indices m1(i) and m1(i);
• if i < j then pi < pj ;
• vi, i = 1, . . . , h1 and ri, i = 1, . . . , h2 are the indices assigned to the accepting

and rejecting configurations, respectively.
The transformation fA can be easily obtained in logarithmic space by writing all

the configurations of A (enumerated in increasing order of the input heads positions)
followed by their successors. From the fact that during the computation of A on
any input x the sequence of indices assigned to consecutive configurations is strictly
increasing, it follows that in fA(L), all the “paths” connecting the initial index to
the accepting and rejecting indices are one-way. Additionally, using the fact that
the computation of A on x stops with probability 1, it follows that x ∈ L ⇔ “the
probability that A accepts x is larger than the probability that A rejects x”⇔ fA(x) ∈
PMT1 ⇔ fA(x) ∈ PMT2.

Lemma 4.8. PMT1 ∈ 1PFA(2), PMT2 ∈ 1PCM(1).
Proof. We describe an 1pfa(2) B that recognizes PMT1. In parallel to its main

computation (described next), B checks whether the input string u is of the form (*)
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from the definition of PMT1. If not, B rejects u. Consequently, in what follows we
suppose that u is of the form (*).

By block-i we mean [api#am1(i)#am2(i)] if i ≤ t, or av(i−t) if t < i ≤ t + h1, or
ar(i−t−h1) if t+ h1 < i ≤ t+ h1 + h2.

Suppose that B has one head (H1) on the substring aml(i) (inside block i =
[api#am1(i)#am2(i)]) which is the “current” index, and the second head (H2) at the
end of some block j. B “probabilistically guesses” a block q > j moving head H2 right
and tossing a fair coin for each encountered block. q is the first block for which the
outcome of the coin toss is “tails”. If H2 reaches the right end of u without “guessing”
any block, then B accepts and rejects with the same probability 1/2. If H2 guesses a
block q, then B deterministically compares apq with aml(i) moving both heads right
over these substrings.

If pq 6= ml(i) (i.e., the probabilistic guess is wrong), then B accepts and rejects
with probability 1/2.

If pq = ml(i) and q ≤ t (i.e., B has found the block describing the transitions
from the “current index” ml(i)), then B tosses a coin to select the next index. If the
outcome is tails, it moves H2 at the beginning of am1(q). Otherwise, it moves H2 at the
beginning of am2(q). Next, it continues the operation with H1 and H2 interchanged.

If pq = ml(i) and t < q ≤ t+ h1 (or t+ h1 < q ≤ t+ h1 + h2) (i.e., B has found
an accepting (or rejecting) path), then B performs a procedure that “equalizes” the
probability modifications produced by “probabilistic guesses.” It keeps both heads
moving to the right end of u, one head at a time, and it tosses a fair coin each
time when a head encounters a block. If the outcome in all these tosses is all tails,
then B accepts (rejects, respectively) u. If not, B accepts and rejects with the same
probability 1/2. In this way, B makes sure that the probabilities of all accepting
and rejecting almost one-way paths in PMT are multiplied by the same number,
independent of the length and the structure of the path.

Using a similar technique, it follows that each language L ∈ PMT2 can be rec-
ognized by a one-way one-counter probabilistic finite automaton B. In this case, the
second head is replaced by a counter as follows: B stores into the counter the “cur-
rent index” ml(i) and moves its head forward to probabilistically guess the block q
describing the transitions from ml(i). For comparing ml(i) with pq, B decrements the
counter. If pq = ml(i) (so B guessed the right block), then B selects the next index
and stores its value into the counter.

In the settings of AM-games and UAM-games we have the reductions as follows.

Theorem 4.9.
AMLpoly ≤log AM(1pfa(4)), AML ≤log AM(2pfa(2)),
AML ≤log UAM(1pfa(2)), AML ≤log UAM(1pcm(1)).

Proof (sketch). The proof for the first reduction is similar to that of Theo-
rem 4.3. The second reduction is a corollary of Theorem 4.1. The last two re-
ductions follow from AML = P = UAMLpoly [3], UAMLpoly ≤log UAM(1pfa(4))
(similar to the proof of Theorem 4.3), UAM(1pfa(4)) ≤log UAM(1pfa(2)), and
UAM(1pfa(4)) ≤log UAM(1pcm(1)). To prove these last two claims, we design
probabilistic-plus-nondeterministic variants of Savitch’s maze-threading problem
(PNMT1, PNMT2) that are logspace complete for P and can be solved by UAM-
games with simple probabilistic finite-state verifiers. The claims follow from Lemmas
4.12 and 4.13.

Definition 4.10. PNMT1 is a language over the alphabet {[, ], a,#} that has a
structure similar to PMT1 but the “transition” blocks have the form [api#ak#am1(i)
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#am2(i)], where k = 1 if pi is a “nondeterministic” index and k = 2 if pi is a
“probabilistic” index. A nondeterministic strategy for such a string is a function that,
for each nondeterministic index, selects its successor from the two indices from its
transition block. For each nondeterministic strategy K we define the sets Acc(K) and
Rej(K) that contain all almost one-way paths that, according to the strategy, connect
the (initial) index p1 to the accepting and rejecting indices, respectively. Note that,
given a strategy K, Acc(K) and Rej(K) are identical to Acc and, respectively, Rej
from the definition of PMT1. A string is in PNMT1 if there is a strategy K such
that ∑

(q,i1,...,iq)∈Acc(K)

1/2q−1 >
∑

(r,i1,...,ir)∈Rej(K)

1/2r−1.

Definition 4.11. PNMT2 is a language over the alphabet {[, ], a,#} that has
a structure similar to PNMT1, but for each nondeterministic strategy K the sets
Acc(K) and Rej(K) contain all one-way paths connecting the initial index p1 to the
accepting or rejecting indices. For a fixed K, Acc(K) and Rej(K) are similar to the
sets Acc and Rej used in the definition of PMT2.

Lemma 4.12. UAM(1pfa(4)) ≤log PNMT1, UAM(1pfa(4)) ≤log PNMT2.
Proof. The proof is similar to the proof of the probabilistic case (Lemma

4.7).
Lemma 4.13. PNMT1 ∈ UAM(1pfa(2)), PNMT2 ∈ UAM(1pcm(1)).
Proof. The proof is similar to the proof of the probabilistic case (Lemma

4.8).

5. Discussion. In this paper, we obtain results for logspace Turing machines
and multihead finite automata with probabilistic and both probabilistic and nonde-
terministic states that parallel well-known relations proven for their nondeterministic
counterparts [16, 44, 30, 31].

Each logspace complexity class is decomposed into a hierarchy based on corre-
sponding two-way multihead finite automata. To obtain the properness of several
of these head hierarchies, in section 3 we adapt translational methods to the setting
of probabilistic-plus-nondeterministic computation. However, we could not prove the
corresponding separation for AM-games with two-way multihead probabilistic finite-
state verifiers that run in polynomial time. We leave it as an open problem. The main
difficulty is in the fact that the class AMLpoly is not known to be equal to P and,
consequently, it does not seem large enough to solve linear programming problems.
(We used this property of P when we proved the “coarse separation” for AM-games.)

In section 4 we obtain several reductions of logspace complexity classes to the sec-
ond or lower level of their corresponding hierarchies. The most interesting ones are the
reductions of PL (and P) to languages recognized by one-way non-sensing two-head
or one-way one-head one-counter finite automata with probabilistic (probabilistic and
nondeterministic) states. We define probabilistic (probabilistic-plus-nondeterministic)
variants of the Savitch’s maze threading problem that parallel the languages LQ and
LP of Sudborough. Part of our proofs make use of Sudborough’s techniques to prove
the corresponding results for nondeterministic automata. However our proofs are
much more complex for the following reason: Whereas in the setting of nondeter-
ministic computation the number of additional guesses required during a simulation
does not matter, in the probabilistic setting we can use only probabilistic guesses
that unbalance the acceptance probability of the simulating machine; consequently
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we need additional resources and additional ideas to correct this “unbalance.” Using
a simple technique, we show that the one-way automata that recognize our proba-
bilistic versions of the maze threading problem are powerful enough to correct the
unbalance. These reductions give us characterizations for PL (and P) as the classes
of languages logspace reducible to languages recognized by one-way non-sensing two-
head or one-way one-head one-counter finite automata with probabilistic (probabilistic
and nondeterministic) states. In the cases of polynomial-time logspace bounded-error
probabilistic (probabilistic-plus-nondeterministic) computation we have obtained only
reductions to languages recognized by one-way non-sensing four-head finite automata.
Our technique to correct the unbalance successfully applied for unbounded-error com-
putation does not seem to work anymore since it does not preserve the error-bounds.
We ask whether it is possible to do better in these cases.

6. Appendix.
Proof of Theorem 3.1. We show only

⋃∞
k=1 UAM(2pfa(k)) = UAML. The

other proofs are similar.
(⊂). Straightforwardly, the multihead automaton’s head positions may be stored

in O(logn) work space.
(⊃). Let B be a Turing machine with probabilistic and nondeterministic states

with work space less than c(blognc − 1), c ∈ N, and let x be an input string of
length n. Without loss of generality, we consider that B writes only 0’s and 1’s.
We show how to simulate B using a multihead finite automaton with probabilistic
and nondeterministic states (called A). We considered the work tape of B parsed
into c segments of blognc − 1 bits each. A is designed with c + 3 heads scanning
the input tape, of which one head (we call it the “input head”) simulates the input
head of B, c − 1 heads encode the contents of the segments not currently scanned
by B’s work head, 2 heads encode the right-of-head and left-of-head contents of the
segment currently scanned by B’s work head (we call U and V the numbers encoded
by these two heads), and one auxiliary head implements some operations required
by the simulation. In the encoding of any segment (or of the left or right side of the
currently scanned segment) we use the next conventions: the closest bit to the current
position of the work head of B is the least significant bit; the most significant bit of a
tape segment of B is always 1 (so the segments are “ended” by an imaginary bit); the
left and right side of the currently scanned segment do not contain the bit scanned
by the work head of B; the value of the scanned bit is stored in the finite control.
Using this encoding, the event when the work head of B moves from one segment to
another coincides with the moment when U or V get value 1. A move of B’s input
head is simulated by a move of the input head of A; a move of the working head of B
or a modification of the work tape content of B is simulated by modifications of the
types U → bU/2c, U → 2U and U → 2U + 1 (and similar modifications for V ). To
implement these operations we use the auxiliary head. The overall simulation is as
follows. Corresponding to each of the nondeterministic (probabilistic) transitions of
B, A nondeterministically (probabilistically) chooses the transition to simulate (with
the same probability as B does) and then deterministically executes the corresponding
sequence of operations. That sequence of operations is finite, so it can be stored in a
finite control.
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APPROXIMATION ALGORITHMS FOR THE ORTHOGONAL
Z-ORIENTED THREE-DIMENSIONAL PACKING PROBLEM∗
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Abstract. We present approximation algorithms for the orthogonal z-oriented three-dimen-
sional packing problem (TPPz) and analyze their asymptotic performance bound. This problem
consists in packing a list of rectangular boxes L = (b1, b2, . . . , bn) into a rectangular box B =
(l, w,∞), orthogonally and oriented in the z-axis, in such a way that the height of the packing is
minimized. We say that a packing is oriented in the z-axis when the boxes in L are allowed to
be rotated (by ninety degrees) around the z-axis. This problem has some nice applications but
has been less investigated than the well-known variant of it—denoted by TPP (three-dimensional
orthogonal packing problem)—in which rotations of the boxes are not allowed. The problem TPP
can be reduced to TPPz . Given an algorithm for TPPz , we can obtain an algorithm for TPP with the
same asymptotic bound. We present an algorithm for TPPz , called R, and three other algorithms,
called LS, BS, and SS, for special cases of this problem in which the instances are more restricted.
The algorithm LS is for the case in which all boxes in L have square bottoms; BS is for the case
in which the box B has a square bottom, and SS is for the case in which the box B and all boxes
in L have square bottoms. For an algorithm A, we denote by r(A) the asymptotic performance
bound of A. We show that 2.5 ≤ r(R) < 2.67, 2.5 ≤ r(LS) ≤ 2.528, 2.5 ≤ r(BS) ≤ 2.543, and
2.333 ≤ r(SS) ≤ 2.361. The algorithms presented here have the same complexity O(n logn) as the
other known algorithms for these problems, but they have better asymptotic performance bounds.

Key words. approximation algorithms, three-dimensional packing, asymptotic performance
bound

AMS subject classifications. 68Q25, 52C17

PII. S009753979631391X

1. Introduction. We present approximation algorithms for the orthogonal z-
oriented three-dimensional packing problem and show results concerning their asymp-
totic performance bound. All algorithms described here have time complexity
O(n logn), where n is the number of boxes in the input list.

Let L = (b1, b2, . . . , bn) be a list of rectangular boxes bi = (xi, yi, zi), where xi, yi,
and zi is the length, width, and height of bi, respectively. The orthogonal z-oriented
three-dimensional packing problem (TPPz), can be defined as follows. Given a box
B = (l, w,∞) and a list of boxes L = (b1, b2, . . . , bn), find an orthogonal z-oriented
packing of L into B that minimizes the total height. In the next section we define the
concept of orthogonal z-oriented packing. For the moment, let us informally say that
it is an orthogonal packing in which the boxes may be rotated around the z-axis (but
may not be turned down).

A variant of TPPz, in which the boxes may not be rotated around the z-axis,
has been more investigated and is known as the three-dimensional orthogonal packing
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problem [3, 5, 6]. We denote it by TPP. Since all packings to be mentioned here are
orthogonal we omit this term. Here we show that TPP can be reduced to TPPz.
Since the unidimensional packing problem [2] can be reduced to TPP, it follows that
both TPP and TPPz are NP-hard.

If A is an algorithm for TPPz or TPP and L is a list of boxes, then A(L) denotes
the height of the packing generated by algorithm A when applied to a list L; and
OPT(L) denotes the height of an optimal packing of L. We say that α is an asymptotic
performance bound of an algorithm A if there exists a constant β such that for all
lists L, in which all boxes have a height bounded by a constant Z, the following holds:
A(L) ≤ α · OPT(L) + β · Z. Furthermore, if for any small ε and any large M , both
positive, there is an instance L such that A(L) > (α− ε)OPT(L) and OPT(L) > M ,
then we say that α is the asymptotic performance bound of algorithm A. We denote
by r(A) the asymptotic performance bound of A.

In 1990, Li and Cheng [4] presented TPPz as a model for a job scheduling problem
in partitionable mesh connected systems. In this problem a set of jobs J1, J2, . . . , Jn
is to be processed in a partitionable mesh connected system that consists of l × w
processing elements connected as a rectangular mesh. Each job Ji is specified by a
triplet Ji = (xi, yi, ti) indicating that a submesh of size either (xi, yi) or (yi, xi) is
required by job Ji, and ti is its processing time. The objective is to assign the jobs to
the submeshes so as to minimize the total processing time. The algorithm for TPPz

described in [4] has asymptotic performance bound 44
7 .

In [3] Li and Cheng describe several algorithms for TPP: for the general case,
an algorithm whose asymptotic performance bound is 3.25, and for the special case
in which all boxes have square bottom, an algorithm whose asymptotic performance
bound is 2.6875. In 1992, these authors [5] also presented an on-line algorithm with
an asymptotic performance bound that can be made as close to 2.89 as desired.

In [6] we present an algorithm for TPP whose asymptotic performance bound is
less than 2.67. In this paper we describe an algorithm for TPPz that has a similar
asymptotic performance bound. We also describe an algorithm for the special case
of TPPz in which the box B has a square bottom and show that its asymptotic
performance bound is less than 2.528. For the case in which all boxes of L have
square bottoms, we present an algorithm with an asymptotic performance bound less
than 2.543. Moreover, for the case in which all boxes have square bottoms, we present
an algorithm whose asymptotic performance is less than 2.361. The algorithms we
describe here for special instances of TPPz are not straightforward simplifications of
the algorithm for the general case. Each one resulted from a careful analysis of the
instances under consideration.

There is a fundamental aspect in which the algorithms we have developed differ
from those of Li and Cheng. Their strategy is to divide the input list into sublists
and apply appropriate algorithms for each sublist, returning a packing that is a con-
catenation of these individual packings. The strategy we use also makes subdivisions
(different ones) of the input list, but generates not only packings of each sublist but
also those that are obtained by appropriate combinations of different sublists. In fact,
we may say that the key idea behind our algorithms is to consider sublists which can
be combined to generate better packings.

This paper is organized as follows. In section 2 we define some basic concepts,
establish the notation, and discuss relations between TPP and TPPz. In section 3
we describe the main algorithm (for TPPz) and analyze its asymptotic performance
bound. In each of the next three sections we describe an algorithm for a special
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instance of TPPz and prove results on its asymptotic performance bound.

2. Notation and basic results. Given a list of boxes L = (b1, . . . , bn) to be
packed into a box B = (l, w,∞), we assume that each box bi is of the form bi =
(xi, yi, zi), with xi ≤ l and yi ≤ w or xi ≤ w and yi ≤ l (that is, each box bi can
be packed into B in some orientation). We also assume throughout this paper that
the list L consists of boxes with height bounded by a constant Z. In all algorithms
mentioned here, unless otherwise stated, the input box B is assumed to be of the form
B = (l, w,∞).

Given a triplet t = (a, b, c), we also refer to each of its elements a, b, and c as
x(t), y(t), and z(t), respectively. For each box bi = (xi, yi, zi), we denote by ρ(bi)
the box consisting of the triplet (yi, xi, zi) and we set Γ(L) = {(c1, c2, . . . , cn) : ci ∈
{bi, ρ(bi)}}. Given a real function f : C → R and a subset C ′ ⊆ C, we denote by
f(C ′) the sum

∑
e∈C′ f(e).

Although a list is given as an ordered n-tuple of boxes, when the order of the
boxes is irrelevant, the corresponding list may be viewed as a set.

Note that, by using a three-dimensional coordinate system, the box B = (l, w,∞)
can be seen as the region [0, l)×[0, w)×[0,∞); and we may define a z-oriented packing
P of a list of boxes L into B as a mapping P : L′ = (b1, . . . , bn)→ [0, l)×[0, w)×[0,∞),
such that

L′ ∈ Γ(L), Px(bi) + xi ≤ l and Py(bi) + yi ≤ w ,

where P(bi) = (Px(bi),Py(bi),Pz(bi)), i = 1, . . . , n.
Furthermore, if R(bi) is defined as

R(bi) = [Px(bi),Px(bi) + xi)× [Py(bi),Py(bi) + yi)× [Pz(bi),Pz(bi) + zi),

then the following must hold:

R(bi) ∩R(bj) = ∅ ∀i, j, 1 ≤ i 6= j ≤ n .

If in the above definition we replace L′ ∈ Γ(L) by L′ = L, then we have the
concept of oriented packing (note that the condition L′ = L means that the boxes in
L may not be rotated around the z-axis).

In what follows, we may use the term packing to refer to both the z-oriented and
the oriented packing. To be precise, sometimes we should refer to a z-oriented packing
(when some boxes are being rotated), but we simply say packing as this will be clear
from the context. When this may cause confusion we specify which packing we are
referring to.

Given a packing P of L, we denote by H(P) the height of the packing P, i.e.,
H(P) := max{Pz(b) + z(b) : b ∈ L}.

If P1,P2, . . . ,Pv are packings of disjoint lists L1, L2, . . . , Lv, respectively, we de-
fine the concatenation of these packings as a packing P = P1‖P2‖ · · · ‖Pv of L =

L1∪L2∪· · ·∪Lv, where P(b) = (Pxi (b),Pyi (b),
∑i−1
j=1H(Pj)+Pzi (b)), for all b ∈ Li, 1 ≤

i ≤ v. If each list Li = (bi1, b
i
2, . . . , b

i
ni), i = 1, . . . , v, then the concatenation of these

lists, denoted by L1‖L2‖ · · · ‖Lv, is the list (b11, . . . , b
1
n1
, b21, . . . , b

2
n2
, . . . , bv1, . . . , b

v
nv ).

The following notation is used to consider sublists of the list L.
• C := {bi = (xi, yi, zi) : 0 ≤ xi ≤ l, 0 ≤ yi ≤ w, zi > 0};
• C[p′′, p′ ; q′′, q′] := {bi = (xi, yi, zi) : p′′ · l < xi ≤ p′ · l, q′′ · w < yi ≤ q′ · w} ,

for 0 ≤ p′′ < p′ ≤ 1, 0 ≤ q′′ < q′ ≤ 1;
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• Q[p′′, p′ ; q′′, q′] := {bi = (xi, yi, zi) : bi ∈ C[p′′, p′ ; q′′, q′] and xi = yi};
• X := {bi = (xi, yi, zi) : yi < xi} , Y := {bi = (xi, yi, zi) : yi ≥ xi};
• Cm := C[0, 1

m ; 0, 1
m ], Qm := Q[0, 1

m ; 0, 1
m ], for m > 0;

• R1 := C[0, 1
2 ; 0, 1

2 ],R2 := C[0, 1
2 ; 1

2 , 1],R3 := C[ 1
2 , 1 ; 0, 1

2 ],R4 := C[ 1
2 , 1 ; 1

2 , 1].
If R is a set of boxes, then we say that a box b is of type R if b ∈ R or ρ(b) ∈ R.
We denote by S(b) and V (b) the bottom area (i.e., S(b) := x(b)y(b)) and the

volume of the box b, respectively.
A level N in a packing P is a region [0, l)× [0, w)× [Z1, Z2) in which there is a set

L′ of boxes such that for all b ∈ L′, Pz(b) = Z1 and Z2 − Z1 = max{z(b) : b ∈ L′}.
Sometimes we shall consider the level N as a packing of the list L′; we denote by
S(N) the sum

∑
b∈L′ S(b).

A layer (in the x-axis direction) in a level is a region [0, l)× [Y1, Y2)× [Z1, Z2) in
which there is a set L′ of boxes such that, for all b ∈ L′, Py(b) = Y1 and Pz(b) = Z1;
and moreover, Y2 − Y1 = max{y(b) : b ∈ L′} and Z2 − Z1 = max{z(b) : b ∈ L′}.

Relations between TPP and TPPz. One way to solve TPPz is to adapt algo-
rithms for TPP. A simple approach is to generate for each instance L = (b1, b2, . . . , bn)
a new instance φ(L) ∈ Γ(L), such that φ(L) = (d1, d2, . . . , dn), where

di =

{
bi if xi ≤ l and yi ≤ w,
ρ(bi) otherwise,

and then apply an algorithm for TPP on the list φ(L).

For each algorithm A for TPP, let us denote by Â the corresponding algorithm
for TPPz, as described above. That is, for every instance L of TPPz, algorithm Â
applies algorithm A on the list φ(L). It is easy to see that the algorithm Â may not
preserve the asymptotic performance of the original algorithm A.

The next result shows that there is no algorithm Â for TPPz, obtained from an
algorithm A for TPP, as described previously, that has an asymptotic performance
bound less than 3.

Proposition 2.1. If Â is an algorithm for TPPz obtained from an algorithm A
for TPP, as described above, then the asymptotic performance bound of Â is at least
3.

Proof. Let L = (b1, b2, . . . , b3k) and B = (3 + 3ε, 2,∞) be an instance of of TPPz,
where b1 = b2 = · · · = b3k = (2, 1 + ε, 1), k is a positive integer, and ε is a positive
small number.

First, observe that it is possible to pack L in k levels, that is, OPT(L) ≤ k. For
that, initially rotate each box in L and generate a packing putting three boxes per
level. Now it suffices to note that, since L = φ(L), any algorithm A for TPP is such

that Â(L) ≥ 3k (as the algorithm Â packs only one box per level).
Now suppose we have an algorithm A for TPPz. There is a natural way to adapt

it to an algorithm, say A′, for TPP. The question is what can we say about the
performance of A′. The next result gives the answer.

Theorem 2.2. There is a polynomial reduction of TPP to TPPz that preserves
the approximability. Moreover, this reduction also preserves the additive constant β.
That is, if A is a polynomial algorithm for TPPz, such that A(L) ≤ α ·OPT(L)+β ·Z
then there exists a polynomial algorithm A′ for TPP such that A′(L) ≤ α ·OPT′(L)+
β · Z, where OPT′(L) is the height of an optimum oriented packing of L.

Proof. Let L, as described, and B = (l, w,∞) be an instance of TPP. Consider
the following algorithm A′. First scale B to B′ = (l′, w′,∞) and L to L′ in the same
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proportion in such a way that min{x(b) : b ∈ L′} > w; then apply algorithm A to
pack L′ into the box B′, obtaining a packing P ′. Finally, rescale P ′ back, obtaining
a packing of the original list L (into B). It is clear that A′(L) ≤ α · OPT′(L)
+ βZ.

For all algorithms presented in the next sections, we consider, without loss of
generality, that L = φ(L). That is, we may assume that the boxes in L need not be
rotated to fit in the box B.

Before we present the algorithms for TPPz, let us mention some algorithms used
as subroutines and also the related results that are needed.

We denote by NFDH the next fit decreasing height algorithm for TPP, presented
by Li and Cheng in [3]. For the description of this algorithm the reader may refer
to [3] or [6]. This algorithm has two variants: NFDHx and NFDHy. The notation
NFDH is used to refer to any of these variants.

Li and Cheng [3] proved the following result.

Lemma 2.3. If L ⊂ C[ 1
m+1 ,

1
m ; 0, 1

m ], then NFDHy(L) ≤ (m+1
m−1 )V (L)

l·w + Z.
The same result also holds for the algorithm NFDHx when applied to a list L ⊂
C[0, 1

m ; 1
m+1 ,

1
m ].

The following result is more general and gives as a corollary the result above [6].

Lemma 2.4. Let L be an instance of TPP and P be a packing of L consisting
of levels N1, . . . , Nv such that min{z(b) : b ∈ Ni} ≥ max{z(b) : b ∈ Ni+1}, and

S(Ni) ≥ s · l ·w for a given constant s > 0, i = 1, . . . , v−1. Then H(P) ≤ 1
s
V (L)
l·w +Z.

The constant s mentioned in the above lemma is called an area guarantee of the
packing P.

Li and Cheng presented in [4] an algorithm called LL for instances L ⊂ Cm,
m ≥ 3. We write LL(L,m) to indicate that we are applying the algorithm LL to a
list L ⊂ Cm. They proved that the following result holds for this algorithm.

Lemma 2.5. Let L ⊂ C[0, 1
m ; 0, 1

m ] be an instance of TPP and P be a packing

of L obtained by applying the algorithm LL. Then H(P) ≤ ( m
m−2 )V (L)

l·w + Z.

We give an idea of the algorithm LL(L,m), as we need to refer to it in the proof
of Lemma 2.6. Initially, it sorts the boxes in L in nonincreasing order of their height.
Then it divides L into sublists L1, . . . , Lv, such that L = L1‖L2‖ · · · ‖Lv, each sublist
preserving the (nonincreasing) order of the boxes, and

S(Li) ≤
[(
m−2
m

)
+
(

1
m

)2]
lw for i = 1, . . . , v ,

S(Li) + S(first(Li+1)) >
[(
m−2
m

)
+
(

1
m

)2]
lw for i = 1, . . . , v − 1 ,

where first(L′) is the first box in L′. Then, the algorithm LL uses a two-dimensional
packing algorithm to pack each list Li in only one level, say, Ni. The final packing is
the concatenation of each of these levels.

The next lemma is used to prove lower bounds for the asymptotic performance
bound of some algorithms shown here.

Lemma 2.6. Let A be an algorithm for TPP (TPPz) that partitions the input
list L into two sublists L1 ⊂ R4 and L2 ⊂ Qm, m ≥ 3, and generates a packing P =
P1||P2, where P1 is any packing of L1 and P2 is a packing of L2 using the algorithm
LL. Then the asymptotic performance bound r(A) of A is such that r(A) ≥ 7m−8

4m−8 .

Proof. Consider a box B = (1, 1,∞). Let L be a list of boxes, L = L1 ∪ L2, with
L1 ⊂ R4 and L2 ⊂ Qm, m ≥ 3. Let L1 = (b′1, . . . , b

′
N ′) and L2 = (b′′1 , . . . , b

′′
M ·N ′′),
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where

b′i =

(
1

2
+

1

k
,

1

2
+

1

k
, 1

)
and b′′i =

{ (
1
m ,

1
m , 1− (i− 1)ξ

)
if i mod M = 1,(

1
k ,

1
k , 1− (i− 1)ξ

)
otherwise.

Recall that the algorithm LL groups the first boxes with total bottom area no

greater than
(
m−2
m

)
+
(

1
m

)2
. This instance was chosen in such a way that, in the

packing generated by the algorithm LL, each level has M boxes whose bottom area

is
(
m−2
m

)
+
(

1
k

)2
.

Note that the algorithm LL divides the list L2 into N ′′ sublists, each sublist
consisting of one box of the form

(
1
m ,

1
m , 1− (i− 1)ξ

)
and M − 1 boxes of the form(

1
k ,

1
k , 1− (i− 1)ξ

)
.

The strategy is to take the instance L = L1 ∪L2 in such a way that the optimum
packing consists of N ′ levels, each level containing one box of L1 and the remaining
space (in each level) almost filled with boxes of L2. Taking N ′ and k as very large in-
tegers, with N ′′ = d 3

4N
′ m
m−2e and k a multiple of 2m, we may choose M appropriately

so that r(A) can be made as close to 7m−8
4m−8 as desired.

Another algorithm that plays an important role for the algorithms presented
here is the algorithm COMBINE. This algorithm is a slightly modified version of the
algorithm COLUMN presented in [6]. This algorithm generates a partial packing of
a list L. The packing consists of several stacks of boxes, referred to as columns. Each
column is built by putting one box on top of the other, and each column consists only
of boxes of type either T 1 or T 2.

The algorithm COMBINE is called with the parameters (L, T 1, p1, T 2, p2), where
p1 = [p1

1, p
1
2, . . . , p

1
n1

] consists of the positions in the bottom of box B where the
columns of boxes of type T 1 should start and p2 = [p2

1, p
2
2, . . . , p

2
n2

] consists of the
positions in the bottom of box B where the columns of boxes of type T 2 should start.
Each point pij = (xij , y

i
j) represents the x-axis and the y-axis coordinates where the

first box (if any) of each column of the respective type must be packed. Note that
the z-axis coordinate need not be specified since it may always be assumed to be 0
(corresponding to the bottom of box B). Here we are assuming that the positions p1,
p2 and the types T 1, T 2 are chosen in such a way that the defined packing can always
be performed.

We call height of a column the sum of the height of all boxes in that column.
Initially, all n1 + n2 columns are empty, starting at the bottom of box B. At

each iteration, the algorithm chooses a column with the smallest height, say a column
given by the position pij , and packs the next box b of type T i, updating the list L
after each iteration. If there is no such box b, then the algorithm halts returning the
partial packing P of L. We also say that P combines the lists of types T 1 and T 2.

If each box of type T i has bottom area at least si · l ·w, then (n1s1 + n2s2) · l ·w
is called the combined area of the packing generated by the algorithm COMBINE.

The following result about this algorithm holds. The proof is analogous to the
one given in [6] for the algorithm COLUMN.

Lemma 2.7. Let P be the packing of L′ ⊆ L generated by the algorithm COM-
BINE when applied to lists of types T 1 and T 2 and list of positions pi1, p

i
2, . . . , p

i
ni ,

i = 1, 2. If S(b) ≥ si · l · w for all boxes b in T i (i = 1, 2), then

H(P) ≤ 1

s1n1 + s2n2

V (L′)
l · w + Z.
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To simplify the notation, given two lists L1 and L2, we denote by COLUMN(L1,
p1, L2, p2) the algorithm COMBINE called with parameters (L1||L2, L1, p1, L2, p2)
and assume that it returns a pair (P ′, L′) where P ′ is the partial packing of L1||L2

and L′ is the set of boxes packed in P ′.
Another simple algorithm that we use is the algorithm OC (one column). Given

a list of boxes, say L = (b1, . . . , bn), this algorithm packs each box bi+1 on top of the
box bi for i = 1, . . . , n− 1. It is easy to verify the following results.

Lemma 2.8. If P is the packing generated by the algorithm OC when applied
to a list L and s is a constant such that S(b) ≥ s · l · w for all boxes b in L, then

H(P) ≤ V (L)
s·l·w .

Lemma 2.9. If P is the packing generated by the algorithm OC when applied to a
list L of boxes b such that b ∈ R4 and (ρ(b) ∈ R4 or ρ(b) /∈ C), then H(P) = OPT(L).

We use two other algorithms, UDx and UDy, described in [6]. These algorithms
are based on the algorithm UD, developed by Baker, Brown, and Kattseff [1] for the
strip packing problem. The following results hold for these algorithms [6].

Lemma 2.10. Let L be an instance for TPP such that b ∈ C[ 1
2 , 1 ; 0, 1] (resp.,

b ∈ C[0, 1 ; 1
2 , 1]) for all boxes b in L. Then the packing P generated by the algorithm

UDx (resp., UDy) is such that H(P) ≤ 5
4OPT(L) + 53

8 Z.

Lemma 2.11. Let L be an instance for TPPz consisting of boxes b such that b ∈
C[ 1

2 , 1 ; 0, 1] (resp., b ∈ C[0, 1 ; 1
2 , 1]), and whenever x(b) > y(b) (resp., y(b) > x(b))

then ρ(b) /∈ C. That is, no two boxes of L can be packed side by side in the x-direction
(resp., y-direction). Then the packing P generated by the algorithm UDx (resp., UDy)
is such that H(P) ≤ 5

4OPT(L) + 53
8 Z.

Proof. This result follows directly from the previous lemma and the fact that no
two boxes can be packed side by side in the x-direction (resp., y-direction), even if
rotations are allowed.

3. The algorithm Rk. In [6] we presented an algorithm for TPP, called Ak,
that has an asymptotic performance bound less than 2.67. In this section we present
an algorithm for TPPz, called Rk, that is based on the algorithm Ak. The algorithm
depends on a parameter k, an integer that is assumed to be greater than 5.

Before we give the description of the algorithm we define some numbers which
are used to define sublists, called critical sets.

Definition 3.1. Let r
(k)
1 , r

(k)
2 , . . . , r

(k)
k+15 and s

(k)
1 , s

(k)
2 , . . . , s

(k)
k+14 be real numbers

defined as follows:

• r(k)
1 , r

(k)
2 , . . . , r

(k)
k are such that

r
(k)
1

1
2 = r

(k)
2 (1 − r(k)

1 ) = r
(k)
3 (1 − r(k)

2 ) = · · · = r
(k)
k (1 − r(k)

k−1) = 1
3 (1 − r(k)

k )

and r
(k)
1 < 4

9 ;

• r(k)
k+1 = 1

3 , r
(k)
k+2 = 1

4 , . . . , r
(k)
k+15 = 1

17 ;

• s(k)
i = 1− r(k)

i for i = 1, . . . , k;

• s(k)
k+i = 1− (

2i+4−b i+2
3 c

4i+10 ) for i = 1, . . . , 14.

The following result can be proved using a continuity argument.

Claim 3.1. The numbers r
(k)
1 , r

(k)
2 , . . . , r

(k)
k are such that r

(k)
1 > r

(k)
2 > · · · >

r
(k)
k > 1

3 and r
(k)
1 → 4

9 as k →∞.

For simplicity we omit the superscripts (k) of the notation r
(k)
i , s

(k)
i when k is

clear from the context.
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Using the numbers in Definition 3.1, we define the following critical sets.

CAi = C[ri+1, ri ;
1

2
, si], CBi = C[ 1

2
, si ; ri+1, ri],

CA =
k+14⋃
i=1

CAi , CB =
k+14⋃
i=1

CBi , CA[1−k] =
k⋃
i=1

CAi , CB[1−k] =
k⋃
i=1

CBi .

The next result refers to a list of positions pi,j , qi,j , p
′
j , q
′
j , p
′′
j and q′′j to be consid-

ered when applying the algorithm COMBINE. In [6] we give such a list of positions,
defined for a box B = (1, 1,∞). To use in this context, we have to consider a propor-
tional reparameterization for a box B = (l, w,∞). For completeness, we define here
these positions (only for i < j, since the case i > j is symmetric). See Figure 3.1(a).

Positions to combine sublists of CAi and CBj . For simplicity, we denote by

Ai the list of boxes of type CAi , and by Bj the list of boxes of type CBj .
• To combine the lists Ai (1 ≤ i ≤ k) and Bj (i ≤ j ≤ k), take

pi,j =
[
(0, 0),

(
1
2 , 0
)]

and qi,j = [(0, si)] .

In this case we have an area guarantee of at least 1
2 .

• To combine the list A[1−k] = A1 ∪ · · · ∪ Ak with Bj (k + 1 ≤ j ≤ k + 14),
we consider two phases. We divide A[1−k] into A′ and A′′, taking A′ = {b ∈
A[1−k] : x(b) ≤ 1− sj} and A′′ = A[1−k] \A′.
? To combine A′ with Bj , take

p′j = [(sj , 0)] and

q′j =
[
(0, 0) ,

(
0, 1

j−k+2

)
,
(

0, 2
j−k+2

)
, . . . ,

(
0, j−k+1

j−k+2

)]
.

In this case we have an area guarantee of at least 13
24 . This minimum is

attained when j = k + 1.
? To combine A′′ with Bj , take

p′′j =
[
(0, 0), ( 1

2 , 0)
]

and

q′′j =
[(

0, 2
3

)
,
(

0, 2
3 + 1

j−k+2

)
,
(

0, 2
3 + 2

j−k+2

)
, . . . ,(

0, 2
3 +

(
b j−k+2

3 c − 1
)

1
j−k+2

)]
.

Here we obtain an area guarantee of at least 27
56 .

• To combine the lists Ai (k + 1 ≤ i ≤ k + 14) and Bj (i ≤ j ≤ k + 14), take

pi,j =
[
(sj , 0) ,

(
sj + 1

i−k+2 , 0
)
,
(
sj + 2

i−k+2 , 0
)
, . . . ,(

sj + (b(1− sj) · (i− k + 2)c − 1) 1
i−k+2 , 0

)]
and

qi,j =
[
(0, 0) ,

(
0, 1

j−k+2

)
,
(

0, 2
j−k+2

)
, . . . ,

(
0, j−k+1

j−k+2

)]
.

In this case we also obtain an area guarantee of at least 27
56 .

Lemma 3.2. The following statements are valid for the list of positions pi,j, qi,j,
p′j, q

′
j, p
′′
j , and q′′j :

(a) If P is a packing generated by the algorithm COMBINE with parameters
(L, CAi , pi,j , CBj , qi,j), 1 ≤ i, j ≤ k or k + 1 ≤ i, j ≤ k + 14, then we have that

H(P) ≤ 56
27
V (P)
l·w + Z.

(b) There is a partition of CA[1−k] into sets C′A,j and C′′A,j such that a packing P ′
generated by the algorithm COMBINE with parameters (L, C′A,j , p′j , CBj , q′j),
k + 1 ≤ j ≤ k + 14, is such that H(P ′) ≤ 56

27
V (P′′)
l·w + Z and a packing P ′′
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Fig. 3.1. Partition of list L for algorithm Rk. The sets Ai and Bi in (a) correspond to the
sets CAi and CBi , resp.

generated by the algorithm COMBINE with parameters (L, C′′A,j , p′′j , CBj , q′′j ),

k + 1 ≤ j ≤ k + 14, is such that H(P ′′) ≤ 56
27
V (P′′)
l·w + Z.

(c) Defining positions symmetric to pi,j , qi,j , p
′
j , q
′
j , p
′′
j and q′′j , analogous results

hold when the letter A and B are exchanged in the items above.

The algorithm Rk is inspired by the algorithm Ak presented in [6]. The reader
may compare both algorithms to see where they differ; it should be noted that now
there are steps where rotations are performed. This is done because otherwise we may
not obtain valid inequalities with respect to the optimum packing.

Algorithm Rk
Input: List of boxes L.
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Output: Packing P of L into B = (l, w,∞).
1 Rotate all boxes b that are in R4 such that ρ(b) ∈ R2 ∪R3.

/* i.e., Let T ← {b ∈ L ∩R4 : ρ(b) ∈ R2 ∪R3}. L← (L \ T )
⋃
ρ(T ). */

2 Rotate all boxes b of L that are in R2 ∪R3 such that ρ(b) ∈ R1.
3 Let pi,j , qi,j , 1 ≤ i, j ≤ k + 14, and p′j , p

′′
j , q
′
j , q
′′
j , k + 1 ≤ j ≤ k + 14, be as defined

above.
4 Combine boxes of types CA and CB of L as follows (see Figure 3.1(a)).

4.1 i← 1; j ← 1; PAB ← ∅.
4.2 While (i ≤ k and j ≤ k) do

Pi,j ← COMBINE(L, CAi , pi,j , CBj , qi,j) .
PAB ← PAB‖Pi,j .
Update the list L removing the packed boxes.
If all boxes of type CAi have been packed, then increment i; else incre-

ment j.
4.3 If all boxes of type CB[1−k] have been packed

4.3.1 Then
While (j ≤ k + 14 and there is a box of type CA[ 1− k]) do

Let C′A,j and C′′A,j be a partition of CA[1−k], as in Lemma 3.2.

P̃ ′j ← COMBINE(L, C′A,j , p′j , CBj , q′j). Update L removing the
packed boxes.
P̃ ′′j ← COMBINE(L, C′A,j , p′j , CBj , q′j). Update L removing the
packed boxes.
PAB ← PAB‖P̃ ′j‖P̃ ′′j .
if Bj = ∅, then j ← j + 1.

i← k + 1
4.3.2 Else /* All boxes of types CA[1−k] have been packed */

Perform steps symmetric to the ones given in the case 4.3.1.
4.4 While (i ≤ k + 14 and j ≤ k + 14) do

Pi,j ← COMBINE(L, CAi , pi,j , CBj , qi,j). Update L removing the packed
boxes.

PAB ← PAB‖Pi,j .
If all boxes of type CAi have being packed, then increment i; else incre-

ment j.
5 If all boxes of type CB have been packed, then

5.1 Rotate the boxes of L ∩R2 that fit in R3.
5.2 Rotate the boxes of L ∩ (R2 ∪R4) such that if b ∈ L ∩ (R2 ∪R4), then

x(b) ≤ y(b) or ρ(b) /∈ C.
5.3 Subdivide the list L into sublists L1, . . . , L25 as follows (see Figure 3.1(b)).

Li = L
⋂ C[1

2 , 1 ; 1
i+2 ,

1
i+1 ], for i = 1, . . . , 16 L17 = L

⋂ C[1
2 , 1 ; 0, 1

18 ],

L18 = L
⋂ C[1

3 ,
1
2 ; 1

3 ,
1
2 ], L19 = L

⋂ C[1
3 ,

1
2 ; 1

4 ,
1
3 ],

L20 = L
⋂ C[1

3 ,
1
2 ; 0, 1

4 ], L21 = L
⋂ C[1

4 ,
1
3 ; 1

3 ,
1
2 ],

L22 = L
⋂ C[1

4 ,
1
3 ; 0, 1

3 ], L23 = L
⋂ C[0, 1

4 ; 1
3 ,

1
2 ],

L24 = L
⋂ C[0, 1

4 ; 1
4 ,

1
3 ], L25 = L

⋂ C4,
LC = L

⋂ C[1
2 , 1 ; 1

2 ,
19
36 ] L′D = L1

⋂ C[0, 17
36 ; 0, 1],

L′′D = L18

⋂ C[0, 17
36 ; 0, 1] LD = L′D

⋃
L′′D.

5.4 Generate packing PCD as follows.
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(PCD′ , LCD′)← COLUMN(LC , [(0, 0)], L′D, [(0,
19
36 )]).

(PCD′′ , LCD′′)← COLUMN(LC \ LCD′ , [(0, 0)], L′′D, [(0,
19
36 ), ( 1

2 ,
19
36 )]).

PCD ← PCD′‖PCD′′ .
LCD ← LCD′

⋃
LCD′′ . L1 ← L1 \ LCD. L18 ← L18 \ LCD.

5.5 Generate packings P1, . . . ,P25 as follows.
Pi ← NFDHy(Li) for i = 1, . . . , 22.
Pi ← NFDHx(Li) for i = 23, 24.
P25 ← LL(L25, 4).

5.6 Update L removing the packed boxes. Note that L ⊆ R2 ∪R4.
5.7 If LC ⊆ LCD

then /* (Case 1) */

p ←
√

199145−195
570 = 0.440 . . .. /* LC is totally packed (see Figure

3.1(c)) */
else /* (Case 2) LD ⊆ LCD */

p ←
√

23401−71
180 = 0.455 . . .. /* LD is totally packed (see Figure

3.1(d)) */
5.8 LE ← L ∩ C[1

2 , 1− p ; 1
2 , 1]. L′F ← L ∩ C[1

9 , p ; 1
2 , 1].

L′′F ← L ∩ C[ 1
18 ,

1
9 ; 1

2 , 1]. LF ← L′F ∪ L′′F .
5.9 (PEF ′ , LEF ′)← COLUMN(LE , [(0, 0)], L′F , [(1− p, 0)]).

(PEF ′′ , LEF ′′)← COLUMN(LE \ LEF ′ , [(0, 0)], L′′F , [(0, 1− p),
(0, 1− p+ 1

9 ), . . . , (0, 1− p+ (b9pc − 1) 1
9 )]).

PEF ← PEF ′‖PEF ′′ .
LEF ← LEF ′ ∪ LEF ′′ .

5.10 If LE ⊆ LEF /* (Subcase 1) LE is totally packed */
then
PUD ← UDx(L).
POC ← OC((L \ LEF ) ∩R4).
P2e ← NFDHx((L \ LEF ) ∩ C[0, 1

3 ; 0, 1]).
P2d ← NFDHx((L \ LEF ) ∩ C[p, 1

2 ; 0, 1]).
P ′ ← POC‖P2e‖P2d‖PEF .
P ′′ ← {P ∈ {PUD,P ′} : H(P) is minimum }.
Paux ← PAB‖PCD‖P1‖ . . . ‖P25.
Let L′′ and Laux be the lists of boxes packed in P ′′ and Paux, resp.
P ← Paux‖P ′′.

5.11 If LF ⊆ LEF /* (Subcase 2) LF is totally packed */
then
POC ← OC((L \ LEF ) ∩R4).
P2e ← NFDHx((L \ LEF ) ∩ C[0, 1

18 ; 1
2 , 1]).

P2d ← NFDHx((L \ LEF ) ∩ C[p, 1 ; 1
2 , 1]).

P ′ ← POC‖PEF .
Paux ← PAB‖PCD‖P2e‖P2d‖P1‖ . . . ‖P25.
Let L′ and Laux be the lists of boxes packed in P ′ and Paux, resp.
P ← Paux‖P ′.

6 If all boxes of type CA have been packed then generate a packing P of L as in step
5 (in a symmetric way).

7 Return P.
end algorithm.

The next theorem gives an asymptotic performance bound of the algorithm Rk
when k →∞.
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Theorem 3.3. For any instance L of TPPz we have

Rk(L) ≤ αk ·OPT(L) +

(
2k +

597

8

)
Z,

where αk → 579+
√

199145
384 = 2.669 . . . as k →∞.

Proof. We present the proof for the case all boxes of type CB have been packed
(see step 5). The proof of the other case (step 6) is analogous. We consider 4 cases,
according to step 5.7 (LC ⊆ LCD), step 5.10 (LE ⊆ LEF ), and step 5.11 (LF ⊆ LEF ).

As many steps of the algorithm Rk are similar to the ones of the algorithm Ak
for TPP, many of the inequalities obtained in the analysis of Ak are valid in these
cases. We only mention them in the four claims A, B, C, and D below (see [6]).

Case 1.1. (LC ⊆ LCD) and (LE ⊆ LEF ).
Claim A.

H(P ′′) ≤ 1

(1− p) 19
36

V (L′′)
l · w + 4Z and H(Paux) ≤ 1

r1

V (Laux)

l · w + (2k + 68)Z.

Let H1 := H(P ′′)− 53
8 Z and H2 := H(Paux)− (2k + 68)Z.

Using the definition of H1 and H2 in the two inequalities above we obtain

OPT(L) ≥ V (L)

l · w =
V (L′′)
l · w +

V (Laux)

l · w ≥ (1− p)19

36
H1 + r1H2,

that is,

OPT(L) ≥ (1− p)19

36
H1 + r1H2 .(3.1)

Note that from steps 1, 2, 4, 5.1, and 5.2 the list L′′ satisfies the condition of
Lemma 2.11. Hence, we have

H(P ′′) ≤ UDx(L′′) ≤ 5

4
OPT(L′′) +

53

8
Z ≤ 5

4
OPT(L) +

53

8
Z ,

that is,

OPT(L) ≥ 4

5
H1 .(3.2)

Combining inequalities (3.1) and (3.2), we have

OPT(L) ≥ max

{
4

5
H1, (1− p)19

36
H1 + r1H2

}
.

From the definition of H1 and H2, we obtain

H(P) = H(P ′′) +H(Paux) = H1 +H2 +

(
2k +

597

8

)
Z.

Using the last inequality in the above equation, we have

H(P) ≤
( H1 +H2

max{ 4
5H1, (1− p) 19

36H1 + r1H2}
)

OPT(L) +

(
2k +

597

8

)
Z.
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Analyzing the two possibilities for the maximum, we can prove (see [6]) that

α′k(r1) :=
49 + 95p+ 180r1

144r1
≥ H1 +H2

max{ 4
5H1, (1− p) 19

36H1 + r1H2}
.

Thus,

H(P) ≤ α′k(r1) ·OPT(L) +

(
2k +

597

8

)
Z.

Since r1 → 4
9 as k →∞, we can conclude that α′k(r1)→ 579+

√
199145

384 as k →∞.
Case 1.2. (LC ⊆ LCD) and (LF ⊆ LEF ).
Claim B.

H(P ′′) ≤ 72

19

V (P ′)
l · w + 2Z, and H(Paux) ≤ 1

p

V (Laux)

l · w + (2k + 70)Z.

Let H1 := H(P ′)− 2Z and H2 := H(Paux)− (2k + 70)Z.
Then we have

OPT(L) ≥ V (L′)
l · w +

V (Laux)

l · w ≥ 19

72
H1 + pH2.(3.3)

Note that each box in L′ ∩R4 considered in step 5.11 cannot be rotated, or if it
can be rotated, then it fits in R4 again. So we can conclude that

OPT(L) ≥ OPT(L′) ≥ 19

72
H1.(3.4)

Proceeding as in Case 1.1, using inequalities (3.3) and (3.4), we have

H(P) ≤ α′′k ·OPT(L) + (2k + 72)Z,

where α′′k = 53+72p
72p .

Thus, from the analysis of subcases 1.1 and 1.2, we can conclude that

Ak(L) ≤ αk ·OPT(L) +

(
2k +

597

8

)
Z,

where αk → α′k( 4
9 ) = α′′k =

√
199145+579

384 = 2.669 . . . as k →∞.
Case 2.1. (LD ⊆ LCD) and (LE ⊆ LEF ).
Claim C.

H(P ′′) ≤ 1

(1− p) 1
2

V (L′′)
l · w +

53

8
Z and H(Paux) ≤ 1

1
4 + r1

2

V (Laux)

l · w + (2k + 68)Z.

Let H1 := H(P ′′)− 53
8 Z and H2 := H(Paux)− (2k + 68)Z.

Then we have OPT(L) ≥ V (L′′)
l·w + V (Laux)

l·w ≥ 1−p
2 H1 +

(
1
4 + r1

2

)H2.
Using the same idea used in Case 1.1, we have OPT(L) ≥ OPT(L′′) ≥ 4

5H1 and

thus we obtain H(P) ≤ β′k(r1)OPT(L) +
(
2k + 597

8

)
Z, where β′k(r1) = 11+10p+10r1

4+8r1
.

Case 2.2. (LD ⊆ LCD) and (LF ⊆ LEF ).
Claim D.

H(P ′) ≤ 4
V (P ′)
l · w + 2Z, and H(Paux) ≤ 1

p

V (Laux)

l · w + (2k + 70)Z.
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Let H1 := H(P ′)− 2Z and H2 := H(Paux)− (2k + 70)Z.

In this case we have OPT(L) ≥ V (L′)
l·w + V (Laux)

l·w ≥ 1
4H1 +pH2 and OPT(L) ≥ H1.

Thus, H(P) ≤ β′′k ·OPT(L) + (2k + 72)Z, where β′′k = 3+4p
4p .

Furthermore, for the given value of p, as in the previous cases, we can conclude
that

H(P) ≤ βk ·OPT(L) +

(
2k +

597

8

)
Z,

where βk → β′k( 4
9 ) = β′′k =

√
23401+207

136 = 2.64 . . . as k →∞.
The theorem follows from the conclusions obtained in all cases analyzed.
The following result proved in [6] is also valid for this algorithm and can be proved

analogously. It shows that for relatively small value of k (k = 13) the algorithm Rk
has already an asymptotic performance bound that is very close to the value shown
for k →∞.

Corollary 3.4. For any instance L of TPPz and k ≥ 13 we have

Rk(L) ≤ γk ·OPT(L) +

(
2k +

597

8

)
Z,

where γk =
99+1080r

(k)
1 +

√
199145

864r
(k)
1

< 2.67.

Proposition 3.5. The asymptotic performance bound of the algorithm Rk, k ≥
13, is between 2.5 and 2.67.

Proof. The proof follows directly from Corollary 3.4 and Lemma 2.6 (using m =
4).

4. The Algorithm LS: Boxes in L have square bottoms. In this section
and in the following sections we apply the idea used in algorithm Rk to generate
algorithms for particular instances of TPPz. Here we consider the case in which the
list L consists of boxes with square bottoms.

Without loss of generality, we consider that the box B has dimensions (1, w,∞),
w ≥ 1.

Given a list of boxes L = (b1, . . . , bn), consider the list of points given by the set
{(x1, y1), . . . , (xn, yn)}. Note that all points lay down in a line on the xy-plane that
goes through (0, 0) and (1, 1). We call it a box-line (see Figure 4.1). The algorithm
consider two cases, according to the position in the x-axis, where the box-line crosses
the line y = 1

2 (that is, in the position xw =
(

1
2w

)
w).

Algorithm LS.
Input: List of boxes L ⊂ Q[0, 1 ; 0, 1].
Output: Packing P of L into B = (1, w,∞).

1 Take p := 0.4791964 and subdivide the list L into sublists L1, . . . , L7, LA, LB , LC
as follows (see Figures 4.1 and 4.2).

L1 = L
⋂ C[1

2 , 1 ; 1
2 , 1], L2 = L

⋂ C[1
3 ,

1
2 ; 1

2 , 1], L3 = L
⋂ C[0, 1

3 ; 1
2 , 1],

L4 = L
⋂ C[1

3 ,
1
2 ; 1

3 ,
1
2 ], L5 = L

⋂ C[1
4 ,

1
3 ; 1

3 ,
1
2 ], L6 = L

⋂ C[0, 1
4 ; 1

3 ,
1
2 ],

L7 = L
⋂ C[0, 1

3 ; 1
4 ,

1
3 ], L8 = L

⋂ C[0, 1
4 ; 0, 1

4 ], LA = L2

⋂ C[0, 1 ; 0, 5
8 ],

LB = L3

⋂ C[0, 1 ; 0, 3
8 ], LC = L1

⋂ C[0, 1 ; 0, 5
8 ].

2 Let x← 1
2w .

3 if x ≤ 2
5
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Fig. 4.1. Partition of L into sublists.

Fig. 4.2. Combination of sublists LA and LB.

then /* (Case 1) this means that there is no box in LC */
P ′1,2,3 ← OC(L1)‖NFDHx(L2)‖NFDHx(L3).
P ′′1,2,3 ← UD(L1 ∪ L2 ∪ L3).

P ′′ ← (P ∈ {P ′1,2,3,P ′′1,2,3} : H(P) is minimum
)
.

Paux ← NFDHx(L4)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).
P ← P ′′‖Paux.
return P.

else /* (Case 2) this means that there is no box in L2 \ LA */
4 (PAB , LAB)← COLUMN(LA, [(0, 0), ( 1

2 , 0)], LB , [(0,
5
8 ), ( 1

2 ,
5
8 )]).

5 L4 ← L4 \ LAB . LB ← LB \ LAB .
6 (Case 2.1) if LA ⊆ LAB /* LA is totally packed. */

(PBC , LBC)← COLUMN(LC , [(0, 0)], LB , [(0,
5
8 ), ( 1

2 ,
5
8 )].

L1 ← L1 \ LBC . L4 ← L4 \ LBC .
(Subcase 2.1.1) LB ⊆ LBC .
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P ′ ← OC(L1)‖PBC .
Paux ← PAB‖NFDHx(L4)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).

(Subcase 2.1.2) LC ⊆ LBC .
P ′ ← OC(L1)‖PBC .
Paux ← PBC‖NFDHx(L2)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).

P ← P ′‖Paux.
Let L′ and Laux be the lists of boxes packed in P ′ and Paux, resp.

7 (Case 2.2) if LB ⊆ LAB /* LB is totally packed. */
/* Define two new sublists (LD and LE) as follows. */
LD = L2

⋂ C[0, p ; 0, 1] and LE = L1

⋂ C[0, 1− p ; 0, 1].
(PDE , LDE)← COLUMN(LD, [(0, 0)], LE , [(p, 0)]).
L1 ← L1 \ LDE . L2 ← L2 \ LDE .
/* We have two subcases considering the result of this packing. */

(Subcase 2.2.1) if LD ⊆ LDE or x ≥ p, x = 1
2w ∈

(
p, 1

2

]
then

/* Note that when x ≥ p, LD = ∅. */
P ′ ← OC(L1)‖PDE .
Paux ← PAB‖NFDHx(L2)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).
Let L′ and Laux be the lists of boxes packed in P ′ and Paux, resp.
P ← P ′‖Paux.

(Subcase 2.2.2) if LE ⊆ LDE then
P ′1,2 ← OC(L1)‖NFDHx(L2)‖PDE .
P ′′1,2 ← UD(L1 ∪ L2 ∪ LDE).

P ′′ ← (P ∈ {P ′1,2,P ′′1,2} : H(P) is minimum
)
.

Paux ← PAB‖NFDHx(L4)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).
Let L′′ and Laux be the lists of boxes packed in P ′′ and Paux, resp.
P ← P ′′‖Paux.

8 Return P.
end algorithm.

Theorem 4.1. For any instance of TPPz consisting of a list L of boxes with
square bottoms, we have

LS(L) ≤ 2.543 ·OPT(L) +
101

8
Z.

Proof. As the proof technique is analogous to the previous one, we only give the
inequalities that are valid in each case. We suggest that the reader follow the analysis
of each case, together with the corresponding case in the description of the algorithm.
Throughout this proof l = 1, as we are considering that B = (1, w,∞).

Case 1. In this case we obtain the following inequalities:

H(P ′′) ≤ 16

5

V (L′′)
l · w +

53

8
Z,

H(P ′′) ≤ 5

4
OPT(L) +

53

8
,

H(Paux) ≤ 2
V (Laux)

l · w + 5Z.

Defining H1 := H(P ′′) − 53
8 Z and H2 := H(Paux) − 4Z, we have OPT(L) ≥

max{ 4
5H1,

5
16H1 + 1

2H2} and therefore, proceeding as before, we obtain

H(P) ≤ α1 ·OPT(L) +
53

8
Z,
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where α1 ≤ H1+H2

max{ 4
5H1,

5
16H1+ 1

2H2} ≤ 2.5.

Note that for the remaing cases, the lists L3 and L2 \ LA are empty and the
box-line crosses the region LC .

Subcase 2.1.1. Note that in this case, LA ∪ LB is totally packed in PAB‖PBC .
Note also that the boxes of LC in PBC are of type R4 and therefore we obtain the
following inequality:

H(P ′) ≤ 4
V (L′)
l · w + Z.

Since

H(Paux) ≤ 2
V (Laux)

l · w + 7Z,

H(P ′) ≤ OPT(L) + Z,

using the above inequalities and defining H1 := H(P ′)−Z and H2 := H(Paux)− 7Z,
we have

H(P) ≤ α2,1,1 ·OPT(L) + 8Z,

where α2,1,1 ≤ H1+H2

max{H1,
1
4H1+ 1

2H2} ≤ 2.5.

Subcase 2.1.2. In this case the boxes of LA ∪LC are totally packed in PAB‖PBC .
Furthermore, we have x = 1

2w and x ∈ ( 2
5 ,

1
2 ] (note that x · w is the position in the

x-axis where the box-line crosses the line y = 1
2 ). In this case we have the following

inequalities with respect to x:

H(P ′) ≤ 32

25x

V (L′)
l · w + Z,

H(Paux) ≤ 1

min{ 2
9x ,

1
2}
V (Laux)

l · w + 8Z,

H(P ′) ≤ OPT(L) + Z,

and therefore,

H(P) ≤ α2,1,2 ·OPT(L) + 9Z ,

where α2,1,2 ≤ H1+H2

max{H1,
25x
32 H1+min{ 2

9x ,
1
2}H2} . Evaluating the value of α2,1,2, when x ≥ 4

9

and when x < 4
9 , we obtain that α2,1,2 ≤ 2.5.

Subcase 2.2.1. In this case LB ∪ LD is totally packed in PAB‖PDE . Recall that
x = 1

2w . We divide the analysis in two cases. We consider first x ∈ (p, 1
2 ]. Here we

have

H(P ′) ≤ 8x
V (L′)
l · w + Z,

H(Paux) ≤ 1

x

V (Laux)

l · w + 7Z,

H(P ′) ≤ OPT(L) + Z,

and therefore,

H(P) ≤ α2,2,1 ·OPT(L) + 8Z ,
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where α2,2,1 ≤ H1+H2

max{H1,
1
8xH1+xH2} ≤

H1+H2

max{H1,
1
8pH1+pH2} ≤ 2.543.

If x ∈ ( 2
5 , p], the analysis is similar and is omitted.

Subcase 2.2.2. Here LB ∪ LE is totally packed in PAB‖PDE . Let x = 1
2w , x ∈

( 2
5 , p]. In this case,

H(P ′′) ≤ 2x

(1− p)2

V (L′)
l · w +

53

8
Z,

H(Paux) ≤ 2
V (Laux)

l · w + 5Z,

H(P ′′) ≤ 7

5
4OPT(L) +

53

8
Z,

and so,

H(P) ≤ α2,2,2 ·OPT(L) +
93

8
Z,

where α2,2,2 ≤ H1+H2

max{ 4
5H1,

(1−p)2

2x H1+ 1
2H2}

≤ H1+H2

max{ 4
5H1,

(1−p)2

2p H1+ 1
2H2}

≤ 2.543.

In fact, the value of p was taken in such a manner that the two subcases above
(2.2.1 and 2.2.2) lead to the same bound.

The theorem follows considering the cases analyzed above.
Proposition 4.2. The asymptotic performance bound of the algorithm LS is

between 2.5 and 2.5425.
Proof. The proof follows directly from Theorem 4.1 and Lemma 2.6 (when we use

m = 4).

5. The Algorithm BS: Box B has a square bottom. We now consider the
special case of TPPz where B has a square bottom. Without loss of generality, we
consider B = (1, 1,∞).

First, we present an algorithm called NFDHxy
p , 0 < p < 1, that is used as a

subroutine. This algorithm packs the boxes of a list L in the following way. Initially,
it sorts L in a nonincreasing order of height, then generates a packing divided into
levels. Each level is divided into two parts; the boxes are packed first in the region
[0, 1) × [0, p) and then in the region [0, 1) × [1 − p, 1). The boxes are packed in the
region [0, 1)× [0, p) using the algorithm NFDHx until a box bi cannot be packed in the
same level; then NFDHxy

p uses the algorithm NFDHy to pack boxes ρ(bi), ρ(bi+1), . . .
in the region [0, 1) × [1 − p, 1) until a box bk cannot be packed in the same level.
At this point, the algorithm NFDHxy

p considers the two parts as only one level and
continues to pack the box bk in a new level. The process continues until all boxes in
L have been packed.

Another variant of the above algorithm is called NFDHyx
p . This algorithm is

similar to the NFDHxy
p algorithm, except that NFDHyx

p first packs boxes b with
x(b) ≤ p, in the y-axis direction, and then packs the next boxes in the x-axis direction.

The following notation is used in the description of the algorithm:

X ′ := {bi = (xi, yi, zi) : yi ≤ 1− xi} .
Algorithm BS.

Input: List of boxes L.
Output: Packing P of L into B = (1, 1,∞).

1 Rotate the boxes of L in such a way that for each box b, x(b) ≤ y(b).
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Take p = 0.43322958 and q = 1− p.
2 Divide L into sublists L′1, L

′
2, L
′
3, LA, LB , LC , L4, . . . , L14 as follows (see Figure 5.1).

L′1 =L
⋂ C[q, 1 ; q, 1], LA=L

⋂ C[ 1
2 , q ; 1

2 , 1], L′2 =L
⋂ C[p, 1

2 ; 1
2 , 1]\X ′,

LB=L
⋂ C[ 1

3 , p ; 1
2 , 1]\X ′, L′3 =L

⋂ C[p, 1
2 ; 1

3 ,
1
2 ], LC =L

⋂ C[ 1
3 , p ; 1

3 ,
1
2 ],

L4 =L
⋂ C[ 1

4 ,
1
3 ; 2

3 , 1], L5 =L
⋂ C[ 1

5 ,
1
4 ; 2

3 , 1], L6 =L
⋂ C[0, 1

5 ; 8
13 , 1],

L7 =L
⋂ C[ 1

3 ,
1
2 ; 1

2 ,
2
3 ]
⋂X ′, L8 =L

⋂ C[ 1
4 ,

1
3 ; 1

2 ,
2
3 ], L9 =L

⋂ C[ 1
5 ,

1
4 ; 1

2 ,
2
3 ],

L10 =L
⋂ C[0, 1

5 ; 1
2 ,

8
13 ], L11 =L

⋂ C[ 1
4 ,

1
3 ; 1

3 ,
1
2 ], L12 =L

⋂ C[0, 1
4 ; 1

3 ,
1
2 ],

L13 =L
⋂ C[0, 1

3 ; 1
4 ,

1
3 ], L14 =L

⋂ C[0, 1
4 ; 0, 1

4 ]

..
..
..
..
..
..
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..
..
..
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..
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Fig. 5.1. Partition of list L done by algorithm BS.

3 (PAB , LAB)← COLUMN(LA, [(0, 0)], LB , [(q, 0)]).
4 (PAC , LAC)← COLUMN(LA \ LAB , [(0, 0)], LC , [(q, 0), (q, 1

2 )]).
5 L1 ← (L′1 ∪ LA) \ (LAB ∪ LAC). L2 ← (L′2 ∪ LB) \ LAB . L3 ← (L′3 ∪ LC) \ LAC .
6 Let P7 be a packing of L7 obtained as follows.

6.1 Sort L7 in a nonincreasing order of height.
6.2 Construct a partition of L7 given by L1

7, L
2
7, . . . , L

n7
7 such that L7 = L1

7‖L2
7‖ . . . ‖Ln7

7 ,
|Li7| = 3, i = 1, . . . , n7 − 1,
|Ln7

7 | ≤ 3.

6.3 Generate a packing Pi7 of Li7, i = 1, . . . , n7 as follows.
6.3.1 Choose b ∈ Li7, such that x(b) is minimum.
6.3.2 Pack ρ(b) in the position (0, 1 − x(b)) and the boxes in Li7 \ {b}

in the positions (0, 0) and ( 1
2 , 0).

6.4 P ← P1
7‖ . . . ‖Pn7

7 .
7 P ′ ← OC(L1)‖PAB‖PAC .
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8 Paux ← NFDHx(L2)‖ . . . ‖NFDHx(L6)‖P7‖NFDHxy
2
3

(L8)‖NFDHxy
2
3

(L9)‖
NFDHxy

8
13

(L10)‖NFDHx(L11)‖ . . . ‖NFDHx(L13)‖LL(L14).

9 P ← P ′‖Paux.
10 Return P.
end algorithm.

Theorem 5.1. For any list L for the TPPz, where B has a square bottom,

BS(L) ≤ 2.528 ·OPT(L) + 15Z .

Proof. From steps 3 and 4, we can conclude that either LA is totally packed
or LB ∪ LC is totally packed in PAB‖PBC . So we divide the proof into these two
subcases.

Case 1. LA is totally packed in PAB‖PBC .
Here we have

H(P ′) ≤ 1

q2
V (L′) + 2Z,

H(Paux) ≤ 9

4
V (Laux) + 13Z,

H(P ′) ≤ OPT(L) + 2Z.

As before, we haveH(P) ≤ α1·OPT(L)+15Z, where α1 ≤ H1+H2

max{H1,q2H1+ 4
9H2} ≤ 2.528.

Case 2. (LB ∪ LC) is totally packed in PAB‖PBC .
Here we have

H(P ′) ≤ 4V (L′) + 2Z,

H(Paux) ≤ 1

2pq
V (Laux) + 13Z,

H(P ′) ≤ OPT(L) + 2Z.

Analogously, we have H(P) ≤ α2 ·OPT(L) + 15Z, where α2 ≤ H1+H2

max{H1,
1
4H1+2pqH2} ≤

2.528.
From the two cases above, the theorem follows.

Proposition 5.2. The asymptotic performance bound of the algorithm BS is
between 2.5 and 2.528.

Proof. It follows directly from Theorem 5.1 and Lemma 2.6 (using m = 4).

6. The Algorithm SS: Boxes in L and box B have square bottoms. Now
we consider the special case of TPPz, where all boxes in L and box B have square
bottoms. Without loss of generality, we take B = (1, 1,∞).

In 1990, Li and Cheng [3] presented an algorithm for this problem with asymp-
totic performance bound 2.6875. The algorithm we present here, called SS, has an
asymptotic performance bound of 2.361.

Here we need an algorithm, called GQm, described in [3], to pack boxes in Qm.
The algorithm GQm works in the same way as algorithm LL. It sorts the boxes in

L ⊂ Qm in nonincreasing order of their height, divides L into sublists L1, . . . , Lv, and
uses the same two-dimensional packing algorithm to pack each sublist Li in a level.
The only place where algorithm GQm differs from LL is the bottom area size used to
subdivide L into sublists Li. This is because the two-dimensional packing algorithm
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used by algorithm LL can guarantee a better area if all boxes have square bottoms.
In this case the sublists Li satisfy the following inequalities:

S(Li) ≤
[(
m−1
m

)2
+
(

1
m

)2]
lw for i = 1, . . . , v,

S(Li) + S(first(Li+1)) >
[(
m−1
m

)2
+
(

1
m

)2]
lw for i = 1, . . . , v − 1.

The following result is proved in [3].

Lemma 6.1. Let L ⊂ Qm, m ≥ 2. Then, GQm(L) ≤ ( m
m−1 )2 V (L)

lw + Z .
Analogously to Lemma 2.6 with algorithm LL, we can show that the following

result holds for algorithm GQm.
Lemma 6.2. Let A be an algorithm for TPPz to pack a list L ⊂ Q[0, 1 ; 0, 1]

into a box B = (1, 1,∞). If A subdivides the input list L into two sublists L1 ⊂ R4

and L2 ⊂ Qm, m ≥ 2, and applies algorithm GQm to pack L2, then the asymptotic

performance bound of A is at least 4(m−1)2+3m2

4(m−1)2 .

Proof. The proof is similar to the proof of Lemma 2.6, now using the value
(
m−1
m

)2
instead of

(
m−2
m

)
.

Algorithm SS.
Input: List of boxes L ⊂ Q[0, 1 ; 0, 1].
Output: Packing P of L into B = (1, 1,∞).

1 Take p = 0.37123918 and q = 1− p.
Divide L into sublists, L′1, LA, L

′
2, LB , L3, and L4 (see Figure 6.1),

L′1 = L
⋂Q[1

2 , 1 ; 1
2 , 1], LA = L

⋂Q[1
2 , q ; 1

2 , q],

L′2 = L
⋂Q[1

3 ,
1
2 ; 1

3 ,
1
2 ], LB = L

⋂Q[1
3 , p ; 1

3 , p],

L3 = L
⋂Q[1

4 ,
1
3 ; 1

4 ,
1
3 ], L4 = L

⋂Q[0, 1
4 ; 0, 1

4 ].

2 (PAB , LAB)← COLUMN(LA, [(0, 0)], LB , [(0, q), (q, q), (q, 0)]).
3 Li ← L′i \ LAB for i = 1, 2.
4 P1 ← OC(L1)‖PAB .
5 Paux ← NFDHx(L2)‖NFDHx(L3)‖GQ4(L4).
6 P = P1‖Paux.
7 Return P.
end algorithm.

Theorem 6.3. For any list L for TPPz, where all boxes have square bottoms,

SS(L) ≤ 2.361 ·OPTz(L) + 4Z .

Proof. Again we analyze two cases, considering the packing generated in step 2.
Case 1. LA is totally packed in PAB .

H(P1) ≤ 1

q2
V (L′) + Z,

H(Paux) ≤ 9

4
V (Laux) + 3Z,

H(P1) ≤ OPT(L) + Z.

Proceeding as before, we have H(P) ≤ α1 ·OPT(L) + 4Z, where

α1 ≤ H1 +H2

max{H1, q2H1 + 4
9H2}

≤ 2.361.
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Fig. 6.1. Partition of list L done by Algorithm SS.

Case 2. LB is totally packed in PAB .
Here we have

H(P1) ≤ 4V (L′) + Z,

H(Paux) ≤ 1

4p2
V (Laux) + 3Z,

H(P1) ≤ OPT(L) + Z.

Thus, H(P) ≤ α2 ·OPT(L) + 4Z, where α2 ≤ H1+H2

max{H1,
1
4H1+4p2H2} ≤ 2.361.

From the two cases above, the theorem follows.
Proposition 6.4. The asymptotic performance bound of Algorithm SS is between

2.333 and 2.361.
Proof. It follows directly from Theorem 6.3 and Lemma 6.2 (with m = 4).
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Abstract. This article illustrates several examples of computer science problems whose perfor-
mance can be improved with the use of either the fusion trees [Fredman and Willard, J. Comput.
System Sci., 47 (1993), pp. 424–436; Fredman and Willard, J. Comput. System Sci., 48 (1994), pp.
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only illustrative.
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1. Introduction. The fusion tree [25] and its several variants [1, 2, 3, 4, 5,
6, 7, 8, 9, 11, 15, 26, 36, 37, 38, 40, 41, 43, 44, 45, 46] are data structures that
perform sorting operations in better than O(N logN) worst-case time and execute
dynamic search operations in faster than O(logN) time in a very natural model of
complexity. Since many classic algorithms were designed under the assumption that
further improvements for sorting and searching were impossible, one would intuitively
anticipate many of the classic search procedures to permit O(log logN) or better time
improvements when their use of conventional dynamic search trees is simply replaced
by the faster underlying data structures made theoretically possible by new advances
in data structure theory.

This article will illustrate several examples of such improvements. Most of these
improvements will use a data structure, called the q-heap, as an intermediate device
to speed up the search methodology. Q-heaps were introduced in [26] as a vehicle for
solving the minimum spanning tree problem in linear time. However, they also have
many other applications. Q-heaps will be shown in this article to improve many other
classic searching problems.

The particular examples and new results we establish are listed at the bottom
of this paragraph. None of the so-called improvements in this list are practical im-
provements because the coefficients associated with their asymptotic changes are un-
desirably large. However, item 1 below (dynamic universal hashing) is a foundational
problem in computer science. All the other topics already appear (in some form) in
volumes 1 and 3 of Mehlhorn’s textbook [33, 34] as well as in many other textbooks
[23, 27, 39]. Thus our improvements are very germane to a two-semester course on
general algorithms and computational geometry. The six topics below are only in-
tended as a representative sample to illustrate what can be done theoretically (albeit
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not practically) when fusion trees and q-heaps are applied to several problems:

1. A variant of dynamic hashing where each lookup, insertion, and deletion

respects an O(1) time bound with a probability exceeding 1− o(N−(logN)K ),
for any arbitrary constant K > 0. (This result is a significant improvement
over Dietzfelbinger and Meyer auf der Heide’s universal hash scheme [22]. It
will probably be the most noteworthy result of this paper because hashing is
one of the basic operations studied in computer science. The improvement is
based on combining the fusion-tree formalism with some of Siegel’s theorems
[42] about universal hashing.)

2. An improved version of McCreight’s priority-search trees [35] that reduces
the worst-case dynamic time performance to O(log N/ log log) can search
a set of N rectangles and output all K intersections among this set in time
O(K + N logN/ log log N). See Mehlhorn’s textbook [34] for a concise
description of priority-search trees.)

3. A related log logN improvement of Chazelle’s O(N logd−1N / log log N)
space data structure [16] that performs the reporting version of d-dimensional
orthogonal range queries in time O(logd−1N / log logN + K), where K
is the number of elements outputted.

4. For any dimension d ≥ 2 and any p ≥ d−1, it will be possible to construct an
O(N logp N) space structure that supports an O{ ( logN / log logN )d− 1}
time for executing the aggregate version of orthogonal range queries. (Section
6 will explain how there are at least certain perspectives where this combina-
tion of time and space can be viewed as optimal.)

5. An improved variant of Van Emde Boas trees [48, 47, 28] that has a somewhat
improved memory space.

6. A log logN speedup of the Bentley–Shamos linear space method [10, 14] that
calculates a set of N d-dimensional ECDF statistics in a time asymptote of
O(N logd−1N / log logN ). (The acronym ECDF is an often-used abbrevi-
ation for “empirical cumulative distribution function.”)

Each of the results above will employ the q-heap data structure from [26]. Sec-
tion 9 will briefly illustrate several further examples of algorithmic problems whose
performance can be improved with merely a faster sorting algorithm. In particular,
such problems can have their runtimes improved by either the Fredman–Willard sort-
ing procedure or by the further subsequent improvements of this procedure that have
been proposed by Andersson [4], Andersson et al. [5], and Thorup [44, 46].

We do not believe that any of the six sample topics mentioned in the preced-
ing paragraph are the main point. Rather the key question is how many other
well-known results in computer science can undergo a similar theoretical (albeit per-
haps impractical) asymptotic improvement when some type of application of fusion
trees, q-heaps and their generalizations are employed [25, 26]? For instance, Thorup
recently discovered a worst-case linear-time algorithm for solving Dijkstra’s single
source shortest path (SSSP) problem with a method that uses some of the constructs
of [26] in one of its main interim steps. In the present article, we focus mostly on
a moderately narrow bandwidth of problems, drawn from computational geometry
and information retrieval theory, simply because such problems reflect the author’s
particular expertise and knowledge. However, it will become apparent to the reader
who examines our six sample problems in the context of the expanding literature
[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 25, 26, 36, 37, 40, 41, 43, 44, 45, 46] that there are
surely many other problems that can undergo theoretical (although often not practi-
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cal) improvements when some type of variant of fusion tree is present.

Thus our goal in this article will not be exclusively to address the six sample
problems mentioned. Sections 2, 3, and 4 are written so that they can be understood
by a reader who is unacquainted with both fusion trees and computational geometry.
Their goal will be to provide such a reader with an intuitive feel for this subject,
ending with a very curious example about hashing. Our more specialized discussion
appears in sections 4 through 9. They focus mostly around computational geometry
and Van Emde Boas trees.

2. Literature survey. We will use largely the same notation and computational
model that appeared in the articles [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 25, 26, 36, 37,
40, 41, 43, 44, 45, 46]. A word is assumed to consist of b bits, and each key shall be
assumed to be a fixed point integer fitting into one word. The instruction set available
to the computer will be arithmetic, bitwise logical, and comparison operations on b-
bit words. The integer N will denote the size of the database we search. It will be
assumed that b ≥ log2N since otherwise our main memory search structures would
not even have a sufficiently large word length to store the addresses of the N objects
that are stored in the computer’s main memory bank. The runtime of our algorithm
will be viewed as a quantity F (b,N). Usually it has not been done, but most of the
algorithms of [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 25, 26, 36, 37, 40, 41, 43, 44, 45, 46] can
be trivially generalized to common floating point representations of real numbers.

The first surprising article about fast dynamic tree operations was Van Emde
Boas’s data structure [48], which had an O(log logU) worst-case retrieval, insertion,
and deletion time for a data structure using O( U log log U ) space to represent a set
of elements from the universe 0, 1, 2, . . . , U. The space was further compressed by Van
Emde Boas to O(U) in [47]. (One can also find a further discussion of the implications
of Van Emde Boas trees and their variants in, for instance, [28, 29, 30, 31, 49, 50].)
Since b = log U , one can think of Van Emde Boas’s algorithm as having an
O( log b ) time. Unless b is a very large number, this time is better than the
conventional O(logN) balance tree time.

The first contribution of Fredman and Willard’s fusion trees [25] was that they
established a sorting time F (b,N) with a worst-case bound O(N logN/ log logN)
for an O(N) data space structure (regardless of b’s and N ’s values). This was the
first method to obtain an o(N logN) time for sorting using what Andersson et al.
[5] later called a “conservative method” for measuring computing costs. Fusion trees
also provided an O(logN/ log logN) worst-case and O(

√
log N) randomized time cost

for performing standard balance-tree and search-and-update operations in an O(N)
space structure. A cousin of the fusion tree, called the q-heap, can bring dynamic
balance-tree search, insert, and delete worst-case times down to an O(1) asymptote
provided the relevant set has a PolyLog(N) size and one has access to an o(N)-sized
lookup table. Q-heaps were introduced in [26] as a vehicle for devising a worst-case
linear time algorithm for the minimum spanning tree problem.

One open question raised by Fredman and Willard’s original paper [25] was
whether or not one could achieve an O(

√
log N) worst-case time cost for performing

standard balance-tree search-and-update operations in an O(N) space structure. Such
a question was naturally pressing because Fredman and Willard had indeed achieved
an O(

√
log N) worst-case time in the three cases where a static data structure had

access to O(N) space, a dynamic data structure was allowed more space, or where
the environment was dynamic, the space was O(N) but the time was now random-
ized. The final design of this revised and more idealized version of a fusion tree was
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done recently by Andersson [4]. He showed that O(
√

log N) amortized and also that
implicitly1 worst-case times for performing standard balance-tree search-and-update
operations were possible for strictly O(N) space structures. His article explicitly uses
all the functionality of the original fusion trees and adds to these a new memory
compression method to achieve the O(N) space.

Another open question raised by the discussion on fusion trees in [25] was whether
the cost of sorting could be improved beyond the O(N logN/ log logN) worst-case
and O(N

√
log N) randomized times. This problem has been studied extensively

by [1, 4, 5, 40, 44, 46], and the best combined results from this evolving literature
are roughly that O(N) space supports either a randomized time O(N log logN) or a
worst-case time O[N(log logN)2 ] for sorting. In particular, the randomized problem
was resolved by Andersson et al. [5] and Thorup [44], and the best worst-case sorting
is due to Thorup [46].

Another recent direction of research has been the study of Dijkstra’s SSSP prob-
lem. Thorup showed in [45] that it was possible to devise a fully O(N) worst-case
algorithm for constructing the SSSP. Most of Thorup’s algorithm is unrelated to the
prior Fredman–Willard fusion tree research, but he does use a q-heap data structure
as one important subcomponent of his final data structure.

There are simply too many new ideas in the rapidly expanding literature [1, 2,
3, 4, 5, 6, 7, 8, 9, 11, 15, 36, 37, 40, 41, 43, 44, 45, 46] for us to describe all these
results in full detail. Albers and Hagerup [1] have discussed parallel analogues of
fusion tree sorting. (An important aspect of their work is that some of its ideas
are essential for implementing the nonparallel sorting algorithms of [5].) Many lower
bounds relevant to fusion-like data structures have been developed by Andersson et
al. [6], Brodnik, Mitlersen, and Munro [15], Beame and Fich [9], Ben-Amram and
Galil [11], Miltersen [36, 37]. Andersson [3], and Andersson, Miltersen, and Thorup
showed in [7] that the Fredman–Willard fusion tree results could be extended to a
data model using exclusively AC0 instructions. Raman [40] and Thorup [43] have
developed some interesting new priority queue data structures, which ultimately led
Thorup to announce a linear algorithm [45] for Dijkstra’s SSSP problem and a worst-
case O[N(log logN)2] algorithm [46] for sorting.

It should be noted that while many of these articles improve upon the prior
Fredman–Willard results with better upper bounds, a large number of these papers
(such as, for example, [4, 45]) mention using particular parts of the Fredman–Willard
data structure as working subroutines of their yet more refined algorithms. In essence
what we will do in sections 4 through 8 of this paper is also employ such subcompo-
nents of fusion trees to examine six other algorithmic paradigms.

It also should be mentioned that it is not entirely true that all aspects of research
related to fusion trees are fully divorced from practical application. For instance, the
discussion of AC0 circuits by Andersson [3] and Andersson, Miltersen, and Thorup
[7] could result in practical hard-wired algorithms. Also some of the engineering-
grade sorting algorithms of Bentley and McIlroy [13] and P. McIlroy, Bostic, and
M. McIlroy [32] are partly related to fusion tree research in that one part of their
procedures breaks a larger problem into locally smaller problems with tiny constants.

1The relevant “worst-case” cost algorithm did not actually appear in Andersson’s paper [4], but
we think it should be fairly credited to Andersson because it is an easy extension of his amortization
techniques combined with standard methods for converting an amortized optimizing algorithm into
a worst-case control procedure. For instance, one could use techniques roughly similar to either our
proof of Lemma 3.3 (see section 10) or methodologies of [52, 53] to easily transform Andersson’s
amortized optimizing algorithm into a worst-case controlling procedure.
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It also should be mentioned that some of the older subcomponent data structures
employed by the original fusion trees, such as perfect hashing, Van Emde Boas tree
and fast tries [22, 24, 42, 47, 48, 49, 50] can be potentially pragmatic when used in a
context perhaps different from that utilized by the fusion tree.

As we noted in section 1, our goal in the present article will be to consider six
sample problems, which illustrate some types of theoretically feasible (although not
necessarily practical) improvements that can result when the Fredman–Willard q-heap
data structures are applied in various settings. In order to simplify the presentation,
we will not require the reader to examine [26] or any other article that was mentioned
in the preceding paragraphs of this literature survey. All the reader is required to
know is that there is a black box software package, called the q-heap, that was proven
in [26] to have the following characteristics.

Theorem 2.1. Suppose S is a subset of cardinality M < 5
√

log N lying in a
larger database consisting of N elements. Then there exists a q-heap data structure for
representing S such that the q-heap uses O(M) space and enables insertions, deletions,
member, and predecessor queries into the subset S to run in constant worst-case time,
provided access is available to a precomputed lookup table of size o(N).

The lookup table for q-heaps can be constructed in O(N c) time (for some small
constant c < 1 ). The o(N) space and preprocessing costs accrued to such lookup
tables are an acceptably small and minor expense in most computing applications
because they will have a large number of different q-heaps share access to one common
search table. In other words, a large number of different minisets S1, S2, . . . , Sj will
typically each have different q-heap data structures Q(S1), Q(S2), . . . , Q(Sj), but
they will share use of the very expensive common lookup table. This notion of sharing
an expensive lookup table, jointly developed by Fredman and us in the context of two
slightly different lookup schemes [25, 26], is perhaps the main intuitive reason one can
improve the performance of such a large number of different computing tasks (using
either the fusion trees or much of the subsequent literature).

We emphasize that this article has been organized so that the reader does not
need to know what algorithm is actually contained in the “black box” of software
of Theorem 2.1. It will matter not whether the software inside this curious black
box is manufactured by some corporate giant, such as IBM, Microsoft, or NetScape,
or by some financially stumbling computer company, called perhaps the NanoSoft
CorporationTM. Regardless of such details, our improvements over the prior litera-
ture’s six sample problems will be easily comprehensible to the reader, as a theoretical
family of algorithms, without knowledge of what lies inside the curious black box, in-
serted by the engineering staff of NanoSoft.

Indeed if I may drop the mild humor from the preceding paragraph, it makes a
serious point. It is that one does not need to understand the details of the fusion
procedures of [25, 26] to grasp the nature of our six sample problems. Thus, it is
sufficient to view Theorem 2.1 as a black box of software. Our six sample problems
are intended to motivate curiosity into the subject matter of [1, 2, 3, 4, 5, 6, 7, 8,
9, 11, 15, 25, 26, 36, 37, 40, 41, 43, 44, 45, 46] by illustrating the breadth of the
improvements they make feasible.

Moreover, despite the perhaps impractical coefficients associated with most fusion-
like algorithms, one enticing aspect of this subject is the long list of potential problems
which can have some facet of their capacity undergo at least a theoretical mathemat-
ical improvement. The six sample problems examined in sections 4 through 9 of this
paper and Thorup’s recently announced linear solution to Dijkstra’s SSSP problem
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[45] are probably only a small sample of what can actually be done. For instance,
the entire literature on fusion trees [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 25, 26, 36, 37, 40,
41, 43, 44, 45, 46] seems to be relevant to lower bound theory because it shows that
certain conjectured mathematical lower bounds, that had once looked very plausible,
are in fact theoretically fallacious under some quite natural models of computation.

3. Corollaries to Theorem 2.1. This section will discuss two simple corol-
laries to Theorem 2.1, which will illustrate the main format in which we will apply
Theorem 2.1. First we will introduce one useful lemma.

Lemma 3.1. For simplicity, let us assume that B > 16. Consider a B-tree whose
internal nodes have arity between B/8 and B, whose root has arity between 2 and B,
and whose leaves store the data and each have the same depth. Suppose that searches,
insertions, and deletions in such a tree of height h will have an O(h) cost when no splits
or merges occur, and the costs of splitting a node or merging two nodes is bounded by
O(B). Then regardless of the details of the structure of the node v, it is possible to
devise an insertion and deletion algorithm for this tree that runs in amortized time
O(h), with the O(h) asymptote using a constant that is independent of B.

Our main interest in Lemma 3.1 will be when the q-heaps of Theorem 2.1 are the
main organizing method for v’s internal structure.

Proof. We will only briefly sketch the proof of Lemma 3.1. Consider the natural
B-tree insertion/deletion algorithm that merges a nonroot internal node v with its
sibling w if v’s arity is less than B/8, that splits a node into two equal halves whenever
its arity exceeds B, and that makes the child of a tree root into the new root if the
preceding operations caused the old root to have only one child. (Sometimes a merge
will immediately trigger a split into two equal-size halves because a node becomes
too large after the merge operation.) It is easy to devise an accounting function that
shows there will be only an amortized number of O(1/B) splits and merges in a tree
of height h. (This is essentially because nodes of height j will have an amortized
frequency of O[ (8/B)j+1 ] of splitting and merging.) Hence the splits and merges
will have an O(1) amortized cost. This shows that the total cost of insertions and
deletions is O(h), since splitting and merging are the only costly operations outside a
general O(h) searching cost.

Lemma 3.1 also holds if splits and merges have a cost proportional to the number
of leaf descendants of a node. (Multibranching B-trees with such properties were
presented in [51].) However, such trees are not relevant to our present discussion.

We will frequently employ versions of the B-tree structure of Lemma 3.1 where the
branching factor B = 5

√
logN and where a q-heap is used to format the structure

of the individual internal nodes. This tree will have a height, search time, and update
time proportional to 1 + logM / log logN when it stores M elements. The term
q*-heap will refer to such a modified B-tree form of q-heap. From the combination of
Lemma 3.1 and Theorem 2.1, we thus have the following corollary.

Corollary 3.2. Assume that in a database of N elements, we have available
the use of precomputed tables of size o(N). Then for sets of arbitrary cardinality
M ≤ N , it is possible to have available variants of q*-heaps using O(M) space that
have a worst-case time O{ 1 + logM / log logN} for doing member, predecessor,
and rank searches, and that support an amortized time O{ 1 + logM / log logN}
for insertions and deletions.

The proof of Corollary 3.2 is an immediate consequence of Lemma 3.1 and The-
orem 2.1 because the data structure of Corollary 3.2 simply consists of a B-tree stor-
ing M records whose internal nodes are q-heaps, and which has a branching factor
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B = 5
√

logN .

Lemma 3.3. Consider again a B-tree data structure that satisfies the hypothesis
of Lemma 3.1. Then it is possible to develop a more elaborate version of the insertion
and deletion algorithms of Lemma 3.1 so that the insertion or deletion of a leaf-record
has an O(h) worst-case (rather than amortized) cost.

The previous literature has illustrated many examples of amortized optimization
algorithms which can also guarantee worst-case time, if their procedures are made
somewhat more elaborate. A similar type of proof of Lemma 3.3 is sketched in the
appendix (section 10). The reason we postpone the proof of Lemma 3.3 until the
appendix is that its worst-case control procedure has a poor coefficient, and the tech-
niques needed to transform the amortized time-optimizing algorithm of Lemma 3.1
into a worst-case controlled procedure is very similar to what often appears in the
previous literature.

Corollary 3.4. The data structure in Corollary 3.2 can be improved so that its
predecessor-query, member-query, insertion, and deletion operations all have a worst-
case complexity O{ 1 + logM / log logN}.

Once again, no proof is needed to verify Corollary 3.4. It is an immediate conse-
quence of Lemma 3.3 and Theorem 2.1 because its data structure simply consists of a
B-tree storing M records whose internal nodes are q-heaps and which has a branching
factor B = 5

√
logN . We will use the term q*-heap to refer to the data structure of

either Corollaries 3.2 or 3.4 because they are essentially the same concept, except that
one uses an amortized-optimizing algorithm and the other employs a slightly more
elaborate worst-case control. We close this section by emphasizing that the q*-heaps
of Corollaries 3.2 and 3.4 are related to q-heaps and AF-heaps in [26]. The latter data
structures, originating in our joint paper with Fredman, stimulated Corollaries 3.2
and 3.4.

Finally, we point out that there are roughly two types of applications of q*-heaps
that are explored in this paper and the previous literature. One type of application
is based on using the q*-heap to speed up an algorithm by essentially reducing the
height of a tree. This method is feasible because the q*-heap can often allow us to
traverse in O(1) time tree nodes which have roughly PolyLog(N) arity. An alternate
approach is to forgo making any use of the q*-heap until one has essentially reduced
an initial problem of size N to one of roughly size (logN)c for some fixed constant
c > 0, at which time the final processing step can be made to run in O(1) time. In
essence, the first method is used by us in sections 5 through 7 of this paper, while
the second was used by Fredman and Willard [26] and Thorup [45] and will be again
used by us in section 4 of this paper.

4. Hashing. Most of the sample problems discussed in this article come from
computational geometry. However, this article will begin by considering universal
hashing because our proposed improvement has a short description that contains
one very pretty idea. It will be unnecessary for the reader to examine the prior
literature on hashing before examining this section. Our discussion, although only an
abbreviated outline, should be sufficiently self-contained for the reader inexperienced
with universal hashing to still appreciate the gist.

Dietzfelbinger and Meyer auf der Heide [22] have developed a universal hashing
scheme where each insertion, deletion, and lookup will always have a probability ex-
ceeding 1−o(N−k) of running in constant time (for an arbitrary k > 0). This section
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will illustrate how q*-heaps enable us to develop a quite different alternate structure

that provides a better probability 1 − o(N−(logN)k) for these three operations to run
in constant time (where k > 0 is again an arbitrary constant, and it is assumed again
that the universe size U < Polynomial(N)).

The data structure for achieving this functionality rests on two concepts. First, it
was noted by Corollary 3.4 that the q*-heap provides a formalism to perform constant
time insertions, deletions, and retrievals on any set of PolyLog(N) cardinality. Now,
consider a hash table, with N addressable buckets for representing a time-varying set
of cardinality ≤ N , which has no overflow mechanism, and which simply stores in a
q*-heap all the records that are mapped into a common bucket address. This hash
table will thus assure that a bucket can be searched in O(1) time provided it stores
no more than PolyLog(N) elements.

The pleasing point is that the Poisson probability distribution will assign each

bucket a probability less than o(N−(log N)k+1

) for containing more than (logN)k + 2

elements. Thus, there will be only this tiny probability that a single one of our
N buckets will store no more than (logN)k + 2 elements. Thus for an arbitrary

constant k, there is the same probability greater than 1 − o(N− (logN)k) that a
constant time bound on searches, insertions, and deletions will hold within all N
buckets simultaneously!

Another pleasing point is that by applying some theorems of Siegel [42], we can
strengthen in a straightforward manner the Poisson probability analysis (above) into
a formal theorem about classes of universal hash functions. To do so, we assume that
there is a prespecified constant N bounding the maximal size of the time-varying set
stored in the hash table and that the universe size satisfies U ≤ Polynomial(N).
Then Siegel’s universal hash functions [42] will require only N ε words to form a class
satisfying his (logN)k-wise independence property, for any constant k. This fact
immediately implies that the Poisson distribution is a sufficiently accurate probability

predictor for this universal hash class to imply the same claimed 1−o(N−PolyLog(N))
probability that each search and update operation will run in constant time. (We
omit the further details because they are basically a routine hybridized application of
Siegel’s quite sophisticated formalism [42] in the context of the data structure outlined
in the prior paragraph of this section. The basic point is thus that universal hash
classes are assured by Siegel’s analysis to operate in the same manner as the simpler
analysis of randomized Poisson probability distributions from the prior paragraph of
our discussion.)

The three-paragraph passage above is obviously more complicated than it appears
because it cannot be fully formalized without duplicating both Siegel’s full formalism
[42] and the full proof [26] that a q-heap data structure satisfies the black box proper-
ties of Theorem 2.1. The reason the preceding discussion is significant is that it uses
essentially the same computing model as Dietzfelbinger and Meyer auf der Heide [22]
had used for their universal hashing scheme. Our probability of constant time opera-

tions is an 1− o(N−PolyLog(N)) magnitude, which is better than the probability of
the form found in [22] 1− o(N−k).

5. Priority-search trees. This section will examine McCreight’s priority-search
tree in considerable detail. This search problem will offer an excellent case study illus-
trating how a data structure can undergo theoretical (although possibly impractical)
improvements when q-heaps are used to streamline it. McCreight’s priority-search
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trees are described by both his journal article [35] and by Mehlhorn’s textbook [34].
We will assume that the reader has examined at least one of these sources when we
present our log log N improvements. The second half of this section will also explain
how to produce similar theoretical (but again not practical) improvements upon one
of Chazelle’s orthogonal range query structures in [16].

Given a set S of N points on the xy-plane, define Query (a, b, c) to be a request
for the subset of S that satisfies

a < x < b ∧ y > c.(5.1)

The McCreight priority-search trees can perform this operation in O(log N + K) time
(where K is the size of the output). It supports logN insert and delete operations
and uses O(N) space.

The fusion priority-search tree described here will be a variant of the B-tree,
with a branching factor B essentially storing information about some subset of points
whose x-value lies in some line segment [Av, Bv), whose “range” is implicitly defined
by the B-tree’s stored keys. This line segment will be denoted as Range(v), and Set(v)
will denote the subset of points from S whose x-coordinate lies in this interval. (This
notation thus implies that if w1, w2, . . . , wn are the children of v then the union of
Range(w1), Range(w2), . . . ,Range(wn) will equal Range(v), and similarly the union
of Set(w1), Set(w2), . . . ,Set(wn) will equal Set(v).)

Following McCreight’s example [35], each node v will store the particular ordered
pair (x, y) from SET(v) which has maximal y-value but is not stored in any ancestor
of v. This ordered pair is denoted as MAX(v). The unique aspect of the fusion
priority-search tree is that it will contain the following three additional fields:

1. KEYS(v): This will be a q*-heap describing the keys separating the ranges
of v’s children.

2. TOPS(v): This will be a second q*-heap that stores the y-coordinates of the
MAX elements belonging to v’s children.

3. FUSEDTOPS(v): Let y1, y2, . . . , yB denote the distinct y-values stored in
TOPS(v) and ri denote the rank of yi in this subset. Then FUSEDTOPS(v)
is the ordered tuple (r1, r2, . . . , rB). Since FUSEDTOPS(v) can be encoded
in B log B ≤ O(

√
log N · log log N) bits, it can fit into one word of

memory. (Recall that section 2 indicated that we always employ words which
have a bit length ≥ logN. )

Some notation is helpful to describe the search algorithm for the fusion priority-
search tree. Given the ordered triple (a, b, c) associated with the query (5.1), we say
a node v is a

(i) left borderline node if Range(v) intersects a but not b.
(ii) right borderline node if Range(v) intersects b but not a.
(iii) double borderline node if Range(v) intersects both a and b.
(iv) subsumed node if Range(v) is contained within the interval (a, b)
(v) pivotal node if v is both subsumed and a child of a double borderline node.

Since a fusion priority-search tree will have a O(log N/ log log N) height and a√
log N branching factor, it will have no more than O(log N/ log log N) borderline

and pivotal nodes. (This is because there can never be more than
√

log N pivotal
nodes in a tree with

√
log N branching factor.) All these pivotal and borderline nodes

can be found in O(log N/ log log N) time by a trivial application of the “q*-heap”
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search procedure of Corollary 3.2 (see footnote2 for the formal details). The first step
of our retrieval algorithm will consist of such a search for the borderline and pivotal
nodes. The second step of the algorithm of query (5.1) will examine the MAX(v)
elements of the nodes just visited to check whether they satisfy the query. It will
output those elements which do.

Each remaining element in S that satisfies query (5.1) will be a MAX(v) ele-
ment for some subsumed node v. Since we desire to make our algorithm run in
time O( logN / log logN + K) (where K is the size of the output), it is neces-
sary to make the last step of our search find these elements in time proportional to
O( logN / log logN +K). (This is quite a tight constraint that we are required to
satisfy. It will require some care to achieve this objective.)

To obtain this run time, the third step of our search will repeatedly invoke a sub-
routine called LOOKAHEAD. Upon visiting a node v, this procedure will determine
in constant time precisely which of v’s children w are subsumed nodes that simultane-
ously store an element in their MAX(w) fields that satisfies the query (5.1) before it
actually visits these elements! (It is extremely delicate and tricky to do this search in
precisely O(1) time because query (5.1) is a query with three inequality constraints
rather than the usual two inequalities associated with a conventional one-dimensional
range query condition. Since the tree node v will have

√
log N children, the proce-

dure LOOKAHEAD must make strong use of the q*-heap property to determine in
constant time which of these

√
log N children contain data of interest before they are

even visited.) The LOOKAHEAD procedure is easiest to describe if we let
(i) J1 denote an integer indicating how many of v’s children are subsumed,
(ii) J2 denote an integer indicating how many y-values in TOPS(v) are greater than

c,
(iii) J3 denote an integer that equals zero if v is a left borderline node, one if it is a

right borderline node, and two if it is subsumed.
Each of these three integers can be calculated in constant time, since J1 can be
discovered during a q*-heap search of the KEYS(v) field, J2 discovered by a similar
search through TOPS(v), and J3’s value will be known by the algorithm as soon as
it enters the node v.

Now consider the 4-tuple J∗ = (J1, J2, J3, FUSEDTOPS(v)). This tuple can
be encoded in O (

√
log N · log log N) bits. Consequently, we can store all the

possible values for this tuple in a precomputed lookup table of size o(N), where each
table entry shall essentially encode a list of which subsumed children w of v have
MAX(w) data elements satisfying query (5.1). (More precisely, the particular entry
in our table that is indexed by the 4-tuple J∗ = (J1, J2, J3, FUSEDTOPS(v)) can
be thought of as containing a list of integers, I1, I2, . . . , It, such that the next nodes
that should be visited by our top-down search are v’s I1th, I2th, . . . , Itth children.)
Since the lookup table can be built in o(N) preprocessing time and occupies o(N)
space, its presence does not increase the data structure’s overall memory space and

2The key idea behind this fast search procedure is that the q*-heap property allows us to trivially
organize a node v’s data structure so that only O(1) time is needed to find the children of v that are
borderline when v is a borderline node. Therefore by a trivial repeated iteration of this functionality
over the O(logN/ log logN) different height levels, we can trivially find all the O(logN/ log logN)
borderline nodes in O(logN/ log logN) time. Moreover, since the fusion priority-search tree has

a
√

log N branching factor and since all its pivotal nodes will be the children of that particular
double-borderline node which has the greatest depth, the same procedure will obviously only need√

log N time to find the
√

log N or fewer pivotal nodes that exist. Hence, we have displayed an

O(logN/ log logN) time procedure for finding all the pivotal and borderline nodes.
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preprocessing time. But yet it enables LOOKAHEAD to determine in O(1) time
which of v’s O(

√
log N) children are subsumed nodes having MAX-values satisfying

the query even before the time these elements are actually visited!

The key point about the preceding paragraph’s lookup table is that its o(N)
space and preprocessing costs are insignificant quantities because all the nodes in the
fusion priority-search tree will use one common lookup table, rendering its cost an
acceptably small and trivial burden.

Define EXPLORE(p) to be a three-part procedure that first visits the node p,
then invokes LOOKAHEAD to discover which children q of p are subsumed nodes
with Max(q) satisfying (5.1), and finally recursively calls itself to explore these chil-
dren. The final step of the search algorithm of query (5.1) will invoke EXPLORE
to probe the subtrees descending from the pivotal and the left and right borderline
nodes. Each subsumed node whose MAX(v) element satisfies (5.1) will lie in one
such subtree, and all its ancestors in this subtree will also have their Max elements
satisfy (5.1). These two conditions guarantee that EXPLORE will correctly find all
the nodes whose Max elements satisfy (5.1). Moreover, EXPLORE requires only
O(logN/ log logN + K) time to process the K subsumed nodes it finds because
of LOOKAHEAD’s O(1) search property, combined with the fact that there are only
O(logN/ log logN) borderline and O (

√
log N) pivotal nodes generated by the query

(5.1). Hence, we have shown that all three steps of the retrieval algorithm of query
(5.1) run in time O(logN/ log logN + K).

Finally, we will show how to execute insertions and deletions in the preceding
data structure in amortized time O(logN/ log logN). We assume B =

√
logN

and employ a fusion priority-search tree where each node has arity between B/8
and B. We will use the algorithm of Lemma 3.1 for rebalancing the B-tree. It
is immediate that constant time insertion and deletion operations are feasible in the
KEYS(v) and TOPS(v) fields because they are q*-heaps with O(1) height. The similar
O(1) algorithm to update FUSEDTOPS(v) consists of a two-step procedure that first
searches TOPS(v) to determine in O(1) time the rank of the particular element yi
(that is to be inserted or deleted) and then uses this rank, the integer i, and the old
value of FUSEDTOPS(v) to determine FUSEDTOPS(v)’s new value via table lookup.
(Once again, we note that the storage and preprocessing costs of the lookup tables
are negligible expenses throughout this paper, since they are o(N) costs.)

The natural algorithm for modifying a fusion priority-search tree of height h
will perform O(h) search and update operations into the KEYS(v), TOPS(v), and
FUSEDTOPS(v) fields (plus some minor bookkeeping work) when an insertion or dele-
tion does not trigger a node split or merge. It will thus consumeO(h) time when a split
or merge does not occur. Each split and merge will consume O(B) time. This data
structure thus satisfies requirements of Lemma 3.1. Since h < O(logN/ log logN), its
amortized cost for insertions and deletions is thus O(logN/ log logN), by Lemma 3.1.
(Once again by Lemma 3.3, a strengthened version of this algorithm can also guar-
antee worst-case insertion and deletion time.)

This paragraph will explain how to use the fusion trees to improve one of Chazelle’s
data structures. His article [16] devised a data structure that occupies
O(N logd−1N/ log log N) space and allows d-dimensional orthogonal reporting queries
to run in time O(logd−1N+K), where K is the number of elements reported [16]. The
new fusion priority-search trees allow us to revise Chazelle’s orthogonal range query
data structure so that a theoretically faster (but impractical) O(logd−1N/ log logN+
K) reporting time prevails in the same memory space. For the case of the dimension
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d = 2, the new data structure and algorithm will be the same as Chazelle’s except for
the following four changes:

1. Wherever Chazelle’s data structure had employed McCreight’s priority-search
trees, the new data structure will obviously utilize the new log logN faster
fusion priority-search trees.

2. The branching factor of the base tree nodes of [16] will be changed from logN
to logN/ log logN , thereby enabling one to traverse the set of children of a
particular node in log logN faster time.

3. Wherever an O(logN) time fractional cascade was previously employed, the
new data structure will use a revised fractional cascade that has a fusion tree
rather than a binary search tree as its index, thereby speeding up the index
search by a log logN factor.

4. The O(logN) time top-down tree walk in the base tree of [16] will be speeded
up by a log logN factor by having a q*-heap index the logN/ log logN chil-
dren of each node in this tree. (This is possible to do because the base tree
has height O(logN/ log logN) and every node has an arity logN/ log logN .
Thus, using the q*-heap data structure of Corollary 3.2, each such node can
then be traversed in constant time. Therefore, the top-down tree walk will
run in time O(logN/ log logN). )

It is immediate that this revision of Chazelle’s data structure supports two-dimensional
orthogonal reporting queries in time O(logN/ log logN + K). The d-dimensional
reporting time of O(logd−1N/ log logN + K) in space O(N logd−1N / log log N)
follows from Bentley’s method of reducing d-dimensional queries to two-dimensional
ones [10]. (All these results are obviously theoretical but not practical modifications
of the procedure of [16].)

The McCreight and Chazelle versions of priority-search trees have many uses in
computer science [35]. The fusion priority-search trees pertain to all such problems.
For example, one can search a set of N rectangles and output all the K intersections
among this set in time O(K +N logN/ log log N).

6. Aggregation queries. Let S denote a set of points in d-dimensional space.
Each point-record r shall contain a special field denoted as VALUE(r). Then a d-
dimensional aggregation query is defined as a d-tuple (A1, A2, . . . , Ad), representing
a request to calculate

∑
VALUE(r) for those elements satisfying

KEY · 1 < A1 ∧ KEY · 2 < A2 ∧ · · · ∧ KEY · d < Ad.(6.1)

This section will explain how to perform query (6.1) in timeO { (log N/ log log N)d−1 }
when the data structure uses space O(N logpN) with p > d−1. The last paragraph
of this section will define a certain sense in which our proposed algorithm can be
regarded as optimal.

Our data structure will be a hybridization of fusion trees with the overlapping
K-ranges of [12] and fractional cascading [19]. For simplicity, we will restrict our
attention to the case of the dimension d = 2. The data structure will be a variant
of the range tree whose “base” section T will be a tree with O(log N/ log log N)
height, PolyLog (N) branching factor and which stores the elements of S at the
tree’s leaf level in order of increasing KEY·1 value. Each internal node v of T
will contain B auxiliary fields, denoted as AUX(v, 1), AUX(v, 2), . . . ,AUX(v,B).
The field AUX(v, i) will describe the leaves descending from v’s left-most i sons
arranged in order by increasing KEY·2 value. Let r1 r2 r3 . . . be the elements in
AUX(v, i), so arranged in order of increasing KEY·2 value. Then AUX(v, i) will also
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store the aggregate quantities SUBTOTAL(v, i, j) =
∑j
k=1 VALUE(rk), for each

j ≤ CARDINALITY(AUX(v, i)).
A two-dimensional orthogonal wedge query (a, b) is a request to retrieve

∑
VALUE(r) for the subset of elements from S satisfying

KEY · 1 < a ∧ KEY · 2 < b.(6.2)

It was implicit from the prior literature that the data structure from the previous
paragraph could answer such a query by retrieving O(log N/ log log N) subtotal
counters. However, the difficulty was that there was no previously apparent compu-
tation method to find these counters in time O(log N/ log log N).

This difficulty will be resolved by assigning a q*-heap to each node v in the base
tree. The q*-heaps will enable a search algorithm to traverse each base tree node
in constant time and locate in O(log N/ log log N) time the O(logN/ log logN)
auxiliary fields that will need to be probed. The root’s auxiliary field will be searched
next in O(log N/ log log N) time by using a fusion tree to index it. The remaining
AUX-fields can be searched in constant time per field if we employ fractional cascading
[19] to interconnect these fields. This algorithm easily generalizes to all dimensions
d O{(log N/log logN)d−1} search algorithm for doing query (6.1) in O(N · logpN)
space, for any p > d− 1.

Finally, we wish to define a partial sense in which the algorithms proposed in
this section can be regarded as optimal. Let the notational symbol Ld(N) denote the
mathematical quantity of (log N/ log log N)d−1 . Chazelle and Yao have studied
time-space tradeoffs for aggregate queries using what is called the semigroup model
of computation. Their goal has been to determine how many semigroup addition
operations are needed to perform a query similar to (6.1) or (6.2). If a d-dimensional
data structure occupies O(N · logpN) space for any p > d− 1, they have determined
that the asymptote Ld(N) constitutes both an upper and lower bound for the number
of required semigroup addition operations. (Essentially, Yao published this result for
the dimension d = 2 in 1985 [55], and a more recent 1990 Journal of the ACM article
by Chazelle generalized Yao’s result for higher dimensions [17].)

Our computational model for doing the queries (6.1) or (6.2) is similar to that
used by Chazelle and Yao, except that we wish to be more conservative by charging
one unit cost for both each semigroup addition operation as well as for each other
type of standard machine-language computer operation that is needed to locate these
semigroup aggregate counters. From the earlier work of Chazelle and Yao, we know
that this model of computation certainly cannot calculate aggregates in a time bet-
ter than their lower bound asymptotes of the form Ld(N). The pleasing aspect of
the algorithm outlined in this section is that the upper bound on its runtime will
match the Chazelle and Yao lower bounds up to a constant factor when we assume
the computer’s machine language commands include the standard machine-language
operations recognized by the literature on fusion trees.

7. Compressed Van Emde Boas trees. Van Emde Boas trees provide a fa-
cility to dynamically perform predecessor queries among a set S of N keys chosen
from the universe 0, 1, 2, . . . , U − 1 in worst-case time O(log log U). The early
variants of this data structure [48] had used O(U) space, and Johnson [28] showed
how the same result could also hold in O(N · U ε) space. The y-fast tries [49] with
their modifications implied by Dietzfelbinger et al. [21] establishes a log logU time in
O(N) space, but they establish this speedup in an amortized expected rather than a
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strict worst-case model of time. This section will show that a log logU combination
of worst-case retrieval, insertion, and deletion times are possible in O(N) space pro-

vided that N ≥ U/ (log U)c·log log U = U · 2−c(log log U)2

, for any fixed constant
c. Without the use of the q-heap, the same O(log logU) time in O(N) space would
only be possible when N ≥ U/PolyLog(U)).

Let us begin by explaining how Van Emde Boas would derive the result in
the sentence above. There are two published variants of Van Emde Boas trees
[48, 47]. The first variant [48] provides dynamic worst-case times O(log logU) in
space O(U log logU). For some fixed constant K, the second variant of Van Emde
Boas trees [47] divides the initial set S into U/K subsets. Each subset Si of the larger
set S is associated with an integer i ≤ U/K , and Si describes the subset of S whose
key values lie between (i− 1)K and iK − 1. Let Z denote the set of integers i whose
Si sets are nonempty. Van Emde Boas’s second data structure [47] was a two-part
structure whose upper fragment uses his earlier data structure to index the set Z
and whose lower fragment is a forest of conventional balanced trees, where there is
one tree representing each set Si. Van Emde Boas [47] noted this structure would
have O(log logU + logK) worst-case search, insertion, and deletion times, and it
would use space O[ N + (U log logU)/K ] (where N is the cardinality of the set
S). Such constraints allow one to obtain O[ log logU ] worst-case times for the
basic retrieval and update operations over an O(N) space structure when N satisfies
N ≥ U/PolyLog(U)) (assuming we set K = U/N).

Q*-heaps allow us to improve the result above. In particular the above retrieval
and update times can be reduced to O( log logU + logK / log logN) balance trees
in the preceding data structure. Then the revised Van Emde Boas tree will allow an
O[ log logU ] worst-case time for the basic retrieval and update operations over an

O(N) space structure when N satisfies the much weaker constraint N−c(log log U)2

for any arbitrarily chosen constant c (assuming we again set K = U/N).

8. The ECDF calculation. The section will describe a new algorithm to cal-
culate a set of N d-dimensional ECDF statistics [10, 14] in linear space and time
O(N logd−1N/ log logN). This result is a log logN improvement over the Bentley
[10] and Bentley–Shamos ECDF algorithm [14]. The last paragraph of this brief sec-
tion will explain why we conjecture our algorithm is optimal at least for the dimension
d = 2.

Since our solution to the ECDF problem of [10, 14] will employ a data structure
that naturally combines fusion trees with an earlier data structure devised by Dietz
[20], we will provide only an abbreviated description of the new ECDF algorithm.
Dietz developed an O(U) space data structure for representing any subset of the
integers 0, 1, 2, . . . , U which supports logU/ log logU time for dynamic rank queries.

Consider a set S of N points in the plane. Let x(p) and y(p) denote the x and
y coordinates of a point p ∈ S. Let r(p) denote the rank of x(p) among the set of
x-coordinates. The first two steps of the new 2-dimensional ECDF algorithm will sort
the set S twice (by x and y coordinate) and calculate the value of r(p) for each p ∈ S.
The third step will employ Dietz’s data structure, where we now set the universe size
U = N. It will take the sorted list that enumerates the elements of S by increasing
y-value and insert the r(p) attributes of these elements one by one in order by their
increasing y-value into a Dietz data structure (whose search keys are its r-elements).
Just before the insertion of r(p), the algorithm will calculate the quantity e(p) that
indicates r(p)’s rank relative to the previously inserted r-elements. The three steps
of this algorithm run in O(N) space and O(N logN/ log logN) time. The derived
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quantities e(p) correspond to the 2-dimensional ECDF statistics of [10, 14].

For the case of the higher dimensions d > 2, essentially we will use Bentley’s
multidimensional divide-and-conquer method [10], adapted to Dietz’s data structure
and fusion trees, in a manner analogous to the preceding algorithm. That is, we will
use Bentley’s reduction method to reduce a d-dimensional search to a 2-dimensional
ECDF search and then apply the faster 2-dimensional ECDF algorithm outlined in
the preceding paragraph.

It is unknown whether the preceding algorithm is in any sense optimal for the
dimension d ≥ 3 . Our algorithmic upper bounds almost matches one of Chazelle’s
lower bounds [18] when the dimension d = 2. The preceding sentence used the phrase
“almost matches” because the computational model in [18] for batch-oriented lower
bounds is similar but not identical to our model of computation for upper bounds.
An interesting open question is whether or not Chazelle’s lower bound model could be
extended to show that the 2-dimensional ECDF algorithm in this section is optimal.

9. Further results and open questions. There are many examples of algo-
rithms which have linear costs except for their use of sorting and searching. Fusion
trees and/or the yet faster, more recent, and more refined sorting and searching
algorithms of especially Andersson [4], Andersson et al. [5], and Thorup [44, 46] im-
mediately imply speedups for such tasks. Some examples of these speedups include
the construction of a convex hull, the testing for the equality, disjointedness, and
containment relationships between two sets, the determination of the chromatic num-
ber of a permutation graph, etc. In particular, the algorithm of [5, 44] provides an
O(N log logN) randomized sorting time and the algorithm in [46] achieves a strict
O[N(log logN)2] worst-case sorting time applicable for each of the four paradigm
applications mentioned in this paragraph.

The main point is not the particular examples explored in the paragraph (above),
or indeed any of the examples discussed in this article. Rather it is that there are
so many other similar examples and problems that can somehow be theoretically
improved with one of the methodologies of [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 25, 26,
36, 37, 40, 41, 43, 44, 45, 46]. It should be stressed that we have focused mostly on
a moderately narrow bandwidth of problems, drawn from computational geometry
and information retrieval theory because such problems reflect the author’s particular
expertise and knowledge. If one merely examines Thorup’s linear time algorithm for
resolving Dijkstra’s SSSP problem [45], it is apparent that there will be many other
problems which theoretically can be improved with the use of q-heaps and their many
modifications.

One interesting open question is whether or not it is feasible to construct a Vornoi
diagram in faster than N logN time. Since a convex hull can be constructed in faster
time using especially the new faster variants of the fusion tree sorting algorithm
[4, 5, 44, 46], it is natural to inquire whether the same may be somehow true for Vornoi
diagram construction. Another interesting question is whether or not the original q-
heaps of [26] can somehow have their O(1) performance time characteristics extended
beyond the minisets of PolyLlog(N) size, described by Corollaries 3.2 and 3.4.

It is best to close this article by reviewing what we have accomplished, as well
as what has certainly not been done. Section 1 had deliberately used the phrase “so-
called improvements” to stress the fact that our theoretical asymptotic improvements
are not accompanied with coefficients of practically small size. On the other hand,
for the sheer delight of intellectual exploration, it is curious that so many different
problems in theoretical computer science can undergo asymptotic improvements after
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the application of fusion trees and q-heaps. (There are obviously many more of
these counterintuitive upper bounds one can establish when investigating this subject
further. Even when their coefficients are poor, such upper bounds are helpful in
clarifying what types of conjectured lower bounds can or cannot feasibly hold under
various different possible models of computation.) Moreover, although not practical,
our even-theoretical discussion of universal hashing is significant because dynamic
universal hashing is a foundational problem.

10. Appendix. The proof of Lemma 3.3. The previous literature has illus-
trated many examples of amortized optimization algorithms which can also guarantee
worst-case time, if their procedures are made somewhat more elaborate and com-
plicated. We will use a similar approach here to transform the amortize-optimizing
procedure of Lemma 3.1 into an algorithm that also controls its worst-case running
time, as required by Lemma 3.3. Our algorithm in many respects will be analogous
to [54]. The discussion in this appendix will therefore be brief. It may be helpful if
the reader examines [54] at some juncture, if he wishes to see how one should fill in
the precise details for the ideas that are intuitively sketched below.

Our B-tree will be quite conventional, in that all the data will be stored at the
leaf level of the B-trees and all leaves will have the same depth. Say an internal node
v is “safe” if its arity lies between B/4 and 3B/4, and it is “legal” if its arity lies
between B/8 and B. (Let us remember that Lemmas 3.1 and 3.3 assume that B > 16,
and that the tree root is allowed to “legally” contain between 2 and B children.) Our
insertion/deletion algorithms will then guarantee that each node has legal arity at all
times, and it will attempt to make the arity safe as often as possible.

The following notation will help us describe the insertion and deletion algorithms
of Lemma 3.3.

1. An insertion (or deletion) operation will be said to involve a node v if it
either inserts or deletes a leaf-record L that is either a descendent of v or a
descendent of one of the two “adjacent” siblings of v (that lie to its immediate
left or right).

2. An evolutionary merge process will be a procedure that gradually merges
two adjacent B-tree sibling nodes, v and w, into one new node x. We will
not allow the merge process to merge the two nodes, v and w, during one
single unified action because such an operation would require O(B) time
and possibly cause our algorithm to lose its desired worst-case running time
O(h). Rather, for some fixed prespecified constant K, each action of our
merge process will take K new pointers from v’s and w’s set of children and
put copies of these pointers into the new node x that is gradually being
constructed. Once the command to “merge” v and w is initiated, one such
“action” will be performed by our insertion-deletion algorithm during each
insertion and deletion command that “involves” either v or w. Once the new
node x is fully constructed, our merge algorithm will deallocate the nodes v
and w and make x a new child of the former parent of v and w.

3. An evolutionary split process will be the exact reverse of an evolutionary merge
process. It will be a procedure that gradually splits one node x into two equal-
sized nodes v and w by doing O(K) units of work for each insertion-deletion
command that “involves” x. That is, each operation will take K pointers
from x and put copies of them into the new evolving nodes v and w.

Our algorithm for inserting and deleting new leaf-records into the B-tree will
employ the above three constructs. It will be called Alg(K). It will initiate an
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evolutionary split process whenever a node’s arity becomes unsafely large by exceeding
the arity 3B/4. If a deletion causes a node v’s arity to fall below B/4 then Alg(K)
will do roughly the reverse action of the preceding sentence by essentially activating
an evolutionary merge process.3 Also, all conventional B-tree algorithms, including
Alg(K), must be prepared for the possibility that the root r might possibly contain
only one child s at the end of some deletion (or insertion) command. In this case,
Alg(K) will simply make s the new root of the B-tree and deallocate the node r
(similar to conventional B-tree algorithms).

For the sake of brevity, the preceding paragraph’s description of Alg(K) was kept
very short. The two natural questions a reader will ask about Alg(K) are

1. What is its runtime?
2. Is Alg(K) correct in the sense that it assures the B-tree is always legally

balanced?
The punchline will be that it will be trivial to show that Alg(K) always satisfies its
claimed O(h) worst-case time bound in a tree of height h, but its correctness will
depend on one further delicate observation.

In particular, the answer to question 1 is easy because each insertion or deletion
of a leaf-record L in a tree of height h will “involve” no more than 3h nodes in the
B-tree. (This is because only the ancestors y of L and y’s two adjacent siblings will
be “involved.”) Thus the evolutionary split processes of Alg(K) will execute no more
than 3h “actions,” each of which requires approximately K units of work. Hence, it
will consume no more than worst-case time O(h), where the coefficient hidden within
the O-notation is proportional to 3K.

Now let us turn to question 2. Its full answer is complex because Alg(K) will
certainly not have the power to assure a B-tree is legally balanced if the prespecified
constant K has too small an initial value. However, it is basically trivial to verify
that if the prespecified constant K is sufficiently large (i.e., say K > 100), then the
evolutionary processes used by Alg(K) will be quick enough to repair a temporarily
“unsafe” node v and its adjacent siblings (when necessary) to assure that the tree’s
balance never becomes so much worse as to be “illegal.” The latter is all we need to
prove Lemma 3.3.

We will not delve into further details or describe the tedious formal encoding of
the procedure Alg(K) because many other papers have appeared in the prior literature
about how an amortized-optimizing algorithm can be transformed into a worst-case
controlling procedure when one manipulates the algorithm’s constant coefficient factor
K with prudence (see, for example, [54, 52]). Our goal in this abbreviated appendix
was only to sketch the intuition behind Lemma 3.3 very briefly. The reader can
find much more sophisticated and interesting examples of amortized-to-worst-case
transformations in [54].

3Deletions are conceptually similar to insertions, but their formal algorithm is painfully more
complicated because there are several different subcases. The problem is that one might wish a tiny
node v to merge with its sibling w but the latter cannot be done immediately because either w is
currently too large or w is in the midst of another evolutionary split or merge that was previously
invoked. If w is too large (say its arity is of size larger than 5B/8), then v will initiate an evolutionary
split to break w into two equal-size halves (before v merges with one of the newly produced halves of
w). Similarly, if w is previously in the midst of another evolutionary split or merge when v wishes to
merge with it, then v’s merge must wait until the latter is completed. (The reason our definition of
“involvement” made mention of the “adjacent siblings” of v is that a process where an unsafe node
v cannot repair itself until its sibling is fixed will work correctly only if we make certain that every
insertion or deletion among the leaves descending from v causes K units of evolutionary repair to be
done for both v and its two adjacent siblings.)



FUSION TREE APPLICATIONS 1047

Acknowledgments. I thank both referees for their very helpful comments.

REFERENCES

[1] S. Albers and T. Hagerup, Improved parallel integer sorting with concurrent writing, Inform.
and Comput., 136 (1997), pp. 25–52.

[2] S. Alstrup, D. Harel, P. Lauridsen, and M. Thorup, Dominators in Linear Time, SIAM
J. Comput., 28 (1999), pp. 2117–2132.

[3] A. Andersson, Sublogarithmic searching without multiplication, J. Comput. System Sci., to
appear.

[4] A. Andersson, Faster deterministic sorting and searching in linear space, in Proceedings of
the 37th IEEE Symposium on Foundations of Computer Science, 1996, IEEE Computer
Society, Los Alamitos, CA, 1996, pp. 135–141.

[5] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman, Sorting in linear time?, J. Comput.
System Sci., 57 (1998), pp. 74–93.

[6] A. Andersson, P. Miltersen, S. Riis, and M. Thorup, Static dictionaries on AC0 RAMs:

Query time Θ(
√

Logn / LogLogn) is necessary and sufficient, in Proceedings of the 37th
IEEE Symposium on Foundations of Computer Science, 1996, IEEE Computer Society,
Los Alamitos, CA, 1996, pp. 441–450.

[7] A. Andersson, P. Miltersen, and M. Thorup, Fusion Trees Can Be Implemented with AC0

Instructions Only, Brics TR 96-30, University of Copenhagen, Copgenhagen, Denmark,
1996.

[8] A. Andersson and K. Swanson, On the difficulty of range searching, in Proceedings of
1995 Workshop on Algorithms and Data Structures, Lecture Notes in Comput. Sci. 955,
Springer-Verlag, Berlin, pp. 473–481.

[9] P. Beame and F. Fich, Optimal bound for the predecessor problem, in Proceedings of the 31st
ACM Symposium on the Theory of Computing, Atlanta, Georgia, 1999, pp. 622–631.

[10] J. Bentley, Multidimensional divide-and-conquer, Commun. ACM, 23 (1980), pp. 214–228.
[11] A. Ben-Amram and Z. Galil, When can we sort in o(NlogN) time?, in Proceedings of the 34th

IEEE Symposium on Foundations of Computer Science, 1993, IEEE Computer Society, Los
Alamitos, CA, 1993, pp. 538–546.

[12] J. Bentley and H. Mauer, Efficient worst-case data structures for range searching, Acta
Inform., 13 (1980), pp. 155–168.

[13] J. Bentley and M. McIlroy, Engineering a sort function, Software—Practice and Experience,
23 (1993), pp. 1249–1265.

[14] J. Bentley and M. Shamos, A problem in multi-variate statistics: Algorithm, data structure
and applications, in 15th Allerton Conf. on Comm., Contr., and Comp., University of
Illinois, Champaign, IL, 1977, pp. 193–201.

[15] A. Brodnik, P. Miltersen, and J. I. Munro, Transdichotomous algorithms without
multiplication—some upper and lower bounds, in Proceedings of WADS-1997, Lecture
Notes in Comput. Sci. 1272, Springer-Verlag, Berlin, 1997, pp. 426–439.

[16] B. Chazelle, Filtering search: A new approach to query-answering, SIAM J. Comput., 15
(1986), pp. 703–724.

[17] B. Chazelle, Lower bounds for orthogonal range searching II—the arithmetic model, J. ACM,
37 (1990), pp. 439–463.

[18] B. Chazelle, Lower bounds for off-line range searching, Proceedings of the 27th ACM Sym-
posium on Theory of Computing, ACM, New York, 1995, pp. 733–740.

[19] B. Chazelle and L. Guibas, Fractional cascading: A data structuring technique, Algorith-
mica, 1 (1986), pp. 133–162.

[20] P. Dietz, Optimal algorithms for list indexing and subset rank, in Proceedings of WADS,
Lecture Notes in Comput. Sci. 382, Springer-Verlag, Berlin, 1989, pp. 39–46.

[21] M. Dietzfelbinger, A. Karlin, K. Melhorn, F. Meyer auf der Heide, H. Rohnert, and
R. Tarjan, Dynamic perfect hashing: Upper and lower bounds, in Proceedings of the
29th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los
Alamitos, CA, 1988, pp. 524–531.

[22] M. Dietzfelbinger and F. Meyer auf der Heide, A new universal class of hash functions
and dynamic hashing in real time, in Automata, Languages and Programming, Lecture
Notes in Comput. Sci. 443, Springer-Verlag, New York, 1990, pp. 6–19.

[23] H. Edelsbrunner, Algorithms in Computational Geometry, Springer-Verlag, Berlin, 1987.
[24] M. Fredman, J. Komlos, and E. Szemerdi, Storing a sparse table with O(1) worst-case access

time, J. ACM, 31 (1984) pp. 539–544.



1048 DAN E. WILLARD

[25] M. Fredman and D. Willard, Surpassing the information theoretic barrier with fusion trees,
J. Comput. System Sci., 47 (1993) pp. 424–436.

[26] M. Fredman and D. Willard, Trans-dichotomous algorithms for minimum spanning trees
and shortest paths, J. Comput. System Sci., 48 (1994) pp. 533–551.

[27] G. Gonnet, Handbook of Algorithms and Data Structures, Addison–Wesley, Reading, MA,
1983.

[28] D. Johnson, A priority queue in which initialization and queue operations take O(log log D)
time, Math. Systems Theory, 15 (1982), pp. 295–309.

[29] R. Karlsson and J. I. Munro, Proximity on a grid, in Proceedings of the Second Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci.
182, Springer-Verlag, Berlin, 1985, pp. 187–196.

[30] R. Karlsson, J. I. Munro, and E. Robertson, The nearest neighbor problem on bounded
domains, in Automata, Languages and Programming, Lecture Notes in Comput. Sci. 194,
Springer-Verlag, Berlin, 1985, pp. 318–327.

[31] D. Kirkpatrick and S. Reich, Upper bounds for sorting integers on random access machines,
Theoret. Comput. Sci., 28 (1984) pp. 263–276.

[32] P. McIlroy, K. Bostic, and M. McIlroy, Engineering radix sort, Computer Systems, 6
(1993), pp. 5–27.

[33] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer-Verlag,
Berlin, 1984.

[34] K. Mehlhorn, Data Structures and Algorithms 3: MultiDimensional Searching and Compu-
tational Geometry, Springer-Verlag, Berlin, 1984.

[35] E. McCreight, Priority search trees, SIAM J. Comput., 14 (1985), pp. 257–276.
[36] P. Miltlersen, Lower bounds for union split-split-find related problems, in Proceedings of 26th

ACM Symposium on the Theory of Computing, ACM, New York, 1994, pp. 625–634.
[37] P. Miltersen, Lower bounds on static dictionaries with bit operations but no multiplication,

in Automata, Languages and Programming, Lecture Notes in Comput. Sci. 1099, Springer-
Verlag, Berlin, 1996, pp. 213–225.

[38] W. Paul and J. Simon, Decision trees and random access machines, in Proceedings of the
Symposium on Logic and Algorithmic, Zurich, 1980, Monogr. Enseign. Math. 30, University
of Geneva, Geneva, 1982, pp. 331–340.

[39] F. Preperata and M. Shamos, Introduction to Computational Geometry, Springer-Verlag,
Berlin, 1985.

[40] R. Raman, Priority queues: Small monotone and trans-dichotomous, Proceedings of ESA’96,
Lecture Notes in Comput. Sci. 1136, Springer-Verlag, Berlin, 1996, pp. 121–137.

[41] R. Raman, A Summary of Shortest Path Results, Technical report 96-13, Kings College, Lon-
don, 1996.

[42] A. Siegel, On universal classes of fast high performance hash function, their time-space trade-
off, and their applications, in Proceedings of the 30th Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 1989, pp. 20–25.

[43] M. Thorup, On RAM priority queues, in Proceedings of the 7th ACM-SIAM Symposium on
Discrete Algorithms, Atlanta, GA, 1996, pp. 59–67.

[44] M. Thorup, Randomized sorting in O(n log logn) time and linear space using addition, shift
and bit-wise Boolean operations, in Proceedings of the 8th ACM-SIAM Symposium on
Discrete Algorithms, New Orleans, LA, 1997, pp. 352–359.

[45] M. Thorup, Undirected single source shortest path in linear time, in Proceedings of the 38th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Los Alamitos, CA, 1997, pp. 12–21.

[46] M. Thorup, Faster deterministic sorting and priority queues in linear space, in Proceedings
of 9th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, 1998,
pp. 550–555.

[47] P. Van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space,
Inform. Process. Lett., 6 (1977), pp. 80–82.

[48] P. Van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation of an efficient
priority queue, Math. Systems Theory 10, (1977), pp. 99–127.

[49] D. Willard, Log-logarithmic worst case range queries are possible in space O(N), Inform.
Process. Lett., 17 (1983), pp. 81–89.

[50] D. Willard, New trie data structures which support very fast search operations, J. Comput.
System Sci., 28 (1984), pp. 379–394.

[51] D. Willard, Reduced memory space for multi-dimensional search trees, in Proceedings of the
2nd Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 182, Springer-Verlag, Berlin, 1985, pp. 363–374.



FUSION TREE APPLICATIONS 1049

[52] D. Willard, A density control algorithm for doing insertions and deletions in a sequentially
ordered file in good worst case time, Inform. and Comput., 97 (1992), pp. 150–204.

[53] D. Willard, Applications of the fusion tree method to computational geometry and searching,
in Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms, Orlando, FL,
1992, pp. 386–395.

[54] D. Willard and G. Lueker, Adding range restriction capability to dynamic data structures,
J. ACM, 32 (1985) pp. 597–619.

[55] A. Yao, On the complexity of maintaining partial sums, SIAM J. Comput., 14 (1985), pp. 277–
289.



NEAR-OPTIMAL PARALLEL PREFETCHING AND CACHING∗

TRACY KIMBREL† AND ANNA R. KARLIN‡

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1051–1082

Abstract. Recently there has been a great deal of interest in the operating systems research
community in prefetching and caching data from parallel disks, as a technique for enabling serial
applications to improve input–output (I/O) performance. In this paper, algorithms are considered
for integrated prefetching and caching in a model with a fixed-size cache and any number of backing
storage devices (disks). The integration of caching and prefetching with a single disk was previously
considered by Cao, Felten, Karlin, and Li. Here, it is shown that the natural extension of their
aggressive algorithm to the parallel disk case is suboptimal by a factor near the number of disks in
the worst case. The main result is a new algorithm, reverse aggressive, with near-optimal performance
for integrated prefetching and caching in the presence of multiple disks.
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1. Introduction. Recent advances in technology have made magnetic disks both
cheaper and smaller. As a result, parallel disk arrays have become an attractive means
for achieving high performance from storage devices at low cost. Multiple disks offer
the advantages of both increased bandwidth and reduced contention. Nonetheless,
there are many applications which do not benefit from this I/O parallelism as much
as they could, and end up stalling for I/O a significant fraction of the time.

At the same time, it has been observed that many of these applications have
largely predictable access patterns. This has enabled the use of prefetching and in-
formed cache replacement (e.g., [11, 21, 28, 29]) as techniques for reducing I/O over-
head in such systems. The two techniques are not independent, however, and can
interact poorly if their interaction is not considered carefully [6, 28].

In this paper, we consider a theoretical model that captures the important char-
acteristics of a system for prefetching and caching with multiple disks. We study the
offline problem of constructing an optimal prefetching and caching schedule in this
model for a given stream of requests for blocks of data residing on the disks. An op-
timal schedule minimizes the elapsed time required to serve the given request stream.
Although complete information about future requests is usually not available, partial
information is often available in the form of limited or even significant lookahead into
the request stream. Empirically we have found that a limited-lookahead version of our
algorithm outperforms other approaches in practice [17]. In addition, the design and
analysis of the optimal offline algorithm is an important step towards understanding
and evaluating more practical limited-lookahead algorithms. We can perhaps draw
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an analogy with the impact of the optimal offline paging algorithm [3] on the design,
implementation, and evaluation of online paging algorithms.

Surprisingly, even in the offline, single-disk situation, this is a challenging combi-
natorial problem. Recently, a polynomial-time exact solution for the single-disk case
was found via a linear programming relaxation [2]. The difficulty comes from the fact
that prefetching too soon can cause additional cache misses by replacing blocks that
would remain in the cache if prefetching were done later or not at all: new and possi-
bly better eviction opportunities arise as a program proceeds. Cao et al. [6] were able
to show that a simple, practical algorithm called aggressive, which prefetches as early
as is reasonable, has performance that is provably close to optimal in the single-disk
case.

We show, however, that the natural extension of this algorithm to the multiple
disk case has performance that is suboptimal by a factor nearly equal to the number
of disks. The interaction between caching and prefetching is significantly more com-
plicated in a system with multiple disks because a set of blocks can be prefetched in
parallel only if they reside on different disks: each disk can serve only one prefetch at a
time. The prefetching schedule and choice of cache evictions impact the potential for
subsequent parallel prefetching in a complex way. Our main result is a new algorithm,
reverse aggressive, with near-optimal performance for this problem.

1.1. An example. An example will serve to introduce our model and illustrate
the challenge posed by the multidisk problem. An application program references one
block per time unit. If the application wants to reference a block that is not present
in the cache, the application must wait or stall until the block is present. Each disk
can perform only one fetch at a time. If the cache is full, every fetch requires the
eviction of some block from the cache. In a real system, it is not known in advance
exactly how long a fetch will take (though in our theoretical model, the fetch time
is constant); because of this, we assume the evicted block becomes unavailable at
the moment the fetch starts. The goal is to minimize the total time spent by the
application, or equivalently to minimize the stall time. In the following example, the
cache holds four blocks, and it takes two time units to fetch a block from disk.

Suppose the application references blocks according to the sequence (A, b, C, d,
E, F ), and the cache initially holds blocks A, b, d, and F . Blocks A, C, E, and F
reside on one disk, blocks b and d on a different disk. A straightforward approach is to
use the aggressive algorithm [6]: always fetch the missing block that will be referenced
soonest and evict the block whose next reference is furthest in the future, but do not
fetch if the evicted block will be referenced before the fetched block.

Figure 1(a) shows the schedule of prefetches, evictions, and block service times
produced by this algorithm. For example, initially the first missing block is C, and
the block whose next reference is furthest in the future is F . Moreover, the reference
to F is after the reference to C. Therefore, the aggressive algorithm immediately
initiates a fetch for C, evicting F . Notice that this fetch is entirely overlapped with
computation (the references to A and b). The schedule produced using this algorithm
results in one unit of stall time (the sixth time unit). The entire sequence is served
in seven time units.

Figure 1(b) shows another schedule that is faster by one time unit. On the first
fetch, d is evicted rather than F , even though d is referenced earlier than F . This has
the advantage of offloading one fetch from the heavily loaded disk to the otherwise
idle disk. This change allows the fetches of C and d and of d and E to proceed in
parallel, thus saving one time unit.
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Fig. 1. An example of prefetching and caching with two disks. One disk holds blocks A, C, E,
and F, and another disk holds blocks b and d. The cache size is K = 4 and the fetch time is F = 2.

The example shows that it is helpful to take disk load into account when making
fetching and eviction decisions. This is the factor that makes the multidisk problem
more difficult than the single-disk problem.

1.2. Overview of results. Our model generalizes the previous example in the
obvious way.

• Let D be the number of disks.
• Let B be a set of blocks. We will refer to the disk on which a block b ∈ B

resides as the color of b.
• There is a cache that contains at most K blocks in B at any time.
• A reference sequence, or request sequence, is an ordered sequence of references
R = r1, r2, . . . r|R|, where each ri ∈ B.
• Fetching a block from a disk into the cache takes F time units.

We imagine that there is a cursor which, at any time during the servicing of the
request sequence, points to the next request to be served. If this request is for a
block that is in the cache, the cursor advances by one during the next time unit. If
this request is for a block that is not in the cache, the cursor stalls until that block
arrives in the cache (i.e., until the fetch for that block completes). Note that to the
extent that the cursor is advancing, a prefetch can overlap the serving of requests.
Also, prefetches can overlap each other provided that the prefetched blocks reside on
different disks. We assume that each block resides on only a single disk.

The goal is to determine a schedule of prefetches and evictions such that the time
required to serve the entire sequence is minimized. Since it requires one unit of time
to serve each request, the elapsed time is equal to the length of the request sequence
plus the total number of steps during which the cursor stalls.

We consider three algorithms for parallel prefetching in this paper: conservative,
aggressive, and reverse aggressive. The first two are natural extensions of the two
single-disk prefetching strategies described in [6]. They lie at opposite ends of the
spectrum in terms of the total number of fetches performed: conservative performs
the minimum possible number of fetches, at the expense of a worse elapsed time in
the worst case; aggressive prefetches as aggressively as possible without being foolish.

We give nearly tight bounds on the performance of both of these algorithms.
Unfortunately, for both of these algorithms there are reference patterns on which
their performance is suboptimal by a factor of nearly D, for values of D, F , and K
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that are typical in practice.
Theorem 1. On any reference string R, the elapsed time of conservative with D

disks on R is at most D+ 1 times the elapsed time of the optimal prefetching strategy
on R.

This bound is nearly tight for D � F � K: There are arbitrarily long strings on
which conservative requires time 1 +DK−F

K
F

F+D times the optimal elapsed time.
Theorem 2. On any reference string R, the elapsed time of aggressive with D

disks on R is at most D(1 + F+1
K ) times the elapsed time of the optimal prefetching

strategy on R.
This bound is nearly tight for D � √F : There are arbitrarily long strings on

which aggressive requires time D − 3D(D−1)
F+3(D−1) times the optimal elapsed time (within

an additive constant that depends only on F and K).
Our main result is the development and analysis of a new algorithm, called reverse

aggressive, whose performance is provably close to optimal. Interestingly, it achieves
this by constructing a prefetching schedule backwards, i.e., by considering the refer-
ence sequence in reverse order. For reasons that will be made clear, this causes it
to avoid problems encountered by the (forward) aggressive algorithm. Aggressive suf-
fers from load imbalance and an inability to keep lightly loaded disks from outpacing
(prefetching far ahead of) heavily loaded disks. On real systems, DF/K is small,1

so that the factor 1 + DF/K in the following theorem is not much greater than one
(hence our claim of “near-optimality”).

Theorem 3. Reverse aggressive requires at most 1 + DF/K times the optimal
elapsed time to service any request sequence, plus an additive term DF independent
of the length of the sequence.

This bound is nearly tight for small D: There are arbitrarily long strings on which
reverse aggressive requires (1 + (F − 1)/K) times the elapsed time of the optimal
prefetching strategy on R.

1.3. Related work. Our problem is a generalization of (but significantly more
complicated than) the classical paging problem. Indeed, one principle for prefetching
(the optimal eviction rule described in section 2.1) is derived from Belady’s optimal
longest forward distance [3] paging algorithm. As we will see, however, the application
of this rule alone is insufficient to guarantee good prefetching performance; the natural
algorithm based on it is suboptimal by a factor of nearly D + 1. (See Theorem 1.)

On the theoretical side, we know of no prior work on the integration of paral-
lel prefetching and caching. There have been some interesting results on the use of
data compression for the design of optimal prefetching strategies [20, 33] and work
on prefetching strategies for external merging under a probabilistic model of request
sequences [25]. However, these studies concentrated only on the problem of deter-
mining which blocks to fetch, and did not address the problem of determining which
blocks to replace.

Our work builds on recent studies of the sequential (single-disk) version of this
problem which showed [6, 5] that it is important to integrate prefetching, caching,
and disk scheduling and that a properly integrated strategy can perform much better
than a naive strategy, both theoretically and in practice.

In the systems community, caching and prefetching have been known techniques
to improve the performance of storage hierarchies for many years [3, 12]. The breadth

1F/K is typically less than 0.02, and typical disk-arrays have at most 5 disks. Moreover, tech-
nological trends are such that F/K will only get smaller with time.
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of application of these techniques has ranged from architecture [31] to database sys-
tems [9, 26, 10] to file systems [12, 22, 15, 24, 32, 4, 14, 7, 29] and beyond. A recent
trend in this research is to use applications’ knowledge about their access patterns to
perform more effective caching and prefetching [4, 7, 28, 29].

Our practical motivation for this problem comes from file systems. In this domain,
the most common prefetching approach is to perform sequential read-ahead, i.e., to
detect when an application accesses a file sequentially and to prefetch the blocks of
the files that are so used [12, 22, 23]. The obvious limitation of this approach is that
it benefits only applications that make sequential references to large files. Another
body of work has been on predicting future access patterns (without hints from the
application) even when access patterns are more complicated [11, 32, 26, 10, 14].

Much research on parallel I/O has concentrated on techniques for “striping” and
distributing error-correction codes among redundant disk arrays or other devices.
These techniques are used to achieve high bandwidth by exploiting parallelism and
to tolerate failures [16, 30, 8, 27, 13].

Our work complements these previous efforts. File access prediction (with or
without application hints) can be used to provide the inputs to the algorithm described
in this paper. Once future accesses are known, our algorithm determines a near-
optimal prefetching schedule. Our algorithm achieves near-optimal performance for
any given layout of disk blocks (such as striping). Its performance will only improve
when a near-optimal layout is used.

Recently, caching and prefetching have also been empirically studied for parallel
file systems [11, 21, 28, 29].

Finally, we have performed simulation studies of the performance of the algo-
rithms described in this paper. Companion papers [17, 19] report on this empirical
evaluation. A brief summary of the results is given in section 6 of this paper.

1.4. Organization of the paper. In section 2, we describe several properties
that can be assumed of optimal prefetching algorithms. These constrain the problem
and by adhering to them, we can ensure that an algorithm’s performance is not far
from optimal. Also in section 2, we describe the algorithms in greater detail and give
intuition on their performance. In section 3, we give overviews of the proofs of the
results claimed in section 1.2. Detailed proofs are contained in section 4. In section 5
we consider the time required by the algorithms to determine prefetching and caching
schedules. In section 6, we briefly describe our empirical studies of the performance
of these algorithms. We conclude with open problems for further research.

2. Properties of optimal prefetching and caching schedules. After the
following definition, we describe several properties that can be assumed of optimal
prefetching algorithms.

Definition 4. At any point in processing the sequence (i.e., for any given cache
state and cursor position), a hole is a block that is not present in the cache. We will
refer to the operation of fetching a disk block as “filling a hole.” We will use the
term “hole” to refer to both the missing block and its next occurrence in the request
sequence; which of these is meant will be clear from the context. If the cache is full,
there are K out of |B| blocks in the cache and thus |B| − K holes. After a block is
requested for the last time, we consider the corresponding hole in the request sequence
to be at position |R| + 1, i.e., greater than the index of any request, where R is the
request sequence.
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2.1. Prefetching and caching with a single disk. Before proceeding, we
review the results of Cao et al. [6] for prefetching and caching in the single-disk case.
They described four properties that can be assumed of any optimal strategy in the
single-disk case:

1. optimal fetching: when fetching, always fetch the missing block that will be
referenced soonest;

2. optimal eviction: when fetching, always evict the block in the cache whose
next reference is furthest in the future;

3. do no harm: never evict block A to fetch block B when A’s next reference is
before B’s next reference;

4. first opportunity: never evict A to fetch B when the same thing could have
been done one time unit earlier.

It is easy to show that any schedule for serving requests and performing fetch-
and-evict operations that does not follow these rules can be transformed into one
that does, with performance at least as good. The first two rules specify what to
fetch and what to evict, once a decision to fetch has been made. The last two rules
constrain the times at which a fetch can be initiated. However, these rules do not
uniquely determine a prefetching schedule. In particular, they do not specify how to
choose between an earlier prefetch with a correspondingly earlier eviction and a later
prefetch with a correspondingly later eviction. The former helps prevent stalling on
earlier holes, whereas the latter may help prevent the introduction of holes, and hence
stalling at a later time.

Nonetheless, these rules do provide a fair amount of guidance in the design of
a prefetching algorithm. Cao et al. considered two natural algorithms, aggressive
and conservative, that follow these rules and lie at opposite ends of the spectrum of
possibilities. Aggressive is the algorithm that initiates a prefetch whenever its disk
is ready (i.e., is not in the middle of a prefetch) and the do no harm rule allows
it. Conservative is the algorithm that refuses to fetch until it can evict the same
block that would be evicted by the optimal longest forward distance [3] algorithm in
the classical paging model. That is, conservative applies the rule optimal eviction as
though the prefetch were to be initiated immediately before serving the request to the
missing block, then applies the rule first opportunity to swap the chosen fetch/eviction
pair as early as possible. Conservative makes the minimum number of total fetches,
but it often declines opportunities to prefetch blocks.

Cao et al. showed that in the single-disk case, conservative’s elapsed time on any
sequence is at most twice the optimal time, and that aggressive’s worst-case elapsed
time is at most min(1 +F/K, 2) times optimal, where F is the time required to fetch
a block and K is the cache size measured in blocks. (They also showed that these
bounds are tight.) On real systems, F/K is typically small, so aggressive is close to
optimal.

2.2. The multidisk case. There is an obvious and natural extension of each of
these algorithms to the multidisk case. For aggressive, it is the following: Whenever
a disk is free, prefetch the first missing block of that disk’s color, replacing the block
(of any color) whose next reference is furthest in the future among all cached blocks.
However, a fetch should be started only if the next access to the evicted block is after
that of the block being fetched.

Unfortunately, as we shall see, this algorithm does not enjoy the same performance
guarantee in the multidisk case as it achieved in the single-disk case. In fact, the four
properties on which it was based in the single-disk case do not hold for optimal
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strategies in the multidisk case. As a result, it suffers from two problems in the
multidisk case that did not exist in the single-disk case:

• The eviction decisions it makes are “color blind”: It chooses evictions to make
without consideration of the load on the disks. These choices can result in
a situation where many of the holes at any time are of the same color, and
therefore cannot subsequently be prefetched in parallel. (See Figure 1 for an
example of this.)
• Aggressive is too aggressive. The result is that it can cause some disks to

fetch too far ahead with respect to other disks. These fetches increase the
share of the cache occupied by blocks belonging to the lightly loaded disk(s),
creating even more holes for the heavily loaded disk(s) to fill.

Therefore, we are motivated to approach the multidisk prefetching problem in a
way that will constrain the space of possibilities for the prefetching schedule in the
same way that the four rules described above constrain the schedule in the single-disk
case.

2.3. Properties of optimal parallel prefetching and caching. It is not
hard to show that out of the four rules for optimal prefetching with one disk, only the
last (first opportunity) holds when there are multiple disks. Finding a rule to replace
optimal fetching is not much of a problem, however. The “colored” version of the
rule can be used, i.e., for each disk col, the next block to fetch from col is the next
missing block in the sequence that is colored col. Thus, as in the single-disk case, the
question of which block to fetch reduces to the question of when to initiate a prefetch
operation; this question needs to be answered for each disk, of course.

Optimal eviction is more troublesome. Suppose there are two disks, colored red
and blue. If there are many red blocks missing in the sequence, then it may be that
the best choice for eviction is a blue block even though the block whose next request
is furthest in the future is red. This is because the relatively lightly-loaded blue disk
can better handle the increased burden of another missing block than the red disk
can. (See Figure 1.) Given that a blue block is to be evicted, it is true that the best
choice is the blue block that is not requested for the longest time. That is, the colored
version of this rule holds, but it does not tell us which color block to evict.

Even the seemingly obvious do no harm rule can be violated by the optimal
prefetching strategy. This is because the loads on the disks can be imbalanced. If
there are many red blocks missing from the sequence, say, but no blue blocks missing,
it may be advantageous to buy time by evicting a blue block (and completing a fetch
of a red block sooner than would be possible otherwise), and then bringing the blue
block back into the cache after a request to some red block has been served (so that
a new eviction opportunity has arisen).

2.4. Using the reverse sequence. An interesting twist allows us to convert
multiple-disk prefetching to a more constrained, and hence easier to solve, problem.
In particular, we consider the request sequence in reverse, in a sense we will describe
momentarily. We will be able to show that of the four rules, all but one (optimal
eviction) hold for optimal schedules serving the reverse sequence. Moreover, we will
be able to replace this rule by a simple colored variant as we did with the optimal
fetching rule for the forward sequence; this will be shown in section 4.1.

First, we return to the single-disk case, and observe that any prefetching schedule
that serves the reverse sequence reverse(R) in time T can be used to derive a schedule
to serve R in time T as follows. If the schedule for serving reverse(R) serves request ri
between times t and t+1, the derived schedule for R serves ri between times T − t−1
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Fig. 2. An example of reversing a schedule of prefetching and caching with two disks: a disk
holding blocks A, B, and D, and another disk holding block c. The cache size is K = 2 and the fetch
time is F = 2.

and T − t. If the reverse schedule replaces a with b between times t and t + F , the
derived schedule replaces b with a between times T − t−F and T − t.2 Applying this
logic twice, we see that the optimal elapsed time for the reverse sequence is the same
as the optimal elapsed time for the original sequence.

Reversal of the sequence is more complicated when multiple disks are considered.
In the forward direction, the prefetching schedule is constrained to fetch at most
one block at a time from each disk; eviction choices may be blocks of either color.
Switching between the forward sequence and the reverse sequence, fetches become
evictions and vice versa. To derive a useful schedule from a schedule serving the reverse
sequence, then, requires that the schedule for the reverse sequence be constrained to
evict at most one block of each color at a time. This is illustrated in the following
example (see Figure 2):

Consider the request sequence “ABcD,” where upper case letters denote red blocks
and lower case letters denote blue blocks. Let F = 2 and K = 2. By assumption, at
time 0, blocks A and B reside in the cache (for the execution of the sequence in the
forward direction). At time 1, a fetch is initiated to bring c into the cache from the
blue disk, evicting A. At time 2, a fetch of D from the red disk is initiated, evicting
B from the cache. The schedule serves the request sequence in five units of time. See
part (a) of Figure 2.

In the schedule for the reverse sequence, at time 1, D is evicted in order to start
fetching B. Since c is blue and D is red, a fetch of A (evicting c) can be started at
time 2, even though A and B are both red. See part (b) of Figure 2. This schedule
can be transformed as described in the previous paragraphs into the valid schedule
for the forward sequence of part (a), which is its mirror image.

As previously mentioned, all of the rules presented in section 2.1 except optimal
eviction can be assumed of optimal prefetching schedules for the reverse sequence.
This fact makes it easier to find a schedule for the reverse sequence, then transform
it into one for the original sequence, than to find a schedule for the original sequence
directly. The reason for this is that in the forward direction, any time a block is
prefetched a decision must be made as to which color block to evict. In the reverse
direction, this decision is made for us: the block to evict is the one not needed for the

2We assume that all schedules start with the cache containing the first K distinct requests in the
sequence. Alternatively, all our results hold within an additive constant that accounts for differences
in algorithms’ transient cold-cache startup behaviors. We can assume without loss of generality that
all schedules end with the last K distinct requests in the cache.
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longest time whose color matches the color of the free disk (i.e., the colored version
of the optimal eviction rule can be used). One might expect that fetch decisions
are harder, but this is not the case. In the forward direction, the missing block to
fetch is the one of the right color that is needed soonest. (This is the colored version
of optimal fetching described earlier.) In the reverse direction, it is the one needed
soonest, regardless of color.

2.5. The reverse aggressive algorithm. Reverse aggressive is a prefetching
algorithm that performs aggressive prefetching on the reverse of its input sequence,
then derives a schedule to serve the forward sequence as described in section 2.4. That
is, on the reverse sequence, it behaves as follows. Whenever a disk is not in the middle
of a prefetch, it determines which block in the cache is not needed for the longest time
among those with the same color as the disk. If the index of the next request to that
block is greater than the index of the first hole (of any color), the block identified for
eviction is evicted, and the first hole is prefetched.

An intuitive explanation of reverse aggressive’s advantage over (forward) aggres-
sive is the following:

• Whereas aggressive chooses evictions without considering the relative loads
on the disks, reverse aggressive greedily evicts to as many disks as possible
on the reverse sequence. In the forward direction, this translates to per-
forming a maximal set of fetches in parallel. The fact that these are fetches
in the forward direction means that at some point earlier in the sequence,
corresponding blocks were evicted. Thus the eviction decisions of reverse
aggressive on the forward sequence are based on the ability to prefetch the
evicted blocks later on in parallel.
• Whereas aggressive can wastefully prefetch ahead on some of its disks, reverse

aggressive is greedy in the reverse direction. Consequently, it is fetching pages
in the forward direction just in time (to the extent possible) for them to be
used. This results in performing close to the best evictions possible for those
fetches, and exploiting parallelism as much as possible without creating load
imbalance.

3. Results. In this section we give high-level descriptions of the main ideas used
to derive our results. Full details are given in section 4.

3.1. Performance of conservative and aggressive. The key concept in the
upper bound of Theorem 2 is the notion of domination from the work on prefetching
in the single-disk case [6]. This allows us to bound the cost of aggressive’s prefetching
schedule in terms of the progress of the optimal schedule at intermediate points during
the processing of the request sequence.

Definition 5. Given two sets A and B of holes with |A| ≤ |B|, A is said to
dominate B if for all i, 1 ≤ i ≤ |A|, the index of A’s ith hole (ordered by increasing
index) is no less than the index of B’s ith hole. We will say that the ith hole in A is
matched to the ith hole of B. Notice that domination is transitive.

Let opt denote an optimal algorithm. For intuition, consider the following. If
aggressive’s cursor is ahead of opt’s cursor, aggressive’s holes dominate opt’s holes,
and both are initiating prefetches at the same times, then opt’s cursor cannot pass
aggressive’s: while aggressive stalls on a hole, opt’s cursor cannot pass its matching
hole. We show that aggressive is able to continually regain and maintain such an ad-
vantage (having its cursor ahead and its holes dominate) over opt at regular intervals,
without losing too much time to opt in the process. Aggressive can lose its advantage,
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Increasing request index

Fig. 3. Strong domination example: the upper set of holes strongly dominates the lower one.
Mismatched shapes represent excess holes. Edges show how strong domination implies ordinary
domination. (See Lemma 11 and the discussion following.)

and lose time to opt, by prefetching more aggressively than opt; this will become clear
as the details are presented.

The lower bounds of nearly D in Theorems 1 and 2 come from the fact that an
adversary can construct request sequences that cause both conservative and aggressive
to always fetch blocks from only one disk (because they make poor eviction choices).
The optimal algorithm opt can serve these same sequences at nearly D times the rate
because of the parallelism of prefetching on D disks. The additive term of one for
conservative (in both the upper and lower bounds) comes from opt’s ability to overlap
prefetches with the serving of requests. In contrast, conservative may not be able to
do so.

The factor of D in the upper bounds comes from the fact that D is also a limit to

the parallelism available to opt. As in the single-disk case, the additive term (D+1)F
K

in the upper bound for aggressive comes from the fact that aggressive’s newly created
holes are always at least K steps from the cursor. From this, it follows that aggressive
prefetches too soon (creating extra holes) at most once every K requests.

3.2. Performance of reverse aggressive. The proof of Theorem 3 required
several new ideas. The notion of domination from the proof of Theorem 2 is replaced
by a stronger notion that we call strong domination.

Definition 6. Let A and B be sets of holes, possibly with different numbers of
holes of each color, such that |A| ≤ |B|. For each color col, let Ncol(A) (respectively,
Ncol(B)) be the number of holes of color col in A (respectively, B). Let Ncol =
min(Ncol(A), Ncol(B)). If Ncol(A) > Ncol(B), we say that col is an excess color of A;
if Ncol(A) < Ncol(B), col is an excess color of B; if Ncol(A) = Ncol(B), col is not an
excess color. Let Ecol = |Ncol(A)−Ncol(B)|. If col is an excess color of A, we refer
to A’s first Ecol holes of color col following the cursor as excess holes; excess holes of
B are defined similarly. We say the set of holes A strongly dominates the set of holes
B if

• for each col, A’s last Ncol holes of color col dominate B’s last Ncol holes of
color col (i.e., A’s nonexcess holes of color col dominate B’s nonexcess holes
of color col, whether col is an excess color of A or B or col is not an excess
color), and
• all of B’s excess holes precede the first hole in A of any color.

This idea is illustrated in Figure 3, in which holes of different colors are depicted
by different shapes.

Definition 7. For two sets A and B of holes, we say that A strongly dominates
B up to index y, if the subset of holes in A that occur at or before index y in the
request sequence strongly dominates the subset of holes in B that occur at or before
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new holefilled hole

Fig. 4. Domination lemma: the upper set of holes continues to strongly dominate the lower one.

index y. When y is the end of the request sequence, we will simply use “strongly
dominates” rather than “strongly dominates up to the end of the sequence.”

Definition 8. Let New(H, (cur, col)) denote the new set of holes should a
prefetch be initiated, if possible (i.e., if allowed by the do no harm principle), evicting
a block of color col, when the cursor position is cur and the current set of holes is
H. Note that New(H, (cur, col)) is uniquely determined by the optimal prefetching
principles optimal fetching and colored optimal eviction described in section 2.4. If
the do no harm principle prevents a prefetch, define New(H, (cur, col)) = H.

The following crucial lemma is used to show that if reverse aggressive strongly
dominates opt, and both have the opportunity to initiate a fetch replacing blocks of
the same color, then reverse aggressive strongly dominates opt after the corresponding
fetches complete.3 For purposes of analysis, we consider any blocks that are currently
being fetched to be in the cache, i.e., there is no corresponding hole in A or B, even
though the corresponding request cannot be served until the F steps are over.

Lemma 9 (strong domination lemma). Let A and B be two sets of holes in a
request sequence R, and let y, curA < y, and curB < y be indices in R. If A strongly
dominates B up to index y, then

1. for each color col, if curA ≥ curB, New(A, (curA, col)) strongly dominates
New(B, (curB , col)) up to y;

2. for each color col, New(A, (curA, col)) strongly dominates B up to y;
3. for each color col, if curA ≥ curB and every block of color col that is not

a hole in A is requested after curA and before the first hole in A so that
New(A, (curA, col)) = A (i.e., do no harm prevents a prefetch), A strongly
dominates New(B, (curB , col)) up to y;

4. for each pair colA and colB of colors, if the best eviction choice of color
colA given the set of holes A and the cursor position curA is a block that is
not requested between curA and y, New(A, (curA, colA)) strongly dominates
New(B, (curB , colB)) up to y.

Part 1 of Lemma 9 is illustrated in Figure 4.
Note that part 3 of Lemma 9 is a special case of part 1. We prove it separately

because it is an important case and because it will aid understanding later, where the
lemma is used.

It is not possible to show that reverse aggressive strongly dominates opt through-
out the sequence. Instead, we show that by giving reverse aggressive a little more
time to serve every subsequence of K requests, it will strongly dominate opt at these

3We are speaking here of the performance of reverse aggressive on the reverse sequence, compared
to an optimal schedule for the reverse sequence. However, as described in section 2.4, the optimal
elapsed time is the same in both directions, and from reverse aggressive’s schedule, we are able to
derive a prefetching schedule for the forward sequence with the same elapsed time.
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regular intervals. That is, reverse aggressive loses about DF steps by prefetching too
soon, thereby generating extra holes to fill, only every K requests or so.

The difficulty in showing this is that, in fact, reverse aggressive may prefetch
prematurely very often, but with at most D − 1 disks. We show that it is able to
compensate by consistently making good (distant from the cursor) evictions with the
other (“good”) disk. While reverse aggressive spends an extra F steps relative to opt
filling the first extra hole created by one of the “bad” disks, the good disk fills one
hole. This gives reverse aggressive a “one-hole lead” over opt with respect to the filling
of holes. (Remember, each disk can fetch blocks of any color.) This provides a buffer
against stalling on the (further) extra holes created by the bad disks, at least until
an extra hole created by the good disk is reached. (The strong domination lemma is
used to show that this invariant is maintained.) The good disk creates extra holes
only once every K requests.

Formalizing these arguments is difficult; the details are presented in section 4.

4. Proofs. The following definitions will be useful. Further definitions, specific
to the particular proofs in which they are used, will be introduced later.

We divide the request sequence (or, when appropriate, its reverse) into phases,
maximal-length subsequences of requests to K distinct blocks, as follows. The first
phase begins with the first request. Each phase ends immediately before the first
request to the (K + 1)st distinct block since the beginning of the phase, and the next
phase begins with that request.

If algorithm alg has fetches in progress at any time t, we denote alg’s holes before
initiating those fetches by H−alg(t) (i.e., H−alg(t) contains the holes being filled, but not
the ones being created), and alg’s holes after those fetches are complete (but ignoring
any fetches that haven’t begun by time t) by H+

alg(t).

In this section and the next, we assume all algorithms are working with the reverse
sequence and denote the optimal algorithm for serving the reverse sequence by opt.

Under any algorithm that works on the forward sequence and follows the optimal
eviction rule, no new holes will be created in a phase once the cursor enters the phase.
For every hole in the phase, there is at least one block in the cache that is not requested
for the remainder of the phase (since there are only K blocks requested in the phase,
by definition, and the cache holds K blocks). In contrast, it is possible that reverse
aggressive (and opt working on the reverse sequence, in fact) will create a new hole
within a phase even after its cursor has entered the phase. Although it is true that
for every hole in the phase there is a block in the cache that is not requested until
after the end of the phase, it may be that all those blocks are the same color and that
the best eviction choice of another color is a block that will be requested before the
end of the phase. However, if reverse aggressive does create new holes in the phase
containing the cursor, it will create such holes of at most D − 1 colors. We refer to
the other disk as the busy disk for the phase. (If there are two or more such disks, an
arbitrary one is chosen.) As long as there are holes remaining in the phase, the busy
disk will initiate a fetch to fill one of them every F steps, and will create new holes
beyond the end of the current phase.

A fetch using the busy disk (and evicting a block of the same color as the busy
disk; the block fetched may be any color) is referred to as a busy-disk fetch; fetches
using other disks are referred to as non-busy-disk fetches.

4.1. Reverse aggressive: Upper bound. We first give some preliminaries,
proving the claims of section 2.4 and a simple lemma on combining subsets of dom-
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inating and dominated sets of holes. We next prove the strong domination lemma
(Lemma 9).

The strong domination lemma is then used to bound reverse aggressive’s elapsed
time for a single phase relative to opt’s elapsed time. Roughly speaking, if reverse
aggressive’s holes dominate opt’s, opt cannot get ahead of reverse aggressive since
opt’s first hole is at least as early in the request sequence as reverse aggressive’s. By
allowing reverse aggressive a small amount of time to correct for mistakes it makes
by prefetching sooner than opt, strong domination up to the end of the phase is
maintained as an invariant until both algorithms reach the end of the phase. This
step of the proof is complicated by the fact that the algorithms may fetch blocks using
their respective disks in different orders. We must permute one sequence of fetches in
order to make direct comparisons between the two algorithms’ operations.

Finally, we show that by using a different permutation (and a correspondingly
different matching of one algorithm’s prefetch operations to the other’s), the strong
domination lemma implies that strong domination up to the end of the request se-
quence holds as an invariant as we compare the algorithms’ progress from one phase
to the next.

Lemma 10. Any prefetching schedule for the reverse sequence that does not satisfy
the four rules described in section 2.4 can be transformed into one that does, with no
increase in elapsed time.

Proof.

1. Optimal fetching (fill the first hole): Suppose that at time t1, a fetch is
initiated to fill some hole h2 other than the first hole h1. h1 must be filled
before it can be served; say it is filled by a fetch initiated at time t2 > t1.
Since the (later) reference to h2 cannot be served until after the reference to
h1 is served, the schedule remains valid if h1 is filled at time t1 and h2 at time
t2, and all other operations (prefetches, evictions, and cursor movements) are
unchanged. Since we are working with the reverse sequence, this change can
be made regardless of the colors of h1 and h2. If filling h1 at time t1 allows
the cursor to advance sooner than it can if h2 is filled at time t1, then the
eviction opportunities under this schedule are at least as good as those under
the original schedule; i.e., the set of holes obtained strongly dominates that
obtained under the original schedule. Thus the transformed schedule can be
completed to derive a schedule with elapsed time no greater than that of the
original.

2. Colored optimal eviction (evict the block not needed for the longest time
among those colored the same as the free disk): Suppose that at time t1,
block b1 is evicted, and block b2 of the same color as b1 is in the cache and
is first referenced after the next reference to b1. If b2 is subsequently evicted
before the next reference to b1 is served, the effect is the same if b2 is evicted
first, then b1. Otherwise, b1 must be fetched back at some time t2 > t1 before
the reference to it can be served. If b2 is evicted at time t1 instead of b1,
it can be fetched back at time t2. By assumption, there are no intervening
references of b2 on which to stall; thus the transformed schedule stalls no
more than the original.

3. Do no harm (do not evict b1 to fetch b2 if b1 is needed sooner): Suppose b1 is
evicted to fetch b2. b1 must be fetched back before the reference to it can be
served; this fetch evicts some other block b3. Since fetches on any disk can be
of any color, the fetch of b1 can be replaced by a fetch of b2 (evicting b3). By
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assumption, there are no intervening references of b2 on which to stall; thus
the transformed schedule stalls no more than the original.

4. First opportunity (perform each fetch/eviction pair as soon as possible): Sup-
pose that the disk colored col is left idle at time t, a fetch of block b1 is
initiated at t + 1 evicting block b2 of color col, and that the block served at
time t is not b2. Then by initiating the fetch at time t rather than t+ 1, the
hole (b1) is filled one step sooner; certainly, no additional stall is incurred by
this change.

We assume without loss of generality that opt obeys these rules.

Lemma 11. Given two sets of holes A = A1 ∪ A2 and B = B1 ∪ B2 with
|A1| ≤ |B1|, |A2| ≤ |B2|, A1 ∩A2 = ∅, and B1 ∩B2 = ∅, if A1 dominates B1 and A2

dominates B2, then A dominates B.

Proof. Suppose the contrary. Let i be such that the ith member of A (ordered,
as usual, by increasing index in the request sequence) has an index less than the ith
member of B. Then A contains i holes with indices less than or equal to that of A’s
ith hole, and B contains only i− 1 such holes. But because A1 dominates B1 and A2

dominates B2, for each member of A there is a distinct member of B with lesser or
equal index. Thus we have a contradiction.

Note that Lemma 11 extends to pairs of sets composed of more than two disjoint
subsets each. Notice also that by Lemma 11, strong domination implies ordinary,
color-blind domination. (Match nonexcess holes according to colors, and all of one
set’s excess holes to all of the other set’s excess holes. See Figure 3 for an example
illustrating this.)

Lemma 12. Strong domination is transitive.

Proof. Suppose A strongly dominates B and B strongly dominates C. We show
that A strongly dominates C. Fix a color col; for convenience (so it can be used as
an adjective), suppose col is red. Define Ncol(·) as before. For a collection S of sets
of holes, let Ncol(S) = mins∈S(Ncol(s)). (We will drop the brackets when listing the
members of S.) Let Ncol = Ncol(A,B,C). We consider three cases, illustrated in
Figure 5.

1. Nred = Nred(A). A has Nred red holes, and these dominate the last Nred red
holes in B. B’s last Nred(B,C) red holes dominate C’s last Nred(B,C) red
holes, so B’s last Nred red holes must dominate C’s last Nred red holes. Since
domination is transitive, A’s Nred red holes dominate C’s last Nred red holes.
Suppose h is a red hole in C that is excess with respect to A. If h is matched
to a red hole h′ of B, h′ is excess with respect to A and thus precedes A’s first
hole, so h must precede A’s first hole as well. If h is excess with respect to
B, it precedes B’s first hole, which precedes or is the same as A’s first hole,
since strong domination implies ordinary domination.

2. Nred = Nred(B). A’s last Nred red holes dominate B’s Nred red holes, which
dominate C’s last Nred red holes. Suppose h is a red hole in C that is excess
with respect to B. h must precede B’s first hole. h precedes A’s first hole as
well, since B’s first hole precedes or is the same as A’s first hole; again, this is
because strong domination implies ordinary domination. If h is excess with
respect to A, we are done. If h matches some hole h′ of A, h surely does not
occur after h′.

3. Nred = Nred(C). A’s last Nred(A,B) red holes dominate B’s last Nred(A,B)
red holes, so A’s last Nred red holes must dominate B’s last Nred red holes,
which dominate C’s Nred red holes. C has no excess red holes with respect
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Fig. 5. Strong domination is transitive.

to B or A.

We now prove Lemma 9 (the strong domination lemma).

Proof. Define Ncol(A), Ncol(B), and Ncol as before.

We consider the individual changes to A and B in three steps:

1. A’s first hole is removed (if necessary, i.e., if New(A, (curA, col)) 6= A).
2. B’s new hole is added to B (if necessary) and A’s new hole is added to A (if

necessary).
3. B’s first hole is removed (if necessary).

We will show that after each step, strong domination of A over B up to y is preserved.

For convenience, we will say that (a hole at) index i is “left” of (a hole at) index
j, and (the hole at) j is “right” of (the hole at) i, if i < j.

First we prove part 1.

Step 1. A’s first hole is filled.

Let col be the hole’s color. First, since A’s new first hole is to the right of its old
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first hole (the one being filled), B’s excess holes all are still to the left of A’s first hole.
If col was an excess color of A, we are done. Otherwise, B’s hole that was matched
to A’s filled hole becomes an excess hole, and since it occurred no later than the hole
it matched, it is to the left of A’s new first hole. Notice that |A| < |B| at this point,
in addition to the fact that A strongly dominates B.

Step 2. Eviction.
If curA > y, A’s new hole does not affect strong domination up to y, and the

addition of a new hole to B (whether left of, right of, or at y) cannot affect strong
domination. If curA ≤ y, let A’s last Ncol holes of the same color col as the block
evicted occur at indices a1 < a2 < · · · < aNcol , and let B’s occur at b1 < b2 < · · · <
bNcol . Since A strongly dominates B, we know that ai ≥ bi for each i. Let B’s new
hole be its jth nonexcess hole of color col, i.e., the new hole occurs between bj−1 and
bj , or at an index greater than bNcol in which case j = Ncol + 1, or before b1 in which
case j = 1. (As a special case, if col is an excess color of B, and the new hole is
left of B’s last excess hole of color col, the new hole becomes an excess hole and the
last excess hole takes its place in the following argument.) Let A’s new hole be its
rth hole of color col, with a special case similar to that in the definition of j. Let
a′1 < a′2 < · · · < a′Ncol+1 be the indices of A’s last Ncol + 1 holes of color col after the
eviction, and let b′1 < b′2 < · · · < b′Ncol+1 be the indices of B’s last Ncol + 1 holes of
color col after the eviction. Then for i < r, a′i = ai and for i > r, a′i = ai−1; for i < j,
b′i = bi and for i > j, b′i = bi−1. To show that domination is preserved, we need to
show that a′i ≥ b′i for each i, 1 ≤ i ≤ Ncol + 1. For i < min(r, j) and i > max(r, j) it
is immediate that a′i ≥ b′i. If r > j, then we have

a′r > ar−1 ≥ br−1 = b′r,
a′r−1 = ar−1 ≥ br−1 > b′r−1,

. . .

a′j = aj ≥ bj > b′j

and we are done. If r ≤ j, then we must show

a′j ≥ b′j ,
a′j−1 ≥ b′j−1,

. . .

a′r+1 ≥ b′r+1,

a′r ≥ b′r.

Suppose that one or more of these inequalities does not hold, and let i be the largest
index for which a′i < b′i. Then either i = j = Ncol + 1 and a′i < b′i, or

a′i < b′i < b′i+1 ≤ a′i+1,

where A’s new hole at a′r satisfies a′r ≤ a′i. In either case, there is a block that is
not requested until index b′i that is not a hole in A, and the new hole in A is a block
requested earlier at index a′r instead. But the definition of New states that the best
possible eviction choice is made, i.e., that the block evicted is the block whose next
occurrence is at the greatest index among all blocks of color col in the cache. Thus
we have a contradiction.

Since the holes of color other than col are unaffected by this change, and domi-
nation of holes of color col is preserved, strong domination is preserved. Also, we still
have that |A| < |B|.
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Step 3. B’s first hole is filled.

Let col be the hole’s color. If col is an excess color of B, then B will have one
fewer excess hole of color col; the remaining ones are unchanged, and thus are still to
the left of A’s first hole. Otherwise, the hole was matched to some hole of A, which
becomes an excess hole. The newly excess hole’s position is relevant in the definition
of strong domination only if it is A’s first hole; in this case, since neither A’s first hole
nor B’s excess holes are changed, strong domination is preserved. Because |A| < |B|
before this step, we have that |A| ≤ |B| afterwards, as needed for strong domination.

The proof of part 1 is complete.

For part 2, step 1 is the same as in the proof of part 1. For step 2, first note that
A’s new hole is to the right of A’s (old) first hole (by the do no harm rule), so that
B’s excess holes still precede all of A’s holes. Let col be the color of A’s new hole.
If col is an excess color of B, an argument similar to the one above for part 1 shows
that A’s holes of color col will dominate B’s nonexcess holes of the same color. If col
is not an excess color of B, the new hole or some previous hole of A will become an
excess hole. In the former case, A’s last Ncol holes are unchanged. In the latter case,
the index of A’s ith nonexcess hole of color col is the same as or greater than before,
for each i ≤ Ncol. No changes are made in step 3.

For part 3 nothing happens in step 1. Let col be the color of B’s new hole. Again,
for step 2, an argument similar to that for part 1 shows that A’s nonexcess holes of
color col dominate B’s nonexcess holes of color col; if not, A would contain a hole to
the left of the next request for some block that is not a hole. If col is not an excess
color of B, we are done with step 2. Otherwise, we need to show that all of B’s excess
holes of color col precede A’s first hole. Suppose that B has Ncol+1 holes of color col
at or to the right of A’s first hole. A has only Ncol holes of color col, so B has some
hole h of color col that is not a hole of A and is to the right of A’s first hole. Again,
A would then contain a hole to the left of the next request for some block that is not
a hole. Step 3 is the same as for part 1.

The proof of part 4 is an easy simplification of part 1, since A’s new hole is beyond
y and need not be considered. (B’s new hole may be beyond y as well.)

A particular case in which part 3 of Lemma 9 applies deserves mention. It may
be that all blocks of some color col are holes in A, i.e., there are no blocks of color col
in the cache, and that a fetch is not possible since there is no block of color col in the
cache to evict, but that there are blocks of color col that are not holes in B. It may
seem that a schedule with B as its set of holes has an advantage since it can make
use of its disk col while a schedule with A as its set of holes cannot. But there is no
advantage, provided that the conditions of strong domination are met. A is a superior
state, and the schedule filling one of the holes in B by evicting a block of color col is
merely “catching up” to the other schedule by eliminating one of its excess holes.

Here is our main result, the upper bound of Theorem 3.

Reverse aggressive requires less than 1 + DF/K times the optimal elapsed time
to service any request sequence, plus an additive term DF independent of the length
of the sequence.

Proof. For D = 1, the theorem follows directly from the result of [6]. Thus we
may assume D ≥ 2.

We show that for each i ≥ 0 (numbering the phases starting with 0), there are
times Ti and T ′i , such that

• T ′i is the time opt’s cursor reaches the ith phase;
• reverse aggressive’s cursor position at time Ti is at least as great as opt’s
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cursor position at time T ′i ;
• for i > 0, Ti − Ti−1 ≤ T ′i − T ′i−1 +DF − 1;

• H+
rev(Ti) strongly dominates H+

opt(T
′
i );

• if reverse aggressive’s busy disk for phase i will become free (i.e., complete
any fetch in progress) in z ≤ F − 1 steps after Ti, then opt’s corresponding
disk will not become free until z′ ≥ z steps after T ′i .

If there are p phases, we take Tp (respectively, T ′p) to be the time at which reverse
aggressive (respectively, opt) finishes serving the request sequence.

The theorem will follow from the first three conditions as follows. For each phase
i, reverse aggressive’s elapsed time erev(i) = Ti+1−Ti and opt’s elapsed time eopt(i) =
T ′i+1 − T ′i satisfy

erev(i) ≤ eopt(i) +DF − 1

so that

erev(i)

eopt(i)
≤ 1 +

DF − 1

eopt(i)
.

Each phase, except possibly the last, is of length at least K, so that eopt(i) ≥ K.
Putting these together, we have that for all phases but the last,

erev(i)

eopt(i)
≤ 1 +

DF − 1

K
.

The last phase may be incomplete, i.e., may contain requests for fewer than K distinct
blocks. Reverse aggressive requires at most DF − 1 steps more than opt to serve the
last phase.

We prove the claims about Ti and T ′i by induction. For the base case (i = 0),
we take T0 = T ′0 = 0. The fact that the claims hold at this time is trivial. For the
inductive step, assume the claims hold for the ith phase. We show that they hold for
the (i+ 1)st phase via a two-step process.

• We first show in Lemma 13 that in phase i, reverse aggressive (starting at
time Ti) loses at most (D − 1)F steps to opt (starting at time T ′i ).

• We then use this fact to show that at the end of the phase, by giving reverse
aggressive an extra DF −1 steps relative to opt (from the start of the phase),
the invariants are restored.

We begin with a formal statement of the first of these steps.
Lemma 13. Suppose that at time Ti, reverse aggressive’s cursor is at position pi

in the sequence. Let T ′i + tO(j) (respectively, Ti + tR(j)) denote the time at which opt
(respectively, reverse aggressive) serves the request at cursor position j ≥ pi, for any
j such that rj is in phase i. Then for all j in the phase, tR(j) ≤ tO(j) + (D − 1)F .

Proof. For the sake of contradiction, suppose the contrary, and consider the least
index ` such that tR(`) > tO(`) + (D − 1)F .

First, consider the case in which ` precedes the first hole in H+
rev(Ti). Each of

reverse aggressive’s fetches in progress at time Ti completes by time Ti + F − 1, so
that reverse aggressive’s cursor cannot stall more than F −1 steps before reaching the
first hole in H+

rev(Ti). Recall we have assumed D ≥ 2; thus we have a contradiction.
The remainder of the proof of Lemma 13 (and the bulk of that of the upper bound

of Theorem 3) consists of the remaining case, in which ` is at or beyond the first hole
in H+

rev(Ti). By the minimality of `, tR(` − 1) ≤ tO(` − 1) + (D − 1)F , and reverse
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aggressive stalls at least one step more than opt on request r`. In particular, reverse
aggressive stalls at time Ti + tR(`) − 1, and opt does not stall at time T ′i + tO(`).
Reverse aggressive initiates a prefetch for the block requested at index ` at time
Ti + tR(`)− 1− x for some 0 ≤ x ≤ F − 1; at this time, r` is reverse aggressive’s first
hole. We will show that opt must have a hole that it has not yet begun to fill at an
index no greater than ` at time T ′i + tO(`)− x, and thus cannot serve r` before time
T ′i + tO(`)−x+F > T ′i + tO(`). Recall that reverse aggressive’s busy disk will be free
in x ≤ F − 1 steps after Ti, and opt’s corresponding disk will be free in z′ ≥ z steps
after T ′i .

Reverse aggressive will perform busy-disk fetches continuously, initiating a fetch
at time Ti + z + bF for each b ≥ 0, at least until such a time as there are no holes
left in the phase. Once there are no holes left in the phase, reverse aggressive will
not stall at least until the end of the phase is reached. Let b and δ be such that
tR(`)− 1− x− z = bF + δ and 0 ≤ δ < F . Then reverse aggressive has filled b holes
by busy-disk fetches by time Ti + tR(`)− 1− x, and opt has filled at most b−D + 1
holes by busy-disk fetches by time T ′i + tO(`)− x, since

tO(`)− x− z′ < tR(`)− x− z − (D − 1)F

= bF + δ + 1− (D − 1)F

≤ (b−D + 2)F.

Let n be the number of non-busy-disk fetches initiated by opt by time T ′i + tO(`)− x.
Consider the sequence S = ((cur1, col1), . . . , (curn+b−D+1, coln+b−D+1)) of fetches
opt initiates after time T ′i and at or before time T ′i + tO(`) − x − F , where the pair
(cur, col) denotes that a fetch evicting a block of color col is initiated at cursor position
cur. For each fetch (cur′, col′) of opt, we define a matching fetch opportunity of
reverse aggressive. A matching fetch opportunity is a pair (cur, col) such that reverse
aggressive has the opportunity to initiate a fetch of color col at a cursor position
at least as great as cur. Each matching fetch opportunity to a fetch in S allows
reverse aggressive to initiate a fetch (if allowed by the do no harm principle) by time
Ti + tR(`)− 1− x− F . They are defined as follows:

• Let opt’s jth non-busy-disk fetch be initiated at time T ′i + t′j . This fetch is
matched to the fetch on the same disk that reverse aggressive initiates (if
any) in the time interval

[Ti + t′j + (D − 1)F, Ti + t′j +DF − 1].

Note that by the minimality of `, at time Ti+t
′
j+(D−1)F reverse aggressive’s

cursor is already at or beyond the cursor position at which opt initiates its
jth non-busy-disk fetch, and its disk of the same color becomes free (finishes
any fetch already in progress) within another F − 1 steps. Therefore, such
a fetch opportunity exists. The fact that reverse aggressive’s cursor position
at the time of this matching fetch opportunity is at least as great as opt’s
at the time of its fetch will allow us to apply part 1 or part 3 of the strong
domination lemma (Lemma 9) to this pair.
If opt initiates a total of n non-busy-disk fetches by time T ′i + tO(`)−x, then
each fetch except (possibly) the last one on each non-busy-disk (i.e., at least
n − (D − 1) of the n non-busy-disk fetches) is initiated at a time less than
or equal to T ′i + tO(`) − x − F . Therefore, reverse aggressive can initiate a
matching fetch if needed at a time strictly less than

Ti + tO(`)− x+ (D − 1)F < Ti + tR(`)− x.
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• opt’s jth busy-disk fetch is matched to the jth busy-disk fetch reverse aggres-
sive performs in the phase. Since reverse aggressive prefetches continuously
using its busy disk, we know that each of these fetch opportunities corre-
sponds to an actual fetch. Part 4 of the strong domination lemma will be
applied to this pair of fetches.
• Finally, each non-busy-disk fetch initiated by opt between times T ′i + tO(`)−
x − F + 1 and T ′i + tO(`) − x is matched to one of the last D − 1 busy-disk
fetches initiated by reverse aggressive. Note that there can be only one such
fetch of each color. Part 4 of the strong domination lemma will be applied to
this pair of fetches.

We claim that reverse aggressive’s holes after these n + b − D + 1 matching
fetch opportunities strongly dominate opt’s holes up to the end of the phase after
opt initiates its sequence S of n non-busy-disk fetches and at most b − D + 1 busy-
disk fetches. Let R0 be reverse aggressive’s set of holes H+

rev(Ti) at time Ti. Let
O0 be opt’s set of holes H+

opt(T
′
i ) at time T ′i . Define Oj , j ≥ 1, inductively as the

set of holes resulting from initiating opt’s jth fetch (curj , colj) with the set of holes
Oj−1; i.e., Oj = New(Oj−1, (curj , colj)). Similarly, define Rj , j ≥ 1, inductively
by Rj = New(Rj−1, (curj , colj)). Rn+b−D+1 is the state that would be reached by
starting in reverse aggressive’s state R0, but then initiating fetches (when allowed by
do no harm) according to opt’s prefetching schedule. By a sequence of applications
of part 1 and part 3, as appropriate, of the strong domination lemma (Lemma 9), we
have that Rn+b−D+1 strongly dominates On+b−D+1 up to the end of the phase.

We now show that reverse aggressive’s holes after its matching fetch opportuni-
ties pass strongly dominate Rn+b−D+1 up to the end of the phase. Because strong
domination is transitive (Lemma 12), we will obtain that reverse aggressive’s holes
strongly dominate opt’s up to the end of the phase. Since opt and reverse aggressive
may perform fetches on different disks at different times and in different orders, we
need to somehow permute opt’s schedule of fetches into reverse aggressive’s; then we
will be able to make pairwise comparisons between the two sequences of fetches and
apply the strong domination lemma. Toward this end, we define the following.

Definition 14. Consider a fetch sequence, defined by a sequence of triples of the
form (tj , curj , colj), where for each j, tj ≤ tj+1 and curj ≤ curj+1. (tj , curj , colj)
denotes a fetch, or an opportunity to fetch, beginning at time tj with the cursor at
position curj, where the color of the evicted block is colj. A fetch opportunity denotes
an opportunity to fetch in the sense that the disk is free, but no fetch may be possible
under the optimal prefetching rules.

Definition 15. A fetch sequence S is obtained from a fetch sequence S′ by a
busy-early swap if S′ and S are the same except that a pair (t′j , cur

′
j , colj), (t′j+1,

cur′j+1, colj+1) in S′ is replaced by (tj , curj , colj+1), (tj+1, curj+1, colj) in S, where
curj ≥ pi (recall that pi is reverse aggressive’s cursor position at time Ti), curj+1 ≥
cur′j, and colj+1 is the color of reverse aggressive’s busy disk for the phase. curj ≥ pi
will be enough to ensure that reverse aggressive is able to complete a fetch with the busy
disk and that the new hole is beyond the end of phase i, which is enough to maintain
strong domination up to the end of the phase, regardless of the fetch/eviction pair of
opt to which this fetch of reverse aggressive is matched.

Definition 16. A fetch sequence S is obtained from a fetch sequence S′ by
an overlapping swap if S and S′ are the same except that a pair (t′j , cur

′
j , colj),

(t′j+1, cur
′
j+1, colj+1) in S′ is replaced by (tj , curj , colj+1), (tj+1, curj+1, colj) in S,

where t′j+1 < t′j + F , tj+1 < tj + F , curj ≥ cur′j+1, and curj+1 ≥ cur′j. (Note
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that curj+1 ≥ cur′j is implied by curj ≥ cur′j+1, since cursor positions increase with
time.)

We extend the notation New(A, (cur, col)) to allow a series of fetches or fetch
opportunities, with or without the time indices (which have no effect on the resulting
set of holes), in the obvious way: New(A,S) = New(New(A, f1), f2, . . . , f|S|), where
S = f1, . . . , f|S| is a sequence of fetches or fetch opportunities.

Before we can complete the proof of Lemma 13, we need the following three
lemmas.

Lemma 17. Suppose that fetch sequence S within phase i is obtained from fetch
sequence S′ by a busy-early swap. Then New(R0, S) strongly dominates New(R0, S

′)
up to the end of the phase.

Proof. Let blue denote the color of reverse aggressive’s busy disk, and let red
denote the color of the first disk to fetch under S′ in the swapped pair. We refer to
fetches using the blue disk as blue fetches, even though blue is the color of the evicted
block; the block fetched may be any color. We refer to fetches using the red disk as
red fetches, even though red is the color of the evicted item. The sets of holes of the
two sequences immediately before initiating the swapped pair of fetches are the same.
In both cases, a blue fetch can be initiated, since by hypothesis there are still holes in
the phase. This blue fetch will not require an eviction that creates a new hole within
the phase.

Unless the first hole filled is a red block, the set of red blocks in the cache at the
time the red fetch is initiated is the same under S′ and S. If the first hole is red, then
under S′, this red block is brought into the cache by the red fetch, and under S, by
the blue fetch. Thus, the best eviction opportunity at the time of the red fetch under
S is at least as good as that under S′, since under S the red fetch occurs at a cursor
position curj+1 at least as great as that under S′, which is curj .

Let the first hole occur at index h1 and the second at h2; let the new hole created
by the red fetch under S′ occur at index hr. There are two possibilities:

• h2 < hr. Under S′, the red fetch fills h1 and the blue fetch fills h2; under S,
the blue fetch fills h1 and the red fetch fills h2. The red hole created under
S is at a position in the request sequence at least as great as hr, since the
cursor position of the red fetch is at least as great as under S′. Under neither
sequence does the blue eviction create a new hole in phase i. Thus, the sets
of holes remaining in phase i after completing S′ and S are the same, or after
S one red hole has a greater index than after S′.
• h1 < hr < h2. Under S′, the red fetch fills h1 and creates a hole at hr. This

new hole is the first hole at the time of the blue fetch, and thus the blue fetch
fills it (leaving h2 unfilled). Under S, however, the red fetch may be unable
to proceed. The blue fetch fills the hole at h1; after this, the first hole is
at h2. The red eviction of hr would violate the rule do no harm. But the
end result is the same as it is under S′ (ignoring holes beyond the end of the
phase): the next hole is at h2, and a new blue hole has been created beyond
the end of the phase. The red block requested at hr does not get evicted and
then fetched back, as it does under S′. (Again, under S it may be possible to
create a red hole with greater index; in this case, h2 gets filled, and the holes
dominate those after S′ up to the end of the phase by part 2 of the strong
domination lemma.)

Lemma 18. Suppose that fetch sequence S is obtained from fetch sequence S′

by an overlapping swap. Then for any set A of holes, New(A,S) strongly domi-
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nates New(A,S′) up to the end of the entire sequence and thus up to the end of
the phase.

Proof. Neither fetch affects the eviction opportunities of the other, since they
overlap and evict to different disks. Because they overlap, the first does not bring a
block into the cache in time for it to be served before the second fetch starts. An easy
consequence of the rules described in section 2.4 is that each block fetched is served
at least once before it is subsequently evicted. Because they evict to different disks,
the first does not evict a block that could otherwise be evicted by the second.

For each of the two fetches under S′, the fetch of the same color under S is
initiated at a cursor position at least as great. An argument similar to the proof of
Lemma 17 finishes the proof.

Lemma 19. Reverse aggressive’s sequence of fetch opportunities can be obtained
from the sequence leading to Rn+b−D+1 (i.e., opt’s sequence of fetches) via a sequence
of busy-early swaps, overlapping swaps that do not involve fetches performed by the
busy disk, substitutions of busy-disk fetches for non-busy-disk fetches, and insertions
of extra fetches not matched to any fetch of opt.

Proof. The definition of matching fetch opportunities identifies a sufficient set of
fetch opportunities. We will show that no operations other than those described are
necessary to transform opt’s sequence of fetches to reverse aggressive’s sequence of
matching fetch opportunities.

First we show that for each disk other than the busy disk, any inversion of fetches
on that disk and the busy disk is in the “right direction” (i.e., corresponds to a busy-
early swap). Let blue denote the color of the busy disk, and let red denote the color of
some other disk. For 1 ≤ j ≤ b, let Ti + tBj be the time at which reverse aggressive’s
jth blue fetch is initiated, and for 1 ≤ j ≤ b − D + 1, let T ′i + t′Bj be the time at

which opt’s jth blue fetch is initiated. For 1 ≤ j ≤ r, let t′Rj be the time at which
opt’s jth red fetch is initiated, and for 1 ≤ j ≤ r − 1, let tRj be the time at which
reverse aggressive’s matching fetch is initiated, where r is the number of red fetches
initiated by opt at or before T ′i + TO(`).

First, consider all of reverse aggressive’s blue and red fetches except its last D−1
blue fetches, and all of opt’s blue and red fetches except its last red fetch (which is
matched to one of reverse aggressive’s last D − 1 blue fetches). We have that for all
j ≤ b−D+ 1, tBj ≤ t′Bj (i.e., reverse aggressive’s jth blue fetch is no later than opt’s,

by the definition of matching fetch opportunities) and for all j ≤ r − 1, tRj ≥ t′Rj
(i.e., reverse aggressive’s jth red fetch is no earlier than opt’s). Suppose that there is
an inversion in the “wrong direction,” i.e., that for some j and some k, t′Bj < t′Rk and
tRk < tBj . Then

t′Bj < t′Rk ≤ tRk < tBj ≤ t′Bj ,
which contains the contradiction t′Bj < t′Bj .

Next, consider opt’s last (rth) red fetch. Recall that this fetch is matched to one
of reverse aggressive’s last D − 1 blue fetches. This requires the substitution of a
blue fetch for a red fetch, and possibly some number of busy-early swaps to move the
blue fetch forward to its place in reverse aggressive’s sequence of fetches; no other red
fetches in the sequence are affected by this.

For fetches other than blue fetches (i.e., non-busy-disk fetches), let T ′i + t′1 and
T ′i + t′2 be the times of two fetches of opt, where t′1 ≤ t′2, and let Ti + t1 and Ti + t2 be
the times of reverse aggressive’s matching fetch opportunities. If opt’s fetches do not
overlap, then t′1 ≤ t′2 − F . By the definition of matching fetch opportunites, we have
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t1 ≤ t′1 + DF − 1 and t2 ≥ t′2 + (D − 1)F . Putting these together, we have t1 < t2,
i.e., reverse aggressive’s matching fetch opportunities occur in the same order as opt’s
fetches.

That the cursor positions of the swapped pairs satisfy the inequalities in the
definitions of busy-early-swaps and overlapping swaps, respectively, can be seen from
the definition of matching fetch opportunities.

We now complete the proof of Lemma 13 using Lemmas 17, 18, and 19. We show
that reverse aggressive’s holes at time Ti+tR(`)−1−x strongly dominate opt’s holes at
time T ′i + tO(`)−x up to the end of the phase, as follows. Let Sopt = S1, S2, . . . , Sm =
Srev be the series of fetch sequences obtained in the transformation of opt’s fetch
sequence into reverse aggressive’s that was shown to exist by Lemma 19. Recall that
we have already shown that New(R0, Sopt) = Rn+b−D+1 strongly dominates opt’s set
of holes New(O0, S

′) = On+b−D+1 up to the end of the phase. For each 1 < i ≤ m,
New(R0, Si) strongly dominates New(R0, Si−1) by Lemma 17, if Si is derived from
Si−1 by a busy-early swap, by Lemma 18, if Si is derived from Si−1 by an overlapping
swap, by part 2 of the strong domination lemma (Lemma 9), if Si is derived from
Si−1 by an insertion; or by part 4 of the strong domination lemma (Lemma 9), if Si is
derived from Si−1 by the substitution of a busy-disk fetch for a non-busy-disk fetch.
By transitivity of strong domination (Lemma 12), New(R0, Srev) strongly dominates
New(O0, Sopt) up to the end of the phase.

Thus we have the following corollary.
Corollary 20. Reverse aggressive’s first hole at time Ti + tR(`)− 1− x is at a

cursor position at least as great as opt’s first hole at time T ′i + tO(`)− x.
This contradicts the hypothesis that reverse aggressive stalls at time Ti+tR(`)−1

and opt does not stall at time T ′i +tO(`), and completes the proof of Lemma 13.
We now use Lemma 13 to complete the inductive step of the proof of the upper

bound of Theorem 3.
Let T ′i+1 be the time at which opt’s cursor first reaches phase i + 1 (i.e., one

greater than the time at which opt serves the last request in phase i). Let f ′j be
the jth fetch opt initiates after time T ′i and at or before time T ′i+1, and suppose it
begins at time T ′i + t′j . Define the jth dominating fetch opportunity to be the fetch
opportunity (possibly an actual fetch) that reverse aggressive has on the same disk
as f ′j in the time interval

[Ti + t′j + (D − 1)F, Ti + t′j +DF − 1],

say, at time Ti+tj . (Notice this is a different matching than that used in Lemma 13. In
this matching, fetches of all colors are matched in the same way non-busy-disk fetches
were matched in Lemma 13.) By Lemma 13, we know that reverse aggressive’s cursor
position at time Ti + tj is at least as great as opt’s cursor position at time T ′i + t′j .

By the same argument as in the proof of Lemma 19, reverse aggressive’s sequence
of dominating fetch opportunities can be obtained from opt’s sequence of fetches by
a series of overlapping swaps and insertions. Applying the strong domination lemma
(Lemma 9), Lemma 18, and transitivity of strong domination (Lemma 12) as needed,
we obtain that reverse aggressive’s holes after its dominating fetch opportunities have
passed strongly dominate opt’s holes after completing its sequence of fetches. This
is the same argument as in the proof of Lemma 13, but without the complication of
busy-early swaps.

By Lemma 13, reverse aggressive’s cursor reaches phase i+1 by time Ti+(T ′i+1−
T ′i )+(D−1)F . Within another F−1 steps, reverse aggressive initiates its dominating
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fetches matching the ones opt has in progress at time T ′i+1. A fetch of opt started at
time T ′i+1− x is matched (if needed) by reverse aggressive by time Ti + (T ′i+1− T ′i ) +
DF − 1 − x; in particular, if opt has a fetch in progress on reverse aggressive’s busy
disk for phase i+ 1 at time T ′i+1, that fetch has at least as many steps remaining at
time T ′i+1 as reverse aggressive’s fetch (if any) has remaining at time Ti+(T ′i+1−T ′i )+
DF −1. Thus if we take time Ti+1 to be Ti+ (T ′i+1−T ′i ) +DF −1, the invariants are
restored.

4.2. Reverse aggressive: Lower bound. We have been unable to strengthen
the lower bound of Cao et al. [6], which showed that aggressive can perform (1 + (F −
1)/K) times worse than optimal in the single-disk case. This bound applies directly
to reverse aggressive, since there is no asymmetry between the reverse and forward
problems in the single-disk case. It applies to the multiple-disk case as well, since a
request sequence that contains only blocks that reside on a single disk is a special
case.

4.3. Conservative: Lower bound. The following example shows that for D <
F ≤ K, there are arbitrarily long strings on which conservative requires time 1 +
DK−F

K
F

F+D times the optimal elapsed time.
Suppose that F divides K, and also that D divides K, and consider a repeated

cycle on K + (KF − 1)D blocks. Conservative always evicts the page just referenced
whenever it fills a hole, since that is the page that will not be needed again for the
longest time. Thus conservative will never be able to overlap prefetches with each
other or with references. Since there are at least (KF −1)D holes on each pass through

the cycle, conservative will spend at least K + (KF − 1)D+ (KF − 1)DF steps on each
pass through the cycle. Suppose that the blocks are colored such that each contiguous
sequence of D blocks in the cycle contains one block from each of the D disks. It is
not hard to see that opt is able to maintain its holes in groups of D, one of each color,
spaced F steps apart. Thus opt can service the entire sequence without stalling, and
requires only K + (KF − 1)D steps on each pass through the cycle. The ratio of these
two expressions (after a little manipulation) turns out to be at least as great as the
stated bound.

4.4. Conservative: Upper bound. We now show that on any reference string
R, the elapsed time of conservative with D disks on R is at most D + 1 times the
elapsed time of the optimal prefetching strategy on R.

Let m be the minimum number of fetches (which is exactly how many fetches
conservative performs) on request sequence R. Conservative’s elapsed time is at most
|R| + mF , even if it never overlaps prefetches with each other or with the servicing
of requests. Since the optimal algorithm opt must perform at least as many fetches
as conservative and also must service the request sequence R, opt’s elapsed time is at
least max(|R|,mF/D). The ratio of these is maximized with |R| = mF/D, and has
the value D + 1.

4.5. Aggressive: Lower bound. The following example shows that for two
disks, there are arbitrarily long strings on which aggressive requires time 2 − 4

F+2
times the optimal elapsed time (within an additive constant that depends only on F
and K). In general, our bound is a little weaker: for D disks, there are arbitrarily long

strings on which aggressive requires time D− 3D(D−1)
F+3(D−1) times the optimal elapsed time

(within an additive constant that depends only on F and K). Consider the sequence

b1b2r1 · · · rF b3b4rF · · · r1b2b1r1 · · · rF b4b3 · · · ,
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where all ri are red and all bi are blue. Let K = F + 2. The initial cache contents
are b1, b2, and r1 · · · rF ; there are holes at the first references to b3 and b4. Both
algorithms service the initial request of b1 during the first unit of time. Aggressive
then evicts the block in its cache not referenced for the longest time, b1, in order to
fetch b3; the optimal algorithm opt does the same. At the completion of this fetch,
the next hole for both algorithms is at b4, and the cursor is at the first request of rF .
Aggressive immediately evicts the block among those in the cache not used for the
longest time, which is now b2; opt evicts r1 instead. Both algorithms stall for F − 2
steps on the hole at b4. However, opt is able to initiate a fetch of its next hole, r1,
evicting b3, since the hole is red and the fetch in progress is fetching a blue block;
aggressive is unable to perform a second fetch in parallel because its next hole (b2) is
also blue. Notice that aggressive still has no red holes, and thus can complete only
one fetch every F steps. From this point on, opt is able to create one red and one blue
hole in each subsequence of F + 2 requests, and can always fill them without stalling,
whereas aggressive will always create a pair of blue holes, and will require time 2F
to serve each subsequence of F + 2 requests, since it takes this long to complete two
fetches. Thus from this point on, the ratio of aggressive’s elapsed time to that of opt
is 2F

F+2 = 2− 4
F+2 .

We have illustrated the case K = F + 2, D = 2 for simplicity. It is easily
generalized to larger values of K

F (which are the cases of interest in practice) as
follows: let K = iF + 2, and interleave i distinct subsequences of F distinct red
blocks each with i + 1 distinct pairs of blue blocks in round-robin fashion, reversing
each subsequence of red blocks and each pair of blue blocks on alternate occurrences.
It is not hard to see that aggressive will behave similarly to the illustrated case,
and that opt is able to service the sequence without stalling (after an initial startup
period).

The generalization to D > 2 is also straightforward. Consider the sequence

b1 · · · bDb1 · · · bD−2x1 · · ·xD−1r1 · · · rF−D+1x
′
1 · · ·x′D−1 · · ·

· · · bD+1 · · · b2DbD+1 · · · b2D−2 · · · ,
where F > D and K = F + 2D − 1, the colors of the bi are all the same, the colors
of the xi are distinct from each other and the color of the bi, and the color of x′i is
the same as that of xi. We omit the details of the startup period, and note that if
aggressive has holes at b1 · · · bD, it will fill them by evicting bD+1 · · · b2D and thus
requires time at least DF to serve the sequence up to bD+1. Its state is then similar
to the state in which it started, and thus the process can repeat indefinitely. opt,
on the other hand, is able to maintain D holes of D distinct colors, and can serve
the sequence without stalling. Each sequence of 3(D − 1) + F requests requires time
3(D − 1) + F for opt, and DF for aggressive, for a ratio of

DF

3(D − 1) + F
= D − 3D(D − 1)

F + 3(D − 1)
.

Again, generalizing to arbitrary K/F is easy.

4.6. Aggressive: Upper bound. First we state a very simple lemma, leaving
the proof to the reader.

Lemma 21. If a set A of holes dominates a set B of holes, and some hole in A
is filled and some hole at a larger index added to A, the resulting holes A′ dominate
B.



1076 TRACY KIMBREL AND ANNA R. KARLIN

We now show that on any reference string R, the elapsed time of aggressive with
D disks on R is at most D(1+ F+1

K ) times the elapsed time of the optimal prefetching
strategy on R.

Proof. In the analysis of aggressive prefetching with one disk, it was shown that
if A’s holes dominate B’s holes, and A’s cursor position is at least as great as B’s,
and each algorithm initiates a fetch, A’s holes will continue to dominate B’s when
the fetch is completed. This result was referred to as the domination lemma [6]. The
proof of this is similar to but simpler than that of Lemma 9 for algorithms working
with the reverse sequence.

In order to apply this lemma to more than one disk, we must be sure that when
we are comparing a fetch A initiates to a fetch B initiates that the hole being filled
by A is the first hole. If not, the domination lemma does not hold.

In general, we cannot ensure that D parallel prefetches aggressive initiates will
fill the first D holes, since some of these holes may be of the same color. However,
we do know that by the time aggressive completes D prefetches on the same disk,
the first D holes that were present (and perhaps others) have been filled. Thus our
proof strategy is to run opt at 1/D times the speed of aggressive, so that during each
subsequence of time in which aggressive fills at least its first D holes, opt can fill at
most its first D holes. We will show inductively that at the end of each of these
subsequences, aggressive’s holes dominate opt’s holes. This will imply that aggressive
can take only about D times as long as opt to complete a phase.

Notice that as long as there are holes in the phase containing the cursor, there
are blocks in the cache which are not requested before the end of the phase (since
the cache holds K blocks and there are only K distinct requests in a phase). Since
aggressive always evicts the block that is not requested for the longest time, once its
cursor enters a phase, aggressive will not create any new holes within the phase. Also,
once aggressive enters a phase, each disk will initiate a fetch every F steps as long as
there are holes of that disk’s color remaining in the phase.

We show that for each i such that 0 ≤ i < p− 1 where p is the number of phases
(numbering the phases starting with 0), there are times Ti and T ′i , such that

• Ti ≤ DT ′i + i(D + 1)F ;
• aggressive’s cursor is in the ith phase of the request sequence at time Ti;
• opt’s cursor at time T ′i is not past the first request of phase i;
• H−agg(Ti) dominates H+

opt(T
′
i ), so that each of aggressive’s disks is either ready

to initiate a prefetch or is already filling a hole in phase i, for which opt has
not yet started filling its matching hole.

The theorem will follow from the first three conditions, as follows. For each phase
i, aggressive’s elapsed time eagg(i) and opt’s elapsed time eopt(i) satisfy

eagg(i) ≤ Deopt(i) + (D + 1)F

so that

eagg(i)

eopt(i)
≤ D +

(D + 1)F

eopt(i)
.

Each phase except possibly the last is of length at least K, so that eopt(i) ≥ K.
Putting these together, we have that for all phases but the last,

eagg(i)

eopt(i)
≤ D +

(D + 1)F

K
.
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The last phase may be incomplete, i.e., may contain requests for fewer than K distinct
blocks. Aggressive requires at most D times as many steps as opt to serve the last
phase, as shown below.

This claim is proven by induction on i. The basis (i = 0) is trivial, since both
algorithms start at the beginning of the first phase in the same state, with all disks
idle.

For the induction, assume that the claim is true for i.

We first show that for each index j in phase i, aggressive’s cursor passes j after
at most D times as many steps as opt’s cursor takes to pass j. Let Ti + tA(j) be the
time aggressive serves request j, and let T ′i + tO(j) be the time opt serves j. Assume
by way of contradiction that aggressive’s cursor falls behind opt’s (relative to the start
of the phase) by more than a factor of D, and let ` be the least index for which this
happens, i.e., tA(`) > DtO(`). It must be true that aggressive has a hole at ` (or
equivalently stalls on the `th request in the phase) at time Ti + tA(`) − 1, and that
the `th request in the phase is in opt’s cache before time T ′i + tO(`), since Ti + tA(`)
is the first time aggressive’s cursor falls behind opt’s by more than a factor of D. As
noted previously, each disk of aggressive’s fills a hole every F steps as long as there
are holes of that disk’s color in the phase. Let h be the number of holes in H−agg(Ti)
that are the same color as the one at `, up to and including the one at `. Then
tA(`) ≤ hF , since the hole at ` is filled at a time no later than Ti + hF . H+

opt(T
′
i )

contains at least h holes at or before `, since H−agg(Ti) dominates H+
opt(T

′
i ). Thus

the earliest time opt could finish filling all its holes up to index ` is T ′i + dh/DeF ,
even if it fills a hole every F steps with each disk. Thus we have a contradiction:
hF ≥ tA(`) > DtO(`) ≥ D(dh/DeF ) ≥ hF .

To show that aggressive’s holes after finishing phase i dominate opt’s holes, we
need another induction. Let I ′j denote the F -step interval [T ′i + jF, T ′i + (j + 1)F ),
j ≥ 0, and let curj be opt’s cursor position at time T ′i + jF , for each j such that
opt’s cursor is still in phase i at time T ′i + jF . Let Ij = [Ti + jDF, Ti + (j + 1)DF ).
Consider the set of at most D fetches that opt initiates during I ′j . We match these to
the set of fetches aggressive initiates during Ij+1. We prove by induction on j that
H+
opt(T

′
i + jF ) is dominated by H+

agg(Ti +D(j+ 1)F ). The base case follows from the

hypothesis that H−agg(Ti) dominates H+
opt(T

′
i ). Any fetches completed or initiated by

aggressive during I0 do not affect this, by Lemma 21. For the inductive step (on j),
note that each fetch opt initiates during I ′j is initiated at a cursor position at most
curj+1, and that aggressive’s cursor position is at least curj+1 during the interval
Ij+1. Thus aggressive’s fetches can be matched to opt’s and the domination lemma
implies that aggressive’s resulting holes H+

agg(Ti+(j+2)DF ) dominate opt’s resulting

holes H+
opt(T

′
i + (j + 1)F ). Any extra fetches of aggressive (there may actually be as

many as D2 by aggressive and as few as zero by opt during their respective time
intervals) do not affect this, by Lemma 21. As a special case, if aggressive should
stop fetching altogether at some time and thus have fewer than D fetches to match to
opt’s, aggressive has reached the optimal cache configuration: its cache contains the
next K distinct requests, and its holes are as far from the cursor as possible. These
holes certainly dominate opt’s holes at any earlier cursor position.

Consider the value j∗ such that opt’s cursor reaches phase i+1 during I ′j∗ . Then by
the preceding arguments, aggressive’s cursor reaches phase i+1 by time Ti+(j∗+1)DF
and aggressive’s holes H+

agg(Ti+(j∗+1)DF ) = H−agg((j
∗+1)DF+F ) after completing

all fetches initiated in Ij∗ dominate opt’s holes H+
opt(T

′
i + j∗F ) after completing all

fetches initiated in I ′j∗−1. Let Ti+1 = Ti + (j∗ + 1)DF + F and let T ′i+1 = T ′i + j∗F ,
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and the conditions for the induction step on the phase index i are met.

5. The algorithms’ running times. In this section we consider the time re-
quired to determine a prefetching and caching schedule in the uniform-cost RAM
model (see, for example, [1]). This is distinct from the time required to serve the
sequence in the model described in section 1.2, which is the primary measure we are
trying to optimize.

First, consider the single-disk case. We assume that the ith member of the set B of
blocks is identified by the integer i. We will need per-block lists of requests (indices in
the request sequence R); let Next(b) refer to the head of the list of references to block
b. Initially, Next(b) points to the first request of block b; after that request is served,
Next(b) will be updated to point to the next occurrence of b in R, and so on. We will
also need a vector InCache indexed by the set B indicating for each block whether
it is present in the cache, and a pointer NextHole indicating the index of the first
hole in the request sequence. Finally, we will need a priority queue Cache containing
the identifiers of all blocks present in the cache and keyed on the index in the request
sequence of the next request to that block. Cache will need to be augmented by an
operation to update the key of an item (which could be implemented as a deletion and
a reinsertion), as well as to the usual operations to insert items and delete the item
with maximum key. Note that Cache will never contain more than K keys. Each
operation on Cache thus requires O(logK) time (see, for example, [1]). Note that the
maximum element in Cache, the value of NextHole, and the position of the cursor
provide the information needed by aggressive and reverse aggressive to decide when
and what to prefetch, and what to evict.

A preprocessing step to initialize these data structures requires time linear in
|B| + |R|; we assume K ≤ |B|, since the scheduling problem is trivial otherwise. To
maintain these structures when serving a request of block b, we need to update the
pointer Next(b) and update b’s entry in the priority queue Cache. Thus scheduling
the servicing of a request requires O(logK) time. To maintain these structures when
evicting a block b1 and fetching b2, we delete the maximum element (which is b1)
from Cache, insert b2 in Cache, update the vector InCache appropriately, and scan
forward in R from NextHole until a request is found that is missing from the cache
(by referring to InCache); this index becomes the new NextHole. These operations
require time O(logK) with the exception of the scan of the request sequence to find the
new NextHole. The scans require O(|R|) time, amortized over the entire sequence.
|R| is an upper bound on the total number of fetches. The reversal of R and of
reverse aggressive’s reverse schedule can be done in time linear in |R|. Thus, each of
the algorithms aggressive and reverse aggressive can be implemented to run in time
O(|B|+ |R| logK) in the uniform-cost RAM model.

A simple implementation of conservative is to run Belady’s paging algorithm,
recording each fetch/eviction pair along with a “release index,” i.e., the index of the
last request of the evicted block (before it is fetched back into the cache later in
the schedule, if ever). A similar analysis to that above shows the same bound of
O(|B| + |R| logK) for the construction of this list of fetches and evictions. The list
can then be “played back” to construct a schedule for the fetches and the serving of
the sequence, issuing each fetch as soon as the cursor has passed the release index and
the disk is free. Thus, we have the same bound on conservative’s running time as on
that of the other algorithms.

In the case of D > 1 disks, we assume a constant-time operation yields the disk a
block resides on, given the block’s identifier. The changes required in the analysis of
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conservative are trivial. For the other algorithms, data structures are maintained on
a per-disk basis as needed. NextHole becomes a vector of D entries for aggressive.
A linear time preprocessing step can be used to produce per-disk request sequences;
these are needed to update NextHole. In the case of reverse aggressive, it is the
priority queue Cache that needs to be split into D separate structures, one for each
disk; none will ever contain more than K keys. Thus, the running time bound given
above applies to the multidisk case as well as the single-disk case.

6. Empirical results. Reverse aggressive is not a practical algorithm. How-
ever, it serves as a benchmark against which to compare practical algorithms such
as aggressive and the algorithms mentioned below. Perhaps more important, an un-
derstanding of the reasons for reverse aggressive’s performance guarantee led to the
design of the practical algorithm forestall with performance matching that of reverse
aggressive in empirical studies.

As mentioned, in joint work with A. Tomkins, R. H. Patterson, B. Bershad, P.
Cao, E. Felten, G. A. Gibson, and K. Li, we have performed simulation studies of
the performance of prefetching and caching algorithms. These results are reported
in companion papers [17, 19]. We implemented the aggressive and reverse aggressive
algorithms and tested them on reference streams taken from real file systems. We
also implemented two other algorithms, fixed horizon and forestall.

Fixed horizon. For a fixed value H, whenever there is a missing block at most
H references in the future, fixed horizon issues a fetch for that block, replacing the
cached block whose next reference is furthest in the future, provided that reference is
further than H accesses in the future.

Forestall. For each disk, for each i, i ≥ 1, let di denote the distance from the
cursor to the ith missing block in the request sequence that resides on the disk. For
any i ≥ 1, if iF > di, processing will surely stall on the ith missing block or some
earlier missing block. It will take iF time units to fetch the first i missing blocks, and
at most the next di requests can be served concurrently. Forestall initiates a prefetch
according to the (forward) optimal fetching and optimal replacement rules whenever
iF ≥ di is true for some i and the do no harm rule allows it.

See [19] for intuition and more details on these algorithms. Forestall and fixed
horizon have worst-case performance similar to aggressive’s. All three of these algo-
rithms perform much better than the worst case in practice.

Our experimental work models many details of real systems not captured by the
theoretical model. These are as follows:

• Disk response times and CPU times between I/O requests are not constant.
We use average values for each and expect that variation in event times does
not substantially invalidate the algorithm’s decisions. In our experimentation,
this does not appear to be a major effect. (The systematic effects of disk
scheduling on disk response time are considered separately.)
• Disk response time is sensitive to the order in which requests are serviced.

In particular, disk scheduling reduces average disk response time as more
accesses are presented and allowed to be reordered by the I/O driver. Al-
though fixed horizon implicitly allows multiple outstanding requests at each
disk, the other algorithms were defined to submit only one request at a time,
since in the theoretical model there is no advantage to batching. Because
of the significance of the disk scheduling effect, we modify the definitions
of the other algorithms to submit disk requests in batches. We have found
that the performance of all four algorithms benefits from the CSCAN disk
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scheduling algorithm.
• Access patterns exhibit locality of reference, and loads are balanced across

the multiple disks when data is laid out well. In practice, this allows the
other algorithms to effectively utilize multiple disks, and to achieve elapsed
times comparable to the theoretically superior reverse aggressive.

• Disk accesses require significant CPU overhead to form the request, commu-
nicate with the disk, and service the resulting interrupt(s). Thus, avoidable
data fetches may add elapsed time even if they do not cause stalls. Be-
cause the theory assumes that fetches entail no CPU overhead, this penalty
punishes overly aggressive fetching. In practice, this effect favors the fixed
horizon algorithm since its late replacement decisions tend to lead to the
fewest fetches.

The following is a summary of our empirical findings:
• All four algorithms significantly outperform demand fetching, even when ad-

vance knowledge of the access sequence is used to make optimal replacement
decisions in conjunction with demand fetching.
• In compute-bound situations, fixed horizon and forestall have the best per-

formance (which is usually matched by reverse aggressive’s).
• In I/O-bound situations, aggressive and forestall have the best performance

(which is usually matched by reverse aggressive’s).
• In any given situation, one of fixed horizon or aggressive performs close to the

theoretically near-optimal reverse aggressive.
• In all situations, forestall performs close to reverse aggressive.
• When data is well laid out on the disks, disk loads are balanced even with-

out careful replacement choices. For this reason, reverse aggressive does not
significantly outperform the other algorithms.
• Fixed horizon places the least I/O load on the disks, due to its conservative

fetching and near-optimal replacement choices; aggressive places the greatest
load on the disks. Reverse aggressive and forestall are intermediate between
aggressive and fixed horizon.

• Forestall is a promising new approach that combines the best features of the
other three algorithms: good performance regardless of I/O- or compute-
boundedness, simplicity, and practicality.

For further details, see [19].

7. Summary and open problems. In this paper, we have considered algo-
rithms for prefetching and caching of data from multiple backing stores. Previous
algorithms, designed for the case of a single backing store, were found to be subopti-
mal by a factor near the number of backing stores. Our main result is a new algorithm,
reverse aggressive, that is provably near optimal. Although reverse aggressive is not a
practical algorithm, this paper lays theoretical groundwork for the parallel prefetch-
ing and caching problem and exposes its structure. Also, as described in section 6,
reverse aggressive serves as an important benchmark against which to compare more
practical algorithms.

We know of no polynomial-time algorithm for optimal prefetching for multiple
disks. It is a difficult problem to find either such an algorithm or a proof of hardness.
Another very interesting direction is to extend these results to the case in which only
probabilistic information is available about the request sequence.
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Abstract. Let C2
p denote the class of first-order sentences with two variables and with additional

quantifiers “there exists exactly (at most, at least) i” for i ≤ p, and let C2 be the union of C2
p taken

over all integers p. We prove that the satisfiability problem for C2
1 sentences is NEXPTIME-complete.

This strengthens the results by [E. Grädel, Ph. Kolaitis, and M. Vardi, Bull. Symbolic Logic, 3 (1997),
pp. 53–69], who showed that the satisfiability problem for the first-order two-variable logic L2 is
NEXPTIME-complete and by [E. Grädel, M. Otto, and E. Rosen, 12th Annual IEEE Symposium
on Logic in Computer Science, 1997, pp. 306–317], who proved the decidability of C2. Our result
easily implies that the satisfiability problem for C2 is in nondeterministic, doubly exponential time.
It is interesting that C2

1 is in NEXPTIME in spite of the fact that there are sentences whose minimal
(and only) models are of doubly exponential size.

It is worth noticing that by a recent result of [E. Grädel, M. Otto, and E. Rosen, Proceedings
of 14th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 1200, Springer-Verlag, Berlin, 1997], extensions of two-variable logic L2 by a weak access to
cardinalities through the Härtig (or equicardinality) quantifier is undecidable. The same is true for
extensions of L2 by very weak forms of recursion.

The satisfiability problem for logics with a bounded number of variables has applications in
artificial intelligence, notably in modal logics (see, e.g., [W. van der Hoek and M. De Rijke, J. Logic
Comput., 5 (1995), pp. 325–345]), where counting comes in the context of graded modalities and
in description logics, where counting can be used to express so-called number restrictions (see, e.g.,
[A. Borgida, Artificial Intelligence, 82 (1996), pp. 353–367]).
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1. Introduction. Let L2 denote the class of first order sentences with two vari-
ables over a relational vocabulary, and let C2

p denote L2 extended with additional
quantifiers “there exists exactly (at most, at least) i” for i ≤ p. Finally, let C2 be the
union of C2

p taken over all integers p. We prove that the problem of satisfiability of
sentences of C2

1 is NEXPTIME-complete.
Problems concerning decidability of restricted classes of quantificational formulas

have been studied since the second decade of this century by many logicians, including
Ackermann, Bernays, Gödel, Kalmár, Schönfinkel, Skolem, Wang [1, 2, 5, 11, 12, 24,
33, 34, 35, 37], and many others. In the late twenties and in the thirties (see [7]
and [19] for more information) the study of classification of solvable classes of prenex
formulas was one of the most active areas of logic. Now, after the works of Gurevich
[18], Rabin [30], Shelah [32], and Goldfarb [14], the classification of prenex classes has
been completed. Accounts of the classical results in this area can be found in several
books [3, 7, 9, 25]. More recent results have been obtained by Lewis and Goldfarb
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[13, 14, 26]. A short survey of the research in this area can be found in [19] (see also
the introduction to [15]).

In 1962, in a short note, D. Scott [31] proved that the satisfiability problem for
L2 was decidable. His proof was based on a reduction of this problem to the problem
of satisfiability of sentences in the Gödel class with equality. Later, in 1975, Mortimer
gave another proof of decidability by proving that L2 has a finite model property.
When in 1984 Goldfarb [14] found a counterexample to the claim, that the Gödel
class with equality had a decidable satisfiability problem, the very short and elegant
proof by Scott lost its validity. In 1980 Lewis [27] proved that the satisfiability prob-
lem for L2 was NEXPTIME-hard. The complexity of an algorithm which could be
extracted from Mortimer’s work was doubly exponential. Recently, Grädel, Kolaitis,
and Vardi [15] have closed the gap by providing a very elegant proof that the satisfi-
ability problem for L2 was in NEXPTIME. Later we found another proof [36] of the
same result. Our proof was not as nice as the one in [15], but we hoped it could be
extended to get the complexity bounds for C2.

In [16], Grädel, Otto, and Rosen established decidability of the satisfiability prob-
lem for C2. They proved that the set of sentences which have infinite models was
recursive, which implied the above mentioned result. No complexity estimates could
be obtained from their proof.

In this paper we prove that the satisfiability problem for C2
1 is in NEXPTIME,

so by the result of Lewis [27] it is NEXPTIME-complete. By the reduction of C2 to
C2

1 given in [16] this implies that C2 is in 2-NEXPTIME. Although our strict upper
bound applies only to C2

1 we believe that we have developed techniques that can be
used to close the gap for the entire class C2.

Our approach is in a very remote way based on the ideas of Mortimer. A very
simple cardinality argument shows that Mortimer’s notion of a star could not be used
to give a NEXPTIME decision procedure. This led to a weakening of this notion to
the notion of a constellation. As the first application of this notion we gave in [36]
another proof of the result of Grädel, Kolaitis, and Vardi [15]. There we have also
used a stronger notion of a normal form—going further than Grädel, Otto, and Rosen
in [16]—a constellation form, in which, additionally, constant symbols do not appear.
The proof in [36] is “syntactic”; however, in the case of L2, the “syntactic” structure
coding a model is almost equivalent to a model. This changes dramatically when we
move to C2 and allows for a concise description of models that can be even infinite.

In contrast to [16] our basic notions are almost entirely syntactic. We like the
feudal terminology of [16] and we treat kings of [16] with proper care and respect.
However, kings in our sense have other virtues besides belonging to a finite set. Popu-
lation of our kings is always at most doubly exponential in the size of the language. On
the other hand, it is easy to give examples of models whose sets of kings in the sense
of [16] have, for a language of bounded size, arbitrary large cardinality. This seems
to suggest that the method of [16] could not easily be adapted to give complexity
bounds.

To get our result we analyze the structure of the feudal court. We have a few kings
and kings are characterized by the fact that they are connected between themselves
using only counting types. Instead of a more or less uniform court we have a hierarchy
Vi for i < 2n

2

of vassals, each of which may be a sovereign of perhaps several vassals
in Vi+1. The union V of all Vi for i < 2n

2

is included in the set of kings in the
sense of [16] and provides information sufficient to reconstruct a model and thus gives
rise to a 2-NEXPTIME algorithm for C2

1 and a 3-NEXPTIME algorithm for C2. Of
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course, we cannot easily improve the above bounds, since we can provide a sentence
(see Proposition 4.18) of C2

1 of size n whose unique model coincides with V and has
cardinality O(22n).

To push the lower bound down we had to provide a finer analysis. We have noticed
that although the number of vassals in a model can be large (doubly exponential), the
number of vassals that are different from the point of view of relations between them-
selves is smaller (exponential). In more technical terms a potential model is described
by a set of indexed constellations and numbers of elements that realize these con-
stellations. Roughly speaking, an indexed constellation—in addition to information
on 2-types realized by pairs containing a given element—carries, for certain 2-types,
requests for partner constellations, that is, constellations that should realize, together
with the given constellation, these 2-types. Moreover, we show that the model is
composed of some number of parts (only one of them can be infinite), which can be
treated separately and independently during construction of the model. To check if
the parts can be constructed we use several graph-theoretical results concerning the
existence of Hamiltonian cycles, matchings, and bipartition.

It is worth noticing that by a recent result of Grädel, Otto, and Rosen [17],
extensions of two-variable logic L2 by a weak access to cardinalities through the
Härtig (or equicardinality) quantifier is undecidable. The same is true for extensions
of L2 by very weak forms of recursion.

The satisfiability problem for logics with a bounded number of variables has
applications in artificial intelligence, notably in modal logics (see, e.g., [22]) where
counting comes in the context of graded modalities and in description logics, where
counting can be used to express so-called number restrictions (see, e.g., [8]). More
information on applications and relation of two-variables logics to modal logics is
given in [15].

2. Preliminaries. Throughout the paper we are concerned mainly with signa-
tures that consist of unary and binary predicate letters without Boolean predicates,
function symbols, and constants. This restriction allows us to simplify definitions and
technical proofs. We would, however, like to emphasize that it is easy to adapt all
notions used in this paper and to modify the proofs in order to obtain the same results
also for the full first-order two-variable logic with counting, including predicate letters
of higher arity and constants (see, e.g., [15] for a proof that predicate letters of higher
arity can be eliminated).

We assume that the reader is familiar with standard notions of logic and with
basic concepts of computational complexity theory. In this paper, L-structures are
denoted by Gothic capital letters and their universes are denoted by corresponding
Latin capitals. Furthermore, if a structure A is fixed, then its substructure with the
universe denoted by a Latin capital is denoted by the corresponding Gothic capital.

By L2 we denote the class of first-order sentences with two variables over a rela-
tional vocabulary, and by C2

p we denote L2 extended by additional quantifiers of the

form ∃=i, ∃≤i, or ∃≥i (respectively, there exists exactly, at most, at least i) for i ≤ p.
Finally, C2 is the union of C2

p taken over all integers p.
Let L be a relational vocabulary with unary and binary predicate letters only.

A 1-type t(x) is a maximal consistent set of atomic and negated atomic formulas of
the language L in the variable x. A 2-type t(x, y) is a maximal consistent set of
atomic and negated atomic formulas of the language L in the variables x, y, such that
(x 6= y) ∈ t(x, y). A type t is often identified with the conjunction of formulas in
t. For a 2-type t(x, y) we denote by t(x, y)�{x} the unique 1-type t(x) included in
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t(x, y) and we denote by t∗ the type dual to t; that is, the type obtained from t by
replacing each occurrence of the variable x by y and each occurrence of y by x. If A
is an L-structure with the universe A, and if a, b ∈ A, then we denote by tpA(a, b) the
unique type realized by the pair 〈a, b〉 in A.

Recall that for any integer function t(n), NTIME(t(n)) is the class of all decision
problems that can be solved by a nondeterministic Turing machine in time t(n), where
n is the length of the input. We put

NEXPTIME =
⋃
p NTIME (2p(n)),

2-NEXPTIME =
⋃
p NTIME (22p(n)

),

where p is a polynomial.

3. On the L2case. In this section we consider the satisfiability problem for L2,
the first-order logic with two variables and without counting quantifiers. We give
an algorithm solving this problem which runs in nondeterministic exponential time.
As we have mentioned in the introduction, it follows from the paper of Mortimer [28]
that the satisfiability problem for L2 can be solved by a nondeterministic algorithm in
doubly exponential time. An algorithm whose complexity matches the NEXPTIME
lower bound given by Lewis [27] was presented in a very nice paper by Grädel, Kolaitis,
and Vardi [15]. This algorithm and the bound that follow from Mortimer’s work
depend on the bounds on the cardinality of a minimal model of an L2 sentence. Our
algorithm, in contrast to the above, does not exploit the bounded model property of
L2.

This section is a modification of [36] and it is included here following a suggestion
of one of the referees in order to introduce and explain the techniques used later for
logic with counting.

Our approach in a remote way is based on Mortimer’s notion of a star [28], a star
being an arbitrary set of 2-types with a consistent center. The notion of a star was
a very convenient technical tool to describe a finite structure and to check, with the
help of Ehrenfeucht games of depth two [10], that this structure is a model of an L2

sentence. Unfortunately, Mortimer’s notion of a star cannot be directly used to give
a NEXPTIME decision procedure since the cardinality of a star is exponential and
the number of possible stars is doubly exponential in the number of predicate letters
in the signature.

We weaken the notion of a star to a notion of a small constellation that we intro-
duce after a close analysis of L2 sentences from the point of view of their satisfiability.
As in other related papers [31, 15] we use a variant of a notion of a normal form
of first-order sentences. Our notion is called a constellation form and it allows to
introduce the notion of a small constellation in a very natural way. Unlike a star, a
small constellation is of linear size and it contains only these 2-types that describe a
relation of a given point to a witness that must exist in a model of an L2 sentence.

We also introduce a notion of a small galaxy as a set of small constellations
that can be modeled in a first-order structure and we prove that an L2-sentence is
satisfiable if and only if there exists a small galaxy (Theorem 3.5). A small galaxy
has only exponential size.

As the next step we give necessary and sufficient conditions for a set of small
constellations to form a small galaxy (Definition 3.12, Theorem 3.13). In the proof
of Theorem 3.13 we use notions of special and replicable constellations which are
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analogous to Mortimer’s notions of asymmetric and symmetric stars. These notions
are crucial for our analysis of models for L2-sentences. As a result we get a nonde-
terministic exponential upper bound for the satisfiability problem for L2-sentences
(Corollary 3.14).

3.1. Small constellations, small galaxies, and satisfiability. Let R ⊆ L
be a set of binary predicate letters, R = {R1, . . . , Rm}.

Definition 3.1. An L-sentence Φ is in constellation form if

Φ = ∀x∀yφ(x, y) ∧
∧

1≤i≤m
∀x∃yRi(x, y),

where φ is quantifier-free.
This definition may seem too strong. The second part of the formula seems to

suggest that all elements are similar from the point of view of R. Note, however, that
we do not require that x 6= y; therefore, for an element x, by Ri(x, x) we can code
those relations Ri, for which the existential quantifier of the second part of Φ does
not apply.

Let A be a set of 2-types closed under operation ∗ and let A+ = {t ∈ A :
Ri(x, y) ∈ t, for some i ≤ m}.

Definition 3.2. Let S = {s0, s1, . . . , sk}, where 0 ≤ k ≤ m, s0 is a 1-type and,
if k > 0, then s1, . . . , sk ∈ A+. Define center(S) =

∧
0≤i≤k si�{x}. The set S is a

small A-R-constellation if the following conditions hold:
(1) center(S) = s0;
(2) for every Ri ∈ R, if Ri(x, x) 6∈ center(S), then there exists j, 1 ≤ j ≤ k,

such that Ri(x, y) ∈ sj.
Notice that the notion of a small A-R-constellation depends on a set A of 2-types

and a set R of binary predicate symbols.
Definition 3.3. Let A be an L-structure. An element a ∈ A realizes a small A-

R-constellation S = {s0, . . . , sk} if tpA(a, a) = s0, for each b ∈ A, tpA(a, b) ∈ A, and
there exists a sequence b1, . . . , bk of elements of A such that tpA(a, bi) = si, 0 < i ≤ k.

A small A-R-constellation S is realized in A if there exists a ∈ A which realizes
S.

Note that if an element a ∈ A realizes a small A-R-constellation, then A |=∧
1≤i≤m ∃yRi(a, y).

Definition 3.4. Let S be a set of small A-R-constellations. A structure A
realizes S if every element a ∈ A realizes a small A-R-constellation S ∈ S, and every
small A-R-constellation S ∈ S is realized by an element a ∈ A.

The set S is a small galaxy if there is a structure A such that card(A) > 1, and
A realizes S.

The following theorem gives a necessary and sufficient condition for satisfiability
of sentences in constellation form,

Theorem 3.5. Let R = {R1, . . . , Rm} ⊆ L and let Φ be an L-sentence in
constellation form,

Φ = ∀x∀yφ(x, y) ∧
∧

1≤i≤m
∀x∃yRi(x, y).

Put A = {t : t(x, y) is a 2-type over L and t(x, y)→ φ(x, y)}.
Then Φ has a model with at least two-element universe if and only if there exists

a set S of small A-R-constellations which is a small galaxy.
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Proof. (⇒) Let A |= Φ and card(A) > 1. Since A |= ∀x∀yφ(x, y), the set A is
closed under the operation ∗. Moreover, A |= ∧1≤i≤m ∀x∃yRi(x, y) implies that every
element of A realizes at least one small A-R-constellation. Let S = {S : S is a small
A-R-constellation and S is realized in A}. By Definitions 3.4, A realizes S.

(⇐) Let S be a small galaxy and assume A |= S. Let a ∈ A. By Definition 3.4,
a realizes a small A-R-constellation S ∈ S, S = {s0, . . . , sk}. This implies that
tpA(a, a) = s0, and there exists a sequence b1, . . . , bk of distinct elements of A such
that bi 6= a for i = 1, . . . , k and

(1) tpA(a, bi) = si for i = 1, . . . , k,
(2) tpA(a, b) ∈ A for b ∈ A.

Therefore, by Definition 3.2, the elements b1, . . . , bk are witnesses of a for the part∧
1≤i≤m ∃yRi(x, y) of Φ. Moreover, for every b ∈ A, b 6= a, tpA(a, b) ∈ A, and so A |=

φ(a, b). Therefore A |= Φ.

3.2. The reduction. The following reduction theorem is essentially due to Scott
[31]. It has been also used in [28] and [15]. We present a slightly modified version of
the theorem given in [15].

Theorem 3.6. There exists a polynomial time algorithm which, given an L2

sentence Ψ over an arbitrary relational vocabulary, constructs a sentence Φ in con-
stellation form with the following properties:

(1) Ψ is satisfiable if and only if Φ is satisfiable.
(2) Every predicate letter occurring in Φ has arity at most 2.
(3) If n is the length of Ψ, then Φ contains O(n) different predicate letters and

has length O(n logn).

3.3. The small galaxy theorem. In this section we fixR = {R1, . . . , Rm} ⊆ L,
and a set A of 2-types closed under the operation ∗.

To simplify terminology in this subsection we write “constellation” instead of
“small A-R-constellation” and “galaxy” instead of “small galaxy.”

By Theorem 3.6 and Theorem 3.5 the satisfiability problem for L2 sentences can
be reduced to the problem of finding an appropriate galaxy. In this subsection we shall
give syntactic conditions that are necessary and sufficient for a set of constellations
to be a galaxy.

Definition 3.7. Let S, T be constellations and let t(x, y) ∈ A. S is connectable
to T by t(x, y) if center(S) ⊆ t(x, y) and center(T ) ⊆ t∗(x, y).

We say that S is connectable to T if there is a type t(x, y) ∈ A such that S is
connectable to T by t(x, y).

Proposition 3.8. Let S be a galaxy and S ∈ S. Then the following conditions
are equivalent.

(1) There is a structure A which realizes S, and S is realized in A by at least two
elements.

(2) S is connectable to S.
Proof. Let S be a galaxy, S ∈ S, and let B be a structure such that B |= S.

To prove the implication (1) ⇒ (2), assume that S is realized in A by two elements
a and b. Let t(x, y) = tpA(a, b). Since A |= S, we have t(x, y) ∈ A. Of course,
center(S) ⊆ t(x, y) and center(S) ⊆ t∗(x, y).

Now we shall prove that (2)⇒ (1). Let t ∈ A be such that center(S) ⊆ t(x, y) and
center(S) ⊆ t∗(x, y). Let b ∈ B realize S in B. We claim that there exists an extension
A of B such that A = B∪{a}, where a 6∈ B and a realizes S. Indeed, A can be obtained
from B by putting A = B∪{a}, tpA(a, b) = t(x, y), and tpA(a, c) = tpA(b, c), for every
c ∈ B.
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The proposition above motivates the following definition.
Definition 3.9. A constellation S is replicable if S is connectable to S. Other-

wise, the constellation S is special.
Let S be a galaxy, and let A satisfy S. In the universe A of A we can distinguish

the set K ⊆ A consisting of all elements which realize special constellations. Elements
of the set K are called kings. A noble is an element of the set N =

⋃
a∈K{b1, . . . , bk ∈

A : k ≤ m and {tpA(a), tpA(a, b1), . . . , tpA(a, bk)} ∈ S}. Nobles are those elements of
the universe that are necessary for the existence of kings. Define the court C = K∪N .
Note that card(C) ≤ (m+1)card(K). There may also be plebeians—elements outside
the court; they are not necessary for the kings but perhaps some nobles may need
them. Plebeians may also depend on kings to survive.

Remark. The notion of a king in a structure has been used in many places. For
example, Gurevich and Shelah have used this notion in [20] to show that their proof
of the solvability of the Gödel class without equality could not be generalized to the
case with equality. Grädel, Kolaitis, and Vardi have also used this notion in [15]. We
would like to point out that although in this paper the kings are defined in terms of
constellations, they have the same meaning as in [15].

Definition 3.10. Denote by Sp(S) the subset of S consisting of all special
constellations and by Rp(S) the set S \ Sp(S).

The following simple observation establishes relations between the notions defined
above.

Proposition 3.11. Let S be a galaxy, and let A realize S. Then there exist sets
K and C such that the following conditions hold.

(1) K ⊆ C ⊆ A, card(K) ≤ card(Sp(S)), and card(C) ≤ (m+ 1)card(K).
(2) Every element a ∈ K realizes a constellation S ∈ Sp(S) in A�C.
(3) Every constellation S ∈ Sp(S) is realized by an element a ∈ K in A � C.
(4) For every S, T ∈ Rp(S), S is connectable to T .
Proof. The proof is immediate.
One can easily check that the converse to the above proposition does not hold.

For example, let

L = R = {R1, R2},
A = {t1, t∗1, t2, t∗2, t3},

s0(x) = R1(x, x) ∧R2(x, x),

t0(x) = ¬R1(x, x) ∧ ¬R2(x, x),

t1 = t0(x) ∧R1(x, y) ∧ ¬R2(x, y) ∧R1(y, x) ∧R2(y, x) ∧ s0(y),

t2 = t0(x) ∧ ¬R1(x, y) ∧R2(x, y) ∧R1(y, x) ∧R2(y, x) ∧ s0(y),

t3 = t0(x) ∧ ¬R1(x, y) ∧ ¬R2(x, y) ∧ ¬R1(y, x) ∧ ¬R2(y, x) ∧ t0(y),

S = {S, T}, where S = {s0} and T = {t0, t1, t2}.

It is easy to see that the constellation S is special and T is replicable. One can
check that if we define K = {a}, C = K, tpA(a) = s0, then conditions (1)–(3) of
Proposition 3.11 hold and, since T is connectable to T by t3, condition (4) holds
too. Unfortunately, the constellation T cannot be realized in any structure, since to
realize T we need two elements, b1 and b2, such that tpA(b1) = s0, tpA(b2) = s0, and
tpA(b1, b2) ∈ A, which is not possible. Therefore, S is not a galaxy.

Now we shall extend the set of conditions given in Proposition 3.11 to a set of
conditions that will imply that a set S of constellations is a galaxy.
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Definition 3.12. Let S be a set of constellations. A small representation of S
is a system

〈K,C, I, F,G〉,

where K and C are sets, I, F,G are functions such that I : C → S, F : C × C → A,
G : Rp(S)×K → A, and the following conditions hold.

(s1) K ⊆ C, card(K) ≤ card(Sp(S)), and card(C) ≤ (m+ 1)card(K).
(s2) I(K) = Sp(S), I(C \K) ⊆ Rp(S), F (a, a) = F (a, b)�{x}, and for every a 6= b

F (a, b) = F (b, a)∗.
(s3) For every a ∈ K and every t ∈ I(a), there is an element c ∈ C such that

t = F (a, c).
(s4) For every b ∈ C \K and every t ∈ I(b), if there is no c ∈ C such that t =

F (b, c), then there is a constellation T ∈ Rp(S) such that I(b) is connectable
to T by t.

(s5) For every S, T ∈ Rp(S), S is connectable to T .
(s6) For every S ∈ Rp(S) and every a ∈ K, S is connectable to I(a) by G(S, a).
(s7) For every S ∈ Rp(S) and every type t(x, y) ∈ S, if there is no a ∈ K such

that G(S, a) = t(x, y), then there is a constellation T ∈ Rp(S) such that S is
connectable to T by t.

Conditions (s1), (s2), and (s3) say that the set C is a universe of a structure in
which all special constellations are realized. In other words, kings are provided with
all they need to survive. Condition (s4) ensures that every noble can find enough
plebeians around him. Condition (s5) says that plebeians can live together in one
society and, by condition (s6), the society is ruled by kings. Condition (s7) states
that plebeians can get what they need—if not from kings, then from somewhere else.

Theorem 3.13 (small galaxy theorem). A set of constellations S is a galaxy if
and only if there exists a small representation of S.

Proof. (⇒) Assume that S is a galaxy and A realizes S. Let K be the set of kings
in A, and let C be the court in A. For every a ∈ C choose a constellation S ∈ S which
is realized by a, and put I(a) = S. For every a, b ∈ C, put F (a, b) = tpA(a, b). For
every constellation S ∈ Rp(S) find an element b ∈ A which realizes S, and for every
a ∈ K put G(S, a) = tpA(b, a).

It is easy to check that the system 〈K,C, I, F,G〉 is a small representation of S.
(⇐) Let S be a set of constellations, and let 〈K,C, I, F,G〉 be a small represen-

tation of S.
We shall construct a structure A realizing S such that the universe A of A contains

C, every a ∈ K realizes I(a) in A�C, and tpA(a, b) = F (a, b), for each pair 〈a, b〉 of
elements of C.

The construction proceeds in steps. The number of steps can be infinite. In each
step new elements are added to the universe. A new element is added when there
is a request to satisfy a constellation, say, S. Whenever an element a is added to
satisfy S, I is extended by putting I(a) = S. An element a such that I(a) = S is
inactivated after adding enough elements to witness that a realizes S. An unordered
pair of elements will be reserved, when a type to be realized by this pair has been
designated.

In every step of the construction the universe of the part of the structure A defined
so far is finite. We also assume that there is a fixed linear ordering < of the universe,
and each new element added to the universe is greater than all old elements.

Let S = {S1, . . . , Sk}.
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Stage 1.

(1) Let A = C.
(2) For every a, b ∈ C, put tpA(a, b) = F (a, b) (cf. (s2)).
(3) For every a ∈ K, inactivate a.
(4) For every a, b ∈ C, reserve {a, b}.
(5) For every S ∈ Rp(S) such that I(b) 6= S, for each b ∈ C, add a new element

d to A and put I(d) = S.

Stage 2.

(6) Let b be the first active (i.e., yet not inactivated) element of A.
Note that I(b) ∈ Rp(S). Indeed, b 6∈ K, so either b ∈ C \K, and so I(b) ∈
Rp(S), by (s2), or b has been added to A in steps 5, 7(a)(ii), or 9(b), and
whenever we add a new element b to the universe we always put I(b) ∈ Rp(S).

(7) If b ∈ C \K, then
(a) for every t ∈ I(b) if there is no element c ∈ C such that t = F (b, c), do

(i) using (s4) find T ∈ Rp(S) such that I(b) is connectable to T by t;
(ii) add a new element d to A;
(iii) put I(d) = T , and tpA(b, d) = t, reserve {b, d};

(b) inactivate b and go to 6.
(8) Using (s6), for every a ∈ K, put tpA(b, a) = G(I(b), a).

Note that, b 6∈ C, so no pair {a, b}, with a ∈ K, has been reserved earlier.
(9) For every t ∈ I(b), if there is no c ∈ A such that {c, b} is reserved and

tpA(c, b) = t∗, do
(a) by (s7) find T ∈ Rp(S) such that I(b) is connectable to T by t.

Note that, by step 8, there is no element a ∈ K; such that t = G(I(b), a).
(b) add a new element d to A;
(c) put I(d) = T , tpA(b, d) = t, and reserve {b, d};
(d) for every a < b, if {a, b} is not reserved, then using (s5) find t ∈ A such

that I(b) is connectable to I(a) by t, put tpA(b, a) = t and reserve {b, a}.
(10) Inactivate b and go to 6.

We shall now show that A realizes S. First, let us note that every pair of distinct
elements of A realizes in A a 2-type of A (see steps 2, 7(a)(iii), 8, 9(c), 9(d)).

New elements are added at the end of the fixed ordering, and in step 6 we al-
ways consider the first active element; therefore every element a ∈ A will eventually
be inactivated. We claim that when an element a is inactivated, then a realizes a
constellation of S in A. In fact an element inactivated in step 3, by (s2) and (s3) of
Definition 3.12, realizes a special constellation of S. Before an element b is inactivated
in step 7(b), in step 7(a) every type of I(b) has been realized by a pair 〈b, a〉 for some
a ∈ A. Similarly, step 9 ensures that the element inactivated in step 10 realizes its
constellation.

Finally, by step 5 every constellation of S is realized in A.

Now let us consider the cardinality of the structure constructed by the algorithm
described above. If Rp(S) = ∅, then only the first stage of the algorithm is performed
and we get a structure with the universe K. We also get a finite structure if no new
elements are added in step 7(a)(i). In this case I(C) = S, and the function F is
defined in such a way that no noble element needs a plebeian. In other cases we get
an infinite structure. The construction could be modified in such a way that it will
stop after a bounded number of steps. However, we omit this modification, since the
construction described above is better suited for generalization to logic with counting.



1092 L. PACHOLSKI, W. SZWAST, AND L. TENDERA

3.4. Complexity.
Corollary 3.14. There is a nondeterministic algorithm with time complexity

O(2cn
2

), for some constant c, which, given an L2-sentence Φ, decides if Φ is satisfi-
able.

Remark. In [36], using more complicated techniques, we gave a similar algorithm
with time complexity O(2cn). Here we provide a simplified version only, since it is
easier to understand and better explains the methods used in the main part of this
paper.

Proof. Let Φ be an L2 sentence of length n. In the first step we use the polynomial
time algorithm of Theorem 3.6 to get a sentence Ψ in constellation form,

Ψ = ∀x∀yφ(x, y) ∧
∧

1≤i≤m
∀x∃yRi(x, y),

which is satisfiable if and only if Φ is satisfiable. Moreover, Ψ has at most p = O(n)
predicate letters and has length O(n logn).

Then we use Theorem 3.5. We build a set A in time O(2O(p)), and, in time

O((24p)m) = O(2O(n2)), we guess a set S of small A-R-constellations.
Next, we use Theorem 3.12 and we guess sets K and C and functions I, F , and

G. Since card(K) ≤ 2O(n2) and card(C) ≤ (m + 1)card(K) we can do this in time

O(2O(n2)).
Finally, we accept Ψ after checking whether 〈K,C, I, F,G〉 is a small representa-

tion of S. This can also be done in time O(2O(n2)).

4. Double exponential algorithm.

4.1. Constellations, galaxies, and satisfiability. Let R = {R1, . . . , Rm} ⊆
L be the set of binary predicate letters.

Definition 4.1. An L-sentence Φ is in constellation form if

Φ = ∀x∀yφ(x, y) ∧
∧

1≤i≤m
∀x∃=miyRi(x, y),

where φ is quantifier-free. Φ is in ∃=1-constellation form if mi = 1 for each i ≤ m.
As Definition 3.1, the definition above may seem too strong, since the second part

of the formula seems to suggest that all elements are similar from the point of view of
R. However, as before, the fact whether Ri(x, x) holds is used to code those relations
Ri for which the counting quantifier does not apply.

Let A be a set of 2-types closed under operation ∗.
Definition 4.2.
A = A↔∪̇A←∪̇A→∪̇A−, where
A↔ = {t ∈ A : there are i, j ≤ m such that Ri(x, y) ∈ t and Rj(y, x) ∈ t},
A← = {t ∈ A : t 6∈ A↔ and there exists i ≤ m such that Ri(y, x) ∈ t},
A→ = {t ∈ A : t 6∈ A↔ and there exists i ≤ m such that Ri(x, y) ∈ t},
A− = {t ∈ A : for every i ≤ m,¬Ri(x, y) ∈ t and ¬Ri(y, x) ∈ t}.
In the definition above A↔, A←, and A→ represent counting types. Since Ri

appears in the second part of the formula Φ in constellation form, it follows that
Ri(x, y) ∈ t implies that for (a, b) and (a, b′) realizing t we always have b = b′.

Definition 4.3. Let S = {s0, s1, . . . , sk}, where k ≥ 0, s0 is a 1-type and, if
k > 0, then s1, . . . , sk ∈ A↔ ∪ A→. Define center(S) =

∧
0≤i≤k si�{x}. The set S is

an A-R-constellation if the following conditions hold:
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(1) center(S) = s0;
(2) for every Ri ∈ R, if Ri(x, x) 6∈ center(S), then there is exactly one j, 1 ≤

j ≤ k, such that Ri(x, y) ∈ sj ;
(3) for every Ri ∈ R, if Ri(x, x) ∈ center(S), then for every j, 1 ≤ j ≤ k,

Ri(x, y) 6∈ sj.
Notice that the notion of an A-R-constellation depends on fixed sets A of 2-

types and R of binary predicate symbols. Moreover, the number of 2-types in a
constellation does not exceed card(R). It does not follow from Definition 4.3 that
each constellation contains a counting type. There may be constellations S such that
center(S) = {Ri(x, x) : Ri ∈ R}. In fact center(S) codes the relations in R which
are not used in S in the context of counting.

Definition 4.4. Let A be an L-structure. An element a ∈ A realizes an A-R-
constellation S = {s0, . . . , sk} if tpA(a, a) = s0, and there exists a unique sequence
b1, . . . , bk ∈ A that tpA(a, bi) = si, 1 ≤ i ≤ k, and for every b ∈ A, b 6= a, b 6= bi,
1 ≤ i ≤ k, we have tpA(a, b) ∈ A← ∪ A−. An A-R-constellation S is realized in A if
there exists an element a ∈ A which realizes S.

For a ∈ A, we write CA
a to denote the unique A-R-constellation realized by a.

Definition 4.5. Let S be a set of A-R-constellations. A structure A realizes S
if every element in A realizes an A-R-constellation and every constellation in S is
realized in A.

A set S of A-R-constellations is a galaxy if there is a structure A such that
card(A) > 1, and A realizes S.

The following theorem gives a necessary and sufficient condition for satisfiability
of sentences in ∃=1-constellation form.

Theorem 4.6. Let R = {R1, . . . , Rm} ⊆ L, and let Φ be an L-sentence in
∃=1-constellation form,

Φ = ∀x∀yφ(x, y) ∧
∧

1≤i≤m
∀x∃=1yRi(x, y).

Put A = {t : t(x, y) is a 2-type over L and t(x, y)→ φ(x, y)}.
Then Φ has a model with at least two-elements if and only if there exists a set of

A-R-constellations which is a galaxy.
Proof. (⇒) Assume that A |= Φ and card(A) > 1. Since A |= ∀x∀yφ(x, y), the set

A is closed under ∗. Since A |= ∧
1≤i≤m ∀x∃=1yRi(x, y), every element of A realizes

some A-R-constellation. Therefore S = {CA
a : a ∈ A} is a galaxy.

(⇐) Let S be a galaxy and assume that A realizes S. Let a ∈ A. By Definition 4.5,
a realizes an A-R-constellation S ∈ S, S = {s0, . . . , sk}. This implies that tpA(a, a) =
s0 and that there exists a sequence b1, . . . , bk of distinct elements of A such that bi 6= a
for i = 1, . . . , k, and

(1) tpA(a, bi) = si, for i = 1, . . . , k,
(2) tpA(a, b) ∈ A← ∪ A− ⊂ A, for each b ∈ A, such that b 6= a and b 6= bi,

i = 1, . . . , k.
Therefore, by Definition 4.3, the elements b1, . . . , bk are witnesses of a for the part∧

1≤i≤m
∃=1yRi(x, y).

Moreover, for every b ∈ A, b 6= a, tpA(a, b) ∈ A, and so A |= φ(a, b). Hence, A |=
Φ.



1094 L. PACHOLSKI, W. SZWAST, AND L. TENDERA

4.2. The reduction. The following theorem has been shown in [16].
Theorem 4.7. There is a recursive reduction NF from C2-sentences to C2-

sentences in normal form over an extended vocabulary, which is sound for satisfiabil-
ity: Φ is satisfiable if and only if NF(Φ) is satisfiable.

In the above theorem the normal form is slightly weaker than our ∃=1-constellation
form. The difference is that in the ∃=1-constellation form the quantifier free part of
the sentences with prefix ∀∃=1 is atomic, whereas in the normal form in the sense of
[16] it could be any quantifier free two-variable formula. This additional condition
can be easily met by introducing new relation symbols for quantifier free formulas,
and adding ∀∀-sentences defining the newly introduced symbols.

From the proof of Theorem 4.7 given in [16] the following corollaries can be
derived.

Corollary 4.8. There exists a polynomial time algorithm which, given a C2
1

sentence Ψ over a relational vocabulary, constructs a sentence Φ in ∃=1-constellation
form with the following properties:

(1) Ψ is satisfiable if and only if Φ is satisfiable.
(2) Every predicate letter occurring in Φ has arity at most 2.
(3) If n is the length of Ψ, then Φ contains O(n) different predicate letters and

has length O(n logn).
The reduction for the full logic C2 is more expensive.
Corollary 4.9. There exists an exponential time algorithm which, given a C2

sentence Ψ over a relational vocabulary, constructs a sentence Φ in ∃=1-constellation
form with the following properties:

(1) Ψ is satisfiable if and only if Φ is satisfiable.
(2) Every predicate letter occurring in Φ has arity at most 2.
(3) If n is the length of Ψ, then Φ contains O(2n) different predicate letters and

has length O(2O(n)).
The exponential increase of the length of the sentence Φ given by the algorithm in

Corollary 4.9 is caused by the necessity to introduce as many new predicate letters as
the maximal integer which appear as an index of a counting quantifier. If integers are
represented in binary we have to introduce O(2n) new predicate letters for a sentence
of length n. We do not know any better reduction and this is the main reason why
we cannot improve the upper complexity bound for the satisfiability problem for the
full C2 from double to single exponential.

4.3. The galaxy theorem. In this subsection we fix R = {R1, . . . , Rm} ⊆ L
and a set A of 2-types closed under ∗. Henceforth, whenever the sets A and R are
fixed, we write “a constellation” instead of “an A-R-constellation.”

So far we have shown that the satisfiability problem for C2
1 sentences can be

transformed to the problem of finding an appropriate galaxy. In this section we
shall formulate syntactic conditions which are necessary and sufficient for a set of
constellations to form a galaxy, but before doing that, in order to acquaint the reader
with our basic technique and to provide a better background for the proof of the main
result of this section, we shall state and prove some basic properties of constellations.

At the beginning we introduce a syntactic notion of connectability of two constel-
lations. This definition says that two constellations are connectable by a 2-type t if t
is a connective type for them; that is, t contains the centers of both constellations and
either t is noncounting, or t and t∗ are distributed between these two constellations.
In other words, this notion provides a necessary condition for two constellations to be
realizable in the same structure.
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The notion of connectability, together with the notions of constellation and galaxy,
plays a crucial role in this section and is basic in the whole paper. An easy observation
(Proposition 4.13) shows that in a specific situation this notion suffices to formulate
very simple conditions that allows to solve the satisfiability problem. This “specific”
situation can be described in both semantic and syntactic terms. There is a structure
in which every constellation is realized infinitely many times, or every two constella-
tions are connectable by a noncounting type. Intuitively it means that there are no
privileged elements in the structure.

Next, we consider the case when there are some privileged elements in a model.
We prove that if a constellation S is realized in a structure sufficiently often, then
we can build a structure in which S appears infinitely many times (Lemma 4.2).
Constellations that can be realized infinitely often are easy to deal with, in contrast
with those that always appear only finitely many times.

Lemma 4.3 plays a crucial role in the proof of the main result of this section—
the galaxy theorem. It says that every galaxy can be partitioned into two sets:
constellations which can be realized by at most r elements and constellations which can
be realized by infinitely many elements. The integer r is bounded by an exponential
function of the number of constellations in a given galaxy. To prove this lemma, for
a structure A realizing the given galaxy, we define a sequence of sets V1 ⊂ V2 ⊂
· · · ⊂ Vp−1 of subsets of A. The set V1 consists of lords, that is, of elements of
A which realize constellations appearing in A very rarely—less than 2m + 1 times.
Every set Vi+1, for i > 1, besides members of Vi, contains elements that are vassals of
elements of Vi. They realize constellations appearing in A not very often with respect
to the cardinality of the set Vi of sovereigns of the elements of Vi+1. In this way we
obtain a finite hierarchy of elements of A and therefore a hierarchy of elements of the
galaxy—constellations realized by elements of appropriate Vi. This hierarchy does
not necessarily include all constellations.

All the results mentioned above give several necessary conditions for a set of
constellations to be a galaxy. As the next step we introduce the notion of a finite
representation of a set of constellations (Definition 4.14), and we prove the galaxy
theorem (Theorem 4.15) which says that the problem whether a set of constellations S
is a galaxy can be reduced to the problem whether there exists a finite representation
of S.

Since the components of a finite representation are either finite sets of bounded
cardinality or functions from such sets into some fixed finite sets, and since the con-
ditions on the components are easily1 computable, the galaxy theorem forms a basis
for a decision procedure for the satisfiability problem for C2

1 (Corollary 4.17 in 4.4).
We begin the technical part of this section with some additional definitions.
Definition 4.10. Let S, T be constellations, and let t(x, y) ∈ A. S is connectable

to T by t(x, y) if center(S) ⊆ t(x, y), center(T ) ⊆ t∗(x, y), and
(1) t ∈ S and t∗ ∈ T if t ∈ A↔,
(2) t ∈ S if t ∈ A→,
(3) t∗ ∈ T if t ∈ A←.
Definition 4.11. Let S be a galaxy, and assume that A realizes S. Define a

function rankA : S → N ∪ {∞} putting rankA(S) = card({a ∈ A : CA
a = S}).

We write rank(S) =∞ if there is a structure B realizing S such that

min
S∈S

(rankB(S)) > 2m+ 1.

1In this section “easily” means in double exponential time.
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Lemma 4.1. Assume that A is a structure which realizes S. Let S, T ∈ S. If
rankA(S) > 2m + 1, and rankA(T ) > 2m + 1, then there exist a, b ∈ A such that
CA
a = S, CA

b = T , and tpA(a, b) ∈ A−.

Proof. Let X = {a ∈ A : CA
a = S}, Y = {a ∈ A : CA

a = T}, and assume that
card(X) ≥ card(Y ) > 2m+ 1.

By Definition 4.4, for every a ∈ X (a ∈ Y ) there is at most m distinct elements b
such that tpA(a, b) ∈ S (tpA(a, b) ∈ T , respectively). Therefore, the number of pairs
〈a, b〉 such that a ∈ X, b ∈ Y , and tpA(a, b) ∈ S or tpA(b, a) ∈ T does not exceed
m · card(X) +m · card(Y ) ≤ 2m · card(X). On the other hand, the number of pairs
〈a, b〉 such that a ∈ X and b ∈ Y is card(X) · card(Y ) > (2m+ 1)card(X).

Corollary 4.12. Let S be a galaxy with rank(S) = ∞. Then there exists a
structure B realizing S such that rankB(S) =∞, for each S ∈ S.

Proof. Assume that A realizes S, S ∈ S, and rankA(S) = n. We claim that there
is an extension B of A, such that B realizes S, and rankB(S) > n. By Lemma 4.1, for
all constellations S, T ∈ S, there exists a type t(x, y) ∈ A− such that S is connectable
to T by t(x, y). Let A′ be a structure isomorphic to A such that A ∩ A′ = ∅. Define
B = A ∪ A′, and let B �A = A, B �A′ = A′. Now, for every a ∈ A, and every
a′ ∈ A′, find t(x, y) ∈ A− such that CA

a is connectable to CA′
a′ by t(x, y), and put

tpB(a, a′) = t(x, y).

Proposition 4.13. The following conditions are equivalent:

(1) rank(S) =∞;
(2) (a) for every S ∈ S, and every s(x, y) ∈ S, there exists T ∈ S such that S

is connectable to T by s(x, y);
(b) for every S, T ∈ S, S is connectable to T by some t(x, y) ∈ A−.

Proof. (1) ⇒ (2). Condition (a) follows from Definition 4.5 and condition (b)
from Lemma 4.1.

(2) ⇒ (1). We shall give an algorithm which constructs a structure A realizing
S. In the process of construction new elements will be added to the universe; some
elements of the universe will be inactivated and some unordered pairs of elements will
be reserved. An element a will be inactivated when the constellation S that had been
earlier assigned to a has been built, i.e., when elements which witness that a realizes
S have been added. An unordered pair {a, b} will be reserved, when the type realized
by {a, b} has been defined. Moreover, a function I : A 7→ S will be defined in such a
way that I(a) = CA

a for every a ∈ A.

In every step of the construction the part of the model defined so far A will be
finite. We assume that a linear ordering < of the universe is given such that a new
element added to the universe is always greater then the old elements.

Let S = {S1, . . . , Sk}.
(1) Let A = {a1, . . . , ak}. Put I(ai) = Si, i = 1, . . . , k.
(2) Let a ∈ A be the first active (not yet inactivated) element.
(3) For every ti ∈ I(a), if there is no element b ∈ A such that {a, b} is reserved,

and tpA(a, b) = ti, then
(a) add a new element bi to A,
(b) put tpA(a, bi) = ti,
(c) find a constellation T ∈ S such that S is connectable to T by ti,
(d) put I(bi) = T , and reserve {a, bi}.

(4) For every c < a put tpA(a, c) = t ∈ A− such that I(a) is connectable to I(c)
by t.

(5) Inactivate a.
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(6) Go to 2.

If minS∈S(rankA(S)) ≤ 2m + 1, perform the operations from the proof of Corollary
4.12.

Lemma 4.2. Assume that A realizes S. Let V be a finite subset of A and let
S ′ = {CA

a : a ∈ A \ V }. If S ′ ∩ {CA
a : a ∈ V } = ∅, and for every a ∈ A \ V ,

rankA(CA
a ) > max(card(V ) · m, 2m + 1), then there is a structure B realizing S,

such that for every S ∈ S ′ rankB(S) = ∞, and rankB(S) = rankA(S), for every
S ∈ S \ S ′.

Proof. Let A realize S.

An iterative application of the following algorithm applied to every S ∈ S ′ yields
a structure B such that rankB(S) = ∞ for every S ∈ S ′ and rankB(S) = rankA(S)
for every S ∈ S \ S ′ (inactivation, reserving elements, and the function I play the
same role as in the proof of Proposition 4.13). At the beginning, put A′ = A.

(1) Let A′′ = A′ ∪ {x}.
(2) For every a ∈ A′ put I(a) = CA'

a and inactivate a.
(3) Put I(x) = S.
(4) Let x be the first active element of A′′.
(5) Find a ∈ A \ V such that CA

a = I(x), and tpA(a, b) ∈ A− ∪ A→, for every
b ∈ V .
Such an element a exists, since there are at mostm·card(V ) elements c ∈ A\V
such that tpA(c, b) ∈ A↔ ∪ A←.

(6) For every ti ∈ S,
(a) if there is b ∈ V such that tpA(a, b) = ti, then put tpA(x, b) = ti, and

reserve {x, b}
else

(b) if there is no element d ∈ A′′ such that {x, d} is reserved and tpA''(x, d) =
ti, then
add a new element bi to A′′,
put tpA(x, bi) = ti, reserve {x, bi},
find ai ∈ A \ V such that tpA(a, ai) = ti, and put I(bi) = I(ai).

An element ai can be found since CA
a = S and therefore there is an element

ci ∈ A such that tpA(a, ci) = ti. Since ci ∈ A \ V and A realizes S we have
I(ci) = CA

ci ∈ S ′.)
(7) For every c < x, if {c, x} is not reserved, put tpA''(x, c) = t ∈ A− such that

I(x) is connectable to I(c) in A by t, and reserve {x, c}.
(By Lemma 4.1, for every S, T ∈ S ′, S is connectable to T in A by some
t ∈ A−.)

(8) Inactivate x.
(9) Go to 4.

One application of the above algorithm to the constellation S ∈ S ′ and the
structure A′ expands the structure A′ to a structure A′′ such that rankA′′(S) >
rankA′(S).

In step 6, when the types tpA′′(x, b) are defined, where b ∈ V , the constellation
realized by b does not change, since tpA′′(x, b) ∈ A→. Also in step 7, the constellations
realized by the elements c < x are not changed since only types in A− are used.

Every x ∈ A′′ is eventually inactivated since new elements bi are added at the end
of the ordering. When an element x is inactivated it is ensured that for every c < x,
tpA′′(c, x) is defined, and CA′′

x ∈ S.
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Lemma 4.3. Let S be a galaxy. There is a constant r, r = O(m · card(S))card(S),
and there exists a structure B realizing S such that rankB(S) < r or rankB(S) =∞
for every S ∈ S .

Proof. Let A realize S. It suffices to define V ⊆ A of appropriate cardinality
which satisfies the conditions of Lemma 4.2.

The set V will be constructed in stages.
Stage 1. Let V1 = {a ∈ A : rankA(CA

a ) ≤ 2m+ 1}.
Note that if V1 = ∅, then by Corollary 4.12, there is a structure B such that for

every S ∈ S, rankB(S) =∞. In this case only Stages 1 and 2 are performed.
Stage i (i > 1).
(1) If rankA(CA

a ) > card(Vi−1) ·m for every a ∈ A \ Vi−1,
then put Vi = Vi−1 and stop.

(2) Put Vi = Vi−1 ∪ {a ∈ A \ Vi−1 : rankA(CA
a ) ≤ card(Vi−1) ·m}.

(3) Go to Stage i+ 1.
Note that there is a stage i such that Vi = Vi−1. Indeed, for every stage i, let

C(Vi) = {S ∈ S : there is a ∈ Vi such that CA
a = S}. Hence, for every i > 1, if

Vi 6= Vi−1, then C(Vi) ⊃ C(Vi−1). Therefore, since S is finite, the number p of stages
performed is less than or equal to card(S). Put V = Vp.

Now, we estimate card(V ). We have card(V1) ≤ (2m+1) ·card(S), and, for i > 1,

card(Vi) ≤ card(Vi−1) +m · card(Vi−1) · (1 +m · card(S)).

If we put q = 1 + m · card(S), then we have card(V1) ≤ 3qp. Moreover, for every
a ∈ V , rankA(CA

a ) ≤ card(V ), and for every a ∈ A \ V, rankA(CA
a ) > card(V ) · m.

Put r = 3 · (1 +m · card(S))card(S). This by Lemma 4.2 finishes the proof.
Now we are ready to introduce the main definition of this section.
Definition 4.14. Let S be a set of constellations. A finite representation of S

is a system

〈S1, V, C, I, F,G〉,
where S1 is a set of constellations , V and C are sets, I, F,G are functions such that

I : C 7→ S, F : C × C → A, G : (S \ S1)× V → A,
and the following conditions hold:

(f1) S1 ⊆ S, V ⊆ C, and card(C) ≤ m · (2m · card(S))card(S);
(f2) I(V ) = S1, I(C \ V ) ⊆ S \ S1,

F (a, a) = F (a, b)�{x}, and for every a 6= b, F (a, b) = F (b, a)∗,
G : (S \ S1)× V → A→ ∪ A−;

(f3) For every b ∈ C define D(b) = {F (b, c) : c ∈ C, c 6= b, F (b, c) ∈ A→ ∪ A↔}.
Then
(a) for every b ∈ C and every t ∈ D(b), there is exactly one c ∈ C, c 6= b

such that F (b, c) = t,
(b) D(a) = I(a) for every a ∈ V ,
(c) for every b ∈ C \ V , we have D(b) ⊆ I(b), and for every t ∈ I(b) \D(b)

there is T ∈ S \ S1 such that I(b) is connectable to T by t;
(f4) for every S, T ∈ S \ S1, S is connectable to T by some t ∈ A−;
(f5) for every S ∈ S \ S1 we have {G(S, a) ∈ A→ : a ∈ V } ⊆ S, and for every

a ∈ V , S is connectable to I(a) by G(S, a);
(f6) for every S ∈ S \ S1 and every t ∈ S, if t ∈ A→ and there is no T ∈ S \ S1

such that S is connectable to T by t, then there is a unique a ∈ V such that
G(S, a) = t;
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(f7) for every S ∈ S\S1 and every t ∈ S, if there is no a ∈ V such that G(S, a) = t,
then there is T ∈ S \ S1 such that S is connectable to T by t.

We say that S is finitely representable, if there is a finite representation of S.

Let us note that the notion of a finite representation is almost identical with
the notion of small representation (Definition 3.12). The role of replicable small
constellations is taken here by constellations in S \ S1.

Theorem 4.15 (galaxy theorem). A set of constellations S is a galaxy if and
only if S is finitely representable.

Proof. (⇒) Let S be a galaxy. Use Lemma 4.3 to get a structure A and a constant
r such that A realizes S, and for every S ∈ S, rankA(S) < r or rankA(S) =∞. Put

S1 = {S ∈ S : rankA(S) < r},
V = {a ∈ A : rankA(CA

a ) < r},
C = V ∪ {a ∈ A : there is b ∈ V such that tpA(b, a) ∈ A→ ∪ A↔}.
Note that if S ∈ S \ S1, then rankA(S) = ∞. For every a ∈ V , put I(a) = CA

a .
For every a, b ∈ C, a 6= b, put F (a, b) = tpA(a, b). For every S ∈ S \ S1 find a ∈ A \C
such that CA

a = S, and for every c ∈ V put G(S, c) = tpA(a, c).

It is easy to check that conditions (f1)–(f7) of Definition 4.14 hold.

(⇐) Let 〈S1, V, C, I, F,G〉 be a finite representation of S.

Case 1. S1 = ∅. By condition (f2), V = ∅. Consequently conditions (f7) and (f4) are
equivalent to conditions (a) and (b) of Proposition 4.13.

Case 2. S1 = S. By condition (f2), V = C. Therefore, by conditions (f1)–(f3), we can
define V realizing S with universe V in which tpV(a, b) = F (a, b) for every
a, b ∈ V .

Case 3. S1 6= ∅ and S1 6= S. We shall construct a structure A realizing S with the
universe A (A ⊇ C). In our infinite construction, inactivation and reservation
have the same role as in the previous algorithms. Additionally, function I
will be extended to all elements of A in such a way that for every b ∈ A,
I(b) = CA

b . In each step of construction the universe of partially defined
model A will be finite, and we assume that there is a fixed linear ordering on
the universe such that any new element added to the universe is greater than
the old ones.

Stage 1.
(1) Let A = C.
(2) For every a, b ∈ C, put tpA(a, b) = F (a, b) (cf. (f2)).
(3) For every a ∈ V , inactivate a.
(4) For every a, b ∈ C, reserve {a, b}.
(5) For every S ∈ S \ S1, if there is no b ∈ C such that I(b) = S, then add

a new element d to A and put I(d) = S.
Stage 2.
(6) Let b be the first active element of A (note that I(b) ∈ S \ S1).
(7) If b ∈ C, then

(a) for every t ∈ I(b) \D(b) do
(i) find T ∈ S \ S1 such that I(b) is connectable to T by t (use

(f3-c)),
(ii) add a new element d to A and put I(d) = T ,
(ii) put tpA(b, d) = t and reserve {b, d},

(b) inactivate b and go to 6.
(8) For every a ∈ V , put tpA(b, a) = G(I(b), a) (use (f5) and (f6)).
(9) For every t ∈ I(b), if there is no c ∈ A such that {c, b} is reserved, and
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tpA(c, b) = t∗, then
(a) find T ∈ S \ S1 which is connectable to I(b) by t∗ (use (f7)),
(b) add a new element d to A, and put I(d) = T ,
(c) put tpA(b, d) = t, and reserve {b, d}.

(10) For every a < b, if {a, b} is not reserved, then using (f4) find t ∈ A−
such that I(b) is connectable to I(a) by t, put tpA(b, a) = t and reserve
{b, a}.

(11) Inactivate b and go to 6.
After performing Stage 1, every a ∈ V realizes the constellation I(a) ∈ S in the

partially defined structure A, by f(2) every constellation S ∈ S1 is realized by some
a ∈ V , and only elements of V have been inactivated. Moreover, for every S ∈ S,
there is b ∈ A such that I(b) = S.

The role of Stage 2 is to realize all constellations of S\S1 by elements of A. Step 7
is executed if, at Stage 1, some types between the chosen b and the other elements of
A were defined using function F . For every type of I(b) that has not been defined,
a new element d is added to A, and some T ∈ S \ S1 is put as I(d). Therefore, only
constellations of S \ S1 have to be realized in the next steps. In step 10, when the
types between an element b and smaller, already inactivated elements are defined, the
constellation realized by the earlier elements are not changed because only types in
A− are used.

Every b ∈ A is eventually inactivated since new elements are added at the end of
the ordering. When an element b is inactivated it is ensured that CA

b ∈ S.
Corollary 4.16. If 〈S1, V, C, I, F,G〉 is a finite representation of S, then there

exists a structure A realizing S, such that A = C∪B for every a ∈ B, rankA(CA
b ) =∞,

and conditions (f1)–(f7) hold.
Proof (sketch). Take A given by part (⇐) of the proof of Theorem 4.15.

4.4. Complexity. In this subsection, using the galaxy theorem proved in the
previous subsection, we provide an algorithm solving the satisfiability problem for
C2

1 . This algorithm works in nondeterministic, double exponential time. In the next
section, using more sophisticated techniques, we will show that this bound can be
improved.

Corollary 4.17. SAT(C2
1) ∈ 2-NEXPTIME.

Proof. We describe a nondeterministic algorithm which for every sentence Φ ∈ C2
1

decides if Φ is satisfiable and works in time doubly exponential with respect to the
length of Φ.

Let Φ be a C2
1 -sentence of length n. In the first step we use the polynomial time

algorithm from Corollary 4.8 to obtain a sentence Ψ in ∃=1-constellation form

Ψ = ∀x∀yφ(x, y) ∧
∧

1≤i≤m
∀x∃=1yRi(x, y),

which is satisfiable if and only if Φ is satisfiable. Moreover Ψ has at most p = O(n)
predicate letters and has length O(n logn).

Then we use Theorem 4.6. We build the set A in time O(24p), and we guess a
set S of A-R-constellations. Note that card(A) ≤ 24p, and card(S) ≤ (24p)m, where
m = card(R) is the number of existential quantifiers in Ψ. Therefore S can be guessed

in time (24p)m ·m · 4p = O(2O(n2)).
Next, we apply Theorem 4.15 and guess sets S1, V , and C, as well as functions

I, F , and G as in Definition 4.14. Since S1 ⊆ S, and card(V ) ≤ card(C) ≤ m · (2m ·
card(S))card(S) we can guess the components in time:
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S1 — O(card(S)) = O
(
2O(n2)

)
,

V and C — O(m(2m · card(S))card(S)) = O
(
22O(n2))

,

I, F — O((card(C)2) = O
(
22O(n2))

,

G — O(card(S \ S1) · card(V )) = O
(
22O(n2))

.

Therefore, the time required for this step is bounded by O(22cn
2

) for some constant c.

Finally, we check whether the system 〈S,S1, V, C, I, F,G〉 is a finite representation

of S. It is easy to see that this can also be done in time O(22cn
2

).

4.5. An example. It is well known that the class C2
1 admits axioms of infinity,

i.e., there are satisfiable sentences of C2
1 that have only infinite models. Using the

notion of a finite representation, in the proof of Corollary 4.17 we have described an
algorithm solving the satisfiability problem for sentences in constellation form, which
did not depend on constructing a complete model.

The size of the finite representation 〈S1, V, C, I, F,G〉 of a set of constellations S
depends mainly on the cardinality of the set C. It is bounded in Definition 4.14 by
a number that is exponential with respect to the number of constellations in S and
double exponential with respect to the number of predicate letters in the signature.

Below we give an example Φ of a sentence in C2
1 which has finite models, and is

such that for every finite representation 〈S1, V, C, I, F,G〉 of the set of constellations
realized in a model of Φ, the cardinality of C is doubly exponential. In this example,
following the idea of Lewis’s proof [27] that NEXPTIME is reducible to the monadic
Gödel class, we use a concise representation of the successor relation between encod-
ings of natural numbers that is reminiscent to that used by Jones and Selman in
[23].

Let n be a positive integer.

Let L = {B1, . . . , Bn, C0, C1, . . . , Cn, Root, Leaf , Left, Right, In, R}, where
Bi, Ci, Root, Leaf are monadic predicate letters and Left, Right, In, R are binary
predicate letters. The sentence Φ will describe the unique model (up to isomorphism)
that is a full binary tree of height 2n − 1.

The sentence Φ is a conjunction of the following sentences.
∀x∃=1y R(x, y),
∀x∃=1y Left(x, y),
∀x∃=1y Right(x, y),
∀x∃=1y In(x, y),
∀x∀y Root(x) ∧Root(y)→ x = y,
∀x∀y R(x, y)→ Root(y),
∀x∀y ¬[Left(x, y) ∧Right(x, y)] ∨ Leaf (x),
∀x Leaf (x)→ [Left(x, x) ∧Right(x, x)],
∀x∀y In(x, y)→ [¬Leaf (y) ∧ (Left(y, x) ∨Right(y, x))

∨Root(x) ∧Root(y)],
∀x Root(x)↔ ∧

0≤i<n ¬Bi(x),

∀x Leaf (x)↔ ∧
0≤i<nBi(x),

∀x C0(x) ∧ [
∧

0≤i<n(Ci(x)↔ (Ci−1(x) ∧Bi(x)))],

∀x∀y [¬Leaf (x) ∧ (Left(x, y) ∨Right(x, y))]→∧
0≤i<n[Bi(y)↔ ¬(Bi(x)↔ Ci−1(x))].

The sentence Φ is a slight modification of the example given in [29]. A similar example
can also be found in [16]. It is worth noticing that Φ is in ∃=1-constellation form. We
have here R = {In,Left, Right,R}.
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Proposition 4.18. The sentence Φ is satisfiable, and if A realizes Φ, then
card(A) = 22n − 1.

Proof. Let, for every d, 0 ≤ d ≤ 2n− 1, Leveld denote the unique 1-type over the
set {B1, . . . , Bn} such that Bi(x) ∈ Leveld if and only if the ith bit of d in the binary
notation is 1.

It is easy to see that a full binary tree T (see Figure 1) is the unique model
of Φ with the interpretations for the predicate letters such that for every a, b ∈ T

Root(a) iff a is the root of T,
Leaf (a) iff a is a leaf of T,

Left(a, b) iff b is the immediate left successor of a or a = b is a leaf of T,
Right(a, b) iff b is the immediate right successor of a or a = b is a leaf of T,

In(a, b) iff b is the immediate predecessor of a or a = b is the root of T,
Leveld(a) iff the distance from the root to a is equal to d.

root ∅

B1

B2

B1B2a b c d e

B3

...

B2 . . . Bn

leaves B1B2 . . . Bn

Fig. 1. The model for Φ.

Since the remaining predicates are explicitly defined by Φ, their interpretations can
be derived from the interpretations above.

Note that for every d, 0 ≤ d ≤ 2n− 1, there is a ∈ T such that Leveld(a), and for
every a ∈ T , Leaf (a) if and only if Level2n−1(a).

5. The main result. The main result of this paper is the following theorem.

Theorem 5.1. SAT(C2
1) ∈ NEXPTIME.

We begin this section by providing some intuition arising from a close analysis of
the example given in section 4.5. Then we define a notion of a concise representation
of a set of constellations which will play a similar role to the notion of finite repre-
sentation but will require less space. Finally, we show how to use this notion to get
a nondeterministic decision procedure working in exponential time, and solving the
satisfiability problem for C2

1 . In the last step we use graph-theoretical notions and
results given in the appendix.
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5.1. Example continued. In this subsection we want to provide some intuition
on how to improve the double exponential upper complexity bound for C2

1 . This will
be done by discussing in greater detail the example from section 4.5 of the sentence
Φ that describes a binary tree of exponential height.

Let us first examine the types and constellations realized in the model of Φ (see
Figure 1). For every pair of elements x and y such that y is an immediate successor
of x, x and y are joined with a thin or a thick line depending on whether Left(x, y)
or Right(x, y) holds and then also, In(y, x) holds. Moreover, every element x of the
tree should in the picture be joined to the root by a line representing R(x,root).

For every element x, the unique 1-type realized by x contains positive formulas
of the form Bi(x) for those and only those Bi-s which are listed on the right margin.
The values of Ci-s on x are determined by the values of Bi-s. If an element x is
neither the root nor a leaf then the 1-type realized by x does not contain any positive
appearance of other predicate letters.

Below, when describing types, we list only atomic formulas with both x and y,
omitting the remaining two-variable conjuncts which are negations of atomic formulas
that are not listed. The elements on the same level d > 0 of the tree realize constella-
tions of two kinds with the same center. For d = 2, 3, . . . , 2n−3 we have the following
constellations, each containing exactly four 2-types:

S = {Left(y, x) ∧ In(x, y),Left(x, y) ∧ In(y, x), Right(x, y) ∧ In(y, x), R(x, y)},
T = {Right(y, x) ∧ In(x, y),Left(x, y) ∧ In(y, x), Right(x, y) ∧ In(y, x), R(x, y)}.
Therefore, elements denoted by a, c, and e realize the constellation T , and the

constellation S is realized by b and d.

The constellations realized on the first level include exactly three 2-types:

S = {Left(y, x) ∧ In(x, y) ∧R(x, y),Left(x, y) ∧ In(y, x), Right(x, y) ∧ In(y, x)},
T = {Right(y, x)∧ In(x, y)∧R(x, y),Left(x, y)∧ In(y, x), Right(x, y)∧ In(y, x)}.
The root and the leaves realize constellations containing exactly two 2-types. The

root realizes the constellation

S = {Left(x, y) ∧ In(y, x) ∧R(y, x),Right(x, y) ∧ In(y, x) ∧R(y, x)}
and {In(x, x), R(x, x)} ⊂ center(S).

If x is a leaf, then

S = {Left(y, x) ∧ In(x, y), R(x, y)},
T = {Right(y, x) ∧ In(x, y), R(x, y)},
and {Left(x, x), Right(x, x)} ⊂ center(S) = center(T ).

Note that since elements on different levels of the tree realize distinct constella-
tions, the number of constellations realized in T is exponential with respect to the
number of predicate letters in L. Moreover, the number of vassals, card(V ), is ex-
ponential with respect to the number of constellations realized in T. Therefore, the
number of elements that are indistinguishable from the point of view of constellation
they realize can be double exponential.

One could imagine that in order to check whether a sentence in ∃=1-constellation
form is satisfiable it is not necessary to have the complete submodel with the universe
C defined by the finite representation, but it should be sufficient to know which
constellations are realized in the submodel and in which number. It is, however, hard
to adapt this idea directly.

Note that some elements that realize the same constellation in a given model can
be distinguished by taking into account constellations that are realized by partners
of the constellations—elements connected to them with a counting type. For exam-
ple, elements a and c of the tree shown in Figure 1 realize the same constellation
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but they can be distinguished, since the predecessor of a realizes a constellation of
kind T , whereas the predecessor of c realizes a constellation of kind S. Elements a
and e, however, remain indistinguishable even if we take into account the additional
information.

The above remarks suggest that in order to push the complexity down, a potential
model can be described by a set of indexed constellations and numbers of elements that
realize these constellations. Roughly speaking, an indexed constellation in addition
to the information on 2-types realized by an element, carries requests for partner
constellations that should realize, together with the host, the 2-types of the host
constellation.

5.2. Concise representation. At the end of section 4.3, using the galaxy the-
orem, which allows us to transform the problem whether a set of constellations is a
galaxy into the problem whether the same set is finitely representable, we gave an
algorithm solving the satisfiability problem for C2

1 . As it was shown in the previous
subsection, the size of a finite representation can be exponential with respect to the
number of constellations.

In this section we shall define the notion of a concise representation of a set of
constellations which will play a similar role to finite representation but will use only
polynomial space with respect to the number of constellations.

We need several additional notions, the most important of which are the notion
of an indexed constellation (Definition 5.5) and of a X -rnk-model (Definition 5.9). An
indexed constellation is a pair 〈S, f〉, where S is a constellation and f is a function
that associates a constellation T to each 2-type of S. This definition allows to control
not only which constellation S is realized by an element a but also which constellations
are realized in the neighborhood of a, that is, by elements that together with a realize
2-types of S.

Definition 5.9 describes a model very precisely. It says which indexed constella-
tions are realized and in which amount. Additionally, it allows to partition a model
into parts, each part containing elements realizing the same indexed constellation,
and it specifies 2-types that can be realized by elements from these parts.

The first easy fact proved here (Proposition 5.10) gives several necessary condi-
tions for a set of constellations to be a galaxy. These conditions are described in
terms of new notions introduced below. We hope that through studying this easy
proposition the reader will get familiar with the complex terminology and notation
use here. It should also provide a good background for the most important notion of
concise representation.

Lemma 5.1 is an analogue of the galaxy theorem, and one could think that it could
form a basis to formulate another algorithm for the satisfiability problem for C2

1 , as in
section 4.3. However, although the space needed to write a concise representation is
small, and most of the conditions of the definition of concise representation are easily2

computable, condition (c5), however, seems to require still double exponential time
since it requires checking whether there exists a model of double exponential cardi-
nality, which in addition satisfies some conditions. As a first step towards removing
this difficulty we prove the decomposition theorem (Lemma 5.2) that shows that such
a model is composed of a certain number of parts which can be treated separately
and independently. Unfortunately, to check if the parts can be constructed we need
several technical lemmas.

2Here, “easily” means in exponential time.
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Let R ⊆ L be a fixed set of predicate letters with card(R) = m. Let A be a
fixed set of 2-types closed under the operation ∗, and let S be a set of constellations
S = {S1, . . . , Sw}.

Definition 5.2. Let S ∈ S. A set S′ of types is a subconstellation of S if S′ ⊆
S and center(S) ∈ S′.

Note that a subconstellation S′ of S is a constellation (cf. Definition 4.3) only if
S′ = S.

Definition 5.3. Let A be an L-structure, and let S′ = {s0, s1, . . . , sl} be a sub-
constellation of S for some S ∈ S. An element a ∈ A realizes S′ if tpA(a, a) = s0,
and there exists a unique sequence b1, . . . , bl ∈ A such that tpA(a, bi) = si, 0 < i ≤ l,
and tpA(a, b) ∈ A← ∪A−, for each b ∈ A, b 6= a, b 6= bi, 0 < i ≤ l. A subconstellation
S′ is realized in A if there exists a ∈ A which realizes S′.

Definition 5.4. Let S ′ be a set of subconstellations. A structure A realizes S ′,
if every subconstellation S′ ∈ S ′ is realized in A, and every element a ∈ A realizes a
subconstellation of S ′.

Definition 5.5. Let S ∈ S. An indexed constellation Sf is a pair 〈S, f〉, where
S ∈ S, and f : S \ {center(S)} → S is a function such that, for every s ∈ S, S is
connectable to f(s) by s.

We denote by Sind the set of all indexed constellations of S.
Definition 5.6. Let A be an L-structure, and let a ∈ A realize a constellation

of S. Assume that for every b ∈ A, b 6= a, if tpA(a, b) ∈ CA
a , then b realizes a

constellation of S.
We denote by indA

a the function indA
a : CA

a \ center(CA
a )→ S such that for every

b ∈ A, b 6= a, if tpA(a, b) ∈ CA
a , then ind(tpA(a, b)) = CA

b .
An element a of A realizes an indexed constellation Sf if CA

a = S, and indA
a = f .

Some explanation of Definitions 5.5 and 5.6 was already given in the previous
section. Consider again the example of section 4.5. The elements a, c, and e (see
Figure 1) realize the same constellation; however, a and c realize different indexed
constellations, whereas a and e realize the same indexed constellation.

Definition 5.7. Let T ,U ⊆ S. A set X , X ⊆ Sind, is an indexing of T restricted
to U if for every S ∈ T there is a function f such that Sf ∈ X , and for every Sf ∈ X
we have S ∈ T , and f : S \ {center(S)} → U .

We say that a set X , X ⊆ Sind is an indexing of T if X is an indexing of T
restricted to S.

A pair 〈X , rnk〉 is a rnk-indexing of T if X is an indexing of T and rnk is a
function such that rnk : X → N+.

Note that if 〈X , rnk〉 is a rnk-indexing of T , U ⊆ T , X ′ = {Uf : Uf ∈ X and
U ∈ U} and rnk′ = rnk�X ′, then 〈X ′, rnk′〉 is a rnk′-indexing of U .

Let X ⊆ Sind, U ⊆ S, and T f ∈ X . Denote by T f �U the subconstellation
= {s ∈ T : f(s) ∈ U} ∪ {center(T )} of T .

Definition 5.8. Let 〈X , rnk〉 be a rnk-indexing of T , and let A be a finite

set. A function lab : A
onto−→ X is called a rnk-labeling of A if for every T f ∈ X ,

card({a ∈ A : lab(a) = T f}) = rnk(T f ).
Let 〈X , rnk〉 be a rnk-indexing of T , and let A be a finite set. If lab is a rnk-

labeling of A, then, for every Ti ∈ T , we put Alabi = {a ∈ A : lab(a) = T fi for some f

such that T fi ∈ X}.
Definition 5.9. Let X ⊆ Sind and let 〈X , rnk〉 be a rnk-indexing of T . An

L-structure A is a X -rnk-model for T (A |=rnk
X T ) if and only if there exists a rnk-

labeling lab of A such that for every Alabi , Alabj , and every a ∈ Alabi , a realizes the
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subconstellation lab(a)�{Tj} in the substructure of A restricted to {a} ∪Alabj .
The notions of an indexed constellation and of a X -rnk-model are fundamental in

our proof of the single exponential upper bound on the complexity of SAT(C2
1). The

intuitions behind the above definitions are explained by the next proposition.
Proposition 5.10. If S is a galaxy then there exist a structure A, a set C ⊆ A,

subsets S1,S2 of S, X ⊆ Sind, and a function rnk : X → {1, . . . , card(C)}, such that
A realizes S, card(C) ≤ m(2m · card(S))card(S), and the following conditions hold:

(1) S1∩S2 = ∅, X = X1∪X2, where X1 is an indexing of S1 restricted to S1∪S2

and X2 is an indexing of S2 restricted to S, 〈X , rnk〉 is an rnk-indexing of
S1 ∪ S2,

(2) for every a ∈ C, CA
a ∈ S1 ∪ S2,

(3) for every a ∈ A, if CA
a ∈ S1, then a ∈ C and, for every a ∈ A and every

S ∈ S1, if CA
a = S, then CC

a = S,
(4) C |=rnk

X S1 ∪ S2,
(5) for every S ∈ S \ S1, rankA(S) =∞.
Proof. Let S be a galaxy, and let 〈S1, V, C, I, F,G〉 be a finite representation of

S which exists by Theorem 4.15. Let A be a structure realizing S whose existence
follows from Corollary 4.16. The domain of the structure A is divided into two parts:
B and C with B = A \ C, and V ⊂ C.

Let S1 = {S ∈ S : S = CA
a , for some a ∈ V },

S2 = {S ∈ S : S = CA
a , for some a ∈ C \ V },

X1 = {CA,f
a : a ∈ V, f = indA

a },
X2 = {CA,f

a : a ∈ C \ V, f = indA
a }, X = X1 ∪ X2,

and for every Sf ∈ X , let rnk(Sf ) = card({a ∈ C : S = CA
a and f = indA

a }.
Assume that S1 = {S1, . . . , Sx}, S2 = {Sx+1, . . . , Sy}, and X = {〈S1, f11〉, . . . ,

〈S1, f1,v1
〉, 〈S2, f21〉, . . . , 〈S2, f2,v2

〉, . . . , 〈Sy, fy1〉, . . . , 〈Sy, fy,vy 〉}, where vi=card({fij :

S
fij
i ∈ X}), 1 ≤ i ≤ y.

We have partitioned the set C into sets C1, . . . , Cy in such a way that for every
a ∈ C, if a ∈ Ci, then CA

a = Si (see Figure 2). Furthermore, every set Ci is partitioned
into classes of elements realizing the same indexed constellations 〈Si, fij〉. Moreover,
for every a ∈ Ci, if Ci ⊆ V , then CC

a = Si. This means that for every a ∈ V , for
every b ∈ B, tpA(a, b) ∈ A← ∪A− (6∈ A→ ∪A↔) which is denoted in Figure 2 by the
slashed arrows.

Define a rnk-labeling lab of C letting lab(c) = Sf , where S = CA
c and f = indA

c .
It is easy to check that conditions (1)–(5) hold.
The main idea of the proof of Theorem 5.1 is to replace in Proposition 5.10 the

condition there exists a structure A with something easier to verify and to substitute
the implication by an equivalence. To do this we add several additional conditions,
which are easily computable.

Definition 5.11. A concise representation of S is a system

〈S1,S2,X , rnk,Y〉,

where S1,S2 are sets of constellations, 〈X , rnk〉 is a rnk-indexing of S1 ∪S2, Y is an
indexing of S \ S1, and the following conditions hold:

(c1) S1,S2 ⊆ S, S1 ∩ S2 = ∅,
(c2) X = X1 ∪ X2, where X1 is an indexing of S1 restricted to S1 ∪ S2 and X2 is

an indexing of S2 restricted to S,
(c3) for every 〈S, f1〉, 〈S, f2〉 ∈ Y, f1 = f2,
(c4)

∑
Sf∈X rnk(Sf ) ≤ m(2m · card(S))card(S),
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Cy

fy,1

fy,2

fy,vy

...

. . . Cx+1

fx+1,1

fx+1,2

fx+1,vx+1

...

Cx

fx,1

fx,2

fx,vx

...

. . . C2

f2,1

f2,2

f2,v2

...

C1

f1,1

f1,2

f1,v1

...

BVC

Fig. 2. Partition of the universe according to the rnk-labeling.

(c5) there is a structure C such that C |=rnk
X S1 ∪ S2,

(c6) for every Sf ∈ Y and every s ∈ S, if f(s) ∈ S1, then s ∈ A→,
(c7) for every Sf ∈ Y and every T ∈ S1, card({s ∈ S: f(s) = T}) ≤ ∑T f∈X1

rnk(T f ) and if card({s ∈ S: f(s) = T}) <∑T f∈X1
rnk(T f ), then there exist

t ∈ A− such that S is connectable to T by t,
(c8) for every S, T ∈ S \ S1, S is connectable to T by some t ∈ A−.

Some comments are in order here. Conditions (c1)–(c8) of the above definition
precisely describe the situation illustrated in Figure 2.

(c1) Three subsets of S are distinguished: S1, constellations realized by elements
of V ; S2, constellations realized by elements of C\V ; and S\S1, constellations
realized by elements of B.

(c2) X1 is an indexing of S1 and it defines partitions of set Ci ⊆ V into appropriate
classes. The indexing guarantee that the elements of V realize constellations
of S1 in the substructure restricted to C. Similarly, X2 defines partitions of
Ci ⊆ C \ V .

(c3) The indexing Y defines 2-types which are realized by pairs of elements 〈a, b〉,
where a ∈ B, and b ∈ V . Note that if B is nonempty, then the constellations
realized in B or in C \ V are expected to appear infinitely many times.

(c4) The function rnk defines the cardinality of every class of Ci and thus the
cardinality of V and C.

(c5) This condition takes care of definability of C. In particular, it specifies which
elements in Ci are connected with elements in Cj by counting types and which
counting types are used to realize the connections.

(c6) An element a ∈ B can be connected to an element b ∈ V only by a type from
A→ ∪ A−. These types do not change the constellation realized by elements
in V .

(c7) If an element a ∈ B realizes S such that Sf ∈ Y, then the number of elements
in V is sufficient to realize types of S. Moreover, it is possible to define
noncounting types between a and elements of V , if necessary.
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(c8) Every two constellations which are realized infinitely many times are con-
nectable by a noncounting type in A−.

Lemma 5.1. A set of constellations S is a galaxy if and only if there exists a
concise representation of S.

Proof. (⇒) Let S be a galaxy. Take a structure A, a set C ⊆ A, S1,S2 ⊆ S,
X , and a function rnk given by Proposition 5.10. For every constellation S ∈ S \ S1

find an element b ∈ A \ C such that b realizes S (if it exists) and add the indexed
constellation realized by b to Y. Note that if S = S1, then Y = ∅.

It is obvious that 〈S1,S2,X , rnk,Y〉 satisfies conditions (c1)–(c8).
(⇐) Let 〈S1,S2,X , rnk,Y〉 be a concise representation of S. By Theorem 4.15 it

suffices to show that there exists a finite representation of S. Let C be the structure
given by (c5), and let lab be the rnk-labeling of C. Let V = {a ∈ C : lab(a) ∈
S1}. We will define functions I, F,G so that the system 〈S1, V, C, I, F,G〉 is a finite
representation of S. To define I, for every a ∈ C, put I(a) = S, where lab(a) = 〈S, f〉.
In order to define F , for every a, b ∈ C, put F (a, b) = tpC(a, b). Now, let S ∈ (S \S1),
S = {s0, s1, . . . , sk}. By (c3), there exists 〈S, f〉 ∈ Y. By condition (c8), find k
distinct elements a1, . . . , ak ∈ V such that for every i, 1 ≤ i ≤ k, f(si) = lab(ai).
For every ai, 1 ≤ i ≤ k, define G(S, ai) = si. If there is an element b ∈ V such that
G(S, b) has not been defined yet, then, by (c8), find a type s ∈ A− such that S is
connectable to lab(b) by s, and put G(S, b) = s. It is easy to check that conditions
(f1)–(f7) of Definition 4.14 hold.

5.3. Complexity.
Proof of Theorem 5.1. The proof proceeds in the same way as the proof of Corol-

lary 4.17.
Let Φ be a C2

1 -sentence of length n. By Corollary 4.8 we obtain a sentence Ψ in
∃=1-constellation form which is satisfiable if and only if Φ is satisfiable. After defining
the set A, we guess a set S of A-R-constellations, as in Theorem 4.6.

Then, we guess sets S1 and S2 of constellations, an rnk-indexing 〈X , rnk〉 of
S1 ∪ S2, and an indexing Y of S \ S1, as in Definition 5.11.

In contrast to the proof of Corollary 4.17, this step can be performed in time
O(2n

3

) since card(Sind) ≤ 2n
3

, and the length of a maximal value of the function rnk

is bounded by log(m(2m · card(S))card(S)) = O(2dn
2

) for some constant d.

Finally, we check in time O(2dn
3

) whether 〈S1,S2,X , rnk,Y〉 is a concise repre-
sentation of S.

Remark. It can be easily seen that all the conditions of Definition 5.11 except
(c5) can be verified in time O(2dn

3

) for some constant d. It is less obvious that the
same holds for (c5). We devote the next subsection to the problem how to verify (c5)
in exponential time.

As a consequence of Theorem 5.1, by Corollary 4.9, we get the following corollary.
Corollary 5.12. SAT(C2) ∈ 2-NEXPTIME.
There are at least two reasons why it is difficult to improve the above result. One

has been already discussed at the end of section 4.2. Another one is that it is difficult
to generalize the notion of a constellation to count an arbitrary number of witnesses
without increasing the number of possible constellations to double exponential. In
spite of this we conjecture that the satisfiability problem for the full C2 has only
exponential complexity.

5.4. Verification of (c5). The following definition will be used in the decom-
position theorem (Lemma 5.2).
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Definition 5.13. Let T ⊆ S, and let 〈X , rnk〉 be an rnk-indexing of T . For
Si, Sj ∈ T we define Xij = {Sf ∈ X : S = Si or S = Sj}, and rnkij = rnk�Xij.

The following lemma gives a condition which is equivalent to condition (c5) of
Definition 5.11 but is more tractable.

Lemma 5.2 (decomposition theorem). Let T ⊆ S, and let 〈X , rnk〉 be an rnk-
indexing of T . Then the following conditions are equivalent:

(1) There is a structure C such that C |=rnk
X T .

(2) For every Si, Sj ∈ T there exists a structure Cij such that Cij |=rnkij
Xij {Si, Sj}.

Remark. Condition 1 coincides with condition (c5).

Proof. (1)⇒ (2) is obvious.

(2) ⇒ (1). Assume that Condition (2) holds. Let X = {〈S1, f1,1〉, . . . , 〈S1, f1,v1〉,
〈S2, f2,1〉, . . . , 〈S2, f2,v2〉, . . . , 〈Sy, fy,1〉, . . . , 〈Sy, fy,vy〉}. For every i, j, 1 ≤ i ≤ j ≤ y, let

Cij be a structure such that Cij |=rnkij
Xij {Si, Sj}, and let labij be the rnkij-labeling of

(the universe of) Cij .
3 Note that

card
({
a ∈ Cij : labij(a) = Sfi and Sfi ∈ Xij

})
=

∑
Sfi ∈Xij

rnkij(S
f
i ) = card(Cii).

We are going to define a structure C. Let C, the universe of C, be a set such that
there exists a rnk-labeling of C, and let lab be such a labeling. It is easy to notice
that C could also be defined as a union of disjoint copies of Cii. In fact, define
Ci = {a ∈ C : lab(c) = Sfi , for some function f} for every i, 1 ≤ i ≤ y. Then
C =

⋃
i≤y Ci, and card(Ci) = card(Cii).

Now we shall define types realized by pairs of elements in C. For every i, j such
that 1 ≤ i ≤ j ≤ y, choose a function gij such that gij : Cij

1−1−→
onto

Ci ∪ Cj , and for

every a ∈ Cij , labij(a) = lab(gij(a)). For every a, b such that a ∈ Ci, b ∈ Cj , and
i ≤ j, put tpC(a, b) = tpCij (g−1

ij (a), g−1
ij (b)).

To show that the structure C satisfies condition 1, let Si, Sj ∈ T , and a ∈ Ci
(cf. Definition 5.9). Set B = {tpC(a, b) : b ∈ Cj} ∩ (A→ ∪ A↔). By construc-
tion, B = {tpCij (g−1

ij (a), g−1
ij (b)) : b ∈ Cj} ∩ (A→ ∪ A↔) and B ∪ {tpCij (a, a)} =

labij(g
−1
ij (a))�{Sj} = lab(a)�{Sj}.

Now we present three technical lemmas, each of them showing how to check
condition 2 of Lemma 5.2. Lemma 5.3 deals with the case i = j, Lemma 5.4 with the
case when i 6= j and both Si and Sj are realized by many elements, and Lemma 5.5
with the case when i 6= j, but only one of Si and Sj is realized by many elements.

We are very sorry that in spite of the suggestions of the referees, many requests
of our friends, and our best intentions we have not been able to make the proofs more
readable.

We have tried to write a reader-friendly paper, but we have been only partially
successful in this attempt. We did not find a way to avoid yet another technical
definition below.

We will use the following notation.

3The notation Xii, Cii, and Cii can be misleading—the notation Xi, Ci, and Ci would be more
intuitive, but we keep the less intuitive notation since it is more uniform.
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Definition 5.14. Assume that T ⊆ S, and 〈X , rnk〉 is a rnk-indexing of T . Let
q be a positive integer. For Si, Sj ∈ T and every s ∈ Si, define

ci =
∑
Sfi ∈X

rnk
(
Sfi
)
,

uij(s) =
∑

Sfi ∈X ,f(s)=Sj

rnk
(
Sfi
)

for s ∈ Si,

Sqij = {s ∈ Si ∩ A↔ : uij(s) ≤ q},
X qij =

{
Sfi ∈ Xij : for some s ∈ Sqij , f(s) = Sj

}
∪ {Sfj ∈ Xij : for some s ∈ Sqij , f(s∗) = Si

}
,

rnkqij = rnkij�X qij .

Observe that the notions defined by Definition 5.14 have the following meaning
in the context of Cij .

ci is the cardinality of Cii;

uij(s) is the number of all elements a which realize Sfi �{Sj}, and for which

there is a b, b 6= a, such that 〈a, b〉 realizes s, and b realizes Sfj �{Si};
Sqij is the set of 2-types of Si which are realized in Cij by at most q pairs

〈a, b〉 such that a realizes Sfi �{Sj}, and b realizes Sfj �{Si};
X qij is the restriction of Xij to the constellations including types of Sqij ;

rnkqij is the restriction of rnkij to X qij .
Note that uij(s), ci, S

q
ij , X qij , and rnkqij are easily computable from X and rnk

in time O(2n
3 · 2dn2

) = O(2en
3

) for some constant e.
Definition 5.15. Let X ⊆ Sind, let 〈X , rnk〉 be an rnk-indexing of T , and

let B ⊆ A. Given a L-structure A we write A |=rnk
B,X T if and only if there exists

an rnk-labeling lab of the universe A of A such that for every Si, Sj ∈ T and every
a ∈ Alabi ,

tpA(a, a) = center(lab(a)�{Si}),

{tpA(a, b) : b ∈ Alabj } ∩ (A→ ∪ A↔) = lab(a)�{Sj} ∩ B,

and for every 2-type t ∈ lab(a)�{Sj} ∩ B there exists a unique b ∈ Alabj such that

tpA(a, b) = t(x, y).
The above definition says that A |=rnk

B,X T if and only if there exists a rnk-labeling

lab of A such that for every Alabi , Alabj , and every a ∈ Alabi , a realizes the subconstel-

lation lab(a)�{Sj} ∩ B in the substructure of A with the universe {a} ∪ Alabj . Note
that in case B = A the above definition is equivalent to Definition 5.9.

Lemma 5.3. Let Si ∈ T , and assume that ci > 2m. There is a structure Cii such
that Cii |=rnkii

Xii {Si, Si} if and only if the following conditions hold:
(i) for every s ∈ Si ∩ A↔, uii(s) = uii(s

∗) and uii(s) is even if s = s∗;
(ii) Si is connectable to Si by some t ∈ A−;

(iii) there exists a structure C′ such that C′ |=rnk′ii
Sqii,X ′ii {Si}, where q = 14m.

Proof. (⇒) This follows directly from the definition of uii(s), Lemma 4.1, and
Definitions 5.9, 5.15, and 5.14.
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(⇐) Assume that (i)–(iii) hold. Assume that {s1, . . . , sv} = {s ∈ Si ∩ A↔ :
uii(s) > 0}∪{s ∈ Si∩A→ : uii(s) > 0}, where v < card(Si) and {s1, . . . , sp} = S14m

ii .
Let lab′ be the rnk′ii-labeling of C ′ given by (iii) and Definition 5.15.

Let Cii be a set of cardinality
∑
Sfi ∈Xii rnk(Sfi ), and let lab be a rnkii-labeling of

Cii. We shall build a structure Cii with the universe Cii such that, for every a ∈ Cii,
a realizes lab(a)�{Si} in Cii. The structure Cii will be built in several steps.

First we define an embedding h of C′ into Cii as follows.
Let h : C ′ 1−1−→

into
Cii, be such that for every a ∈ C ′, lab′(a) = lab(h(a)). For

every a, b ∈ h(C ′), such that tpC′(h−1(a), h−1(b)) ∈ A↔ ∪ A→, define tpCii(a, b) =
tpC′(h−1(a), h−1(b)).

Now it remains to define, for each type sl ∈ {sp+1, . . . , sv}, the set of pairs
of elements of Cii which realize sl. To do this we shall use the graph-theoretical
Lemmas A.2 and A.3 given in the appendix. We proceed by induction. Assume that,
for some l ≥ p, the sets of pairs satisfying types s1, . . . , sl−1 have been defined. We
shall now define set of pairs satisfying sl.

Case 1. sl ∈ A↔. Let X,Y ⊆ Cii be defined as follows:
X = {a ∈ Cii : sl ∈ lab(a)�{Si}},
Y = {a ∈ Cii : s∗l ∈ lab(a)�{Si}}.

Observe that sl can be realized only by pairs 〈a, b〉 such that a ∈ X, and b ∈ Y .
Also, if sl = s∗j , for some j < l, then the type sl has been considered. By condition
(i), card(X) = card(Y ), and if sl = s∗l , then card(X) is even. Moreover, since
card(X) = uii(sl), we have card(X) > 14m.

Let G∗ = (X ∪ Y,E∗) be the graph such that E∗ = {{a, b} : either 〈a, b〉 or 〈b, a〉
realizes a type sj , j < l}. Then, d(G∗) < l ≤ m. Let G = (X ∪ Y,E) be the graph
complement of G∗, and let n = card(X ∪ Y ). We have d(G) > n − l + 1 ≥ n −m.
Note that if E(a, b), then the type of 〈a, b〉 has not been specified so far.

Case 1a. sl = s∗l . By the definition of X and Y , we have X = Y . By Lemma A.2,
there exists a Hamiltonian cycle µ = [a1, . . . , an] in G, and by (i) n is even. For each
odd j such that 1 ≤ j ≤ n, put tpCii(aj , aj+1) = sl.

Case 1b. sl ∈ A↔, and sl 6= s∗l . Let X ′ = X \ Y , Y ′ = Y \ X, Z = X ∩ Y ,
n′ = card(X ′) = card(Y ′), and nZ = card(Z). We consider two subcases.
Subcase 1ba. card(Z) ≤ 2m. (See Figure 3.)

Let GX = (Z,X ′, EX), where EX = {{a, b} ∈ E : a ∈ Z, b ∈ X ′}. Then GX
is a bipartite graph such that for every A ⊆ Z, card(ΓGX (A)) > n′ − l+ 1 >
3m > card(A). Therefore, by Lemma A.1, there is a matching E′X of Z
onto XZ ⊂ X ′. For every a ∈ XZ , b ∈ Z such that {a, b} ∈ E′X , put
tpCii(a, b) = sl.
Similarly, there exists a matching E′Y from Z onto YZ ⊂ Y ′ in the graph
GY defined in the same way as GX . For every a ∈ Z, b ∈ YZ such that
{a, b} ∈ E′Y , put tpCii(a, b) = sl.
Finally, let G′ = (X ′ \ XZ , Y

′ \ YZ , E′) be the bipartite graph such that
E′ = {{a, b} ∈ E : a ∈ X ′ \ XZ , b ∈ Y ′ \ YZ}. Put n′′ = card(X ′ \ XZ) =
card(Y ′ \ YZ). Then, n′′ > 2m and d(G′) > n′′ − l + 1 > n′′ − m. By
Lemma A.3, there exists a matching E1 from X ′ \XZ onto Y ′ \YZ . For every
a ∈ X ′ \XZ , b ∈ Y ′ \ YZ such that {a, b} ∈ E1, put tpCii(a, b) = sl.

Subcase 1bb. card(X ′) ≤ 2m.
We have X ∪ Y = X ′∪̇Z∪̇Y ′ and d(G) ≥ n− l+ 1 > n−m. By Lemma A.4,
there exists a set Z ′ ⊂ Z such that X ′ and Y ′ can be matched onto Z ′.
Let EX′ be the matching of X ′ onto Z ′, and let EY ′ be the matching of Y ′
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E′X E′Y

X

X ′

XZ
Z

E1

Y ′

YZ

Y

Fig. 3. Subcase 1ba.

X Y
Z ′

E′XX ′ Y ′E′Y

µ

Fig. 4. Subcase 1bb.

onto Z ′.
For every a ∈ X ′, b ∈ Z ′ such that {a, b} ∈ EX′ , put tpCii(a, b) = sl. For
every b ∈ Z ′, c ∈ Y ′ such that {b, c} ∈ EY ′ , put tpCii(b, c) = sl.
Finally, let G′ = (Z \ Z ′, E′), where E′ = {{a, b} ⊂ Z \ Z ′ : {a, b} ∈ E}.
Put n′′ = card(Z \ Z ′). Then, n′′ > 2m, and d(G′) ≥ n′′ − l + 1 > n −
m. By Lemma A.2, there exists a Hamiltonian cycle µ = [a1, . . . , an′′ ] in
G′. For every j such that 1 ≤ j < n′′, put tpCii(aj , aj+1) = sl, and put
tpCii(an′′ , a1) = sl.

Case 2. sl ∈ A→. Let X = {a ∈ Cii : sl ∈ Sfi �{Si}, where f is a function such

that lab(a) = Sfi }.
Let G∗ = (Cii, E

∗), where E∗ = {{a, b} : either 〈a, b〉 or 〈b, a〉 realizes sj , for
some j < l}. Then, d(G∗) < l ≤ m. Let G = (Cii, E) be the graph complement of
G∗, and let n = card(Cii). We have d(G) > n− l+1 > n−m, so by Lemma A.2, there
exists a Hamiltonian cycle µ = [a1, . . . , an] in G. For every j such that 1 ≤ j < n and
aj ∈ X, put tpCii(aj , aj+1) = sl, and put tpCii(an, a1) = sl.

Notice that by condition (ii), there exists a type t ∈ A− such that Si is connectable
to Si by t. Therefore to finish the proof, it suffices to define tpCii(a, b) = t, for any
a, b ∈ Cii, such that tpCii(a, b) has not been defined yet.
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Lemma 5.4. Let Si, Sj ∈ T , i 6= j, and assume that ci, cj > 3m. There is a

structure Cij such that Cij |=rnkij
Xij {Si, Sj} if and only if the following conditions hold:

(i) there are structures Cii, Cjj such that Cii |=rnkii
Xii {Si}, and Cjj |=rnkjj

Xjj {Sj};
(ii) uij(s) = uji(s

∗), for each s ∈ Si ∩ A↔, and uji(s) = uij(s
∗), for each

s ∈ Sj ∩ A↔;

(iii) there exists a structure C′ such that C′ |=rnkqij
Sqij ,X qij {Si, Sj}, where q = 2m;

(iv) Si is connectable to Sj by some t ∈ A−.
Proof. (⇒) This part of the proof is obvious.
(⇐) Assume that (i)–(iv) hold. Let {s1, . . . , sv} = {s ∈ Si ∩A↔ : uij > 0}∪{s ∈

(Si∪Sj)∩A→ : uij(s) > 0}, where v < card(Si∪Sj). Assume that S2m
ij = {s1, . . . , sp},

and {sr+1, . . . , sv} = {s ∈ (Si ∪ Sj) ∩ A→ : uij(s) > 2m}.
Let Cii and Cjj be such that (i) holds, and assume that Cii and Cjj are disjoint.

Let Cij = Cii ∪ Cjj . For every a, b ∈ Cii, put tpCij (a, b) = tpCii(a, b), and for every
a, b ∈ Cjj , put tpCij (a, b) = tpCjj (a, b). Let labii be the rnkii-labeling of Cii, and labjj
be the rnkjj-labeling of Cjj as in Definition 5.9. To define the rnkij-labeling labij of
Cij , we put labij = labii ∪ labjj .

Now, for a ∈ Cii and b ∈ Cjj , we shall assign a type to 〈a, b〉, in such a way that
for every a ∈ Cii, a realizes in Cij�Cjj ∪ {a} the subconstellation labij(a)�{Sj}, and
for every b ∈ Cjj , b realizes in Cij�Cii ∪ {b} the subconstellation lab(b)ij�{Si}.

As in the proof of Lemma 5.3, the construction proceeds in steps. First, we embed
the structure C′ given by (iii) into Cij , and then we consider types sl ∈ {sp+1, . . . , sv}.

Define
X = {a ∈ Cii : sl ∈ lab(a)�{Sj}},
Y = {a ∈ Cjj : s∗l ∈ lab(a)�{Si}}.
Now, we deal with types in A↔. Let sl ∈ A↔. By (ii) card(X) = card(Y ).

Moreover, by the definition of uij , for every s ∈ A↔, s ∈ Si if and only if s∗ ∈ Sj .
Since card(X) = uij(sl) > 2m, we can proceed as in Case 1b of the proof of Lemma 5.3
with Z = ∅.

Finally assume that we have already dealt with the types s1, . . . , sr, and we want
to realize types in sr+1, . . . , sv.

Let E = {{a, b} : a ∈ Cii, b ∈ Cjj and 〈a, b〉 realizes sj , j ≤ r}, and G =
(Cii, Cjj , E) be a bipartite graph. For every a ∈ Cii, let d′(a) = card(lab(a)�{Sj}).

Now, by Lemma A.5, G can be expanded to a bipartite graph G′ = (Cii, Cjj , E
′)

such that E ⊆ E′,
(a) for every a ∈ Cii, dG′(a) = d′(a) and
(b) for every b ∈ Cjj , dG′(b) ≤ ci −m.

By (a), for every a ∈ Cii, we can find card(lab(a)�{Sj} ∩ A→) elements b ∈ Cjj such
that 〈a, b〉 ∈ E′ \E and assign types in lab(a)�{Sj}∩A→ to pairs 〈a, b〉. On the other
hand, by (b), for every b ∈ Cjj , we can find card(lab(b)�{Si} ∩A→) elements a ∈ Cii
such that 〈a, b〉 6∈ E′ to realize the types of lab(b)�{Si} ∩ A→.

Let

u =
∑

s∈A↔∪A←
uij(s) +

∑
s∈A→

uji(s).

The integer u is the number of pairs of elements of Cij which realizes counting types.
Lemma 5.5. Let Si, Sj ∈ T , i 6= j, and assume that ci > 3m and cj ≤ 3m.

There is a structure Cij such that Cij |=rnkij
Xij {Si, Sj} if and only if the following

conditions hold:
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(i) there are structures Cii, Cjj such that Cii |=rnkii
Xii {Si}, and Cjj |=rnkjj

Xjj {Sj};
(ii) for every s ∈ Si ∩ A↔, uij(s) = uji(s

∗), and for every s ∈ Sj ∩ A↔,
uji(s) = uij(s

∗);
(iii) there exists a structure D with the domain D = D1∪̇D2, and there exists

a rnk′-indexing 〈X ′, rnk′〉 of {Si, Sj} such that card(D1) ≤ 3m2, card(D1) ≤ ci,

card(D2) = cj, X ′ ⊆ Xij, for every Sfj ∈ Xij, Sfj ∈ X ′, for every Sfj ∈ X ′, rnk′(Sfj ) =

rnkij(S
f
j ), for every Sfi ∈ X ′, rnk′(Sfi ) ≤ rnkij(Sfi ) and

D |=rnk′
X ′ {Si, Sj};

(iv) for every Sfi ∈ Xij, card((Sfi �{Sj}) \ {center(Si)}) ≤ cj ;
(v) if u < ci · cj, then Si is connectable to Sj by some t ∈ A−.

Proof. (⇒) This direction is obvious.
(⇐) Assume that (i)–(v) hold. Assume the structures Cii and Cjj given by (i) have

disjoint universes. Put Cij = Cii∪Cjj , for every a, b ∈ Cii, put tpCij (a, b) = tpCii(a, b),
and for every a, b ∈ Cjj , put tpCij (a, b) = tpCjj (a, b). Let labii be the rnkii-labeling
of Cii, and labjj be the rnkjj-labeling of Cjj as in the definition 5.9. Define the
rnkij-labeling labij of the set Cij by putting labij = labii ∪ labjj .

Now, by (iii), define an embedding h of D into Cij as follows.

Let h : D
1−1−→
into

Cij be a mapping such that for every a ∈ D, lab′(a) = lab(h(a)).

For every a, b ∈ h(D) such that a ∈ Cii, b ∈ Cjj put tpCij (a, b)=tpD(h−1(a), h−1(b)).

Note that by Definition 5.15, for every a ∈ Cjj∪h(D1), C
Cij�h(D)
a =lab(a)�{Si, Sj}.

Moreover, by (ii) and (iii), for every indexed constellation Sfi ∈ Xij , if there is a

type s ∈ Si ∩ A↔ such that f(s) = Sj , then rnk′(Sfi ) = rnk(Sfi ). It follows that if
a ∈ Cii\h(D), then s 6∈ A↔ for each s ∈ lab(a)�{Sj}. By (iv), for every a ∈ Cii\h(D),
for every s ∈ lab(a)�{Sj}), find b ∈ Cjj such that tpCij (a, b) has not been defined,
and put tpCij (a, b) = s. To finish the proof of Lemma 5.5, for every a ∈ Cii, for every
b ∈ Cjj , if tpCij (a, b) has not been defined, then put tpCij (a, b) = t, where t ∈ A− and
Si is connectable to Sj by t (cf. (v)).

Corollary 5.16. (c5) can be checked in exponential time.
Proof. By decomposition theorem (Lemma 5.2), it suffices to check whether, for

every Si, Sj ∈ S1 ∪ S2,

(*) there exists Cij such that Cij |=rnkij
Xij {Si, Sj}.

In the case i = j, if ci ≤ 2m, (*) can be checked by guessing the structure Cii of
cardinality ci and then verifying if Cii |=rnkii

Xii {Si, Si}. This will take no more than

O(2m
2

) = O(2n
2

) steps. If card(Cii) > 2m, then by Lemma 5.3, it suffices to verify

conditions (i)–(iii). This can be done in time O(2dn
3

) for some constant d.
In the case i 6= j, if ci, cj ≤ 3m, it suffices to guess a structure Cij of cardinality

ci + cj and verify if Cij |=rnkij
Xij {Si, Sj}. This can be done in time polynomial with

respect to m. To check whether (*) holds for ci > 3m, it suffices to verify conditions
(i)–(iv) of Lemma 5.4 or conditions (i)-(v) of Lemma 5.5. This also can be done in

time O(2dn
3

) for some constant d.

In each of the cases above, checking whether (*) holds can be done in time O(2dn
3

),

so it takes at most O((2dn
3

)2) = O(2cn
3

) steps to verify that (*) holds for every i, j.
This finished the proof and completes the proof of Theorem 5.1.
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Appendix. We assume that the reader is familiar with the basic notions of graph
theory. We use standard notation of graph theory (see, e.g., [4]).

In this paper a graph G = (X,E) is a finite set X of nodes and a set E of edges,
which are unordered pairs of nodes. For x ∈ X we denote by ΓG(x) the set of neighbors
of x, i.e., the set {y : {x, y} ∈ E}, and, for A ⊆ X, we put ΓG(A) =

⋃
a∈A ΓG(a).

The degree of a node x, denoted by dG(x), is the number of neighbors of x. By d(G)
we denote the minimal value of dG(x). Given a graph G = (X,E), a matching is
defined as a set E0 ⊆ E such that, for each pair {u, v}, {u′, v′} ∈ E0 of edges, we have
{u, v} ∩ {u′, v′} = ∅. A graph is bipartite if its nodes can be partitioned into two sets
X1, X2 such that no two nodes in the same set are adjacent; such a bipartite graph is
often denoted as G = (X1, X2, E). Given a bipartite graph G = (X,Y,E) and we say
that X is matched into Y if there is a matching E0 ⊆ E such that for every x ∈ X
there exists y ∈ Y such that {x, y} ∈ E0.

Let m be a fixed nonnegative integer. The proof of the main result of this paper
(Theorem 5.1) heavily depends on the following lemmas.

Lemma A.1 (König–Hall theorem (see [21]); cf. [4, p. 134]). In a bipartite graph
G = (X,Y,E), X can be matched into Y if and only if card(ΓG(A)) ≥ card(A) for
every A ⊆ X.

Lemma A.2. Let G be a graph with n nodes and with d(G) ≥ n−m. If n > 2m,
then G has a Hamiltonian cycle.

Proof. This is an easy consequence of the theorem by Bondy [6] (cf. [4, p. 212])
which says that a graph G with n ≥ 3 nodes, and with degrees d1 ≤ · · · ≤ dn has
a Hamiltonian cycle if for every i, j such that i 6= j, di ≤ i and dj ≤ j, we have
di + dj ≥ n.

In fact, we have d(G) ≥ n−m, so di + dj ≥ n always holds for n > 2m.

Lemma A.3. If G = (X,Y,E) is a bipartite graph such that card(X) = card(Y ) =
n, d(G) ≥ n−m and n > 2m, then X can be matched into Y .

Proof. We use Lemma A.1. Towards a contradiction, assume that there exists
A ⊆ X such that card(ΓG(A)) < card(A). Then card(ΓG(A)) < n and, since d(G) ≥
n − m, card(ΓG(A)) ≥ n − m and card(A) > n − m. Let y ∈ Y \ ΓG(A). For
every x ∈ X, if x ∈ ΓG(y), then x 6∈ A. Moreover, card(ΓG(y)) ≥ n − m and so,
card(A) < m. This gives a contradiction if n > 2m.

Lemma A.4. Let G = (V,E) be a graph with n nodes such that d(G) ≥ n −m,
and assume that V = X ′∪̇Z∪̇Y ′, where card(X ′) = card(Y ′) ≤ 2m. If n > 14m,
then there exists Z ′ ⊆ Z such that both X ′ and Y ′ can be matched onto Z ′.

Proof. Let X ′ = {a1, . . . , ak}, Y ′ = {b1, . . . , bk}, where k ≤ 2m. Since d(G) ≥
n − m, we have card(ΓG(a1)) ≥ n − m. We claim that there is an element c1 ∈
ΓG(a1) ∩ Z such that c1 ∈ ΓG(b1) ∩ Z. Indeed, card(ΓG(a1) ∩ Y ) ≥ n −m − 4m =
n − 5m, and card(ΓG(b1) ∩ Z) ≥ n − 5m. Therefore, ΓG(a1) ∩ ΓG(b1) ∩ Z 6= ∅,
provided n > 10m. Similarly, ΓG(ai) ∩ ΓG(bi) ∩ (Z \ {c1, . . . , ci−1}) 6= ∅, provided
n > 10m+ 2(i− 1).

Lemma A.5. Let G = (X,Y,E) be a bipartite graph such that for every b ∈ Y ,
dG(b) ≤ card(X)−m. Let d′ : X 7→ {0, . . . ,m} and for every a ∈ X, dG(a) ≤ d′(a). If
card(X), card(Y ) > 3m, then there exists a bipartite graph G′ = (X,Y,E′) such that
E ⊆ E′, for every a ∈ X, dG′(a) = d′(a), and for every b ∈ Y , dG′(b) ≤ card(X)−m.

Proof. Let G = (X,Y,E) be a bipartite graph such that for every b ∈ Y , dG(b) ≤
card(X) −m, and let d′ : X 7→ {0, . . . ,m} be a function such that for every a ∈ X,
dG(a) ≤ d′(a).

To build the graphG′ we will add new edges to the graphG repeating the following
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operation until we get a graph as needed.
(*) Let a be an element of X such that dG(a) < d′(a). Find an element b ∈ Y such

that {a, b} 6∈ E and for every c ∈ Y with {a, c} 6∈ E, dG(b) ≤ dG(c). Put
E = E ∪ {a, b}.

We will now show that an element b as above exists, and that the operation (*)
preserves assumptions of the lemma.

Since dG(a) < m < card(Y ), there exist at least card(Y ) − m elements c in
Y such that {a, c} 6∈ E. We claim that among these elements there is an element
b such that dG(b) < card(X) − m. In fact, towards a contradiction, assume that
dG(b) = card(X)−m, for each c ∈ Y such that {a, c} 6∈ E. Then∑

c∈Y
dG(c) =

∑
c∈Y \ΓG(a)

dG(c) +
∑

c∈ΓG(a)

dG(c) ≥ (card(Y )−m)(card(X)−m).

On the other hand, dG ≤ m, for every e ∈ X, which gives∑
c∈Y

dG(c) =
∑
e∈X

dG(e) < m · card(X).

By the above inequalities,

m · card(X) > (card(Y )−m)(card(X)−m)

and hence,

card(X)card(Y )−m(card(X) + card(Y ))−m(card(X)−m) < 0.(A.1)

Assume card(X) ≥ card(Y ). Then,

card(X)card(Y )−m(card(X) + card(Y ))−m(card(X)−m)
≥ card(X)card(Y )− 3m · card(X) +m2

> card(X)(card(Y )− 3m) > 0,provided card(Y ) > 3m.

The last inequality contradicts (A.1).

Acknowledgments. We would like to thank the referees for their valuable com-
ments that helped to improve the presentation.
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[14] W. Goldfarb, The unsolvability of the Gödel class with identity, J. Symbolic Logic, 49 (1984),
pp. 1237–1252.
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Abstract. We show that in the context of nonuniform complexity, nondeterministic logarithmic
space bounded computation can be made unambiguous. An analogous result holds for the class of
problems reducible to context-free languages. In terms of complexity classes, this can be stated as

NL/poly = UL/poly,
LogCFL/poly = UAuxPDA(logn, nO(1))/poly.
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1. Introduction. In this paper, we combine two very useful algorithmic tech-
niques (the inductive counting technique of [Imm88, Sze88] and the isolation lemma of
[MVV87]) to give a simple proof that two fundamental concepts in complexity theory
coincide in the context of nonuniform computation: nondeterminism and unambigu-
ity.

Unambiguous computation has been the focus of much attention over the past
three decades. The notion of nondeterminism is a fundamental notion in many areas
of computer science, and the version of nondeterminism where at most one nondeter-
ministic path is accepting has proved to be one of the most meaningful restrictions of
nondeterminism to study. For example,

• unambiguous context-free languages form one of the most important sub-
classes of the class of context-free languages;
• the complexity class UP (unambiguous polynomial time) was first defined and

studied by Valiant [Val76], and a necessary precondition for the existence of
one-way functions is for P to be properly contained in UP [GS88].

Although UP is one of the most intensely studied subclasses of nondeterministic poly-
nomial time (NP), it is neither known nor widely believed that UP contains any sets
that are hard for NP under any interesting notion of reducibility. (Recall that Valiant
and Vazirani showed that “Unique.Satisfiability”—the set of all Boolean formulae
with exactly one satisfying assignment—is hard for NP under probabilistic reduc-
tions [VV86]. However, the language Unique.Satisfiability is hard for coNP under ≤pm
reductions, and thus is not in UP unless NP = coNP.)

Nondeterministic and unambiguous space-bounded computation have also been
the focus of much work in computer science. For instance, the question of whether
every context-sensitive language has an unambiguous context-sensitive grammar is
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really a question about whether nondeterministic and unambiguous linear space co-
incide. This question remains open. In recent years, nondeterministic logspace (NL)
has been the focus of much attention, in part because NL captures the complexity
of many natural computational problems [Jon75]. The unambiguous version of NL,
denoted UL, was first explicitly defined and studied in [BJLR91, AJ93]. A language
A is in UL if and only if there is a nondeterministic logspace machine M accepting A
such that, for every x, M has at most one accepting computation on input x.

Our results indicate that NL and UL are probably equal, but we cannot prove
this equality. In order to state our theorem, we first need to discuss the issue of
uniformity.

Complexity classes such as P, NP, and NL that are defined in terms of machines
are known as “uniform” complexity classes, in contrast to “nonuniform” complexity
classes, which are defined most naturally in terms of families of circuits {Cn}, with a
circuit for each input length. In order to make a circuit complexity class “uniform,”
it is necessary to require that the function n 7→ Cn be “easy” to compute in some
sense. (We will consider “logspace-uniform” circuits, where the function n 7→ Cn
can be computed in space logn.) P and NL (and many other uniform complexity
classes) have natural definitions in terms of uniform circuits; for instance, NL can be
characterized in terms of switching-and-rectifier networks (see, e.g. [Raz92, Raz90])
and skew circuits [Ven92]. Uniform complexity classes can be used to give characteri-
zations of the nonuniform classes, too, using a formalism presented in [KL82]: Given
any complexity class C, C/poly is the class of languages A for which there exists a
sequence of “advice strings” {α(n) | n ∈ N} and a language B ∈ C such that x ∈ A
if and only if (x, α(|x|)) ∈ B.

Our main result is that NL/poly is equal to UL/poly.

(It is worth emphasizing that, in showing the equality UL/poly = NL/poly, we
must show that for every B in NL/poly, there is a nondeterministic logspace machine
M that never has more than one accepting path on any input, and there is an advice
sequence α(n) such that M(x, α(|x|)) accepts if and only if x ∈ B. This is stronger
than merely saying that there is an advice sequence α(n) and a nondeterministic
logspace machine such that M(x, α(|x|)) never has more than one accepting path,
and it accepts if and only if x ∈ B.)

Our work extends the earlier work of Wigderson and Gál. Motivated in part by
the question of whether a space-bounded analogue of the result of [VV86] could be
proved, Wigderson [Wig94, GW96] proved the inclusion NL/poly ⊆ ⊕L/poly. (An
alternative proof of this inclusion is sketched in [Reg97, p. 284].) This is a weaker
statement than NL ⊆ ⊕L, which is still not known to hold. ⊕L is the class of languages
A for which there is a nondeterministic logspace bounded machine M such that x ∈ A
if and only if M has an odd number of accepting computation paths on input x.

In the proof of the main result of [Wig94, GW96], Wigderson observed that a
simple modification of his construction produces graphs in which the shortest distance
between every pair of nodes is achieved by a unique path. We will refer to such graphs
in the following as min-unique graphs. Wigderson wrote: “We see no application of
this observation.” The proof of our main result is just such an application.

2. Nondeterministic logspace. The s-t connectivity problem takes as input
a directed graph with two distinguished vertices s and t and determines if there is a
path in the graph from s to t. It is well known that this is a complete problem for
NL [Jon75].
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The following lemma is implicit in [Wig94, GW96], but for completeness we make
it explicit here.

Lemma 2.1. There is a logspace-computable function f and a sequence of “advice
strings” {α(n) | n ∈ N} (where |α(n)| is bounded by a polynomial in n) with the
following properties:

• For any directed acyclic graph G on n vertices, f(G,α(n)) = 〈G1, . . . , Gn2〉.
• For each i, the directed acyclic graph Gi has an s-t path if and only if G has

an s-t path.
• There is some i such that Gi is a min-unique graph.

Proof. We first observe that a standard application of the isolation lemma tech-
nique of [MVV87] shows that, if each edge in G is assigned a weight in the range
[1, 4n4] uniformly and independently at random, then with probability at least 3

4 , for
any two vertices x and y such that there is a path from x to y, there is only one
path having minimum weight. (Sketch: The probability that there is more than one
minimum weight path from x to y is bounded by the sum, over all edges e, of the
probability of the event Bad(e, x, y) ::= “e occurs on one minimum-weight path from
x to y and not on another.” Given any weight assignment w′ to the edges in G other
than e, there is at most one value z with the property that, if the weight of e is set
to be z, then Bad(e, x, y) occurs. Thus the probability that there are two minimum-
weight paths between two vertices is bounded by

∑
x,y,e

∑
w′ Bad(e, x, y|w′)Prob(w′)

≤ ∑x,y,e

∑
w′ 1/(4n

4)Prob(w′) =
∑
x,y,e 1/(4n4) ≤ 1/4.)

Our advice string α will consist of a sequence of n2 weight functions, where
each weight function assigns a weight in the range [1, 4n4] to each edge. (There are

A(n) = 2O(n5) such advice strings possible for each n.) Our logspace-computable
function f takes as input a digraph G and a sequence of n2 weight functions and
produces as output a sequence of graphs 〈G1, . . . , Gn2〉, where graph Gi is the result
of replacing each directed edge e = (x, y) in G by a directed path of length j from x
to y, where j is the weight given to e by the ith weight function in the advice string.
Note that, if the ith weight function satisfies the property that there is at most one
minimum weight path between any two vertices, then Gi is a min-unique graph. To
see this, it suffices to observe that, for any two vertices x and y of Gi, either (a) there
exist vertices u and v such that x and y were both added in replacing the edge (u, v)
(in which case there is exactly one path connecting u to v, or (b) there are vertices
x′ and y′ such that

• x′ and y′ are vertices of the original graph G, and they lie on every path
between x and y,

• there is only one path from x to x′ and only one path from y′ to y, and
• the minimum weight path from x′ to y′ is unique.

Let us call an advice string “bad for G” if none of the graphs Gi in the sequence
f(G) is a min-unique graph. For each G, the probability that a randomly-chosen

advice string α is bad is bounded by (probability that Gi is not min-unique)n
2 ≤

(1/4)n
2

= 2−2n2

. Thus the total number of advice strings that are bad for some G is

at most 2n
2

(2−2n2

A(n)) < A(n). Thus there is some advice string α(n) that is not
bad for any G.

Theorem 2.2. NL⊆UL/poly.
Proof. It suffices to present a UL/poly algorithm for the s-t connectivity problem.
We show that there is a nondeterministic logspace machine M that takes as input

a sequence of digraphs 〈G1, . . . , Gr〉 and processes each Gi in sequence, with the
following properties:
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Input (G, k, ck,Σk, v)
count := 0; sum := 0; path.to.v := false;
for each x ∈ V do

Guess nondeterministically if d(x) ≤ k.
if the guess is d(x) ≤ k, then

begin
Guess a path of length l ≤ k from s to x (If this fails, then halt and reject).
count := count +1; sum := sum +l;
if x = v, then path.to.v := true;

end
endfor
if count = ck and sum = Σk,

then return the Boolean value of path.to.v
else halt and reject

end.procedure

Fig. 1. An unambiguous routine to determine if d(v) ≤ k.

• If Gi is not min-unique, M has a unique path that determines this fact and
goes on to process Gi+1;1 all other paths are rejecting.

• If Gi is a min-unique graph with an s-t path, then M has a unique accepting
path.
• If Gi is a min-unique graph with no s-t path, then M has no accepting path.

Combining this routine with the construction of Lemma 2.1 yields the desired
UL/poly algorithm.

Our algorithm is an enhancement of the inductive counting technique of [Imm88]
and [Sze88]. We call this the double counting technique since in each stage we count
not only the number of vertices having distance at most k from the start vertex, but
also the sum of the lengths of the shortest path to each such vertex. In the following
description of the algorithm, we denote these numbers by ck and Σk, respectively.

Let us use the notation d(v) to denote the length of the shortest path in a graph
G from the start vertex to v. (If no such path exists, then d(v) = n+ 1.) Thus, using
this notation, Σk =

∑
{x|d(x)≤k} d(x).

A useful observation is that if the subgraph of G induced by vertices having distance
at most k from the start vertex is min-unique (and if the correct values of ck and Σk
are provided), then an unambiguous logspace machine can, on input (G, k, ck,Σk, v),
compute the Boolean predicate “d(v) ≤ k”. This is achieved with the routine shown
in Figure 1.

To see that this routine truly is unambiguous if the preconditions are met, note
the following:

• If the routine ever guesses incorrectly for some vertex x that d(x) > k, then
the variable count will never reach ck and the routine will reject. Thus the only
paths that run to completion guess correctly exactly the set {x | d(x) ≤ k}.
• If the routine ever guesses incorrectly the length l of the shortest path to x,

then if d(x) > l no path of length l will be found, and if d(x) < l, then the

1More precisely, our routine will check if, for every vertex x, there is at most one minimal-length
path from the start vertex to x. This is sufficient for our purposes. A straightforward modification
of our routine would provide an unambiguous logspace routine that would determine if the entire
graph Gi is a min-unique graph.
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Input (G, k, ck−1,Σk−1)
Output (ck,Σk), and also the flag BAD.GRAPH

ck := ck−1; Σk := Σk−1;
for each vertex v do

if ¬(d(v) ≤ k − 1), then
for each x such that (x, v) is an edge do

if d(x) ≤ k − 1, then
begin
ck := ck + 1; Σk := Σk + k;
for x′ 6= x do

if (x′, v) is an edge and d(x′) ≤ k − 1, then BAD.GRAPH := true
endfor
end

endfor
endfor
At this point, the values of ck and Σk are correct.

Fig. 2. Computing ck and Σk.

Input (G)
BAD.GRAPH := false; c0 := 1; Σ0 := 0; k := 0;
repeat

k := k + 1;
compute ck and Σk from (ck−1,Σk−1);

until ck−1 = ck or BAD.GRAPH = true.
If BAD.GRAPH = false, then there is an s-t path in G if and only if d(t) ≤ k.

Fig. 3. Finding an s-t path in a min-unique graph.

variable sum will be increased by a value greater than d(x). In the latter
case, at the end of the routine, sum will be greater than Σk, and the routine
will reject.

Clearly, the subgraph having distance at most 0 from the start vertex is min-
unique, and c0 = 1 and Σ0 = 0. A key part of the construction involves computing
ck and Σk from ck−1 and Σk−1, at the same time checking that the subgraph having
distance at most k from the start vertex is min-unique. It is easy to see that ck is
equal to ck−1 plus the number of vertices having d(v) = k. Note that d(v) = k if and
only if there is some edge (x, v) such that d(x) ≤ k − 1 and it is not the case that
d(v) ≤ k − 1. (Note that both of these latter conditions can be determined in UL, as
discussed above.) The subgraph having distance at most k from the start vertex fails
to be a min-unique graph if and only if there exist some v and x as above, as well
as some other x′ 6= x such that d(x′) ≤ k − 1 and there is an edge (x′, v). The code
shown in Figure 2 formalizes these considerations.

Recall that we are building an algorithm that takes as input a sequence of graphs
〈G1, . . . , Gr〉 and processes each graph G in the sequence in turn, as outlined at the
start of this proof. Searching for an s-t path in a graph G in the sequence is now
expressed by the routine shown in Figure 3.

We complete the proof by describing how our algorithm processes the sequence
〈G1, . . . , Gr〉, as outlined at the start of the proof. Each Gi is processed in turn. If
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Gi is not min-unique (or more precisely, if the subgraph of Gi that is reachable from
the start vertex is not a min-unique graph), then one unique computation path of
the routine returns the value BAD.GRAPH and goes on to process Gi+1; all other
computation paths halt and reject. Otherwise, if Gi is min-unique, the routine has a
unique accepting path if Gi has an s-t path, and if this is not the case, the routine
halts with no accepting computation paths.

Corollary 2.3. NL/poly = UL/poly.

Proof. Clearly UL/poly is contained in NL/poly. It suffices to show the converse
inclusion. Let A be in NL/poly. By definition, there is a language B ∈ NL and there
is an advice sequence αn such that x is in A if and only if (x, α|x|) is in B. By
the preceding theorem, B is in UL/poly, and thus there is a C in UL and an advice
sequence βn such that (x, αn) is in B if and only if ((x, α|x|), β|x|+|α|x||) is in C. It is
now obvious how to construct the desired advice sequence from αn and βn+|αn .

3. LogCFL. LogCFL is the class of problems logspace-reducible to a context-
free language. Two important and useful characterizations of this class are summa-
rized in the following proposition. (SAC1 and AuxPDA(logn, nO(1)) are defined in
the following paragraphs.)

Proposition 3.1 (see [Sud78, Ven91]). LogCFL = AuxPDA(logn, nO(1)) = SAC1.

An auxiliary pushdown automaton (AuxPDA) is a nondeterministic Turing ma-
chine with a read-only input tape, a space-bounded worktape, and a pushdown store
that is not subject to the space-bound. The class of languages accepted by auxiliary
pushdown automata in space s(n) and time t(n) is denoted by AuxPDA(s(n), t(n)).
If an AuxPDA satisfies the property that, on every input x, there is at most one
accepting computation, then the AuxPDA is said to be unambiguous. This gives rise
to the class UAuxPDA(s(n), t(n)).

SAC1 is the class of languages accepted by logspace-uniform semiunbounded cir-
cuits of depth O(logn); a circuit family is semiunbounded if the AND gates have
fan-in 2 and the OR gates have unbounded fan-in.

Not long after NL was shown to be closed under complementation [Imm88, Sze88],
LogCFL was also shown to be closed under complementation in a proof that also
used the inductive counting technique [BCD+89]. A similar history followed a few
years later: not long after it was shown that NL is contained in ⊕L/poly [Wig94,
GW96], the isolation lemma was again used to show that LogCFL is contained in
⊕SAC1/poly [Gál95, GW96]. (As is noted in [GW96], this was independently shown
by H. Venkateswaran.)

In this section, we show that the same techniques that were used in section 2 can
be used to prove an analogous result about LogCFL. (In fact, it would also be possible
to derive the result of section 2 from a modification of the proof of this section. Since
some readers may be more interested in NL than LogCFL, we have chosen to present
a direct proof of NL/poly = UL/poly.) The first step is to state the analogue to
Lemma 2.1. Before we can do that, we need some definitions.

A weighted circuit is a semiunbounded circuit together with a weighting function
that assigns a nonnegative integer weight to each wire connecting any two gates in
the circuit.

Let C be a weighted circuit, and let g be a gate of C. A certificate for g(x) = 1 (in
C) is a list of gates, corresponding to a depth-first search of the subcircuit of C rooted
at g. The weight of a certificate is the sum of the weights of the edges traversed in the
depth-first search. This informal definition is made precise by the following inductive



1124 KLAUS REINHARDT AND ERIC ALLENDER

definition. (It should be noted that this definition differs in some unimportant ways
from the definition given in [Gál95, GW96].)

• If g is a constant 1 gate or an input gate evaluating to 1 on input x, then the
only certificate for g is the string g. This certificate has weight 0.
• If g is an AND gate of C with inputs h1 and h2 (where h1 lexicographically

precedes h2), then any string of the form gyz is a certificate for g, where y
is any certificate for h1, and z is any certificate for h2. If wi is the weight of
the edge connecting hi to g, then the weight of the certificate gyz is w1 +w2

plus the sum of the weights of certificates y and z.
• If g is an OR gate of C, then any string of the form gy is a certificate for g,

where y is any certificate for a gate h that is an input to g in C. If w is the
weight of the edge connecting h to g, then the weight of the certificate gy is
w plus the weight of certificate y.

Note that if C has logarithmic depth d, then any certificate has length bounded by
a polynomial in n and has weight bounded by 2d times the maximum weight of any
edge. Every gate that evaluates to 1 on input x has a certificate, and no gate that
evaluates to 0 has a certificate.

We will say that a weighted circuit C is min-unique on input x if, for every gate g
that evaluates to 1 on input x, the minimal-weight certificate for g(x) = 1 is unique.

Lemma 3.2. For any language A in LogCFL, there is a sequence of advice strings
α(n) (having length polynomial in n) with the following properties:

• Each α(n) is a list of weighted circuits of logarithmic depth 〈C1, . . . , Cn〉.
• For each input x and for each i, x ∈ A if and only if Ci(x) = 1.
• For each input x, there is some i such that Ci is min-unique on input x.

Lemma 3.2 is in some sense implicit in [Gál95, GW96]. We include a proof for
completeness.

Proof. Let A be in LogCFL, and let C be the semiunbounded circuit of size nl

(i.e., having at most nl gates) and depth d = O(logn) recognizing A on inputs of
length n.

As in [Gál95, GW96], a modified application of the isolation lemma technique of
[MVV87] shows that, for each input x, if each wire in C is assigned a weight in the
range [1, 4n3l] uniformly and independently at random, then with probability at least
3
4 , C is min-unique on input x. (Sketch: The probability that there is more than one
minimum weight certificate for g(x) = 1 is bounded by the sum, over all wires e, of
the probability of the event Bad(e, g) ::= “e occurs in one minimum-weight certificate
for g(x) = 1 and not in another.” Given any weight assignment w′ to the edges in C
other than e, there is at most one value z with the property that, if the weight of e is
set to be z, then Bad(e, g) occurs. Thus the probability that there are two minimum-
weight certificates for any gate in C is bounded by

∑
g,e

∑
w′ Bad(e, g|w′)Prob(w′)

≤ ∑g,e

∑
w′ 1/(4n

3l)Prob(w′) =
∑
g,e 1/(4n3l) ≤ 1/4.)

Now consider sequences β consisting of n weight functions 〈w1, . . . , wn〉, where
each weight function assigns a weight in the range [1, 4n3l] to each edge of C. (There

are B(n) = 2n
O(1)

such sequences possible for each n.) There must exist a string β
such that, for each input x of length n, there is some i ≤ n such that the weighted
circuit Ci that results by applying weight function wi to C is min-unique on input
x. (Sketch of proof: Let us call a sequence β “bad for x” if none of the circuits
Ci in the sequence is min-unique on input x. For each x, the probability that a
randomly chosen β is bad is bounded by (probability that Ci is not min-unique)n

≤ (1/4)n = 2−2n. Thus the total number of sequences that are bad for some x is at
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Input (C, x, k, ck,Σk, g)
count := 0; sum := 0; a :=∞;
for each gate h do

Guess nondeterministically if W (h) ≤ k.
if the guess is W (h) ≤ k, then

begin
Guess a certificate of size l ≤ k for h (If this fails, then halt and reject).
count := count +1; sum := sum +l;
if h = g, then a := l;

end
endfor
if count = ck and sum = Σk,

then return a
else halt and reject

end.procedure

Fig. 4. An unambiguous routine to calculate W (g) if W (g) ≤ k and return ∞ otherwise.

most 2n(2−2nB(n)) < B(n). Thus there is some sequence β that is not bad for any
x.)

The desired advice sequence α(n) = 〈C1, . . . , Cn〉 is formed by taking a good
sequence β = 〈w1, . . . , wn〉 and letting Ci be the result of applying weight function
wi to C.

Theorem 3.3. LogCFL ⊆ UAuxPDA(logn, nO(1))/poly.

Proof. Let A be a language in LogCFL. Let x be a string of length n, and let
〈C1, . . . , Cn〉 be the advice sequence guaranteed by Lemma 3.2.

We show that there is an unambiguous auxiliary pushdown automaton M that
runs in polynomial time and uses logarithmic space on its worktape that, given a
sequence of circuits as input, processes each circuit in turn, and has the following
properties:

• If Ci is not min-unique on input x, then M has a unique path that determines
this fact and goes on to process Ci+1; all other paths are rejecting.

• If Ci is min-unique on input x and evaluates to 1 on input x, then M has a
unique accepting path.
• If Ci is min-unique on input x but evaluates to zero on input x, then M has

no accepting path.

Our construction is similar in many respects to that of section 2. Given a circuit
C, let ck denote the number of gates g that have a certificate for g(x) = 1 of weight
at most k, and let Σk be the sum, over all gates g having a certificate for g(x) = 1
of weight at most k, of the minimum-weight certificate of g. (Let W (g) denote the
weight of the minimum-weight certificate of g(x) = 1, if such a certificate exists, and
let this value be ∞ otherwise.)

A useful observation is that if all gates of C having certificates of weight at most
k have unique minimal-weight certificates (and if the correct values of ck and Σk are
provided), then on input (C, x, k, ck,Σk, g), an unambiguous AuxPDA can determine
if W (g) > k, and if W (g) ≤ k, the AuxPDA can compute the value of W (g). This is
achieved with the routine shown in Figure 4.
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To see that this routine truly is unambiguous if the preconditions are met, note
the following:

• If the routine ever guesses incorrectly for some gate h that W (h) > k, then the
variable count will never reach ck and the routine will reject. Thus the only
paths that run to completion guess correctly exactly the set {h |W (h) ≤ k}.
• For each gate h such that W (h) ≤ k, there is exactly one minimal-weight

certificate that can be found. An UAuxPDA will find this certificate using
its pushdown to execute a depth-first search (using nondeterminism at the
OR gates and using its O(logn) workspace to compute the weight of the
certificate), and only one path will find the minimal-weight certificate. If, for
some gate h, a certificate of weight greater than W (h) is guessed, then the
variable sum will not be equal to Σk at the end of the routine, and the path
will halt and reject.

Clearly, all gates at the input level have unique minimal-weight certificates (and
the only gates g with W (g) = 0 are at the input level). Thus we can set c0 = n + 1
(since each input bit and its negation are provided, along with the constant 1)
and Σ0 = 0. A key part of the construction involves computing ck and Σk from
(ck−1,Σk−1), at the same time checking that no gate has two minimal-weight certifi-
cates of weight k. Consider each gate g in turn. If g is an AND gate with inputs h1

and h2 and weights w1 and w2 connecting g to these inputs, then W (g) ≤ k if and
only if (W (g) = l ≤ k− 1) or ((W (g) > k− 1) and (W (h1) +W (h2) +w1 +w2 = k)).
If g is an OR gate, then it suffices to check, for each gate h that is connected to g by
an edge of weight w, if (W (g) = l ≤ k−1) or ((W (g) > k−1) and (W (h)+w = k)); if
one such gate is found, then W (g) = k; if two such gates are found, then the circuit is
not min-unique on input x. If no violations of this sort are found for any k, then C is
min-unique on input x. The code shown in Figure 5 formalizes these considerations.

Evaluating a given circuit Ci is now expressed by the routine shown in Figure 6.

We complete the proof by describing how our algorithm processes the sequence
〈C1, . . . , Cn〉, as outlined at the start of the proof. Given the sequence 〈C1, . . . , Cn〉,
the algorithm processes each Ci in turn. If Ci is not min-unique on input x, then one
unique computation path of the routine returns the value BAD.CIRCUIT and goes on
to process Ci+1; all other computation paths halt and reject. Otherwise, the routine
has a unique accepting path if Ci(x) = 1, and if this is not the case the routine halts
with no accepting computation paths.

Corollary 3.4. LogCFL/poly = UAuxPDA(logn, nO(1))/poly.

4. Discussion and open problems. Rytter [Ryt87] (see also [RR92]) showed
that any unambiguous context-free language can be recognized in logarithmic time by
a concurrent-read, exclusive-write parallel random access machine (CREW-PRAM).
In contrast, no such CREW algorithm is known for any problem complete for NL,
even in the nonuniform setting, although one might initially suspect that our results,
combined with those of [Ryt87], would yield such algorithms, because of the following
considerations:

• NL is the class of languages reducible to linear context-free languages [Sud75].
• The class of languages accepted by deterministic AuxPDAs in logarithmic

space and polynomial time coincides with the class of languages logspace-
reducible to deterministic context-free languages.
• LogCFL coincides with AuxPDA(log n, nO(1)).
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Input (C, x, k, ck−1,Σk−1)
Output (ck,Σk), and also the flag BAD.CIRCUIT

ck := ck−1; Σk := Σk−1;
for each gate g do

if W (g) > k − 1, then
begin
if g is an AND gate with inputs h1, h2, connected

to g with edges weighted w1, w2 and
W (h1) +W (h2) + w1 + w2 = k, then

ck := ck + 1; Σk := Σk + k
if g is an OR gate, then

for each h connected to g by an edge weighted w do
if W (h) = k − w, then

begin
ck := ck + 1; Σk := Σk + k
for h′ 6= h connected to g by an edge of weight w′ do

if W (h′) = k − w′,
then BAD.CIRCUIT := true:

endfor
end

endfor
end

endfor
At this point, if BAD.CIRCUIT = false, the values of ck and Σk are correct.

Fig. 5. Computing ck and Σk.

Input (Ci)
BAD.CIRCUIT := false; c0 := n+ 1; Σ0 := 0;
for k = 1 to 2d4n3l

compute (ck,Σk) from ck−1,Σk−1;
if BAD.CIRCUIT = true, then exit the for loop.

endfor
If BAD.CIRCUIT = false, then the output gate g evaluates to 1 if and only if W (g) <
∞.

Fig. 6. Evaluating a circuit.

That is, there is a close connection between deterministic and nondeterminis-
tic context-free languages, and related deterministic and nondeterministic complexity
classes. Shouldn’t similar relationships hold for the unambiguous classes? Unfortu-
nately, it is not known that UAuxPDA(logn, nO(1)) or UL is reducible to unambiguous
context-free languages. The work of Niedermeier and Rossmanith does an excellent
job of explaining the subtleties and difficulties here [NR95]. CREW algorithms are
closely associated with a version of unambiguity called strong unambiguity. In terms
of Turing-machine based computation, strong unambiguity means that, not only is
there at most one path from the start vertex to the accepting configuration, but in
fact there is at most one path between any two configurations of the machine.
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Strongly unambiguous classes have more efficient algorithms than are known for
general NL or UL problems. It is shown in [AL98] that problems in strongly unam-
biguous logspace have deterministic algorithms using less than log2 n space, and it is
shown in [BJLR91] that this class is also in LogDCFL (and hence has logarithmic-
time concurrent-read, owner-write parallel random access machine (CROW-PRAM)
algorithms and is in SC2). For more information on this connection to CROW-PRAM
algorithms, see [FLR96].

The reader is encouraged to note that, in a min-unique graph, the shortest path
between any two vertices is unique. This bears a superficial resemblance to the prop-
erty of strong unambiguity. We see no application of this observation.

It is natural to ask if the randomized aspect of the construction can be eliminated
using some sort of derandomization technique to obtain the equality UL = NL. In
more recent work [ARZ], we observe that if DSPACE(n) contains a language with
sufficiently high circuit complexity, then the techniques of [NW94] can be used to
build pseudorandom generators of sufficiently high quality, so that the results of this
paper would also hold in the uniform setting.

A corollary of our work is that UL/poly is closed under complement. It remains an
open question if UL is closed under complement, although some of the unambiguous
logspace classes that can be defined using strong unambiguity are known to be closed
under complement [BJLR91]. Similarly, UL/poly has a complete set under the natural
types of reducibility to consider (nonuniform logspace reductions or even nonuniform
projections). In contrast, UL itself is not known to have any complete sets under
logspace reducibility. In this regard, note that Lange has shown that one of the other
unambiguous logspace classes does have complete sets [Lan97].

It is disappointing that the techniques used in this paper do not seem to provide
any new information about complexity classes such as NSPACE(n) and NSPACE(2n).
It is straightforward to show that NSPACE(s(n)) is contained in the advice class
USPACE(s(n))/2O(s(n)), but this is interesting only for sublinear s(n). (In a personal
communication, Fortnow [FOR] has pointed out that our argument does show that
NSPACE(n) = USPACE(n) relative to a random oracle.)

There is a natural class of functions associated with NL, denoted FNL [AJ93].
This can be defined in several equivalent ways, such as

• the class of functions computable by NC1 circuits with oracle gates for prob-
lems in NL,
• the class of functions f such that {(x, i, b) | the ith bit of f(x) is b} is in NL,
• the class of functions computable by logspace-bounded machines with oracles

for NL.

Another important class of problems related to NL is the class #L, which counts
the number of accepting paths of an NL machine. #L characterizes the complexity
of computing the determinant [Vin91]. (See also [Tod, Dam, MV97, Val92, AO96].)
It was observed in [AJ93] that if NL = UL, then FNL is contained in #L. Thus a
corollary of the result in this paper is that FNL/poly ⊆ #L/poly.

Many questions about #L remain unanswered. Two interesting complexity classes
related to #L are PL (probabilistic logspace) and C=L (which characterizes the com-
plexity of singular matrices, as well as questions about computing the rank). It is
known that some natural hierarchies defined using these complexity classes collapse:

• AC0(C=L) = C=LC=L.·
.C=L

= NC1(C=L) = LC=L [AO96, ABO96].

• AC0(PL) = PLPL.·
.PL

= NC1(PL) = PL [AO96, Ogi98, BF97].
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In contrast, the corresponding #L hierarchy (equal to the class of problems AC0

reducible to computing the determinant) AC0(#L) = FL#L.·
.#L

is not known to col-
lapse to any fixed level. Does the equality UL/poly = NL/poly provide any help in
analyzing this hierarchy in the nonuniform setting?

It is instructive to view our results in terms of arithmetic circuits. An equivalent
definition of the class of functions #L results by taking the Boolean circuit character-
ization of NL (see [Ven92]) and replacing each Boolean AND and OR gate by integer
multiplication and addition, respectively. The class #SAC1 can be defined similarly.
This notion of arithmetic circuit complexity has been investigated in a series of papers
including [Vin91, CMTV96, AAD97, All97]. Our results say that the zero-one valued
characteristic function of any language in NL (or LogCFL) can be computed by the
corresponding (nonuniform) class of arithmetic circuits. Note that, although the out-
put gate is producing a value in {0,1}, some of the interior gates will be producing
larger values. Are there equivalent arithmetic circuits where all gates take values in
{0,1}? (This is essentially the notion of strong unambiguity.) Note that each such
gate is itself defining a language in NL (or LogCFL), and thus there is a zero-one
valued arithmetic circuit for it—but this circuit may itself have gates that produce
large values.
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[AJ93] C. Álvarez and B. Jenner, A very hard log-space counting class, Theoret. Comput.
Sci., 107 (1993), pp. 3–30.

[AL98] E. Allender and K.-J. Lange, RUSPACE(logn) is contained in DSPACE(log2 n/
log logn), Theory Comput. Syst., 31 (1998), pp. 539–550.

[All97] E. Allender, Making computation count: Arithmetic circuits in the nineties, SIGACT
News, 28 (1997), pp. 2–15.

[AO96] E. Allender and M. Ogihara, Relationships among PL, #L, and the determinant,
RAIRO Theoret. Informat. Appl., 30 (1996), pp. 1–21.

[AR98] E. Allender and K. Reinhardt, in Proceedings 13th Annual IEEE Conference on
Computational Complexity, 1998, pp. 92–100.

[ARZ] E. Allender, K. Reinhardt, and S. Zhou, Isolation, matching, and counting: Uni-
form and nonuniform upper bounds, J. Comput. System Sci.; a preliminary version
appeared as [AR98], to appear.

[BCD+89] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa, Two appli-
cations of inductive counting for complementation problems, SIAM J. Comput.,
18 (1989), pp. 559–578.

[BF97] R. Beigel and B. Fu, Circuits over PP and PL, in IEEE Conference on Computational
Complexity, 1997, pp. 24–35.

[BJLR91] G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith, Unambiguity and few-
ness for logarithmic space, in Proceedings 8th International Conference on Fun-
damentals of Computation Theory (FCT ’91), Lecture Notes in Comput. Sci. 529,
Springer-Verlag, New York, NY, 1991, pp. 168–179.



1130 KLAUS REINHARDT AND ERIC ALLENDER

[CMTV96] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer, Nondeterministic NC1
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1. Introduction. The characterization of NP in terms of probabilistically
checkable proofs (PCP systems) [AS, ALMSS], hereafter referred to as the PCP
characterization theorem, is one of the more fundamental achievements of complexity
theory. Loosely speaking, this theorem states that membership in any NP-language
can be verified probabilistically by a polynomial-time machine which inspects a con-
stant number of bits (in random locations) in a “redundant” NP-witness. Unfortu-
nately, the current proof of the PCP characterization theorem is very complicated and,
consequently, has not been fully assimilated into complexity theory. Clearly, changing
this state of affairs is highly desirable.

There are two aspects of the current proof (of the PCP characterization theorem)
which are difficult. One difficult aspect is the complicated conceptual structure of the
proof (most notably the acclaimed “proof composition” paradigm). Yet, with time,
this part seems easier to understand and explain than when it was first introduced.
Furthermore, the proof composition paradigm turned out to be very useful and played
a central role in subsequent works in this area (cf. [BGLR, BS, BGS, H96]). The other
difficult aspect is the technically involved analysis of low-degree tests. Here we refer
to the difficulty of obtaining strong results regarding low-degree tests, namely, results
of the type obtained and used in [AS] and [ALMSS].

In this paper, we eliminate the latter difficulty. Although we do not get rid of
low-degree tests altogether, using our results it is now possible to prove the PCP
characterization theorem using only the weaker and simpler analysis of low-degree
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tests presented in [GLRSW, RS92, RS96]. In other words, we replace the complicated
algebraic analysis of low-degree tests presented in [AS, ALMSS] by a combinatorial
lemma (which does not refer to low-degree tests or even to polynomials). We believe
that this combinatorial lemma is very intuitive and find its proof much simpler than
the algebraic analysis of [AS, ALMSS]. (However, simplicity may be a matter of taste.)

Loosely speaking, our combinatorial lemma provides a method of generating se-
quences of pairwise independent random points so that any assignment of values to
the sequences either induces essentially consistent values on the individual elements
or is detected as inconsistent. This is achieved by a “consistency test” which samples
a constant number of sequences (and obtains the values assigned to these sequences).
We stress that the length of the sequences as well as the domain from which the
elements are chosen are parameters, which may grow while the number of samples
remains fixed.

1.1. Two combinatorial consistency lemmas. The following problem arises
frequently when trying to design PCP systems, and in particular when proving the
PCP characterization theorem. For some sets S and V, one has a procedure which,
given (bounded) oracle access to any function f : S 7→ V, tests whether f has some
desired property. The procedure should always accept a function having the property
and should reject with “noticeable” probability any function which is far from having
the property (i.e., differs from any function having the property on a significant frac-
tion of the domain). For example, the property may be that of being a proof-oracle
in a basic PCP system which we want to utilize (as an ingredient in the composition
of PCP systems). Our goal is to increase the detection probability (equivalently, to
reduce the error probability) without increasing the number of queries, but rather al-
lowing more informative queries. For example, we are willing to allow queries in which
one supplies a sequence of elements in S and expects to obtain the corresponding se-
quence of values of f applied to these elements. The problem is that the sequences of
values obtained may not be consistent with any function f : S 7→V .

We can now phrase a simple problem of testing consistency. One is given access
to a function F : S` 7→V ` and is asked whether there exists a function f : S 7→V so
that for most sequences (x1, . . . , x`) ∈S`,

F (x1, . . . , x`) = (f(x1), . . . , f(x`)).

Loosely speaking, we prove that querying F on a constant number of related random
sequences suffices for testing a relaxation of the above.

Lemma 1.1 (combinatorial consistency—simple case). For every δ > 0, there
exist a constant c = poly(1/δ) and a probabilistic oracle machine, T, which on input
(`, |S|) runs for poly(` · log |S|)-time and makes at most c queries to an oracle F :
S` 7→V `, such that

• If there exists a function f : S 7→V such that F (x1, . . . , x`)=(f(x1), . . . ,f(x`)),
for all (x1, . . . , x`) ∈ S`, then T always accepts when given access to oracle
F .
• If T accepts with probability at least 1

2 , when given access to oracle F, then
there exists a function f : S 7→ V such that the sequences F (x1, . . . , x`) and
(f(x1), . . . , f(x`)) agree on at least `−√` positions, for at least a 1−δ fraction
of all possible (x1, . . . , x`) ∈ S`.

Specifically, the test examines the value of the function F on random pairs of
sequences ((r1, . . . , r`), (s1, . . . , s`)), where ri = si for

√
` of the i’s, and checks that
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the corresponding values (on these ri’s and si’s) are indeed equal. For details, see
section 4.

Unfortunately, this relatively simple consistency lemma does not suffice for the
PCP applications. The reason being that, in that application, error reduction (see
above) is done via randomness-efficient procedures such as pairwise-independent se-
quences (since we cannot afford to utilize ` · log2 |S| random bits as above). Conse-
quently, the function F is not defined on the entire set S` but rather on a very sparse
subset, denoted S. Thus, one is given access to a function F : S 7→ V ` and is asked
whether there exists a function f : S 7→V so that for most sequences (x1, . . . , x`) ∈S,
the sequences F (x1, . . . , x`) and (f(x1), . . . , f(x`)) agree on most (contiguous) subse-
quences of length

√
`. The main result of this paper is the following lemma.

Lemma 1.2 (combinatorial consistency—sparse case). For every two of integers

s, ` > 1, there exists a set Ss,` ⊂ [s]`, where [s]
def
= {1, . . . , s}, so that the following

holds:
1. For every δ > 0, there exist a constant c = poly(1/δ) and a probabilistic oracle

machine, T, which on input (`, s) runs for poly(` · log s)-time and makes at
most c queries to an oracle F : Ss,` 7→V `, such that
• if there exists a function f : [s] 7→V such that F (x1, . . . , x`) = (f(x1), . . . ,
f(x`)), for all (x1, . . . , x`) ∈ Ss,`, then T always accepts when given ac-
cess to oracle F .

• if T accepts with probability at least 1
2 , when given access to oracle F,

then there exists a function f : [s] 7→ V such that for at least a 1 − δ
fraction of all possible (x1, . . . , x`) ∈ Ss,` the sequences F (x1, . . . , x`) and
(f(x1), . . . , f(x`)) agree on at least a 1 − δ fraction of the (contiguous)
subsequences of length

√
`.

2. The individual elements in a uniformly selected sequence in Ss,` are uniformly
distributed in [s] and are pairwise-independent. Furthermore, the set Ss,` has
cardinality poly(s) and can be constructed in poly(s, `)-time.

Specifically, the test examines the value of the function F on related random pairs
of sequences ((r1, . . . , r`), (s1, . . . , s`)) ∈ Ss,`. These sequences are viewed as

√
`×√`

matrices, and, loosely speaking, they are chosen to be random extensions of the same
random row (or column). For details, see section 2.

In particular, the presentation in section 2 axiomatizes properties of the set of
sequences, Ss,`, for which the above tester works. Thus, we provide a “parallel rep-
etition theorem” which holds for random but nonindependent instances (rather than
for independent random instances as in other such results). However, our parallel
repetition theorem applies only to the case where a single query is asked in the basic
system (rather than a pair of related queries as in other results). Due to this limitation,
we could not apply our parallel repetition theorem directly to the error-reduction of
generic proof systems. Instead, as explained below, we applied our parallel repetition
theorem to derive a relatively strong low-degree test from a weaker low-degree test.

We believe that the combinatorial consistency lemma of section 2 may play a role
in subsequent developments in the area.

1.2. Application to the PCP characterization theorem. The currently
known proof of the PCP characterization theorem [ALMSS] composes proof systems
in which the verifier makes a constant number of multivalued queries. Such verifiers
are constructed by “parallelization” of simpler verifiers, and thus the problem of “con-
sistency” arises. This problem is solved by use of low-degree multivariant polynomials,
which in turn requires “high-quality” low-degree testers. Specifically, given a function



A COMBINATORIAL CONSISTENCY LEMMA AND PCP 1135

f : GF(p)n 7→ GF(p), where p is prime, one needs to test whether f is close to some
low-degree polynomial (in n variables over the finite field GF(p)). It is required that
any function f which disagrees with every d-degree polynomial on at least, say, 1%
of the inputs be rejected with, say, a probability of 99%. The test is allowed to use
auxiliary proof oracles (in addition to f), but it may only make a constant number
of queries and the answers must have length bounded by poly(n, d, log p). Using a
technical lemma due to Arora and Safra [AS], Arora et al. [ALMSS] proved such a
result.1 The full proof is quite complex and is algebraic in nature. A weaker result
due to Gemmel et al. [GLRSW] (see [RS96]) asserts the existence of a d-degree test
which, using d+2 queries, rejects such bad functions with probability at least Ω(1/d2).
Their proof is much simpler. Combining the result of Gemmel et al. [GLRSW, RS96]
with our combinatorial consistency lemma (i.e., Lemma 1.2), we obtain an alternative
proof of the following result.

Lemma 1.3 (low-degree tester). For every δ > 0, there exist a constant c and a
probabilistic oracle machine, T, which on input n, p, d runs for poly(n, d, log p)-time
and makes at most c queries to both f and to an auxiliary oracle F, such that

• if f is a degree-d polynomial, then there exists a function F so that T always
accepts.
• if T accepts with probability at least 1

2 , when given access to the oracles f
and F, then f agrees with some degree-d polynomial on at least a 1−O(1/d2)
fraction of the domain.2

Furthermore, the test uses O(n log p) coin tosses, and makes queries of length O(n log p).

We stress that in contrast to [ALMSS] our proof of the above lemma is mainly
combinatorial. Our only reference to algebra is in relying on the result of Gem-
mel et al. [GLRSW, RS96] (which is weaker and has a simpler proof than that of
[ALMSS]). Our tester works by performing many (pairwise-independent) instances
of the [GLRSW] test in parallel and by guaranteeing the consistency of the answers
obtained in these tests via our combinatorial consistency test (i.e., of Lemma 1.2). In
contrast, prior to our work the only way to guarantee the consistency of these answers
resulted in the need to perform a low-degree test of the type asserted in Lemma 1.3
(and using [ALMSS], which was the only alternative known; this meant losing the
advantage of utilizing a low-degree test with a simpler algebraic analysis).

1.3. Related work. We refrain from an attempt to provide an account of the
developments which have culminated in the PCP characterization theorem. Works
which should certainly be mentioned include [GMR, BGKW, FRS, LFKN, Sha, BFL,
BFLS, FGLSS, AS, ALMSS] as well as [BF, BLR, LS, RS92]. For detailed accounts,
see surveys by Babai [B94] and Goldreich [G97].

This paper reports work completed in the Spring of 1994 and announced at the
Weizmann Institute Workshop on Randomness and Computation (January 1995).
Hastad’s recent work [H96] contains a combinatorial consistency lemma which is re-
lated to our Lemma 1.1 (i.e., the “simple case” lemma). However, Hastad’s lemma
(which is harder to establish) refers to the case where the test accepts with very low
probability (i.e., a weaker hypothesis) and guarantees the existence of a small set of
“piecewise-consistent” assignments (i.e., a weaker conclusion). Raz and Safra [RaSa]
claim to have been inspired by our Lemma 1.2 (i.e., the “sparse case” lemma).

1 An improved analysis was later obtained by Friedl and Sudan [FS].
2 Actually, [ALMSS] only prove agreement on an (arbitrarily large) constant fraction of the

domain.
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1.4. Organization. The (basic) sparse case consistency lemma is presented in
section 2. The application to the PCP characterization theorem is presented in sec-
tion 3. Section 4 contains a proof of Lemma 1.1 (which refers to sequences of totally
independent random points).

2. The consistency lemma (for the sparse case). In this section we present
our main result—a combinatorial consistency lemma which refers to sequences of
bounded independence. Specifically, we considered k2-long sequences viewed as k-by-k
matrices. To emphasize the combinatorial nature of our lemma and its proof, we adopt
an abstract presentation in which the properties required from the set of matrices are
explicitly stated (as axioms). We comment that the set of all k-by-k matrices over
S satisfies these axioms. A more important case is given in Construction 2.2— it is
based on a standard construction of pairwise-independent sequences (i.e., the matrix
is a pairwise-independent sequence of rows, where each row is a pairwise-independent
sequence of elements).

General notation. For a positive integer k, let [k]
def
= {1, . . . , k}. For a finite set A,

the notation a ∈R A means that a is uniformly selected in A. In case A is a multiset,
each element is selected with probability proportional to its multiplicity.

2.1. The setting. Let S be some finite set, and let k be an integer. Though
both S and k are parameters, they will be implicit in all subsequent notations.

Rows and columns. Let R be a multiset of sequences of length k over S so that
every e ∈ S appears in some sequence of R. For the sake of simplicity, think of R
as being a set (i.e., each sequence appears with multiplicity 1). Similarly, let C be
another set of sequences (of length k over S). We neither assume R = C nor R 6= C.
We consider matrices having rows in R and columns in C (thus, we call the members
of R row-sequences, and those in C column-sequences). We denote by M a multiset
of k-by-k matrices with rows in R and columns in C.

Axiom 1. For every m ∈ M and i ∈ [k], the ith row of m is an element of R
and the ith column of m is an element of C.

For every i ∈ [k] and r̄ ∈ R, we denote by Mi(r̄) the set of matrices (in M)
having r̄ as the ith row. Similarly, for j ∈ [k] and c̄ ∈ C, we denote by Mj(c̄) the set
of matrices (in M) having c̄ as the jth column. For every r̄ = (r1, . . . , rk) ∈ R and
every c̄ = (c1, . . . , ck) ∈ C, so that rj = ci, we denote by Mj

i (r̄, c̄) the set of matrices

having r̄ as the ith row and c̄ as the jth column (i.e., Mj
i (r̄, c̄) = Mi(r̄) ∩Mj(c̄)).

Shifts. We assume that R is “closed” under the shift operator.

Axiom 2. For every r̄ = (r1, . . . , rk) ∈ R there exists a unique s̄ = (s1, . . . , sk) ∈
R satisfying si = ri−1, for every 2≤ i≤ k. We denote this right-shifted sequence by
σ(r̄). Similarly, we assume that there exists a unique s̄ = (s1, . . . , sk) ∈ R satisfying
si = ri+1, for every 1 ≤ i ≤ k − 1. We denote this left-shifted sequence by σ−1(r̄).
Furthermore,3 we assume that shifting each of the rows of a matrix m ∈ M to the
same direction yields a matrix m′ that is also in M.

Axiom 2 implies that if r̄ is uniformly distributed in R, then so is σ(r̄) (resp.,
σ−1(r̄)). For every (nonnegative) integer i, the notations σi(r̄) and σ−i(r̄) are defined
in the natural way (e.g., σi(r̄) = σi−1(σ(r̄)) and σ0(r̄) = r̄). Note that we do not
assume that C is closed under shifts (in an analogous manner).

3 The extra axiom is not really necessary; see the remark following the definition of the consistency
test.
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Distribution. We now turn to axioms concerning the distribution of rows and
columns in a uniformly chosen matrix. We assume that the rows (and columns) of
a uniformly chosen matrix are uniformly distributed in R (and C, respectively).4 In
addition, we assume that the rows (but not necessarily the columns) are also pairwise-
independent.

Axiom 3. Let m be uniformly selected in M. Then,
1. For every i ∈ [k], the ith column of m is uniformly distributed in C.
2. For every i ∈ [k], the ith row of m is uniformly distributed in R.
3. Furthermore, for every j 6= i and r̄ ∈ R, conditioned that the ith row of m

equals r̄, the jth row of m is uniformly distributed over R.
Finally, we assume that the columns in a uniformly chosen matrix containing a

specific row-sequence are distributed identically to uniformly selected columns with
the corresponding entry.

Axiom 4. For every i, j ∈ [k] and r̄ = (r1, . . . , rk) ∈ R, the jth column in a
matrix that is uniformly selected among those having r̄ as its ith row (i.e., m ∈R

Mi(r̄)) is uniformly distributed among the column-sequences that have rj as their ith
element.

Clearly, if the jth element of r̄ = (r1, . . . , rk) differs from the ith element of
c̄ = (c1, . . . , ck), then Mj

i (r̄, c̄) is empty. Otherwise (i.e., rj = ci), by the above

axiom, Mj
i (r̄, c̄) is not empty. Furthermore, the above axiom implies that (in case

rj = ci) for a uniformly chosen m ∈M

Prob(m ∈Mj
i (r̄, c̄)) = Prob(m ∈Mi(r̄)) · Prob(m ∈Mj(c̄) |m ∈Mi(r̄))

=
1

|R| ·
1

|Ci(rj)| > 0,

where Ci(e) denotes the set of column-sequences having e as their ith element, and
the second equality is obtained by Axiom 4.

2.2. The test. Let Γ be a function assigning matrices in M (which may be a
proper subset of all possible k-by-k matrices over S) values which are k-by-k matrices
over some set of values V (i.e., Γ : M 7→ V k×k). The function Γ is supposed to be
“consistent” (i.e., assign each element, e, of S the same value, independently of the
matrix in which e appears). The purpose of the following test is to check that this
property holds in some approximate sense.

Construction 2.1 (consistency test).
1. Column test. Select a column-sequence c̄ uniformly in C, and i, j ∈R [k].

Select two random extensions of this column, namely, m1 ∈R Mi(c̄) and
m2 ∈R Mj(c̄), and test if the ith column of Γ(m1) equals the jth column of
Γ(m2).

2. Row test (analogous to the column test). Select a row-sequence r̄ uniformly
in R, and i, j ∈R [k]. Select two random extensions of this row, namely,
m1 ∈R Mi(r̄) and m2 ∈R Mj(r̄), and test if the ith row of Γ(m1) equals the
jth row of Γ(m2).

3. Shift test. Select a matrix m uniformly in M and an integer t ∈ [k − 1]. Let
m′ be the matrix obtained from m by shifting each row by t; namely, the ith
row of m′ is σt(r̄), where r̄ denotes the ith row of m. We test if the k − t
first columns of Γ(m) match the k − t last columns of Γ(m′).

4 This, in fact, implies Axiom 1.
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The test accepts if all three (sub)tests succeed.

Remark. Actually, it suffices to use a seemingly weaker test in which the row-test
and shift-test are combined into the following generalized row-test:

Select a row-sequence r̄ uniformly in R, integers i, j ∈R [k] and t ∈R

{0, 1, . . . , k− 1}. Select a random extension of this row and its shift;
namely, m1 ∈R Mi(r̄) and m2 ∈R Mj(σ

t(r̄)), and test if the (k − t)-
long suffix of the ith row of Γ(m1) equals the (k − t)-long prefix of
the jth row of Γ(m2).

Our main result asserts that Construction 2.1 is a “good consistency test”: If it
accepts Γ with high probability, then not only almost all entries in almost all
matrices are assigned in a consistent manner (which is obvious), but all entries in
almost all rows of almost all matrices are assigned in a consistent manner.

Lemma 2.1. Suppose M satisfies Axioms 1–4. Then, for every constant δ > 0,
there exists a constant ε > 0 so that if a function Γ : M 7→ V k×k passes the consistency
test with probability at least 1 − ε, then there exists a function τ : S 7→ V so that,
with probability at least 1 − δ, the value assigned by Γ to a uniformly chosen matrix
matches the values assigned by τ to the elements of a uniformly chosen row in this
matrix. Namely,

Probi,m(∀j : Γ(m)i,j = τ(mi,j)) ≥ 1− δ,

where m ∈R M and i ∈R [k]. The constant ε does not depend on k and S. Further-
more, it is polynomially related to δ.

As a corollary, we get part 1.1 of Lemma 1.2. Part 1.2 follows from Proposition 2.2
(below).

2.3. Proof of Lemma 2.1. As a motivation towards the proof of Lemma 2.1,
consider the following mental experiment. Let m ∈M be an arbitrary matrix and e
be its (i, j)th entry. First, uniformly select a random matrix, denoted m1, containing
the ith row of m. Next, uniformly select a random matrix, denoted m2, containing
the jth column of m1. One can show that m2 is uniformly distributed among the
matrices containing the element e. Thus, if Γ passes steps 1 and 2 in the consistency
test, then it must assign consistent values to almost all elements in almost all matrices.
Yet, this falls short of even proving that there exists an assignment which matches
all values assigned to the elements of some row in some matrix. Indeed, consider a
function Γ which assigns 0 to all elements in the first εk columns of each matrix and
1’s to all other elements. Clearly, Γ passes the row-test with probability 1 and the
column-test with probability greater than 1− ε; yet, there is no τ : S 7→ V so that for
a random matrix the values assigned by Γ to some row match τ . It is easy to see that
the shift-test takes care of this special counterexample. Furthermore, it may be telling
to see what is wrong with some naive arguments. A main issue these arguments tend
to ignore is that for an “adversarial” choice of Γ and a candidate choice of τ : S 7→ V,
we have no handle on the (column) location of the elements in a random matrix on
which τ disagrees with Γ. The shift-test plays a central role in circumventing this
problem; see subsection 2.3.2 and Claim 2.1.14 (below).

Recommendation. The reader may want to skip the proofs of all claims on the
first reading. We believe that all the claims are quite believable and that their proofs
(though slightly tedious in some cases) are quite straightforward. In contrast, we
believe that the ideas underlying the proof of the lemma are to be found in its high
level structure; namely, the definitions and the claims made.



A COMBINATORIAL CONSISTENCY LEMMA AND PCP 1139

Notation. The following notation will be used extensively throughout the proof.
For a k-by-k matrix, m, we denote by rowi(m) the ith row of m and by colj(m) the jth
column of m. Restating the conditions of the lemma, we have (from the hypothesis
that Γ passes the column test)

Probc̄,i,j,m1,m2
(coli(Γ(m1))=colj(Γ(m2))) ≥ 1− ε,(2.1)

where c̄, i, j,m1, and m2 are uniformly selected in the corresponding sets (i.e., c̄∈C,
i, j∈ [k], m1 ∈Mi(c̄), and m2 ∈Mj(c̄)). Similarly, from the hypothesis that Γ passes
the row test, we have

Probr̄,i,j,m1,m2
(rowi(Γ(m1)) = rowj(Γ(m2))) ≥ 1− ε,(2.2)

where r̄ ∈R R, i, j ∈R [k], m1 ∈R Mi(r̄), and m2 ∈R Mj(r̄). It will be convenient
to extend the shift notation to matrices in the obvious manner; namely, σt(m) is
defined as the matrix m′ satisfying rowi(m

′) = σt(rowi(m)) for every i ∈ [k]. From
the hypothesis that Γ passes the shift-test, we obtain

Probm,t(∀j≤k − t colj(Γ(m)) = colj+t(Γ(σt(m)))) ≥ 1− ε,(2.3)

where m ∈R M and t ∈R [k − 1]. Finally, denoting by entryi,j(m) the (i, j)th entry
in the matrix m, we restate the conclusion of the lemma as follows:

Probi,m(∃j so that entryi,j(Γ(m)) 6= τ(entryi,j(m))) ≤ δ,(2.4)

where m ∈R M and i ∈R [k].

2.3.1. Stable rows and columns – part 1. For each r̄ ∈ R and ᾱ ∈ V k,
we denote by pr̄(ᾱ) the probability that Γ assigns to the row-sequence r̄ the value-
sequence ᾱ; namely,

pr̄(ᾱ)
def
= Probi,m(rowi(Γ(m)) = ᾱ),

where i ∈R [k] and m ∈R Mi(r̄). Equation (2.2) implies that for almost all row-
sequences there is a “typical” sequence of values; see Claim 2.1.3 (below).

Definition 2.1.1 (consensus). The consensus of a row-sequence r̄ ∈ R, denoted
con(r̄), is defined as the value ᾱ for which pr̄(ᾱ) is maximum. Namely, con(r̄) = ᾱ if
ᾱ is the (lexicographically first) value-sequence for which pr̄(ᾱ) = maxβ̄{pr̄(β̄)}.

Definition 2.1.2 (stable sequences). Let ε2
def
=
√
ε. We say that the row-sequence

r̄ is stable if pr̄(con(r̄)) ≥ 1− ε2. Otherwise, we say that r̄ is unstable.
Clearly, almost all row-sequences are stable.
Claim 2.1.3. All but at most an ε2 fraction of the row-sequence are stable.
Proof. For each fixed r̄ we have

Probi,j,m1,m2(rowi(Γ(m1))=rowj(Γ(m2))) =
∑
ᾱ

pr̄(ᾱ)2,

where i, j ∈R [k], m1 ∈R Mi(r̄), and m2 ∈R Mj(r̄). Taking the expectation over
r̄ ∈R R, and using (2.2), we get

1− ε ≤ Probr̄,i,j,m1,m2
(rowi(Γ(m1)) = rowj(Γ(m2)))

= Expr̄

(∑
ᾱ

pr̄(ᾱ)2

)
≤ Expr̄(p

max
r̄ ),
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where pmax
r̄

def
= maxᾱ{pr̄(ᾱ)}. Using the Markov inequality, we get

Probr̄(p
max
r̄ ≤1−√ε) < √ε

and the claim follows.
By definition, almost all matrices containing a particular stable row-sequence

assign this row-sequence the same sequence of values (i.e., its consensus value). We
say that such matrices are conforming for this row-sequence.

Definition 2.1.4 (conforming matrix). Let i ∈ [k]. A matrix m ∈ M is called
i-conforming (or conforming for row-position i) if Γ assigns the ith row of m its
consensus value; namely, if rowi(Γ(m)) = con(rowi(m)). Otherwise, the matrix is
called i-nonconforming (or nonconforming for row-position i).

Claim 2.1.5. The probability that for a uniformly chosen i ∈ [k] and m ∈ M,

the matrix m is i-nonconforming is at most ε3
def
= 2ε2. Furthermore, the bound holds

also if we require that the ith row of m is stable.
Proof. The stronger bound (on probability) equals the sum of the probabilities of

the following two events. The first event is that the ith row of the matrix is unstable;
whereas the second event is that the ith row of the matrix is stable and yet the matrix
is i-nonconforming. To bound the probability of the first event (by ε2), we fix any
i ∈ [k] and combine Axiom 3 with Claim 2.1.3. To bound the probability of the second
event, we fix any stable r̄ and use the definition of a stable row.

Remark. Clearly, an analogous treatment can be applied to column-sequences. In
the following, we freely refer to the above notions and to the above claims also when
discussing column-sequences.

2.3.2. Stable rows – part 2 (shifts). Now we consider the relation between
the consensus of row-sequences and the consensus of their (short) shifts. By a short
shift of the row-sequence r̄, we mean any row-sequence s̄ = σd(r̄) obtained with
d ∈ {−(k − 1), . . . ,+(k − 1)}. Our aim is to show that the consensus (as well as
stability) is usually preserved under short shifts.

Definition 2.1.6 (very-stable row). Let ε4 =
√
ε2. We say that a row-sequence r̄

is very-stable if it is stable, and for all but an ε4 fraction of d ∈ {−(k− 1), . . . ,+(k−
1)}, the row-sequence s̄

def
= σd(r̄) is also stable.

Claim 2.1.7. All but at most an ε4 fraction of the row-sequence are very-stable.
Proof. By a simple counting argument (using the fact that the uniform distribu-

tion over R is preserved under shifts).
Definition 2.1.8 (superstable row). Let ε5 = 3

√
ε and ε6 = 2(ε4 + ε5). We say

that a row-sequence r̄ is superstable if it is very-stable, and, for every j ∈ [k], the

following holds: for all but an ε6 fraction of the t ∈ [k], the row-sequence s̄
def
= σt−j(r̄)

is stable and conj(r̄) = cont(s̄), where coni(r̄) is the ith element of con(r̄).
Note that the tth element of σt−j(r̄) is rt−(t−j) = rj . Thus, a row-sequence is

superstable if the consensus value of each of its elements is preserved under almost
all (short) shifts.

Claim 2.1.9. All but at most an ε6 fraction of the row-sequence are superstable.
Proof. We start by proving that almost all row-sequences and almost all of their

shifts have approximately matching statistics, where the statistics vector of r̄ ∈ R
is defined as the k-long sequence (of functions), p1

r̄(·), . . . , pkr̄ (·), so that pjr̄(v) is the
probability that Γ assigns the value v to the jth element of the row r̄. Namely,

pjr̄(v)
def
= Probi,m(entryi,j(Γ(m)) = v),
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where i ∈R [k] and m ∈R Mi(r̄). By the definition of consensus, we know that for
every stable row-sequence r̄ ∈ R, we have pjr̄(conj(r̄)) ≥ 1 − ε2, for every j ∈ [k].
Thus, if both r̄ and its shift s̄ = σt(r̄) are stable and have approximately matching
statistics (i.e., the corresponding (k − t)-long statistics subvectors are close), then
their consensus must match (i.e., the corresponding (k − t)-long subsequences of the
consensus are equal).

Subclaim 2.1.9.1. For all but an ε5 fraction of the row-sequences r̄, all but an ε5
fraction of the values d ∈ [k − 1] satisfy∑

v

|pjr̄(v)− pj+d
σd(r̄)

(v)| < 2ε5 for every j ≤k − d.

Proof of subclaim. Let pref rowi,j(m) denote the j-long prefix of rowi(m) and
suff rowi,j(m) its j-long suffix. By the shift-test (see (2.3) and recall ε = ε35)

Probm,i,d(pref rowi,k−d(Γ(m))=suff rowi,k−d(Γ(m′))) ≥ 1− ε35,
where i ∈R [k], m ∈R M, d ∈R [k− 1], and m′ = σd(m). Using Axiom 3 (part 2) and
an averaging argument, we get that for all but an ε5 fraction of the r̄ ∈ R, and for all
but an ε5 fraction of d ∈ [k − 1],

Probi,m(pref rowi,k−d(Γ(m))=suff rowi,k−d(Γ(m′))) ≥ 1− ε5,(2.5)

where i ∈R [k], m ∈R Mi(r̄), and m′ = σd(m). We fix a pair r̄ and d satisfy-
ing (2.5), thus fixing also s̄ = σd(r̄). A matrix pair (m,m′) for which the equal-
ity pref rowi,k−d(Γ(m)) = suff rowi,k−d(Γ(m′)) holds contributes equally to the (ap-
propriate (k − d)-long portion of) statistic vectors of the row-sequences r̄ and s̄.
The contribution of a matrix pair, for which the equality does not hold for the
difference

∑
v |pjr̄(v) − pj+ds̄ (v)|, is at most 2

k·|Mi(r̄)| per each relevant j. Thus, the

total difference for such r̄ and s̄ (i.e., satisfying (2.5)) is at most 2ε5. The subclaim
follows.

As a corollary we get the following.
Subclaim 2.1.9.2. Let us call a row-sequence, r̄, infective if for every j ∈ [k] all

but an 2ε5 fraction of the t ∈ [k] satisfy
∑
v |pjr̄(v)− pts̄(v)| ≤ 2ε5, where s̄ = σt−j(r̄).

Then, all but a 2ε5 fraction of the row-sequences are infective.
Proof of subclaim. We say that r̄ is rightwards-fine if for all but an ε5 fraction of

the d ∈ [k] and for every j ≤ k − d, we have
∑
v |pjr̄(v) − pj+d

σd(r̄)
(v)| ≤ 2ε5. (Indeed,

Subclaim 2.1.9.1 asserts that all but an ε5 fraction of the row-sequences are rightwards-
fine.) If r̄ is rightwards-fine, then for every j there are at most ε5k positions t ∈ {j +
1, . . . , k} so that

∑
v |pjr̄(v)− ptσt−j(r̄)(v)| > 2ε5. Similarly, r̄ is leftwards-fine if for all

but an ε5 fraction of the d ∈ [k] and for every j > d, we have
∑
v |pjr̄(v)−pj−d

σ−d(r̄)
(v)| ≤

2ε5, and whenever r̄ is leftwards-fine, then for every j there are at most ε5k positions
t ∈ {1, . . . , j − 1} so that

∑
v |pjr̄(v)− ptσt−j(r̄)(v)| > 2ε5. Thus, if a row-sequence r̄ is

both rightwards-fine and leftwards-fine, then for every j ∈ [k] all but a 2ε1 fraction of
the positions t ∈ [k] satisfy

∑
v |pjr̄(v)− ptσt−j(r̄)(v)| ≤ 2ε5. Now, by Subclaim 2.1.9.1,

all but an ε5 fraction of the row-sequences are rightwards-fine. A similar statement
holds for leftwards-fine (since the shift-test can be rewritten as selecting m′ ∈R M
and d ∈R [k − 1] and setting m = σ−d(m′)). Combining all these trivialities, the
subclaim follows.

Clearly, a row-sequence r̄ that is both very-stable and infective satisfies, for every
j ∈ [k] and all but at most ε4 · (2k − 1) + 2ε5 · k of the t ∈ [k], both



1142 ODED GOLDREICH AND SHMUEL SAFRA

• s̄ def
= σt−j(r̄) is stable; it follows that pts̄(cont(s̄)) ≥ 1− ε2 and pts̄(u) ≤ ε2 for

all u 6= cont(s̄).
• pts̄(v) ≥ pjr̄(v)− 2ε5, for every v and in particular for v = conj(r̄).

It follows that pts̄(conj(r̄)) ≥ pjr̄(conj(r̄)) − 2ε5 ≥ 1 − ε2 − 2ε5 which (for sufficiently
small ε) is strictly greater than ε2, and therefore conj(r̄) = cont(s̄) must hold. Thus,
such an r̄ is superstable. Combining the lower bounds on the fractions of very-stable
and infective row-sequences (given by Claim 2.1.7 and Subclaim 2.1.9.2, respectively),
the current claim follows. (Actually, we get a better bound; i.e., ε4 + 2ε5.)

Summary. Before proceeding let us summarize our state of knowledge. The key
definitions regarding row-sequences are of stable, very-stable, and superstable row-
sequences (i.e., Definitions 2.1.2, 2.1.6, and 2.1.8, respectively). Recall that a stable
row-sequence is assigned the same value in almost all matrices in which it appears.
Furthermore, most prefixes (resp., suffices) of a superstable row-sequence are assigned
the same values in almost all matrices containing these portions (as part of some row).
Regarding matrices, we defined a matrix to be i-conforming if it assigns its ith row
the corresponding consensus value (i.e., it conforms with the consensus of that row-
sequence); cf. Definitions 2.1.4 and 2.1.1. We have seen that almost all row-sequences
are superstable and that almost all matrices are conforming for most of their rows.
Actually, we will use the latter fact with respect to columns; that is, almost all
matrices are conforming for most columns (cf. Claim 2.1.5 and the remark following
it).

2.3.3. Deriving the conclusion of the lemma. We are now ready to derive
the conclusion of the lemma. Loosely speaking, we claim that the function τ, defined
so that τ(e) is the value most frequently assigned (by Γ) to e, satisfies (2.4). Actually,
we use a slightly different definition for the function τ .

Definitions 2.1.10 (the function τ). For a column-sequence c̄, we denote by
coni(c̄) the values that con(c̄) assigns to the ith element in c̄. We denote by Ci(e)
the set of column-sequences having e as the ith component. Let qe(v) denote the
probability that the consensus of a uniformly chosen column-sequence, containing e,
assigns to e the value v. Namely,

qe(v)
def
= Probi,c̄(coni(c̄)=v),

where i ∈R [k] and c̄ ∈R Ci(e). We consider τ : S 7→ V so that τ(e)
def
= v if qe(v) =

maxu{qe(u)}, with ties broken arbitrarily.
Assume, contrary to our claim, that (2.4) does not hold (for this τ). Namely, for

a uniformly chosen m ∈ M and i ∈ [k], the following holds with probability greater
that δ

∃j so that entryi,j(Γ(m)) 6= τ(entryi,j(m)).(2.6)

The notion of an annoying row-sequence, defined below, plays a central role in our
argument. Using the above (contradiction) hypothesis, we first show that many row-
sequences are annoying. Next, we show that lower bounds on the number of annoying
row-sequences translate to lower bounds on the probability that a uniformly cho-
sen matrix is nonconforming for a uniformly chosen column position. This yields a
contradiction to Claim 2.1.5.

Definitions 2.1.11 (row-annoying elements). An element rj in r̄ = (r1, . . . , rk) ∈
R, is said to be annoying for the row-sequence r̄ if the jth element in con(r̄) differs
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from τ(rj). A row-sequence r̄ is said to be annoying if r̄ contains an element that is
annoying for it.

Using Claim 2.1.9, we get the following claim.

Claim 2.1.12. Suppose that (2.4) does not hold (for τ). Then, at least a δ1
def
=

δ − ε6 − ε2 fraction of the row-sequences are both superstable and annoying.
Proof. Axiom 3 (part 2) is extensively used throughout this proof (with no explicit

reference). Combining (2.6) and Claim 2.1.9, with probability at least δ−ε6−ε2 = δ1,
a uniformly chosen pair (m, i) ∈M× [k] satisfies the following:

1. there exists a j so that τ(entryi,j(m)) is different from entryi,j(Γ(m));
2. rowi(m) is superstable;
3. matrix m is i-conforming; i.e., entryi,j(Γ(m)) equals conj(rowi(m)), for every
j ∈ [k].

Combining conditions (1) and (3), we get that e = entryi,j(m) is annoying for the ith
row of m. The current claim follows.

A key observation is that each stable row-sequence which is annoying yields many
matrices which are nonconforming for the “annoying column position” (i.e., for the
column position containing the element which annoys this row-sequence).

Claim 2.1.13. Suppose that a row-sequence r̄ = (r1, . . . , rk) is stable and that
rj is annoying for r̄. Then at least a 1

2 − ε2 fraction of the matrices containing the
row-sequence r̄ are nonconforming for column-position j.

We stress that the row-sequence r̄ in the above claim is not necessarily very-stable
(let alone superstable).

Proof. Let us denote by v the value assigned to rj by the consensus of r̄ (i.e.,

v
def
= conj(r̄)). Since rj annoys r̄ it follows that v is different from τ(rj). Consider

the probability space defined by uniformly selecting i ∈ [k] and m ∈ Mi(r̄). Since r̄
is stable it follows that in almost all of these matrices the value assigned to rj by the
matrix equals v. Namely,

Probi,m(entryi,j(Γ(m))=v)) ≥ 1− ε2,(2.7)

where i ∈R [k] and m ∈R Mi(r̄). By Axiom 4, the jth column of m is uniformly
distributed in Ci(rj), and thus we may replace c̄ ∈R Ci(rj) by the jth column of
m ∈R Mi(r̄). Now, using the definition of the function τ and the accompanying
notations, we get

Probi,m(coni(colj(m))=v) = qrj (v) ≤ 1

2
,(2.8)

where, again, i ∈R [k] and m ∈R Mi(r̄). The inequality holds since v 6= τ(rj) and by
τ ’s definition qrj (v) ≤ qrj (τ(rj)). Combining (2.7) and (2.8), we get

Probi,m(entryi,j(Γ(m)) 6=coni(colj(m)))

≥ Probi,m(entryi,j(Γ(m)) = v & coni(colj(m)) 6=v)

≥ 1− ε2 − 1

2
=

1

2
− ε2

and the claim follows.
Another key observation is that superstable row-sequences which are annoying

have the property of “infecting” almost all their shifts with their annoying positions,
thus spreading the “annoyance” over all column positions.
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Claim 2.1.14. Suppose that a row-sequence r̄ is both superstable and annoying.
In particular, suppose that the jth element of r̄ = (r1, . . . , rk) is annoying for r̄. Then,
for all but at most an ε6 fraction of the t ∈ [k], the row-sequence s̄ = σt−j(r̄) is stable
and its tth element (which is indeed rj) is annoying for s̄.

Proof. Since r̄ is superstable, we know that for all but an ε6 fraction of the t’s,
conj(r̄) = cont(s̄) and s̄ is stable (as well), where s̄ = (s1, . . . , sk) = σt−j(r̄). Since rj
is annoying for r̄, we have conj(r̄) 6= τ(rj) and cont(s̄) 6= τ(rj) = τ(st) follows (recall
rj = st).

Combining Claims 2.1.12 and 2.1.14, we derive, for almost all positions t ∈ [k],
a lower bound for the number of stable row-sequences that are annoyed by their tth
element.

Claim 2.1.15. Suppose that (2.4) does not hold (for τ). Then, there exists a set
T ⊆ [k] so that |T | ≥ (1− 2ε6) · k and for every t ∈ T there is a set of at least δ1

2k · |R|
stable row-sequences so that the tth position is annoying for each of these sequences.

Proof. Combining Claims 2.1.12 and 2.1.14, we get that there is a set of super
stable row-sequences A ⊆ R so that

1. A contains at least a δ1 fraction of R; and
2. for every r̄ ∈ A there exists a jr̄ ∈ [k] so that for all but an ε6 of the t ∈ [k],

the row-sequence s̄
def
= σt−jr̄ (r̄) is stable and the tth position is annoying for

it (i.e., for s̄).
By a counting argument it follows that there is a set T so that |T | ≥ (1 − 2ε6) · k,
and for every t ∈ T at least half of the r̄’s in A satisfy item 2 above for this t (i.e.,

s̄
def
= σt−jr̄ (r̄) is stable and the tth position is annoying for s̄). Fixing such a t ∈ T,

we consider the set, denoted At, containing these r̄’s; namely, for every r̄ ∈ At the

row-sequence s̄
def
= σt−jr̄ (r̄) is stable and the tth position is annoying for it (i.e., for

s̄). Thus, we have established a mapping from At to a set of stable row-sequences
which are annoyed by their tth position; specifically, r̄ is mapped to σt−jr̄ (r̄). Each
row-sequence in the range of this mapping has at most k preimages (corresponding
to the k possible shifts which maintain its tth element). Recalling that At contains

at least |A|2 ≥ δ1
2 · |R| sequences, we conclude that the mapping’s range must contain

at least δ1
2k · |R| sequences, and the claim follows.

Combining Claims 2.1.15 and 2.1.13, we get a lower bound on the number of
matrices which are nonconforming for the jth column, for all j ∈ T (where T is as in
Claim 2.1.15).

Claim 2.1.16. Let T be as guaranteed by Claim 2.1.15 and suppose that j ∈ T .
Then, at least a δ1

6 fraction of the matrices are nonconforming for column-position j.

Proof. By Claim 2.1.15, there are at least δ1
2k · |R| stable row-sequences that

are annoyed by their jth position. Out of these row-sequences, we consider a subset,
denoted A, containing exactly δ1

2k · |R| row-sequences. By Claim 2.1.13, for each
r̄ ∈ A, at least a 1

2 − ε2 fraction of the matrices containing the row-sequence r̄ are
nonconforming for column-position j. We claim that almost all of these matrices do
not contain another row-sequence in A (here we use the fact that A isn’t too large);
this will allow us to add up the matrices guaranteed by each r̄ ∈ A without worrying
about multiple counting.

Subclaim 2.1.16.1. For every r̄ ∈ R

Probi,m(∃i′ 6= i s.t. rowi′(m)∈A) <
δ1
2
,

where i ∈R [k] and m ∈R Mi(r̄).
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Proof of subclaim. By Axiom 3 (part 3), we get that for every i′ 6= i the i′th row
of m ∈R Mi(r̄) is uniformly distributed in R. Thus, for every i′ 6= i

Probm(rowi′(m)∈A) =
δ1
2k
,

where m ∈R Mi(r̄). The subclaim follows.
Using the subclaim, we conclude that for each r̄ ∈ A, at least a 1

2 − ε2 − δ1
2 > 1

3
fraction of the matrices containing the row-sequence r̄ are nonconforming for column-
position j and do not contain any other row-sequence in A. The desired lower bound
now follows. Namely, let B denote the set of matrices which are nonconforming for

column-position j, let Bi(r̄)
def
= B ∩Mi(r̄) and B′i(r̄) denote the set of matrices in

Bi(r̄) which do not contain any row in A except for the ith row; then

|B| ≥ | ∪r̄∈A ∪ki=1B
′
i(r̄)|

=
∑
r̄∈A

k∑
i=1

|B′i(r̄)|

>
∑
r̄∈A

k∑
i=1

|Mi(r̄)|
3

= |A| ·
(

1

3
· k · |M||R|

)
=
δ1
6
· |M|

The claim follows.
The combination of Claims 2.1.15 and 2.1.16 yields that a uniformly chosen matrix

is nonconforming for a uniformly chosen column position with probability at least
(1 − 2ε6) · δ16 . For a suitable choice of constants (e.g., ε = (δ/30)4), this yields a
contradiction to Claim 2.1.5 (which asserts that this probability is at most ε3).5 Thus,
(2.4) must hold for τ as defined in Definition 2.1.10, and the lemma follows.

2.4. A construction that satisfies the axioms. Clearly, the set of all k-by-k
matrices over S satisfies Axioms 1–4.6 A more interesting and useful set of matrices
is defined as follows.

Construction 2.2 (basic construction). We associate the set S with a finite
field of characteristic at least k. Furthermore, [k] is associated with k elements of the
field so that 1 is the multiplicative unit and i ∈ [k] is the sum of i such units. Let M
be the set of matrices defined by four field elements as follows. The matrix associated
with the quadruple (x, y, x′, y′) has the (i, j)th entry equal to (x+ jy) + i(x′ + jy′).

Remark. The column-sequences correspond to the standard pairwise-independent
sequences {r+ is : i ∈ [k]}, where r, s ∈ S. Similarly, the row-sequences are expressed
as {r + js : j ∈ [k]}, where r, s ∈ S.

Proposition 2.2. The basic construction satisfies Axioms 1–4.

5 Specifically, contradiction follows when (1− 2ε6) · δ1
6
> δ1

12
> ε3 = 2ε2. Using δ1 = δ − ε6 − ε2,

we need to have ε6 ≤ 1/4 and δ > 25ε2 + ε6. Using ε2 =
√
ε and ε6 = 2( 4

√
ε+ 3
√
ε) < 4 4

√
ε, it suffices

to have ε ≤ 2−16 and δ > 29 4
√
ε, which holds for ε = min{2−16, (δ/30)4} (= (δ/30)4 as δ ≤ 1).

6 To see that Axiom 2 holds, one should specify the right shift of r̄ = (r1, . . . , rk). A natural
choice is to have σ(r̄) = (rk, r1, . . . , rk−1).
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Proof. Axiom 1 as well as the first two items of Axiom 3 are obvious from the
above remark. The right-shift of the sequence {r+ js : j∈ [k]} is {(r+s)+ js : j∈ [k]}
and Axiom 2 follows. To prove that the third item of Axiom 3 holds, we rewrite
the ith row as {si + j · ri : j ∈ [k]}, where si = x + ix′ and ri = y + iy′. Now, for
every i 6= i′ ∈ [k], when x, y, x′, y′ ∈R S, the pairs (si, ri) and (si′ , ri′) are pairwise-
independent and uniformly distributed in S × S, which corresponds to the set of
row-sequences. It remains to prove that Axiom 4 holds. We start by proving the
following.

Fact 2.2.1. Consider any i, j ∈ [k] and two sequences r̄ = (r1, . . . , rk) ∈ R and
c̄ = (c1, . . . , ck) ∈ C so that rj = ci. Then, |Mj

i (r̄, c̄)| equals |S|.
Proof of fact. By the construction there exists a unique pair (a, b) ∈ S × S so

that a + j′b = rj′ for every j′ ∈ [k] (existence is obvious and uniqueness follows by
considering any two equations; e.g., a + b = r1 and a + 2b = r2). Similarly, there
exists a unique pair (α, β) so that α+ i′β = ci′ for every i′ ∈ [k]. We get a system of
four linear equations in x, x′, y, and y′ (i.e., x+ ix′ = a, y + iy′ = b, x+ jy = α, and
x′ + jy′ = β). This system has rank 3 and thus |S| solutions, each defining a matrix
in Mj

i (r̄, c̄).

Using Fact 2.2.1, Axiom 4 follows since

|Mj
i (r̄, c̄)|
|Mi(r̄)| =

|S|
|S × S|

=
1

|S|
=

1

|Ci(rj)|

and so does the proposition.

3. A stronger consistency test and the PCP application. To prove Lemma
1.3, we need a slightly stronger consistency test than the one analyzed in Lemma 2.1.
This new test is given access to three related oracles, each supplying assignments to
certain classes of sequences over S, and is supposed to establish the consistency of
these oracles with one function τ : S 7→ V . Specifically, one oracle assigns values to
k2-long sequences viewed as 2-dimensional arrays (as before). The other two oracles
assign values to k3-long sequences viewed as 3-dimensional arrays, whose slices (along
a specific coordinate) correspond to the 2-dimensional arrays of the first oracle. Using
Lemma 2.1 (and the auxiliary oracles) we will present a test which verifies that the first
oracle is consistent in an even stronger sense than established in Lemma 2.1. Namely,
not only that all entries in almost all rows of almost all 2-dimensional arrays
are assigned in a consistent manner, but all entries in almost all 2-dimensional
arrays are assigned in a consistent manner.

3.1. The setting. Let S, k, R, C, and M be as in the previous section. We now
consider a family,Mc, of k-by-k matrices with entries in C. The familyMc will satisfy
Axioms 1–4 of the previous section. In addition, its induced multiset of row-sequences,
denoted R, will correspond to the multiset M; namely, each row of a matrix in Mc

will form a matrix in M (i.e., the sequence of elements of C corresponding to a row
in a Mc-matrix will correspond to a M-matrix).

Axiom 5. For every m ∈ Mc and every i ∈ [k], there exists m ∈ M so that for
every j ∈ [k], the (i, j)th entry of m equals the jth column of m (i.e., entryi,j(m) =
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colj(m), or, equivalently, rowi(m) ∼= m). Furthermore, this matrix m is unique.7

Analogously, we consider also a family, Mr, of k-by-k matrices, the entries of which
are elements in R so that the rows8 of each m ∈Mr correspond to matrices in M.

3.2. The test. As before, Γ is a function assigning (k-by-k) matrices in M values
which are k-by-k matrices over some set of values V (i.e., Γ : M 7→ V k×k). Let Γc

(resp., Γr) be (the supposedly corresponding) function assigning k-by-k matrices over

C (resp., R) values which are k-by-k matrices over V
def
= V k (i.e., Γc :Mc 7→ V

k×k
).

Construction 3.1 (extended consistency test).:

1. Consistency for sequences. Apply the consistency test of Construction 2.1 to
Γc. Same for Γr.

2. Correspondence test. Uniformly select a matrix m ∈ Mc and a row i ∈ [k],
and compare the ith row in Γc(m) to Γ(m), where m ∈M is the matrix formed
by the C-elements in the ith row of m. The same goes for Γr.

The test accepts if both (sub)tests succeed.

Lemma 3.1. Suppose M,Mc, and Mr satisfy Axioms 1–5. Then, for every con-
stant γ > 0, there exists a constant ε so that if a function Γ : M 7→ V k×k (together

with some functions Γc : Mc 7→ V
k×k

and Γr : Mr 7→ V
k×k

) passes the extended
consistency test with probability at least 1− ε, then there exists a function τ : S 7→ V
so that, with probability at least 1 − γ, the value assigned by Γ to a uniformly cho-
sen matrix m ∈ M matches the values assigned by τ to each of the elements of m.
Namely,

Probm
(∀i, j entryi,j(Γ(m)) = τ(entryi,j(m))

) ≥ 1− γ,
where m ∈R M. The constant ε does not depend on k and S. Furthermore, it is
polynomially related to γ.

The proof of the lemma starts by applying Lemma 2.1 to derive assignments to
C (resp., R) which are consistent with Γc (resp., Γr) on almost all rows of almost all
k3-dimensional arrays (i.e.,Mc andMr, resp.). It proceeds by applying a degenerate
argument of the kind applied in the proof of Lemma 2.1. Again, the reader may want
to skip the proofs of all claims in first reading.

3.3. Proof of Lemma 3.1. We start by considering step 1 in the extended
consistency test. By Lemma 2.1, there exists a function τc : C 7→ V k (resp., τr :
R 7→ V k) so that the value assigned by Γc (resp., Γr), to a uniformly chosen row in a
uniformly chosen matrix Mc (resp., Mr) matches, with high probability, the values
assigned by τc (resp., τr) to each of the C-elements (resp., R-elements) appearing in
this row. Here “with high probability” means with probability at least 1 − δ, where
δ > 0 is a constant, related to ε as specified by Lemma 2.1. Namely,

Probi,m(∀j entryi,j(Γc(m)) = τc(entryi,j(m))) ≥ 1− δ,(3.1)

where i ∈R [k] and m ∈R Mc.

7 Uniqueness is an issue only in case M is a multiset. In such a case, Mc will be a multiset too,
and the furthermore clause establishes a 1-1 correspondence betwen the rows of Mc and M.

8 Alternatively, one can consider a family, Mr, of k-by-k matrices, the entries of which are
elements in R, so that the columns of each m ∈ Mr correspond to matrices in M. However, this
would require modifying the basic consistency test (of Construction 2.1) for these matrices, so that
it shifts columns instead of rows.
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3.3.1. Perfect matrices and typical sequences. Equation (3.1) relates τc to
Γc (resp., τc to Γc). Our next step is to relate τc (resp., τr) to Γ. This is done easily
by referring to step 2 in the extended consistency test. Specifically, it follows that
the value assigned by Γ, to a uniformly chosen matrix m ∈ M, matches, with high
probability, the values assigned by τc (resp., τr) to each of the columns (resp., rows)
of m.

Definition 3.1.1 (perfect matrices). A matrix m ∈ M is called perfect (for
columns) if for every j ∈ [k], the jth column of Γ(m) equals the value assigned by τc
to the jth column of m (i.e., colj(Γ(m)) = τc(colj(m))). Similarly, m ∈M is called
perfect (for rows) if rowi(Γ(m)) = τr(rowi(m)), for every i ∈ [k].

Claim 3.1.2 (perfect matrices). Let δ1
def
= δ + ε.

(c) All but a δ1 fraction of the matrices in M are perfect for columns.
(r) All but a δ1 fraction of the matrices in M are perfect for rows.

Proof. It will be convenient to view the rows of m ∈ Mc as elements of M
(although, formally, we only have a correspondence between the ith row of m ∈ Mc

and a matrix m ∈M so that entryi,j(m) = colj(m), for all j’s). By the correspondence
(sub)test, with probability at least 1−ε, a uniformly chosen row in a uniformly chosen
m ∈ Mc is given the same values by Γc and by Γ (i.e., rowi(Γc(m)) = Γ(rowi(m)), for
i ∈R [k]). In other words, for uniformly chosen m ∈Mc and i ∈R [k]

entryi,j(Γc(m)) = colj(Γ(rowi(m))) for every j ∈ [k].

On the other hand, by (3.1), with probability at least 1 − δ, a uniformly chosen
row in a uniformly chosen m ∈ Mc is given the same values by Γc and by τc (i.e.,
entryi,j(Γc(m)) = τc(entryi,j(m)), for i ∈R [k] and all j ∈ [k]). Thus, with probability
at least 1 − (ε + δ), a uniformly chosen row in a uniformly chosen m ∈ Mc is given
the same values by Γ and by τc (i.e., colj(Γ(rowi(m))) = τc(entryi,j(m)), for i ∈R [k]
and all j ∈ [k]). Using Axiom 3 (part 2—regarding Mc) and the “furthermore” part
of Axiom 5, rowi(m) is uniformly distributed in M (for any i ∈ [k] when m ∈R Mc).
Part (c) of the claim follows (i.e., colj(Γ(m)) = τc(colj(m)), with high probability for
m ∈R M and all j ∈ [k]). A similar argument holds for part (r).

A perfect (for columns) matrix “forces” all of its columns to satisfy some property
Π (specifically, the value assigned by τc to its column-sequences must match the
value Γ of the matrix). Recall that we have just shown that almost all matrices are
perfect and thus force all their columns to satisfy some property Π. Using a counting
argument, one can show that all but at most a 1

k fraction of the column-sequences
must satisfy Π in almost all matrices in which they appear.

Definition 3.1.3 (typical sequences). Let δ2
def
= 2
√
δ1. We say that the column-

sequence c̄ is typical if

Probj,m(colj(Γ(m))=τc(c̄)) ≥ 1− δ2,

where j ∈R [k] and m ∈R Mj(c̄). Otherwise, we say that c̄ is nontypical. Similarly,
we say that the row-sequence r̄ is typical if Probi,m(rowi(Γ(m)) = τr(r̄)) ≥ 1 − δ2,
where i ∈R [k] and m ∈R Mi(r̄).

Claim 3.1.4. All but at most an δ2
2k fraction of the column-sequence (resp., row-

sequences) are typical.
We will only use the bound for the fraction of typical row-sequences.
Proof. We mimic part of the counting argument of Claim 2.1.16. Let N be a set

of nontypical row-sequences, containing exactly δ2
2k · |R| sequences. Fix any r̄ ∈ N
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and consider the set of matrices containing r̄. By Axiom 3 (part 3—regarding M),
at most a δ2

2 fraction of these matrices contain some other row in N . On the other
hand, by definition (of nontypical row-sequence), at least a δ2 fraction of the matrices
containing r̄ have Γ disagree with τr(r̄) on r̄ and thus are nonperfect (for rows). It
follows that at least a δ2

2 fraction of the matrices containing r̄ are nonperfect (for rows)
and contain no other row in N . Combining the bounds obtained for all r̄ ∈ N, we get
that at least a δ2

2k · k · δ22 = δ1 fraction of the matrices are not perfect (for rows).9

This contradicts Claim 3.1.2(r), and so the current claim follows (for row-sequences
and similarly for column-sequences).

3.3.2. Deriving the conclusion of the lemma. We are now ready to derive
the conclusion of the Lemma. Loosely speaking, we claim that the function τ, defined
so that τ(e) is the value most frequently assigned by τc to e, satisfies the claim of the
lemma.

Definition 3.1.5 (the function τ). Let τc(c̄)i denote the value assigned by τc to
the ith element of c̄ ∈ C. Define

qe(v)
def
= Probi,c̄(τc(c̄)i=v),

where i ∈R [k] and c̄ ∈R Ci(e) (recall that Ci(e) denotes the set of column-sequences

having e as the ith component). We consider τ :S 7→V so that τ(e)
def
= v if qe(v) =

maxu{qe(u)}, with ties broken arbitrarily.
The proof that τ satisfies the claim of Lemma 3.1 is a simplified version of the

proof of Lemma 2.1.10 We assume, contrary to our claim, that for a uniformly chosen
m ∈M

Probm
(∃i, j so that entryi,j(Γ(m)) 6= τ(entryi,j(m))

)
> γ.(3.2)

As in the proof of Lemma 2.1, we define a notion of an annoying row-sequence.
Using the above (contradiction) hypothesis, we first show that many row-sequences
are annoying. Next, we show that lower bounds on the number of annoying row-
sequences translate to lower bounds on the probability that a uniformly chosen matrix
is nonperfect (for columns). This yields a contradiction to Claim 3.1.2(c).

Definition 3.1.6 (a new definition of annoying rows). A row-sequence r̄ =
(r1, . . . , rk) is said to be annoying if there exists a j ∈ [k] so that the jth element
in τr(r̄) differs from τ(rj).

Using Claim 3.1.2(r), we get the following claim.

Claim 3.1.7. Suppose that (3.2) holds and let γ1
def
= γ − δ1. Then, at least a γ1

k
fraction of the row-sequences are annoying.

Proof. Combining (3.2) and Claim 3.1.2(r), we get that with probability at least
γ − δ1 = γ1, a uniformly chosen matrix m ∈ M is perfect for rows and contains
some entry, denoted (i, j), for which the Γ value is different from the τ value (i.e.,
entryi,j(Γ(m)) 6= τ(entryi,j(m))). Since the τr-value of each row of a perfect (for rows)

9 For each r̄ ∈ N, let Mr̄ denote the number of nonperfect matrices containing r̄ but not any

other row in N . Then, Mr̄ ≥ δ2
2
·
∑k

i=1
|Mi(r̄)| = δ2

2
· k · |M||R| and the number of nonperfect

matrices is at least
∑

r̄∈N Mr̄ ≥ δ2|R|
2k
· δ2k|M|

2|R| .
10 The reader may wonder how it is possible that a simpler proof yields a stronger result, as the

claim concerning the current τ is stronger. The answer is that the current τ is defined based on a
more restricted function over C and there are also stronger restrictions on Γ. Both restrictions are
due to facts that we have inferred using Lemma 2.1 with regard to (w.r.t) Γc and Γr.
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matrix m matches the Γ values, it follows that the ith row of m is annoying. Thus, at
least a γ1 fraction of the matrices contain an annoying row-sequence. Using Axiom 3
(part 2—regarding M), we conclude that the fraction of annoying row-sequences must
be as claimed.

A key observation is that each row-sequence that is both typical and annoying
yields many matrices which are nonperfect for columns.

Claim 3.1.8. Suppose that a row-sequence r̄ is both typical and annoying. Then,
at least a 1

2−δ2 fraction of the matrices, containing the row-sequence r̄, are nonperfect
for columns.

Proof. Since r̄ = (r1, . . . , rk) is annoying, there exists a j ∈ [k] so that the jth
component of τr(r̄) (which is the value assigned to rj) is different from τ(rj). Let
us denote by v the value τr(r̄) assigns to rj . Note that v 6= τ(rj). Consider the
probability space defined by uniformly selecting i ∈ [k] and m ∈ Mi(r̄). Since r̄ is
typical it follows that in almost all of these matrices the value assigned to rj by the
Γ equals v; namely,

Probi,m(entryi,j(Γ(m))=v) ≥ 1− δ2.(3.3)

By Axiom 4 (regarding M), the jth column of m is uniformly distributed in Ci(rj).
Now, using the definition of the function τ and the accompanying notations, we get

Probi,m(τc(colj(m))i=v) = qrj (v) ≤ 1

2
.(3.4)

The inequality holds since v 6= τ(rj) and by τ ’s definition qrj (v) ≤ qrj (τ(rj)). Com-
bining (3.3) and (3.4), we get

Probi,m(entryi,j(Γ(m)) 6=τc(colj(m))i) ≥ 1

2
− δ2,

and the claim follows.
Combining Claims 3.1.7, 3.1.4, and 3.1.8, we get a lower bound on the number of

matrices which are nonperfect for columns.

Claim 3.1.9. Suppose that (3.2) holds and let γ2
def
= γ1 − δ2

2 . Then, at least a γ2

3
fraction of the matrices are nonperfect for columns.

Proof. By Claims 3.1.7 and 3.1.4, at least a γ1

k − δ2
2k (= γ2

k ) fraction of the row-
sequences are both annoying and typical. Let us consider a set of exactly γ2

k · |R|
such row-sequences, denoted A. Mimicking again the counting argument part of
Claim 2.1.16, we bound, for each r̄ ∈ A, the fraction of nonperfect (for columns)
matrices which contain r̄ but no other row-sequence in A. Using an adequate setting
of δ2 and γ2, this fraction is at least 1

3 . Summing the bounds achieved for all r̄ ∈ A,
the claim follows.

Using a suitable choice of γ (as a function of ε), Claim 3.1.9 contradicts Claim 3.1.2(c),
and so (3.2) cannot hold. The lemma follows.

3.4. Application to low-degree testing. Again, the set of all k-by-k-by-k
arrays over S satisfies Axioms 1–5. A more useful set of 3-dimensional arrays is
defined as follows.

Construction 3.2 (main construction). Let M be as in the basic construction
(i.e., Construction 2.2). We let Mc =Mr be the set of matrices defined by applying
the basic construction to the element-set C = R. Specifically, a matrix in Mc is
defined by the quadruple (x, y, x′, y′), where each of the four elements is a pair over S,
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so that the (i, j)th entry in the matrix equals (x+jy)+i(x′+jy′). Here x, y, x′, and y′

are viewed as 2-dimensional vectors over the finite field S and i, j are scalars in S.
The (i, j)th entry is a pair over S which represents a pairwise independent sequence
(which equals an element in C = R).

Proposition 3.2. Construction 3.2 satisfies Assumptions 1–5.

Combining all the above with the low-degree test of [GLRSW, RS96] and using
the results proved there,11 we get a low-degree test which is sufficiently efficient to be
used in the proof of the PCP-characterization of NP.

Construction 3.3 (low-degree test). Let f : Fn 7→F, where F is a field of prime
cardinality, and d be an integer so that |F | > 4(d + 2)2. Let M, Mc, and Mr be as

in Construction 3.2, with S = Fn, V = F and k
def
= 4(d + 2)2. Let Γ : M 7→ F k×k,

Γr : Mr 7→ F k
3

, and Γc : Mc 7→ F k
3

be auxiliary tables (which should contain the
corresponding f -values). The low-degree test consists of the following three steps:

1. Apply the extended consistency test (i.e., Construction 3.1) to the functions

Γ : M 7→ F k×k, Γr :Mr 7→ F k
3

, and Γc :Mc 7→ F k
3

.
2. Select uniformly a matrix m ∈M and test whether the polynomial interpola-

tion condition (cf. membership test of [GLRSW, p. 37]) holds for each row;
namely, we test that

d+2∑
j=1

αj · entryi,j(Γ(m)) = 0

for all i ∈ [k], where αj = (−1)j · (d+1
j−1

)
.

3. Select uniformly a matrix in M and test whether Γ and f agree on a uniformly
chosen element in the matrix. Namely, select uniformly m ∈M and i, j ∈ [k],
and check whether entryi,j(Γ(m)) = f(entryi,j(m)).

The test accepts if and only if all the above three subtests accept.

Proposition 3.3. Let f : Fn 7→F, where F is a field, and let `
def
= n · log2 |F |.

Then, the low-degree test of Construction 3.3 satisfies the following conditions:

Efficiency. The test runs in poly(`)-time, uses O(`) random bits, and makes a constant
number of queries each of length O(`). (The queries are answered by strings
of length poly(`).)

Completeness. If f is a degree-d polynomial, then there exist Γ : M 7→ F k×k, Γr :
Mr 7→ F k

3

, and Γc :Mc 7→ F k
3

so that the test always accepts.
Soundness. For every δ > 3/(d + 2)2 there exists an ε > 0 so that for every f which

is at distance at least δ from any degree-d polynomial and for every Γ : M 7→
F k×k, Γr :Mr 7→ F k

3

, and Γc :Mc 7→ F k
3

, the test rejects with probability
at least ε. Furthermore, the constant ε is a polynomial in δ which does not
depend on n, d, and F .

As a corollary, we get Lemma 1.3.

Proof. The efficiency requirement is immediate from the construction. Also, as
usual, the completeness requirement is easy to establish. We thus turn to the sound-
ness requirement. By Proposition 3.2, we may apply Lemma 3.1 to the first subtest
and infer that either the first subtest fails with some constant probability (say ε1) or
there exists a function τ : Fn 7→ F so that, with very high constant probability (say,

11 Rather than using much stronger results obtained via a more complicated analysis, as in
[ALMSS], which rely on the lemma of [AS].
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1− δ1),

entryi,j(Γ(m)) = τ(entryi,j(m))(3.5)

holds for all i ∈ [k] and j ∈ [d+ 2]. We assume from this point on that this is the case
(or else the low-degree test rejects with probability at least ε1). Now, by [GLRSW]
(see also [Sud, Thm. 3.3] and [RS96, Thm. 5]), either

Probx,y∈Fn

d+2∑
j=1

αj · τ(x+ jy) 6= 0

 >
1

2(d+ 2)2
(3.6)

or τ is very close (specifically at distance at most 1/(d+ 2)2) to some degree-d poly-
nomial. A key observation is that the main construction (i.e., Construction 3.2) has
the property that rows in m ∈R M are distributed identically to the distribution in
(3.6). Thus, for every i ∈ [k], either

Probm∈M

d+2∑
j=1

αj · τ(entryi,j(m)) 6= 0

 >
1

2(d+ 2)2
(3.7)

or τ is at distance at most δ2
def
= 1/(d+ 2)2 from some degree-d polynomial. Now, we

claim that in case (3.7) holds, the second subtest will reject with constant probability.
The claim is proven by considering k = 4(d+ 2)2 pairwise-independent copies of the
GLRSW test (i.e., the test in (3.7)), and recalling that the rows in m ∈R M are
distributed in a pairwise-independent manner. Using Chebyshev’s inequality and the
hypothesis that each copy rejects with probability at least 1/2(d + 2)2, we conclude

that the probability that none of these copies rejects is bounded above by 2(d+2)2

4(d+2)2 = 1
2 .

Thus, the second subtest must reject with probability at least ε2
def
= 1

2 − δ1, where δ1
accounts for the substitution of the τ values by the entries in Γ(·). We conclude that
τ must be δ2-close to a degree-d polynomial or else the test rejects with probability
at least ε2.

Next, we claim that if f disagrees with τ on a δ3 > δ1 fraction of the inputs then

the third subtest rejects with probability at least ε3
def
= δ3−δ1 (since the disagreement

of f and τ is upper bounded by the sum of the disagreement of f and Γ and the
disagreement of Γ and τ).

Thus, if the low-degree test rejects with probability smaller than ε = min{ε1, ε2, ε3},
then f disagrees with τ on at most δ3 fraction of the inputs, where τ is δ2-close
to a degree d-polynomial. (So f is (δ2 + δ3)-close to a degree d-polynomial.) The
proposition follows using arithmetic: specifically, we set δ1 = δ/3, δ3 = 2δ/3, ε1 =
poly(δ1) (where the polynomial is as in Lemma 3.1), and verify that δ3 + δ2 ≤ δ
(since δ2 = (d + 2)−2 < δ/3). Furthermore, ε = min{ε1, ε2, ε3} = poly(δ) (since
ε2 = 0.5− δ1 ≥ 0.5− (1/3) = 1/6 and ε3 = δ3 − δ1 = δ/3).

4. Proof of Lemma 1.1. There should be an easier and more direct way of
proving Lemma 1.1. However, having proved Lemma 2.1, we can apply it12 to derive
a short proof of Lemma 1.1. To this end we view `-multisets over S as k-by-k matrices,
where k =

√
`. Recall that the resulting set of matrices satisfies Axioms 1–4. Thus,

12 This is indeed an overkill. For example, we can avoid all complications regarding shifts (in the
proof of Lemma 2.1).
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by Lemma 2.1 (applied to Γ = F ), in case the test accepts with probability at least
1− ε, there exists a function f : S 7→ V such that

ProbA∈RSk,B∈REk2 (A)(∀e ∈ A, F (B)e = f(e)) ≥ 1− δ,

where Sk is the set of all k-multisets over S and El(A) is the set of all l-multisets
extending A (and F (B)e denotes the value assigned by F to e ∈ B). We can think of

this probability space as first selecting B ∈R Sk
2

and next selecting a k-subset A in
B. Thus,

ProbB∈RSk
2 ,A∈RCk(B)(∃e ∈ A s.t. F (B)e 6= f(e)) ≤ δ,(4.1)

where Ck(B) denotes the set of all k-multisets contained in B. This implies

ProbB∈RSk
2 (|{e ∈ B : F (B)e 6= f(e)}| > k) ≤ 2δ,

as otherwise (4.1) is violated. (The probability that a random k-subset hits a subset
of density 1

k is at least 1
2 .) The lemma follows.

Comment. A previous version of this paper [GS96] has stated a stronger version
of Lemma 1.1, where the sequences F (x1, . . . , x`) and (f(x1), . . . , f(x`)) are claimed
to be identical (rather than different on at most k locations), for a 1− δ fraction of all
possible (x1, . . . , x`) ∈ S`. Unfortunately, the proof given there was not correct— a
mistake in the concluding lines of the proof of Claim 4.2.9 was found by Sudan [Sud].
Still we conjecture that the stronger version holds as well, and that it can be estab-
lished by a test which examines two random (2k−1)-extensions of a random k-subset.
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1. Introduction. Let a set S be given, along with a binary operation ◦ : S×S →
S. In this paper, we consider the complexity of checking whether ◦ is associative. We
provide an algorithm for this problem and then show how our method extends without
essential modification to provide a means of checking general “read-once” identities.

Throughout this paper, let n = |S|. We provide a randomized, one-sided error
algorithm which in time O(n2 log 1

δ ) computes whether the operation ◦ is associative.
If ◦ is associative, then the algorithm does not err in its response, while if ◦ is not
associative, then the error probability is bounded by δ. It is assumed that the op-
eration ◦ is computable in unit time; the same assumption is made throughout the
paper, and all runtimes scale linearly in the actual time required for computation of
the given operations.

The techniques we develop are more general and can be used to check whether
collections of operators satisfy various identities. For instance, given a finite state ma-
chine, δ : S×Σ→ S, verify that the machine is “asynchronous,” namely δ(δ(s, a), b) =
δ(δ(s, b), a) ∀ s ∈ S and a, b ∈ Σ. This test is sometimes called the diamond test.

In case the identity is not satisfied, our method also provides a witness (e.g., for
associativity, a triple a, b, c such that (a ◦ b) ◦ c 6= a ◦ (b ◦ c)) with only a logarithmic
slowdown in the time complexity.

Associativity: Prior work. Prior to our work, except in special cases, no
method for verifying associativity was known that was better than the naive O(n3)-
time algorithm of examining whether a ◦ (b ◦ c) = (a ◦ b) ◦ c ∀ a, b, c ∈ S.

F. W. Light observed in 1949 (see [3]) that, if R ⊆ S is a set of generators of S, i.e.,
a collection such that every element of S is representable as a product of elements
of R, then it suffices to test all triples a, b, c in which b is an element of R. This,
however, does not result in a sub-n3 algorithm for this problem, for two reasons: first,
the operation may require a large set of generators, as much as n (and there are such
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examples which are associative, so the algorithm would in fact examine all triples)—
see Example 1; second, even if the operation does have a small set of generators, we
are not aware of any rapid method for obtaining a set of generators of (even close to)
minimal size.

Associativity: Cancellative operations. An operation ◦ on a finite set S is
left (resp., right) cancellative if for every a and b, there is an x (which must be unique)
such that x ◦ a = b (resp., a ◦ x = b). A cancellative operation is both left and right
cancellative. In other words, every row and column of the table for the operation is a
permutation of S.

In the special case that the operation is cancellative, Light’s observation is quite
useful. Only O(n2) time is required to test whether ◦ is cancellative. Moreover, we will
show in section 5 that, given a cancellative multiplication table, one can determinis-
tically compute a set of generators of size blog2 nc + 1 in O(n2) time. Thus, Light’s
observation results in an O(n2 logn) deterministic algorithm for verifying associativ-
ity in the cancellative case. Consequently there is a deterministic O(n2 logn) time
algorithm to test whether a given set and operation form a group. (Alternatively,
a random set of elements may be chosen; a set of c log2 n elements will be a set of
generators with probability at least 1−exp(−c). This implies a randomized algorithm
analogous to the deterministic one.)

We show in section 5 that any cancellative nonassociative operation has at least
n− 2 nonassociative triples. Therefore, the procedure of checking O(n2 log 1

δ ) random
triples will succeed with probability 1 − δ, providing essentially the same guarantee
as the randomized version of Light’s method, while being even simpler. (Both run in
time O(n2 log 1

δ ).)

However, just as Light’s observation fails to be of use for general operations,
because small sets of generators may not exist or may be hard to find, the random
sampling approach also fails to be of use for general operations, in this case because
for every n ≥ 3 there exists an operation (noncancellative, of course) with just one
nonassociative triple. See Example 2.

Associativity: Lower bound. We show that any randomized algorithm re-
quires time Ω(n2) to verify associativity, even in the cancellative case. Thus the run-
time of our randomized algorithm as a function of input size is tight up to a constant
factor.

Comment on terminology. The pair (S, ◦) is known in the algebra literature as a
groupoid [1, 2, 3], a term which is unfortunately also used elsewhere in that literature
to mean something entirely different [5, 7]. When ◦ is cancellative (S, ◦) is referred
to in [1, 2] as a quasi group.

2. Algorithm for checking associativity. We define the structure S/2 =
(Z/2)[S] as follows. The elements of S/2 are sums of elements of S, with coefficients
in Z/2 (i.e.,

∑
s∈S αss for αs ∈ Z/2). S/2 is equipped with the following operations:

(1) Addition:
∑
s αss+

∑
s βss =

∑
s(αs + βs)s.

(2) Scalar multiplication: β
∑
s αss =

∑
s(βαs)s and (

∑
s αss)β =

∑
s(βαs)s for

β ∈ Z/2.
(3) The operation ◦: (

∑
s αss) ◦ (

∑
s βss) =

∑
r

∑
s αrβs(r ◦ s).

Thus S/2 is what would be known as the “group algebra” of (S, ◦) over Z/2, were
(S, ◦) a group. (In the present circumstance “groupoid algebra” may be an appropriate
term.)
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Henceforth, we will denote members of S/2 by bold letters, and coefficients by
the corresponding Greek lowercase, e.g., a =

∑
s αss.

Our method for checking associativity in (S, ◦) is to repeat the following, O(log 1
δ )

times:
• Check the associative identity for three random elements of S/2.

In other words, select random (uniformly i.i.d.) a,b, c ∈ S/2, and check that
(a ◦ b) ◦ c = a ◦ (b ◦ c).

Theorem 2.1. The algorithm above, running in time O(n2 log 1
δ ), will determine

whether ◦ is associative, with error probability at most δ if it is not associative and
no error if it is associative.

First note that checking that (a ◦ b) ◦ c = a ◦ (b ◦ c) can be done in time O(n2)
because a ◦ b can be computed by brute force in time O(n2); moreover, the result of
this computation is another vector d ∈ S/2, so the subsequent computation d ◦ c can
again be computed by brute force in time O(n2). For the same reason, a ◦ (b ◦ c) can
be computed in time O(n2); and finally, the two sides can be compared in time O(n).

We now show that a single run of the above process succeeds in detecting nonas-
sociativity with probability at least 1/8; by repeating the process log8/7

1
δ times, the

dependence of the running time on δ follows.
It is easily verified that ◦ is associative on S if and only if it is associative on S/2

as well (for a proof see Lemma 3.2).
Let Sk denote the k-wise Cartesian product of S with itself. A minor of Sk is a

set A1 ×A2 × · · · ×Ak ⊆ Sk (where each Ai is a subset of S). If H is a commutative
group (expressed additively), g is a function g : Sk → H, and T is a subset of Sk,
then define g(T ) =

∑
t∈T g(t).

Lemma 2.2. Let H be any commutative group, and let g : Sk → H be a nonzero
function. Then the fraction of minors T of Sk for which g(T ) 6= 0 is at least 2−k.

Proof. Fix τ = (t1, . . . , tk) such that g(τ) 6= 0. Let T1 ⊆ S − {t1}, . . . , Tk ⊆
S − {tk}. For 1 ≤ i ≤ k define T 0

i = Ti and T 1
i = Ti ∪ {ti}. Observe that {τ} =

∩k1((T 1
1 ×· · ·×T 1

k )−(T 1
1 ×· · ·×T 1

i−1×T 0
i ×T 1

i+1×· · ·×T 1
k )) and that for ε = (ε1, . . . , εk)

(with εi ∈ {0, 1} ∀i), T ε11 × · · · × T εkk =
⋂
i T

1
1 × · · · × T 1

i−1 × T εii × T 1
i+1 × · · · × T 1

k .
Hence inclusion-exclusion gives

g(τ) = (−1)k
∑
ε

(−1)
∑

εig(T ε11 × · · · × T εkk ).

Since g(τ) 6= 0, there exists a minor T ε11 × · · · × T εkk such that g(T ε11 × · · · × T εkk ) 6= 0.
Thus the minors of Sk are partitioned into sets of 2k minors, each identified by

some T1, . . . , Tk, and in each such set there is at least one minor T for which g(T ) is
nonzero.

The error probability claimed in the theorem follows from the lemma by defining

g : S3 → S/2,

g(i, j, k) = (i ◦ j) ◦ k − i ◦ (j ◦ k).

In the last line we have abbreviated notation by using the natural embedding S → S/2
sending s ∈ S to 1s+

∑
r 6=s 0r.

Remark. There is a similarity to the argument showing that Freivalds’s [4] checker
for matrix multiplication succeeds with probability at least 1/2. In that case, given
matrices A,B, and C, a random vector v is multiplied by AB − C; if AB 6= C, then
there is some vector u such that u(AB − C) 6= 0, and with every vector w such that
w(AB − C) = 0, we associate the vector w + u and note that (w + u)(AB − C) 6= 0.
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3. Generalizations. We have presented our method in the context of testing for
associativity, that being a concrete and significant case, and the original problem we
considered. However the method can be extended mutatis mutandis to more general
situations.

Let {Di}ci=1 be a collection of finite sets. If ◦ is a function on domain
∏c
i=1Di,

we say that c is the degree of ◦. An identity is an equation involving one or more
operations ◦j , and which is required to hold for all instantiations of the variables, e.g.,
∀a, b, d, e ∈ D1, c ∈ D2,

◦1(◦2(a, b), c, ◦2(d, e)) = ◦1(◦2(e, d), c, ◦2(b, a)),

or, in the case of associativity,

◦(◦(a, b), c) = ◦(a, ◦(b, c)) ∀a, b, c ∈ S.

Note that each side of the equation may be viewed as a formula (in the circuit sense);
we let ` be the total number of operations (internal nodes) occurring in the formulas.
Thus ` = 6 in the first example, and ` = 4 for associativity. We let k be the total
number of distinct variables occurring in the identity; thus k = 5 in the first example,
and k = 3 for associativity.

A “read-once” identity is one in which every variable occurs exactly once on each
side of the equation.

We have the following theorem.
Theorem 3.1. Let {Di}ki=1 be finite sets, and let {◦j} be a collection of op-

erators, defined on various products of these sets; let the arguments to operator ◦j
be drawn from the sets Dσ(j,1), . . . , Dσ(j,cj) where cj is the degree of ◦j. Let M =

maxj
∏cj
i=1 |Dσ(j,i)|. A read-once identity with ` operations on k variables {xi}ki=1

(each ranging in the corresponding Di) can be verified in time O(M log(1/δ)2k`) with
failure probability at most δ.

For comparison, supposing for simplicity that all the sets are of size n, this runtime
is O(nmax{cj} log(1/δ)2k`) whereas the naive method requires time O(`nk). The key
gain is that the exponent of n is the maximum degree of the operations, rather than
the number of variables in the identity.

This theorem relies upon the following.
Lemma 3.2. A read-once identity holds in S if and only if it holds in S/2.
Proof. If the identity holds in S/2, then in particular it holds when each variable

in the equation is a “singleton” element of the algebra, i.e., an element which has
coefficient 1 on some element of S, and coefficient 0 elsewhere.

For the converse, note that each side of the identity can be expanded as a sum-
mation, over (x1, . . . , xk) ∈ D1 × · · · ×Dk, of terms each in exactly the same form as
that side of the identity. Each corresponding pair of terms are equal in S, hence the
summations are equal.

Some examples:
Multiple domains. Let a finite state machine (S,Σ, δ) be given. Here S
is the set of states of the machine (let |S| = n), Σ is the tape alphabet (let
|Σ| = m), and δ : S × Σ → S is the transition function. Then the degree of
the operator δ is 2, and it is possible to check in time O(nm) (rather than the
obvious O(nm2)) that the operation of the machine is not dependent on the
order of the input. (In other words, whether ∀s ∈ S, a, b ∈ Σ, δ(δ(s, a), b) =
δ(δ(s, b), a).) Testing for this property of the machine is sometimes called the
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diamond test in the CAD literature. We do this by extending Z/2 with both S
and Σ. Then we can extend δ implicitly to δ : (Z/2)[S]×(Z/2)[Σ]→ (Z/2)[S].
We then verify the identity for a random s,a, and b.
More generally, if ◦ is an operator from X × Y → Z, it can be naturally
extended to an operator from (Z/2)[X]× (Z/2)[Y ]→ (Z/2)[Z], i.e.,(∑

x

αxx

)
◦
(∑

y

βyy

)
·
=
∑
xy

αxβyx ◦ y =
∑
z

γzz,

where γz =
∑
x◦y=z αxβy. The algorithm extends to this setting. (In partic-

ular, if the identity is false, the probability of detecting this in one round is
at least 1/8.)
Multiple operations. Consider two binary operations ∪ and ∩ and a unary
operation ′ over S (representing perhaps some kind of complementation). We
wish to verify that for every a, b, c ∈ S, (a∩(b∪c))′ = a′∪(b′∩c′). This is done
in quadratic time by verifying the identity at random points over (Z/2)[S].

4. Witness identification. The above method disproves identities without pro-
ducing an explicit counterexample. However, if desired, it can be used easily in order
to produce such a counterexample. (For example, for the purpose of debugging.) We
illustrate this in the case of associativity.

Let a,b, c be a nonassociative triple in S/2. Let A, B, and C be the sets indexed
by a,b, and c (i.e., those elements occurring with coefficient 1). We know that there
is a nonassociative triple in A × B × C. Because of Theorem 3.1, we can choose a
new triple to be tested by the algorithm as follows: a′,b′, c′ are i.i.d., with a′i = 0 if
ai = 0, and otherwise a′i is uniformly selected in {0, 1}. b′ and c′ are chosen similarly.
The probability that a′,b′, c′ is a nonassociative triple is at least 1/8. We repeat
this process until a nonassociative triple a′,b′, c′ is found, and then continue in like
manner. Each of A, B, and C approximately halves in each successful round (analysis
below), hence the number of rounds will be O(logn) with high probability. Thus, with
a logarithmic increase in cost, we can pinpoint a nonassociative triple in S. Below we
carry out the analysis up to the point that each of A, B, and C has been reduced to
size n2/3 or less; at that point all triples may be examined in time O(n2).

This argument, like Theorem 2.1, generalizes in all the ways described in the
previous section.

Theorem 4.1. Beginning with sets A,B,C containing some nonassociative triple,
the probability that more than (1 + 1

log1/3 n
) 8

3 log2 n rounds of the above process are

required to reduce all sets to size at most n2/3 is at most exp(−Ω(log1/3 n)).

Proof. After one round we have new sets A′, B′, C ′; if the round was successful
(i.e., a′,b′, c′ was a nonassociative triple), these will usually be strict subsets of A,B,
and C, while if the round was unsuccessful, then A′ = A, B′ = B, and C ′ = C.

We are interested in the distribution of the random variables |A′|/|A|, |B′|/|B|,
and |C ′|/|C| (in each round). With probability at most 7/8, the round is unsuccessful
and the ratios equal 1.

We have shown earlier that for any a ∈ A, b ∈ B, c ∈ C for which (a, b, c) is
nonassociative, and for any R ⊆ A− {a}, S ⊆ B − {b}, T ⊆ C − {c}, at least one of
the eight triples {R,R∪{a}}×{S, S∪{b}}×{T, T ∪{c}} is a successful choice. In the
worst case from the point of view of the sizes of A′, B′, and C ′, the successful triple is
always (R∪{a})×(S∪{b})×(T ∪{c}). Therefore, as an upper bound on our analysis,
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we can suppose that the distribution of the sizes of A′, B′ and C ′ in successful rounds
are independent and binomially distributed in the ranges [1, |A|], [1, |B|], [1, |C|].

We focus on just one of these sequences of ratios, e.g., |A′|/|A|; the union bound
accounts for a factor of 3 in the probability of failure. The probability that less than
fraction 1

8 (1 − 1
2 log1/3 n

) of the (1 + 1
log1/3 n

) 8
3 log2 n rounds are successful is at most

exp(−Ω(log1/3 n)). The probability that there exists any successful round in which
|A′|/|A| > (1 + 1

log n )/2 is at most log n exp(−Ω(n2/3/ log2 n)). Therefore with prob-

ability at least 1− exp(−Ω(log1/3 n)), there are at least 1
3 (1 + 1

2 log1/3 n
) log2 n rounds

in which |A′|/|A| ≤ (1 + 1
log n )/2. The size of the set remaining after these rounds is

at most n((1 + 1
log n )/2)

1
3 (1+ 1

2 log1/3 n
) log2 n ≤ n2/3 exp(−Ω(log2/3 n)).

5. The cancellative case. We claim the following concerning this case.
Theorem 5.1. Let ◦ be cancellative.
(1) If ◦ is nonassociative, then it has at least n− 2 nonassociative triples.
(2) It is possible to compute a generating set of size blog2 nc+1 in quadratic time.
The first observation implies that picking a random triple and checking it for

associativity works essentially optimally for cancellative operations. The second ob-
servation implies an O(n2 logn) deterministic algorithm for verifying associativity for
cancellative binary operations by taking into account Light’s observation mentioned
in the introduction.

Proof.
(1) Let (a, b, c) be nonassociative and let a = a′◦a′′. Consider the following cycle:

(a′ ◦ a′′) ◦ (b ◦ c) = ((a′ ◦ a′′) ◦ b) ◦ c = (a′ ◦ (a′′ ◦ b)) ◦ c = a′ ◦ ((a′′ ◦ b) ◦ c) =
a′ ◦ (a′′ ◦ (b ◦ c)) = (a′ ◦ a′′) ◦ (b ◦ c).
Each of these equalities is an application of the associative identity, and since
the first fails, one of the other four must fail as well. In other words, if (a, b, c)
is nonassociative, then at least one of the following must be nonassociative:
(i) (a′, a′′, b),
(ii) (a′, a′′ ◦ b, c),
(iii) (a′′, b, c),
(iv) (a′, a′′, b ◦ c).
Since ◦ is cancellative, a can be written as a′ ◦a′′ in n different ways. For each
of these, associativity fails in at least one of the four categories above. Thus,
there is a category for which there are n/4 failures. Each category identifies
either a′ or a′′, so there can be no duplications among the nonassociative
triples listed for that category.
To improve to a bound of n − 2, note that there must be a nonassociative
triple in which not all three elements are equal. This follows once we know
that there are at least two triples in one of the above categories. Now we
suppose without loss of generality that there is a nonassociative triple (a, b, c)
for which b 6= c; if this is not the case, then there is one for which a 6= b, and
the remainder of the argument can be “reflected” accordingly.
For each of the n choices of a′, a′′ such that a′ ◦ a′′ = a, fix a category (i-iv)
in which the triple is nonassociative. Observe that among the triples listed in
categories (i), (ii), and (iv), there can be no duplication, since a′ is identified
as the first element in each of those triples. The question that remains is how
much duplication there can be between list (iii) and lists (i), (ii), and (iv).
Since b 6= c, there can be no duplication between lists (i) and (iii).
If there is a duplication between a triple (a′2, a

′′
2 ◦ b, c) in list (ii) and a triple
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(a′′3 , b, c) in list (iii), then the value of a′′2 is implied by the value of a′′2 ◦ b; this
in turn implies the value of a′2, which must be equal to a′′3 , and this in turn
implies the value of a′3. Hence there can be only one triple common to lists
(ii) and (iii).
A common triple to lists (iii) and (iv) is possible only if b ◦ c = c; in this case,
if triples (a′′3 , b, c) in list (iii) and (a′4, a

′′
4 , b ◦ c) in list (iv) are equal, then a′′4

must equal b. This implies the value of a′4, which in turn is equal to a′′3 , and
this implies the value of a′3. Hence there can be only one triple common to
(iii) and (iv).
Hence there are at least n− 2 nonassociative triples.
The construction in section 6 will show that this bound is tight to within a
constant factor.

(2) Let A ⊆ S be arbitrary. Denote by 〈A〉 the closure of A under ◦. Thus a
generating set G is one such that 〈G〉 = S. Let A be any set such that 〈A〉 6= S
and let b ∈ S − 〈A〉. Then, |〈A ∪ {b}〉| ≥ 2|〈A〉| because right cancellativity
implies that the elements of b◦〈A〉 are all distinct, and left cancellativity and
the fact that 〈A〉 is closed imply that each element of b◦〈A〉 is outside of 〈A〉.
This implies the existence of a size blog2 nc + 1 generating set. Moreover,
observe that we can keep track of the closure (in a greedy manner) in time
O(n2).

If an operation ◦ on a finite set S is both cancellative and associative, then (S, ◦)
is a group. Hence the above process of testing first for cancellativity and then for the
associative identity yields the following.

Theorem 5.2. There is a deterministic O(n2 logn) time algorithm to test whether
(S, ◦) is a group.

6. Lower bound for verifying associativity. An Ω(n2) lower bound for
checking for associativity is immediate: if some product of elements is not examined,
it may be changed to destroy associativity. Indeed, this points out that a sub-O(n2)
algorithm can be foiled by simply changing the product of a random pair of elements.
Using Yao’s lemma [8], the Ω(n2) lower bound holds for randomized algorithms (even
those tolerating constant error probability) as well.

With some more attention, we obtain an Ω(n2) lower bound which holds even in
case ◦ is assumed to be cancellative. (In the cancellative case, as we have pointed out,
there are simpler quadratic time algorithms than ours to check associativity.) Again
the method is to change just a few values of ◦; and again Yao’s lemma implies that
the lower bound holds for randomized algorithms.

The argument is as follows. Suppose the algorithm is deterministic. Let S be the
hypercube (Z/2)m, and let ◦ be vector addition. Suppose there exist a, b, c ∈ S, with
a 6= 0m, such that the entries b◦c, b◦(a+c), (a+b)◦c, (a+b)◦(a+c) are not examined
by the algorithm. Then the behavior of the algorithm on ◦ is indistinguishable from
its behavior on the operation ◦′ which we obtain by modifying the following entries
of ◦:

(1) b ◦′ c = a+ b+ c,
(2) b ◦′ (a+ c) = b+ c,
(3) (a+ b) ◦′ c = b+ c,
(4) (a+ b) ◦′ (a+ c) = a+ b+ c.

Observe that ◦′ is still cancellative, but it is not associative because

(c ◦′ (a+ b)) ◦′ c = (a+ b+ c) ◦′ c = a+ b,



1162 SRIDHAR RAJAGOPALAN AND LEONARD J. SCHULMAN

while

c ◦′ ((a+ b) ◦′ c) = c ◦′ (b+ c) = b.

Now, for any fixed a, there is a set R ⊆ S of size |R| = |S|/2 such that for all
r, r′ ∈ R, r+a 6= r′. Letting b and c range over R, we obtain |S|2/4 disjoint quadruples
{{b, c}, {b, a+ c}, {a+ b, c}, {a+ b, a+ c}} in S×S. If the algorithm does not examine
at least one value of ◦ in each quadruple, then it cannot distinguish ◦ from ◦′. Hence
the algorithm must perform at least n2/4 operations.

We now note that Theorem 5.1(1) is tight up to a constant factor. If we pick
a, b, c independently, uniformly at random, then since ◦′ is cancellative, each one of
the four pairs {a, b}, {a ◦′ b, c}, {b, c}, and {a, b◦′ c} is uniformly distributed in S×S.
Therefore the probability that (a, b, c) is a nonassociative triple for ◦′ is at most 16/n2;
in other words, the number of nonassociative triples is at most 16n.

7. Grigni’s modification. M. Grigni has pointed out that for large k (the
number of variables in the identity) it is useful to run our algorithm using S/p =
(Z/p)[S] for prime p such that p > k (in place of S/2), where k is the number of
variables occurring in the identity. At the modest price of keeping track of larger
coefficients and using a little more randomness, the probability of detecting failure
of the identity in one run of the process is now at least 1 − k/p, rather than 2−k.
This is for the following reason: the result of the computation in our algorithm is a
pair of elements of S/p, one corresponding to the left-hand side of the identity being
checked and another corresponding to the right-hand side. Subtracting one from the
other, the algorithm obtains an element

∑
s ωss ∈ S/p and reports nonassociativity if

any ωs is nonzero. Each such ωs is defined by a polynomial over Z/p in the (random)
variables (each in Z/p) used in the algorithm. The degree of each of these polynomials
is at most k, and if the operation is not associative, then at least one polynomial is
nonzero. By a lemma of J. T. Schwartz [6], the fraction of assignments on which a
nonzero polynomial is 0 is at most k/p.

8. Examples.
Example 1. Let S = {1, 2, . . . , n}, with x ◦ y = x for every (x, y). The only set of

generators is S. Note also that ◦ is associative.
Example 2. Let S = {1, 2, . . . , n}, with n at least 3. Let 1 ◦ 2 = 2. Let x ◦ y = 3

for every (x, y) 6= (1, 2). The only nonassociative triple is (1, 1, 2).
For n = 2, any nonassociative operation has at least two nonassociative triples.

9. Open questions. While a nonassociative operation has a short witness for
this property—and we are able, in fact, to efficiently find such a witness—we do
not know of any short witness for associativity or any sub-n3 time (randomized or
deterministic) algorithm which, if the given operation is associative, proves this fact.
(An exception is cancellative operations which, from Theorem 5.2, we know to have
associativity witnesses of length O(n2 logn).)

It remains to make any progress on verification of identities which are not read-
once. A key example is the “distributive” identity a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c); it is
not known whether this can be verified in less than cubic time.

Finally, we recall the interesting question encountered in the context of Light’s
observation as to whether there is an efficient algorithm which, given a set S and a
binary operation ◦ on S, finds a set of generators for S of optimal or nearly optimal
size.
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Abstract. We consider exploration problems where a robot has to construct a complete map
of an unknown environment. We assume that the environment is modeled by a directed, strongly
connected graph. The robot’s task is to visit all nodes and edges of the graph using the minimum
number R of edge traversals. Deng and Papadimitriou [Proceedings of the 31st Symposium on the
Foundations of Computer Science, 1990, pp. 356–361] showed an upper bound for R of dO(d)m and
Koutsoupias (reported by Deng and Papadimitriou) gave a lower bound of Ω(d2m), where m is the
number of edges in the graph and d is the minimum number of edges that have to be added to make
the graph Eulerian. We give the first subexponential algorithm for this exploration problem, which
achieves an upper bound of dO(log d)m. We also show a matching lower bound of dΩ(log d)m for our
algorithm. Additionally, we give lower bounds of 2Ω(d)m, respectively, dΩ(log d)m for various other
natural exploration algorithms.
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1. Introduction. Suppose that a robot has to construct a complete map of an
unknown environment using a path that is as short as possible. In many situations
it is convenient to model the environment in which the robot operates by a graph.
This allows us to neglect geometric features of the environment and to concentrate
on combinatorial aspects of the exploration problem. Deng and Papadimitriou [12]
formulated thus the following exploration problem. A robot has to explore all nodes
and edges of an unknown, strongly connected directed graph. The robot visits an edge
when it traverses the edge. A node or edge is explored when it is visited for the first
time. The goal is to determine a map, i.e., the adjacency matrix of the graph, using
the minimum number R of edge traversals. At any point in time the robot knows (1)
all visited nodes and edges and can recognize them when reencountered, and (2) the
number of unvisited edges leaving any visited node. The robot does not know the
head of unvisited edges leaving a visited node or the unvisited edges leading into a
visited node. At each point in time, the robot visits a current node and has the choice
of leaving the current node by traversing a specific known or an arbitrary (i.e., given
by an adversary) unvisited outgoing edge. An edge can be traversed only from tail to
head, not vice versa.

If the graph is Eulerian, 2m edge traversals suffice [12], where m is the number
of edges. This immediately implies that undirected graphs can be explored with
at most 4m traversals. In fact, using depth-first-search they can be explored using
2m edge traversals. For a non-Eulerian graph, let the deficiency d be the minimum
number of edges that have to be added to make the graph Eulerian. Deng and
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Papadimitriou [12] suggested studying the dependence of R on m and d and showed
the first upper and lower bounds: they gave a graph such that any algorithm needs
Ω(d2m/ log d) edge traversals, and they also presented an algorithm that achieves
an upper bound of dO(d)m. Koutsoupias [16] improved the lower bound to Ω(d2m).
Deng and Papadimitriou asked the question whether the exponential gap between the
upper and lower bound can be closed. Our paper is a first step in this direction: we
give an algorithm that is subexponential in d; namely, it achieves an upper bound of
dO(log d)m. We also show a matching lower bound for our algorithm and exponential
lower bounds for various other exploration algorithms.

Note that d arises also in the complexity of the “offline” version of the problem:
Consider a directed cycle with one edge replaced by d + 1 parallel edges. On this
graph any Eulerian traversal requires Ω(dm) edge traversals. A simple modification
of the Eulerian online algorithm solves the offline problem on any directed graph with
O(dm) edge traversals.

Related work. Exploration and navigation problems for robots have been stud-
ied extensively in the past. The exploration problem in this paper was formulated
by Deng and Papadimitriou based on a learning problem proposed by Rivest [19].
Betke, Rivest, and Singh [8] and Awerbuch et al. [1] studied the problem of exploring
an undirected graph and requiring additionally that the robot returns to its start-
ing point every so often. Bender and Slonim [9] showed how two cooperating robots
can learn a directed graph with indistinguishable nodes, where each node has the
same number of outgoing edges. Subsequent to the work in [12], Deng, Kameda, and
Papadimitriou [11] investigated a geometric exploration problem, whose goal is to
explore a room with or without polygonal obstacles. Hoffmann et al. [15] gave an im-
proved exploration strategy for rooms without obstacles. More generally, theoretical
studies of exploration and navigation problems in unknown environments were initi-
ated by Papadimitriou and Yannakakis [18]. They considered the problem of finding
a shortest path from a point s to a point t in an unknown environment and pre-
sented many geometric and graph-based variants of this problem. Blum, Raghavan,
and Schieber [7] investigated the problem of finding a shortest path in an unfamiliar
terrain with convex obstacles. More work on this problem includes [2, 5, 6].

Our results. Our main result is a new robot strategy that explores an arbitrary
graph with deficiency d and traverses each edge at most (d + 1)7d2 log d times; see
section 3. The algorithm does not need to know d in advance. The total number
of traversals needed by the algorithm is also O(min{nm, dn2 + m}), where n is the
number of nodes. At the end of section 3 we show that any exploration algorithm
that fulfills two intuitive conditions achieves an upper bound of O(min{nm, dn2+m}).
A depth-first search strategy obtaining this bound was independently developed by
Kwek [17].

In section 4 we demonstrate that our analysis of the new robot strategy is tight:
There exists a graph that is explored by our algorithm using dΩ(log d)m edge traversals.
We also show that various variants of the algorithm have the same lower bound. In
section 2, we present lower bounds of 2Ω(d)m, respectively, dΩ(log d)m for various other
natural exploration algorithms, to give some intuition for the problem.

Our exploration algorithm tries to explore new edges that have not been visited so
far. That is, starting at some visited node x with unvisited outgoing edges, the robot
explores new edges until it gets stuck at a node y, i.e., it reaches y on an unvisited
incoming edge and y has no unvisited outgoing edge. Since the robot is not allowed
to traverse edges in the reverse direction, an adversary can always force the robot to
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visit unvisited nodes until it finally gets stuck at a visited node.
The robot then relocates, using visited edges, to some visited node z with

unexplored outgoing edges and continues the exploration. The choice of z is the
only difference between various algorithms and the relocation to z is the only step
where the robot traverses visited edges. To minimize R we have to minimize the total
number of edges traversed during all relocations. It turns out that a locally greedy
algorithm that tries to minimize the number of traversed edges during each relocation
is not optimal: it has a lower bound of 2Ω(d)m (see section 2).

Instead, our algorithm uses a divide-and-conquer approach. The robot explores
a graph with deficiency d by exploring d2 subgraphs with deficiencies d/2 each and
uses the same approach recursively on each of the subgraphs. To create subgraphs
with small deficiencies, the robot keeps track of visited nodes that have more visited
outgoing than visited incoming edges. Intuitively, these nodes are expensive because
the robot, when exploring new edges, can get stuck there. The relocation strategy
tries to keep portions of the explored subgraphs “balanced” with respect to their
expensive nodes. If the robot gets stuck at some node, then it relocates to a node
z such that “its” portion of the explored subgraph contains the minimum number of
expensive nodes.

2. Lower bounds for various algorithms. In this section we prove a lower
bound of 2Ω(d)m for a locally greedy, a depth-first, and a breadth-first algorithm. We
also give a lower bound of dΩ(log d)m for a generalized greedy strategy.

A related problem, for which lower bounds have been studied extensively, is the
s–t connectivity problem in directed graphs; see [3, 4, 14] and references therein.
Given a directed graph, the problem is to decide whether there exists a path from a
distinguished node s to a distinguished node t. Most of the results are developed in
the JAG model by Cook and Rackoff [10]. The best time–space tradeoffs currently
known [4, 14] only imply a polynomial lower bound on the computation time if no
upper bounds are imposed in the space used by the computation. Given the current
knowledge of the s–t connectivity problem it seems unlikely that one can prove super-
polynomial lower bounds for a general class of graph exploration algorithms.

In the following let G be a directed, strongly connected graph and let v be a
node of G. Let in(v) and out(v) denote, respectively, the number of incoming and
outgoing edges of v. Let the balance bal(v) = out(v) − in(v). For a graph with
deficiency d there exist at most d nodes si, 1 ≤ i ≤ d, such that bal(si) < 0. Every
node si with bal(si) < 0 is called a sink. Note that −∑s,bal(s)<0 bal(s) = d. We
use the term chain to denote a path. A chain is a sequence of nodes and edges
x1, (x1, x2), x2, (x2, x3), . . . , (xk−1, xk), xk for k > 1.

Greedy: If stuck at a node y, move to the nearest node z that has new outgoing
edges.

Generalized-Greedy: At any time, for each path in the subgraph explored so far,
define a lexicographic vector as follows. For each edge on the path, determine its
current cost, which is the number of times the edge was traversed so far. Sort these
costs in nonincreasing order and assign this vector to the path. Whenever stuck at
a node y, out of all paths to nodes with new outgoing edges traverse the path whose
vector is lexicographic minimum.

Depth-First: If stuck at a node y, move to the most recently discovered node z
that can be reached and that has new outgoing edges.

Breadth-First: Let v be the node where the exploration starts initially. If stuck at
a node y, move to the node z that has the smallest distance from v among all nodes
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with new outgoing edges that can be reached from y.

Theorem 1. For Greedy, Depth-First, and Breadth-First, and for every d, there
exist graphs of deficiency d that require 2Ω(d)m edge traversals.

Proof (Greedy). Basically Greedy fails since it is easy to “hide” a subgraph (see
Figure 1). Whenever Greedy discovers this subgraph, the adversary can force it to
repeat all the work done so far.

The graph G consists of two parts: (1) a cycle C0 of three edges and nodes v,
v1(C0), and v2(C0), and (2) a recursively defined problem P d. A problem P δ, for any
integer δ ≥ 2, is a subgraph that has two incoming edges whose startnodes do not
belong to P δ but whose endnodes do, and δ outgoing edges whose startnode belongs
to P δ but whose endnodes do not. A problem P 1 is defined in the same way as a
problem P δ, δ ≥ 2, except that P 1 has only one incoming edge. In the case of P d, the
two incoming edges start at v1(C0) and v2(C0), respectively; the d outgoing edges all
point to v.

For the description of P δ we also need recursively defined problems Qδ. These
problems are identical to P δ except that, for δ > 2, Qδ has exactly δ incoming edges.

A problem P δ, δ = 1, 2, consists of δ chains of three edges each. The first edge
of each chain is an incoming edge into P δ; the last edge of each chain is an outgoing
edge. A problem Qδ, δ = 1, 2, is the same as P δ.

We proceed to define P δ, for δ > 2. One of the incoming edges of P δ is the first
edge of a chain Dδ consisting of three edges and the other incoming edge is the first
edge of a long chain Cδ. For each of these chains Cδ and Dδ, the last edge is an
outgoing edge of P δ. If δ = 3, the last interior node of each of the chains Cδ and Dδ

has an additional outgoing edge pointing into a problem P 1. If δ ≥ 4, then (a) the
last two interior nodes of Cδ each have an additional outgoing edge pointing into a
subproblem P δ−2, and (b) the last two interior nodes of Dδ each have an additional
outgoing edge pointing into a subproblem Qδ−2. There are δ− 2 edges leaving P δ−2,
exactly max{0, δ − 4} of which point to nodes of Qδ−2 such that each node in Qδ−2

that has k more outgoing than incoming edges, for some 0 ≤ k ≤ max{0, δ − 4},
receives k incoming edges from P δ−2. The remaining outgoing edges of P δ−2 point to
the interior nodes of Dδ that have additional outgoing edges. The problem Qδ−2 has
δ−2 outgoing edges all of which are outgoing edges of P δ. The total number of edges
in Cδ is 2 plus the number of edges of Dδ plus the total number of edges contained
in the subproblem Qδ−2 below Dδ.

A problem Qδ, δ > 2, is the same as P δ except that the subproblem P δ−2 is
replaced by another Qδ−2 problem. That is, Qδ is composed of chains Cδ, Dδ, and
problems Qδ−2

i , i = 1, 2. As mentioned before, Qδ has exactly δ incoming edges.

Greedy is started at node v and traverses first chain C0. Then it either explores
Cd or Dd. In either case, afterwards Greedy explores all edges of Qd−2 since Cd

is prohibitively long. Thus, P d−2 is “hidden” from Greedy. We exploit this in the
analysis: Let N(δ) be the number of times that Greedy explores edges of a problem
P δ or Qδ, gets stuck at some node, and cannot relocate to a suitable node by using
only edges in P δ, respectively, Qδ. We show that N(δ) ≥ 2δ/2. Since the edge leaving
v is traversed every time the algorithm cannot relocate by using only edges in P d, the
bound follows.

A problem P δ contains two subproblems P δ−2 and Qδ−2. Note that (a) because
of chain Dδ, no node in Qδ−2 can reach a node of P δ−2 without leaving P δ, and
(b) Qδ−2 is completely explored when the exploration of P δ−2 starts and all paths
starting in P δ−2 lead through Dδ or Qδ−2. Thus, every time Greedy gets stuck in
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C0

v

Qd−2Pd−2

Cd Dd

Fig. 1. The graph for Greedy.

a subproblem P δ−2 or Qδ−2 and has to leave P δ−2, respectively, Qδ−2 in order to
resume exploration, it also has to leave P δ. For Qδ−2 the statement follows from (a);
for P δ−2 it follows from (a) and (b). In the same way, we can argue for a problem
Qδ. Thus, N(δ) ≥ 2N(δ − 2). Since, for δ = 1, 2, N(δ) ≥ 1, we obtain N(δ) ≥ 2δ/2.

This implies that the edge e on C0 leaving v is traversed 2Ω(d) times. The desired
bound follows by replacing e with a path consisting of Θ(m) edges.

Depth-First: We can use the same graph as in the case of the Greedy algorithm.
Depth-First will explore all edges in Qd−2 before it will start exploring P d−2.

Breadth-First: Again we can use the same graph as in the lower bound for Greedy.
The last two interior nodes of Cd have a larger distance from the initial node v than all
nodes on Dd and in Qd−2. Thus Qd−2 is finished before Breadth-First starts exploring
P d−2.

Theorem 2. For Generalized-Greedy and for every d, there exists a graph of
deficiency d that requires dΩ(log d)m edge traversals.

Proof. The graph used for the lower bound is outlined in Figure 2. The basic
idea in the lower bound construction is as follows. Generalized-Greedy explores each
subgraph Qγi and its sibling Rγi “in parallel.” Without loss of generality we can
assume that the last chain traversed in the two subgraphs lies in Qγi and the algorithm
continues to explore Qγi+1 and Rγi+1. Let N(γ) denote the number of times that the
algorithm has to leave Rγi and traverse the root. We will show that N(4γ) ≥ γN(γ),
which implies that the root has to be traversed N(d) ≥ dΩ(log d) times.

To be precise we show the bound for d being a power of 4. The bound for all values
of d follows by rounding down to the largest power of 4 smaller than d. The graph
G consists of two parts: (1) a cycle C0 with nodes v, v1(C0) and v2(C0), and (2) a
recursively defined subproblem P d. Problem P d has two incoming edges, one starting
at v1(C0) and one starting at v2(C0). It also has d outgoing edges, all pointing to v.
The subproblem P d is a union of chains C, each of which consists of three edges, a
startnode, an endnode, and two interior nodes v1(C) and v2(C). The interior nodes
have at most one additional outgoing edge. We proceed to define P δ and the “sibling”
graphs Qδ and Rδ, for all δ ≤ d that are a power of 4, and then show the lower bound
on this graph.

A problem P δ, δ > 1, is a graph with two incoming edges and exactly δ outgoing
edges. A problem Rδ, δ > 1, consists of P δ with δ−2 additional incoming edges. The
problem Qδ consists of Rδ with two additional incoming and two additional outgoing
edges.

δ = 1: A problem P 1 consists of one chain. The incoming edge of P 1 is the first
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Fig. 2. The graph for Generalized-Greedy.
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Fig. 3. The subproblem P 4.

edge of the chain and the outgoing edge of P 1 is the last edge of the chain. In P 1,
the interior nodes of the chain have no additional outgoing edges; in Q1, each interior
node has one additional incoming and one additional outgoing edge. Problem R1 is
equal to P 1.

δ = 4: A problem P 4 consists of two subproblems P 1
1 and P 1

2 and chains C1
1 and

D1
1, whose first interior nodes have one additional outgoing edge (see Figure 3). The

outgoing edge of C1
1 is the incoming edge of P 1

1 and the corresponding edge of D1
1 is

the incoming edge of P 1
2 . The last edge of C1

1 and D1
1 and the outgoing edges of P 1

1

and P 1
2 are outgoing edges of P 4. A problem R4 is P 4 with two additional incoming

edges, one at the startnode of P 1
1 and one at the startnode of P 1

2 . A problem Q4 is
R4 with two additional incoming and outgoing edges; each interior node of P 1

1 has an
additional incoming and outgoing edge.

δ = 4l, for some l ≥ 2: Let γ = δ/4. It is simpler to describe Qδ first. The
construction is depicted in Figure 4. Every node has the same indegree as outdegree,
i.e., there are no sinks. Problem Qδ consists of subproblems Qγi and Rγi , for 1 ≤ i ≤ γ,
connected by chains Cγi and Dγ

i , for 1 ≤ i ≤ γ, whose interior nodes each have an
additional outgoing edge.

The C-chains andQ-subproblems are interleaved as follows. The two edges leaving
the interior nodes of Cγ1 point into Qγ1 . In general, the edges leaving the interior nodes
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Fig. 4. The subproblems Qδ and P δ.

of Cγi point into Qγi . The same holds for the D-chains and R-subproblems. The first
edge of Cγi and of Dγ

i are incoming edges of Qδ, for i = 1, and start in Qγi−1, for
1 < i ≤ γ, on a node of the leftmost subproblem Q1 contained in Qγi−1. Recall that
this problem consists of one chain with two additional incoming and outgoing edges.
One of these outgoing edges is the first edge of Cγi and the second outgoing edge is
the first edge of Dγ

i .

Additionally, the subproblems are connected as follows. Recall that γ edges leave
Rγi . For i = 1, the edges leaving Rγi are outgoing edges of Qδ. For 1 < i ≤ γ, two
edges leaving Rγi point to the interior edges of Dγ

i−1. Additionally, there are γ − 2
edges leaving Rγi and pointing into Rγi−1 such that every node in Rγi−1 that has k more
outgoing than incoming edges, for k > 0, receives k edges from Rγi . The same holds
for Qγi with Cγi−1. The problem Qγγ has γ incoming edges which are incoming edges

for Qδ; the problem Rγγ has γ − 2 incoming edges which are incoming edges for Qδ.

There are 4γ + 2 = δ + 2 outgoing edges in Qδ: the last edge of Cγi and the last
edge of Dγ

i , for 1 ≤ i ≤ γ, all edges leaving Rγ1 , all but two edges leaving Qγ1 (the
other two are the incoming edges of Dγ

2 and Cγ2 ), and two edges leaving Qγγ . There
are also δ + 2 incoming edges: the first edge of Cγ1 and of Dγ

1 , the edges pointing to
the two interior nodes of Cγγ and Dγ

γ , the γ incoming edges of Qγγ , the γ− 2 incoming
edges of Rγγ , and 2γ − 2 incoming edges ending at the startnodes of Cγi and Dγ

i , for
2 ≤ i ≤ γ.

A problem P δ consists of 2γ chains Cγi and Dγ
i , 1 ≤ i ≤ γ, as well as two

subproblems P γi , γ ≤ i ≤ γ + 1, and 2(γ − 1) subproblems Qγi and Rγi , 1 ≤ i ≤ γ − 1.
These components are assembled in the same way as in Qδ, except that Qγγ is replaced
by P γγ+1 and Rγγ is replaced by P γγ . Problems P γγ and P γγ+1 each have only two
incoming edges from Cγγ and Dγ

γ , respectively.

There are 4γ = δ outgoing edges in P δ: the last edge of Cγi and the last edge
of Dγ

i , for 1 ≤ i ≤ γ, all but two edges leaving Qγ1 (the other two are the incoming
edges of Dγ

2 and Cγ2 ), all edges leaving Rγ1 . There are two incoming edges in P δ. The
first edge of Cγ1 and of Dγ

1 are incoming edges in every problem P δ. The following
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δ − 2 nodes are sources for P δ: the two interior nodes of Cγγ and of Dγ
γ , the 2γ − 2

startnodes of Cγi and Dγ
i , for 2 ≤ i ≤ γ, the γ−2 sources of P γγ , and the γ−2 sources

of P γγ+1.

A problem Rδ is a problem P δ with an incoming edge into every source of P δ.
Thus there are δ incoming and δ outgoing edges.

We analyze Generalized-Greedy on G. For simplicity we only discuss the explo-
ration of a problem Qδ. The argument for P δ and Rδ is analogous. As before, let
γ = δ/4. We show inductively that the symmetric construction of Qγi and Rγi at-
tached to Cγi and Dγ

i as well as the definition of Generalized-Greedy imply that Qγi
and Rγi are explored symmetrically. That is, during two consecutive traversals of
C (in order to resume exploration in Qγi or Rγi ), Generalized-Greedy proceeds once
into Qγi and once into Rγi , where C is the chain at which chains Cγi and Dγ

i start.
This obviously holds for i = 1. Assume it holds for i and we want to show it for
i + 1. Note that Qγi and Rγi differ only in the last chain that Generalized-Greedy
explores in Qγi , respectively, Rγi . Thus, until the traversal of the earlier of the last
chain of Qγi and the last chain of Rγi , Generalized-Greedy does not distinguish Qγi
from Rγi . Hence we can assume without loss of generality that Generalized-Greedy
traverses first the last chain of Rγi , and afterwards the last chain of Qγi . (Think of an
adversary “giving” to Generalized-Greedy first the last chain of Rγi and then the last
chain of Qγi .) Then Generalized-Greedy explores Cγi+1 and Dγ

i+1, and afterwards Qγi+1

and Rγi+1 symmetrically. Thus, when Generalized-Greedy explores a subproblem Rγi ,
1 ≤ i ≤ γ, subproblems Rγj with 1 ≤ j < i are already finished.

Whenever Generalized-Greedy gets stuck in Rγi , 1 ≤ i ≤ γ, and has to leave Rγi in
order to resume exploration, it also has to leave the “parent problem” Qδ (or P δ, Rδ).
This is because the chains Dγ

i , 1 ≤ i ≤ γ, prevent the algorithm from reaching a chain
in Qγj , 1 ≤ j ≤ i, from where unfinished chains in Qδ, (P δ, Rδ) can be reached. On
the way from Rγi to an outgoing edge of the parent problem, Generalized-Greedy can
traverse problems Rγj , j ≤ i. As shown in Figure 4, the subproblems are finished; no
further exploration of Rγj is possible. The same arguments hold when the algorithm
gets stuck in a problem P γγ .

For any δ, 4 ≤ δ ≤ d, let N(δ) be the number of times Generalized-Greedy
generates a chain in P δ or Rδ, gets stuck, and has to leave P δ or Rδ in order to
continue exploration. Then N(δ) ≥ γN(γ) = δ/4N(δ/4). Since N(1) ≥ 1, we have
N(d) ≥ dΩ(log d) and hence the edge leaving node v is traversed dΩ(log d) times.

3. An algorithm for graphs with deficiency d.

3.1. The Balance algorithm. We present an algorithm that explores an un-
known, strongly connected graph with deficiency d, without knowing d in advance.
First we give some definitions. At the start of the algorithm, all edges are unvisited
or new. An edge becomes visited whenever the robot traverses it. A node is finished
whenever all its outgoing edges are visited. The robot is stuck at a node y if the robot
enters a finished node y on an unvisited edge. A sink is discovered whenever the robot
gets stuck at the sink for the first time. We assume that whenever the robot discovers
a new sink, the subgraph of explored edges is strongly connected. This does not hold
in general, but by properly restarting the algorithm, the problem can be reduced to
the case described here. Details are given in section 3.2.

Assume the algorithm knew the d missing edges (s1, t1), (s2, t2), . . . , (sd, td) and
a path from each si to ti. Then a modified version of the Eulerian algorithm could
be executed: Whenever the original Eulerian algorithm traverses an edge (si, ti), the
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modified Eulerian algorithm traverses the corresponding path from si to ti. Obviously,
the modified algorithm traverses each edge at most 2d+ 2 times. Thus, the problem
is to find the missing edges and corresponding paths.

Our algorithm tries to find the missing edges by maintaining d edge-disjoint
chains, such that the endnode of chain i is si and the startnode of chain i is our
current guess of ti. As the algorithm progresses, paths can be appended at the start
of each chain. At termination, the startnode of chain i is indeed ti. To mark chain i
all edges on chain i are colored with color i.

The algorithm consists of two phases.

Phase 1. Run the algorithm of [12] for Eulerian graphs. Since G is not Eulerian,
the robot will get stuck at a sink s. At this point stop the Eulerian graph algorithm
and goto Phase 2. The part of the graph explored so far contains a cycle C0 containing
s [12]. We assume that at the end of Phase 1 all visited nodes and edges not belonging
to C0 are marked again as unvisited.

Phase 2. Phase 2 consists of subphases. During each subphase the robot visits a
current node x of a current chain C and makes progress towards finishing the nodes
of C. The current node of the first subphase is s, its current chain is C0. The current
node and current chain of subphase j depend on the outcome of subphase j − 1.

A chain can be in one of three states: fresh, in progress, or finished. A chain C
is finished when all its nodes are finished; C is in progress in subphase j if C was a
current chain in a subphase j′ ≤ j and C is not yet finished; C is fresh if it is not
finished and not yet in progress.

Up to d+1 chains in progress and up to d fresh chains can exist at the same time.
The invariant that there are always at most d+ 1 chains in progress is convenient but
not essential in the analysis of the algorithm. The invariant that there exist always
at most d fresh chains is crucial. Every startnode of a fresh chain has more visited
outgoing than visited incoming edges and, thus, the robot can get stuck there. In the
analysis we require that there always exist at most d such nodes.

The algorithm marks the current guess for ti with a token τi, for 1 ≤ i ≤ d.
In fact, every startnode of a fresh chain represents the current guess for some ti,
1 ≤ i ≤ d, and thus has a token τi. To simplify the description of the relocation
process, each token is also assigned an owner which is a chain that contains the node
on which the token is placed. More specifically, the owner of τi is the chain that
was the current chain when the path from the current guess of ti to si was extended
last. Note that the owner is not the chain from the current guess of ti to si. A node
can be the current guess for more than one node ti and, thus, have more than one
token.

From a high-level point of view, at any time, the subgraph explored so far can be
partitioned into chains, namely C0 and the chains generated in Phase 2. During the
actual exploration in the subphases, the robot travels between chains. While doing
so, it generates or extends fresh chains, which will be taken into progress later, and
finishes the chains currently in progress.

We give the details of a subphase. First, the algorithm tests if x has an unvisited
outgoing edge.

1. If x does not have an unvisited outgoing edge and x is not the endnode of
C, then the next node of C becomes the current node and a new subphase is
started.

2. If x has no unvisited outgoing edge and x is the endnode of C, procedure
Relocate is called to decide which chain becomes the current chain and to
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move the robot to the startnode z of this chain. Node z becomes the current
node.

3. If x has unvisited outgoing edges, the robot repeatedly explores unvisited
edges until it gets stuck at a node y. Let P be the path traversed.
We distinguish four cases.

Case 1. y = x. Cut C at x and add P to C (see Figure 5). The robot returns to
x and the next phase has the same current node and current chain.

Case 2. y 6= x, y has a token τi and is the startnode of a fresh chain D (see
Figure 6). Append P at D to create a longer fresh chain, and move the token from
y to x. The current chain C becomes the owner of the token, the previous owner
becomes the current chain, and y becomes the current node.

Case 3. y 6= x, y has a token τi but is not the startnode of a fresh chain. This
is the same as Case 2 except that no fresh chain starts at y. The algorithm creates
a new fresh chain of color i consisting of P . It moves the token from y to x and C
becomes the owner of the token. The previous owner of the token becomes the current
chain and y becomes the current node.

Case 4. y 6= x and y does not own a token. In this case bal(y) < 0. If bal(y) = −k,
then this case occurs k times for y. Let i be the number of existing tokens. The
algorithm puts a new token τi+1 on x with owner C, creates a fresh chain of color
i+ 1 consisting of P (the first chain with color i+ 1), and moves the robot back to s.
The initial chain C0 becomes the current chain and s becomes the current node.

This leads to the algorithm given in Figure 7. We use x to denote the current node,
C to denote the current chain, k the number of tokens used, and j the highest index of
a chain. Lines 4–17 of the code correspond to item 3 above. Lines 6 and 7 correspond
to Case 1, lines 8–13 correspond to Cases 2 and 3, and lines 14–16 correspond to
Case 4. Lines 18 and 19 implement items 1 and 2, respectively. In line 13, C ′ is the
chain that was the previous owner of τi and becomes the new current chain.

Additionally, the algorithm maintains a tree T , such that each chain C corre-
sponds to a node v(C) of T and v(C ′) is a child of v(C) if the last subpath appended
to C ′ was explored while C was the current chain. Conversely, we use C(v) to denote
the chain represented by node v. For each chain there is exactly one node in the
tree. Note that the tree changes dynamically. If in line 10 of the algorithm a path
P is appended at a chain D, then the node representing the resulting chain becomes
a child of v(C), i.e., a child of the node representing the current chain C. The node
v(D) is removed. Since only fresh chains are reassigned, each added or removed node
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Algorithm Balance
1. j := 0, k := 0, x := s, C := C0.
2. repeat
3. while C is unfinished do
4. while ∃ new outgoing edge at x do
5. Traverse new edges starting at x until stuck at a node y.

Call this path P .
6. if y = x then
7. Insert P into C;
8. else if y has a token τi then
9. if ∃ chain D of color i starting in y and D is fresh then

10. Concatenate P with D;
11. else
12. j := j + 1; Cj := chain that consists of P ;
13. C ′ := owner(τi); Place τi on x; owner(τi) := C; x := y;

C := C ′;
14. else (∗ y 6= x and y has no token ∗)
15. j := j + 1; Cj := chain that consists of P ;
16. k := k + 1; Place token τk on x; owner(τk) := C; x := s;

C := C0;
17. Move robot to x;
18. Move robot to first unfinished node z that appears on C after its

startnode; x := z;
19. C := Relocate(C); x := startnode of C;
20. until C = empty chain.

Fig. 7. The Balance algorithm.

is a leaf. This process ensures that the structure of nodes is indeed a tree.

We use Tv to denote the subtree of T rooted at v and say C is contained in Tv
if v(C) lies in Tv. We also say a token τ or an edge e is contained in Tv if owner(τ),
respectively, the chain of e is contained in Tv. If all chains in Tv are finished, we say
that Tv is finished. To represent T , the algorithm assigns a parent to each chain.

To relocate, the robot needs to be able to move on explored edges from the
endpoint of a chain C to its startnode. This is always possible, since at the beginning
of each subphase the explored edges form a strongly connected graph. To avoid an edge
being traversed often for this purpose, we define for each chain C a path closure(C)
connecting the endnode of C with the startnode of C such that an edge belongs to
closure(C) for at most dO(log d) chains C. Finally, we will show that closure(C) is
traversed at most O(d2) times.

A path Q is called a C-completion if it connects the endnode of a chain C with
the startnode of C. A path Q in the graph is called i-uniform if it is a concatenation
of chains of color i. Let u be a node of T . A path Q in the graph is Tu-homogeneous
if any maximal subpath R of Q that does not belong to Tu is (a) i-uniform for some
color i; (b) the edge of Q preceding R is the last edge of a chain of color i; and (c)
the edge of Q after R is the first edge of a chain of color i. Intuitively, if a maximal
subpath R of Q that does not belong to Tu is preceded by an edge of color i, then R
is just the path of color i that leads to the previous chain of color i in Tu. In Figure 8
solid, dashed, and dotted lines denote different colors. In the corresponding tree,
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Fig. 8. The path from x to u via v and w is Tv(C1)-homogenous.

the root v(C0) has two children, namely v(C1) and v(C5). Consider the path Q that
starts at x, follows the solid chains to v and w, and then follows the dashed edges to u.
(Path Q is shown in bold.) Path Q is a C2-completion. It is also Tv(C1)-homogenous
because the two chains C3 and C4 not belonging to Tv(C1) have the same color as C1

and C2.

We try to choose closure(C) to be “as local to C” as possible: Let S(C) be the set
of explored edges when C becomes the current chain for the first time. Given S(C),
a(C) is the lowest ancestor of v(C) in T such that a Ta(C)-homogeneous completion
of C exists in S(C). Note that a(C) is well defined since each chain has a Tv(C0)-
homogeneous completion. The path closure(C) is an arbitrary Ta(C)-homogeneous
completion of C using only edges of S(C). The algorithm can compute closure(C)
whenever C becomes the current chain for the first time without moving the robot.

We describe the Relocation procedure; see Figure 9. In the relocation step, the
robot repeatedly moves from the current chain to its parent until it reaches a chain
C such that Tv(C) is unfinished. To move from a chain X to its parent X ′, the robot
proceeds along X to the endnode of X and traverses closure(X) to the startnode
of X, which belongs to X ′. When reaching C, the robot repeatedly moves from the
startnode of the current chain X to the startnode of one of its children until it reaches
the startnode of an unfinished chain. It chooses the child X ′ of X such that among
all subtrees rooted at children of X and containing unfinished chains, Tv(X′) has the
minimum number of tokens.

3.2. The analysis of the algorithm.

3.2.1. Correctness. Since the graph is strongly connected, all nodes of the
graph must be visited during the execution of the algorithm. When the algorithm
terminates, all visited nodes are finished. Thus, all edges must be explored. We show
next that each operation and each move of the robot are well defined. Proposition 1
shows that if a chain of color i is fresh, then τi lies at the startnode of the chain. Thus,
in line 10, token τi lies on y. By assumption, there exists a path from any finished
node to s. Thus, the move in line 17 is well defined. In line 18, the robot moves to
the next unfinished node of the current chain C. It would be possible to walk along
closure(C), but Propositon 1, part 4, shows later that closure(C) is not needed.

3.2.2. Fundamental properties of the algorithm.

Lemma 1. At most d tokens are introduced during the execution of the Balance
algorithm.
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Procedure Relocate(C)
1. if all chains are finished then return(empty chain).
2. else Move robot to the startnode of C along closure(C);
3. while C 6= C0 and Tv(C) is finished do
4. Move robot to the startnode of parent(C) along closure(parent(C));
5. C := parent(C);
6. while C is finished do
7. Let C1, C2, . . . , Cl be the chains with parent(Ck) = C, 1 ≤ k ≤ l.

Let Ck be the chain such that Tv(Ck) contains the smallest number
of tokens among all Tv(C1), . . . , Tv(Cl) having unfinished chains;

8. C := Ck; x := startnode of C;
9. Move robot to x;

10. if C is not in progress then
11. Compute closure(C);
12. return(C)

Fig. 9. The Relocation procedure.

Proof. We say that the algorithm first introduces the token τk at y in line 16.

Let inv(v) and outv(v) denote the number of visited incoming and visited outgoing
edges of v, respectively. Let t(v) be the total number of tokens introduced on node
v in line 16. We show inductively that max{inv(v) − outv(v), 0} = t(v). Since at
termination inv(v) = in(v) and outv(v) = out(v), it follows that −bal(v) ≥ t(v) if
bal(v) < 0 and t(v) = 0, otherwise. Thus, d = −∑v,with bal(v)<0 bal(v) ≥∑v t(v).

The claim max{inv(v) − outv(v), 0} = t(v) holds initially. Let P be the newly
explored path when the first token is introduced on v, i.e., when the algorithm for
the first time gets stuck at v and there is no token at v. Before P enters v, inv(v) =
outv(v). Traversing P increments inv(v) by 1 and sets inv(v)−outv(v) = 1. Thus, the
claim holds. Let P be the newly explored path when the ith new token is introduced
on v. It follows inductively that inv(v) − outv(v) = i − 1 before P enters v and
traversing P increments the value by 1 as before.

We prove next some invariants.

Proposition 1.

1. For every chain C that is in progress or that was in progress and is finished,
parent(C) is finished.

2. Let C be a chain of color i, 1 ≤ i ≤ d. (a) If C is fresh, C does not own
a token, τi is located at the startnode of C, and parent(C) = owner(τi). (b)
If C is in progress and not the current chain, then C is the owner of some
token τ .

3. Every chain C is the parent of at most d chains.
4. If the Balance algorithm gets stuck at a node y of a chain C and y holds a

token with C being the owner, then the startnode of C and all nodes of C
lying between the startnode and y are finished.

Proof (Part 1). Procedure Relocate ensures that parent(C) is finished before C is
taken into progress.

Part 2a. When C is first created in line 12 or 15 of Balance, τi is placed on the
startnode of C. Whenever the robot gets stuck at the current startnode of C and
removes τi, chain C is extended by a path P because C is not in progress. Token τi
is placed on the new startnode of C. Lines 13 and 16 ensure that the parent of C is
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always the owner of τi.

Part 2b. We show that whenever C is the current chain and Balance leaves C
to continue work on another chain, C becomes the owner of a token. This suffices to
prove part 2b because the children of a chain, and thus the corresponding tokens, can
only be taken over by the current chain; see lines 13 and 16 of the algorithm.

Chain C is unfinished. Thus, if C is the current chain, Balance can only leave C to
continue work on another chain during lines 5–17 of the algorithm. In this situation,
Balance places a token on a node of C and C becomes the owner of that token.

Part 3. Chain C can become the parent of other chains while C is in progress and
unfinished. During this time, every chain C ′ with parent(C ′) = C is not in progress,
see Part 1. By Part 2a, the startnode of such a chain C ′ holds a token and C is the
owner of that token. Since there are only d tokens, the proposition follows.

Part 4. Since y holds a token, with C being the owner, y must have been the
current node in a subphase when C was current chain. The node selection rule in
line 18 of Balance ensures that the startnode of C and every node on C between
the startnode and y are finished since, otherwise, the robot would have moved to an
unfinished node z before y.

The next lemma shows that our algorithm always balances the number of tokens
contained in neighboring subtrees of T . For a subtree Tv of T , let the weight w(Tv)
be the number of tokens contained in Tv. Let active(Tv) = 1 if the current chain is in
Tv; otherwise let active(Tv) = 0.

Lemma 2. Let u, v ∈ T be siblings in T such that Tu and Tv contain unfinished
chains. Then |w(Tu) + active(Tu)− w(Tv)− active(Tv)| ≤ 1.

Proof. Let active(C) = 1 iff C is the current chain, and let active(C) = 0
otherwise. Let token(C) be the number of tokens owned by C and let g(C) =
token(C) + active(C). Finally, let g(v) =

∑
C,v(C)∈Tv g(C) = w(Tv) + active(Tv).

We show by induction on the steps of the algorithm that |g(u)− g(v)| ≤ 1.

The claim holds initially. For a subtree Tv of T , the values w(Tv) and active(Tv)
only change in lines 13, 16, and 19 of Balance and in lines 4 and 9 of procedure
Relocate. Additionally, T changes in lines 10, 12, and 15.

Note first that changes in T do not affect the invariant: Whenever T changes,
v(C) receives a new child and C is not yet finished (or the algorithm has not yet
determined that C is finished). Thus, the children of C are not yet in progress, i.e.,
they do not own any tokens by Proposition 1. Thus, the claim holds for any pair of
children of v(C).

We consider next all changes to w(Tv) and active(Tv).

Line 13: Let C be the current chain before the execution of line 13. Note
that token(C) increases by 1, active(C) becomes 0, token(C ′) decreases by 1, and
active(C ′) becomes 1. Thus, g(C) and g(C ′), and, hence, g(v) is unchanged for every
node v ∈ T .

Line 16: Note that (i) g(C) is unchanged by the same argument as for line 13; (ii)
g(C ′) is unchanged, since token(C ′) and active(C ′) are unchanged; and (iii) g(C0) is
increased by 1. Since C0 only contributes to g(v(C0)) and v(C0) is the root of T , the
claim holds.

Line 19 of Balance/line 4 and 9 of Relocate: Let C̄ be the current chain before
the execution of line 3 or 7 and let C be the current chain afterwards. In line 3, the
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claim does not apply to Tv(C), since Tv(C) is finished. Thus, we are left with line 7.
Note that active(C̄) drops to 0 and active(C) increases to 1. Thus, for every node
v such that Tv contains either both the parent and its child or neither the parent
nor its child, g(v) is unchanged. The only remaining subtree is Tv(C). Before the
execution of line 7, for any sibling C ′ of C, w(Tv(C)) ≤ w(Tv(C′)) ≤ w(Tv(C)) + 1.
Since active(C ′) = 0, |w(Tv(C))− w(Tv(C′)) + active(C)− active(C ′)| ≤ 1.

Lemma 3. Let C be a chain of color i, 1 ≤ i ≤ d, and, at the time when C is
taken in progress, let u ∈ T be the closest ancestor of v(C) that satisfies the following
condition. The path from u to v(C) in T contains d nodes u1, u2, . . . , ud such that
each uj with 1 ≤ j ≤ d has a child vj, (a) Tvj contains a node of color i; and (b)
v(C) /∈ Tvj . If there is no such ancestor u, then let u be v(C0). Then there exists a
Tu-homogeneous C-completion.

Proof. By assumption, the graph of explored edges is strongly connected, which
implies that there exists a Tv(C0)-homogeneous C-completion. Suppose that there
are d nodes u1, . . . , ud satisfying (a) and (b). For j = 1, . . . , d, let Cuj be the chain
corresponding to uj . If one of the nodes u1, . . . , ud, say uk, is of color i, then there is
the following Tuk -homogeneous C-completion: Follow edges of color i until you reach
the startnode of Cuk , then walk “down” in Tuk along ancestors of C to the startnode
of C.

Thus, we are left with the case that none of the nodes u1, . . . , ud has color i.
For j = 1, . . . , d, let Cj,1 ∈ Tvj be a chain of color i such that no ancestor of Cj,1
contained in Tvj has color i. Let Cj,2, . . . , Cj,l(j) be the ancestors of Cj,1 in Tuj . More
precisely, for k = 1, . . . , l(j)− 1, Cj,k+1 = parent(Cj,k) and Cj,l(j) = Cuj is the chain
corresponding to uj .

Following the edges of color i gives a Tu-homogeneous path from C to every chain
Cj,1 for 1 ≤ j ≤ d. We want to show that there exists a Tu-homogenous path to
a chain Cj,l(j). We consider the following game on a d × maxj l(j) grid, where for
1 ≤ j ≤ d, square (j, k) has the color of Cj,k for 1 ≤ k ≤ l(j) and no color for k > l(j).
Thus, all squares (j, 1) have color i and no other squares have color i. Initially all
squares (j, 1) are checked; all other squares are unchecked. A square is checked if
the robot can move to the startnode of the corresponding chain on a Tu-homogeneous
path. The rules of the game are as follows (note that the startnode of Cj′,k′−1 belongs
to Cj′,k′):

• A square (j, k) of color i′ gets checked whenever there exists a square (j′, k′)
of color i′ such that square (j′, k′ − 1) is checked and there exists a path of
color-i′ edges from the endnode of Cj′,k′ to the startnode of Cj,k.

• The game terminates when one of the squares (j, l(j)) is checked or when no
more squares can be checked.

We will show that one of the squares (j, l(j)) can be checked. This shows that
there is a Tu-homogeneous path from C to Cj,l(j). Since uj is an ancestor of v(C), the
same argument as above shows that there exists a Tu-homogeneous C-completion.

We employ the pigeonhole principle: Initially, there are d checked squares (j, 1)
for 1 ≤ j ≤ d and each square (j, 2) has a color i′ 6= i. Since there are at most d− 1
other colors, there must be two squares (s, 2) and (t, 2) with the same color i′. Since
the edges of color i′ form a chain, there is either a path from Cs,2 to Ct,2 or vice versa.
Thus, one of the two squares can be checked. Inductively, there are d checked squares
(j, k(j)) such that (j, k(j) + 1) is unchecked. None of the squares (j, k(j) + 1) has
color i and thus, there must be two squares (j, k(j) + 1) with the same color, which
leads to checking one of the two squares. The game continues until one of the squares
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(j, l(j)) has been checked.

3.2.3. Counting the number of edge traversals.
Lemma 4. Each edge is traversed at most d times during executions of line 17

and at most d+ 1 times during executions of line 18 of the Balance algorithm.
Proof. Let e be an arbitrary edge and let C be the chain e belongs to. Every

time e is traversed during an execution of line 17, a new token is placed on the graph.
Since a total of d tokens are placed, the first statement of the lemma follows.

Next we analyze executions of line 18. Let x and y be the tail and the head of
e, i.e., e = (x, y). Let C1 be the portion of C that consists of the path from the
startnode of C to x. Similarly, let C2 be the path from y to the endnode of C.

By Proposition 1, part 4, e is traversed in line 18 when all nodes on C1 are finished
and the robot moves to the next unfinished node on C2. Thus, e is traversed (a) if the
robot gets stuck at a node on C1 and moves to the next unfinished node of C, or (b)
if the robot traverses C from its startnode, since procedure Relocate returned chain
C. Every time case (a) occurs, a token is removed from C1, and this token cannot
be placed again on C1. Whenever the robot interrupts the work on C2, another
token is placed on some node of C2. Every time case (b) occurs, token(C) + active(C)
increases by 1, while no other step of the algorithm can decrease this value as long as
C is unfinished. Note that a token is placed on a node of C2. Since there are only d
tokens, cases (a) and (b) occur a total of at most d+ 1 times.

Thus, it only remains to bound how often an edge is traversed in Relocate. A
chain C ′ is dependent on a chain C, C 6= C ′, if C ′ ∈ Tv(C) and closure(C ′) is not
Tu-homogeneous for any true descendant u of v(C).

Lemma 5. For every chain C, there exist at most d2 log d+1 chains C ′ ∈ Tv(C)

that are dependent on C.
Proof. Let ni(C) be the total number of chains of color i dependent on C. For a

color i, 1 ≤ i ≤ d, and an integer δ, 1 ≤ δ ≤ d, let

Ni(δ) = max
C
{ni(C);Tv(C) contains at most δ of the d tokens whenever

active (Tv(C)) = 1}.

We will show that for any δ, 1 ≤ δ ≤ d, and any color i, (a) Ni(δ) ≤ d2Ni(bδ/2c)
and (b) Ni(1) = 1. This implies Ni(d) ≤ d2 log d. Since

∑d
i=1Ni(d) ≤ d · d2 log d, the

lemma follows.
To prove (1), fix a color i and an integer δ. Consider a subtree Tv(C) that contains

at most δ tokens when active(Tv(C)) = 1. Out of all chains of color i dependent on C,
let C ′ be the chain whose closure is computed last. We show that when the algorithm
computes closure(C ′), then the number of chains of color i that are already dependent
on C is at most d(d−1)Ni(bδ/2c). Thus, ni(C) ≤ d(d−1)Ni(bδ/2c)+1 ≤ d2Ni(bδ/2c).

Let u1, u2, . . . , ul be the sequence of nodes (from lowest to highest) on the path
from v(C ′) to v(C) such that every node uj , j = 1, 2, . . . , l, has a child vj with (a) Tvj
containing a node of color i, and (b) v(C′) /∈ Tvj . By Lemma 3, l ≤ d. Suppose that
node uj , 1 ≤ j ≤ l, has c(j) children, vj,1, vj,2, . . . , vj,c(j) with v ∈ Tvj,1 . By condition
(b), 2 ≤ c(j) ≤ d.

For fixed j and k ≥ 2, we have to show that up to the time when closure(C ′) is
computed, whenever active(Tvj,k) = 1, then w(Tvj,k) ≤ bδ/2c. Consider the point in
time when closure(C ′) is computed. Since Tvj,1 contains C ′, Tvj,1 is unfinished. By
Lemma 2, Balance distributes the tokens contained in Tuj evenly among the subtrees
Tvj,1 , Tvj,2 , . . . , Tvj,c(j) that contain unfinished chains. Thus, for each unfinished Tvj,k
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with k ≥ 2, w(Tvj,k) was up to now at most bδ/2c whenever active(Tvj,k) = 1. For
each finished Tvj,k , consider the last point of time when an unfinished chain of Tvj,k
becomes the current chain. Since vj,1 exists, Tvj,1 is unfinished and, by Lemma 2,
w(Tvj,k) is up to this point in time at most bδ/2c whenever active(Tvj,k) = 1. We
conclude that up to the time when closure(C ′) is computed, Tvj,k contains at most
Ni(bδ/2c) chains of color i that can be dependent on the chain corresponding to vj,k,
and, thus, can be dependent on C. Summing up, we obtain that Tv(C) contains at
most

d∑
j=1

c(j)∑
k=2

Ni(bδ/2c) ≤ d(d− 1)Ni(bδ/2c)

chains of color i that can be dependent on C.
Finally we show that Ni(1) = 1. If a subtree Tv(C) contains at most one token

whenever active(Tv(C)) = 1, then each node in Tv(C) has only one child, by Proposi-
tion 1. Since Tv(C) never branches, it can contain at most one chain of color i that is
dependent on C.

Lemma 6. For every chain C, there exist at most d2 log d+1 chains C ′ ∈ Tv(C)

such that closure(C ′) uses edges of C.
Proof. Let C be an arbitrary chain and let v ∈ T be the node corresponding to

C. We show that if a chain C ′ ∈ Tv(C) is not dependent on C, then closure(C ′) does
not use edges of C. Lemma 6 follows immediately from Lemma 5.

If a chain C ′ ∈ Tv(C) is not dependent on C, then the path closure(C ′) is Tu-
homogeneous for a descendant u of v. Suppose that a Tu-homogeneous path P would
use edges of C. Let i be the color of C. Chain C does not belong to Tu. Thus, after
P has visited C, it may only traverse chains of color i until it reaches again a chain
of color i that belongs to Tu. Note that all chains of color i that are reachable from
C via edges of color i must have been generated earlier than C. However, all chains
in Tu were generated later than C. We conclude that a Tu-homogeneous path cannot
use edges of C.

Lemma 7. For every chain C, there exist at most (d + 2)d2 log d+2 chains C ′ /∈
Tv(C) such that closure(C ′) uses edges of C.

Proof. A chain C ′ needs a chain C if closure(C ′) uses edges of C and C ′ is u-
hard if closure(C ′) is Tu-homogeneous, but not Tv-homogeneous for any child v of u.
For each chain C ′ there exists a unique node u of T such that C ′ is u-hard. If C ′ is
dependent on chain C, then C ′ is v(C)-hard of u-hard for a true ancestor u of v(C). If
C ′ is u-hard and v is a descendant of u and an ancestor of v(C ′), then C ′ is dependent
on C(v). To prove the lemma, it suffices to show the following two claims.

Claim 1. There are at most d2 log d+2 chains C ′ 6∈ Tv(C) such that C ′ needs C
and C ′ is u-hard for some ancestor u of v(C).

Claim 2. There are at most (d+1)d2 log d+2 chains C ′ 6∈ Tv(C) such that C ′ needs
C and C ′ is u-hard for some node u that is not an ancestor of v(C).

Proof of Claim 1. If C ′ needs C, then C ′ either does not yet exist or is unfinished
when C is taken into progress. Consider the point in time when C is taken into
progress. Let u1, u2, . . . , ul be the ancestors of v(C) in T that fulfill the following
conditions: Each node uj has a child vj such that (a) Tvj contains unfinished chains,
and (b) v(C) /∈ Tvj . Thus, every chain that needs C lies in one of the subtrees Tvj .
Note that l ≤ d, since by Proposition 1, every subtree that contains an unfinished chain
not equal to the current chain must own a token. Assume C ′ belongs to Tvj . Since
uj is the least common ancestor of v(C) and v(C ′), and C ′ is u-hard for an ancestor
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u of v(C), C ′ is dependent on C(uj). Since by Lemma 5 there are at most d2 log d+1

chains that are dependent on C(uj), there can be at most l · d2 log d+1 ≤ d2 log d+2

chains C ′ /∈ Tv(C) that need C and are u-hard for an ancestor of v(C).

Proof of Claim 2. Let i be the color of C. Let us denote the concatenation of
all chains of color i as the path of color i. Note that the path of color i introduces a
linear order on the chains of color i. We say a chain C lies between two other chains
on the path of color i if C is not equal to one of the chains and lies between them
in the linear order. We define first the nearest predecessor of a chain. Then we show
(1) that for each chain C ′ 6∈ Tv(C) that needs C and is u-hard for some node u that
is not an ancestor of v(C), there exists a chain C1 of color i such that

• C lies on the path of color i between C1 and its nearest predecessor, and
• C1 fulfills the conditions of Claim 1, i.e., C ′ needs C1 and u is an ancestor of
v(C1).

We show next (2) that there exist at most d chains C1 of color i for which C lies on
the path of color i between C1 and its nearest predecessor. By Claim 1 and Lemma 6,
for each C1 there exist at most (d+ 1)d2 log d+1 closures that are hard for an ancestor
of v(C1). It follows that there are at most d(d+ 1) · d2 log d+1 chains C ′ that need C
and are u-hard for some node u that is not an ancestor of v(C).

Consider the point in time when C is taken into progress. Let a(C) be the closest
ancestor of v(C) such that Ta(C) contains a node of color i that is not equal to v(C).
The nearest predecessor of C is the chain C ′ 6= C of color i that was taken into progress
most recently in Ta(C).

(1) The closure of C ′ introduces an order on the chains belonging to it. Let C1 be
the last chain of Tu before C on closure(C ′) and let C2 be the first chain of Tu after C
on closure(C ′), i.e., C lies on the path of color i edges between C1 and C2. We show
below that the path of color i edges between C1 and C2 is contained in the path of
color i edges between C1 and its nearest predecessor. This implies that C lies on the
path of color i edges between C1 and its nearest predecessor and completes the proof
of (1).

Since Tu is a subtree that contains C1 and C2, i.e., C1 and another chain of color
i that was taken into progress before C1, Tu also must contain the nearest predecessor
of C1. Following the path of color i edges from C1, C2 is the first chain of Tu that
is encountered. Thus, the color i path between C1 and C2 is contained in the color i
path between C1 and its nearest predecessor.

(2) We want to bound the number of color i chains C1 such that C lies on the path
of color i between C1 and its nearest predecessor. Obviously, C1 was created after
C was taken in progress (otherwise, C1 would have been appended to C). Consider
the point in time when C is taken into progress. Let C1, . . . , Cl be the chains that
are parents of fresh chains. All chains created afterwards must belong to Tv(C) or to
Tv(C1), . . . , Tv(Cl)

. Note (a) that for no color i chain in Tv(C), C can lie on the color

i path between the chain and its nearest predecessor. Note (b) that for k = 1, . . . , l,
only for the color i chain C(k) in Tv(Ck) created first after C was taken into progress,

C can lie between C(k) and its nearest predecessor. The nearest predecessor of every
color i chain D created later belongs to Tv(Ck) and was created after C. Thus, C does

not lie on the color i path between D and its predecessor. Thus, at most l chains
exist such that C lies on the color i path between the chain and its predecessor. By
Proposition 1, l ≤ d.

Theorem 3. Using the Balance algorithm and assuming that when a new sink
is discovered the subgraph of explored edges is strongly connected, the robot explores
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an unknown graph with deficiency d and traverses each edge at most (d + 1)5d2 log d

times.
Proof. Let e be an arbitrary edge of chain C. Edge e is traversed for the first

time when it is explored during an execution of line 5 of the Balance algorithm. By
Lemma 4, it can be traversed 2d + 1 times during executions of lines 17 and 18. By
Lemmas 6 and 7, e belongs to at most d2 log d+1 + (d+ 2)d2 log d+2 paths closure(C ′).
We show that each path closure(C ′) is traversed at most d(d + 1) times. The path
closure(C ′) is used at most d times during an execution of line 2 of Relocate because
each time a token is removed from the finished chain C ′. The path closure(C ′) can also
be used at most d2 times in line 4 of Relocate because each time a token is removed
from the finished subtree Tv(C′′) of a child C ′′ of C ′.

Finally, the edge e might be traversed d(d+1) times in line 9 of Relocate. When e
is traversed in line 9, then (i) either the robot had moved to C0 after the introduction
of a new token (line 16) or (ii) there exists an ancestor u of v(C) with a child x
such that the robot was stuck at a node in Tx and Tx is finished. Thus, by going
“up” the tree T in lines 3–5, the robot reached u. Case (i) occurs at most d times.
When C becomes the current chain for the first time, let u1, . . . , ul be the ancestors
of v(C) such that each uj has a child vj with (a) Tvj containing unfinished chains,
and (b) v /∈ Tvj . By Proposition 1, the nodes u1, . . . , ul can have a total of d children
satisfying (a) and (b). Since each subtree rooted at one of these children can contain
at most d tokens, case (ii) occurs at most d2 times.

Thus, edge e is traversed at most

1 + 2d+ 1 + d(d+ 1)(d2 log d+1 + (d+ 2)d2 log d+2) + d(d+ 1) ≤ (d+ 1)5d2 log d(1)

times.

3.3. The Complete algorithm. In subsections 3.1 and 3.2 we assumed that
the subgraph of explored edges is strongly connected. We used this assumption only
in line 16 of algorithm Balance. However, all that is needed in line 16 is that the
algorithm “knows” a path from y to s, i.e., the robot can reach s from y. To achieve
this we define a parametrized algorithm P-Balance(P, s, C0) as follows: in addition to
s and C0, it receives as input a set P of paths between various nodes in the graph. It
executes algorithm Balance as before except when the robot gets stuck at y in line 16
and there is no path of explored edges from y to s. If there exists a path X from y
to s consisting of (i) a (possibly empty) subpath of explored edges, followed by (ii) a
path in P, followed by (iii) another (possibly empty) subpath of explored edges, then
a fake edge from y to s is added to the graph and traversed to reach s. Since the fake
edge does not exist in the orginial graph the robot “simulates” traversing the fake
edge by traversing X. The fake edge continues to exist (and might be traversed) in
the graph until the end of algorithm P-Balance. We show below that at most d − 1
fake edges are added during algorithm P-Balance.

We execute algorithm P-Balance repeatedly to construct an algorithm Complete
that assumes only that the original graph is strongly connected and makes no as-
sumption about the subgraph of explored edges. We call the edges traversed during
execution i ≤ k of algorithm P-Balance(P, s, C0) k-visited.

We describe algorithm Complete in detail: initially P is empty and Phase 1
(see subsection 3.1) is executed to determine s and C0. Algorithm Complete then
repeatedly executes algorithm P-Balance(P, s, C0) on the graph until P-Balance
terminates or until while traversing path P the robot gets stuck at a node y in line 16
and cannot reach s. In the former case algorithm Complete terminates, in the latter
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case it adds to P a path of k-visited edges to y from each node in the subgraph
traversed during the current or an earlier execution of algorithm P-Balance. Next all
fake edges are discarded, all edges are marked as unvisited and unexplored, and all
nodes are marked as unexplored and unfinished. Then s is set to y, the cycle C0 is
set to be the path between the first and the last occurrence of y on P , and algorithm
P-Balance(P, s, C0) is called.

Consider execution k of algorithm P-Balance. A k-path is a concatenation of three
paths A1, A2, and A3 such that A1 and A3 are possibly empty subpaths of edges
explored during execution k and A2 is a path of P. Note that the concatenation of
a k-path with edges explored during execution k (either at the beginning or at the
end of the k-path) results again in a k-path. Note further that each k-path consists
of k-visited edges.

Lemma 8 shows that if P-Balance gets stuck at a node y in line 16 and cannot
reach s, then there exists a path of k-visited edges to y from each node in the subgraph
traversed during the current or an earlier execution of algorithm P-Balance and that
y appears at least twice on P . This proves that algorithm Complete is well defined.

Lemma 8. If while traversing path P during an execution of P-Balance(P, s, C0)
the robot gets stuck in line 16 at a node y and cannot reach s then

1. each node in the subgraph traversed during an earlier execution of algorithm
P-Balance(P, s, C0) can reach y on a path of k-visited edges;

2. each node in the subgraph traversed during the current execution of algorithm
P-Balance(P, s, C0) can reach y on a k-path;

3. y is a newly discovered sink;
4. y appears at least twice on P .

Proof. Parts 1, 2, and 3: We use induction on the number k of calls to algorithm
P-Balance to show the claim. Obviously the claim holds for k = 0. Consider next
k > 0. Let sk be the sink newly discovered by execution k of algorithm P-Balance.
We show first that each node in the subgraph traversed during an earlier execution
of algorithm P-Balance can reach y on a path of k-visited edges. There exists a path
of k-visited edges from sk−1 to y, since execution k started at sk−1. Inductively
each node in the subgraph traversed during an earlier execution can reach sk−1 on a
path of (k − 1)-visited edges. Thus, by transitivity of the reachability relation and
since all (k − 1)-visited edges are also k-visited, each node in the subgraph traversed
during an earlier execution of algorithm P-Balance can reach y on a path of k-visited
edges.

We show next that each node in the subgraph traversed during the current exe-
cution of algorithm P-Balance(P, s, C0) can reach y on a k-path. Since y is the last
node on chain P every node on P can reach y following P . Each other node in the
subgraph explored during algorithm P-Balance(P, s, C0) belongs to a chain Q 6= P .
We show by induction on the number of such chains Q created during the current
execution that all nodes on such a chain Q can reach s by a k-path. Since execution
k started at s, s can reach y on edges explored during execution k. It follows that
each node in the subgraph traversed during algorithm P-Balance(P, s, C0) can reach
y on a k-path.

It remains to be shown that all nodes on a chain Q 6= P created during the current
execution can reach s by a k-path. This holds trivially before any chain is created.
Consider a path P ′ that is part of Q. Then the endpoint y′ of P ′ either belongs to an
already existing chain or not. If y′ belongs to a chain created earlier, then inductively
y′ and, thus, all nodes on P ′ can reach s by a k-path. If y′ does not belong to a chain
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created earlier, then there exists a path in P from y′ to s since P ′ 6= P . Thus there
is a k-path from y′ to s. It follows that every node on P ′ can reach s by a k-path.

We are left with showing that y = sk, i.e., that y is a newly discovered sink. By
the above proof, (a) if y was visited by an earlier execution of algorithm P-Balance,
then there would exist a path from y to s in P, and (b) if y belonged to a chain Q 6= P
in the current execution of algorithm P-Balance, then there would exist a k-path from
y to s. Thus, algorithm P-Balance(P, s, C0) would have been able to reach s from y.
It follows that y was not visited before, i.e., that y is a newly discovered sink.

Part 4. Each node has outdegree at least 1. By the proof of part 1, y does not
belong to a chain Q 6= P . Thus all of y’s outedges must belong to P , i.e., y appeared
at least twice on P .

Since there are only d sinks in the graph, part 3 of the above lemma shows that
at most d executions of P-Balance(P, s, C0) are made. Thus it follows that algorithm
Complete terminates.

Now let us analyze the number of edge traversals. Algorithm P-Balance traverses
the same path that algorithm Balance would have traversed on the graph consisting
of the original graph and all fake edges. Since each fake edge connects two sinks, it
does not change the deficiency of the graph. Thus, the previous analysis shows that
each edge, including each fake edge, is traversed at most (d + 1)5d2 log d times. The
traversal of a fake edge corresponds to at most one traversal of every nonfake edge.
We show below that there are at most d − 1 fake edges. Thus the total number of
traversals per edge is at most (d − 1)(d + 1)5d2 log d for each execution of algorithm
P-Balance. Since there are at most d such executions, each edge is traversed at most
(d− 1)d(d+ 1)5d2 log d times during algorithm Complete.

It remains to show that there are at most d − 1 fake edges. Each fake edge in
execution k increases the number inv(si) of visited incoming edges for a sink si with
i < k without increasing the number outv(si) of visited outgoing edges. Since over all
sinks si, i < k, there are at most d− 1 more incoming than outgoing edges into these
sinks, there are at most d− 1 fake edges created during execution k.

We summarize our main result in the following theorem.

Theorem 4. Using the Complete algorithm, the robot explores an unknown graph
with deficiency d and traverses each edge at most (d+ 1)7d2 log d times.

The total number of edge traversals used by our algorithm is alsoO(min{mn, dn2+
m}), where n is the number of nodes in the graph. It is not hard to show that an
upper bound of O(min{mn, dn2 +m}) is achieved by any exploration algorithm sat-
isfying the following two properties: (1) When the robot gets stuck, it moves on a
cycle-free path to some arbitrary node with new outgoing edges. (2) When the robot
is not relocating, it always traverses new edges whenever possible.

We show that any exploration algorithm satisfying (1) and (2) gets stuck at
most min{m, dn} times. The bound follows because, by property (1), at most n
edges are traversed during each relocation. Obviously, a robot gets stuck at most
m times. For the proof of the second bound, let inu(v) and outu(v) be the number
of unvisited incoming and unvisited outgoing edges of v, respectively. Let def(v) =
max{0, inu(v) − outu(v)}. We show inductively that

∑
v∈G def(v) ≤ d. This implies

that, for every node v, whenever the robot explores the last unvisited edge out of v,
there are at most d unvisited incoming edges at v. Thus the robot gets stuck at most
d times at any node v. Summing over all nodes in G gives the desired bound of dn.

The inequality
∑
v∈G def(v) ≤ d holds intitially. The invariant is maintained

whenever the robot relocates from a node y, where it got stuck, to some node z with
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new outgoing edges, because only visited edges are traversed. Whenever the robot
starts a new exploration at a node z, visits a sequence of new edges, and gets stuck
at a node x, def(z) increases by at most 1, def(x) decreases by 1 while at no other
node, and the def-value changes.

4. A tight lower bound for the Balance algorithm and modifications.
In this section we give first a lower bound for the Balance algorithm and we give
afterwards lower bounds for modifications of Balance.

Theorem 5. For every d ≥ 1, there exists a graph G of deficiency d that is
explored by Balance using dΩ(log d)m edge traversals.

Proof. We show that there exists a graph G = (V,E) and an edge e ∈ E that is
traversed dΩ(log n) times while Balance explores G. The theorem follows by replacing
e by a path of Θ(m) edges. We show the bound for d being a power of 5. The bound
for all values of d follows by “rounding” down to the largest power of 5 smaller than
d.

The graph is a union of chains C, each of which consists of three edges, a startnode,
an endnode, and two interior nodes v1(C) and v2(C). The interior nodes belong to
exactly one chain and have up to one additional outgoing edge. We describe G; see
also Figure 10. Graph G contains (a) a cycle C0 that starts and ends in a node v
(Balance is started at v and finds C0 during Phase 1) and (b) a recursively defined
problem P d attached to C0.

In the following let δ, 1 ≤ δ ≤ d, be a power of 5. A problem P δ, for any integer
δ ≥ 5, is a subgraph that has two incoming edges whose startnodes do not belong to
P δ but whose endnodes do, and δ + 1 outgoing edges whose startnodes belong to P δ

but whose endnodes do not. A problem P 1 has one incoming and one outgoing edge.
In the case of P d, the two incoming edges start at v1(C0) and v2(C0), respectively; d
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outgoing edges point to v and one outgoing edge points to v1(C0).

For the definition of P δ we also need problems Qδ. These problems are identical
to P δ except that, for δ > 1, Qδ has exactly δ + 1 incoming edges.

A problem P 1 consists of a single chain; the first edge of the chain represents an
incoming edge and the last edge represents an outgoing edge. The interior nodes have
no additional outgoing edges. A problem Q1 is identical to P 1.

For δ ≥ 5, let γ = δ/5. Problem P δ consists of 3γ2 chains Cγi,k, 1 ≤ i ≤ γ,

1 ≤ k ≤ 3γ, as well as γ chains Dγ
i and γ recursive subproblems Qγi , 1 ≤ i ≤ γ − 1,

and P γγ .

These components are assembled as follows. One of the incoming edges of P δ

is the first edge of Cγ1,1. We assume that v1(C0) is the startnode of C
d/5
1,1 . Node

v1(Cγi,k) is the startnode of Cγi,k+1, 1 ≤ i ≤ γ, 1 ≤ k ≤ 3γ − 1. Node v1(Cγi,3γ) is the

startnode of Cγi+1,1, 1 ≤ i ≤ γ − 1. The last edge of Cγ1,k, 1 ≤ k ≤ 3γ is an outgoing

edge of P δ. The endnode of Cγi,k is equal to the startnode of Cγi−1,k, 2 ≤ i ≤ γ and

1 ≤ k ≤ 3γ. Note that the last edge of Cγ2,1 is thus an outgoing edge of P δ. Nodes

v2(Cγi,k), 1 ≤ i ≤ γ, 1 ≤ k ≤ 3γ − 1 have no additional outgoing edge but nodes

v2(Cγi,3γ), 1 ≤ i ≤ γ − 1 do. Chain Cγγ,3γ has no additional outgoing edges.

The second incoming edge of P δ is the first edge of a chain Dγ
1 and, for 2 ≤ i ≤ γ,

the edge leaving v2(Cγi−1,3γ) is the first edge of Dγ
i . For 1 ≤ i ≤ γ the last edge

of Dγ
i is an outgoing edge of P δ. If δ = 5, then the first interior node of the chain

Dγ
i = Dγ

1 has an additional outgoing edge pointing into a problem P 1. If δ > 5, then
the two interior nodes of Dγ

i , 1 ≤ i ≤ γ each have an additional outgoing edge. For
1 ≤ i ≤ γ − 1, these two edges point into Qγi and, for i = γ, they point into P γγ .

If δ = 5, then the outgoing edge of the only subproblem P 1 is an outgoing edge of
P δ = P 5. If δ > 5, the problems Qγi , 1 ≤ i ≤ γ − 1, and P γγ each have γ + 1 outgoing

edges. For Qγ1 , γ of these edges are also outgoing edges of P δ and one edge points to
the interior node of Dγ

1 that is the startnode of Cγ1,1. For 2 ≤ i ≤ γ − 1, exactly γ − 1
edges leaving Qγi point into Qγi−1 such that every node that has l more outgoing than
incoming edges, for l > 0, receives l edges. One outgoing edge points to the interior
nodes of Dδ

i−1 that does not get an edge from Qγi−1 and the remaining edge points
to the interior node of Dγ

i that is the startnode of Cγ1,1. In the same way, the edges
leaving P γγ are connected with Qγγ−1, Dγ

γ−1 and Dγ
γ .

We identify the sources of P δ, i.e., the nodes having higher outdegree than inde-
gree. At each source, outdegree and indegree differ by 1. The startnodes of the chains
Dγ
i , 2 ≤ i ≤ γ, and Cγγ,k, 1 ≤ k ≤ 3γ, represent a total of 4γ− 1 sources. One interior

node of Dγ
γ represents a source. Finally, the subproblem P γγ contains γ − 1 sources.

A problem Qδ, δ ≥ 5 is the same as P δ, except that the subproblem P γγ is replaced

by a problem Qγγ . As mentioned before, a problem Qδ receives δ − 1 additional

incoming edges. These edges point to the nodes that represent sources in P δ.

We analyze the number of edge traversals used by Balance on G. Consider a
problem P δ, δ ≥ 5, and let γ = δ/5. When Balance generates the strand of chains
Cγi,1, . . . , C

γ
i,3γ , for some 1 ≤ i ≤ γ, this strand contains 3γ > γ + 1 tokens. Since

Dγ
i and the subproblem attached to it contain γ tokens Balance does not explore the

unvisited edges out of Cγi,3γ before the subproblem attached to Dγ
i is finished. In the

same way we can argue for a problem Qδ.

Let N(δ) be the number of times the following event happens while Balance works
on a problem P δ or Qδ: Balance generates a new chain, gets stuck, and cannot reach
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a node with new outgoing edges by using only edges in P δ, respectively, Qδ. Problem
P δ contains γ subproblems Qγ1 , . . . , Q

γ
γ−1 and P γγ . Every time Balance gets stuck in

one of these subproblems and has to leave it in order to resume exploration, it also
has to leave P δ. This is because of the following facts: (1) When Balance explores
Qγi , 1 ≤ i ≤ γ − 1, or P γγ , the subproblems Qγ1 , . . . , Q

γ
i−1 respectively Qγ1 , . . . , Q

γ
γ−1

are already finished. (2) The chains Dγ
1 , . . . , D

γ
γ ensure that Balance cannot reach

any chain Cγi,k, 1 ≤ i ≤ γ, 1 ≤ k ≤ 3γ, from where the unfinished chains in P δ can be

reached. Again the same holds for a problem Qδ. Thus, for δ ≥ 5, N(δ) ≥ γN(γ) =
(δ/5)N(δ/5). Since N(δ) = 1, for δ = 1, we obtain N(d) = dΩ(log d). Finally, consider
the edge e on C0 that leaves v. Balance must traverse e at least N(d) = dΩ(log d)

times.

We also modified the Balance algorithm by relocating to other nodes with new
outgoing edges. Replace the choice of Ck in line 7 according to one of the following
rules.

Round Robin. Let Ck be the chain among C1, . . . , Cl that was selected least often
in any execution of line 7.

Cheapest Subtree. Let Ck be the chain among C1, . . . , Cl, such that Tv(Ck) contains
the fewest number of dependent chains with respect to the current chain.

Theorem 6. For Round Robin and Cheapest Subtree and for all d ≥ 1, there
exist graphs of deficiency d that require dΩ(log d)m edge traversals.

Proof. The proof is identical to that of Generalized-Greedy in Theorem 2.
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Abstract. We define the notions of reducibility and completeness in (two-party and multiparty)
private computations. Let g be an n-argument function. We say that a function f is reducible to a
function g if n honest-but-curious players can compute the function f n-privately, given a black box
for g (for which they secretly give inputs and get the result of operating g on these inputs). We say
that g is complete (for private computations) if every function f is reducible to g.

In this paper, we characterize the complete boolean functions: we show that a boolean function
g is complete if and only if g itself cannot be computed n-privately (when there is no black box
available). Namely, for n-argument boolean functions, the notions of completeness and n-privacy are
complementary. This characterization provides a huge collection of complete functions (any nonpri-
vate boolean function!) compared to very few examples that were given (implicitly) in previous work.
On the other hand, for nonboolean functions, we show that these two notions are not complementary.
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1. Introduction. We consider (two-party and multiparty) private computa-
tions. Quite informally, given an arbitrary n-argument function f , a t-private protocol
for computing f should allow n players, each possessing an individual secret input,
to satisfy simultaneously the following two constraints: (1) (correctness) all players
learn the value of f and (2) (privacy) no set of at most t (faulty) players learns more
about the initial inputs of other players than is implicitly revealed by f ’s output. This
problem, also known as secure computation, has been examined in the literature with
two substantially different types of faulty players—malicious (i.e., Byzantine) players
and honest-but-curious players. Below we discuss some known results with respect to
each of these two types of players.

Secure computation for malicious players. Malicious players may deviate
from the prescribed protocol in an arbitrary manner in order to violate the correctness
and privacy constraints. The first general protocols for secure computation were
given in [Yao-82, Yao-86] for the two-party case and by [GMW-87] for the multiparty
case. Other solutions were given in, e.g., [GHY-87, GV-87, BGW-88, CCD-88, BB-89,
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Table 1.1
The number of faulty players, t, tolerable in the two basic secure-computation models (with n

players).

Honest-but-curious players Malicious players

Computational model
[Yao-82, GMW-87] (assuming t ≤ n t < n

2
trapdoor permutations exist)
Information-theoretic model
[BGW-88, CCD-88] t < n

2
t < n

3

RB-89, CKOR-97]; the various solutions differ from each other in the assumptions
that are made—varying from intractability assumptions (such as the existence of
trapdoor one-way permutations, e.g., in [GMW-87]) to physical assumptions (such as
the existence of private (untappable) communication channels between each pair of
players, e.g., in [BGW-88, CCD-88]). The above-mentioned solutions give t-private
protocols for computing any n-argument function f for t < n

2 or t < n
3 depending on

the assumption made. (See Table 1.1 for a summary of the main results.)

Secure computation for honest-but-curious players. Honest-but-curious
players must always follow the protocol precisely but are allowed to “gossip” after-
wards. Namely, some of the players may put together the information in their pos-
session at the end of the execution in order to infer additional information about the
original individual inputs. It should be realized that, in the case of honest-but-curious
players, enforcing the correctness constraint is easy, and only enforcing the privacy
constraint is hard. Honest-but-curious players are not only interesting on their own
(e.g., for modeling security against outside listeners or against a passive adversary
that wants to remain undetected); their importance also stems from “compiler-type”
theorems, such as the one proved by [GMW-87]1 (with further extensions in many
subsequent papers, for example, [BGW-88, CCD-88, RB-89]). This type of theorem
provides algorithms for transforming any protocol that is t-private with respect to
honest-but-curious players into a protocol that is t′-private with respect to malicious
players (for some t′ ≤ t). In this paper we concentrate on honest-but-curious players.

Information-theoretic privacy. The first works on secure computation con-
centrated on the notion of computational privacy; roughly speaking, computational
t-privacy requires that no coalition of t players can infer in polynomial time any addi-
tional information on the input of other players (that is not revealed by the output).
The information-theoretic model was first examined by [BGW-88, CCD-88]; roughly
speaking, information-theoretic t-privacy requires that no coalition of t players can
infer any information on the input of other players, even if the players have un-
limited computational power. In particular, [BGW-88, CCD-88] prove that if every
two players are connected by a private channel, then every function is t-private for
t < n/2 (with respect to honest-but-curious players; see Table 1.1). The information-
theoretic model was then the subject of considerable work (e.g., [CKu-89, BB-89,
CGK-90, CGK-92, KR-94, CFGN-96, KOR-96, HM-97, BW-98, KOR-98]). Particu-
larly, [CKu-89] characterized the boolean functions for which n-private protocols exist:
an n-argument boolean function f is n-private if and only if it can be represented as
f(x1, x2, . . . , xn) = f1(x1)⊕ f2(x2)⊕ · · · ⊕ fn(xn), where each fi is boolean. Namely,
f is n-private if and only if it is the exclusive-or of n local functions. An immediate

1The reader is referred to [G-98] for a fully detailed treatment of the [Yao-86, GMW-87] results.
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corollary of this is that most boolean functions are not n-private (even with respect
to honest-but-curious players).

Our contribution. We formally define the notion of reducibility among multi-
party protocol problems. We say that a function f is reducible to a function g if there
is a protocol that allows the n players to compute the value of f n-privately, in the
information-theoretic sense, just by repeatedly using a black box (or a trusted party)
for computing g. That is, in any round of the protocol, the players secretly supply
arguments to the black box and then the black box publicly announces the result of
operating g on these arguments. We stress that the only means of communication
among the players is by interacting with the black box (i.e., evaluating g). For exam-
ple, it is clear that every function f is reducible to itself (all players secretly give their
private inputs x1, . . . , xn to the black box and the black box announces the result
f(x1, . . . , xn)). Naturally, we can also define the notion of completeness. A function g
is complete if every function f is reducible to g. The importance of this notion relies
on the following observation:

If g is complete, and g can be computed t-privately in some “rea-
sonable” setting2 (such as the settings of [GMW-87, BGW-88], etc.),
then any function f can be computed t-privately in the same set-
ting. Moreover, from our construction a stronger result follows: if
in addition the implementation of g is efficient, then so is the imple-
mentation of f (see below).

The above observation holds since our definition of reduction requires the highest
level of privacy (i.e., n), the strongest notion of privacy (i.e., information-theoretic
privacy), a simple use of g (i.e., as a black box), and that it avoid making any (phys-
ical or computational) assumptions. Hence the straightforward simulation, in which
each invocation of the black box for g is replaced by an invocation of a “t-private”
protocol for g, works in any “reasonable” setting (i.e., any setting that is not too weak
to prevent simulation) and yields a “t-private” protocol for f in the same setting. Pre-
viously, there was no easy way to translate private protocols from one setting (such
as the settings of [Yao-82, GMW-87, BGW-88, CCD-88, RB-89, FKN-94]) to other
settings.

A simple observation regarding complete functions is that if g is complete, then g
itself cannot be information-theoretic n-private. The inverse of this observation is the
less obvious part: since the definition of completeness requires that the same function
g will be used for computing all functions f , and since the definition of reductions
seems very restrictive, it may be somewhat surprising that complete functions exist at
all. Some examples of complete functions implicitly appear in the literature (without
discussing the notions of reducibility and completeness). The first such results were
shown in [Yao-82, GMW-87, K-88].

In this work we prove the existence of complete functions for n-party private
computations. Moreover, while previous research concentrated on finding a single
complete function, our main theorem characterizes all the boolean functions that are
complete.

Theorem 1.1 (main theorem). For all n ≥ 2, an n-argument boolean function
g is complete if and only if g is not information-theoretic n-private.

Our result thus shows a very strong dichotomy: every boolean function g is either
“simple enough” so that it can be computed n-privately (in the information-theoretic

2A setting consists of defining the type of communication, type of privacy, type of players (e.g.,
honest-but-curious or malicious), the assumptions made, etc.
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model), or it is “sufficiently expressive” so that a black box for it enables reducing
every function (not only boolean) to g (i.e., g is complete). We stress that there is no
restriction on g, besides being a non-n-private boolean function, and that no relation
between the function g and the function f that we wish to compute is assumed. Note
that using the characterization of n-private boolean functions by [CKu-89] it is easy
to determine whether a given boolean function g is complete. That is, a boolean
function g is complete if and only if it cannot be represented as g(x1, x2, . . . , xn) =
g1(x1)⊕ g2(x2)⊕ · · · ⊕ gn(xn), where each gi is a boolean function.

Some features of our result. To prove the completeness of a function g as
above, we present an appropriate construction with the following additional proper-
ties:

• We consider the most interesting scenario, where both the reduced function
f and the black-box function g are n-argument functions (where n is the
number of players). This enables us to organize the reduction in rounds,
where in each round each player provides a value for a single argument of g
(and the value of each argument is provided by exactly one player).3 Thus,
no player is “excluded” at any round from the evaluation of g. Our results,
however, remain true even if the number of arguments of g is different from
the number of arguments of f .
• Our construction evaluates the n-argument function g only on a constant

number of n-tuples (hence, a partial implementation of g may be sufficient).
• When we talk about privacy, we put no computational restrictions on the

power of the players; hence we get information-theoretic privacy. However,
when we talk about protocols, we measure their efficiency in terms of the
computational complexity of f (i.e., the size of the smallest circuit that com-
putes f) and in terms of a confidence parameter k (our protocol allows error
probability of 2−Ω(k)). Our protocol is efficient (polynomial) in all these mea-
sures.4 We stress, though, that the n-tuples with which we use the function
g are chosen nonuniformly (namely, they are encoded in the protocol) for the
particular choices of g and n (the size of the network). These n-tuples depend
though neither on the size of the inputs to the protocol nor on the function
f (or the confidence parameter k).

Our main theorem gives a full characterization of the boolean functions g that are
complete (i.e., those that are not information-theoretic n-private). When nonboolean
functions are considered, it turns out that the above simple characterization is no
longer true. That is, we show that there are (nonboolean) functions that are not
n-private, yet are not complete.

Overview of the proof of the main theorem. Our proof goes along the
following lines:

1. We define the notion of embedded-OR for two-argument functions and ap-
propriately generalize this notion to the case of n-argument functions. We
then show that if an n-argument function is not private, then it contains an
embedded-OR. For the case n = 2 this follows immediately from the charac-
terization of n-private boolean functions by [CKu-89]; the case n > 2 requires
some additional technical work.

2. We show how an embedded-OR can be used to implement an oblivious transfer

3Which player submits which argument is a permutation specified by the reduction.
4Evaluating g on any assignment is assumed to take unit time. All other operations (communi-

cation, computation steps, etc.) are measured in the regular way.
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(OT) channel/primitive between any pair of players.5 Finally, it follows from
the work of [GMW-87, GHY-87, GV-87, K-88, BG-89, GL-90] that n-private
computation of any function f can be implemented given such OT channels.
All together, our main theorem follows.

Organization of the paper. In section 2 we specify our model and provide
some necessary definitions. In section 3 we prove our main lemma, which shows the
existence of an embedded-OR in every non-n-private, boolean function. In section 4
we use the main lemma (i.e., the existence of an embedded-OR) to implement OT
channels between players. In section 5 we use the construction of OT channels to
prove our main theorem. Finally, section 6 contains a discussion of the results and
some open problems. For completeness, we include in the appendix a known protocol
for private computations using OT channels (including its formal proof).

2. Model and definitions. Let f be an n-argument function defined over a
finite domain D. Consider a collection of n ≥ 2 synchronous, computationally un-
bounded players P1, . . . , Pn that communicate using a black box for g, as described
below. At the beginning of an execution, each player Pi has an input xi ∈ D. In
addition, each player can flip unbiased and independent random coins. We denote
by ri the string of random bits flipped by Pi (sometimes we refer to the string ri
as the random input of Pi). The players wish to compute the value of a function
f(x1, x2, . . . , xn). To this end, they use a prescribed protocol F . In the ith round of
the protocol, every processor Pj secretly sends a message mi

j to the black box g.6 The
protocol F specifies which argument to the black-box is provided by which player.
The black box then publicly announces the result of evaluating the function g on the
input messages.

Formally, with each round i the protocol associates a permutation πi. The value
computed by the black box at round i, denoted si, is si = g(mi

πi(1),m
i
πi(2), . . . ,m

i
πi(n)).

Each message mi
j , sent by Pj to the black box in the ith round, is determined by its

input (i.e., xj), its random input (i.e., rj), and the output of the black box in previous
rounds (i.e., s1, . . . , si−1). We say that the protocol F computes the function f if the
last value (or the last sequence of values in the case of nonboolean f) announced
by the black box equals the value of f(x1, x2, . . . , xn) with probability ≥ 1− 2−Ω(k),
where k is a (confidence) parameter and the probability is over the choice of r1, . . . , rn.

Let F be an n-party protocol as described above. The communication S(~x,~r) is
the concatenation of all messages announced by the black box while executing F on
inputs x1, . . . , xn and random inputs r1, . . . , rn. We often consider the communication
S while fixing ~x and some of the ri’s; in this case, the communication should be
thought of as a random variable, where each of the ri’s that were not fixed is chosen
according to the corresponding probability distribution. For example, if T is a set of
players, then S(~x, 〈ri〉i∈T ) is a random variable describing the communication when
each player Pi holds input xi, each player in T holds random input ri, and the random
inputs for all players in T are chosen randomly. The definition of privacy considers
the distribution of such random variables.

5OT is a protocol for two players: a sender that holds two bits b0 and b1 and a receiver that
holds a selection bit s. At the end of the protocol the receiver gets the bit bs but has no information
about the value of the other bit, while the sender has no information about the selection bit s. It
should be emphasized that an OT channel in a multiparty setting has the additional requirement
that listeners do not get any information; we prove, however, that this property is already implied
by the basic properties of two-party OT.

6Notice that we do not assume private point-to-point communication among players. On the
other hand, we do allow private communication between players and the black box for computing g.
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Definition 2.1. Let F be an n-party protocol that computes a function f and let
T ⊆ {1, 2, . . . , n} be a set of players (coalition). We say that coalition T does not learn
any additional information from the execution of F if the following holds: For every
two input vectors ~x and ~y that agree on their T entries (i.e., ∀ i ∈ T : xi = yi) and
for which f(~x) = f(~y), for every choice of random inputs for the coalition’s parties,
〈ri〉i∈T , and for every communication S,

Pr〈ri〉i∈T (S(~x, 〈ri〉i∈T ) = S) = Pr〈ri〉i∈T (S(~y, 〈ri〉i∈T ) = S).

Informally, this definition implies that for all inputs that “look the same” from the
coalition’s point of view (and for which, in particular, f has the same value), the
communication also “looks the same” (i.e., it is identically distributed). Therefore,
by executing the protocol F , the coalition T cannot infer any information on the inputs
of T other than what follows from the inputs of T and the value of the function.

Definition 2.2. A protocol F for computing f using a black box g is t-private if
any coalition T of at most t players does not learn any additional information from
the execution of the protocol. A function f is t-private (with respect to the black box
g) if there exists a t-private protocol that uses the black box g and computes f .

Definition 2.3. Let g be an n-argument function. We say that the black box g
(alternatively, the function g) is complete if every function f is n-private with respect
to the black box g.

OT is a protocol for two players S, the sender , and R, the receiver. It was first
defined by Rabin [R-81] and since then was studied in many works (e.g., [EGL-82,
W-83, FMR-85, K-88, IL-89, OVY-91]). The variant of OT protocol that we use
here, which is often referred to as

(
2
1

)
-OT, was originally defined in [EGL-82]. It was

shown equivalent to other notions of OT (see, for example, [R-81, EGL-82, BCR-86,
B-86, C-87, K-88, CK-88]). The formalization of OT that we give is in terms of the
probability distribution of the communication transcripts between the two players.

Definition 2.4 (OT).
Let k be a (confidence) parameter. The sender S initially has two bits b0 and b1

and the receiver R has a selection bit c. After the protocol completion the following
holds:

• Correctness: Receiver R gets the value of bc with probability greater than
1−2−Ω(k), where the probability is taken over the coin tosses of S and R. More
formally, let rS , rR ∈ {0, 1}poly(k) be the random tapes of S and R respec-
tively, and denote the communication string by comm(〈b0, b1, c〉, 〈rS , rR〉) ∈
{0, 1}poly(k). (Again, when one (or both) of rS , rR is unspecified, then comm
becomes a random variable.) Then, for all k and for all c, b0, b1 ∈ {0, 1}, the
following holds:

PrrS ,rR (R(c, rR, comm(〈b0, b1, c〉, 〈rS , rR〉)) = bc) ≥ 1− 1

2Ω(k)
.

(R(c, rR, comm) denotes the output of receiver R when it has a selection bit
c and random input rR and the communication in the protocol is comm.)

• Sender’s privacy: Receiver R does not get any information about b1−c. (In
other words, R has the “same view” in the case where b1−c = 0 and in the
case where b1−c = 1). Formally, for all k, for all c, bc ∈ {0, 1}, for all rR,
and for all communication comm,

PrrS (comm(〈bc, b1−c = 0, c〉, rR) = comm)

= PrrS (comm(〈bc, b1−c = 1, c〉, rR) = comm) .
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• Receiver’s privacy: Sender S does not get any information about c. (In other
words, S has the “same view” in the case where c = 0 and in the case where
c = 1.) Formally, for all k, for all b0, b1 ∈ {0, 1}, for all rS , and for all
communication comm,

PrrR (comm(〈b0, b1, c = 0〉, rS) = comm)

= PrrR (comm(〈b0, b1, c = 1〉, rS) = comm) .

Remark. We emphasize that both S and R are honest (but curious) and assumed
to follow the protocol. When OT is defined with respect to cheating players, it is
usually allowed that with probability 2−Ω(k) information will leak. This, however, is
not needed for honest players.

3. A new characterization of n-private boolean functions. In this section
we prove our main lemma, which establishes a new combinatorial characterization of
the family of n-private boolean functions. First, we define what it means for a two-
argument boolean function to contain an “embedded-OR” and use [CKu-89] to claim
that any two-argument boolean function that is not 1-private contains an embedded-
OR. We then generalize the definition and the claim to multiargument functions in
the appropriate way.

Definition 3.1. We say that a two-argument function h contains an embedded-
OR if there exist inputs x0, x1, y0, y1 (x0 6= x1, y0 6= y1) and an output value σ such
that h(x1, y1) = h(x1, y0) = h(x0, y1) = σ but h(x0, y0) 6= σ.

Definition 3.2. We say that an n-argument (n ≥ 3) function f contains an
embedded-OR if there exist indices 1 ≤ i < j ≤ n and values ak for all k /∈ {i, j} such
that the two-argument function

h(y, z)
4
= f(a1, . . . , ai−1, y, ai+1, . . . , aj−1, z, aj+1, . . . , an)

contains an embedded-OR.
The following facts are proven in [CKu-89].7 Facts 1 and 2 give a characterization

of the n-private boolean functions (these facts are relevant here since, as our main
theorem shows, the characterization of the n-private boolean functions is also a char-
acterization of the complete boolean functions). Facts 3 and 4 are used in [CKu-89]
as technical lemmas and we use them here to prove Lemma 3.3 below.

1. An n-argument boolean function is dn/2e-private if and only if it can be
written as f(x1, . . . , xn) = f1(x1)⊕ · · · ⊕ fn(xn), where each fi is boolean.

2. If an n-argument boolean function is dn/2e-private, then it is n-private.
3. A two-argument boolean function f is not 1-private if and only if it contains

an embedded-OR.
4. An n-argument boolean function f is dn/2e-private if and only if in every

partition of the indices {1, . . . , n} into two sets S, S̄, each of size at most
dn/2e, the two-argument boolean function fS defined by

fS(〈xi〉i∈S , 〈xi〉i∈S̄)
4
= f(x1, . . . , xn)

is 1-private.

7More specifically, the “only-if” part of fact 1 is Theorem 2 of [CKu-89]; the “if” parts of fact 1
and fact 2 is Theorem 3 of [CKu-89]; fact 3 is proved by Lemma 1 and Theorem 1 of [CKu-89]; and
fact 4 is Lemma 5 of [CKu-89].



1196 J. KILIAN, E. KUSHILEVITZ, S. MICALI, AND R. OSTROVSKY

Our main lemma extends fact 3 above to the case of multiargument functions.
Lemma 3.3 (main lemma). Let g(x1, . . . , xn) be any boolean, n-argument func-

tion. The function g is not dn/2e-private if and only if it contains an embedded-OR.
Proof. Clearly, if g contains an embedded-OR, then there is a partition of the

indices into two sets S, S̄, each of size at most dn/2e, such that the corresponding two-
argument function gS contains an embedded-OR (e.g., if i, j are the indices guaranteed
by Definition 3.2, then include the index i in S, the index j in S̄, and partition the
other n− 2 indices arbitrarily into two halves between S and S̄). By fact 3, gS is not
1-private and so, by fact 4, g itself is not dn/2e-private.

For the other direction, since the function g is not dn/2e-private, then, by fact 4,
there is a partition S, S̄ of the indices {1, . . . , n} such that the corresponding function
gS is not 1-private. For simplicity of notation, we assume that n is even and that
S = {1, . . . , n/2}. By fact 3, the two-argument function gS contains an embedded-
OR. Hence, by Definition 3.1, there exist inputs u, v, w, z and a value σ ∈ {0, 1} that
form the following structure:

gS(·, ·) w = wn
2

+1, . . . , wn z = zn
2

+1, . . . , zn

u = u1, . . . , un
2

σ σ

v = v1, . . . , vn
2

σ σ̄

where u 6= v and w 6= z. To complete the proof, we will show below that it is possible
to choose these four inputs so that ui 6= vi for exactly one coordinate i and wj 6= zj for
exactly one coordinate j (this will show that g satisfies the condition of Definition 3.2).
To this end, we will first show how, based on the inputs above, we can find u′ and v′,
which differ from each other in exactly one coordinate (and such that u′, v′, w, z still
form an embedded-OR, that is, g(u′, w) = g(u′, z) = g(v′, w) = σ and g(v′z) = σ̄).
Then, based on the new u′, v′ and a similar argument, we can find w′, z′, which differ
from each other in exactly one coordinate. Again, this is done so that u′, v′, w′, z′

form the embedded-OR structure. Therefore, by using the above values of i, j and
fixing all the other arguments in S to u′k = v′k and all the other arguments in S̄ to
w′k = z′k, we get that g itself contains an embedded-OR.

Let L ⊆ {1, . . . , n2 } be the set of indices on which u and v disagree (i.e., indices
k such that uk 6= vk). For every m (0 ≤ m ≤ |L|), define Tm as the set of all
vectors that can be obtained from the vector u by choosing a subset of m indices
from L and replacing for each chosen index the value uk by the value vk (note that
by the definition of L, we have vk 6= uk). In particular, T0 = {u}, T|L| = {v}, and

|Tm| =
(|L|
m

)
. In addition, we define the following two sets of vectors:

X1
4
= {x = (x1, . . . , xn/2) | gS(x,w) = gS(x, z)}

and

X2
4
= {x = (x1, . . . , xn/2) | gS(x,w) 6= gS(x, z)},

where w and z are the specific vectors we chose above. In particular, we have u ∈ X1

and v ∈ X2.
We now claim that there must exist u′, v′ as required. Namely, the vector u′ is

in X1, the vector v′ is in X2, and u′, v′ differ in exactly one coordinate. Suppose,
toward a contradiction, that this is not true, that is, for every pair u′, v′ that differ
in exactly one coordinate, both u′, v′ are in the same set (X1 or X2). We claim that
this implies that Tm ⊆ X1 for all 0 ≤ m ≤ |L|, contradicting the fact that v, which is
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in T|L|, belongs to X2. The proof is by induction. The claim is true for m = 0 since
T0 contains only the vector u, which is in X1. Now, suppose the induction hypothesis
holds for m. That is, Tm ⊆ X1. For each vector x in Tm+1, there is a vector in Tm
that differs from x in exactly one coordinate. By our assumption, this immediately
implies that x is also in X1 and hence Tm+1 ⊆ X1, as needed. Therefore, we reach
a contradiction, which implies the existence of u′, v′ as required. That is, we found
u′, v′ that differ in a single index i (i.e., u′i 6= v′i) and such that u′, v′, w, z still form
an embedded-OR structure:

gS(·, ·) w = wn
2

+1, . . . , wn z = zn
2

+1, . . . , zn

u′ = u′1, . . . , u
′
i−1, u

′
i, u
′
i+1, . . . , u

′
n
2

σ σ

v′ = u′1, . . . , u
′
i−1, v

′
i, u
′
i+1, . . . , u

′
n
2

σ σ̄

A similar argument shows the existence of w′, z′ that differ in a single index j and such
that the above vectors u′, v′ together with the vectors w′ and z′ form an embedded-OR
structure:

gS(·, ·) w′ = w′n
2

+1
, . . . , w′j−1, w

′
j , w
′
j+1, . . . , w

′
n z = w′n

2
+1
, . . . , w′j−1, z

′
j , w
′
j+1, . . . , w

′
n

u′ σ σ
v′ σ σ̄

This shows that g contains an embedded-OR (with indices i, j as required by Defini-
tion 3.2).

4. Constructing embedded OT. The first, very simple observation is that
given a black box for a function g that contains an embedded-OR, we can actually
compute the OR of two bits. That is, suppose that the n players wish to compute
OR(bk, b`), where bk is a bit held by player Pk and b` is a bit held by player P`.
Let i, j, x0, x1, y0, y1 and a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an be the indices and
inputs as guaranteed by Definitions 3.1 and 3.2. Then, player Pk will provide the black
box with the ith argument which is xbk (i.e., if bk = 0, then the argument provided by
Pk is x0 and if bk = 1, then this argument is x1) and player P` will provide the black
box with the jth argument, which is yb` . The other n − 2 players will provide the
n−2 fixed values a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an. The black box will answer
with the value

g(a1, . . . , ai−1, xbk , ai+1, . . . , aj−1, yb` , aj+1, . . . , an),

which is σ if OR(bk, b`) = 1 and is different from σ if OR(bk, b`) = 0. Hence, we have
shown how to compute OR(bk, b`).

Our main goal in this section is to show how, based on a black box that can
compute OR, we can implement an OT protocol. We start with the two-party case
(n = 2) and then proceed to the general case, which builds upon the two-party case.

4.1. The two-party case. In this section we show how to implement a two-
party OT protocol. We start by implementing a variant of OT, called random OT
(ROT), which is different from the standard OT (i.e.,

(
2
1

)
-OT). In a ROT protocol

the sender S has a bit s to be sent. At the end of the protocol, the receiver R gets a
bit s′ such that with probability 1/2 the bit s′ equals s and with probability 1/2 the
bit s′ is random. The receiver knows which of the two cases happened but the sender
has no idea which is the case. We start with a formal definition of the ROT primitive.

Definition 4.1 (ROT). Let k be a (confidence) parameter. The sender S initially
has a single input bit s (and the receiver has no input). A ROT protocol must satisfy
the following four properties:



1198 J. KILIAN, E. KUSHILEVITZ, S. MICALI, AND R. OSTROVSKY

• Correctness. With probability greater than 1 − 2−Ω(k), receiver R outputs a
pair of bits (I, s′), where I is referred to as the indicator (otherwise R outputs
fail). (As usual, the probability is taken over the coin tosses of S and R, i.e.,
rS , rR ∈ {0, 1}poly(k).)

• Indicator’s correctness. Whenever R outputs a pair of bits (I, s′) such that
the indicator I equals 1 (i.e., R(rR, comm(s, rS , rR)) = (1, s′)), then s′ is
the correct input bit of the sender, i.e., s′ = s.
• Sender’s privacy. If the protocol does not fail, then the probability that the

receiver gets the sender’s bit is exactly 1/2; otherwise, the receiver gets a
random bit. That is, the probability that R outputs a pair (I, s′) such that
I = 1 is exactly 1/2. Formally,

PrrS ,rR (R(rR, comm(s, rS , rR)) = (1, s′) | R(rR, comm(s, rS , rR)) 6= fail)

= PrrS ,rR (R(rR, comm(s, rS , rR)) = (0, s′) | R(rR, comm(s, rS , rR)) 6= fail)

=
1

2
.

Moreover, if R(rR, comm(s, rS , rR)) = (0, s′) (i.e., I = 0), then s′ is ran-
dom, namely,

PrrS ,rR (s′ = 1|R(rR, comm(s, rS , rR)) = (0, s′)) =
1

2
.

• Receiver’s privacy. Sender S does not get any information about I, i.e., the
sender does not know whether R received the bit s or a random bit. (In
other words, S has the “same view” in the case where I = 0 and in the case
where I = 1.) Formally, for all k, for all s ∈ {0, 1}, for all rS , and for all
communication comm,

PrrR (comm(s, rS , rR) = comm | I = 0)

= PrrR (comm(s, rS , rR) = comm | I = 1) .

Transformations of ROT protocols to
(

2
1

)
-OT protocols are well known [C-87].8

Our ROT protocol is implemented, using a black box for OR, as follows:
a. The sender, S, and the receiver, R, repeat the following at most m = Θ(k)

times:
• S chooses a pair (a1, a2) out of the two pairs {(1, 0), (0, 1)}, each with

probability 1/2.
R chooses a pair (b1, b2) out of the three pairs {(1, 0), (0, 1), (1, 1)}, each
with probability 1/3.
S and R compute (using the black box) c1 = OR(a1, b1) and c2 =
OR(a2, b2).

8Assume that the sender, S, has two bits b0, b1 and the receiver, R, has a selection bit c. The
players S and R repeat the following for at most m = Θ(k) times: at each time, S tries to send to
R a pair of random bits (s1, s2) using two invocations of ROT. If in both trials the receiver gets the
actual bit or in both trials it gets a random bit, then they try again. If the receiver got exactly one
of s1 and s2, it sends the sender a permutation of the indices π (i.e., either (1, 2) or (2, 1)) such that
sπ(c) is known to it. The sender replies with b1 ⊕ sπ(1), b2 ⊕ sπ(2). The receiver can now retrieve
the bit bc and knows nothing about the other bit. The sender, by observing π, learns nothing about
c (since it does not know from the invocation of the ROT protocols in which invocation the receiver

got the actual bit and in which it got a random bit). Thus, we get a
(

2
1

)
-OT protocol based on the

ROT protocol.
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Table 4.1
Analyzing the six cases of (a single round of) the ROT protocol.

(b1, b2) = (1, 0) (b1, b2) = (0, 1) (b1, b2) = (1, 1)

(c1, c2) = (1, 0) (c1, c2) = (1, 1) (c1, c2) = (1, 1)
(a1, a2) = (1, 0) I = 1 I = 0

s′ = s s′ = s
(c1, c2) = (1, 1) (c1, c2) = (0, 1) (c1, c2) = (1, 1)

(a1, a2) = (0, 1) I = 1 I = 0
s′ = s s′ = s⊕ 1

• If c1 = c2 = 1, then
S sends w = s⊕ a1 to R.
R outputs a pair (I, s′) such that s′ = w⊕b2, and I = 0 if (b1, b2) =
(1, 1) and I = 1 otherwise.
The protocol halts.

b. In the case that the protocol has not halted so far, R outputs fail and the
protocol halts (this step is reached only if in all m times no choices (a1, a2)
and (b1, b2) are such that c1 = c2 = 1).

To analyze the protocol, we observe the following properties of it (the reader is referred
to Table 4.1 for a summary of the protocol behavior in each of the six possible choices
of (a1, a2), (b1, b2)):

1. If (b1, b2) = (a1, a2), then one of c1, c2 is 0. This happens in two of the
six choices of (a1, a2) and (b1, b2). In each of the other four choices we get
c1 = c2 = 1, and so at each round the protocol halts with probability 4/6.
Therefore, the probability of failure in m = Θ(k) trials is exponentially small
(in k), which implies the correctness property of the protocol.

2. Given that (a1, a2) and (b1, b2) are such that c1 = c2 = 1 (which, as argued
above, happens in four of the six cases), we have (b1, b2) = (a2, a1) with
probability 1/2 (two out of the four cases) and (b1, b2) = (1, 1) with prob-
ability 1/2. By the protocol, in the former case R outputs I = 1 and in
the latter I = 0. Moreover, in the cases where R outputs I = 0 (i.e., when
(b1, b2) = (1, 1)), each of the two choices of (a1, a2) is equally likely. There-
fore, a1 and hence also w and s′ are random (that is, each has the value 0
with probability 1/2 and the value 1 with probability 1/2). This implies the
sender’s privacy property.

3. In the cases where R outputs I = 1 (i.e., when (b1, b2) = (a2, a1)), then we
have in particular b2 = a1 and so s′ = w ⊕ b2 = (s⊕ a1)⊕ b2 = s. This gives
the indicator’s correctness property.

4. As argued above, if the protocol does not fail, then R knows the “correct”
value of I (since it knows the values of b1, b2, c1, and c2). The sender, on the
other hand, based on (a1, a2), cannot know which of the two equally probable
events, (b1, b2) = (a2, a1) or (b1, b2) = (1, 1), happened and therefore it sees
the same view whether I = 1 or I = 0. This gives the receiver’s privacy
property.

To conclude, the above four properties of the ROT protocol give the four properties
required in Definition 4.1. Hence, combining the above construction (including the
transformation of the ROT protocol to a

(
2
1

)
-OT protocol) with Lemma 3.3, we get

the following lemma.
Lemma 4.2. An OT channel between two players is realizable given a black box

g for any non-2-private function g.
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4.2. The multiparty case (n > 2). We have shown in our main lemma
(Lemma 3.3) that any non-n-private function g contains an embedded-OR. Thus,
as explained above, we can use the black box for g to compute the OR of two bits
held by two players Pk and P` (where the other n − 2 players assist by specifying
the fixed arguments given by our main lemma). Then, based on the ability to com-
pute OR, we showed in section 4.1 above how any two players can implement an OT
channel between them in a way that satisfies the properties of OT (in particular, the
privacy of the sender and the receiver with respect to each other). However, there
is a subtle difficulty in implementing a private OT channel in a multiplayer system
that we must address: besides the usual properties of an OT channel (as specified by
Definition 2.4), we should guarantee that the information transmitted between the
two owners of the channel will not be revealed to potential listeners (i.e., the other
n − 2 players). If the OT channel is implemented “physically,” then clearly no in-
formation is revealed to the listeners. However, since we implement the OT protocol
using a black box to some function g, which publicly announces each of its outcomes,
we must also prove that this reveals no information to the listeners. That is, the
communication seen during the execution of the OT protocol should be distributed
in the same way for all values of b1, b2, and c.

The following lemma shows that the security of the OT protocol with respect to
listeners is, in fact, already guaranteed by the basic properties of the OT protocol,
namely, the security of the protocol with respect to both the receiver and the sender.

Lemma 4.3. Consider any (two-player) OT protocol. For every possible commu-
nication comm, the probability PrrS ,rR (comm(〈b0, b1, c〉, 〈rS , rR〉) = comm) is the
same for all values b0 and b1 for the sender and c for the receiver. (In other words, a
listener sees the same probability distribution of communications no matter what are
the inputs held by the sender and the receiver in the OT protocol.)

Proof. Consider the following eight probabilities corresponding to all possible
values of the bits b0, b1, and c:

1. PrrS ,rR (comm(〈b0 = 0, b1 = 0, c = 0〉, 〈rS , rR〉) = comm),
2. PrrS ,rR (comm(〈b0 = 0, b1 = 0, c = 1〉, 〈rS , rR〉) = comm),
3. PrrS ,rR (comm(〈b0 = 0, b1 = 1, c = 0〉, 〈rS , rR〉) = comm),
4. PrrS ,rR (comm(〈b0 = 0, b1 = 1, c = 1〉, 〈rS , rR〉) = comm),
5. PrrS ,rR (comm(〈b0 = 1, b1 = 0, c = 0〉, 〈rS , rR〉) = comm),
6. PrrS ,rR (comm(〈b0 = 1, b1 = 0, c = 1〉, 〈rS , rR〉) = comm),
7. PrrS ,rR (comm(〈b0 = 1, b1 = 1, c = 0〉, 〈rS , rR〉) = comm),
8. PrrS ,rR (comm(〈b0 = 1, b1 = 1, c = 1〉, 〈rS , rR〉) = comm).

The receiver’s privacy property implies that the terms (1) and (2) are equal, (3) and
(4) are equal, (5) and (6) are equal, and (7) and (8) are equal (since each of these four
pairs of events differs only in the value of c). The sender’s privacy property implies
that the terms (1) and (3) are equal, (5) and (7) are equal, (2) and (6) are equal, and
(4) and (8) are equal (since each of these four pairs of events differs only in the value
of b1−c). All together, we get that the eight probabilities are equal, as desired.

5. A completeness theorem for multiparty boolean black-box reduc-
tions. In this section we state the main theorem and provide its proof. It is based
on a protocol that can tolerate n − 1 honest-but-curious players, assuming the ex-
istence of an OT channel between each pair of players. Such protocols appear in
[GMW-87, GHY-87, GV-87, K-88, BG-89, GL-90] (these works deal also with ma-
licious players). That is, by these works we get the following lemma. (For self-
containment, both a protocol and its proof of security appear in the appendix.)
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Lemma 5.1. Given OT channels between each pair of players, any n-argument
function f can be computed n-privately (in time polynomial in the size of a boolean
circuit for f).

We are now ready to state our main theorem.
Theorem 5.2 (main). Let n ≥ 2 and let g be an n-argument boolean function.

The function g is complete if and only if it is not n-private.
Proof.

(=⇒) First, we show that any complete g cannot be n-private. Toward the contradic-
tion let us assume that there exists such a function g, which is n-private and complete.
This implies that all functions are n-private (as instead of using the black box g the
players can evaluate g by using the n-private protocol for g). This, however, contra-
dicts the results of [BGW-88, CKu-89] that show the existence of functions that are
not n-private.
(⇐=) Next (and this is where the bulk of the work is) we show how to compute any
function n-privately, given a black box for any g that is not n-private. Recall that
there exists a protocol that can tolerate n − 1 honest-but-curious players, assuming
the existence of OT channels (Lemma 5.1). Also, we have shown how a black box,
computing any nonprivate function, can be used to simulate OT channels (Lemmas 4.2
and 4.3). Combining these we get the result.

The theorem implies that “most” boolean functions are complete. That is, any
boolean function that is not of the XOR-form of [CKu-89] is complete (see facts 1
and 2 in section 3).

6. Conclusions and further extensions.

6.1. Nonboolean functions. We have shown that any non-n-private boolean
function g is complete. Namely, a black box for such a function g can be used for com-
puting any function f n-privately. Let us now briefly turn our attention to nonboolean
functions. First, we emphasize that if a function g contains an embedded-OR, then it
is still complete even if it is nonboolean (all the arguments go through as they are; in
particular note that Definitions 3.1 and 3.2 of embedded-OR apply for the nonboolean
case as well). However, in the nonboolean case, not all nonprivate functions contain
an embedded-OR and so their completeness does not necessarily follow.

Proposition 6.1. For every n ≥ 6, there exists a (nonboolean) n-argument
function g that is not n-private, yet such that g is not complete.

Proof. In [CGK-92] it is shown that nonboolean functions form a “privacy hierar-
chy.” That is, for every n and for every t such that dn/2e ≤ t ≤ n− 2, there exists a
(nonboolean) n-argument function that is t-private but not (t+ 1)-private. Fix some
t such that dn/2e < t ≤ n − 2 (since n ≥ 6, such t exists). By the above-mentioned
result of [CGK-92], there exists an n-argument function g that is t-private and is not
(t+ 1)-private (in particular, g is not n-private). However, such a function g cannot
be complete since this would imply that every n-argument function is t-private which,
again by [CGK-92], is not the case.

The above proposition can be strengthened so that it applies to all n ≥ 2 as
follows: It is known that there are nonprivate two-argument functions that do not
contain an embedded-OR. Examples of such functions were shown in [Ku-89] (see Ta-
ble 6.1). We claim that with no embedded-OR one cannot compute the OR function.
Assume, toward a contradiction, that there is some two-argument function f that
does not have an embedded-OR, yet it could be used to compute the OR function.
Since f can be used to compute the OR function, we can use it to implement OT
(Lemma 4.2). Hence, there exists an implementation of OT based on some f that
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Table 6.1
A nonprivate function which does not contain an embedded-OR.

y1 y2 y3

x1 0 0 1
x2 2 4 1
x3 2 3 3

does not have an embedded-OR. However, [K-91] has shown that for two-argument
functions, only the ones that contain an embedded-OR can be used to implement
OT, deriving a contradiction. For n-argument functions (n > 2), notice that if we
take a two-argument function g that is not 1-private and is also not complete, and
we define an n-argument function ĝ that depends only on its first two arguments by
ĝ(x1, x2, . . . , xn) = g(x1, x2), the resulting function ĝ is not n-private yet it is not
complete.

To conclude, we have shown that for the boolean case, the notions of completeness
and privacy are exactly complementary , while for the nonboolean case they are not.

6.2. Additional remarks. In this section, we briefly discuss some possible ex-
tensions and easy generalizations of our results.

The first issue that we address is the need for the protocol to specify the permu-
tation πi that is used in each round i (for mapping the players to the arguments of the
black box g). Note that in our construction, we use the black box only for computing
the OR function on two arguments. For this, we need to map some two players Pk
and P`, holding these two arguments to the special coordinates i, j guaranteed by
the definition of embedded-OR. Therefore, without loss of generality, the sequence of
permutations can be made oblivious (i.e., independent of the function f computed)
at a price of O(n2) multiplicative factor to the rounds (and time). Moreover, at a
price of O(n4) the sequence of permutations can even be made independent of the
non-n-private function g. Finally, note that if g is a symmetric function (which is
often the “interesting” case), then there is no need to permute the inputs to g.

Next, we recall the assumption that the number of arguments of g is the same
as the number of arguments of f (i.e., n). Again, it follows from our constructions
that this is not essential to any of our results: all that is needed is the ability for
the two players Pk, P` that wish to compute the OR function in a certain step to do
so by providing the two distinguished arguments i, j for g, and all the other (fixed)
arguments can be provided by arbitrary players (e.g., all of them by P1).

Finally, we note that the negative result of [CKu-89] allows a probability of error;
hence, even a weaker notion of reduction that allows for errors in computing f does not
change the family of complete functions. This impossibility result (i.e., first direction
of the main theorem) still holds even if we allow the players to communicate not only
using the black box but also using other types of communication such as point-to-point
communication channels.

6.3. Open questions. The above results can be easily extended to show that
any boolean g that is complete can also be used for a private computation of any
multioutput function f (i.e., a function whose output is an n-tuple (y1, . . . , yn), where
yi is the output that should be given to Pi). This is so because Lemma 5.1 still
holds. On the other hand, it is an interesting question to characterize the multioutput
functions g that are complete (even in the boolean case where each output of g is in
{0, 1}).
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It is not clear how to extend the model and the results to the case of malicious
players in its full generality. Notice, however, that under the appropriate definition
of the model, if we are given as a black box the two-argument OR function, we can
still implement private channels (see [KMO-94] for details), and hence by [BGW-88,
CCD-88] can implement any f n/3-privately with respect to malicious players.

Suppose that we relax the notion of privacy to computational privacy (as in [Yao-82,
GMW-87]). In such a case, any computationally n-private implementation of an
(information-theoretically) non-n-private (equivalently, complete) boolean function g
implies the existence of a one-way function. This is so since we have shown that such
an implementation of g implies an implementation of OT, which in turn implies the
existence of a one-way function by [IL-89]. However, the best-known implementation
of such protocols for a function g as above requires trapdoor one-way permutations
[GMW-87]. It is an important question whether there exists an implementation based
on a one-way function (or permutation) for functions without a trapdoor. This ques-
tion has only some partial answers. In particular, when one of the players has super-
polynomial power, this is possible [OVY-91]. However, if we focus on polynomial-time
players and protocols, then the result of our paper together with the work of [IR-89]
implies that for all complete functions, if we use only black-box reductions, this is as
difficult as separating P from NP. Thus, using black-box reductions, complete func-
tions seem to be hard to implement (with computational privacy) without a trapdoor
property. Notice, however, that for nonboolean functions we have shown that there
are functions that are not n-private and not complete. It is not known even if these
functions can be implemented without using a trapdoor (the impossibility results of
[IR-89] do not apply to this case).

Appendix. n-private protocols using embedded-OT channels. In this
appendix, we present an n-private protocol that uses OT channels to compute an
arbitrary n-argument function f . Our starting point is the protocol presented in
[GMW-87, GHY-87, GV-87, GL-90, BG-89], which also deals with malicious players.
Here we assume that players are honest. This enables us to use a simplified version
of the protocol and prove Lemma 5.1.

Proof. The protocol goes as follows: given a circuit with addition and multipli-
cation mod 2 gates that computes the function f , the players do the following. (All
arithmetic operations in this protocol are modulo 2.)

1. Sharing the inputs: Each player Pi shares each bit xi,k of its input xi by

choosing, uniformly, at random a vector (ai,k1 , . . . , ai,kn ) such that
∑n
j=1 a

i,k
j =

xi,k. Each such ai,kj is called a share of the secret xi,k. The player Pi sends

the share ai,kj to Pj (over their common private channel9).
2. Evaluating the function: The evaluation of the function is done in a bottom-

up fashion. Each gate c = a ◦ b is evaluated using the shares corresponding
to the inputs a and b of the gate. The evaluation of each gate ends with each
player Pi holding a share ci of the gate’s output c, where the vector of shares
(c1, . . . , cn) is uniformly distributed among the vectors whose sum is c. We
distinguish between two cases according to the operation in the gate:
• c = a+ b: Pi computes its share of c by summing its shares of a and b,

i.e., ci = ai + bi. (No interaction is needed.)

9Note that, given an OT channel (as constructed in section 4.2), a private channel is easy to
implement: for S to send a bit b to R it duplicates its bit twice, R chooses a selection bit arbitrarily,
and they execute their OT protocol.
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• c = ab: Note that a · b = (
∑n
i=1 ai) · (

∑n
j=1 bj) =

∑
1≤i,j≤n ai · bj .

Each player Pi can compute (locally) aibi. (However, if player Pi knew
ai · bj (for j 6= i), it might be able to compute bj , violating the privacy
requirement.) Instead, we let Pi and Pj interact in a two-party protocol,

so that at the end Pi will know vi,j
4
= (ai · bj) − ri,j and Pj will know

ri,j , where ri,j is a random bit (and so vi,j + ri,j equals ai · bj). This
is done by letting Pj choose ri,j at random. Then, Pi receives from Pj ,
via their common OT channel, the aith element of the pair of values
((0 · bj) − ri,j , (1 · bj) − ri,j) (this pair can be easily computed by Pj).
Clearly, this element is exactly (ai · bj) − ri,j , as desired. As they use
the OT channel, Pj has no idea which value Pi selected. We repeat
this two-party protocol for each pair Pi, Pj . Each player computes ci =
ai · bi +

∑
j 6=i vi,j +

∑
j 6=i rj,i. It can be verified that c =

∑n
i=1 ci.

3. Revealing f(x1, . . . , xn). Each player Pi broadcasts its share of the output
gate of the circuit. The sum of these shares is the desired value.

In the claims below, we verify (inductively) that during the computation, each vector
of shares has the required sum and that the distribution in any proper subset of the
shares is uniform. In addition, the interaction gives no information about previously
computed shares. These properties give the correctness and privacy of the protocol.

Let Viewf (T, 〈xi〉, 〈Ri〉i∈T ) denote the view that the set of players (coalition) T
has on the communication in the above protocol for computing f , given that each
player Pi (1 ≤ i ≤ n) has input xi and that each player Pi in T has random string Ri.
This is a random variable that is determined by the choice of random strings Ri for
all players Pi not in T . We include in this view only messages that go from players
in T̄ to players in T . (Note that these messages together with the inputs and random
strings of players in T completely define the messages sent among players in T and also
messages sent from players in T to players in T̄ .) Similarly, ViewC(T, 〈ai, bi〉, 〈Ri〉i∈T )
denotes the view of T in a subprotocol evaluating a (multiplication) gate C (whose
inputs a and b are shared by (a1, . . . , an) and (b1, . . . , bn), respectively).

In the above protocol there is no communication for addition gates. Hence the
view consists only of messages received during the sharing stage, during the evaluation
of multiplication gates, and during the revealing stage. The first claim says that in a
single evaluation of a multiplication gate no information is revealed.

Claim A.1. Consider the subprotocol evaluating a multiplication gate C that
computes a value c = ab. For every coalition T , for all sets of shares (a1, . . . , an)
(b1, . . . , bn) that are the input for this subprotocol (i.e., {ai, bi} is the input for player
Pi), for all choices of random strings for players in T , 〈Ri〉i∈T , and for all commu-
nication comm ∈ {0, 1}s, where s = |T |(n− |T |), we have

Pr[ViewC(T, 〈ai, bi〉, 〈Ri〉i∈T ) = comm] = 2−s,

where the probability goes over all choices of Ri for i ∈ T̄ .
Proof. The communication that goes from T̄ to T during the evaluation of a

multiplication gate C is as follows: for every i ∈ T and j ∈ T̄ the players Pi, Pj
jointly “compute” aibj and ajbi. In computing ajbi the player Pi does not get any
message (its role is to pick a random rj,i and to send a message over their common
OT channel). In computing aibj player Pi receives a one-bit message (vi,j). Hence,
the view of coalition T must be of size s. Moreover, as ri,j is chosen (by Pj) uniformly
at random, then vi,j is also uniformly distributed in {0, 1} (independently of what ai
and bj are). As all ri,j ’s are independent, the claim follows.
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The next claim shows that at each stage of the computation the vector of shares
is uniformly distributed. This is particularly important in the revealing stage, when
we need to be sure that only the output is revealed.

Claim A.2. Let x1, . . . , xn be an input to the protocol (i.e., xi is the input for
player Pi). Let C be a gate in the circuit and let c be the value of this gate when the

input for the circuit is x1, . . . , xn. Let ~C be a vector of shares that represents c in the
above protocol. Then,

• ∑n
i=1 Ci = c (correctness); and

• ~C is uniformly distributed among the vectors whose sum is c (privacy), i.e.,

let c1, . . . , cn satisfy
∑
ci = c (there are 2n−1 such vectors). Then Pr[~C =

(c1, . . . , cn)|~x] = 1/2n−1.
Proof. The first part easily follows from the description of the protocol, by induc-

tion. The second part is also proved by induction. The claim is certainly true after
the sharing stage (as this is the way the shares are chosen). Now suppose we evaluate
a gate. If the gate is an addition gate, computing C = A+B, then

Pr[~C = (c1, . . . , cn)|~x]

=
∑

a1,...,an;
∑

ai=A

Pr[ ~A = (a1, . . . , an)|~x] · Pr[ ~B = (c1 − a1, . . . , cn − an)|~x]

= 2n−1 1

2n−1

1

2n−1
=

1

2n−1
.

If the gate computes C = A ·B, then we can fix ~A = (a1, . . . , an) and ~B = (b1, . . . , bn)

and now show that for any such fixed choice ~C still satisfies the requirement. In
particular, it suffices to show (by induction on i) that the probability that C1 =
c1, . . . , Ci = ci for i ≤ n − 1 is 1/2i. To do so, we consider the bits ri,j (j 6= i) and
rj,i (j 6= i) and assign random values to each of them (that were not assigned values
so far). At least one of those random bits (e.g., rn,i) is still “free.” This implies that
ci will be uniformly distributed (as rn,i is one of the summands that construct ci).
Clearly, when we consider Cn, all the random bits already have values and hence the
value of Cn is already determined.

We now turn to the proof of the privacy of the whole protocol.
Claim A.3. For every coalition T (of size 1 ≤ |T | ≤ n − 1), for all input

x1, . . . , xn, for all choices of random strings for players in T , 〈Ri〉i∈T , and for all
possible communication comm,10

Pr[Viewf (T, 〈xi〉, 〈Ri〉i∈T ) = comm] = 2−d

for d = |T |·nT̄ +m·|T |·(n−|T |)+(n−|T |−1), where m is the number of multiplication
gates in the circuit for f and nT̄ is the number of inputs for the circuit held by players
in T̄ . (Again, the probability goes over all choices of Ri for i ∈ T̄ .)

Proof. In the sharing stage, each player in T receives a share (a bit) from each
input to the circuit held by a player in T̄ (by definition there are nT̄ such bits). The
properties of the secret sharing guarantee that each of these bits is 0 with probability
1/2 and they are all independent. The evaluation of addition gates does not involve
any communication. Claim A.1 guarantees that in the evaluation of any multiplication
gate, no matter what are the shares that the players start with, the view of the

10A communication is possible for x1, . . . , xn if it is consistent with f(x1, . . . , xn).
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players in T consists of a random string of length |T |(n − |T |). Also, note that
each of these evaluations makes use of new (independent) random bits. Finally, if
f1, . . . , fn are the shares representing the outcome of the circuit, then by Claim A.2
this vector is uniformly distributed among the vectors whose sum equals f(x1, . . . , xn).
Therefore, the players in T get in the revealing stage n−|T | bits, which form 2n−|T |−1

combinations each with equal probability. Note that if |T | = n − 1, then in the
revealing stage the players in T get only one bit, which is uniquely determined by
~x. However, if |T | < n− 1, then the independence of the communication seen in the
revealing stage and the communication seen in previous stages is guaranteed by the
random bits ri,j for i, j ∈ T̄ . Combining all these we get the desired claim.

Corollary A.4. For every coalition T (of size 1 ≤ |T | ≤ n− 1), for all inputs
x1, . . . , xn and y1, . . . , yn such that f(x1, . . . , xn) = f(y1, . . . , yn) and such that xi = yi
for all i ∈ T , for all choices of random strings for players in T , 〈Ri〉i∈T , and for all
communication comm,

Pr[Viewf (T, 〈xi〉, 〈Ri〉i∈T ) = comm] = Pr[Viewf (T, 〈yi〉, 〈Ri〉i∈T ) = comm],

where the probability goes over all choices of Ri for i ∈ T̄ .
This completes the proof of Lemma 5.1.
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Abstract. Modular gates are known to be immune for the random restriction techniques of
Ajtai (1983), Furst, Saxe, and Sipser (1984), Yao (1985), and H̊astad (1986). We demonstrate here
a random clustering technique which overcomes this difficulty and is capable of proving generaliza-
tions of several known modular circuit lower bounds of Barrington, Straubing, and Thérien (1990),
Krause and Pudlák (1994), and others, characterizing symmetric functions computable by small
(MODp,ANDt,MODm) circuits.

Applying a degree-decreasing technique together with random restriction methods for the AND
gates at the bottom level, we also prove a hard special case of the constant degree hypoth-
esis of Barrington, Straubing, and Thérien (1990) and other related lower bounds for certain
(MODp,MODm,AND) circuits.

Most of the previous lower bounds on circuits with modular gates used special definitions of the
modular gates (i.e., the gate outputs one if the sum of its inputs is divisible by m or is not divisible
by m) and were not valid for more general MODm gates. Our methods are applicable, and our lower
bounds are valid for the most general modular gates as well.

Key words. lower bounds, modular gates, composite modulus

AMS subject classifications. 68Q05, 68Q15, 68Q22
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1. Introduction. Boolean circuits are perhaps the most widely examined mod-
els of computation. They gain application in diverse areas as VLSI design, complexity
theory, and the theory of parallel computation.

A majority of the strongest and deepest lower bound results for computational
complexity were proved using the Boolean circuit model of computation (for example,
[12], [16], [8], [13], [14], or see [4] for a survey).

Unfortunately, lots of questions, even for very restricted circuit classes, have been
unsolved for a long time.

Bounded depth and polynomial size is a natural restriction. Ajtai [1] and Furst,
Saxe, and Sipser [6] proved that no polynomial sized, constant-depth circuit can com-
pute the PARITY function. Yao [16] and H̊astad [8] generalized this result for sublog-
arithmic depths. Their technique involved a sophisticated use of random restriction
techniques, in which randomly assigned 0-1 values to the input variables fixed the
output of large fan-in AND and OR Boolean gates.

Since the modular gates are very simple to define, and they are immune to the
random restriction techniques in lower bound proofs for the PARITY function, the
following natural question was asked by Barrington, Smolensky and others: How
powerful will the Boolean circuits be if, beside the standard AND, OR, and NOT
gates, MODm gates are also allowed in the circuit? Here, a MODA

m gate outputs 1 if
the sum of its inputs is in a set A ⊂ {0, 1, 2, . . . ,m− 1} modulo m.
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Razborov [13] showed that for computing MAJORITY with AND, OR, NOT,
and MOD2 gates, exponential size is needed with constant depth. This result was
generalized by Smolensky [14] for MODp gates instead of MOD2 gates, where p denotes
a prime.

We know very little, however, if both MODp and MODq gates are allowed in the
circuit for different primes p, q, or if the modulus is a nonprime power composite, e.g.,
6. For example, it is consistent with our present knowledge that depth-3, linear-sized
circuits with MOD6 gates only recognize an NP-complete language (see [2]).

It is not difficult to see that constant-depth circuits with MODp gates only
(p prime) cannot compute even very simple functions—the n-fan-in OR or AND
functions—since they can compute only constant degree polynomials of the input
variables over GFp (see [14]).

But depth-2 circuits with MOD2 and MOD3 gates or MOD6 gates can compute
the n-fan-in OR and AND functions [9], [2]. Consequently, these circuits are more
powerful than circuits with MODp gates only. The sketch of the construction is as
follows: we take a MOD3 gate at the top of the circuit and 2n MOD2 gates on the
next level, where each subset of the n input variables is connected to exactly one
MOD2 gate, and then this circuit computes the n-fan-in OR, since if at least one of
the inputs is 1, then exactly half of the MOD2 gates evaluate to 1.

Barrington, Straubing, and Thérien [2] conjectured that any (MODB
p ,MODA

m,
ANDd) circuit needs exponential size to compute the n-fan-in AND function, where
the prime p and the positive integers m and d are fixed and ANDd denotes the fan-in
d AND function. They called it the constant degree hypothesis (CDH) and proved the
d = 1 case, with highly nontrivial algebraic techniques. Their proof also works for
depth-(`+ 1)

(

`︷ ︸︸ ︷
MODB

pk ,MODB
pk , . . . ,MODB

pk ,MODA
m)(1.1)

circuits, computing the AND function.
Yan and Parberry [15], using Fourier-analysis, also proved the d = 1 case for

(MOD{1,2,...,p−1}
p ,MOD

{1}
2 ) circuits, but their method also works for the special case

of the CDH where the sum of the degrees of the monomials gi on the input-level
satisfies ∑

deg(gi)≥1

(deg(gi)− 1) ≤ n

2(p− 1)
−O(1).

Krause and Waack [11] applied communication-complexity techniques to show

that any (MOD{1,2,...,m−1}
m ,SYMMETRIC) circuit, computing the ID function

ID(x, y) =
{

1 if x = y,
0 otherwise

for x, y ∈ {0, 1}n, should have size at least 2n/ logm, where SYMMETRIC
is a gate, computing an arbitrary symmetric Boolean function. Since (non-
weighted) MODm gates are also SYMMETRIC gates, this lower bound is valid for

(MOD{1,2,...,m−1}
m ,MODA

m) circuits. When mod m coefficients (or multiple wires) are
allowed on the input-level, then the MODm gates are not SYMMETRIC gates, but
the same proof techniques remain applicable. Caussinus [5] proved that the result of
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[2] also implies a similar lower bound for the AND function. Unfortunately, results
[11], [5] do not generalize for the more general MODA

m gates at the top.

Krause and Pudlák [10] proved that any (MOD
{0}
pk
,MOD{0}q ) circuit which com-

putes the MOD{0}r function has size at least 2cn, for some c > 0, where p and r are
different primes and q is not divisible by either of them.

Our main result is a characterization of those symmetric Boolean functions which
are computable by quasi-polynomial-size

(

`︷ ︸︸ ︷
MODB

pk ,MODB
pk , . . . ,MODB

pk ,MODA
m)

circuits. We prove (Theorem 2.5) that the only symmetric functions that are com-
putable by such circuits are the MODmpj functions with small j. Consequently, the

nontrivial threshold functions (and thus also AND and OR) and the MOD{0}r func-
tions if r does not divide pjm need exponential size on that circuits. Even MOD4

requires exponential size (MOD3r ,ANDt,MOD2) circuits for constant t and r. Note
the asymmetry: MOD4 is easy to compute with a polynomial size (MOD2,AND3) cir-
cuit. These results generalize the theorems of Barrington, Straubing, and Thérien [2]
and Krause and Pudlák [10] and give a characterization of the computable symmetric
functions, instead of singular lower bounds.

Grolmusz [7] generalized the results of [2], [15], [11], [10] for (MODq,MODp,ANDcn)
circuits, where the input-polynomials of each MODp gate are constructible from linear
terms using at most cn− 1 multiplications (or, equivalently, can be computed by an
arithmetic circuit of an arbitrary number of mod p additions and at most cn−1 fan-in
2 multiplications). In particular, one can allow the sum of an arbitrary function of cn
variables and a linear polynomial of the n variables as inputs for each MODp gate.
We generalize this result, too (Lemma 3.12). The main tool of the proof of [7] is a
degree decreasing lemma, which we also generalize here for nonprime moduli (Lemma
3.9), and we use it both for lower and upper bound proofs.

Here we generalize the results of [7]: we prove a lower bound on the size of the
(MODp,MODm,AND) circuits computing ANDn if m is a positive integer, p is a
prime, and each MODm gate has not-too-many AND gates as inputs and those AND
gates have low fan-in. For the exact statement see Theorem 2.6. This is an important
special case of the CDH of [2]. The lower bound also applies to circuits computing
some other functions besides AND.

2. Our results.

2.1. Ideas. MODm gates are immune to random restriction techniques, since
these gates remain MODm gates on the remaining variables after an arbitrary restric-
tion, and thus (unless less than m variables remain unrestricted) the complexity does
not decrease.

We overcome this difficulty by a random clustering technique, which forces some
randomly chosen variables to be equal. Each equivalence class (or cluster) will make
a new variable of the MODm gate, and each new variable will be invisible (i.e., its
coefficient will be a multiple of m) for the gate with a constant probability (Lemma
3.4).

We use this for (MODp,ANDt,MODm) circuits, computing symmetric functions.
Suppose that the equivalence classes are of size m; then the resulting function of the
new, clustered variables is a unique symmetric function.
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Almost all symmetric functions (except the MODpkm functions) have large restric-
tions, whose unique factor resulting from the clustering above cannot be expressed as
a modulo p sum of functions, none of which depends on all variables. An exponential
lower bound follows for the number of AND gates on level 2 (Theorem 2.4).

If we have o(n2/ logn) constant-degree monomials as inputs for each MODm gates
on level 2, then by random restrictions, one can essentially decrease their number, and
a small number of low-degree monomials can be converted to linear polynomials with
the help of the degree-decreasing lemma (Lemma 3.9), and we can apply Theorem 2.4
to get lower bounds. (Theorem 2.6)

2.2. Preliminaries.
Definition 2.1. A fan-in n gate is an n-variable Boolean function. Let

G1, G2, . . . , G` be gates of unbounded fan-in. Then a (G1, G2, . . . , G`)-circuit denotes
a depth-` circuit with a G1-gate on the top, G2 gates on the second level, G3 gates
on the third level from the top,. . . , and G` gates on the last level. ANDt denotes the
fan-in t AND gate. The size of a circuit is defined to be the total number of the gates
in the circuit.

All of our modular gates are of unbounded fan-in, and we allow for connecting
inputs to gates or gates to gates with multiple wires. Note that, by this definition,
our modular gates are not symmetric gates in general.

In the literature MODm gates are sometimes defined to be 1 iff the sum of their
inputs is divisible by m, and sometimes they are defined to be 1 iff the sum of their
inputs is not divisible by m. The following, more general definition covers both cases.

Definition 2.2. We say that gate G is a MODm-gate if there exists A ⊂
{0, 1, . . . ,m− 1} such that

G(x1, x2, . . . , xn) =

{
1 if

∑n
i=1 xi mod m ∈ A,

0 otherwise.

A is called the 1-set of G. MODm gates with 1-set A are denoted by MODA
m.

Notation 2.3. Let Σp(x1, x2, . . . , xs) =
∑s
i=1 xi mod p.

In general, Σp is not a Boolean gate, since its value is from {0, 1, . . . , p − 1}.
However, in all of our statements, its value will be guaranteed to be 0 or 1.

2.3. Theorems. Here we list the three main results of this paper. To be concise
we use ((MODB

pk)`,MODA
m) to denote circuits of type (1.1). Note that standard tech-

niques (see Lemma 3.2) show that these circuits are equivalent to (
∑
p,ANDt,MODA

m)
circuits, and we could have stated Theorems 2.4 and 2.5 for those circuits instead.

Theorem 2.4. Suppose that a circuit of type ((MODB
pk)`,MODA

m) with p prime

computes a symmetric Boolean function f on n variables, such that f 6= MODA
pjm for

any A. Then its size S is exponential in pj ; i.e., there exists a number c > 1 depending
on p, m, k, and ` such that S > cp

j

.
As a special case we get that the size S of an n-variable circuit of type

((MODB
pk)`,MODA

m) with p prime computing any of the nontrivial threshold func-

tions (including AND and OR) or the MOD{0}r function (where r does not divide
mpj for any j) is exponential in n. We have S > cn for a number c > 1 depending
only on p, m, k, and `.

Theorem 2.5. Let the prime p and the positive integers m, k, and ` be fixed with
m not a power of p. The symmetric functions computed by a type ((MODB

pk)`,MODA
m)
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circuit of quasi-polynomial size are exactly the functions MODC
mpj with j =

O(log logn) and C ⊂ {0, 1, . . . ,mpj − 1}.
On the other hand, all the functions MODC

mpj with j = O(log logn) can be com-
puted by quasi-polynomial size (

∑
p,AND2,MODm) circuits.

Our final result proves a special case of the CDH.
Theorem 2.6. Let p be prime and m a fixed positive integer. Suppose that

a (MODB
p ,MODA

m,AND) circuit computes ANDn. If each MODm gate has fan-in
o(n2/ logn) and each AND gate has constant fan-in, then the size of the circuit is
super-polynomial.

We remark that this result is a consequence of the tradeoff between the size of
(Σp,MODm,AND) circuits computing AND and a new measure introduced here, the
number of pairs of input variables the MODm gates relate (see Theorems 3.13 and
3.14). Note that similar bounds can be proved for circuits computing many other
natural functions, like threshold or MODr functions.

3. The proofs.

3.1. Eliminating the top gate. The top-gate elimination is widely used in the
literature (cf. [10, Lemma 5.2] or [3]). It replaces the top MODpr gate with constant
fan-in AND gates and a simple summation modulo p with a polynomial increase in
the size.

Lemma 3.1. Let p be a prime, k a positive integer, and A ⊂ {0, 1, . . . , pk −
1}. There is a modulo p polynomial of degree pk − 1 computing the MODA

pk

function.
One can repeatedly use this lemma to eliminate a constant-depth subcircuit of

MODpr gates from the top of any circuit, as stated by the next lemma.
Lemma 3.2. Suppose that f : {0, 1}n → {0, 1} is computed by a depth-(`+ 1)

(

`︷ ︸︸ ︷
MODA

pk , . . . ,MODA
pk , G)

circuit, where p is a prime and on the input level we have arbitrary gates (or sub-
circuits) G. Suppose the number of these gates G is S. Then f can also be computed

from the same gates G by a (Σp,ANDt, G) circuit, with t < pk` and at most Sp
k`

ANDt gates on the middle level.
Proof. By Lemma 3.1 all MODA

pk can be replaced by a modulo p polynomial of

degree less than pk; thus f is degree < pk` polynomial of the output of the G gates.
The bound on the size comes from counting all the possible monomials in such a
polynomial.

Note that the size of the new circuit is still polynomial in S, and the fan-in of
the AND gates is constant if the depth ` and the modulus pk are constants. Note also
that ANDt gates with t < pk can be considered as special MODpk gates, and thus
ANDt gates can be eliminated the same way.

3.2. Random clustering.
Definition 3.3. Let ∼ be an equivalence relation on the variables of a function f .

By the factor f/∼ of f we mean the function obtained from f by identifying variables
according to ∼. The variables of f/∼ correspond to the equivalence classes of ∼. For
an integer m we call the f/∼ an m-factor of f if each equivalence class in ∼ consists
of m variables.
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We say that the Boolean function f is p-simple (p is a positive integer) if it can
be expressed as a modulo p sum of functions, none of which depend on all of the
variables.

Example. Suppose that f has six variables, and x1∼x2, x3∼x4, x5∼x6. Then f/∼
is a 2-factor of f, has three variables, and is defined as

f/∼(y1, y2, y3) = f(y1, y1, y2, y2, y3, y3).

Notice that any factor of the AND function is again an AND function. The m-
factor of a symmetric function is unique and it is also a symmetric function. Note
that for prime numbers p a function f is p-simple iff it can be expressed as a modulo
p polynomial of degree less than the number of its variables.

Implicitly, a random clustering technique was used in the paper of Krause and
Pudlák [10]. However, our method gives stronger results more directly.

The following lemma is about a special type of three level circuits. It is stated in a
more general way, but the reader may think of polynomial size, (

∑
p,ANDt,MODA

m)
circuits with constant t.

Lemma 3.4. Let p, m, and t be positive integers, 1 ≥ ε > 0, and suppose the
Boolean function f on n variables satisfies f ≡ ∑S

i=1 fi (mod p), where each fi is
computed in an arbitrary way from t of the functions fij and from (1 − ε)n of the
input variables. Each of the functions fij is in turn a modulo m linear combination
of the input variables. Here the functions fi output modulo p values while fij output
modulo m values. If n is large enough and divisible by m and S < cn, then there exists
a p-simple m-factor of f, where the constant c > 1 depends only on m, t, and ε.

Proof. The idea is to observe that fij/∼ is a modulo m linear combination of its
variables, and the coefficient of a variable, corresponding to an equivalence class in a
random ∼, is equal to zero with a positive constant probability. Thus fi/∼ depends on
all of its variables with exponentially small probability. Then, with high probability,
all the functions fi/∼ have an invisible variable, and thus f/∼ is p-simple.

Fig. 3.1. Random clustering in the simplest case: t = 1, ε = 1, and every fi1 is a MOD6 gate.

Let us choose ∼ uniformly at random from all the partitions of the variables
into classes of size m. Consider choosing the equivalence classes one by one. Consider
a fixed 1 ≤ i ≤ S and one of the first dεn/(2m)e classes. When we choose the
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variables of this class, there are less than εn/2 variables already in previous classes
and at most (1 − ε)n variables directly seen by fi, so the set H of the remaining
variables has at least εn/2 elements. Each variable in H has a coefficient in each
of the combinations fij . Let (aj)

t
j=1 be a list of coefficients that are most popular,

and call a variable in H good if its coefficient in fij is aj for each value of j. There
are at least |H|/mt ≥ εn/(2mt) good variables. When choosing the variables for our
equivalence class each has a probability of at least ε/(2mt) to be good. Despite the
slight dependence among these events, the probability that each of them are good is
still at least (ε/(4mt))m for large enough n. If this is the case, fi/∼ does not depend
on the variable corresponding to this class, since fi does not see it directly, and the
coefficient of this variable in fij is maj = 0 mod m. Thus (using (1−u)k < e−uk) with

probability at most e−(εn/(2m))·(εm−t/4)m does fi/∼ depend on each of its variables.
We choose ln c = (ε/4)m+1/mtm+1. If S < cn, then with positive probability none of

the functions fi/∼ depend on all of the variables; consequently, f/∼ ≡ ∑S
i=1 fi/∼

(mod p) is p-simple.
We remark here that the same proof gives that if S in the lemma is bounded by

another exponential function of n, then a random m-factor of f can almost always be
expressed as a modulo p sum of functions; none of the functions depends on an m−mt

fraction of their variables.
Notation 3.5. Let w(x) denote the weight of a zero-one vector x, i.e., the

number of ones in x. Then f(i) denotes the value of the symmetric Boolean function
f on inputs of weight i.

Lemma 3.6. Let p be a prime. If f is a symmetric Boolean function on pk

variables with f(0) 6= f(pk), then f is not p-simple.
Proof. Notice that ∑

x∈{0,1}n
(−1)w(x)f(x) ≡ 0 (mod p)

for p-simple functions f . The left-hand side is zero for functions not depending on one
of the input variables; thus it is divisible by p for a modulo p sum of such functions.

For a symmetric function on n = pk variables, the left-hand side of the last
equation is

n∑
i=0

(−1)i
(
n

i

)
f(i) ≡ f(0)− f(n) (mod p),

since p divides
(
pk

i

)
unless i = 0 or i = pk. Thus f(0) 6= f(n) implies that f has full

p-degree as claimed.
Theorem 3.7. Let p be a prime, m, t, k, and S positive integers, and 1 ≥ ε > 0.

Suppose the symmetric Boolean function f on n variables is the modulo p sum of S
of the functions fi, where each of the fi is computed in an arbitrary way from t of the
functions fij and from (1 − ε)n of the input variables. Each of the functions fij is
in turn a modulo m linear combination of the input variables. Here the functions fi
output modulo p values while fij output modulo m values. Suppose f is not equal to

any MODmpk gate. Then S > cp
k

for a constant c > 1 depending only on m, t, and
ε.

Proof. Since f is not a MODmpk gate, there exist numbers 0 ≤ i < i+mpk = j ≤ n
such that f(i) 6= f(j). Restrict the function f by assigning 0 to n− j of its variables
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and assigning 1 to i of them. The resulting function f ′ is a symmetric function of
its mpk variables satisfying f ′(0) 6= f ′(mpk). Notice that the restriction does not
increase the size of the circuit computing the function. The unique m-factor of f ′ is a
symmetric function f ′′ on pk variables satisfying f ′′(0) 6= f ′′(pk). By Lemma 3.6, f ′′

is not p-simple. Thus Lemma 3.4 gives the claimed bound on S.

We are ready now to prove Theorem 2.4.

Proof of Theorem 2.4. We apply Lemma 3.2 to get rid of the MODpk gates and
get a (

∑
p,ANDt,MODm) circuit for our symmetric function. The size of the circuit

blows up polynomially, i.e., it is bounded by Sb, where b and t depend on p, m, k, and
`. Then Theorem 3.7 bounds S. Notice that we did not use the feature of Theorem
3.7 that the middle gates can directly depend on many input variables.

The statement on the specific functions follows from the observation that ev-
ery function mentioned there satisfies that it is not of the form MODA

mpj unless

mpj > n.

The following lemma nicely complements Theorem 3.7.

Lemma 3.8. Consider the Boolean function f(x1, x2, . . . , xn) = MODA
mpk(x1, x2,

. . . , xn). If m is not a power of the prime p, then f can be computed by a

(
∑
p,AND2,MODm) circuit of size at most (mn)2pk

′
, where pk

′
is the largest power

of p dividing mpk.

Notice that the assumption that m is not a power of p is necessary. Otherwise, if
m = p`, arbitrary size constant depth circuits of constant fan-in AND and arbitrary
MODp and MODm gates could only compute Boolean functions expressible as con-
stant degree modulo p polynomials, and that constant degree does not depend on k.
Consequently, it cannot compute f, which is a degree-(pk − 1) polynomial.

Proof. Suppose first that all elements of the 1-set A are congruent to a single
number a modulo m. There is a degree pk

′ − 1 polynomial on the input computing
MODA

pk′ modulo p (Lemma 3.1). This polynomial can be implemented by a modulo p

sum of AND gates of at most pk
′ −1 variables. The number of AND gates is bounded

by np
k′−1. Let q be prime factor of m different from p, and place a redundant MOD{1}q

gate above each AND gate. Apply the degree decreasing lemma (Lemma 3.9) to replace

each AND gate by a collection of at most (2q)p
k′−2 MODq gates summing to the

same value modulo p. First replace each MODq gate by a MODm gate computing the

same function, then replace each MODm gate G by the AND of G and the MOD{a}m
gate on all the inputs. The resulting circuit computes the AND of the MOD{a}m and
the MODA

pk′ functions; thus it computes the MODA
mpk function as desired.

To remove our assumption on A, notice that every set A can be decomposed into
m sets Ai satisfying this assumption. The equation MODA

mpk =
∑
i MODAi

mpk
proves

the lemma.

Consider the smallest (
∑
p,ANDt,MODm) circuit computing the function

MOD
{0}
mpj , and notice that the lower bound on the circuit size for this function in

Theorem 3.7 is cp
j

, while the upper bound in Lemma 3.8 is nc
′pj . The gap is too wide

to characterize polynomial size circuits, but we can characterize quasi-polynomial-size
circuits as in Theorem 2.5.

Proof of Theorem 2.5. Apply Lemma 3.2 as in Theorem 2.4 to eliminate the
MODpk gates. Use Theorem 3.7 and Lemma 3.8 to get the two sides of the charac-
terization.
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3.3. The degree-decreasing lemma. Lemma 3.9 exploits a surprising prop-
erty of (MODs, MODm)-circuits, which (MODp,MODp) circuits lack, since constant-
depth circuits with MODp gates and arbitrary size are only capable of computing
constant-degree modulo p polynomials of the input. Here we generalize the original
version [7] of the degree-decreasing lemma for nonprime moduli.

Lemma 3.9 (degree-decreasing lemma). Let p be a prime and s,m > 1 be in-
tegers, satisfying gcd(s, p) = gcd(s,m) = 1. Let x1, x2, x3 be variables taking values
from {0, 1, . . . , p− 1}, x′1 ∈ {0, 1}. Then

MODA
p (x1x2 + x3) ≡ H0 +H1 + · · ·+Hp−1 + β (mod s),(3.1)

MODA
m(x′1x2 + x3) ≡ H ′0 +H ′1 + β′ (mod s),(3.2)

where Hi abbreviates

Hi = α

p−1∑
j=0

MODA
p (ix2 + x3 + j(x1 + (p− i)))

for i = 0, 1, . . . , p−1; α is the multiplicative inverse of p modulo s: αp ≡ 1 (mod s);
β is a positive integer satisfying β = −|A|(p− 1)α mod s; H ′i abbreviates

H ′i = α′
m−1∑
j=0

MODA
m(ix2 + x3 + j(x′1 + (m− i)))

for i = 0, 1; and α′ is the multiplicative inverse of m modulo s: α′m ≡ 1 (mod s);
and β′ is a positive integer satisfying β′ = −|A|α mod s.

Fig. 3.2. Degree decreasing in (MOD3,MOD
{1}
2 ) case. On the left the input is a degree-2

polynomial, and on the right the input consists of linear polynomials.

Proof. Let x1 = k, and let 0 ≤ i ≤ p− 1, k 6= i. Then

Hk = α

p−1∑
j=0

MODA
p (kx2 + x3) = αpMODA

p (kx2 + x3) ≡ MODA
p (x1x2 + x3) (mod s)
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and

Hi = α

p−1∑
j=0

MODA
p (ix2 + x3 + j(k − i)) = α|A|,

since for any fixed x2, x3, i, k expression kx2+x3+j(k−i) takes on every value exactly
once modulo p while j = 0, 1, . . . , p−1; so MODA

p (ix2 +x3 + j(k− i)) equals 1 exactly
|A| times. Consequently,

H0 +H1 + · · ·+Hp−1 +β ≡ MODA
p (x1x2 +x3)+(p−1)α|A|+β ≡ MODA

p (x1x2 +x3)

(mod s).

Similarly, let x′1 = k ∈ {0, 1}, and let i ∈ {0, 1}, k 6= i. Then

H ′k = α′
m−1∑
j=0

MODA
m(kx2+x3) = α′mMODA

m(kx2+x3) ≡ MODA
p (x′1x2+x3) (mod s)

and

H ′i = α′
m−1∑
j=0

MODA
m(ix2 + x3 + j(k − i)) = α′|A|,

since for any fixed x2, x3, i, k, for i 6= k |i− k| = 1, so expression kx2 + x3 + j(k − i)
takes on every value exactly once modulo m while j = 0, 1, . . . ,m−1; so MODA

m(ix2 +
x3 + j(k − i)) equals 1 exactly |A| times. Consequently,

H ′0 +H ′1 +β′ ≡ MODA
m(x′1x2 +x3) +α′|A|+β′ ≡ MODA

p (x′1x2 +x3) (mod s).

3.4. Random restriction. The CDH of [2] states that any (
∑
p,MODm,ANDd)

circuit computing AND has superpolynomial size if p is a prime and m and d are con-
stants. We make progress toward this statement by proving Theorem 2.6 stating that
AND requires superpolynomial size circuits of this type, if each MODm gate has fan-
in o(n2/ logn). A stronger form of this statement (see Theorem 3.13) can be based
on the following definition.

Fig. 3.3. Gate G relates, e.g., x1 and x2 or x3 and x6 but does not relate x1 and x4.
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Definition 3.10. Let G be a gate of a circuit on the second level from the inputs
computing some function of AND’s of variables. We say that G relates two input
variables if they appear as inputs in a common AND gate below G.

We say that a gate G is H-linear if H is a subset of the input-variables, such that
G does not relate two input variables outside H; i.e., the input of G is linear in the
variables outside H with coefficients that are arbitrary functions of the variables in H.
We call a gate ε-linear if it is H-linear with a set H containing at most an ε-fraction
of all variables.

We start with a simple application of the degree decreasing lemma (Lemma 3.9).

Lemma 3.11. Let p and m be relatively prime integers, and consider an n variable
Boolean function f computed by a (MODB

m,AND) circuit, where the top MODB
m gate

is H-linear. Then f can be computed by a (
∑
p,MODm) circuit with (2m)|H| MODm

gates.

Proof. We use induction on |H|. In the |H| = 0 case the AND gates have fan-in
1; thus they can be removed.

We can translate the AND gates to multiplications on the 0-1 variables. Conse-
quently, the input of the MODm gate is a polynomial P of the input variables with
all of its monomials having at most a single variable outside H. We may suppose
that P is multilinear. If xi ∈ H for some 1 ≤ i ≤ n, we can write this input in the
form P = Qxi + R, where the polynomials Q and R do not depend on xi, and all
their monomials contain at most a single variable outside H. We apply Lemma 3.9
to replace our MODm gate with the modulo p sum of 2m MODm gates. The inputs
of these MODm gates are linear combinations of xi, Q, and R. To finish the proof,
we apply the inductive hypothesis with H \ {xi} to replace each of these new MODm

gates with the modulo p sum of (2m)|H|−1 MODm gates on the input variables.

Lemma 3.12. Let the prime p and the positive integer m be fixed. Then there
exist constants c > 1 and ε > 0 such that if a circuit ((MODA

pk)`,MODB
m,AND)

computes ANDn, and every MODm gate is an ε-linear gate, then the size of the
circuit is S > cn.

The proof of this lemma is simpler for the case when p is not dividing m. We
need Theorem 3.7 in its full generality for the remaining case.

Proof. Suppose first that p does not divide m.

We apply Lemma 3.11 for the MODm gates. The resulting circuit computes a
modulo p polynomial of degree less than pk` of the at most S(2m)εn MODm gates

(Lemma 3.2). The size is therefore at most (S(2m)εn)p
k`

. But Theorem 2.4 claims
an exponential lower bound on this size, thus for a small enough ε, size S must be
exponential in n.

In the general case where p may divide m, we write m = pam0 where p does not
divide m0. First we decompose each MODB

m gate into the sum of MOD{bi}m gates for

B = {b1, b2, . . . , bt}. Then MOD{bi}m gates are converted to MOD{0}m gates, connecting

bit 1 with multiple wires to the gate. Next, we exchange MOD{0}m gates to AND of

the MOD{0}m0
and MOD

{0}
pa gates. (We used a similar decomposition in the proof of

Lemma 3.8.) We have increased the size of the circuit by a factor of at most 2m so far.
We apply Lemma 3.11 to the MODm0

gates. This increases the size by a factor of at
most (2m)εn. The resulting circuit has MODm0

and AND gates at the bottom level
and MODpa , MODp,

∑
p, and AND2 gates everywhere else. As the last two types

can be replaced with MODp gates, we can apply Lemma 3.2. We get a three level
circuit computing ANDn with a

∑
p gate on top and ANDt gates in the middle (with
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a constant t depending on m, p, k, and ` ). The bottom gates are MODm and AND
gates. Notice that the number S2 of the gates in the middle level is at most St1, where
S1 is the number of gates on the bottom level, and S1 ≤ (2m)εn+1S.

The fan-in of these bottom AND gates is bounded by εn+1. We choose ε < 1/4t.
Merging the bottom AND gates with the middle AND gates, one gets that ANDn is
the modulo p sum of AND functions on at most n/2 inputs and at most t MODm

gates. Applying Theorem 3.7, one gets that S2 > cn with some c > 1 depending on
p, m, k, and `. Thus St > cn/(2m)t(εn+1) proving an exponential lower bound on S
if c > (2m)εt.

Now we turn to prove Theorem 2.6. It is a special case of the following result
proving an optimal tradeoff between size and the new measure of the maximal number
of related pairs.

Theorem 3.13. Let p be a prime and m, k, and ` positive integers. Suppose
that a ((MODB

pk)`,MODA
m,AND) circuit computes ANDn. If each MODm gate in the

circuit relates at most X ≥ n pairs of input variables then the size of the circuit is at

least c
n2/X
0 , with a constant c0 > 1 depending on p, m, k, and `.

Proof. We fix the values c and ε claimed in Lemma 3.12. We take a restriction
on the circuit by leaving a variable unrestricted with probability P = εn/(22X)
independently for each of the variables. We assign 1 to the rest of the variables.
Clearly, the restricted circuit computes the AND of the remaining variables.

With probability of at least 1/2, the number of the remaining variables is at least
n0 = bPn/2c = bεn2/(44X)c.

Exactly those pairs remained related in a MODm gate in the restricted circuit,
whose both variables remained unrestricted.

The expected number of pairs related by a single gate in the restricted circuit
is at most XP 2 = εn0/11. Unfortunately, the deviation can be large, it is easy to
construct n gates, relating n− 1 pairs each, such that any restriction to n′ variables
has a gate relating n′ − 1 pairs. Thus, it is important that, when using Lemma 3.12,
we need not bound the number of related pairs, only the size of a set, covering each
pair.

Lemma 3.12 easily implies the Theorem if there is a restriction leaving n0 variables
unrestricted, such that every MODm gate is ε-linear. In other words, for each G, we
need the existence of a set H (depending on G) of size at most εn0, which contains
at least one of every pair related by G in the restricted circuit.

Let us bound the probability that this is not the case for a fixed MODm gate G.
Take a maximal matching on pairs of unrestricted variables that are related by G. The
set H of the endpoints of the matching-edges satisfies that no pair is related outside
H, since otherwise, adding that pair to the matching would yield a larger matching.
Thus it suffices to bound the probability that |H| ≥ εn0, i.e., that all the variables
involved in some j = dεn0/2e pairs of G-related variables forming a matching remain
unrestricted. We bound this probability by the product of the number of choices for
the matching and the probability that the variables remain unrestricted for a fixed
matching. For a fixed gate G we get that the probability that at least n0 variables
remain unrestricted but G is not ε-linear after the restriction is at most

(
X
j

)
P 2j .

Hence if S
(
X
j

)
P 2j < 1/2, where S is the size of our circuit, then Lemma 3.12 proves

our theorem. The alternative is S ≥ (2
(
X
j

)
P 2j)−1 ≥ ( j

eXP 2

)j
, which proves the same

bound.
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Next we show that the logarithmic order of magnitude of the bound in Theorem
3.13 is tight.

Theorem 3.14. If m is not a power of the prime p, and X > 0 is arbitrary, then
the n variable AND function is computable by a (

∑
p,MODm,AND) circuit of size

(2m)n
2/(2X) such that the total number of pairs of variables related by any MODm

gate in the circuit is at most X.

Proof. Compute AND of the variables in two levels with AND gates, first com-
puting the AND of dn2/(2X)e classes of at most d2X/ne variables each. Then place

a MOD{1}m gate of fan-in 1 onto the top. Apply Lemma 3.11 to replace the top two

levels by the modulo p sum of (2m)n
2/(2X) MODm gates. The inputs of these new

gates are linear combinations of the outputs of the gates computing AND for a single
class.

Note that Lemma 3.11 works only if m is not a multiple of p. Otherwise use that
MODm gates can simulate MODq gates if q divides m.

We remark that the proofs of Lemma 3.12 and Theorem 3.13 use Theorem 3.7
for the lower bound, so they apply to circuits computing OR or MODr with r not
dividing mps, not just for AND. The upper bound in Theorem 3.14 can also be applied
to these functions.
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SHORTEST PATH QUERIES AMONG WEIGHTED OBSTACLES IN
THE RECTILINEAR PLANE∗
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SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1223–1246

Abstract. We study the problems of processing single-source and two-point shortest path
queries among weighted polygonal obstacles in the rectilinear plane. For the single-source case, we
construct a data structure in O(n log3/2 n) time and O(n logn) space, where n is the number of
obstacle vertices; this data structure enables us to report the length of a shortest path between the
source and any query point in O(logn) time, and an actual shortest path in O(logn+k) time, where
k is the number of edges on the output path. For the two-point case, we construct a data structure
in O(n2 log2 n) time and space; this data structure enables us to report the length of a shortest path
between two arbitrary query points in O(log2 n) time, and an actual shortest path in O(log2 n+ k)
time. Our work improves and generalizes the previously best-known results on computing rectilinear
shortest paths among weighted polygonal obstacles. We also apply our techniques to processing two-
point L1 shortest obstacle-avoiding path queries among arbitrary (i.e., not necessarily rectilinear)
polygonal obstacles in the plane. No algorithm for processing two-point shortest path queries among
weighted obstacles was previously known.

Key words. computational geometry, path planning, data structures, analysis of algorithms

AMS subject classifications. 68P05, 68Q25

PII. S0097539796307194

1. Introduction. The problems of computing shortest paths among geometric
obstacles are among the most fundamental topics in computational geometry. Given
a rectilinear plane with disjoint weighted polygonal obstacles of n vertices in total,
we study the problems of answering shortest path queries in this setting. A plane is
rectilinear if all geometric objects (e.g., lines, obstacles, paths) in it are rectilinear,
i.e., each line or edge of such an object is parallel to the x- or y-axis, and distances
are measured based on the L1 metric. No two obstacles intersect each other in their
interior points. Every obstacle is weighted, i.e., it is associated with a nonnegative
weight factor, so that a path in the plane, if it intersects the interior of an obstacle,
is charged extra cost based on the weight of that obstacle in addition to the cost
of the L1 length of the path. A shortest path connecting two points in the plane
is a path with the minimum total cost. Note that shortest paths of this kind are
in fact a generalization of the shortest paths (that completely avoid the interior of
obstacles) studied in classical geometric path planning problems; our shortest paths
become obstacle-avoiding if the weight of each obstacle is +∞. A shortest path query
specifies two points, s and t, in the plane and requests a rectilinear shortest path
(or its weighted total cost) connecting s and t. If the point s is always fixed and t
is arbitrary, then the query is called a single-source query and the fixed point s is
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called the source point. If both s and t are arbitrary points, then the query is called
a two-point query. Our objective is to create data structures which enable shortest
path queries to be answered efficiently.

Unlike shortest path problems in graph theory, in which both the single-source
and two-point (or called all-pairs) versions are well studied, geometric shortest path
query problems, especially the two-point query versions, are not yet well understood.
Geometric shortest path queries can specify arbitrary points in the plane which con-
sists of uncountable infinitely many points. Furthermore, it is still difficult in many
situations to obtain good solutions to the two-point query versions even when effi-
cient algorithms for the corresponding single-source query versions are known. The
two-point Euclidean shortest path query problem is such an example, for which only
efficient approximation results [6, 2] are known so far.

A number of algorithms have been discovered for computing rectilinear short-
est obstacle-avoiding paths [3, 4, 8, 9, 10, 11, 13, 21, 22, 24, 25, 26, 31, 32, 33] and
shortest paths among weighted obstacles [15, 24, 28, 32]. When the plane has only
a single obstacle (i.e., a simple polygon), shortest path query problems are much
easier and in fact are quite well studied (e.g., see [7, 16, 17, 18, 19, 23]). However,
shortest path query problems become substantially harder in environments with mul-
tiple obstacles. There were only a few algorithms [10, 11, 20, 23, 25, 26, 27, 29]
for single-source obstacle-avoiding path queries in multiple obstacle environments.
Results on two-point queries in such environments were even rarer; the only such
previous algorithms we know are for the special cases of rectilinear shortest obstacle-
avoiding paths among rectangular obstacles [3, 4, 13] and among rectilinear polygonal
obstacles [21]. For rectilinear shortest obstacle-avoiding path queries among recti-
linear polygonal obstacles, Iwai, Suzuki, and Nishizeki [21] built a data structure in
O(n2 log3 n) time and O(n2 log2 n) space, which supports each two-point length query
in O(log2 n) time. For shortest paths among weighted obstacles, very few algorithms
were previously known [15, 24, 28, 32], and none of these results can handle arbitrary
shortest path queries. In particular, Mitchell and Papadimitriou [28] solved the prob-
lem of determining shortest paths through a weighted planar polygonal subdivision;
their algorithm takes a time of O(n8) times another factor based on the precision
of the problem instance. Lee, Yang, and Chen [24] presented two algorithms for
computing a rectilinear shortest path between two points among weighted rectilin-
ear polygonal obstacles in the plane; their first algorithm takes O(n log2 n) time and

O(n logn) space and the second takes O(n log3/2 n) time and space.

In this paper, we present new techniques for processing single-source and two-
point rectilinear shortest path queries among disjoint weighted rectilinear polygonal
obstacles. Using these techniques, we are also able to obtain efficient algorithms
for answering other path queries, including two-point L1 shortest obstacle-avoiding
path queries among arbitrary (not necessarily rectilinear) polygonal obstacles. Our
techniques are based on numerous new geometric observations and the generalized vis-
ibility graph of Lee, Yang, and Chen [24]. We introduce the idea of “gateway points”
which are used to control effectively the connection between any query points and
the generalized visibility graph. We also present methods for computing single-source
shortest path trees in the generalized visibility graph that are more efficient in both
the time and space bounds than directly applying the best-known graphical shortest
path algorithm by Fredman and Tarjan [14]. Our techniques and ideas could be useful
in solving other shortest path query problems. Our main results are as follows:

• For single-source queries among weighted rectilinear obstacles in the rectilinear
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plane, we construct a data structure in O(n log3/2 n) time and O(n logn) space. This
data structure supports each path length query in O(logn) time. An actual shortest
path can be reported in O(logn + k) time, where k is the number of edges on the
output path. An immediate consequence of this result is an improvement over the
previously best-known algorithms in [24] for computing a rectilinear shortest path

between two points among weighted rectilinear obstacles by a factor of O(log1/2 n) in
either the time or space bound.
• For two-point queries among weighted rectilinear obstacles in the rectilinear

plane, we construct a data structure in O(n2 log2 n) time and space. This data struc-
ture supports each path length query in O(log2 n) time. An actual shortest path can
be obtained in O(log2 n+ k) time.
• For two-point L1 shortest obstacle-avoiding path queries among arbitrary (not

necessarily rectilinear) polygonal obstacles in the plane, we build a data structure
in O(n2 log2 n) time and O(n2 logn) space. This data structure supports each path
length query in O(log2 n) time. An actual shortest path can be obtained in O(log2 n+
k) time.

Note that in comparison with the two-point result in [21], our algorithms work for
more general geometric settings (weighted rectilinear obstacles or arbitrary polygonal
obstacles) yet take less time (a factor of log n) in constructing the data structures.

Unless otherwise specified, all geometric objects (e.g., lines, paths, polygons) are
implicitly assumed to be rectilinear; i.e., each of their segments is parallel to one of
the coordinate axes.

The rest of the paper is organized as follows. Section 2 reviews briefly the con-
struction of the generalized visibility graph that is a basis for our data structures.
Section 3 details our insights and procedures for efficiently processing path queries
among weighted rectilinear obstacles. Section 4 presents our algorithms for creating
the data structures for both the single-source and two-point queries among weighted
rectilinear obstacles. Section 5 extends our work to two-point L1 shortest obstacle-
avoiding path queries among arbitrary polygonal obstacles.

2. Preliminaries. Let the x- (resp., y-) coordinate of a point s on the plane
be denoted by sx (resp., sy). For points s and t, the L1 distance between s and t is
dist(s, t) = |sx − tx| + |sy − ty|. A path Pst connecting s and t is a sequence of line
segments p0p1, p1p2, . . ., pm−1pm, with p0 = s and pm = t. Let d(Pst) denote the
(unweighted) length of Pst, i.e., the sum of the L1 lengths of the segments on Pst.
If Pst intersects the interior of some weighted obstacles, the weighted length of Pst
is defined as follows: Partition Pst into subpaths A1, B1, A2, B2, . . . , Ak, Bk, where
Ai is a subpath without intersecting the interior of any obstacle, Bi is a subpath
completely within the interior of some obstacle Ri, and subpaths A1 and Bk may
be of zero length; the weighted length of Pst, denoted by dw(Pst), is dw(Pst) =∑k
i=1(d(Ai)+d(Bi))+

∑k
i=1(d(Bi)×W (Ri)), where W (Ri) is the weight factor of Ri.

An obstacle Ri (a polygon, possibly with holes) is specified by a sequence of
edges on each of its outer and inner boundaries. For each vertex u of Ri such that the
interior angle of Ri at u is 3π/2, we define the internal projection points of u as follows:
Let uv be the horizontal (resp., vertical) edge of Ri containing u; shoot a horizontal
(resp., vertical) ray from u along the direction opposite to that of v until the ray hits
the first boundary point ph(u) (resp., pv(u)) of Ri. We call ph(u) (resp., pv(u)) the
horizontal (resp., vertical) internal projection point of u. Internal projection points
are useful for controlling shortest paths that penetrate weighted obstacles.

The notion of visibility is generalized to the rectilinear plane with weighted ob-



1226 DANNY Z. CHEN, KEVIN S. KLENK, AND HUNG-YI T. TU

stacles by Lee, Yang, and Chen [24]. Two points s and t are visible to each other if st
is horizontal or vertical and st either does not intersect the interior of any obstacle or
is completely contained in a single obstacle. A point p is visible from a horizontal or
vertical line L if and only if p is visible from a finite point p′ on L. A key component
of our shortest path data structures is the generalized visibility graph G = (V,E)
defined in [24] which captures the necessary information about shortest paths among
the n obstacle vertices. We denote the cost of each edge e ∈ E by w(e).

The vertex set V of the visibility graph G can be partitioned into three subsets:
(i) VO of obstacle vertices, (ii) VI of internal projection points of the vertices in VO,
and (iii) VS of Steiner points. We need to sketch the recursive procedure in [24] for
generating Steiner points for graph G: (1) Draw a vertical (resp., horizontal) line
L, which we call a cut-line, at the median of the x- (resp., y-) coordinates of all the
vertices in VO∪VI ; (2) project the vertices in VO∪VI that are visible from the cut-line
L onto L (the projection points of VO ∪ VI on L are the Steiner points of VS on L);
(3) use L to partition VO ∪ VI into two subsets S1 and S2, one on each side of L; (4)
perform the procedure recursively on the subsets S1 and S2, resp., until the size of
each such subset becomes 1. Because this procedure has O(logn) recursion levels, it
clearly generates O(n logn) Steiner points in VS . Since |VO ∪ VI | = O(n), there are
totally O(n logn) vertices in V = VO ∪ VI ∪ VS . We associate with each cut-line L a
level number LN (L), which is the number of the recursion level at which L is used in
the above procedure (with the root level being level 1).

The edge set E of G consists of two subsets: (1) EV of line segments between
every Steiner point in VS and its corresponding vertex in VO ∪ VI , and (2) EL of
line segments connecting consecutive Steiner points on every cut-line. The weighted
lengths of the edges in EV can be easily determined and stored during the generation
of the Steiner points. The weighted lengths of the edges in EL are obtained by using
Widmayer’s algorithm [24, 30] in O(n logn) time.

It was shown in [24] that graph G so created captures the necessary information
about shortest paths among points in the plane that are vertices of V . The first
algorithm in [24] runs Fredman and Tarjan’s shortest path algorithm [14] on G to
find a shortest path between two points s and t (with both s and t being included in
V ), in O(n log2 n) time and O(n logn) space.

The second algorithm in [24] improved the time bound of the first algorithm,
based on Clarkson, Kapoor, and Vaidya’s idea [8] of reducing the number of vertices
(precisely, the Steiner points) in graph G by increasing the number of edges. Let the
set of additional edges to G be ES , and denote the graph so resulted by G′ = (V ′, E′).
G′ was obtained from G in [24] as follows: (1) For every vertical (resp., horizontal)
cut-line L, partition the plane into horizontal (resp., vertical) strips such that each

strip contains O(log1/2 n) Steiner points of L ∩ VS ; (2) within each strip, for every
pair of vertices u and v in VO ∪ VI such that u and v are both visible from L and are
on the opposite sides of L, add an edge (u, v) to ES , and let the cost of (u, v) be the
sum of the costs of the edges (u, s(u)), (s(u), s(v)), and (s(v), v) in G, where s(u) and
s(v) are Steiner points on L corresponding to u and v, resp.; (3) in each strip, retain
the Steiner points that have the highest or lowest y- (resp., x-) coordinate among
the Steiner points in L ∩ VS , and remove from VS the rest of the Steiner points on
L in that strip together with edges adjacent to any of the removed Steiner points.
(The retained Steiner points play the role of maintaining communication between
consecutive strips.)

Graph G′ = (V ′, E′) created by this procedure has |V ′| = O(n log1/2 n) and |E′|
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= O(n log3/2 n). The second algorithm in [24] then runs the shortest path algorithm

[14] on G′, in O(n log3/2 n) time and space. Thus, there is a time-space trade-off
between the first and second algorithm in [24].

Our algorithms for shortest path queries make use of both graphs G and G′.
In particular, G is a key component of our shortest path data structures, and G′ is
used in constructing our shortest path data structures. We will also show (in section
4) that by using an implicit representation scheme for G′, the time-space trade-off
incurred by the algorithms in [24] can be eliminated, and hence the best time and
space bounds of both these algorithms can be achieved simultaneously.

3. Shortest path queries among weighted rectilinear obstacles. We dis-
cuss in this section our algorithms for answering single-source and two-point shortest
path queries among weighted rectilinear obstacles, while deferring the complete de-
scription of the desired shortest path data structures and their construction until the
next section. This allows us to show an array of useful geometric structures of these
shortest path query problems before giving the details of various components of our
algorithmic solutions. Exploiting these new geometric observations is one of our main
contributions in this paper.

3.1. Useful observations. We start with some notation and useful insights.
For a query point z, we project z vertically (resp., horizontally) onto the first obstacle
edge (if it exists) that is above (resp., below, to the left of, to the right of) z. Let
Q(z) be the set of the at most four projection points of z on obstacle boundaries.

A path P is monotone with respect to the x- (resp., y-) axis if and only if no
vertical (resp., horizontal) line crosses P more than once. A path is called a staircase
if it is monotone with respect to both the x-axis and the y-axis. Clearly, a staircase
from a point p to a point q in an obstacle-free region is a shortest path between p and
q since its length equals dist(p, q).

The following lemmas specify various useful structures of shortest paths between
two arbitrary points q and r.

Lemma 3.1. Suppose there is a shortest path Pqr connecting points q and r whose
interior does not intersect any obstacle boundary. Then (1) Pqr is a staircase, and (2)
there is a shortest path P ′qr between q and r such that P ′qr either contains an obstacle
vertex or P ′qr consists of at most two edges.

Proof. We prove (1) by contradiction. Assume the interior of a shortest path Pqr
has no intersection with any obstacle boundary yet Pqr is not a staircase. Then Pqr
must have three consecutive edges that form two right turns or two left turns. But,
by moving the middle one of these three edges, one can obtain a shorter path between
q and r than Pqr, a contradiction.

For proving (2), assume without loss of generality (WLOG) the staircase Pqr con-
sists of at least three edges. Consider its first two edges qq1 and q1q2 (see Figure 3.1).
Since the interior of qq1 does not intersect any obstacle boundary, we can move qq1,
until either the interior of the segment q′q′1 encounters some obstacle boundary or
q′1 = q2. The path P ′qr obtained by replacing qq1 and q1q2 of Pqr with qq′, q′q′1,

and q′1q2 has the same length as Pqr. If the interior of q′q′1 encounters some obstacle

boundary, then q′q′1 must contain a vertex of an obstacle edge e (because e does not
intersect q1q2), and hence the lemma is proved. If q′1 = q2, then the resulting shortest
path P ′qr has one less edge than Pqr. By repeatedly applying this reduction to P ′qr, we
obtain a shortest path between q and r that either passes through an obstacle vertex
or consists of at most two edges.
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Fig. 3.1. Moving the segment qq1 vertically up.

m

p ∈ Q(q)q

Fig. 3.2. The two line segments of Pqm meeting at a point p ∈ Q(q).

Lemma 3.2. For two points q and r with q not on any obstacle boundary, if the
interior of a shortest q-to-r path Pqr intersects the boundary of an obstacle, then there
is a shortest q-to-r path that either goes through a point p ∈ Q(q) (via the segment
qp) or goes through an obstacle vertex.

Proof. Let m be the obstacle boundary point on the interior of Pqr such that the
interior of the subpath Pqm of Pqr does not intersect any obstacle boundary point. By
Lemma 3.1, Pqm is a staircase that can be made either to pass through an obstacle
vertex or to consist of at most two line segments. WLOG, we assume that Pqm consists
of at most two edges.

Let m be on an obstacle edge e(m). Then either e(m) contains a point p ∈ Q(q),
or e(m) contains no point of Q(q). It is not hard to see the following. If e(m) contains
a point p ∈ Q(q), then the two edges of Pqm can be made to join together at p ∈ Q(q)
(e.g., Figure 3.2). If e(m) contains no point of Q(q), then a vertex of e(m) must
belong to Pqm (e.g., see Figure 3.3).

Lemma 3.3. Suppose a point q is on an obstacle boundary. Then, for any point
r, there is a shortest q-to-r path Pqr that either consists of at most two line segments
or goes through an obstacle vertex.

Proof. The proof is similar to that of Lemma 3.1.
The significance of Lemmas 3.1, 3.2, and 3.3 to processing shortest path queries

is as follows. Given two query points s and t, there are only three possibilities: (1) a
shortest path Pst goes through an obstacle vertex and hence through a vertex of the
generalized visibility graph G (by possibly going through a point in Q(s) ∪ Q(t)); (2)
Pst goes through a point in Q(s) ∪ Q(t) but not through any vertex of G; or (3) Pst
consists of at most two line segments. In case 2, the path Pqr, for some q ∈ Q(s) and
r ∈ Q(t), is one with at most two line segments.

Note that in the single-source case, a shortest path from any query point in the
plane to the source point always goes through some vertices of graphG (e.g., the source
vertex), and thus G can be used to effectively control single-source shortest paths for
all query points. However, the two-point case may be different, because shortest
paths between certain query points in the plane do not pass through any vertex of
G. Therefore, our two-point query algorithms must account for both possibilities: (i)
a sought path goes through a vertex of G, and (ii) no desired path goes through any
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m′ p ∈ Q(q)
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q

Fig. 3.3. The segment mm′ ⊆ e(m) of Pqm must contain an obstacle vertex.

vertex of G. In the next subsection, we discuss our query algorithms for the possibility
of a desired shortest path going through a vertex of G (i.e., case 1). The possibility
of no desired shortest path going through any vertex of G is handled in section 3.5.2
(i.e., cases 2 and 3).

3.2. Main ideas and difficulties. In this subsection, we focus on two-point
queries for which a desired shortest path goes through some vertices of G. Let s and
t be two query points. Based on Lemmas 3.2 and 3.3, we need to compute the length
of a shortest p-to-q path through a vertex of G for every p ∈ Q(s) ∪ {s} and q ∈ Q(t)
∪ {t}.

Our main idea for computing a shortest p-to-q path that intersects some vertices of
G is to identify a subset Vg(z) of vertices in G for each z ∈ {p, q}, such that a shortest
p-to-q path must go through at least one pair vq, vp of vertices, with vq ∈ Vg(q) and
vp ∈ Vg(p). We call the vertices of G in Vg(q) the gateways of q. If we know Vg(q)
and Vg(p) and the weighted path between q (resp., p) and each vertex in Vg(q) (resp.,
Vg(p)), then we can easily find a shortest p-to-q path by utilizing a data structure that
maintains shortest path information for every pair of vertices in G. In this section, we
simply assume that our two-point data structure can report the length of a shortest
path between any two vertices of G in O(1) time and a corresponding actual shortest
path in an additional O(k) time, where k is the number of edges of the output path.

For this idea to work, we must overcome two difficulties: (1) identifying Vg(q),
and (2) determining the lengths of the weighted paths between q and the vertices in
Vg(q). Note that it is possible for a path between q and a vertex in Vg(q) to penetrate
a number of obstacles. For the efficiency of our query algorithms, it is certainly
desirable that |Vg(q)| be small. Indeed, we will show that |Vg(q)| = O(logn) for any
point q and Vg(q) can be computed in O(logn) time. Furthermore, we show that
the weighted paths between q and the vertices in Vg(q) and their lengths can also be
computed in O(logn) time.

Our idea for computing the set Vg(q) of gateways for a point q is that of “inserting”
q into graph G. We treat q as if it were one of the obstacle vertices and compute
the edges in G adjacent to q that would have resulted if the procedure in [24] for
constructing G were applied to q. Note that such an “insertion” of a point into G
does not actually change the shortest path information contained in G (i.e., q is not
a new obstacle); furthermore, the resulting graph (after the “insertions”) contains
shortest path information among the inserted points and the original vertices of G,
if a shortest path between two inserted points does intersect G. Also, note that our
“insertion” process does not actually modify graph G because the points are never
truly inserted into G.

3.3. Characterization of gateways. To “insert” a point q into graph G, we
project q onto the relevant cut-lines based on the graph construction procedure [24]. A
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fixed set of O(n) cut-lines is used in constructing G, subdividing the plane recursively
in [24]. Each cut-line can be associated with a particular recursion level. In conse-
quence, all points in each region of the resulted planar subdivision are projected onto
the same subset of cut-lines. If, according to the graph construction procedure [24],
q would have been projected onto a cut-line L, then we say L is a projection cut-line
of q. Note that if a cut-line L is a projection cut-line of q, then q is visible from L.
But, not every cut-line visible from q is a projection cut-line of q. It is sufficient for us
to discuss geometric observations with vertical cut-lines only (those with horizontal
cut-lines are symmetric). In the rest of this section, we assume all the cut-lines are
vertical unless otherwise specified.

Lemma 3.4. Suppose that the projection cut-lines of a point q are sorted in
increasing order by their x-coordinates. Then the projection cut-lines of q that are
to the right (resp., left) of q are simultaneously in the decreasing (resp., increasing)
order of their level numbers.

Proof. We prove the lemma only for the projection cut-lines of q that are to the
right of q. Let L′ and L′′ be two projection cut-lines to the right of q with L′ to the
left of L′′. Then the level number of L′ must be bigger than that of L′′ (otherwise, L′

would have prevented the projection of q from reaching L′′, a contradiction). Hence,
the lemma follows.

The gateway set Vg(q) of a point q is determined as follows: For each projection
cut-line L of q, if z is the vertex of G on L that is immediately above (resp., below)
pL(q), then z ∈ Vg(q), where pL(q) is the projection point of q on L. For z ∈ Vg(q),
we denote the projection cut-line of q that contains z by Lz. Observe that if q were
“inserted” into G, then the only edges adjacent to q in the graph would be those
connecting q with its projection points. Because each projection point pL(q) of q is
adjacent to at most two neighboring vertices of G on its cut-line L, Vg(q) controls
every path in G from q to any other vertex of G. Since at each recursion level of
the graph construction algorithm, q can be projected onto at most one cut-line, there
are O(logn) projection cut-lines for q. Each such projection cut-line has at most two
neighboring vertices of G for pL(q). Therefore, we have the next two lemmas.

Lemma 3.5. For each point q in the plane, |Vg(q)| = O(logn).

Lemma 3.6. For each point q and each vertex v of G, there is a shortest q-to-v
path in the plane that goes through a vertex of Vg(q).

For every gateway z ∈ Vg(q), we define an “edge” (q, z) in the graph as follows:
Let z be on a projection cut-line L of q; then the edge (q, z) consists of the two
segments qp(q) and p(q)z.

By the definition of gateways, Vg(q) can be computed efficiently (e.g., in O(log2 n)
time by doing a binary search on the vertices of G along each projection cut-line of
q, or in O(logn) time by using a fractional cascading data structure [5]). However,
the real difficulty is that each edge connecting q with a vertex in Vg(q) can penetrate
many obstacles, and straightforward methods fail to compute the weighted lengths
of such edges efficiently. By exploiting a number of geometric observations, we show
below how to compute Vg(q) and the weights of all these edges in O(logn) time.

A gateway region R(q) (Figure 3.4) of a point q is the area enclosed by an inter-
connection of the gateways in Vg(q). We show only how the set Vg

1(q) of gateways in
the first quadrant of q are connected: (1) Let a vertical “pseudo” cut-line pass through
q. (2) For each vertex v of Vg

1(q), project v horizontally to the projection cut-line L
of q (on point pL(v)) that is immediately to the left of v (it can be shown that such
a projection is always possible among weighted obstacles). Note that L can be the
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Fig. 3.4. The gateway region R(q) for a point q.

“pseudo” cut-line containing q. For v, let the vertex of Vg
1(q) on L be u (if u exists).

(3) Connect u and v by line segments upL(v) and pL(v)v. (4) If v is the rightmost
gateway of Vg

1(q), then connect v with the point (vx, qy) by a segment. (5) If L is
the “pseudo” cut-line containing q (and hence u does not exist on L), then connect
v and pL(v) by a segment. The area in the first quadrant of q enclosed together by
the polygonal chain so defined, the x-axis, and y-axis (with q as the origin) is part of
R(q). R(q) is the union of the areas so defined in all four quadrants of q.

A planar region R is rectilinearly convex if R is connected and for any horizontal
or vertical line L, L ∩ R is also connected. The next two lemmas characterize some
crucial structures of R(q).

Lemma 3.7. For any point q, the gateway region R(q) is rectilinearly convex;
furthermore, for any point z in R(q), the points (zx, qy) and (qx, zy) are both in
R(q).

Proof. We know by Lemma 3.4 that the projection cut-lines of q are sorted by
their level-numbers. It is sufficient to prove that in each quadrant of q, the gateways
in sorted order form a sequence of “restricted” maximal elements. Let S be a point
set in the first quadrant of q. We say a point a ∈ S is a restricted maximal element
of S if there is no other point b ∈ S such that ax < bx and ay < by. The restricted
maximal elements in other quadrants of q are defined in a symmetric fashion. WLOG,
we prove only the case for the first quadrant of q.

This proof is by contradiction. Suppose the first quadrant of q contains two
gateways a, b ∈ Vg(q) such that ax < bx and ay < by. Let a and b be on the
projection cut-lines La and Lb of q, resp. Since ax < bx, by Lemma 3.4, La is at a
higher recursion level than Lb (i.e., LN (La) > LN (Lb)). Let a be a projection point
of vertex va ∈ VO ∪ VI . But ay < by implies that va is not able to project on Lb.
Furthermore, va must be to the left of Lb (otherwise, va would have been projected
on Lb because La is to the left of Lb). Hence, the projection of va on Lb is blocked.
There are two possible cases on blocking the projection of va from Lb: (i) blocking by
a cut-line L∗ such that LN (L∗) ≤ LN (Lb), or (ii) blocking by a vertical obstacle edge
e that is to the left of Lb.

In (i), cut-line L∗ would have also blocked q from being projected on Lb because
of the level numbers of L∗ and Lb, contradicting the assumption that b ∈ Vg(q). In
(ii), let v be the lower vertex of the vertical edge e. Note that e cannot cross the
horizontal line Hq that contains q. This implies that vy < by but v is also not able to
project on Lb. Repeatedly applying the same argument on v, we must eventually have
some vertical obstacle edge that either crosses the horizontal line Hq or is to the right
of Lb since there are only finitely many obstacle edges. But that would contradict
with either b ∈ Vg(q) or that such a vertical edge must be to the left of Lb.

Lemma 3.8. The gateway region R(q) contains no vertices of VO ∪ VI in its
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R(q)

q

Fig. 3.5. Horizontal obstacle strips inside the gateway region R(q).

interior.
Proof. This can be proved by a contradiction argument similar to the proof of

Lemma 3.7.
To further discuss the properties of gateways of a point q, we distinguish three

cases: (a) q is an obstacle vertex, (b) q is not an obstacle vertex but is on a vertical
obstacle edge, and (c) q is not on any vertical obstacle edge. Case (a) can be readily
handled. Hence we only focus on (b) and (c) in the following two subsections. We
first discuss (c) and then show how to reduce (b) to (c).

3.3.1. Point q not on any vertical obstacle edge. Throughout this subsec-
tion, we assume that point q is not on any vertical obstacle edge.

The lemma below follows from Lemma 3.8 and it further characterizes R(q).
Lemma 3.9. There are three possible relations of obstacles to the gateway re-

gion R(q): (1) the interior of R(q) does not intersect any obstacle; (2) R(q) is com-
pletely contained within an obstacle; or (3) R(q) has horizontal obstacle strips running
through it (e.g., see Figure 3.5).

Proof. The interior of R(q) either intersects some obstacle edges or it does not. If
the interior of R(q) does not intersect any obstacle edge, then clearly either case 1 or 2
holds. If the interior of R(q) does intersect an obstacle edge e, then by Lemma 3.8,
no vertex of e can be in the interior of R(q). By the convexity of R(q) (Lemma 3.7),
e∩R(q) is a single line segment se. Segment se cannot be vertical because if it were,
then it would have intersected the horizontal line containing q at a point inside R(q)
and thus blocked the projection of q beyond se, contradicting that se is in the interior
of R(q). Hence, se must be on the boundary of a horizontal obstacle strip across
R(q).

The following lemmas provide the basis for an efficient computation of Vg(q) and
their weighted edges to q.

Lemma 3.10. For two gateways a, b ∈ Vg(q) that are both above the horizontal
line Hq containing q, let LN (La) > LN (Lb), with La not being the leftmost or right-
most projection cut-line of q. Then the set of horizontal obstacle strips penetrated
by segment bb′ is a subset of the horizontal obstacle strips penetrated by segment aa′,
where a′ = (ax, qy) and b′ = (bx, qy) (see Figure 3.6).

Proof. WLOG, assume both a and b are above line Hq. If a and b are both to the
left (resp., right) of q, then the lemma follows immediately from Lemmas 3.4, 3.7, and
3.9. If a and b are on the opposite sides of q, then based on Lemma 3.9, the lemma
will follow if we can show ay ≥ by. We prove ay ≥ by by contradiction. Assume ay <
by. WLOG, let a be to the right of q and b to the left of q (Figure 3.6), and let a be
a projection point of a vertex va ∈ VO ∪ VI .

First, we show that va is to the right of La. By Lemmas 3.8 and 3.9, va cannot
be between La and Lb and cannot be on La. Also, va cannot be to the left of Lb
(otherwise, a would have not been a projection point of va on La because LN (Lb)
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Fig. 3.6. Illustration of Lemma 3.10.

< LN (La)). Next, we show that a cannot be on a vertical obstacle edge. If a were
on a vertical obstacle edge e, then, since La (which contains e) is neither the leftmost
nor rightmost projection cut-line of q, e cannot cross line Hq; hence the lower vertex
of e would be in the interior of R(q), a contradiction. Finally, we show that va cannot
be blocked from being projected on Lb. By Lemma 3.4, no projection cut-line of
q between La and Lb has a lower level number than Lb; hence no such projection
cut-line can block the projection of va on Lb. Since a is not on a vertical obstacle
edge, the projection of va can reach the left of La. The projection of va also cannot
be blocked by obstacles between La and Lb by Lemma 3.9. Therefore, if ay < by,
then va would have been projected onto Lb, contradicting that b is a gateway of q on
Lb.

Lemma 3.11. For two gateways a, b ∈ Vg(q) that are both above the horizontal
line Hq containing q, let LN (La) > LN (Lb). Then ay < by implies that La is the
leftmost or rightmost projection cut-line of q and that a is on a vertical obstacle edge
e such that e crosses Hq.

Proof. WLOG, assume a and b are both above Hq and ay < by. By Lemmas 3.4
and 3.7, a and b cannot be both to the left (resp., right) of q. Hence WLOG, assume
a is to the right of q and b to the left of q. By the same argument as in the proof of
Lemma 3.10, we can show that assuming a is not on any vertical obstacle edge leads
to a contradiction. But if a is on a vertical obstacle edge e, then e must cross Hq

(otherwise, the lower vertex of e on La would be above Hq, contradicting that a ∈
Vg(q)). This is possible only if e is on the rightmost projection cut-line of q. It is not
difficult to see that in this case, a is actually a projection point of a vertex of VI ∪VO
to the right of e.

Corollary 3.12. For two gateways a, b ∈ Vg(q) that are both above line Hq,
suppose none of La or Lb contains a vertical obstacle edge that crosses Hq. Then
LN (La) > LN (Lb) implies ay ≥ by.

Proof. An immediate consequence of Lemma 3.11.
The ordering of the gateways of q by their y-coordinates is a key to our computa-

tion of Vg(q) and its weighted edges to q. The next corollary shows that this ordering
can be easily obtained.

Corollary 3.13. Let A(q) be the set of gateways of a point q above the horizontal
line Hq, such that no gateway in A(q) is on a vertical obstacle edge crossing Hq.
If A(q) is in increasing order of the level numbers of the projection cut-lines of q
that contain the points of A(q), then A(q) is also in nondecreasing order of the y-
coordinates of the points of A(q).

Proof. An immediate consequence of Corollary 3.12.
The next lemma shows that the special case (i.e., for the at most two gateways

on those projection cut-lines of q that contain a vertical obstacle edge crossing Hq)
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can be handled easily.

Lemma 3.14. Let a be a gateway of a point q on a vertical obstacle edge e that
crosses the horizontal line Hq. Then either q is in the obstacle that contains e or q is
not contained in any obstacle.

Proof. The proof follows immediately from Lemma 3.9.

Hence, computing the weight of the “inserted” edge (q, a), where a is defined in
Lemma 3.14, is easy. The vertical segment contained in edge (q, a) is on an obstacle
edge and the weighted horizontal segment of (q, a) is determined by Lemma 3.14. The
following two lemmas lay the foundation for our iterative procedure to obtain Vg(q)
and the weighted edges between q and other gateways in Vg(q).

Lemma 3.15. For gateway a ∈ Vg(q), suppose LN (La) is the smallest among
all projection cut-lines of q that do not contain a vertical obstacle edge crossing the
horizontal line Hq. Let b be the point (ax, qy). Then either (i) the interior of the
vertical segment ab does not intersect the interior of any obstacle, or (ii) segment ab
is contained in the same obstacle that contains q.

Proof. The interior of R(q) either intersects some horizontal obstacle edges or it
does not. If the interior of R(q) intersects no obstacle edge, then clearly case i or ii
holds. So assume the interior of R(q) does intersect a horizontal obstacle edge. Also,
assume a is above line Hq.

Suppose we start at q and go vertically upward until we meet the first point z on
any obstacle boundary. By Lemma 3.9, it is sufficient to show zy ≥ ay. There are
two cases to consider: (1) no projection cut-line of q contains a vertical obstacle edge
that crosses Hq, and (2) a projection cut-line of q contains a vertical obstacle edge e
that crosses Hq. WLOG, assume q is to the left of La.

To show case 1, we consider two subcases: (1.1) LN (La) = 1, and (1.2) LN (La) >
1.

Subcase 1.1. LN (La) = 1. Then no obstacle blocks q from being projected onto the
level 1 cut-line La. Let v be the left vertex of the horizontal obstacle edge containing
z. If v is projected onto La, then zy = vy ≥ ay is true. Otherwise, the projection of v
can only be blocked from La by a vertical obstacle edge e′. Edge e′ must be between
z and La, and it cannot cross Hq. By repeatedly applying this argument to the lower
vertex u of e′, we can show zy ≥ uy ≥ ay.

Subcase 1.2. LN (La) > 1. Then a vertical obstacle edge e′ must block q from
being projected onto the level 1 cut-line. Let v be the upper vertex of edge e′. We
have either vy ≥ zy or vy < zy. When vy < zy, if v is projected onto La, then the
lemma holds; otherwise, v is blocked by a cut-line or a vertical obstacle edge from
being projected onto La. If v is blocked by a cut-line L, then L must be between
La and e′, and LN (L) < LN (La). But then q would have been projected onto L,
contradicting that LN (La) is the smallest among all the projection cut-lines of q. If
the projection of v is blocked from La by a vertical obstacle edge e′′, then the same
argument can be applied to the lower vertex u of e′′ to show zy ≥ uy ≥ ay. When
vy ≥ zy, the right vertex u′ of the horizontal obstacle edge containing z must be to
the left of the vertical obstacle edge e′, and by Lemma 3.9, u′ can be projected onto
La. Hence, zy = u′y ≥ ay.

In case 2, a projection cut-line of q contains a vertical obstacle edge e that crosses
Hq. The following can be shown: (i) Let u be the upper vertex of e; then uy ≥ zy.
(ii) One vertex of the horizontal obstacle edge containing z must be projected onto
La. The argument is similar to that for case 1.

Lemma 3.16. For two gateways a, a′ ∈ Vg(q) that are both above line Hq, suppose



SHORTEST PATH QUERIES AMONG WEIGHTED OBSTACLES 1235

q

La La′

ua′′

Vb
b

a

a′

Fig. 3.7. Illustration of Lemma 3.16.

none of La and La′ contains a vertical obstacle edge crossing Hq, LN (La′) > LN (La),
and there is no projection cut-line L of q such that LN (La′) > LN (L) > LN (La).
Then the following are true (Figure 3.7): (1) There is a Steiner point a′′ on La such
that a′y = a′′y ; furthermore, there is a vertex u ∈ VO ∪ VI such that u is projected on
both a′′ and a′. (2) For any Steiner point b on La such that a′′y > by > ay, let vertex
vb ∈ VO ∪VI be projected on b; then vb and a′ are on the opposite sides of La. (3) Let
p1 = (a′′x, qy) and p2 = (a′x, qy) be points on Hq; then segments a′′p1 and a′p2 have
the same weighted length.

Proof. If ay = a′y, then (1) and (2) are trivially true, and (3) follows from
Lemmas 3.9 and 3.10. So WLOG, assume ay < a′y (Corollary 3.13) and La is to the
left of La′ . Let a′′ be the point (ax, a

′
y).

The following claim is the key to proving (1), (2), and (3).
Claim. Let R be the region enclosed by the boundary of R(q) and segments a′a′′

and aa′′, such that the interior of R does not intersect R(q). Then R−a′a′′ does not
intersect any vertical obstacle edge and does not contain any vertex in VO ∪ VI .

Proof of the claim. By contradiction. Suppose R − a′a′′ contains a vertex v ∈
VO ∪ VI . Then ay ≤ vy < a′y and v cannot be projected onto La′ because a′ ∈ Vg(q).
Hence the projection of v is blocked from La′ either by a cut-line L 6= La with
LN (L) < LN (La′), or by a vertical obstacle edge e not intersecting the interior of R(q)
(by Lemma 3.9). In the former case, L must be between La and La′ , and hence L
cannot contain a vertical obstacle edge crossing Hq. If LN (L) ≤ LN (La), then q would
have not been projected onto either La or La′ , a contradiction. If LN (L) > LN (La)
(but LN (L) < LN (La′)), then q would have been projected on L, contradicting that
there is no projection cut-line L of q such that LN (La′) > LN (L) > LN (La). Hence,
the projection of v cannot be blocked from La′ by a cut-line. If the projection of v
is blocked from La′ by a vertical obstacle edge e which does not intersect the interior
of R(q), then the lower vertex u′ of e must be in R− a′a′′. The argument can then
be repeated on u′, eventually showing that such a vertex u′ must be projected on
La′ , a contradiction to a′ ∈ Vg(q). Therefore, no obstacle vertex of VO ∪ VI can be
in R− a′a′′. This argument can also be used to show that no vertical obstacle edge
intersects R− a′a′′.

Let va′ ∈ VO ∪ VI be projected onto a′. Then va′ cannot be to the left of La;
otherwise, since a′ is to the right of La and LN (La) < LN (La′), va′ would have not
been projected onto La′ . So va′ must be to the right of La. Then by Lemma 3.9 and
the above claim, va′ must be projected onto a′′ on La as well. Hence, (1) is true (with
u = va′).

For (2), if vb is to the right of La (as a′), then vb would have been projected onto
L′a because the interior of R∪R(q) contains no obstacle vertex and does not intersect
any vertical obstacle edge, thus contradicting that a′ ∈ Vg(q). Hence, vb can only be
to the left of La.
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For (3), because any horizontal obstacle strip intersected by segment a′p2 cannot
stop within R and must run through R, segment a′′p1 also intersects such a horizontal
obstacle strip. By the same argument, if a′′p1 intersects any horizontal obstacle strip,
then such a horizontal strip must also be intersected by a′p2. Hence, the weighted
lengths of both a′′p1 and a′p2 are the same.

3.3.2. Point q on a vertical obstacle edge. If point q is on a vertical obstacle
edge e, then we reduce this case to the case in which q is not on any vertical obstacle
edge, as follows: Treat q as if qx is perturbed to the left (resp., right) of e by some
very small value ε > 0, and then apply the observations and procedures for the case
with q not on any vertical obstacle edge.

In the rest of this section, we assume WLOG that point q is not on any vertical
obstacle edge.

3.4. Computing gateways and weighted edges to gateways. First, we
need to find all projection cut-lines of point q. These cut-lines can be identified
easily by using a data structure based on trapezoidal decomposition and planar point
location [12] in O(logn) time. By Lemma 3.4, the x-coordinates of these cut-lines can
be put in sorted order by bucket sort in O(logn) time. Let Li1 , Li2 , . . . , Lig be the
sequence of all projection cut-lines of q in increasing order of their level numbers, and
let aij ∈ Vg(q) be on Lij that is above line Hq, with g = O(logn).

Next, we compute the gateways aij and weighted edges (q, aij ). Let pij be the
projection point of q on projection cut-line Lij of q. Since edge (q, aij ) consists of two
segments qpij and pijaij and since the interior of qpij is either contained completely
in an obstacle or outside any obstacle, it is sufficient to show how to compute aij
and the weighted length dw(pijaij ). We first find the gateways that are either on the
projection cut-lines of q that contain a vertical obstacle edge crossing line Hq or on
the projection cut-line of q that has the smallest level number among the projection
cut-lines that do not contain a vertical obstacle edge crossing Hq. There are at most
three such gateways and they can all be obtained by binary search on the vertices of
G on the relevant projection cut-lines of q in O(logn) time. The weights of edges from
q to these three gateways can be easily computed by Lemmas 3.14 and 3.15. Then,
based on Lemma 3.16, we show that given aij and dw(pijaij ), aij+1 and dw(pij+1aij+1)
can both be obtained in O(1) time. Our data structure for computing gateways and
the weights of their edges to q maintains the following information for every cut-line L.

1. For any two vertices u and v of G on L, dw(uv) can be reported in O(1)
time. This is done by first using Widmayer’s algorithm [30] to compute the weighted
length between every two consecutive vertices of G on L and then by performing a
prefix sum operation, along the vertices of G on L, to compute the weighted length
from every vertex on L to the highest vertex on L. From the prefix sums of u and v,
it is easy to find dw(uv) in O(1) time.

2. Each vertex u of G on L keeps track of all vertices z in VO ∪ VI such that z
is projected on u. Note that u can be the projections of vertices in VO ∪ VI on each
side of L.

3. For each z ∈ VO ∪ VI , maintain an array Projz of size O(logn). If z is
projected to point p(z) on cut-line L of level i, then Projz(i) has a pointer to p(z) on
L; otherwise, Projz(i) is undefined.

4. Each vertex u of G on L keeps track of the lowest vertex v of G on L such
that vy ≥ uy and v is a projection of a vertex of VO ∪ VI that is to the left (resp.,
right) of L (v can be u).
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Note that the graph construction procedure [24] can be easily modified to compute
the information in items 1–4 above in O(nlogn) time and space. Now based on
Lemma 3.16, it is an easy matter to compute aij+1

and dw(pij+1
aij+1

) from aij and
dw(pijaij ), in O(1) time. WLOG, assume Lij is to the left of Lij+1 . We perform the
following steps: (1) Find the lowest vertex a′′ of G on Lij such that a′′ is on or above
aij and that a′′ is a projection point of a vertex z ∈ VO ∪ VI with z being to the right

of Lij ; (2) let aij+1
= Projz(LN (Lij+1

)) and dw(pij+1
aij+1

) = dw(pijaij ) + dw(aija
′′).

Based on the above discussion, for any point q, we compute the gateway set Vg(q)
and the weighted edges from all vertices of Vg(q) to q in O(logn) time.

3.5. Answering shortest path queries. This subsection gives our procedures
for answering single-source and two-point shortest path queries.

3.5.1. Single-source queries. A single-source query requests a shortest path
from the fixed source point s to an arbitrary query point t. Since s is fixed, it can
be included as a vertex of graph G. The query procedure compares the lengths of
the s-to-q shortest paths through the gateways of Vg(q) and selects the smallest path
length for all q ∈ Q(t) ∪ {t}. Precisely, the length of such a shortest s-to-q path is
given by min{dw(Psv)+w(q, v) | v ∈ Vg(q)}, where dw(Psv) is the length of a weighted
shortest s-to-v path and w(q, v) is the weight of the “inserted” edge connecting q and
v. Since |Vg(q)| = O(logn) and Vg(q) (together with the weighted edges between q
and Vg(q)) can be obtained in O(logn) time, a single-source length query is performed
in O(logn) time.

An actual s-to-q shortest path consists of the path (with at most two segments)
between q and a vertex x ∈ Vg(q) and a path in graph G from x to s. We already
show how to compute the path between q and x in O(logn) time. The path between
x and s in G can be reported by standard single-source shortest path tree methods
in O(k) time, where k is the number of edges on that path.

In the rest of the paper, we will no longer specify the details on reporting actual
shortest paths, since these can all be carried out based on standard shortest path
techniques.

3.5.2. Two-point queries. A two-point query requests a shortest path between
two arbitrary query points s and t. Our two-point query procedure must account for
two cases: There is a shortest s-to-t path going through a vertex in G and there is no
shortest s-to-t path going through any vertex of G. We then select the true shortest
s-to-t path from the two candidates so obtained.

To obtain a shortest s-to-t path going through a vertex in G, we compute a
shortest p-to-q path that goes through Vg(p) and Vg(q), for every pair p and q, p ∈
Q(s) ∪ {s} and q ∈ Q(t) ∪ {t}. A shortest p-to-q path through Vg(p) and Vg(q) is
computed as follows. First, compute Vg(p) (resp., Vg(q)) for point p (resp., q) and
the weighted edges between Vg(p) and p (resp., Vg(q) and q), as shown in section 3.4.
Then, create a graph Gpq as follows: The vertices of Gpq are {p, q} ∪ Vg(p) ∪ Vg(q);
the edges of Gpq consist of the weighted edges between Vg(p) and p, the weighted edges
between Vg(q) and q, and the edges (vp, vq), where vp ∈ Vg(p), vq ∈ Vg(q), and the
weight of an edge (vp, vq) is the length of a shortest vp-to-vq path in G. It is easy to
see that Gpq has O(logn) vertices and O(log2 n) edges. Finally, find a shortest p-to-q
path in Gpq by Fredman and Tarjan’s shortest path algorithm [14]. This obtains the
length of a shortest p-to-q path in O(log2 n) time.

Computing a shortest s-to-t path not going through any vertex of G is much
easier. By the lemmas in section 3.1, it is clear that such a path can be obtained
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from the shortest p-to-q path that consists of at most two line segments, for every
pair p and q, p ∈ Q(s) ∪ {s} and q ∈ Q(t) ∪ {t}. WLOG, assume p and q are
not on the same vertical and horizontal line. Note that there can be only two such
two-segment paths between p and q, one through the point (px, qy) and the other
through (qx, py). Also, note that each such two-segment path may still penetrate
many obstacles. Obviously, the following is a key operation for computing such two-
segment paths: Given two points a and b that are on a same vertical or horizontal
line, compute the weighted length of segment ab. We use a grid-partition approach
to perform this operation.

We partition the plane by using a set SE of O(n) lines such that each line in
SE contains a vertical or horizontal obstacle edge. The plane is thus divided into
O(n2) rectangular grid cells with a weight factor associated with each cell. The
following is easy to observe: Suppose we sweep a row (resp., column) of grid cells
by a horizontal (resp., vertical) line L without letting L touch the horizontal (resp.,
vertical) boundaries of that row (resp., column); then for any two points a and b on
L, the weighted length of segment ab remains unchanged during the sweeping.

We maintain the following information with the grid. (We only show the hor-
izontal case.) (1) For every row X of the grid, let LX be an arbitrary horizontal
line strictly between the two horizontal boundaries of X; let S′E be the set of such
horizontal lines LX for all the O(n) rows of the grid. (2) The horizontal lines in SE ∪
S′E intersect the vertical lines in SE at O(n2) points, which we call special points. (3)
Along the row of special points on each horizontal line L in SE ∪ S′E , perform a prefix
sum computation on their weighted lengths along L to the leftmost special point. This
grid-partitioning takes O(n2) time and space. Using the grid-based data structure,
it is easy to compute the weighted length of any horizontal or vertical segment ab in
O(logn) time.

In summary, each two-point path length query can be answered in O(log2 n) time.

4. Constructing shortest path data structures. This section focuses on the
construction of our shortest path data structures. Our data structures for both single-
source and two-point queries make use of graph G which has O(nlogn) vertices and
edges. If Fredman and Tarjan’s shortest path algorithm [14] were directly applied to
G, then computing a shortest path tree in G (for single-source queries) would take
O(n log2 n) time and O(nlogn) space, and computing O(nlogn) shortest path trees
in G (for two-point queries) would take O(n2 log3 n) time and O(n2 log2 n) space.
By using an implicit graph representation scheme and divide-and-conquer paradigms,
we are able to construct the single-source data structure in O(n log3/2 n) time and
O(n logn) space, and the two-point data structure in O(n2 log2 n) time and space.
Note that graph G′ (discussed in section 2) plays a crucial role in computing shortest
path trees in G.

Since other components of our shortest path data structures have been discussed
in section 3, this section only shows how to compute shortest path trees in G in the
claimed time and space bounds.

4.1. Distance tables. Recall that a major difference between graph G′ and the
generalized visibility graph G is the addition of a set ES of O(n log3/2 n) edges to

G′. The edges in ES were represented explicitly using O(n log3/2 n) space in [24].
We use an implicit scheme to store ES in O(nlogn) space, which still enables us
to retrieve information about G′ as quickly (within a constant factor) as using the
explicit representation. We call such a scheme distance tables.
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The construction of G′ is based on partitioning every cut-line L into strips, with
each strip containing O(log1/2 n) Steiner points on L. Let S be the set of Steiner
points on L within a strip of L, and let PV l(S) (resp., PV r(S)) be an array contain-

ing the O(log1/2 n) vertices of VO∪VI within the strip that are to the left (resp., right)
of L and are visible from L. We associate a distance table TS with the strip of L for
S. Note that for each vertex u ∈ PV l(S) and v ∈ PV r(S), there is an edge (u, v) in
G′ consisting of segments upL(u), pL(u)pL(v), and pL(v)v, where pL(z) denotes the
projection of a vertex z ∈ PV l(S)∪PV r(S) on L. Edges between PV l(S) and PV r(S)
can be implicitly represented by arrays PV l(S) and PV r(S). The weights of these
edges can also be represented implicitly, as follows: For every z ∈ PV l(S) ∪ PV r(S),
store pL(z) and the weighted length of zpL(z) in table TS ; for any pL(u) and pL(v)
in S, use the prefix sums of weighted lengths discussed in section 3.4 to compute the
weighted length of pL(u)pL(v), in O(1) time. Hence, the weight of every edge (u, v),
for u ∈ PV l(S) and v ∈ PV r(S), can be computed in O(1) time via TS . TS uses

O(log1/2 n) space. The distance tables for all O(n log1/2 n) strips of G use altogether
O(nlogn) space and can be trivially built in O(nlogn) time. Running the shortest
path algorithm of [14] on G′ with edge set ES being represented by distance tables

is similar to the explicit representation of G′ in [24], yet it takes O(n log3/2 n) (not

O(n log2 n)) time and O(nlogn) (not O(n log3/2 n)) space.

4.2. Construction of the single-source data structure. The single-source
shortest path tree in graph G rooted at the source vertex s is computed by making
use of graph G′. The procedure for computing this shortest path tree in G consists
of two steps.

1. Compute the single-source shortest path tree inG′ rooted at s, inO(n log3/2 n)
time and O(nlogn) space (by using our distance table scheme). To obtain the shortest
path tree in G rooted at s, we need to compute, for every cut-line L, the lengths of
shortest paths from s to all Steiner points on L in each strip of L. Let S be the set of
Steiner points on L within a strip of L, and let PV (S) denote the vertices of VO ∪ VI
within the strip that are visible from L. Observe that for each point u ∈ S, PV (S)
controls all paths in G from u to the source s, and that the lengths of shortest paths
from the vertices in PV (S) to s are already computed in this step.

2. Let um be the median Steiner point in S along L. Let dw(P ∗ums) =
min{dw(Pumv) +dw(P ∗vs) | v ∈ PV (S)}, where P ∗wz denotes a shortest path between
points w and z, and path Pumv consists of segments vpL(v) and pL(v)um. It is easy to
compute dw(P ∗ums) in O(|PV (S)|) time. Next, use um to partition S into two subsets
S1 and S2 of balanced sizes. Note that for a point u′ ∈ S1 (resp., S2), all paths in
G from u′ to s are controlled by the vertices in PV (S1) ∪ {um} (resp., PV (S2) ∪
{um}). Therefore, we recursively perform step 2 on S1 and S2, resp., until the size of
each set becomes one.

The time bound of the divide-and-conquer procedure for step 2 obeys recurrence
T (N) = 2T (N/2) + cN for some constant c > 0. Because |PV (S)| = O(log1/2 n) for

each strip, the time of the procedure taken on each strip is O(log1/2 n log logn). The

total time of step 2 on all O(n log1/2 n) strips ofG is O(nlogn log logn) = o(n log3/2 n),
and the space is O(nlogn).

4.3. Construction of the two-point data structure. For each of the
O(nlogn) vertices in G, we need to compute a single-source shortest path tree in
G rooted at that vertex. The O(nlogn) shortest path trees in G altogether take
O(n2 log2 n) space. Applying the algorithm in section 4.2 for computing one shortest
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path tree to each vertex of G would take O(n2 log2 n log logn) time. We show here
how to achieve an O(n2 log2 n) time and space algorithm for obtaining the O(nlogn)
shortest path trees in G. The algorithm consists of two steps.

1. Compute the lengths of shortest paths from all vertices in G′ to all vertices
in G. There are O(n log1/2 n) × O(nlogn) path lengths to compute. By applying

the algorithm in section 4.2 to each vertex of G′, this step takes O(n log1/2 n) ×
O(n log3/2 n) = O(n2 log2 n) time and O(n2 log3/2 n) space.

2. Compute the lengths of shortest paths between the vertices of G that are not
vertices of G′. Let S′ (resp., S′′) be the set of Steiner points on a cut-line L′ (resp., L′′)
within a strip of L′ (resp., L′′). The O(logn) path lengths between the points in S′

and the points in S′′ are computed as follows: (2.1) Let u′m (resp., u′′m) be the median
Steiner point in S′ (resp., S′′), and compute the lengths of shortest paths from u′m
(resp., u′′m) to all the points in S′′ (resp., S′). This can be done in O(log1/2 n log logn)
time by using a divide-and-conquer procedure similar to the one in section 4.2. (2.2)
Use u′m (resp., u′′m) to partition S′ (resp., S′′) into two subsets S′1 and S′2 (resp., S′′1
and S′′2 ) of balanced sizes. (2.3) Recursively repeat this procedure on each pair of
subsets S′i and S′′j , with i, j ∈ {1, 2}, until the size of a set in the pair becomes one.

The time bound of the divide-and-conquer procedure for step 2 obeys recurrence
T (N) = 4T (N/2) + cN logN for some constant c > 0, whose solution is T (N) =

O(N2). Since there are O(log1/2 n) Steiner points in each strip of a cut-line, the time
of the procedure for computing the O(logn) path lengths for each pair of strips is

T (log1/2 n) = O(logn). Hence, the total time of step 2 on all the O(n2logn) pairs of
strips of G is O(n2 log2 n), and the space is also O(n2 log2 n).

5. Shortest path queries among arbitrary polygonal obstacles. This
section focuses on processing two-point L1 shortest obstacle-avoiding path queries
among arbitrary (i.e., not necessarily rectilinear) polygonal obstacles. We call non-
penetrating obstacles solid obstacles. The query processing techniques that we will
present have some similarity to those used in the previous sections, but nevertheless
significant differences exist in our data structures and algorithms for this case. One
notable difference in the solid polygonal obstacle case is that, corresponding to the
nonrectilinear shape of obstacles, we will not limit ourselves to using rectilinear paths,
although we still use the L1 metric to measure the lengths of the (possibly nonrecti-
linear) paths. The line segments of nonrectilinear paths can be viewed as representing
staircase subpaths consisting of many sufficiently short line segments (if rectilinear
paths are desired).

We will show how to construct a two-point shortest path data structure inO(n2 log2 n)
time and O(n2 logn) space, which answers each two-point length query in O(log2 n)
time and reports an actual path in an additional O(k) time, where k is the number
of edges on the output path.

5.1. The visibility graph G∗. In this section, we say a point q is visible from
a point p iff line segment qp does not intersect the interior of any obstacle, and q is
rectilinearly visible from p iff p and q are visible to each other and pq is horizontal
or vertical. The visibility graph G∗ = (V ∗, E∗), which we use for the solid polygonal
obstacle case, is similar to graph G defined in section 2 for the weighted rectilinear
obstacle case. But there are a few differences which account for the facts that the
obstacles are solid and that the obstacle edges need not be rectilinear. This visibility
graph was introduced in [8, 9]. The vertex set V ∗ of G∗ includes: (i) the set of obstacle
vertices and (ii) two sets of Steiner points.
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As in [8, 9], there are two types of Steiner points in G∗: (1) projections of obstacle
vertices onto cut-lines, and (2) projections of obstacle vertices onto obstacle bound-
aries. The first type of Steiner points (called type-1 Steiner points) are created in [8, 9]
similar to the way sketched in section 2, building a graph with O(n logn) vertices and
edges, as well as other information (e.g., cut-lines). The second type of Steiner points
(called type-2 Steiner points) consists of horizontal and vertical projection points of
each obstacle vertex p onto rectilinearly visible obstacle edges of p. Include edges in
E∗ between every obstacle vertex p and each of the (at most four) projection points
of p. For each obstacle edge e, there is a linear ordering of the vertices in V ∗ which
lie on e; include in E∗ edges between every two consecutive vertices of V ∗ along e.
Clearly, there are O(n) type-2 Steiner points and they introduce O(n) edges to E∗.
These type-2 Steiner points and their edges can be created in O(n logn) time by a
standard plane sweeping technique [8, 9].

5.2. Useful observations. We project each query point z vertically (resp., hor-
izontally) onto the first point of the obstacle edge (if it exists) immediately above
(resp., below, to the left of, to the right of) z. Let Q(z) be the set of the (at most
four) projection points of z on obstacle boundaries so resulted. The lemmas below
show some useful structures of shortest paths between two points q and r.

Lemma 5.1. For two points q and r that are not visible to each other, there is a
q-to-r shortest path whose interior passes through an obstacle vertex.

Proof. The proof is obvious and omitted.
Next, we characterize shortest paths between points that are visible to each other.

Before doing so, we should point out that by simply performing a ray shooting oper-
ation (in any given direction), it is easy to find out whether two points in the plane
are visible to each other, and if they are, give the shortest path (i.e., the segment)
connecting the two points. Such a ray shooting data structure [1] takes O(n2) space
and O(n2 logn) time to construct, in order to support each operation in logarithmic
time. In our case, it is possible to avoid such general ray shooting operations and use
only special ray shooting (along the horizontal or vertical direction). We believe this
simplifies the algorithm and even improves its implementation performance.

Let two points q and r be visible to each other. Then a shortest q-to-r path Pqr can
be classified into one of three possible cases: (1) Pqr goes through an obstacle vertex
and hence through a vertex of G∗ (by possibly going through a point in Q(q) ∪ Q(r));
(2) Pqr goes through a point in Q(q) ∪ Q(r) but not through any obstacle vertex of G∗;
or (3) Pqr goes through neither a point in Q(q) ∪ Q(r) nor an obstacle vertex. Note
that, even by using general ray shooting, it may be difficult to decide which case holds
for each pair of mutually visible points. Fortunately, it turns out that it is not neces-
sary to decide exactly which case holds. The next lemma shows that, for all practical
purposes, case 1 can be differentiated from cases 2 and 3 without much trouble.

Lemma 5.2. Suppose two points q and r are visible to each other. By performing
O(1) special ray shooting operations (horizontal and vertical), it is possible to decide
whether a shortest q-to-r path Pqr needs to be forced to go through an obstacle vertex.

Proof. WLOG, assume r is in the first quadrant of q. In this case, what we
need to do is to perform an upward (resp., downward) vertical ray shooting and a
rightward (resp., leftward) horizontal ray shooting from q (resp., r). We only show
how to analyze the information obtained by the leftward shooting from q and the
downward shooting from r (the other case is similar).

There are three cases for the leftward shooting from q and the downward shooting
from r: (a) The rays from q and r intersect each other before hitting an obstacle edge,
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Fig. 5.1. A shortest path Pqr goes through an obstacle vertex.

(b) the rays hit the same obstacle edge e, and (c) the rays hit different obstacle edges.

In case (a), one can simply use a shortest q-to-r path that consists of segments
qh and hr, where h is the intersection point of the two rays. In case (b), a shortest
q-to-r path consisting of three segments qhq, hqhr, and hrr can be used, where hq
(resp., hr) is the hit point of the horizontal (resp., vertical) ray from q (resp., r) on
the (same) obstacle edge e.

In case (c), a shortest q-to-r path Pqr can be forced to go through an obstacle
vertex. Since q and r are visible to each other, segment qr does not intersect the
interior of any obstacle. Let h be the intersection point of the two rays from q and r
as if they are extended to infinity (Figure 5.1). Because the two rays do not hit the
same obstacle edge before they intersect each other, the triangle 4qrh must contain
at least one obstacle vertex. Consider the obstacle vertices in 4qrh that are vertically
visible from a point on segment qr. Let v be the first of such vertices in the left-to-
right order based on their corresponding vertically visible points on qr (Figure 5.1).
A shortest q-to-r path Pqr can then be obtained as in Figure 5.1, which goes through
obstacle vertex v.

The horizontal and vertical ray shooting operations can be performed in O(logn)
time each. This is done by using a planar point location data structure [12] which is
based on a horizontal (resp., vertical) trapezoidal decomposition of the plane.

The significance of the above lemmas is as follows. For any two points q and r,
regardless of whether they are visible to each other or not, a shortest q-to-r path can
be obtained in one of two ways: (i) such a path can be forced to go through an obstacle
vertex (Lemma 5.1 and case c in the proof of Lemma 5.2), and (ii) such a path need
not go through any obstacle vertex (cases (a) and (b) in the proof of Lemma 5.2).
Lemma 5.2 also shows how to handle paths of type ii efficiently. All other paths (i.e.,
type i) are captured by graph G∗, as shown in Lemma 5.1 and case (c) of the proof
of Lemma 5.2. The next subsection further discusses how to handle two-point path
queries of type i.

5.3. Characterization of gateways. Let p and q be any two query points.
WLOG, we assume in this section a shortest p-to-q path goes through a vertex of G∗.
As in the weighted rectilinear obstacle case, we want to compute a subset of vertices
in G∗ (the gateways) which captures a shortest p-to-q path. But our data structure
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for maintaining shortest path information for each pair of vertices in G∗ is somewhat
different from the weighted rectilinear obstacle case. Our two-point query procedure
is also different. For the time being, we assume our data structure can report the
length of a shortest path between any two vertices of G∗ in O(logn) time. We again
use the idea of “inserting” the query points into the visibility graph.

The set Vg(q) of gateways for a point q is defined similarly to the one for the
weighted rectilinear obstacle case but differs in that the visibility graph for the solid
polygonal obstacle case must account for the type-2 Steiner points. We therefore split
Vg(q) into two subsets V ′g(q) of gateways with the type-1 Steiner points, and V ′′g (q) of
gateways with the type-2 Steiner points.

In the rest of this section, we assume WLOG that all cut-lines are vertical unless
otherwise specified.

The set V ′g(q) of gateways for a point q is determined as follows: For each cut-
line L of q that is horizontally visible from q, if z is the vertex of G∗ on L that
is immediately above (resp., below) the horizontal projection point pL(q) of q on L
and if z is visible to pL(q), then z ∈ V ′g(q). For V ′′g (q), shoot a ray from q onto the
obstacle edge immediately above (resp., to the left of, to the right of, below) q; if u is
the vertex of G∗ that is immediately before (resp., after) the projection point of q on
the obstacle edge, then u ∈ V ′′g (q).

For each z ∈ V ′g(q) on a cut-line L of q, let an “edge” (q, z) in the graph consist

of segments qpL(q) and pL(q)z. If z ∈ V ′′g (q), then edge (q, z) consists of segments

qpe(q) and pe(q)z, where pe(q) is the projection point of q on the obstacle edge e
containing z. It is now easy to see that Vg(q) controls every path in G∗ from q to any
other vertex of G∗, and |Vg(q)| = O(logn).

The gateway region R(q) of q (Figure 3.4) is defined and constructed in the
same manner as the weighted rectilinear obstacle case (section 3.3), with the minor
difference that here it is based on the vertices in V ′g(q) instead of Vg(q).

Lemma 5.3. The gateway region R(q) is rectilinearly convex and intersects no
interior points of any obstacle. Furthermore, for any point z in R(q), the points
(zx, qy) and (qx, zy) are both in R(q).

Proof. The proof is similar to those of Lemmas 3.7 and 3.9.

Comparing with the weighted case discussed in previous sections, it is straight-
forward to compute in this case Vg(q) and the L1 distances from q to all points in
Vg(q) in O(logn) time, by Lemma 5.3.

5.4. Construction of the data structure. In the weighted rectilinear obstacle
case, our processing of queries depends on the ability to report efficiently the shortest
paths (or their lengths) between any two vertices in the visibility graph. In the
polygonal obstacle case, rather than applying graphical shortest path algorithms to
graph G∗ explicitly, we maintain needed path information by using the shortest path
maps in [25, 26]. In effect, we need the geometric properties of graph G∗ for query
purposes, but we do not need its graph structures for computing our data structure
for shortest paths between vertices of G∗.

Mitchell [25, 26] created an optimal single-source L1 shortest path map inO(n logn)
time and O(n) space, where n is the number of obstacle vertices. Given any query
point t, Mitchell’s data structure can report the length of a shortest path from t to
the source point s in O(logn) time (by planar point-location within the map), and
an actual t-to-s shortest path in an additional O(k) time, where k is the number of
segments on the output path.
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We apply Mitchell’s algorithm [25, 26] to create O(n logn) L1 single-source short-
est path maps. In particular, we use each vertex v ∈ V ∗ as a source point to construct
a single-source shortest path map. Such a map is of size O(n) because its geomet-
ric setting consists of n obstacle vertices (note that we need not use the O(n logn)
Steiner points of V ∗ in building this shortest path map). This map allows us to handle
single-source queries between the source v ∈ V ∗ and any query point q.

Our two-point shortest path data structure for the solid polygonal obstacle case
contains as a major component the O(n logn) shortest path maps. Using these maps,
a length query of the shortest path between any vertex v ∈ V ∗ and any query point
p in the plane can be answered in O(logn) time. Our data structure can be created
in altogether O(n logn) × O(n logn) = O(n2 log2 n) time and O(n logn) × O(n) =
O(n2 logn) space. This is a savings of a factor of log n in space complexity over the
methods we used in previous sections.

5.5. Answering shortest path queries. To answer a shortest path query for
any two points p and q, we need to account for two cases: (i) a shortest p-to-q path
goes through a vertex in G∗, and (ii) the shortest p-to-q path need not go through
any vertex of G∗. The proof of Lemma 5.2 has shown how to distinguish these two
cases. This subsection shows that a length query can be performed in O(log2 n) time.

Suppose, by Lemma 5.2, we already know that a shortest p-to-q path goes through
a vertex of G∗ for two query points p and q. To obtain the length of such a shortest
path, we use the shortest path maps constructed in section 5.4, as follows:

1. For one of the two query points, say q, compute Vg(q).
2. For each point x ∈ Vg(q), use p as a query point to find, in the shortest path

map with x as the source point, the length of the shortest x-to-p path in the plane
(in O(logn) time).

3. There are O(logn) paths, each consisting of the (trivial) shortest path from
q to an x ∈ Vg(q) and the shortest x-to-p path. Find the length of the shortest p-to-q
path among these paths.

This computation clearly takes altogether O(log2 n) time. The correctness follows
from the facts that a shortest p-to-q path goes through a point (say y) in Vg(q) and
that the p-to-y-to-q path so obtained consists of a shortest q-to-y path and a shortest
y-to-p path.

The computation of a shortest p-to-q path not going through any vertex of G∗

is much simpler. From Lemma 5.2 in section 5.2, such a path and its length can be
found in O(logn) time (by performing O(1) horizontal and vertical ray shootings).
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Abstract. We propose a general methodology for testing whether a given polynomial with
integer coefficients is identically zero. The methodology evaluates the polynomial at efficiently com-
putable approximations of suitable irrational points. In contrast to the classical technique of DeMillo,
Lipton, Schwartz, and Zippel, this methodology can decrease the error probability by increasing the
precision of the approximations instead of using more random bits. Consequently, randomized al-
gorithms that use the classical technique can generally be improved using the new methodology. To
demonstrate the methodology, we discuss two nontrivial applications. The first is to decide whether a
graph has a perfect matching in parallel. Our new NC algorithm uses fewer random bits while doing
less work than the previously best NC algorithm by Chari, Rohatgi, and Srinivasan. The second
application is to test the equality of two multisets of integers. Our new algorithm improves upon
the previously best algorithms by Blum and Kannan and can speed up their checking algorithm for
sorting programs on a large range of inputs.
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1. Introduction. Many algorithms involve checking whether certain polynomi-
als with integer coefficients are identically zero. Oftentimes, these polynomials have
exponential-sized standard representations while having succinct nonstandard repre-
sentations [6, 17, 18, 22]. This paper focuses on testing such polynomials with integer
coefficients.

Given a polynomialQ(x1, . . . , xq) in a succinct form, a naive method of testing it is
to transform it into the standard simplified form and then test whether its coefficients
are all zero. Since Q may have exponentially many monomials, this method may take
exponential time. Let dQ be the degree of Q. DeMillo and Lipton [6], Schwartz [18],
and Zippel [22] proposed an advanced method, which we call the DLSZ method. It
evaluates Q(i1, . . . , iq), where i1, . . . , iq are uniformly and independently chosen at
random from a set S of 2dQ integers. This method uses qdlog(2dQ)e random bits
and has an error probability of at most 1

2 . (Every log in this paper is to base 2.)
There are three general techniques that use additional random bits to lower the error
probability to 1

t for any integer t > 2. These techniques have their own advantages and
disadvantages in terms of the running time and the number of random bits used. The
first performs dlog te independent evaluations of Q at dlog(2dQ)e-bit integers, using
qdlog(2dQ)edlog te random bits. The second enlarges the cardinality of S from 2dQ
to tdQ and performs one evaluation of Q at dlog(tdQ)e-bit integers, using qdlog dQ +
log te random bits. The third is probability amplification [15]. A basic such technique
works for t ≤ 2qdlog(2dQ)e by performing t pairwise independent evaluations of Q at
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dlog(2dQ)e-bit integers, using 2qdlog(2dQ)e random bits. Stronger amplification can
be obtained by means of random walks on expanders [5, 1, 8].

In section 2, we propose a new general methodology for testing Q(x1, . . . , xq). Our
methodology computesQ(π1, . . . , πq), where π1, . . . , πq are suitable irrational numbers
such that Q(π1, . . . , πq) = 0 if and only if Q(x1, . . . , xq) ≡ 0. Since rational arithmetic
is used in actual computers, we replace each πi with a rational approximation π′i.
A crucial question is how many bits each π′i needs to ensure that Q(π′1, . . . , π

′
q) = 0

if and only if Q(x1, . . . , xq) ≡ 0. We give an explicit answer to this question, from
which we obtain a new randomized algorithm for testing Q. Our algorithm runs in
polynomial time and uses

∑q
i=1dlog(di + 1)e random bits, where di is the degree of

xi in Q. Moreover, the error probability can be made inverse polynomially small by
increasing the bit length of each π′i. Thus, our methodology has two main advantages
over previous techniques:

• It uses fewer random bits if some di is less than dQ.
• It can reduce the error probability without using one additional random bit.

In general, randomized algorithms that use the classical DeMillo, Lipton, Schwartz,
and Zippel (DLSZ) method can be improved using the new methodology. To demon-
strate the methodology, we discuss two nontrivial applications. In section 3, the first
application is to decide whether a given graph has a perfect matching. This problem
has deterministic polynomial-time sequential algorithms but is not known to have a
deterministic NC algorithm [7, 10, 13, 21]. We focus on solving it in parallel using as
few random bits as possible. Our new NC algorithm uses fewer random bits while do-
ing less work than the previously best NC algorithm by Chari, Rohatgi, and Srinivasan
[4]. In section 4, the second application is to test the equality of two given multisets
of integers. This problem was initiated by Blum and Kannan [3] for checking the cor-
rectness of sorting programs. Our new algorithm improves upon the previously best
algorithms developed by them and can speed up their checking algorithm for sorting
programs on a large range of inputs.

2. A new general methodology for testing polynomials. The following
notation is used throughout this paper.

• Let Q(x1, . . . , xq) be a polynomial with integer coefficients; we wish to test
whether Q(x1, . . . , xq) ≡ 0.
• For each xi, let di be an upper bound on the degree of xi in Q. Let ki =
dlog(di + 1)e.
• Let k = maxqi=1 ki and K =

∑q
i=1 ki; K is the number of random bits used

by the methodology as shown in Theorem 2.3.
• Let d be an integer upper bound on the degree of Q; without loss of generality,

we assume d ≥ maxqi=1 di.
• Let c be an upper bound on the absolute value of a monomial’s coefficient in
Q.

• Let Z be an upper bound on the number of monomials in Q; without loss of
generality, we assume Z ≤∑d

i=0 q
i.

• Let ψ = log c+ logZ + d(log k+ logK
2 + log lnK). Let ` be an integer at least

ψ+1+log d; ` determines the precision of our approximation to the irrational
numbers chosen for the variables xi.

For example, if all di = 1, then ki = 1, K = q, and our goal is to use exactly q random
bits, i.e., one bit per variable xi.

Lemma 2.1. Let p1,1, . . . , p1,k1
, . . . , pq,1, . . . , pq,kq be K distinct primes. For each

pi,j , let bi,j be a bit. For each xi, let πi =
∑ki
j=1(−1)bi,j

√
pi,j. Then Q(x1, . . . , xq) 6≡ 0
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if and only if Q(π1, . . . , πq) 6= 0.

Proof. This lemma follows from Galois theory in algebra [14]. Let A0 = B0 be the

field of rational numbers. For each xj , let Kj =
∑j
i=1 ki. Let Aj be the field generated

by π1, π2, . . . , πj over A0. Let Bj be the field generated by p1,1, . . . , p1,k1
, . . . , pj,1, . . . ,

pj,kj over B0. By induction, Aj = Bj , the dimension of Aj over A0 is 2Kj , and the
dimension of Aj over Aj−1 is 2kj . Thus, πj is not a root of any nonzero single variate
polynomial over Aj−1 that has a degree less than 2kj . Since dj < 2kj , by induction,
Q(π1, . . . , πj , xj+1, . . . , xq) 6≡ 0. The lemma is proved at j = q.

In light of Lemma 2.1, the next algorithm tests Q(x1, . . . , xq) by approximating
the irrational numbers

√
pi,j and randomizing the bits bi,j .

Algorithm 1.

(1) Compute q, d1, . . . , dq, k1, . . . , kq,K, d, c, Z.
(2) Choose p1,1, . . . , p1,k1 , . . . , pq,1, . . . , pq,kq to be the K smallest primes.
(3) Choose each bi,j independently with equal probability for 0 and 1.
(4) Pick `, which determines the precision of our approximation to

√
pi,j .

(5) For each pi,j , compute a rational number ri,j from
√
pi,j by cutting off the

bits after the `th bit after the decimal point.

(6) Compute ∆ = Q(
∑k1

j=1(−1)b1,jr1,j , . . . ,
∑kq
j=1(−1)bq,jrq,j).

(7) Output “Q(x1, . . . , xq) 6≡ 0” if and only if ∆ 6= 0.

The next lemma shows how to choose an appropriate ` at Step 1 of Algorithm 1.

Lemma 2.2. If Q(x1, . . . , xq) 6≡ 0, then |∆| ≥ 2−` with probability at least 1 −
ψ

`−1−log d .

Proof. For each combination of the bits bi,j , Q(π1, . . . , πq) is called a conjugate.

By the prime number theorem [11],
√
pi,j ≤

√
K lnK and thus |πi| ≤ k

√
K lnK.

Then, since Q has at most Z monomials, each conjugate’s absolute value is at most
2ψ = cZ(k

√
K lnK)d. Let `′ = ` − ψ − 1 − log d. Let α be the number of the

conjugates that are less than 2−`
′
. Let β = 2K − α be the number of the other

conjugates. Let Π be the product of all the conjugates. By Lemma 2.1, Π 6= 0,
and by algebra [9], Π is an integer. Thus, |Π| ≥ 1 and α(−`′) + βψ ≥ 0. Hence,
β

2K
≥ `′

`′+ψ ; i.e., |Q(π1, . . . , πq))| ≥ 2−`
′

with the desired probability. We next show

that if |Q(π1, . . . , πq)| ≥ 2−`
′
, then |∆| ≥ 2−`. Since ri,j >

√
pi,j − 2−`,

∑ki
j=1 ri,j >

|πi| − k2−`. So approximating pi,j reduces each monomial term’s absolute value

in Q(π1, . . . , πq) by at most c(k
√
K lnK)d−1dk2−`. Thus, |∆| ≥ |Q(π1, . . . , πq)| −

cZ(k
√
K lnK)d2−`+log d ≥ |Q(π1, . . . , πq)| − 2−`

′−1 ≥ 2−`.
Theorem 2.3. For a given t > 1, set ` ≥ tψ + 1 + log d. If Q(x1, . . . , xm) ≡ 0,

Algorithm 1 always outputs the correct answer; otherwise, it outputs the correct answer
with probability at least 1− 1

t . Moreover, it uses exactly K random bits, and its error
probability can be decreased by increasing t without using one additional random bit.

Proof. This theorem follows from Lemma 2.2 immediately.

Let ||Q|| be the size of the input representation of Q. The next lemma supplements
Theorem 2.3 by discussing sufficient conditions for Algorithm 1 to be efficient.

Lemma 2.4. With Z =
∑d
i=1 q

i, Algorithm 1 takes polynomial time in ||Q|| and
t under the following conditions:

• The parameters q, d1, . . . , dq, d are at most (t||Q||)O(1) and are computable in
time polynomial in t||Q||.
• The parameter c is at most 2O(t||Q||) and is computable in time polynomial in
t||Q||.
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• Given `′-bit numbers p′i, Q(p′1, . . . , p
′
q) is computable in time polynomial in

t||Q|| and `′.
Proof. The proof is straightforward based on the following key facts. There are

at most (t||Q||)O(1) primes pi,j , which can be efficiently found via the prime number
theorem. Each ri,j has at most (t||Q||)O(1) bits and can be efficiently computed by,
say, Newton’s method.

We can scale up the rationals ri,j to integers and then compute ∆ modulo a
reasonably small random integer. As shown in later sections, this may considerably
improve the efficiency of Algorithm 1 by means of the next fact.

Fact 1 (Thrash [19]). Let h ≥ 3 be an integer. If H is a subset of {1, 2, . . . , h2}
with |H| ≥ h2

2 , then the least common multiple of the elements in H exceeds 2h. Thus,
for a given positive integer h′ ≤ 2h, a random integer from {1, 2, . . . , h2} does not
divide h′ with probability at least 1

2 .

3. Application to perfect matching test. Let G = (V,E) be a graph with
n vertices and m edges. Let V = {1, 2, . . . , n}. Without loss of generality, we assume
that n is even and m ≥ n

2 . A perfect matching of G is a set L of edges in G such that
no two edges in L have a common endpoint and every vertex of G is incident to an
edge in L.

Given G, we wish to decide whether it has a perfect matching. This problem is
not known to have a deterministic NC algorithm. The algorithm of Chari, Rohatgi,
and Srinivasan [4] uses the fewest random bits among the previous NC algorithms.
This paper gives a new algorithm that uses fewer random bits while doing less work.
For ease of discussion, a detailed comparison is made right after Theorem 3.2.

3.1. Classical ideas. The Tutte matrix ofG is the following n×n skew-symmetric
matrix M of m distinct indeterminates yi,j :

Mi,j =

 yi,j if {i, j} ∈ E and i < j,
−yj,i if {i, j} ∈ E and i > j,

0 otherwise.

Let L = {{i1, j1}, . . . , {in2 , jn2 }} be a perfect matching of G, where i1 < j1, i2 <
j2, . . . , in2 < jn

2
and i1 < i2 < · · · < in

2
. Let π(L) = yi1,j1yi2,j2 · · · yin

2
,jn

2
. Let σ(L) = 1

or −1 if the following permutation is even or odd, respectively:(
1 2 · · · n− 1 n
i1 j1 · · · in

2
jn

2

)
.

Let Pf(G) =
∑
L π(L)σ(L), where L ranges over all perfect matchings in G.

Fact 2 (Fisher and Kasteleyn [2], Tutte [20]).

• detM = (Pf(G))
2
.

• G has a perfect matching if and only if detM 6≡ 0.

Combining Fact 2 and the DLSZ method, Lovasz [12] gave a randomized NC
algorithm for the matching problem. Since the degree of detM is at most n, this
algorithm assigns to each xi,j a random integer from {1, 2, . . . , 2n} uniformly and
independently and outputs “G has a perfect matching” if and only if detM is nonzero
at the chosen integers. Its error probability is at most 1

2 , using mdlog(2n)e random
bits. The time and processor complexities are dominated by those of computing the
determinant of an n× n matrix with O(logn)-bit integer entries.
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3.2. A new randomized NC algorithm. A direct application of Theorem 2.3
to detM uses O(m) random bits, but our goal is O(n+ logm/n) bits. Therefore, we
need to reduce the number of variables in detM .

• Let G′ be the acyclic digraph obtained from G by orienting each edge {i, j}
into the arc (min{i, j},max{i, j}).

• For each vertex i in G′, let ni be the number of outgoing arcs from i.
• Let n̂i = 0 if ni = 0; otherwise, n̂i = dlognie.
• Let q =

∑n
i=1 n̂i. Note that q < n+ n log m

n .
• Let x1, x2, . . . , xq be q distinct new indeterminates.

We label the outgoing arcs of each vertex as follows. If n1 = 0, vertex 1 has no
outgoing arc in G′. If n1 = 1, label its unique outgoing arc with 1. If n1 ≥ 2, label its n1

outgoing arcs each with a distinct monomial in {(x1)a1(x2)a2 · · · (xn̂1)an̂1 | each ah is 0
or 1}, which is always possible since 2n̂1 ≥ n1. We label the n2 outgoing arcs of vertex
2 in the same manner using xn̂1+1, xn̂1+2, . . . , xn̂1+n̂2

. We similarly process the other
vertices i, each using the next n̂i available indeterminates xh.

Let fi,j be the label of arc (i, j) in G′. Let Q(x1, . . . , xq) be the polynomial
obtained from Pf(G) by replacing each indeterminate yi,j with fi,j .

Lemma 3.1. G has a perfect matching if and only if Q(x1, . . . , xq) 6≡ 0.
Proof. For each L as described in section 3.1, let QL = σ(L)fi1,j1fi2,j2 · · · fin

2
,jn

2
.

Then Q =
∑
LQL, where L ranges over all the perfect matchings of G. It suffices

to prove that for distinct perfect matchings L1 and L2, the monomials QL1
and QL2

differ by at least one xh. Let H be the subgraph of G induced by (L1∪L2)−(L1∩L2).
H is a set of vertex-disjoint cycles. Since L1 6= L2, H contains at least one cycle C.
Let C ′ be the acyclic digraph obtained from C by replacing each edge {i, j} with
the arc (min{i, j},max{i, j}). C ′ contains two outgoing arcs (i, j1) and (i, j2) of some
vertex i. So there is an indeterminate xh used in arc labels for vertex i, whose degree
is 1 in one of fi,j1 and fi,j2 but is 0 in the other. Hence, the degree of xh is 1 in one
of QL1 and QL2 but is 0 in the other, which makes QL1 and QL2 distinct as desi-
red.

To test whether G has a perfect matching, we use Algorithm 1 to test Q by means
of Theorem 2.3 and Lemma 3.1. Below we detail each step of Algorithm 1.

Step 1. Compute q. Then set d1 = d2 = · · · = dq = 1, k1 = k2 = · · · = kq = 1,
K = q, d = q, c = 1. Further set Z = ( 2m

n )n since the number of perfect matchings
in G is at most Πn

i=1mi ≤ (2m
n )n, where mi is the degree of node i in G.

Step 2. This step computes the q smallest primes p1,1, p2,1, . . . , pq,1, each at most
q ln2 q. Since a positive integer p is prime if and only if it is indivisible by any integer
i with 2 ≤ i ≤ √p, these primes can be found in O(log q) parallel arithmetic steps on

integers of at most dlog(1 + q ln2 q)e bits using O(q1.5 log3 q) processors.
Step 3. This step is straightforward.
Step 4. Set ` = dtψe+ dqe+ 1, where ψ = n log 2m

n + q log(
√
q ln q).

Step 5. We use Newton’s method to compute ri,1 from pi,1. For the convenience
of the reader, we briefly sketch the method here. We use g0 = pi,1 as the initial
estimate. After the jth estimate gj is obtained, we compute gj+1 = 1

2 (gj +
pi,1
gj

),

maintaining only the bits of gj+1 before the (` + 1)th bit after the decimal point.
Thus, gj+1 ≤ 1

2 (gj +
pi,1
gj

). With gj+1 obtained, we check whether g2
j+1 > pi,1. If not,

we stop; otherwise, we proceed to compute gj+2. Since the convergence order of the
method is 2, we take the dlog(dlog pi,1e+ `)eth estimate as ri,1. Thus r1,1, . . . , rq,1 can
be computed in O (log(`+ log q)) parallel arithmetic steps with q processors. Note
that each gj has at most dlog(1 + q ln2 q)e+ ` bits.
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Step 6. Evaluating ∆ is equivalent to computing ∆2. ∆2 is the determinant of an
n × n skew-symmetric matrix M ′ whose nonzero entries above the main diagonal in
the ith row are either 1 or products of at most n̂i rationals among r1,1, . . . , rq,1. Thus,
each matrix entry has at most dlogne(dlog(1 + q ln2 q)e+ `) bits. Setting up M ′ takes
O(logn) arithemetic steps on O(n2) processors.

Step 7. This step is straightforward.

The next theorem summarizes the above discussion.

Theorem 3.2. For any given t > 1, whether G has a perfect matching can be
determined in O(log(nt)) parallel arithmetic steps on rationals of O(tn log3 n) bits
using O(n2) processors together with one evaluation of the determinant of an n × n
matrix of O(tn log3 n)-bit rational entries. The error probability is at most 1

t , using
q < n+ n log m

n random bits.

Remark. The best known NC algorithm for computing the determinant of an
n×n matrix takes O(log2 n) parallel arithmetic steps using O(n2.376) processors [16].

Proof. We separate the total complexity of Algorithm 1 into that for computing
detM ′ and that for all the other computation. For the latter, the running time is
dominated by that of Step 5; the bit length by that of the entries in M ′ at Step 6;
and the processor count by that of setting up M ′.

The work of Chari, Rohatgi, and Srinivasan [4] aims to use few random bits when
the number of perfect matchings is small. Indeed, their algorithm uses the fewest
random bits among the previous NC algorithms. For an error probability at most 3

4 ,

it uses min{28
∑n
i=1dlog d̂ie, 6m + 4

∑n
i=1dlog d̂ie} + O(logn) random bits, where d̂i

is the degree of vertex i in G. It also computes the determinant of an n × n matrix
with O(n7)-bit entries. In contrast, with t = 2 in Theorem 3.2, Algorithm 1 has
an error probability at most 1

2 while using fewer random bits, i.e., q < n + n log m
n

bits. Moreover, using the best known NC algorithm for determinants, the work of
Algorithm 1 is dominated by that of computing the determinant of an n × n matrix
with entries of shorter length, i.e., O(n log3 n) bits.

The next theorem modifies the above implementation of Algorithm 1 by means
of Fact 1 so that it computes the determinants of matrices with only O(log(nt))-bit
integer entries but uses slightly more random bits.

Theorem 3.3. For any given t > 2, whether G has a perfect matching can
be determined in O(log(nt)) parallel arithmetic steps on rationals of O(tn log3 n) bits
using O(n2) processors together with dlog te evaluations of the determinant of an n×n
matrix of O(log(nt))-bit integer entries. The error probability is at most 2

t , using
q +O(log t log(nt)) random bits, which is at most n+ n log m

n +O(log t log(nt)).

Proof. We modify Steps 6 and 7 of the above implementation as follows.

Step 6.

• Compute M ′ as above.
• For each (i, j)th entry of M ′, we multiply it with 2(n̂i+n̂j)` in O(1) parallel

arithmetic steps using O(n2) processors. Let M ′′ be the resulting matrix;
note that detM ′′ = 22q` detM ′ and each entry of M ′′ is an integer of at most
3dlogne(`+ dlogne) bits.

• Let λ = dlog te. Let u = n!·23ndlog ne(`+dlog ne); note that |detM ′′| ≤ u. We
uniformly and independently choose λ random positive integers w ≤ dlog ue2
using O(λ log(nt)) random bits in O(λ) steps on a single processor. For each
chosen w, we first compute M ′′′ = M ′′modw in O(1) parallel arithmetic
steps using O(n2) processors; and then compute detM ′′′ instead of detM ′.

Step 7. Output “G has a perfect matching” if and only if some detM ′′′ is nonzero.
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By Fact 1, if detM ′′ 6= 0, then some chosen w does not divide detM ′′ with
probability at least 1−2−λ. Thus, the overall error probability is at most 1

t +2−λ ≤ 2
t .

We separate the total complexity of Algorithm 1 into that for computing detM ′′′ and
that for all the other computation. As with Theorem 3.2, the running time of the
latter remains dominated by that of Step 5, the bit length by that of the entries in
M ′ at Step 6, and the processor count by that of setting up M ′.

4. Application to multiset equality test. Let A = {a1, . . . , an} and B =
{b1, . . . , bn} be two multisets of positive integers. Let a be the largest possible value
for any element of A∪B. Given A,B, and a as input, the multiset equality test problem
is that of deciding whether A ≡ B, i.e., whether they contain the same number of
copies for each element in A∪B. This problem was initiated by Blum and Kannan [3]
to study how to check the correctness of sorting programs. They gave two randomized
algorithms on a useful model of computation which reflects many sorting scenarios
better than the usual RAM model. For brevity, we denote their model by MBK and
the two algorithms by ABK1 and ABK2.

This section modifies the MBK model to cover a broader range of sorting appli-
cations. It then gives a new randomized algorithm, which improves upon ABK1 and
ABK2 and can speed up the checking algorithm for sorting by Blum and Kannan [3]
on a large range of inputs.

4.1. Models of computation and previous results. In both the MBK model
and the modified model, the computer has O(1) tapes as well as a random access
memory of O(logn+ log a) words. The allowed elementary operations are +, −, ×, /,
<, =, and two bit operations shift-to-left and shift-to-right, where / is integer division.
Each of these operations takes one step on integers that are one word long; thus the
division of an integer of m1 words by another of m2 words takes O(m1m2) time. In
addition, it takes one step to copy a word on tape to a word in the random access
memory or vice versa.

The only difference between the two models is that the modified model has a
shorter word length relative to a and therefore is applicable to sorting applications
with a larger range of keys. To be precise, in the MBK model, each word has 1+blog ac
bits, and thus can hold a nonnegative integer at most a. In the modified model, each
word has ξ = 1 + blog max{dlogne, dlog ae}c bits and thus can hold a nonnegative
integer at most max{dlogne, dlog ae}.

Note that sorting A and B by comparison takes O(n logn) time in the MBK
model and O( log a

ξ n logn) time in the modified model. However, in both models, if

n ≥ 2a, the equality of A and B can be tested in optimal O(n) time with bucket sort.
Hence, we hereafter assume n < 2a. We briefly review ABK1 and ABK2 as follows.

Let Q1(x) be the polynomial
∑n
i=1 x

ai −∑n
i=1 x

bi . ABK1 selects a random prime
w ≤ 3adlog(n + 1)e uniformly and computes Q1(n + 1) modw in a straightforward
manner. It outputs “A ≡ B” if and only if Q1(n+1) modw is zero. Excluding the cost
of computing w, ABK1 takes O(n log a) time in the MBK model and O

(
( log a

ξ )2n log a
)

time in the modified model. The error probability is at most 1
2 .

Let Q2(x) be the polynomial Πn
i=1(x − ai) − Πn

i=1(x − bi). ABK2 uniformly se-
lects a random positive integer z ≤ 4n and a random prime w ≤ 3ndlog(a + 4n)e;
and computes P (z) modw in a straightforward manner. It outputs “A ≡ B” if
and only if P (z) modw is zero. Excluding the cost of computing w, ABK2 takes

O
(
nmax{1, ( log n

log a )2}) time in the MBK model and O
(
n (log n+log a)(log n+log log a)

ξ2

)
time

in the modified model. The error probability is at most 3
4 .
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Generating the random primes w is a crucial step of ABK1 and ABK2. It is unclear
how this step can be performed efficiently in terms of running time and random
bits. We modify this step by means of Fact 1 as follows. In ABK1, |Q1(n + 1)| ≤
21+a log(n+1)+log n; in ABK2, |Q2(2n)| ≤ 21+n log(a+4n). Thus, we can replace w in
ABK1 and ABK2 with two random positive integers w1 ≤ (1 + a log(n+ 1) + log n)2

and w2 ≤ (1 + n log(a + 4n))2, respectively. With these modifications, ABK1 and
ABK2 use at most 2 log a + 2 log logn + O(1) and 3 logn + 2 log log(a + n) + O(1)
random bits, respectively. The time complexities and error probabilities remain as
stated above.

4.2. A new randomized algorithm. Our goal in this section is to design an
algorithm for multiset equality test for the modified model that is faster than ABK1

for n = ω((log log a)2) and faster than ABK2 for n = ω
(
(log a)log log a

)
. We can then

use it to speed up the previously best checking algorithm for sorting [3].
• Let q = blog ac+ 1.
• Let x1, . . . , xq be q distinct indeterminates.
• For each u ∈ A∪B, let fu denote the monomial (x1)u1(x2)u2 · · · (xq)uq , where
u1u2 · · ·uq is the standard q-bit binary representation of u.

• Let Q(x1, . . . , xq) denote the polynomial
∑n
i=1 fai −

∑n
i=1 fbi .

Note that Q(x1, . . . , xq) ≡ 0 if and only if A ≡ B. To test whether A ≡ B, we detail
how to implement the steps of Algorithm 1 to test Q as follows. The algorithm is
analyzed only with respect to the modified model.

Remark. In the implementation, the parameter t of Theorem 2.3 needs to be a
constant so that the algorithm can be performed inside the random access memory
together with straightforward management of the tapes. At the end of this section,
we set t = 4, but for the benefit of future research, we analyze the running time and
the random bit count in terms of a general t.

Step 1. Compute q by finding the index of the most significant bit in the binary
representation of a. Since a takes up O( log a

ξ ) words, this computation takes O(q) time
by shifting the most significant nonzero word to the left at most ξ times. Afterwards,
set d1 = d2 = · · · = dq = k1 = k2 = · · · = kq = k = 1, K = d = q, c = n, and Z = 2n
in O(q) time. This step takes O(q) time.

Step 2. Compute the q smallest primes p1,1, p2,1, . . . , pq,1 ≤ q ln2 q. We compute
these primes by inspecting i = 2, 3, . . . one at a time up to q ln2 q until exactly q
primes are found. Since i can fit into O(1) words, it takes O(

√
q log q) time to check

the primality of each i using the square root test for primes in a straightforward
manner. Thus, this step takes O(q3/2 log3 q) time.

Step 3. This step is straightforward and uses q random bits and O( qξ ) time.

Step 4. Set ` = dteψ′ + dqe + 1, where t is a given positive number and ψ′ =

2dlogne + d qdlog qe
2 e + qdlogdlog qee + 1. The number dlogne can be computed from

the input in O(n) time. The computations of d log q
2 e and dlogdlog qee are similar to

Step 1 and take O(log q) time. Thus, this step takes O(n+ log q + log t
ξ ) time.

Step 5. As at Step 5 in section 3.2, we use Newton’s method to compute ri,1 for
each pi,1. With only integer operations allowed, we use 2`gj as the jth estimate for
2`
√
pi,1; i.e., 2`gj+1 = (2`gj + 22`pi,1/(2

`gj))/2. The last estimate computed in this

manner is 2`ri,1. Since 2` can be computed in O(( `ξ )2) time using a doubling process,

the first estimate 2`pi,1 can be computed in the same amount of time. Since the other
estimates all are O( `ξ ) words long, the (j + 1)th estimate can be obtained from the

jth in O(( `ξ )2) time. Since only O(log `) iterations for each 2`
√
pi,1 are needed, this
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step takes O(q( `ξ )2 log `) time.

Step 6. We compute ∆ = Q((−1)b1,1r1,1, . . . , (−1)bq,1rq,1) by means of Fact 1 as

follows. Let λ = dlog te. Since |2q`∆| is an integer at most 2ψ
′+q`, we uniformly and in-

dependently select λ random positive integers w ≤ (ψ′+q`)2 using 2λ(log t+log logn+
2 log log a+ o(log log a)) random bits and O(λ log `

ξ ) time. Note that if 2q`∆ 6= 0, then

with probability at least 1 − 1
t , some 2q`∆ modw is nonzero. We next compute all

2ql∆ modw. For each element u ∈ A ∪ B, let e(u) be the number of 0’s in the stan-
dard q-bit binary representation of u. Let h(u) = fu((−1)b1,12`r1,1, . . . , (−1)bq,12`rq,1).
Then, 2q`∆ =

∑n
i=1 2e(ai)`h(ai) −

∑n
i=1 2e(bi)`h(bi), which we use to compute all

2q`∆ modw as follows.
• Compute the numbers e(u) for all u ∈ A ∪B in O(nq) time.
• For all w, compute all 2`ri,1 modw in O(λq `ξ

log `
ξ ) time.

• For all w, use values obtained above to compute h(u) modw for all u in
O(λnq( log `

ξ )2) time.

• For all w, compute 2` modw in O(λ `ξ
log `
ξ ) time.

• For all w, use values obtained above to compute 2e(u)` modw for all u in
O(λn( log `

ξ )2 log q) time.

• For all w, use values obtained above to compute 2q`∆ modw in O(λn( log `
ξ )2)

time.
This step uses 2λ(log t + log logn + 2 log log a + o(log log a)) random bits and takes
O(λq `ξ

log `
ξ + λnq( log `

ξ )2) time.

Step 7. Output “A 6≡ B” if and only if some 2ql∆ modw is nonzero.
The next theorem summarizes the above discussion.
Theorem 4.1. For any given t > 2, whether A ≡ B can be determined in time

O

(
q log `

(
`

ξ

)2

+ λnq

(
log `

ξ

)2
)
,

where q = Θ(log a); ` = Θ(t(logn+log a log log a)); ξ = Θ(log log(n+a));λ = Θ(log t).
The error probability is at most 2

t using log a+ 2dlog te(log t+ log logn+ 2 log log a+
o(log log a)) random bits.

Proof. The running time of Algorithm 1 is dominated by those of Steps 5 and 6.
The error probability follows from Theorem 2.3 and Fact 1.

We use the next corollary of Theorem 4.1 to compare Algorithm 1 with ABK1

and ABK2 in the modified model.
Corollary 4.2. With t = 4, Algorithm 1 has an error probability at most 1

2
using log a+ 4 log logn+ 8 log log a+ o(log log a) random bits, while running in time

O

(
n log a+ log a

(logn+ log a log log a)2

log log(n+ a)

)
.

By Corollary 4.2, Algorithm 1 is faster than ABK1 for n = ω((log log a)2) and
faster than ABK2 for n = ω

(
(log a)log log a

)
. Thus, it can replace ABK1 and ABK2

to speed up the previously best checking algorithm for sorting [3] as follows. We use
bucket sort for 2a ≤ n, Algorithm 1 for (log a)log log a ≤ n < 2a, and ABK2 otherwise.
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Abstract. A linear arrangement problem, called the minmax mincut problem, emerging from
circuit design is investigated. Its input is a series-parallel directed hypergraph (SPDH), and the
output is a linear arrangement (and a layout). The primary objective is to minimize the longest
path, and the secondary objective is to minimize the cutwidth. It is shown that cutwidth D, subject
to longest path minimization, is affected by two terms: pattern number k and balancing number m.
Also, k and m are both lower bounds on the cutwidth. An algorithm, running in linear time, produces
layouts with cutwidths D ≤ 2(k+m). There exist examples with k = Ω(N), where N is the number
of vertices; however, m is always O(logN). We show that every SPDH, after local logic resynthesis
(specifically, after reordering the serial paths), can be linearly placed with cutwidth D = O(logN).
Simultaneously, its dual SPDH can be linearly placed with the same vertex order and with cutwidth
D = O(logN). Therefore, after local resynthesis the area can be reduced by a factor of N/ logN .

Application to gate-matrix layout style is demonstrated.

Key words. VLSI design, linear arrangement, graphs and large scale networks, resynthesis,
timing, VLSI layout
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1. Introduction. This section begins by defining basic terms. Then we formu-
late the concerned problem and compare it with related problems in the literature.

1.1. Definitions. The following definitions originate from a practical circuit
application, which will be further explained in section 6. Most terms are natural
extensions of terms from graph theory.

An undirected hypergraph G = (V,E) consists of two sets V and E, where V is a
set of vertices and E is a set of undirected hyperedges. An undirected hyperedge is a
nonempty subset of V .

A directed hypergraph H = (V,E) also consists of two sets V and E, where
V is a set of vertices and E is a set of directed hyperedges. A directed hyperedge
e = (V1, V2) is an ordered pair of nonempty subsets of V , where V1 is the source set of
hyperedge (V1, V2) and V2 is the sink set of hyperedge (V1, V2): V1∩V2 = ∅. Figure 1.1
shows a directed hypergraph H = (V,E) with five vertices V = {a, b, c, d, e} and two
hyperedges E = {({a, b}, {c, d}), ({d}, {e})}. {a, b} and {c, d} are the source set and
the sink set of hyperedge ({a, b}, {c, d}), respectively. {d} and {e} are the source set
and the sink set of hyperedge ({d}, {e}), respectively.

A source s of a directed hypergraph is a vertex without any incident hyperedge
containing s in its sink set. Similarly, a sink t of a directed hypergraph is a vertex
without any incident hyperedge containing t in its source set. Thus in Figure 1.1, a,
b are sources and c, e are sinks.
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Fig. 1.1. A directed hypergraph H = (V,E) with five vertices V = {a, b, c, d, e} and two hyper-
edges E = {({a, b}, {c, d}), ({d}, {e})}. {a, b} and {c, d} are the only source set and the only sink set
of hyperedge ({a, b}, {c, d}), respectively. {d} and {e} are the only source set and the only sink set
of hyperedge ({d}, {e}), respectively. Also, a, b are sources and c, e are sinks.

A two-terminal directed hypergraph is a directed hypergraph with only one source
and only one sink. Notice that source sets and sink sets refer to hyperedges and
sources and sinks refer to directed hypergraphs. A directed hypergraph is acyclic if
there does not exist a sequence (with a cardinality larger than 1) of pairs of ordered
vertices (v1, v2), (v2, v3), . . . , (vm, vm+1 = v1), where in (vi, vi+1), vi and vi+1 belong
to the source set and the sink set of a distinct hyperedge, respectively. Therefore, the
directed hypergraph H in Figure 1.1 is acyclic but is not a two-terminal one.

We recursively define a series-parallel directed hypergraph (SPDH) as follows. A
directed hypergraph, denoted as an SPDH basis (SPDHB), consisting of three vertices
s, v, t connected by two hyperedges, as shown in Figure 1.2(a), is an SPDH. In addi-
tion to an SPDHB, an SPDH can be constructed by applying two operations, series
and parallel, on two SPDHs, recursively. A series operation combines two SPDHs
H1, H2 by removing the sink of H1 and the source of H2 and merging the remaining
two “dangling” hyperedges into one hyperedge, as Figure 1.2(c) shows. A parallel
operation combines two SPDHs by merging the two sources and the corresponding
incident hyperedges and merging the two sinks and the corresponding hyperedges, as
Figure 1.2(d) shows.

Obviously, an SPDH is acyclic. In addition, each vertex v has only two incident
hyperedges: one incoming hyperedge containing vertex v in the sink set of the hyper-
edge and one outgoing hyperedge containing vertex v in the source set of the hyperedge.
However, the source has only one incident hyperedge, called the source hyperedge, and
the sink has also only one incident hyperedge, called the sink hyperedge.

A series-parallel (S-P) tree [13] T can represent an SPDHH. SinceH is recursively
constructed, we define T in a recursive manner. Each leaf of T corresponds to an
SPDHB. Let H1 and H2 be two subgraphs of H that are combined either in series
(labeled S) or in parallel (labeled P ). The tree corresponding to the union of H1

and H2 consists of a node label S or P (depending on the combination step) with
T1 and T2 as its subtrees, where T1 and T2 are trees corresponding to H1 and H2,
respectively.

In order to simplify our discussion in linear arrangements of an SPDH, a modified
S-P tree, called a “marked” S-P tree, is defined as follows. A double line below an S-
type node is used to emphasize that the SPDH of the corresponding subtree should be
located closer to the source. Figure 1.3(a) shows an SPDH constructed by applying 3
series and 3 parallel operations on 7 SPDHBs, and Figure 1.3(b) shows a corresponding



ON THE POWER OF LOGIC RESYNTHESIS 1259

Fig. 1.2. (a) An SPDHB. (b) Two SPDHs, H1 and H2, result in another SPDH, (c) Hs after
a series operation or (d) Hp after a parallel operation.

Fig. 1.3. (a) An SPDH constructed by applying 3 series and 3 parallel operations on 7 SPDHBs.
(b) A corresponding S-P tree. Notice that vertices s and t do not appear in the S-P tree because of
the definition of an S-P tree.

S-P tree.1 The dual of an SPDH H is also an SPDH Hd constructed from a similar
procedure as the one constructing H. However, when the procedure which constructs
H employs a series operation, the dual procedure which constructs Hd employs a
parallel operation, and vice versa. An S-P tree of Hd is a dual of an S-P tree of H. To
clarify, we employ the name “nodes” instead of “vertices” in the context of S-P trees
and employ “vertices” in the context of directed hypergraphs. Figures 1.4(a) and (b)
show duals of the SPDH and S-P tree of Figure 1.3.

A linear arrangement (also called a linear layout or simply a layout) of a directed
hypergraph H is a one-to-one function L : V → 1, 2, . . . , |V |. The cutwidth D of
a layout is D = max(|E(i)| || 1 ≤ i < |V |), where E(i) = {(V1, V2) ∈ E || ∃x ∈
V1, y ∈ V2, or, x ∈ V2, y ∈ V1 such that L(x) ≤ i < L(y)}. In other words, |E(i)|
is the least number of tracks needed at position i in order to lay out all hyperedges
crossing position i in distinct tracks. Figure 1.5 shows two layouts of the SPDH of
Figure 1.3(a), where each filled circle represents a vertex: one layout needs three

1An SPDH may correspond to more than one S-P tree.
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Fig. 1.4. (a) A dual of the SPDH in Figure 1.3(a). (b) A dual of the S-P tree in Figure 1.3(b).

Fig. 1.5. Two layouts for the SPDH in Figure 1.3(a), one with three tracks and the other with
four tracks. Each filled circle represents a placed vertex, and the dotted line shows a path with a
bend which will be discussed in section 2.

tracks and the other needs four tracks.

1.2. Problem formulation. We formulate a novel linear arrangement problem
as follows.

A minmax mincut problem.

Input: An SPDH.

Output: A minimum cutwidth layout with the constraints that the source is at
the leftmost position, the sink is at the rightmost position, and the longest path2 is
minimized.

1.3. Related problems. In the literature, problems related to the minmax
mincut problem are the single-machine sequencing with precedence relations problem
[11], the mincut linear arrangement problem [4], and the gate-matrix area (height)

2Only horizontal lengths are taken into consideration since vertical lengths will become negligible
when the number of vertices increases.
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minimization problem [8]. However, there are no obvious methods to transform the
minmax mincut problem to one of these problems.

The single-machine sequencing with precedence relations problem accepts an in-
put of precedence relations, which forms a directed graph. The goal is to linearly
arrange the vertices under the constraints of the precedence relations. Nevertheless,
the problem of including the cutwidth in the cost function has not yet been addressed.

The mincut linear arrangement problem focuses on an undirected graph. The
considered edges are not directed hyperedges. Minimizing the cutwidth of a linear
layout of a general undirected graph is NP-complete [3]. If the graph is a tree, it can
be solved in polynomial time [15].

In terms of our above definitions, the gate-matrix minimization problem is ac-
tually the “mincut linear arrangement of a general directed hypergraph” problem.
However, it does not have the constraint of minimizing the longest path. The gate-
matrix minimization problem is also NP-complete and a number of effective heuristics
have been proposed [2, 5, 7, 6]. Also, a tight bound Θ(logN) on the cutwidth was
proved [12].

This paper is further organized as follows. Section 2 investigates the constraint
of the longest path minimization problems. Section 3 shows that the pattern number
k is a lower bound on the cutwidth D, and that there exist examples with k = Ω(N).
An algorithm on the minmax mincut problem ensuring cutwidth D ≤ 2(k + m) is
presented in section 4, where the balancing number m is also introduced. Section 5
proposes a reordering and layout algorithm, which reorders serial paths and simulta-
neously reduces the pattern numbers of an SPDH and its dual from k to O(logN). The
algorithm also lays out the SPDH and its dual in the same layout order. Therefore,
every SPDH and its dual can be simultaneously laid out with cutwidth O(logN). Sec-
tion 6 illustrates applications and shows two examples. The last section summarizes
and concludes this paper.

2. Minimizing the longest path. This section describes a class of layouts
subject to two constraints: (1) the longest path is minimized, (2) the source is at the
leftmost position and the sink is at the rightmost position.

Theorem 2.1. A layout of an SPDH, with the constraints that the source is
at the leftmost position and the sink is at the rightmost position, has the minimum
longest path if and only if it does not have any “bends” in its paths.

Proof. There are two observations: (1) the source is at the leftmost position and
the sink is at the rightmost position,3 (2) since each path must begin at the source
and end at the sink, the minimum path length is the straight-line distance from the
source to the sink. If there is no bend in any path, each path (including the longest
one) has the same minimum length, the straight-line distance from the source to the
sink. Obviously, any bend will increase the lengths of some paths and, consequently,
will violate the constraint of minimizing the longest path. Figure 1.5 shows layouts
with and without bends.

It is not difficult to see that the set of all layouts produced by topological sorting
[1] of directed hypergraphs is equal to the set of layouts without bends. (As will
be discussed in section 6, layouts obtained from topological sorting are of particular
importance in designing high-performance VLSI circuits.) A topological sorting of
an acyclic directed hypergraph H = (V,E) is a layout of its vertices such that if H
contains a directed hyperedge (V1, V2), each vertex in V1 will be laid out to the left of

3Recall that an SPDH has only one source and only one sink.
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Fig. 2.1. A directed hypergraph H is transformed to a directed graph G, and the topologically
sorted layout LH of H corresponds to the topologically sorted layout LG of G.

each vertex in V2.
Notice that by substituting each directed hyperedge with two-terminal directed

edges from each vertex of the source set to each vertex of the sink set, we transform
any directed hypergraph H to a directed graph G. It is easy to see that there is a
one-to-one relation between topological sortings of G and H. In Figure 2.1, a directed
hypergraph H is transformed to a directed graph G and the topologically sorted layout
LH of H corresponds to the topologically sorted layout LG of G.

3. Cutwidth consideration in topologically sorted layouts. Recall that
for an SPDH layout the number of tracks needed is lower bounded by the cutwidth.
In this section, among the topologically sorted (TS) layouts an SPDH with D = Ω(N)
tracks is shown, where N is the number of vertices. In addition, the pattern number k
is defined and shown to be a lower bound on the number of tracks D. However, this
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Fig. 3.1. (a) A TS-difficult SPDH requiring Ω(N) tracks. (b) An S-P tree for the TS-difficult
SPDH.

bound is not tight.

Consider a class of SPDHs TS d(k), called TS-difficult SPDHs, which is recur-
sively defined as follows. The basis TS d(0) is an SPDHB. TS d(k) is constructed from
TS d(k − 1) by adding an SPDHB in parallel and then serially merging an SPDHB
to the source of the resulting SPDH and then adding another SPDHB to the sink of
the resulting SPDH. The general form is shown in Figure 3.1(a) with N = 3k + 3.

Lemma 3.1. All TS-layouts of a TS-difficult SPDH TS d(k) require Ω(N) tracks,
where N is the number of vertices.

Proof. Let tr(TS d(k)) denote the minimum track number of TS d(k) under TS.
This lemma is proved by induction on k.

Basis: It is clear that tr(TS d(1)) = 2 ≥ 1.
Induction hypothesis: tr(TS d(k)) ≥ k.
Induction step: We need to show that tr(TS d(k+1)) ≥ k+1. Suppose TS d(k) has

been laid out using the minimum number of tracks, as shown in Figure 3.2(a),
where the only possible position for xku is at the leftmost and for xkd is at
the rightmost because of the TS constraint.

There are three possible positions for x(k+1)r, as shown in Figure 3.2(b).

Case 1. x(k+1)r is to the left of xku.
Since x(k+1)r must be connected to x(k+1)d and this hyperedge is distinct
from other hyperedges, we need a new track.

Case 2. x(k+1)r is to the right of xkd.
Since x(k+1)r must be connected to x(k+1)u and this hyperedge is distinct
from other hyperedges, we need a new track.

Case 3. x(k+1)r is between xku and xkd.
If we can place the source hyperedge of x(k+1)r, which is to the left of x(k+1)r,
in a track i and place the sink hyperedge of x(k+1)r, which is to the right of
x(k+1)r in another track j, these two tracks could be combined to reduce



1264 WEI-LIANG LIN AND M. SARRAFZADEH

Fig. 3.2. (a) A TS d(k) layout with a minimal number of tracks. (b) There are three possible
positions for the x(k+1)r of a TS d(k + 1).

Fig. 3.3. (a) Pattern A, (b) pattern B, and (c) the represented SPDH.

tr(TS d(k)) by 1. This is a contradiction to the assumption that TS d(k)
has been laid out using a minimal number of tracks. Therefore, we need a
new track.

As discussed above, the number of tracks is bounded from below by k = N−3
3 .

That is, the lower bound is Ω(N) .
In Figure 3.1, a “pattern,” called pattern A, depicted in Figure 3.3(a), is repeated

along the longest path. Figure 3.3(b) shows an equivalent pattern, called pattern
B. Patterns A and B are equivalent because the corresponding SPDHs, shown in
Figure 3.3(c), are identical.

In an S-P tree, an external path is a path from a leaf to the root; it contains a
sequence of inner nodes and a set of edges interconnecting the nodes. An external
path can be decomposed into three kinds of elements as follows:{

P
| ,

S
| ,

S
‖
}
.

We use P |, S|, S|| to represent these three elements. The pattern number of an external
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Fig. 3.4. (a) A set of subgraphs are combined in series, called Cs. (b) Another set of subgraphs
are combined in parallel, called Cp.

path is defined in the following procedure:

0. Set the pattern number equal to 0.
1. Trace up the path from the corresponding leaf.
2. When encountering P |, consider it as part of a new pattern.
3. Continue to trace up until at least one S| and at least one S|| (not

necessarily in that order) are visited; call these two parts of the
current pattern; add 1 to the pattern number.

4. Repeat steps 2 and 3 until the path ends.

Among the pattern numbers of external paths, the largest one defines the pattern
number of an S-P tree and the corresponding SPDH. The following lemma essentially
shows that the pattern number of an SPDH is well defined.

Lemma 3.2. All S-P trees corresponding to a given SPDH have a unique pattern
number.

Proof. When an S-P tree is constructed, either a set of subgraphs are combined
in series, called Cs, or a set of subgraphs are combined in parallel, called Cp (see
Figure 3.4).

For the series case, along any path from the corresponding subtree we meet a
sequence of S-type nodes until another subgraph combines in parallel with Cs, and
we will meet the same P-type node. If there is a construction of an S-P tree where
along a specific subtree we meet only S|, but in another construction we meet S||,
this means that in the previous SPDH other subgraphs need to be closer to the left
in the final layout, but not in the latter SPDH. This is impossible for the same set of
serially connected subgraphs. Using the same argument, we conclude that for an S-P
tree, each path from subtrees of Cs meets at least one S|, one S||, or one S| and one
S||, which is independent of the construction method.

For the parallel case, each path from a subtree of Cp will meet at least a P-type
node before this set of subgraphs is further combined in series. Consequently, any
construction of this set will contribute the same to the pattern number of each path.

Therefore, each path has the same pattern number under any S-P tree construc-
tion algorithm, and the pattern number of an SPDH is unique.

Lemma 3.3. The pattern number k of an S-P tree is a lower bound on the number
of tracks needed to lay out the corresponding SPDH.
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Proof. The idea is to “peel” the S-P tree until it is isomorphic (including the
labels) to the tree of a TS-difficult SPDH TS d(k) (see Figure 3.1). This can be done
by repeatedly deleting inner nodes which have either one or two leaves and which do
not contribute to the pattern number and deleting one of the attached leaves which
correspond to vertices in the SPDH.

Recall that in an SPDH, a vertex can have only two incident hyperedges, the
incoming and the outgoing hyperedges. If a vertex v is attached to an S-type inner
node, v has an incoming hyperedge of the form (Vis , {v} ∪ Vit) and an outgoing
hyperedge of the form ({v} ∪ Vos , Vot), where Vis , Vot are nonempty vertex sets and
Vit , Vos are general vertex sets. Deleting an S-type inner node and one of the attached
leaves necessitates removing the corresponding vertex v in the SPDH such that the
incoming and outgoing hyperedges (Vis , {v} ∪ Vit), ({v} ∪ Vos , Vot) are merged into
one hyperedge (Vis ∪ Vos , Vit ∪ Vot).

If a vertex v is attached to a P-type inner node, the incoming hyperedge is of the
form (Vis , {v}∪Vit) and the outgoing hyperedge is of the form ({v}∪Vos , Vot), where
Vis , Vit , Vos , and Vot are nonempty vertex sets. Deleting a P-type inner node and one
of the attached leaves means to delete the corresponding vertex v in the SPDH such
that the incoming and outgoing hyperedges (Vis , {v} ∪ Vit), ({v} ∪ Vos , Vot) become
(Vis , Vit) and (Vos , Vot), respectively.

As for the layout, in addition to removing corresponding vertices, in order not
to change the number of tracks, the incident hyperedges are either connected using
original tracks or remain the same. It depends on whether the deleted inner nodes
are S-type or P-type, as shown in the following example.

Figure 3.5 gives an example of peeling. When x1 and the related S-type inner
node is peeled in the S-P tree, the corresponding vertex in the SPDH is removed, the
corresponding vertex in the layout is deleted, and the incident hyperedges in the layout
are merged. For x6, which is connected to a P-type node, the corresponding vertices
in the SPDH and in the layout are deleted. The resulting layout needs no more tracks
than the original one because of the reduced constraints of merging and deleting.

If the original layout requires o(k) tracks (i.e., less than Θ(k)), the resulting
SPDH, which has k patterns and is isomorphic to a TS-difficult SPDH shown in
Figure 3.1, has o(k) tracks. This is a contradiction of Lemma 3.1.

However, pattern number is not the only parameter that dictates the number of
tracks. This is shown in the following lemma.

Lemma 3.4. There exist SPDHs with pattern number 1 that require Ω(logN)
tracks.

Proof. [12] introduced a circuit which can be transformed, as will be mentioned
in section 6, to a so-called difficult-SPDH. One of its S-P trees is shown in Figure 3.6.
The pattern number is 1, but it was proved in [12] that Ω(logN) tracks are necessary
to lay it out.

4. A layout algorithm. In this section, we propose a layout algorithm which
traverses an S-P tree in a bottom-up manner. We will prove that the algorithm needs
at most 2(k + m) tracks, where k is the pattern number of the given SPDH and the
balancing number m (which will be defined in Theorem 4.1) is at most logN (but
could be much less), where N is the number of vertices.

The proposed data structure is as follows. For each inner node n, two records,
D(n) and pattern(n), are kept. D(n) is the number of necessary tracks. Pattern(n)
is the pattern configuration of the larger track number of the two subgraphs of node
n after tracing up to node n. The possible pattern configurations—denoted by
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Fig. 3.5. (a) An SPDH, (b) its S-P tree, and (c) one possible layout. After vertices x1 and x6

are peeled, (d) the resulting SPDH, (e) its S-P tree, and (f) one possible layout.

pattern(n)—are (k), (k, P |), (k, P |, S|), and (k, P |, S||). The symbol (k) means that k
patterns have been traversed and another P | is now being looked for. (k, P |) means
that k patterns and an additional P | have been traversed and another S| or another
S|| is being looked for. (k, P |, S|) means that k patterns and an additional P | and S|
have been traversed, while another S|| is being looked for. The last one, (k, P |, S||),
means that k patterns and an additional P | and S|| have been traversed, while another
S| is being looked for.

In the algorithm, each pattern configuration is laid out with a special connection
configuration, called a layout representative. Layout representatives are shown in
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Fig. 3.6. An S-P tree for a difficult-SPDH.

Fig. 4.1. Pattern configurations and layout representatives for the TS layout algorithm.

Figure 4.1. For (k), the source and the sink hyperedges are available at the left and
the right of the subgraph layout, respectively. For (k, P |), both the source and the sink
hyperedges are available at the left and the right. For (k, P |, S|), both the source and
the sink hyperedges are available at the left and only the sink hyperedge is available
at the right. As for (k, P |, S||), only the source hyperedge is available at the left, but
both the source and the sink hyperedges are available at the right. In Figure 4.1,
their basis configurations are shown.

We denote the left and the right children of n by l and r, respectively. Also, in
order to simplify the proof, if the number of tracks is increased, two tracks will be
added, by assigning pseudotrack in some cases (obviously, this is not done in practice).
Thus, if D(l) > D(r), D(l) ≥ D(r)+2. The main idea of the algorithm is to maintain
layout representatives and to control the number of tracks.
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TS Layout Algorithm.
Input: An S-P tree.
Output: A TS layout.
Traverse each node in a bottom-up manner, and at the same time, lay out the

corresponding subgraph according to the following cases until the entire S-P tree
has been traversed. Furthermore, reduce the number of tracks by cleaning up the
pseudotracks.

There are two cases according to the type of the currently traversed node n. Node
n may be either an S-type node or a P-type node.
Case 1. n is a P-type node.

Rename n as Pn. According to whether Pn contributes to the pattern con-
figuration or not, there are four cases.
Case 1.1. Pn is in the pattern4 of the left path but not in the pattern of the

right path.
This condition means that the pattern configuration of the left path
below Pn is (k(l)) and that of the right path is (k(r), P |), (k(r), P |, S|),
or (k(r), P |, S||).
According to the relative values of D(l) and D(r), there are three cases.
Case 1.1.1. D(l) > D(r).

The layout is shown in Figure 4.2, and the result of D(Pn) and
pattern(Pn) is

D(Pn) = D(l) + 2,(4.1)

pattern(Pn) = (k(l), P |).(4.2)

We can see that the layout has the connection configuration of
(k(l), P |).

Case 1.1.2. D(l) = D(r).
According to the pattern numbers, there are two cases.
Case 1.1.2.1. k(l) ≥ k(r).

It is similar to Case 1.1.1.
Case 1.1.2.2. k(l) < k(r).

The layout is shown in Figure 4.2, and the result is

D(Pn) = D(r) + 2,(4.3)

pattern(Pn) = pattern(r).(4.4)

The three situations correspond to three possible pattern con-
figurations of the right path. All the connection configurations
remain the same as those of the layout of the right subgraphs.

Case 1.1.3. D(l) < D(r).
The layout is shown in Figure 4.2, and the result is

D(Pn) = D(r),(4.5)

pattern(Pn) = pattern(r).(4.6)

4Recall the definition of pattern number in section 3.
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Fig. 4.2. Layouts for P-type nodes.

Case 1.2. Pn is in the pattern of the right path but not in the pattern of the
left path.
It is similar to Case 1.1.

Case 1.3. Pn is in both patterns of the left and the right paths.
This condition means that the pattern configurations of the left path
and the right path below Pn are (k(l)) and (k(r)), respectively.
Case 1.3.1. D(l) > D(r).

It is similar to Case 1.1.1.
Case 1.3.2. D(l) = D(r).

The layout is shown in Figure 4.2, and the result is

D(Pn) = D(l) + 2.(4.7)

Case 1.3.2.1. k(l) ≥ k(r).

pattern(Pn) = (k(l), P |).(4.8)
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Case 1.3.2.2. k(l) < k(r).

pattern(Pn) = (k(r), P |).(4.9)

Case 1.3.3. D(l) < D(r).
It is symmetrical to Case 1.3.1.

Case 1.4. Pn is neither in the pattern of the left path nor in the pattern of
the right path.
This condition means that the pattern configuration of the left path
below Pn is (k(l), P |), (k(l), P |, S|), or (k(l), P |, S||) and that of the
right path is (k(r), P |), (k(r), P |, S|), or (k(r), P |, S||).
Case 1.4.1. D(l) > D(r).

The layout is shown in Figure 4.2, and the result is

D(Pn) = D(l),(4.10)

pattern(Pn) = pattern(l).(4.11)

Case 1.4.2. D(l) = D(r).
Case 1.4.2.1. k(l) ≥ k(r).

The layout is shown in Figure 4.2, and the result is

D(Pn) = D(l) + 2,(4.12)

pattern(Pn) = pattern(l).(4.13)

Case 1.4.2.2. k(l) < k(r).
It is symmetrical to Case 1.4.2.1.

Case 1.4.3. D(l) < D(r).
It is symmetrical to Case 1.4.1.

Case 2. n is an S-type node.
Rename n as Sn and put the subtree with the double line to the left side
of Sn.
Case 2.1. Sn is in the pattern of the left path but not in the pattern of the

right path.
This condition means that the pattern configuration of the left path
below Sn is either (k(l), P |) or (k(l), P |, S|) and that of the right path
is either (k(r)) or (k(r), P |, S|).
Case 2.1.1. D(l) > D(r).

The layout is shown in Figure 4.3, and the result is

D(Sn) = D(l),(4.14)

pattern(Sn) = pattern(l) ∪ (S||),(4.15)

where ∪ means the original pattern(l) meets one more S||. For now,
that is either (k(l), P |, S||) or (k(l) + 1).

Case 2.1.2. D(l) = D(r).
Case 2.1.2.1. k(l) ≥ k(r).

The layout is shown in Figure 4.3, and the result is

D(Sn) = D(l) + 2 or D(l),(4.16)

pattern(Sn) = pattern(l) ∪ (S||).(4.17)



1272 WEI-LIANG LIN AND M. SARRAFZADEH

Fig. 4.3. Layouts for S-type nodes: part 1.

Case 2.1.2.2. k(l) < k(r).
The layout is shown in Figure 4.3, and the result is

D(Sn) = D(r) + 2 or D(r),(4.18)

pattern(Sn) = pattern(r).(4.19)

Case 2.1.3. D(l) < D(r).
The layout is shown in Figure 4.3, and the result is

D(Sn) = D(r),(4.20)

pattern(Sn) = pattern(r).(4.21)

Case 2.2. Sn is not in the pattern of the left path but is in the pattern of
the right path.
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This condition means that the pattern configuration of the left path
below Sn is either (k(l)) or (k(l), P |, S||) and that of the right path is
either (k(r), P |) or (k(r), P |, S||). Therefore, there are four situations
for different cases.
Case 2.2.1. D(l) > D(r).

The layout is shown in Figure 4.3, and the result is

D(Sn) = D(l),(4.22)

pattern(Sn) = pattern(l).(4.23)

Case 2.2.2. D(l) = D(r).
Case 2.2.2.1. k(l) ≥ k(r).

It is similar to Case 2.2.1, except that D(Sn) is D(l)+2 in some
cases.

Case 2.2.2.2. k(l) < k(r).
The layout is shown in Figure 4.3, and the result is

D(Sn) = D(r) + 2 or D(r),(4.24)

pattern(Sn) = pattern(r) ∪ (S|).(4.25)

Case 2.2.3. D(l) < D(r).
It is similar to Case 2.2.2.2 except that D(Sn) is only D(l).

Case 2.3. Sn is in both patterns of the left and the right paths.
This condition means that the pattern configuration of the left path
below Sn is either (k(l), P |) or (k(l), P |, S|) and that of right path below
Sn is either (k(r), P |) or (k(r), P |, S||).
Case 2.3.1. D(l) > D(r).

The layout is shown in Figure 4.4, and the result is

D(Sn) = D(l),(4.26)

pattern(Sn) = pattern(l) ∪ (S||).(4.27)

Case 2.3.2. D(l) = D(r).
Case 2.3.2.1. k(l) ≥ k(r).

It is similar to Case 2.3.1 except that D(Sn) is D(l) + 2 in some
cases.

Case 2.3.2.2. k(l) < k(r).
The layout is shown in Figure 4.4, and the result is

D(Sn) = D(r) + 2 or D(r),(4.28)

pattern(Sn) = pattern(r) ∪ (S|).(4.29)

Case 2.3.3. D(l) < D(r).
It is similar to Case 2.3.2.2 except that D(Sn) is only D(r).
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Case 2.4.2.1

the right paths.
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Fig. 4.4. Layouts for S-type nodes: part 2.

Case 2.4. Sn is neither in the pattern of the left path nor in the pattern of
the right path.
This condition means that the pattern configuration of the left path
below Sn is either (k(l)) or (k(l), P |, S||) and that of the right path is
either (k(r)) or (k(r), P |, S|).
Case 2.4.1. D(l) > D(r).

The layout is shown in Figure 4.4, and the result is similar to Case
2.2.1.

Case 2.4.2. D(l) = D(r).
Case 2.4.2.1. k(l) ≥ k(r).

The layout is shown in Figure 4.4, and the result is similar to
Case 2.2.2.1.

Case 2.4.2.2. k(l) < k(r).
The layout is shown in Figure 4.4, and the result is similar to
Case 2.1.2.2.

Case 2.4.3. D(l) < D(r).
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The layout is shown in Figure 4.4, and the result is similar to Case
2.1.3.

Since this algorithm traverses each node only once and it takes constant time to
process each node, it runs in linear time. After the above layout is obtained, we can
trace down the S-P tree from the root and along the larger track number subtree.
If the number of tracks is equal, we choose the one with the larger pattern number.
In addition, if both track numbers and pattern numbers are the same, we choose the
left one. We call this path the largest track number path. Along this path down,
the number of tracks will decrease by two only if either of the following two events
happen. We pass a P | node which belongs to a pattern of the largest track number
path or a node with the two subtrees having the same number of tracks.

Theorem 4.1. The layout produced by the TS layout algorithm uses at most
D = 2(k +m) tracks, where k is the pattern number and m is the balancing number;
m ≤ logN .

Proof. In the following, A represents a P | which belongs to a pattern and during
the layout procedure makes the number of tracks increase by two. B denotes a node
with its two subtrees having the same number of tracks and it also causes the number
of tracks to increase by two.

Suppose we already have a layout that is produced by the TS layout algorithm and
the pattern number for the corresponding S-P tree is k. The minimal vertex number
will occur when the largest track number path has k patterns and other paths have
pattern numbers as small as possible. The reason is that the more patterns, the more
tracks are needed for the layout. Thus, when the track number is fixed, fewer vertices
are needed.

Here, N(k,m) denotes the minimal vertex number when there are k A-type nodes
and m B-type nodes in the largest track number path. The value m is called the
balancing number.

Next, we apply induction on m to prove that N(k,m) ≥ 2m, where k ≥ 0.
Basis: m = 0. It is clear that N(k, 0) ≥ 20.
Induction hypothesis: N(k,m) ≥ 2m.
Induction step: For N(k,m+1), we trace down the largest track number path until

we meet the first B-type node, meaning the subtrees of this B-type node have
the same number of layout tracks. Suppose we have passed k1 A-type nodes.
The corresponding subtrees have N(kl,ml) and N(kr,mr) vertices, and the
largest track number path is along the left path. Then k1 + kl = k and
ml = m. The following two reasons show mr ≥ ml = m. First, the right
subtree needs to have the same number of tracks as the left subtree. Second,
kr ≤ kl, as a result of that the largest track number path chooses the larger
pattern number under the situation of equal number of tracks. Therefore,

N(k,m+1) ≥ N(kl,ml)+N(kr,mr) ≥ N(kl,m)+N(kr,m) ≥ 2m+2m ≥ 2m+1

(4.30)
We conclude that D = 2(k +m) ≤ 2k + 2 logN .

5. A reordering and layout algorithm for an SPDH and its dual. In
this section we show how serial path reordering can reduce necessary layout tracks
of an SPDH P and its dual N simultaneously to O(logN), where N is the number
of vertices. In addition, we propose an algorithm which reorders and lays out an
SPDH.

A simultaneous layout of an SPDH P consists of two layouts—one corresponding
to P and the other corresponding to its dual N—with the same vertex order. The
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Fig. 5.1. A simultaneous layout, including LP and LN , of an SPDH P and its dual N .

names—P and N—are motivated by applications in complementary metal oxide-
silicon (CMOS) circuits, which consist of p-channel MOSFET (PMOS) and n-channel
MOSFET (NMOS) parts. Figure 5.1 shows a simultaneous layout, consisting of LP
and LN , of an SPDH P and its dual N . Notice that the ordering of the vertices in
LP and LN is the same. Serial path reordering rearranges the serial connections of
SPDHs. The effect of serial path reordering is illustrated in Figure 5.2, where the
reordered SPDH needs only two tracks instead of the O(N) tracks needed for the
original TS-difficult SPDH of Figure 3.1. The resulting SPDH, S-P tree, and layout
are also shown.

Recall the definitions of section 1.1. An SPDH and its dual have distinct S-P
trees. These two trees are dual to each other. In our construction procedure, if one
inner node in a tree is S-type, the corresponding inner node in the other tree is P-type,
and vice versa.

The reordering and layout algorithm is summarized as follows:

1. Traverse each inner node of the S-P trees in a bottom-up manner.
2. Decide the relative positions of subtree layouts under the P-type node of the

two currently traversed inner nodes.
3. Consequently, fix the single line and double line positions of the corresponding

S-type node in the other tree.
4. Keep a track number D of necessary tracks for each node of each S-P tree.

There are only two types of layout representatives participating in the algorithm.
Recall that a layout representative is a special connection configuration. These two
layout representatives are shown in Figure 5.3. One is called a Double-Double, with
both the source and the sink hyperedges available at the left and the right. The other
is called a Single-Double, with only the source hyperedge available at the left but both
the source and the sink hyperedges available at the right.
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Fig. 5.2. After reordering the TS-difficult SPDH in Figure 3.1, the corresponding (a) SPDH,
(b) S-P tree, and (c) layout are shown.

The algorithm has three characteristics:

1. During a bottom-up traversal of an inner node, each layout of its two subtrees
are one of the two layout representatives, and the resulting layout will also
be one of these two layout representatives.

2. The track number D of each P-type node is kept (by assigning pseudotracks
in some cases) the same as that of the corresponding S-type node.

3. A track number is larger than the maximum of the track numbers of the two
children if and only if the two subtrees of the corresponding node have the
same track number. Also, all track numbers are kept odd.

We benefit from limiting the layout of each subtree to one of the two layout
representatives as mentioned in the first characteristic and keeping track numbers as
mentioned in the second characteristic. The benefit is that when traversing inner
nodes we need to consider only three cases. These cases are divided according to the
relative track numbers of the two subtrees of the currently traversed P-type inner
node. The third characteristic (which is also about the track numbers) simplifies the
proof of Theorem 5.1: this algorithm uses O(logN) tracks, where N is the vertex
number of the input SPDH or its dual.

Regarding data structure, for each inner node n we keep two records: a track num-
ber, D(n), and the layout representative for the n-rooted subtree, layout-
representative(n).
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Fig. 5.3. The two layout representatives and the layout basis.

Reordering and Layout Algorithm.
Input: An S-P tree and its dual.
Output: A TS simultaneous layout.
We lay out each vertex, a leaf in the trees, as a layout basis shown in Figure 5.3

and assign each layout basis D = 3 tracks. Then we traverse the nodes of both S-P
trees simultaneously in a bottom-up manner and maintain the layout representatives
according to the P-type node as in the cases described below. Finally, unnecessary
tracks are cleaned up.
Case 1. D(Pl) = D(Pr) and D(Sl) = D(Sr),

where Pl, Pr are the left child and the right child of the P-type node Pn,
respectively. Similarly, Sl, Sr are the left child and the right child of the
corresponding S-type node Sn in the other S-P tree.
The resulting layouts are shown in Figure 5.4, and there are subcases depend-
ing on what the layout representatives of the corresponding subtrees are. The
results of D(Pn) and D(Sn) are

D(Pn) = D(Pl) + 2 and D(Sn) = D(Sl) + 2.(5.1)

We can see that each of the resulting layout connections is one of the two
types of layout representatives.

Case 2. D(Pl) > D(Pr) and D(Sl) > D(Sr).
The resulting layouts are also shown in Figure 5.4. The results of D(Pn) and
D(Sn) are

D(Pn) = D(Pl) and D(Sn) = D(Sl).(5.2)

We can see that the resulting layout connections are still among the two
layout representatives.

Case 3. D(Pl) < D(Pr) and D(Sl) < D(Sr).
It is similar to Case 2.

Theorem 5.1. The layout produced by the reordering and layout algorithm uses
at most D = 2 log(N − 2) + 3 tracks, where N ≥ 3 is the number of vertices of SPDH
P or SPDH N .

Proof. Assume N(D) is the vertex number of an SPDH when the algorithm
requires D tracks for the layout. Thus, N ′ = N−2 is the number of vertices excluding
the source and the sink. This lemma is proved by induction on N ′.

Basis: N ′ = 1 and D = 3. It is clear that N ′ = 1 ≥ 20 = 2
D−3

2 .
Induction hypothesis: N ′(D) ≥ 2

D−3
2 .
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Fig. 5.4. (a), (c) For a P-type node, there are two cases shown. Each case has four subcases
of subtree layouts. (b), (d) The layouts of the corresponding S-type node are shown. Dashed lines
are pseudotracks.

Induction step: Because of the specific construction procedure in the algorithm,
D is increased by 2 when the two subtrees have the same track number. Therefore,

N ′(D + 2) ≥ N ′(D) +N ′(D) ≥ 2
(D+2)−3

2 ,(5.3)

and

D ≤ 2 logN ′ + 3 = 2 log(N − 2) + 3.(5.4)

Similar to the TS layout algorithm, the reordering and layout algorithm also tra-
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Fig. 6.1. (a) A function (x5 × (x2 × x1 + x3) × x4) + (x6 + x7). (b) A CMOS circuit which
implements the function. (c) The SPDHs transformed from the circuit. (d) The SPDHs after the
serial paths are reordered. Notice that x6 and x7 in the SPDH of the NMOS circuit have been
reordered.

verses each node once, and it takes constant time to process each node. Consequently,
it runs in linear time. The algorithm is demonstrated in the next section.

6. Applications and examples. This section applies the minmax mincut al-
gorithms to circuit design. This application produces layouts of CMOS functional
cells using the gate-matrix layout style. Two circuits are used to demonstrate the
reordering and layout algorithm.

In [10], the gate-matrix style was introduced to implement circuits. There, the
“intersections” of polysilicon columns and diffusion rows form transistors and hor-
izontal metal lines are used as connections. Gate-matrix design includes assigning
transistors to columns and using metal lines to implement net lists. A CMOS func-
tional cell is formed by series-parallel connections of transistors [14]; the PMOS and
NMOS sides of the circuit are the dual of each other; a general CMOS circuit is an
interconnection of CMOS functional cells.

Figures 6.1(a), (b), and Figure 6.2(b) show a function, a circuit which implements
the function, and a layout of the circuit, respectively. Notice that since a MOSFET
transistor is bidirectional, NMOS and PMOS circuits will function the same even if the
positions of VDD and VSS are switched. Therefore, the NMOS layout of Figure 6.2(b)
will function the same when current flows either from right to left or from left to right.

A CMOS functional cell is represented by two SPDHs as follows: Both the PMOS
circuit and the NMOS circuit are represented by SPDHs. Each MOSFET transistor
is represented by a vertex. A net is represented by a hyperedge. Node VDD is
represented by a source. The output of the CMOS functional cell is represented
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Fig. 6.2. (a) A simultaneous layout of the SPDHs in Figure 6.1(d). (b) A layout of the circuit
in Figure 6.1(b).

by either the sink of an SPDH corresponding to the PMOS circuit or the source
of an SPDH corresponding to the NMOS circuit. Node VSS is represented by a
sink. In this transformation, the gate-matrix area (height) minimization problem
with CMOS functional cells as inputs is equal to the mincut linear arrangement of a
SPDH problem.

Minimizing the longest path in an SPDH layout, which has been discussed in this
paper, corresponds to minimizing the longest current path in circuit design. Such
minimization speeds up the corresponding circuits. Furthermore, routing a path with
bends usually requires more vias to connect horizontal and vertical wires than routing
a path without any bends. Vias have high resistances, and thus they may slow the
circuit. Therefore, our layouts, which are topologically sorted and have no bends, re-
duce resistances. Consequently, this reduction speeds up the corresponding circuits as
well. In other words, the minmax mincut problem corresponds to an area minimiza-
tion problem that addresses delay minimization. Timing issues in the gate-matrix
layout style have not been addressed in the literature.

Notice that here we assume VDD is at the leftmost upper position and VSS is at
the leftmost lower position, as shown in Figure 6.2(b). However, the power line may
be available on the top and the ground line available on the bottom in some cases.
In these cases, at most two tracks, the track for the power line and the track for the
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ground line, are saved. Therefore, the bounds mentioned remain the same.
Our timing-driven CMOS layout procedure is (conceptually) illustrated in Fig-

ures 6.1 and 6.2. The procedure is summarized as follows:
1. Accept an equation as an input (see Figure 6.1(a)).
2. Form a CMOS circuit to implement the function (Figure 6.1(b)).
3. Convert the circuit to two SPDHs: one corresponding to the PMOS circuit

and the other corresponding to the NMOS circuit (Figure 6.1(c)).
4. Apply the reordering and layout algorithm to produce a simultaneous layout

(Figures 6.1(d), 6.2(a)).
5. Finally, convert the simultaneous layout to a circuit layout (Figure 6.2(b)).

In circuit applications, we modify the reordering and layout algorithm to directly
accept circuits as inputs and to produce circuit layouts as outputs. Two examples are
demonstrated in the following.

Figure 6.3 shows a carry look-ahead circuit [14], an S-P tree corresponding to the
PMOS circuit, and another S-P tree corresponding to the NMOS circuit. Figure 6.4
shows the resulting circuit and S-P trees after the reordering and layout algorithm is
applied.

Figure 6.5(a) shows the resulting layouts after the first three steps of the reorder-
ing and layout algorithm. In the first step of the bottom-up traverse, the P-type node
of the NMOS S-P tree belongs to Case 1 (see Figure 5.4). Both leaves are Double-
Double-type layout representatives, and the resulting layouts are Double-Double type
for both the NMOS and the PMOS circuits. In the second step, the P-type node
of the PMOS S-P tree belongs to Case 2. The two subcircuits of the P-type node
are Double-Double type. The resulting PMOS circuit layout is Double-Double type,
and the resulting NMOS circuit layout is Single-Double type. The algorithm con-
tinues until it finishes traversing the S-P trees. Figure 6.5(b) shows the result, and
Figure 6.5(c) shows the layout after redundant wires are cleaned up and the output
signal line is connected.

Figure 6.6 shows another example from [12]. Its S-P trees corresponding to the
PMOS circuit and the NMOS circuit are shown in Figures 6.7 and 6.8, respectively.
Our layout of [12]’s circuit is shown in Figure 6.9. For either the PMOS or the NMOS
circuit, 11 tracks are necessary for the 38 transistors. The layout in [12] uses the same
number of tracks without minimizing the longest path. The number of tracks of our
layout can be further reduced after the redundant wires are cleaned up. Notice that
we have taken advantage of reordering the serial paths.

7. Summary and conclusion. After introducing the terminology, which basi-
cally defines what an SPDH and a layout are, we have formulated the minmax mincut
problem. It accepts an SPDH and produces a minimum cutwidth linear layout sub-
ject to the constraints that the source is at the leftmost position, the sink is at the
rightmost position, and the longest path is minimized.

The constraints of the minmax mincut problem limit the solution space to TS-
layouts, which are created by topological sorting. To explore the possible cutwidths
(the track numbers), we define the pattern number k and prove that it is a lower
bound of the cutwidths for a specific instance. Another lower bound is the balancing
number m.

We have proposed two algorithms; both algorithms traverse corresponding S-P
trees in a bottom-up manner and run in linear time. The main idea is to maintain suit-
able layout representatives to ensure proper growth of the number of necessary tracks.

The TS layout algorithm lays out an SPDH with at most 2(k+m) tracks, where k
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Fig. 6.3. A carry look-ahead circuit from [14], an S-P tree corresponding to the PMOS circuit,
and an S-P tree corresponding to the NMOS circuit.

is the pattern number and m is the balancing number of the SPDH. If reordering the
serial paths is allowed, the reordering and layout algorithm simultaneously lays out
an SPDH and its dual with the same vertex order, and this algorithm uses O(logN)
tracks, where N is the number of vertices.

We discussed CMOS circuits and their gate-matrix layout style. Then we inter-
preted the minmax mincut problem as a timing-driven gate-matrix layout problem
for CMOS since a topologically sorted solution not only minimizes the longest path
but also reduces resistances in circuit design. The timing-driven gate-matrix layout
problem is an issue which has not been addressed in the literature.

One possible approach to reduce the number of tracks is as follows. We use the
techniques proposed here to fix the ordering of the columns (or transistors). Then we
use one of the classical channel routers (e.g., [9, 16]) to obtain a detour-free layout.

In short, motivated by CMOS circuit design we have formulated a novel linear
arrangement problem, explored basic properties, and proposed two algorithms. Since
performance issues are being paid close attention to, we expect more applications to
emerge.

There are several possible research directions. To further improve the number of
tracks is a problem that needs further research. To relax the input constraint from an
SPDH to a general directed acyclic hypergraph remains open (e.g., interconnection of
two or more functional cells).
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Fig. 6.4. The carry look-ahead circuit and its S-P trees of the PMOS and the NMOS circuits
after the serial paths are reordered.

Fig. 6.5. (a) The first three steps of the reordering and layout algorithm. (b) The layout after
the S-P trees are traversed. (c) The layout after redundant wires are removed.



ON THE POWER OF LOGIC RESYNTHESIS 1285

F
ig

.
6
.6

.
A

n
ex

a
m

p
le

fr
o

m
[1

2
].

T
h

e
P

M
O

S
ci

rc
u

it
is

sh
o

w
n

.



1286 WEI-LIANG LIN AND M. SARRAFZADEH

F
ig

.
6
.7

.
A

n
S

-P
tr

ee
o

f
th

e
P

M
O

S
ci

rc
u

it
in

th
e

ex
a

m
p

le
fr

o
m

[1
2
].



ON THE POWER OF LOGIC RESYNTHESIS 1287

F
ig

.
6
.8

.
A

n
S

-P
tr

ee
o

f
th

e
N

M
O

S
ci

rc
u

it
in

th
e

ex
a

m
p

le
fr

o
m

[1
2
].



1288 WEI-LIANG LIN AND M. SARRAFZADEH

F
ig

.
6
.9

.
O

u
r

la
y
o

u
t

fo
r

th
e

ex
a

m
p

le
fr

o
m

[1
2
].

T
h

e
tr

a
n

si
st

o
rs

a
re

n
u

m
be

re
d

.
D

u
e

to
sp

a
ce

li
m

it
a

ti
o

n
s,

o
n

ly
h

a
lf

o
f

th
e

la
y
o

u
t

d
et

a
il

s
a

re
sh

o
w

n
.

T
h

e
o

th
er

h
a

lf
h

a
s

a
si

m
il

a
r

la
y
o

u
t

bu
t

w
it

h
d

iff
er

en
t

n
u

m
be

ri
n

g.



ON THE POWER OF LOGIC RESYNTHESIS 1289

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990, pp. 485–488.

[2] N. Deo, M. S. Krishnamoorthy, and M. A. Langston, Exact and approximate solutions
for the gate matrix layout problem, IEEE Trans. Computer Aided Design, CAD-6 (1987),
pp. 79–84.

[3] F. Gavril, Some NP-complete problems on graphs, in Proceedings of the 3rd Conference on
Information Sciences and Systems, The Johns Hopkins University, Baltimore, MD, 1995,
pp. 91–95.

[4] E. M. Gurari and I. H. Sudborough, Improved dynamic programming algorithms for band-
width minimization and the mincut linear arrangement problem, J. Algorithms, 5 (1984),
pp. 531–546.

[5] Y. H. Hu and S. J. Chen, GM-plan: A gate matrix layout algorithm based on artificial
intelligence planning techniques, IEEE Trans. Computer Aided Design, CAD-9 (1990), pp.
836–845.

[6] D. K. Hwang, W. K. Fuchs, and S. M. Kang, An efficient approach to gate matrix layout,
IEEE Trans. Computer Aided Design, CAD-6 (1987), pp. 802–809.

[7] S. Huang and O. Wing, Improved gate matrix layout, IEEE Trans. Computer Aided Design,
CAD-8 (1989), pp. 875–889.

[8] T. Kashiwabara and T. Fujisawa, An NP-complete problem on interval graph, in Proceedings
of the IEEE International Symposium on Circuits and Systems, IEEE, Japan, 1979, pp.
82–83.

[9] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons,
New York, 1990, pp. 534–551, Chapter 9.

[10] A. D. Lopez and H. S. Law, A dense gate matrix layout method for MOS VLSI, IEEE Trans.
Electronic Devices, ED-27 (1980), pp. 1671–1675.

[11] J. B. Sidney, Decomposition algorithms for single-machine sequencing with precedence rela-
tions and deferral costs, Oper. Res., 23 (1975), pp. 283–298.

[12] C. C. Su and M. Sarrafzadeh, Optimal gate-matrix layout of CMOS functional cells, IN-
TEGRATION: VLSI J., 10 (1990), pp. 3–23.

[13] K. Takamizawa, T. Nishizeki, and N. Saito, Linear-time Computability of combinatorial
problems on series-parallel graphs, J. ACM, 29 (1982), pp. 623–641.

[14] T. Uehara and W. M. VanCleemput, Optimal layout of CMOS functional arrays, IEEE
Trans. Comput., C-30 (1981), pp. 305–312.

[15] M. Yannakakis, A polynomial algorithm for the min cut linear arrangement of trees, in
Annual Symposium on Foundations of Computer Science, ACM, Baltimore, MD, 1983, pp.
274–281.

[16] T. Yoshimura, An efficient channel router, in Proceedings of the 21st IEEE/ACM Conference
on Design Automation, ACM, New York, NY, 1984, pp. 38–44.



APPLICATION-CONTROLLED PAGING FOR A SHARED CACHE∗

RAKESH D. BARVE† , EDWARD F. GROVE‡ , AND JEFFREY SCOTT VITTER§

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 1290–1303

Abstract. We propose a provably efficient application-controlled global strategy for organizing
a cache of size k shared among P application processes. Each application has access to information
about its own future page requests, and by using that local information along with randomization in
the context of a global caching algorithm, we are able to break through the conventional Hk ∼ ln k
lower bound on the competitive ratio for the caching problem. If the P application processes always
make good cache replacement decisions, our online application-controlled caching algorithm attains
a competitive ratio of 2HP−1 + 2 ∼ 2 lnP . Typically, P is much smaller than k, perhaps by several
orders of magnitude. Our competitive ratio improves upon the 2P + 2 competitive ratio achieved
by the deterministic application-controlled strategy of Cao, Felten, and Li. We show that no online
application-controlled algorithm can have a competitive ratio better than min{HP−1, Hk}, even if
each application process has perfect knowledge of its individual page request sequence. Our results
are with respect to a worst-case interleaving of the individual page request sequences of the P
application processes.

We introduce a notion of fairness in the more realistic situation when application processes do
not always make good cache replacement decisions. We show that our algorithm ensures that no
application process needs to evict one of its cached pages to service some page fault caused by a
mistake of some other application. Our algorithm not only is fair but remains efficient; the global
paging performance can be bounded in terms of the number of mistakes that application processes
make.
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1. Introduction. Caching is a useful technique for obtaining high performance
in these days where the latency of disk access is relatively high. Today’s computers
typically have several application processes running concurrently on them, by means of
time sharing and multiple processors. Some processes have special knowledge of their
future access patterns. Cao, Felten, and Li [CFL94a, CFL94b] exploit this special
knowledge to develop effective file caching strategies.

An application providing specific information about its future needs is equivalent
to the application having its own caching strategy for managing its own pages in cache.
We consider the multiapplication caching problem, formally defined in section 3, in
which P concurrently executing application processes share a common cache of size k.
In section 4 we propose an online application-controlled caching scheme in which
decisions need to be taken at two levels: when a page needs to be evicted from cache,
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the global strategy chooses a victim process, but the process itself decides which of
its pages will be evicted from cache.

Each application process may use any available information about its future page
requests when deciding which of its pages to evict. However, we assume no global
information about the interleaving of the individual page request sequences; all our
bounds are with respect to a worst-case interleaving of the individual request se-
quences.

Competitive ratios smaller than theHk lower bound for classical caching [FKL+91]
are possible for multiapplication caching, because each application may employ fu-
ture information about its individual page request sequence.1 The deterministic
application-controlled algorithm proposed by Cao, Felten, and Li [CFL94a] achieves a
competitive ratio of 2P +2, which we prove in the appendix. We show in sections 5–7
that our new randomized online application-controlled caching algorithm improves
the competitive ratio to 2HP−1 + 2 ∼ 2 lnP , which is optimal up to a factor of 2
in the realistic scenario when P < k. (If we use the algorithm of [FKL+91] for the
case P ≥ k, the resulting bound is optimal up to a factor of 2 for all P .) Our results
are significant since P is often much smaller than k, perhaps by several orders of
magnitude.

In the appendix, we also prove that no deterministic online application-controlled
algorithm can have a competitive ratio better than P+1. Thus the difference between
our competitive ratio and that attained by the algorithm by Cao, Felten, and Li is
a further indication of the (well-known) power of randomization while solving online
problems in general and online paging in particular.

In the scenario where application processes occasionally make bad page replace-
ment decisions (or “mistakes”), we show in section 8 that our online algorithm incurs
very few page faults globally as a function of the number of mistakes. Our algorithm is
also fair, in the sense that the mistakes made by one processor in its page replacement
decisions do not worsen the page fault rate of other processors.

2. Classical caching and competitive analysis. The well-known classical
caching (or paging) problem deals with a two-level memory hierarchy consisting of
a fast cache of size k and slow memory of arbitrary size. A sequence of requests to
pages is to be satisfied in their order of occurrence. In order to satisfy a page request,
the page must be in fast memory. When a requested page is not in fast memory, a
page fault occurs, and some page must be evicted from fast memory to slow memory
in order to make room for the new page to be put into fast memory. The caching (or
paging) problem is to decide which page must be evicted from the cache. The cost to
be minimized is the number of page faults incurred over the course of servicing the
page requests.

Belady [Bel66] gives a simple optimum offline algorithm for the caching problem;
the page chosen for eviction is the one in cache whose next request is furthest in
the future. In order to quantify the performance of an online algorithm, Sleator
and Tarjan [ST85] introduce the notion of competitiveness, which in the context of
caching can be defined as follows: for a caching algorithm A, let FA(σ) be the number
of page faults generated by A while processing page request sequence σ. If A is a
randomized algorithm, we let FA(σ) be the expected number of page faults generated
by A on processing σ, where the expectation is with respect to the random choices
made by the algorithm. An online algorithm A is called c-competitive if for every

1Here Hn represents the nth harmonic number
∑n

i=1
1/i ∼ lnn.
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page request sequence σ, we have FA(σ) ≤ c · FOPT (σ) + b, where b is some fixed
constant. The constant c is called the competitive ratio of A. Under this measure, an
online algorithm’s performance needs to be relatively good on worst-case page request
sequences in order for the algorithm to be considered good.

For cache size k, Sleator and Tarjan [ST85] show a lower bound of k on the
competitive ratio of deterministic caching algorithms. Fiat et al. [FKL+91] prove a
lower bound of Hk if randomized algorithms are allowed. They also give a simple
and elegant randomized algorithm for the problem that achieves a competitive ratio
of 2Hk. McGeoch and Sleator [MS91] give a rather involved randomized algorithm
that attains the theoretically optimal competitive ratio of Hk.

3. Multiapplication caching problem. In this paper we take up the theoret-
ical issue of how best to use application processes’ knowledge about their individual
future page requests so as to optimize caching performance. For analysis purposes we
use an online framework similar to that of [FKL+91, MS91]. As mentioned before,
the caching algorithms in [FKL+91, MS91] use absolutely no information about future
page requests. Intuitively, knowledge about future page requests can be exploited to
decide which page to evict from the cache at the time of a page fault. In practice
an application often has advance knowledge of its individual future page requests.
Cao, Felten, and Li [CFL94a, CFL94b] introduced strategies that try to combine the
advance knowledge of the processors in order to make intelligent page replacement
decisions.

In the multiapplication caching problem we consider a cache capable of stor-
ing k pages that is shared by P different application processes, which we denote
P1, P2, . . . , PP . Each page in cache and memory belongs to exactly one process.
The individual request sequences of the processes may be interleaved in an arbitrary
(worst-case) manner.

Worst-case measure is often criticized when used for evaluating caching algorithms
for individual application request sequences [BIRS91, KPR92], but we feel that the
worst-case measure is appropriate for considering a global paging strategy for a cache
shared by concurrent application processes that have knowledge of their individual
page request sequences. The locality of reference within each application’s individual
request sequence is accounted for in our model by each application process’s knowledge
of its own future requests. The worst-case nature of our model is that it assumes
nothing about the order and duration of time for which application processes are
active. In this model our worst-case measure of competitive performance amounts to
considering a worst-case interleaving of individual sequences.

The approach of Cao, Felten, and Li [CFL94a] is to have the kernel determinis-
tically choose the process owning the least recently used page at the time of a page
fault and ask that process to evict a page of its choice (which may be different from
the least recently used (LRU) page). In the appendix we show under the assumption
that processes always make good page replacement decisions that Cao, Felten, and
Li’s algorithm has a competitive ratio between P + 1 and 2P + 2. The algorithm we
present in the next section and analyze thereafter improves the competitive ratio to
2HP−1 + 2 ∼ 2 lnP .

4. Online algorithm for multiapplication caching. Our algorithm is an on-
line application-controlled caching strategy for an operating system kernel to manage
a shared cache in an efficient and fair manner. We show in the subsequent sections
that the competitive ratio of our algorithm is 2HP−1+2 ∼ 2 lnP and that it is optimal
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to within a factor of about 2 among all online algorithms. (If P ≥ k, we can use the
algorithm of [FKL+91].)

On a page fault, we first choose a victim process and then ask it to evict a suitable
page. Our algorithm can detect mistakes made by application processes, which enables
us to reprimand such application processes by having them pay for their mistakes. In
our scheme, we mark pages as well as processes in a systematic way while processing
the requests that constitute a phase.

Definition 4.1. The global sequence of page requests is partitioned into a consec-
utive sequence of phases; each phase is a sequence of page requests. At the beginning
of each phase, all pages and processes are unmarked. A page gets marked during a
phase when it is requested. A process is marked when all of its pages in cache are
marked. A new phase begins when a page is requested that is not in cache and all
the pages in cache are marked. A page accessed during a phase is called clean with
respect to that phase if it was not in the online algorithm’s cache at the beginning of
a phase. A request to a clean page is called a clean page request. Each phase always
begins with a clean page request.

Our marking scheme is similar to the one in [FKL+91] for the classical caching
problem. However, unlike the algorithm in [FKL+91], the algorithm we develop is a
nonmarking algorithm, in the sense that our algorithm may evict marked pages. In
addition, our notion of phase in Definintion 4.1 is different from the notion of phase
in [FKL+91], which can be looked upon as a special case of our more general notion.
We put the differences into perspective in section 4.1.

Our algorithm works as follows when a page p belonging to process Pr is requested:

(1) If p is in cache:
(a) If p is not marked, we mark it.
(b) If process Pr has no unmarked pages in cache, we mark Pr.

(2) If p is not in cache:
(a) If process Pr is unmarked and page p is not a clean page with respect

to the ongoing phase (i.e., Pr has made a mistake earlier in the phase
by evicting p), then
(i) We ask process Pr to make a page replacement decision and evict

one of its pages from cache in order to bring page p into cache. We
mark page p and also mark process Pr if it now has no unmarked
pages in cache.

(b) Else (process Pr is marked or page p is a clean page, or both)
(i) If all pages in cache are marked, we remove marks from all pages

and processes, and we start a new phase, beginning with the current
request for p.

(ii) Let S denote the set of unmarked processes having pages in the
cache. We randomly choose a process Pe from S, each process being
chosen with a uniform probability 1/|S|.

(iii) We ask process Pe to make a page replacement decision and evict
one of its pages from cache in order to bring page p into cache. We
mark page p and also mark process Pe if it now has no unmarked
page in cache.

Note that in steps 2(a)(i) and 2(b)(iii) our algorithm seeks paging decisions from
application processes that are unmarked. Consider an unmarked process Pi that has
been asked to evict a page in a phase, and consider Pi’s pages in cache at that time.
Let ui denote the farthest unmarked page of process Pi; that is, ui is the unmarked
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page of process Pi whose next request occurs furthest in the future among all of Pi’s
unmarked cached pages. Note that process Pi may have marked pages in cache whose
next requests occur after the request for ui.

Definition 4.2. The good set of an unmarked process Pi at the current point
in the phase is the set consisting of its farthest unmarked page ui in cache and every
marked page of Pi in cache whose next request occurs after the next request for page ui.
A page replacement decision made by an unmarked process Pi in either step 2(a)(i)
or step 2(b)(iii) that evicts a page from its good set is regarded as a good decision
with respect to the ongoing phase. Any page from the good set of Pi is a good page
for eviction purposes at the time of the decision. Any decision made by an unmarked
process Pi that is not a good decision is regarded as a mistake by process Pi.

If a process Pi makes a mistake by evicting a certain page from cache, we can
detect the mistake made by Pi if and when the same page is requested again by Pi in
the same phase while Pi is still unmarked.

In sections 6 and 7 we specifically assume that application processes are always
able to make good decisions about page replacement. In section 8 we consider fairness
properties of our algorithm in the more realistic scenario where processes can make
mistakes.

4.1. Relation to previous work on classical caching. Our marking scheme
approach is inspired by a similar approach for the classical caching problem in
[FKL+91]. However, the phases defined by our algorithm are significantly differ-
ent in nature from those in [FKL+91]. Our phase ends when there are k distinct
marked pages in cache; more than k distinct pages may be requested in the phase.
The phases depend on the random choices made by the algorithm and are probabilis-
tic in nature. On the other hand, a phase defined in [FKL+91] ends when exactly
k distinct pages have been accessed, so that given the input request sequence, the
phases can be determined independently of the caching algorithm being used.

The definition in [FKL+91] is suited to facilitate the analysis of online caching
algorithms that never evict marked pages, called marking algorithms. In the case
of marking algorithms, since marked pages are never evicted, as soon as k distinct
pages are requested, there are k distinct marked pages in cache. This means that the
phases determined by our definition for the special case of marking algorithms are
exactly the same as the phases determined by the definition in [FKL+91]. Note that
our algorithm is in general not a marking algorithm since it may evict marked pages.
While marking algorithms always evict unmarked pages, our algorithm always calls
on unmarked processes to evict pages; the actual pages evicted may be marked.

4.2. Relation to the algorithm of Cao, Felten, and Li. The algorithm
proposed by Cao, Felten, and Li [CFL94a] for the multiapplication caching problem
amounts to evicting, at the time of a page fault, the farthest page from cache belonging
to the process that owns the LRU page in cache. Thus, for a given interleaving
of individual request sequences, the paging decisions made by that algorithm are
deterministic. We prove in the appendix that no deterministic online algorithm for
the multiapplication caching problem can have a competitive ratio better than P + 1,
and that the competitive ratio attained by the algorithm proposed by Cao, Felten,
and Li [CFL94a] attains a competitive ratio of 2P + 2. Thus, the performance of the
algorithm in [CFL94a] is within a factor of 2 of the best possible performance by any
deterministic online algorithm for the multiapplication caching problem.

Given the notion of good pages that we developed above, it turns out that we can
define a slightly more general version of the algorithm in [CFL94a] without changing
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its paging performance. Basically, in order to attain the competitive ratio of 2P + 2,
it is enough, at the time of a page fault, to evict from cache any good page belonging
to the process that owns the LRU page in cache. We say that this is a slightly more
general version than the algorithm presented in [CFL94a] because it may very often
be the case that the good set of the process that owns the LRU page contains several
pages other than the farthest page of that process.

5. Lower bounds for OPT and competitive ratio. In this section we prove
that the competitive ratio of any online caching algorithm can be no better than
min{HP−1, Hk}. Let us denote by OPT the optimal offline algorithm for caching
that works as follows: when a page fault occurs, OPT evicts the page whose next
request is furthest in the future request sequence among all pages in cache.

As in [FKL+91], we will compare the number of page faults generated by our
online algorithm during a phase with the number of page faults generated by OPT
during that phase. We express the number of page fronts as a function of the number
of clean page requests during the phase. Here we state and prove a lower bound on
the (amortized) number of page faults generated by OPT in a single phase. The proof
is a simple generalization of an analogous proof in [FKL+91], which deals only with
the deterministic phases of marking algorithms.

Lemma 5.1. Consider any phase σi of our online algorithm in which `i clean
pages are requested. Then OPT incurs an amortized cost of at least `i/2 on the
requests made in that phase.2

Proof. Let di be the number of clean pages in OPT ’s cache at the beginning of
phase σi; that is, di is the number of pages requested in σi that are in OPT ’s cache
but not in our algorithm’s cache at the beginning of σi. Let di+1 represent the same
quantity for the next phase σi+1. Let di+1 = dm + du, where dm of the di+1 clean
pages in OPT ’s cache at the beginning of σi+1 are marked during σi and du of them
are not marked during σi. Note that d1 = 0 and di ≤ k for all i.

Of the `i clean pages requested during σi, only di are in OPT ’s cache, so OPT
generates at least `i − di page faults during σi. On the other hand, while processing
the requests in σi, OPT cannot use du of the cache locations, since at the beginning
of σi+1 there are du pages in OPT ’s cache that are not marked during σi. (These du
pages would have to be in OPT ’s cache before σi even began.) There are k marked
pages in our algorithm’s cache at the end of σi, and there are dm other pages marked
during σi that are out of our algorithm’s cache. So the number of distinct pages
requested during σi is at least dm + k. Hence, OPT serves at least dm + k requests
corresponding to σi without using du of the cache locations. This means that OPT
generates at least (k+ dm)− (k− du) = di+1 faults during σi. Therefore, the number
of faults OPT generates on σi is at least

max{`i − di, di+1} ≥ `i − di + di+1

2
.(5.1)

Let us consider the number of page faults made by OPT in the first j phases of
page request sequence σ. We can use the lower bound (5.1) for phases 2, 3, . . . , j−1.
In the jth phase, OPT makes at least `j − dj ≥ (`j − dj)/2 faults. In the first phase,
OPT generates k faults and we have `1 = k. Thus the sum of OPT ’s faults over all

2By “amortized” in Lemma 5.1 we mean for each j ≥ 1 that the number of page faults made

by OPT while serving the first j phases is at least
∑j

i=1
`i/2, where `i is the number of clean page

requests in the ith phase.
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j phases is at least

`1 +

j−1∑
i=2

`i − di + di+1

2
+
`j − dj

2
≥

j∑
i=1

`i/2,

where we use the fact that d2 ≤ k = `1. Thus by definition, the amortized number of
faults OPT generates over any phase σi is at least `i/2.

Next we will construct a lower bound for the competitive ratio of any randomized
online algorithm even when application processes have perfect knowledge of their
individual request sequences. The proof is a straightforward adaptation of the proof
of the Hk lower bound for classical caching [FKL+91]. However, in the situation at
hand, the adversary has more restrictions on the request sequence that he can use to
prove the lower bound, thereby resulting in a lowering of the lower bound.

Theorem 5.2. The competitive ratio of any randomized algorithm for the multi-
application caching problem is at least min{HP−1, Hk} even if application processes
have perfect knowledge of their individual request sequences.

Proof. If P > k, the Hk lower bound on the classical caching problem from
[FKL+91] is directly applicable by considering the case where each process accesses
only one page each. This gives a lower bound of Hk on the competitive ratio.

In the case when P ≤ k, we construct a multiapplication caching problem based
on the nemesis sequence used in [FKL+91] for classical caching. In [FKL+91] a lower
bound of Hk′ is proved for the special case of a cache of size k′ and a total of k′ + 1
pages, which we denote c1, c2, . . . , ck′+1. All but one of the pages can fit in cache at the
same time. Our corresponding multiapplication caching problem consists of P = k′+1
application processes P1, P2, . . . , PP so that there is one process corresponding to each
page of the classical caching lower bound instance for a k′-sized cache. Process Pi
owns ri pages pi1, pi2, . . . , piri . The total number

∑P
i=1 ri of pages among all the

processes is k + 1, where k is the cache size; that is, all but one of the pages among
all the processes can fit in memory simultaneously.

In the instance of the multiapplication caching problem we construct, the request
sequence for each process Pi consists of repetitions of the double round-robin sequence

pi1, pi2, . . . , piri , pi1, pi2, . . . , piri(5.2)

of length 2ri. We refer to the double round-robin sequence (5.2) as a touch of pro-
cess Pi. When the adversary generates requests corresponding to a touch of process Pi,
we say that it “touches process Pi.”

Given an arbitrary adversarial sequence for the classical caching problem de-
scribed above, we construct an adversarial sequence for the multiapplication caching
problem by replacing each request for page ci in the former problem by a touch of
process Pi in the latter problem. We can transform an algorithm for this instance of
multiapplication caching into one for the classical caching problem by the following
correspondence: if the multiapplication algorithm evicts a page from process Pj while
servicing the touch of process Pi, the classical caching algorithm evicts page cj in
order to service the request to page ci. In Lemma 5.3 below, we show that there is
an optimum online algorithm for the above instance of multiapplication caching that
never evicts a page belonging to process Pi while servicing a fault on a request for
a page from process Pi. Thus the transformation is valid, in that page ci is always
resident in cache after the page request to ci is serviced. This reduction immediately
implies that the competitive ratio for this instance of multiapplication caching must
be at least Hk′ = HP−1.
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Lemma 5.3. For the above instance of multiapplication caching, any online al-
gorithm A can be converted into an online algorithm A′ that is at least as good in
an amortized sense and that has the property that all the pages for process Pi are in
cache immediately after a touch of Pi is processed.

Proof. Intuitively, the double round-robin sequences force an optimal online al-
gorithm to service the touch of a process by evicting a page belonging to another
process. We construct online algorithm A′ from A in an online manner. Suppose that
both A and A′ fault during a touch of process Pi. If algorithm A evicts a page of Pj ,
for some j 6= i, then A′ does the same. If algorithm A evicts a page of Pi during the
first round-robin while servicing a touch of Pi, then there will be a page fault during
the second round-robin. If A then evicts a page of another process during the second
round-robin, then A′ evicts that page during the first round-robin and incurs no fault
during the second round-robin. The first page fault of A was wasted; the other page
could have been evicted instead during the first round-robin. If instead A evicts an-
other page of Pi during the second round-robin, then A′ evicts an arbitrary page of
another process during the first round-robin, and A′ incurs no page fault during the
second round-robin. Thus, if A evicts a page of Pi, it incurs at least one more page
fault than does A′.

If A faults during a touch of Pi, but A′ doesn’t, there is no paging decision for A′

to make. If A does not fault during a touch of Pi, but A′ does fault, then A′ evicts
the page that is not in A’s cache. The page fault for A′ is charged to the extra page
fault that A incurred earlier when A′ evicted one of Pi’s pages.

Thus the number of page faults that A′ incurs is no more than the number of
page faults that A incurs. By construction, all pages of process Pi are in algorithm
A′’s cache immediately after a touch of process Pi.

The double round-robin sequences in the above reduction can be replaced by single
round-robin sequences by redoing the explicit lower bound argument of [FKL+91].

6. Holes. In this section, we introduce the notion of holes, which plays a key
role in the analysis of our online caching algorithm. In section 6.2, we mention some
crucial properties of holes of our algorithm under the assumption that applications
always make good page replacement decisions. These properties are also useful in
bounding the page faults that can occur in a phase when applications make mistakes
in their page replacement decisions.

Definition 6.1. The eviction of a cached page at the time of a page fault on
a clean page request is said to create a hole at the evicted page. Intuitively, a hole
is the lack of space for some page, so that that page’s place in cache contains a hole
and not the page. If page p1 is evicted for servicing the clean page request, page p1 is
said to be associated with the hole. If page p1 is subsequently requested and another
page p2 is evicted to service the request, the hole is said to move to p2, and now p2 is
said to be associated with the hole, and so on, until the end of the phase. We say that
hole h moves to process Pi to mean that the hole h moves to some page p belonging
to process Pi.

6.1. General observations about holes. All requests to clean pages during a
phase are page faults and create holes. The number of holes created during a particular
phase equals the number of clean pages requested during that phase. Apart from clean
page requests, requests to holes also cause page faults to occur. By a request to a
hole we mean a request for the page associated with that hole. As we proceed down
the request sequence during a phase, the page associated with a particular hole varies
with time. Consider a hole h that is created at a page p1 that is evicted to serve a
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request for clean page pc. When a request is made for page p1, some page p2 is evicted,
and h moves to p2. Similarly when page p2 is requested, h moves to some p3, and
so on. Let p1, p2, . . . , pm be the temporal sequence of pages all associated with hole
h in a particular phase such that page p1 is evicted when clean page pc is requested,
page pi, where i > 1, is evicted when pi−1 is requested and the request for pm falls
in the next phase. Then the number of faults incurred in the particular phase being
considered due to requests to h is m− 1.

6.2. Useful properties of holes. In this section we make the following obser-
vations about holes under the assumption that application processes make only good
decisions.

Lemma 6.2. Let ui be the farthest unmarked page in cache of process Pi at some
point in a phase. Then process Pi is a marked process by the time the request for page
ui is served.

Proof. This follows from the definition of farthest unmarked page and the nature
of the marking scheme employed in our algorithm.

Lemma 6.3. Suppose that there is a request for page pi, which is associated with
hole h. Suppose that process Pi owns page pi. Then process Pi is already marked at
the time of the present request for page pi.

Proof. Page pi is associated with hole h because process Pi evicted page pi when
asked to make a page replacement decision in order to serve either a clean request or
a page fault at the previous page associated with h. In either case, page pi was a good
page at the time process Pi made the particular paging decision. Since process Pi was
unmarked at the time the decision was made, pi was either the farthest unmarked
page of process Pi then or some marked page of process Pi whose next request is after
the request for Pi’s farthest unmarked page. By Lemma 6.2, process Pi is a marked
process at the time of the request for page pi.

Lemma 6.4. Suppose that page pi is associated with hole h. Let Pi denote the
process owning page pi. Suppose page pi is requested at some time during the phase.
Then hole h does not move to process Pi subsequently during the current phase.

Proof. The hole h belongs to process Pi. By Lemma 6.3 when a request is made
to h, Pi is already marked and will remain marked until the end of the phase. Since
only unmarked processes are chosen to evict pages, a request for h thereafter cannot
result in eviction of any page belonging to Pi, so a hole can never move to a process
more than once.

Let there be R unmarked processes at the time of a request to a hole h. For
any unmarked process Pj , 1 ≤ j ≤ R, let uj denote the farthest unmarked page of
process Pj at the time of the request to hole h. Without loss of generality, let us
relabel the processes so that

u1, u2, u3, . . . , uR(6.1)

is the temporal order of the first subsequent appearance of the pages uj in the global
page request sequence.

Lemma 6.5. In the situation described in (6.1) above, suppose during the page
request for hole h that the hole moves to a good page pi of unmarked process Pi to
serve the current request for h. Then h can never move to any of the processes
P1, P2, . . . , Pi−1 during the current phase.

Proof. The first subsequent request for the good page pi that Pi evicts, by def-
inition, must be the same as or must be after the first subsequent request for the
farthest unmarked page ui. So process Pi will be marked by the next time hole h is
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requested, by Lemma 6.3. On the other hand, the first subsequent requests of the
respective farthest unmarked pages u1, . . . , ui−1 appear before that of page ui. Thus,
by Lemma 6.2, the processes P1, P2, . . . , Pi−1 are already marked before the next time
hole h (page pi) gets requested and will remain marked for the remainder of the phase.
Hence, by the fact that only unmarked processes get chosen, hole h can never move
to any of the processes P1, P2, . . . , Pi−1.

7. Competitive analysis of our online algorithm. Our main result is The-
orem 7.1, which states that our online algorithm for the multiapplication caching
problem is roughly 2 lnP -competitive, assuming application processes always make
good decisions (e.g., if each process knows its own future page requests). By the
lower bound of Theorem 5.2, it follows that our algorithm is optimal in terms of
competitive ratio up to a factor of 2.

Theorem 7.1. The competitive ratio of our online algorithm in section 4 for the
multiapplication caching problem, assuming that good evictions are always made, is
at most 2HP−1 + 2. Our competitive ratio is within a factor of about 2 of the best
possible competitive ratio for this problem.

The rest of this section is devoted to proving Theorem 7.1. To count the number
of faults generated by our algorithm in a phase, we make use of the properties of holes
from the previous section. If ` requests are made to clean pages during a phase, there
are ` holes that move about during the phase. We can count the number of faults
generated by our algorithm during the phase as

`+
∑̀
i=1

Ni,(7.1)

where Ni is the number of times hole hi is requested during the phase. Assuming
good decisions are always made, we will now prove for each phase and for any hole hi
that the expected value of Ni is bounded by HP−1.

Consider the first request to a hole h during the phase. Let Rh be the number of
unmarked processes at that point in time. Let CRh be the random variable associated
with the number of page faults due to requests to hole h during the phase.

Lemma 7.2. The expected number E(CRh) of page faults due to requests to hole h
is at most HRh .

Proof. We prove this by induction over Rh. We have E(C0) = 0 and E(C1) = 1.
Suppose for 0 ≤ j ≤ Rh − 1 that E(Cj) ≤ Hj . Using the same terminology and
notation as in Lemma 6.5, we let the farthest unmarked pages of the Rh unmarked
processes at the time of the request for h appear in the temporal order

u1, u2, u3, . . . , uRh

in the global request sequence. We renumber the Rh unmarked processes for conve-
nience so that page ui is the farthest unmarked page of unmarked process Pi.

When the hole h is requested, our algorithm randomly chooses one of the Rh
unmarked processes, say, process Pi, and asks process Pi to evict a suitable page.
Under our assumption, the hole h moves to some good page pi of process Pi. From
Lemmas 6.4 and 6.5, if our algorithm chooses unmarked process Pi so that its good
page pi is evicted, then at most Rh − i processes remain unmarked the next time h
is requested. Since each of the Rh unmarked processes is chosen with a probability
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of 1/Rh, we have

E(CRh) ≤ 1 +
1

Rh

Rh∑
i=1

E(CRh−i)

= 1 +
1

Rh

Rh−1∑
i=0

E(Ci)

≤ 1 +
1

Rh

Rh−1∑
i=0

Hi

= HRh .

The last equality follows easily by induction and algebraic manipulations.
Now let us complete the proof of Theorem 7.1. By Lemma 6.3 the maximum

possible number of unmarked processes at the time a hole h is first requested is
P −1. Lemma 7.2 implies that the average number of times any hole can be requested
during a phase is bounded by HP−1. By (7.1), the total number of page faults
during the phase is at most `(1 + HP−1). We have already shown in Lemma 5.1
that the OPT algorithm incurs an amortized cost of at least `/2 for the requests
made in the phase. Therefore, the competitive ratio of our algorithm is bounded by
`(1+HP−1)/(`/2) = 2HP−1 +2. Applying the lower bound of Theorem 5.2 completes
the proof.

8. Application-controlled caching with fairness. In this section we analyze
our algorithm’s performance in the realistic scenario where application processes can
make mistakes, as defined in Definition 4.2. We bound the number of page faults
it incurs in a phase in terms of page faults caused by mistakes made by application
processes during that phase. The main idea here is that if an application process Pi
commits a mistake by evicting a certain page p and then during the same phase
requests page p while process Pi is still unmarked, our algorithm makes process Pi
pay for the mistake in step 2(a)(i).

On the other hand, if page p’s eviction from process Pi was a mistake, but pro-
cess Pi is marked when page p is later requested in the same phase, say, at time t,
then process Pi’s mistake is “not worth detecting” for the following reason: since
evicting page p was a mistake, it must mean that at the time t1 of p’s eviction, there
existed a set U of one or more unmarked pages of process Pi in cache whose sub-
sequent requests appear after the next request for page p. Process Pi is marked at
the time of the next request for p, implying that all pages in U were evicted by Pi
at some times t2, t3, . . . , t|U |+1 after the mistake of evicting p. If instead at time
t1, t2, . . . , t|U |+1 process Pi makes the specific good paging decisions of evicting the
farthest unmarked pages, the same set {p}∪U of pages will be out of cache at time t.
In our notion of fairness we choose to ignore all such mistakes and consider them “not
worth detecting.”

Definition 8.1. During an ongoing phase, any page fault corresponding to a
request for a page p of an unmarked process Pi is called an unfair fault if the request
for page p is not a clean page request. All faults during the phase that are not unfair
are called fair faults.

The unfair faults are precisely those page faults which are caused by mistakes
considered “worth detecting.” We state the following two lemmas that follow trivially
from the definitions of mistakes, good decisions, unfair faults, and fair faults.
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Lemma 8.2. During a phase, all page requests that get processed in step 2(a)(i)
of our algorithm are precisely the unfair faults of that phase. That is, unfair faults
correspond to mistakes that get caught in step 2(a)(i) of our algorithm.

Lemma 8.3. All fair faults are precisely those requests that get processed in step
2(b)(iii).

We now consider the behavior of holes in the current mistake-prone scenario.

Lemma 8.4. The number of holes in a phase equals the number of clean pages
requested in the phase.

Lemma 8.5. Consider a hole h associated with a page p of a process Pi. If a
request for h is an unfair fault, process Pi is still unmarked and the hole h moves to
some other page belonging to process Pi. If a request for hole h is a fair fault, then
process Pi is already marked and the hole h can never move to process Pi subsequently
during the phase.

Proof. If the request for hole h is an unfair fault, then by definition process Pi
is unmarked and by Lemma 8.2, h moves to some other page p′ of process Pi. If the
request for h is a fair fault, then by definition and the fact that the request for h is
not a clean page request, process Pi is marked. Since our algorithm never chooses a
marked process for eviction, it follows that h can never visit process Pi subsequently
during the phase.

During a phase, a hole h is created in some process, say, P1, by some clean page
request. It then moves around zero or more times within process P1 on account of
P1’s mistakes, until a request for hole h is a fair fault, upon which it moves to some
other process P2, never to come back to process P1 during the phase. It behaves
similarly in process P2, and so on up to the end of the phase. Let Th denote the total
number of faults attributed to requests to hole h during a phase, of which Fh faults
are fair faults and Uh faults are unfair faults. We have Th = Fh + Uh.

By Lemma 8.5 and the same proof techniques as those in the proofs of Lemma
7.2 and Theorem 7.1, we can prove the following key lemma.

Lemma 8.6. The expected number E(Fh) of page requests to hole h during a
phase that result in fair faults is at most HP−1.

By Lemma 8.4, our algorithm incurs at most ` +
∑`
i=1 Thi page faults in a

phase with ` clean page requests. The expected value of this quantity is at most
`(HP−1 + 1) +

∑`
i=1 Uhi , by Lemma 8.6.

The expression
∑`
i=1 Uhi is the number of unfair faults, that is, the number of

mistakes considered “worth detecting.” Our algorithm is very efficient in that the
number of unfair faults is an additive term. For any phase φ with ` clean requests,
we denote

∑`
i=1 Uhi as Mφ.

Theorem 8.7. The number of faults in a phase φ with ` clean page requests and
Mφ unfair faults is bounded by `(1 + HP−1) + Mφ. At the time of each of the Mφ

unfair faults, the application process that makes the mistake that causes the fault must
evict a page from its own cache. No application process is ever asked to evict a page
to service an unfair fault caused by some other application process.

8.1. Extending fairness to the algorithm by Cao, Felten, and Li. It
turns out that our notion of fairness extends, without any change, to the generalized
version of the deterministic algorithm of [CFL94a] that we mentioned in section 4.2. It
is easy to see that in the case of the generalized version of the algorithm of [CFL94a],
a process incurs an unfair fault only if, at some time in the past, that process had
the LRU page and the page it evicted was not a good page. Consequently, a result
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similar to Theorem 8.7 with (1 +HP−1) replaced by (1 +P ) holds for the generalized
version of the algorithm of [CFL94a].

9. Conclusions. Cache management strategies are of prime importance for high
performance computing. We consider the case where there are P independent pro-
cesses running on the same computer system and sharing a common cache of size k.
Applications often have advance knowledge of their page request sequences. In this pa-
per we have addressed the issue of exploiting this advance knowledge to devise intelli-
gent strategies to manage the shared cache, in a theoretical setting. We have presented
a simple and elegant randomized application-controlled caching algorithm for the
multiapplication caching problem that achieves a competitive ratio of 2HP−1 +2. Our
result is a significant improvement over the competitive ratios of 2P + 2 [CFL94a] for
deterministic multiapplication caching and Θ(Hk) for classical caching, since the cache
size k is often orders of magnitude greater than P . We have proven that no online
algorithm for this problem can have a competitive ratio smaller than min{HP−1, Hk},
even if application processes have perfect knowledge of individual request sequences.
We conjecture that an upper bound of HP−1 can be proven, up to second-order terms,
perhaps using techniques from [MS91], although the resulting algorithm is not likely
to be practical.

Using our notion of mistakes we are able to consider a more realistic setting when
application processes make bad paging decisions and show that our algorithm is a fair
and efficient algorithm in such a situation. No application needs to pay for some other
application process’s mistake, and we can bound the global caching performance of our
algorithm in terms of the number of mistakes. Our notions of good page replacement
decisions, mistakes, and fairness in this context are new.

One related area of possible future work is to consider alternative models to
our model of worst-case interleaving. Another interesting area would be to consider
caching in a situation where some applications have good knowledge of future page
requests while other applications have no knowledge of future requests. We could also
consider pages shared among application processes.

Appendix. The Cao, Felten, and Li algorithm. The algorithm proposed
by Cao, Felten, and Li [CFL94a] for the multiapplication caching problem amounts
to evicting, at the time of a page fault, the farthest page from cache belonging to the
process that owns the LRU page in cache.

Theorem A.1. The algorithm of Cao, Felten, and Li is (2P + 2)-competitive. A
generalized version of the algorithm of Cao, Felten, and Li, in which, at the time of
a page fault, the process owning the LRU page in cache evicts any (deterministically
chosen) good page, is also (2P + 2)-competitive.

Proof. Let there be ` clean page requests in a phase. Then there are ` faults due
to clean page requests resulting in ` holes. The algorithm evicts only good pages from
cache, so holes are associated only with such pages. By Lemma 6.4 we can conclude
that each hole can result in at most one page fault per process up to the end of the
phase, so that the total number of page faults in the phase is bounded by ` + `P .
Using Lemma 5.1 gives the above competitive factor.

Theorem A.2. The competitive ratio of any deterministic online algorithm for
the multiapplication caching problem is at least P + 1.

Proof. Since the algorithm is deterministic, we can construct an interleave that
costs the algorithm a factor of P + 1 times the number of faults that OPT will
incur. For instance, consider a single clean request in each phase. On the basis
of our knowledge of the deterministic choices made by the algorithm, we can easily
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make the resulting hole visit each process at least once so that the deterministic
online algorithm incurs at least P + 1 faults per phase, whereas OPT incurs just one
fault.
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1. Introduction.

1.1. Statement of problem. A distributed system of computers often needs to
designate one of its processors as the “leader.” Some of the processors may be faulty,
but the leader should be nonfaulty with probability bounded away from 0. We follow
the perfect-information model of Ben-Or and Linial [4] in which a processor commu-
nicates only by broadcasting a message to every other processor; faulty processors are
permitted unlimited computational power, and hence cryptographic techniques are
useless.

Our main result is that for every ε < 1
2 , there exist leader-election protocols for

n processors that tolerate εn faults.

1.2. Relation to other work. Ben-Or and Linial [4] introduced the perfect-
information model of distributed computing; they constructed a leader-election proto-
col for n processors that tolerates O(nlog3 2/ logn) faults. (Actually they constructed
their protocol for the weaker problem of collective coinflipping, but their protocol
works for leader election also.) Saks [16] constructed an election protocol called “pass
the baton” that tolerates O(n/ logn) faults; Ajtai and Linial [1] analyzed the baton-
passing protocol in more detail. Subsequently, Alon and Naor [2] showed the existence
of a protocol that tolerates εn faults for every ε < 1

3 : their protocol is nonconstruc-
tive. (They designed a constructive protocol for some small but positive constant ε.)
In [6], we showed that the (nonconstructive) Alon–Naor protocol tolerates εn faults
for every ε < (2

√
10 − 5)/3 ≈ 0.44. Finally, in the present paper, we show that the

Alon–Naor protocol actually tolerates εn faults for every ε < 1
2 .

Our bound of εn faults for every ε < 1
2 is asymptotically optimal: Saks [16]

observed that no election protocol for n processors can tolerate dn/2e faults. (As
Saks did not publish his proof, we present a proof in section 3.) These two bounds
leave open the case of n/2 − o(n) faults. Because our upper bound seems hard to
improve, we conjecture that n/2− o(n) faults are impossible to tolerate.
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Recently, researchers have investigated the running time of protocols. In each
round, each processor may broadcast a message to every other processor. Cooper and
Linial [9] constructed a protocol that runs in polylogarithmic time and yet tolerates
εn faults for some positive constant ε.

After our work was completed, Ostrovsky, Rajagopalan, and Vazirani [14] showed
nonconstructively the existence of a protocol with O(logn) rounds that tolerates εn
faults for every ε < 1

2 ; they designed a constructive protocol for ε < 0.0045. Later,
Zuckerman [17] designed a constructive protocol withO(logn) rounds that tolerates εn
faults for every ε < 1

2 . After that, Russell and Zuckerman [15] designed a constructive
protocol with log∗ n+O(1) rounds that tolerates εn faults for every ε < 1

2 . All three
papers use our protocol as a subroutine for small subsets of processors.

For two delightful surveys of the perfect-information model and related topics,
see Ben-Or, Linial, and Saks [5] and Linial [13].

The most common model in distributed computing is not the perfect-information
model, but rather the message-passing model in which processors may send private
messages to other processors. For that model, Feldman and Micali [10] present a
randomized protocol for leader election that tolerates a linear number of faults and
yet runs in a constant expected number of rounds. See Chor and Dwork [8] for an
excellent survey of the message-passing model.

1.3. Organization. In section 2, we present the formal definition of election
protocols. In section 3, we prove Saks’s impossibility result. In section 4, we present
the probabilistic construction of election protocols due to Alon and Naor. In section 5,
we present an overview of the proof of our main result. In sections 6, 7, and 8, we
give the actual proof.

2. Protocols. In this section, we present the formal definition of election pro-
tocols, introduced by Saks [16]. Throughout this section, let X be a finite set of
processors.

Definition 2.1 (election protocol). (a) An election protocol for X is a nonempty,
strictly-binary tree with each node labeled by a processor in X.

(b) Let P be an election protocol for X and A ⊆ X be a set of faulty processors.
We define PrA(P ) recursively as follows. If P consists of a single node (with label x),
then

PrA(P ) =

{
1 if x /∈ A,

0 if x ∈ A.

If P consists of a root node (with label x), a left subprotocol L, and a right subpro-
tocol R, then

PrA(P ) =

{
1
2 (PrA(L) + PrA(R)) if x /∈ A,

min(PrA(L),PrA(R)) if x ∈ A.

Informally, think of an election protocol as a biased random tree process. The
processor x at the root node is supposed to choose the left or right subtree uniformly
at random. (If x is faulty, that is, if x ∈ A, then it makes an adversarial choice, not
a random choice.) The process continues until we reach a leaf node; its processor
is selected as the leader. The number PrA(P ) is the minimum probability that the
protocol P elects a nonfaulty leader.
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For example, suppose that the processor set X is {1, 2, 3}. Suppose that the
protocol P is the 3-node binary tree in which the root is labeled by 1, the root’s left
child is labeled by 2, and the root’s right child is labeled by 3. If A = ∅ or A = {1},
then PrA(P ) = 1. If A = {2} or A = {3}, then PrA(P ) = 1

2 . Finally, if A = {1, 2} or
A = {1, 3} or A = {2, 3} or A = {1, 2, 3}, then PrA(P ) = 0.

We could generalize election protocols to allow more than two subprotocols and
a nonuniform distribution on the subprotocols, but we will not need these generaliza-
tions.

Next, we define the notion of resilience.

Definition 2.2 (resilience). (a) If P is an election protocol for X, and t is a
nonnegative real number, then

Prt(P ) = min {PrA(P ) : A ⊆ X ∧ |A| ≤ t} .

(b) An election protocol P is t-resilient if Prt(P ) is bounded away from 0. (Tech-
nically, for “bounded away from 0” to make sense, we should speak of a sequence P (n)
of protocols being t(n)-resilient. We shall ignore this technicality.)

To illustrate, let P be the previous example protocol. Then Pr0(P ) = 1, Pr1(P ) =
1
2 , Pr2(P ) = 0, and Pr3(P ) = 0.

3. Limitations. Saks [16] states that an elementary argument shows that an
election protocol cannot tolerate dn/2e faults. In this section, we provide the proof.

Theorem 3.1 (dichotomy). If A and B are finite sets, and P is an election
protocol for A ∪B, then min(PrA(P ),PrB(P )) = 0.

Proof. Nonnegativity is trivial, so we prove only nonpositivity. The proof is by
structural induction on P .

Base case (P has exactly one node). Let x be the processor of the root node of P .
Because x ∈ A ∪ B, either x ∈ A or x ∈ B; without loss of generality, assume that
x ∈ A. By the definitions of min and Pr, we have

min(PrA(P ),PrB(P )) ≤ PrA(P ) = 0.

Inductive case (P has more than one node). In P , let x be the root processor, let
L be the left subprotocol, and let R be the right subprotocol. Because x ∈ A ∪ B,
either x ∈ A or x ∈ B; without loss of generality, assume that x ∈ A.

By the definition of Pr, we have

PrB(P ) =

{
1
2 (PrB(L) + PrB(R)) if x /∈ B,

min(PrB(L),PrB(R)) if x ∈ B

≤ 1

2
(PrB(L) + PrB(R))

≤ max(PrB(L),PrB(R)).

(3.1)

By the definition of Pr and the assumption x ∈ A, we have

PrA(P ) = min(PrA(L),PrA(R)).(3.2)

Hence, by (3.1), the distributive law of min over max, (3.2), and the inductive
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hypothesis, we have

min(PrA(P ),PrB(P )) ≤ min(PrA(P ),max(PrB(L),PrB(R)))

= max(min(PrA(P ),PrB(L)),min(PrA(P ),PrB(R)))

≤ max(min(PrA(L),PrB(L)),min(PrA(R),PrB(R)))

= max(0, 0)

= 0.

This inequality completes the induction.
The proof of the preceding theorem resembles the proof of a classical result in

game theory: In every two-player, perfect-information game, one of the two players
has a winning strategy. The resemblance is no accident: we could have derived our
theorem as a consequence of the game-theoretic result.

We now derive Saks’s impossibility result.
Corollary 3.2 (Saks). If P is an election protocol for X, and t ≥ d|X| /2e,

then Prt(P ) = 0.
Proof. Nonnegativity is trivial, so we prove only nonpositivity. Let A and B be

subsets of X such that A ∪ B = X and |A| ≤ d|X| /2e and |B| ≤ d|X| /2e. Then by
the definition of Prt, and by Theorem 3.1, we have

Prt(P ) ≤ min(PrA(P ),PrB(P )) = 0.

This inequality completes the proof.

4. Random protocols. In this section we present the probabilistic construction
of election protocols due to Alon and Naor [2]. For the remainder of this paper, let ε
be a constant such that 0 ≤ ε < 1

2 . Let X be a nonempty finite set.
Definition 4.1 (uniform distribution). The uniform distribution Unif(X) is the

probability distribution on X that assigns each element of X the probability 1/ |X|.
Definition 4.2 (function of distributions). Let f be a function on A × B, and

let C and D be probability distributions on A and B, respectively. Then f̃(C,D) is
defined to be the probability distribution of the random variable f(c, d), where c and d
are independent random variables with distributions C and D, respectively. Although
we presented this definition for a function with two arguments, we will generalize the
definition in the obvious way to functions with fewer or more arguments.

Definition 4.3 (random protocols). (a) If x is an element of X, and L and R
are election protocols for X, then f(x, L,R) is the election protocol for X whose root
node is labeled x, whose left subprotocol is L, and whose right subprotocol is R.

(b) If D is a probability distribution on election protocols for X, then F (D) is
the probability distribution on election protocols for X defined by

F (D) = f̃(Unif(X), D,D).

(Here we are using Definition 4.2 to extend f to f̃ .) Informally, F (D) has a random
processor at its root and has independent copies of D as its left and right subprotocols.

(c) If i is a nonnegative integer, then Fi is the probability distribution on election
protocols for X defined recursively as follows. If i = 0, then Fi ranges over trees with
just one node, with that node labeled uniformly at random from X. If i > 0, then
Fi = F (Fi−1). Informally, Fi is a full binary tree of height i, in which every node is
labeled by a random processor.
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We need to analyze the probability that the random protocol Fi elects a nonfaulty
leader. It turns out, as Alon and Naor [2] observed, that this probability can be
captured by a random number process that does not refer to protocols themselves.
We now define this random process.

Definition 4.4 (common sets). Define R to be the set of real numbers. Define
R+ to be the set of nonnegative real numbers. Define B to be the set {true, false} of
Boolean values.

Definition 4.5 (common distributions). Let p be a number between 0 and 1.
Define the Boolean distribution Bool(p) to be the distribution on B that assigns true
the probability p and assigns false the probability 1− p. Define the Bernoulli distri-
bution Bern(p) to be the distribution on {0, 1} that assigns 1 the probability p and
assigns 0 the probability 1− p.

Definition 4.6 (random numbers). (a) If b is a Boolean value, and x and y are
[nonnegative] real numbers, then g(b, x, y) is the [nonnegative] real number defined by

g(b, x, y) =

{
min(x, y) if b is true,

(x+ y)/2 otherwise.

(b) If D is a probability distribution on R (or R+), then G(D) is the probability
distribution on R (R+) defined by

G(D) = g̃(Bool(ε), D,D).

Informally, given two independent arguments from D, we take their minimum with
probability ε and their average with probability 1− ε.

(c) If i is a nonnegative integer, then Gi is the probability distribution on R+

defined recursively by

Gi =

{
Bern(1− ε) if i = 0,

G(Gi−1) if i > 0.

Informally, Gi corresponds to a full binary tree of height i, in which each node is
labeled randomly by a min or an average, with a bias toward averaging.

The following lemma shows that the distribution Gi of numbers is related to the
distribution Fi of protocols.

Lemma 4.7 (protocols versus numbers). (a) If A is a subset of X, and x is an
element of X, and L and R are election protocols for X, then

PrA(f(x, L,R)) = g(x ∈ A,PrA(L),PrA(R)).

(b) If A is a subset of X of size ε |X|, and D is a probability distribution on
election protocols for X, then

P̃rA(F (D)) = G(P̃rA(D)).

(c) If A is a subset of X of size ε |X|, and i is a nonnegative integer, then

P̃rA(Fi) = Gi.
Proof. (a) By the definitions of f and PrA and g, we have

PrA(f(x, L,R)) =

{
min(PrA(L),PrA(R)) if x ∈ A,

(PrA(L) + PrA(R))/2 otherwise

= g(x ∈ A,PrA(L),PrA(R)).
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(b) Because A has size ε |X|, if x is uniformly distributed on X, then x ∈ A has
distribution Bool(ε). By the definition of F , part (a), and the definition of G, we have

P̃rA(F (D)) = P̃rA(f̃(Unif(X), D,D))

= g̃(Bool(ε), P̃rA(D), P̃rA(D))

= G(P̃rA(D)).

(c) The proof is by induction on i.
Base case i = 0. Recall that if x is uniformly distributed on X, then x ∈ A has

distribution Bool(ε), and so x /∈ A has distribution Bool(1− ε). Hence P̃rA(F0) is the
distribution Bern(1− ε), which is G0.

Inductive case i > 0. By the definition of Fi, part (b), the inductive hypothesis,
and the definition of Gi, we have

P̃rA(Fi) = P̃rA(F (Fi−1)) = G(P̃rA(Fi−1)) = G(Gi−1) = Gi.
Hence all three parts of the lemma have been proved.

5. Proof overview. In this section, we present an overview of our proof that
the Alon–Naor random protocols tolerate εn faults (for every fixed ε < 1

2 ).
Throughout, let X be a finite nonempty set, of size n. We may assume that εn

is an integer; otherwise we could use the smaller value bεnc /n for ε.
Let A be a fixed subset of X of size εn. We will find a constant δ > 0 (independent

of n) such that for sufficiently large i, we obtain the tail bound

Pr[Gi ≤ δ] < 1
/ ( n

εn

)
.(5.1)

By the definition of Prt, Boole’s inequality, Lemma 4.7(c), and the tail bound (5.1),
it would follow that

Pr[P̃rεn(Fi) ≤ δ] = Pr

[ ∨
|A|=εn

P̃rA(Fi) ≤ δ
]

≤
∑
|A|=εn

Pr[P̃rA(Fi) ≤ δ]

=
∑
|A|=εn

Pr[Gi ≤ δ]

<
∑
|A|=εn

1
/ ( n

εn

)

=

(
n

εn

) / ( n
εn

)
= 1.

Hence there would be an election protocol P in the support of Fi such that Prεn(P )
> δ; in other words, P would be εn-resilient, and we would be done.

To prove the tail bound (5.1) for ε < 1
3 , Alon and Naor [2] used estimates on

the expectation and variance of Gi. To handle larger values of ε, we need to analyze
higher moments of Gi.
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Definition 5.1 (expected value). If x is a random variable on R, then E(x)
denotes its expected value. If D is a probability distribution on R, then E(D) denotes
E(x), where x is a random variable with distribution D.

Definition 5.2 (moment). If D is a probability distribution on R and d is a
nonnegative real number, then the dth moment of D is

Md(D) = E(|x− y|d),
where x and y are independent random variables with distribution D.

Our proof of the tail bound (5.1) divides into three steps:
(i) Our key step is to show that the higher moments of Gi are geometrically

contracting in i; loosely speaking, each of these distributions is “concentrated” near
one value.

(ii) Once we have this contraction result, we will show that the expectation
of Gi is bounded away from 0; for small ε, this step is easy, but for large ε, we need
to use a majorization argument that relates our random process to another process
with smaller moments.

(iii) Once we know that the expectation of Gi is bounded away from 0, a simple
argument using Chebyshev’s inequality will give the tail bound (5.1).

In [7] we used the same outline of steps to analyze a biased-coin process, extending
a result of Alon and Rabin [3]. The key difference between [7] and the present paper,
besides the difference in problems, is in step (i): The contraction argument here is
much more complicated than the one in [7], perhaps unavoidably so. Steps (ii) and (iii)
resemble the corresponding steps in [7].

In section 6, we prove the contraction result. In section 7, we develop the ma-
jorization argument. Finally, in section 8, we prove the tail bound (5.1).

6. Contraction. In this section, we prove that the higher moments of the dis-
tribution Gi geometrically contract with i. Let d be a nonnegative real number, the
moment that we will focus on.

Definition 6.1 (∆ function). Let x = (x1, x2, x3, x4) be a vector in R4. The
function ∆: R4 → R is defined by

∆(x) = ∆1(x) + ∆2(x) + ∆3(x) + ∆4(x),

where

∆1(x) = (1− ε)2

∣∣∣∣x1 + x2

2
− x3 + x4

2

∣∣∣∣d ,
∆2(x) = ε(1− ε)

∣∣∣∣x1 + x2

2
−min(x3, x4)

∣∣∣∣d ,
∆3(x) = ε(1− ε)

∣∣∣∣min(x1, x2)− x3 + x4

2

∣∣∣∣d ,
and

∆4(x) = ε2 |min(x1, x2)−min(x3, x4)|d .
We defined ∆ this way to get the following identity:

E(|g̃(Bool(ε), x1, x2)− g̃(Bool(ε), x3, x4)|d) = ∆(x1, x2, x3, x4).
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(Strictly speaking, for this identity to make sense, we should view g, and hence g̃, as
a function of just one argument, treating its last two arguments as constants. The
identity follows from the definitions of g and ∆.)

Now let D be a probability distribution on R. Let x be a random vector in R4

such that x1, x2, x3, and x4 are independent random variables with distribution D.
Taking the expected value of the previous equation, and using the definition of G, we
get the identity

Md(G(D)) = E(∆̃(D,D,D,D)).(6.1)

The following lemma, an upper bound on ∆, is the key tool in proving our con-
traction result.

Lemma 6.2 (deterministic contraction). If x is a vector in R4, then

(6.2) ∆(x1, x2, x3, x4) + ∆(x3, x2, x1, x4) + ∆(x1, x3, x2, x4)

≤ 1

2
c
∑

1≤i<j≤4

|xi − xj |d ,

where c = max(2ε, 1+ε
2 ) + 6( 3

4 )d.
Proof. Throughout the proof we rely, without explicit mention, on the inequalities∣∣∣∣p+ q

2

∣∣∣∣d ≤ 1

2

[
|p|d + |q|d

]
and ∣∣∣∣p+ q + r + s

4

∣∣∣∣d ≤ 1

4

[
|p|d + |q|d + |r|d + |s|d

]
,

which are special cases of the power mean inequality [12, Theorem 16].
Both sides of the inequality (6.2) are symmetric functions of x. Hence we may

assume that x1 ≤ x2 ≤ x3 ≤ x4. The proof divides into two cases, depending on the
value of x2.

Case 1 (x2 ≥ (x1 + x3)/2). Our first three steps are to develop an upper bound
on each of the three ∆ terms in (6.2); our last step is to add these three upper bounds
to establish (6.2).

Step 1.1. We bound the four terms of ∆(x1, x2, x3, x4):

∆1(x1, x2, x3, x4) = (1− ε)2

∣∣∣∣x3 + x4

2
− x1 + x2

2

∣∣∣∣d
≤ (1− ε)2

∣∣∣∣x3 + x4

2
− x1 + (x1 + x3)/2

2

∣∣∣∣d
= (1− ε)2

∣∣∣∣x3 + 2x4 − 3x1

4

∣∣∣∣d ≤ (1− ε)2

(
3

4

)d
|x4 − x1|d

≤
(

3

4

)d
|x4 − x1|d ;

∆2(x1, x2, x3, x4) = ε(1− ε)
∣∣∣∣x3 − x1 + x2

2

∣∣∣∣d ≤ ε(1− ε) ∣∣∣∣x3 − x1 + (x1 + x3)/2

2

∣∣∣∣d
= ε(1− ε)

(
3

4

)d
|x3 − x1|d ≤

(
3

4

)d
|x3 − x1|d ;
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∆3(x1, x2, x3, x4) = ε(1− ε)
∣∣∣∣x3 + x4

2
− x1

∣∣∣∣d = ε(1− ε)
∣∣∣∣x3 − x1

2
+
x4 − x1

2

∣∣∣∣d
≤ 1

2
ε(1− ε)

[
|x3 − x1|d + |x4 − x1|d

]
;

∆4(x1, x2, x3, x4) = ε2 |x3 − x1|d .
Adding these four inequalities gives the bound

∆(x1, x2, x3, x4) ≤ 1

2
ε(1 + ε) |x3 − x1|d +

1

2
ε(1− ε) |x4 − x1|d

+

(
3

4

)d
|x3 − x1|d +

(
3

4

)d
|x4 − x1|d .

(6.3)

Step 1.2. We bound the four terms of ∆(x3, x2, x1, x4):

∆1(x3, x2, x1, x4) = (1− ε)2

∣∣∣∣x1 + x4

2
− x3 + x2

2

∣∣∣∣d ≤ (1− ε)2

∣∣∣∣x4 − x1

2

∣∣∣∣d
= (1− ε)2

(
1

2

)d
|x4 − x1|d ≤ (1− ε)

(
3

4

)d
|x4 − x1|d ;

∆2(x3, x2, x1, x4) = ε(1− ε)
∣∣∣∣x3 + x2

2
− x1

∣∣∣∣d ≤ 1

2
ε(1− ε)

[
|x2 − x1|d + |x3 − x1|d

]
;

∆3(x3, x2, x1, x4) = ε(1− ε)
∣∣∣∣x2 − x1 + x4

2

∣∣∣∣d ≤ ε(1− ε) ∣∣∣∣x4 − x1

2

∣∣∣∣d
= ε(1− ε)

(
1

2

)d
|x4 − x1|d ≤ ε

(
3

4

)d
|x4 − x1|d ;

∆4(x3, x2, x1, x4) = ε2 |x2 − x1|d .
Adding these four inequalities gives

∆(x3, x2, x1, x4) ≤ 1

2
ε(1 + ε) |x2 − x1|d +

1

2
ε(1− ε) |x3 − x1|d

+

(
3

4

)d
|x4 − x1|d .

(6.4)

Step 1.3. We bound the four terms of ∆(x1, x3, x2, x4):

∆1(x1, x3, x2, x4) = (1− ε)2

∣∣∣∣x1 + x3

2
− x2 + x4

2

∣∣∣∣d ≤ (1− ε)2

∣∣∣∣x4 − x1

2

∣∣∣∣d
= (1− ε)2

(
1

2

)d
|x4 − x1|d ≤

(
3

4

)d
|x4 − x1|d ;

∆2(x1, x3, x2, x4) = ε(1− ε)
∣∣∣∣x1 + x3

2
− x2

∣∣∣∣d ≤ ε(1− ε) ∣∣∣∣x3 − x1

2

∣∣∣∣d
= ε(1− ε)

(
1

2

)d
|x3 − x1|d ≤

(
3

4

)d
|x3 − x1|d ;

∆3(x1, x3, x2, x4) = ε(1− ε)
∣∣∣∣x4 + x2

2
− x1

∣∣∣∣d ≤ 1

2
ε(1− ε)

[
|x2 − x1|d + |x4 − x1|d

]
;
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∆4(x1, x3, x2, x4) = ε2 |x2 − x1|d ≤ ε2 |x4 − x1|d .
Adding these four inequalities gives

∆(x1, x3, x2, x4) ≤ 1

2
ε(1− ε) |x2 − x1|d +

1

2
ε(1 + ε) |x4 − x1|d

+

(
3

4

)d
|x3 − x1|d +

(
3

4

)d
|x4 − x1|d .

(6.5)

Step 1.4. Adding the three bounds (6.3), (6.4), and (6.5), and using the definition
of c, we obtain

∆(x1, x2, x3, x4) + ∆(x3, x2, x1, x4) + ∆(x1, x3, x2, x4)

≤ ε |x2 − x1|d + ε |x3 − x1|d + ε |x4 − x1|d + 2

(
3

4

)d
|x3 − x1|d + 3

(
3

4

)d
|x4 − x1|d

≤
[
ε+ 3

(
3

4

)d]∑
i<j

|xi − xj |d ≤ 1

2
c
∑
i<j

|xi − xj |d .

This inequality is (6.2), which settles Case 1.
Case 2 (x2 ≤ (x1 + x3)/2). Again, our first three steps are to develop an upper

bound on each of the three ∆ terms in the inequality (6.2); our last step is to add
these three upper bounds to establish (6.2).

Step 2.1 We bound the four terms of ∆(x1, x2, x3, x4):

∆1(x1, x2, x3, x4) = (1− ε)2

∣∣∣∣x1 + x2

2
− x3 + x4

2

∣∣∣∣d
= (1− ε)2

∣∣∣∣x4 − x1

4
+
x4 − x2

4
+
x3 − x1

4
+
x3 − x2

4

∣∣∣∣d
≤ 1

4
(1− ε)2

[
|x4 − x1|d + |x4 − x2|d + |x3 − x1|d + |x3 − x2|d

]
;

∆2(x1, x2, x3, x4) = ε(1− ε)
∣∣∣∣x1 + x2

2
− x3

∣∣∣∣d ≤ 1

2
ε(1− ε)

[
|x3 − x1|d + |x3 − x2|d

]
;

∆3(x1, x2, x3, x4) = ε(1− ε)
∣∣∣∣x1 − x3 + x4

2

∣∣∣∣d ≤ 1

2
ε(1− ε)

[
|x3 − x1|d + |x4 − x1|d

]
;

∆4(x1, x2, x3, x4) = ε2 |x3 − x1|d .
Adding these four inequalities and using |x3 − x1| ≤ |x4 − x1| gives the bound

∆(x1, x2, x3, x4) ≤ 1

4
(1 + ε)2 |x3 − x1|d +

1

4
(1− ε2) |x4 − x1|d

+
1

4
(1− ε2) |x3 − x2|d +

1

4
(1− ε)2 |x4 − x2|d

≤ 1 + ε

4
|x3 − x1|d +

1 + ε

4
|x4 − x1|d

+
1

4
(1− ε2) |x3 − x2|d +

1

4
(1− ε)2 |x4 − x2|d

≤ 1 + ε

4

∑
i<j

|xi − xj |d .

(6.6)
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Step 2.2. We bound the four terms of ∆(x3, x2, x1, x4):

∆1(x3, x2, x1, x4) = (1− ε)2

∣∣∣∣x3 + x2

2
− x1 + x4

2

∣∣∣∣d ≤ (1− ε)2

(
1

2

)d
|x4 − x1|d

≤ (1− ε)
(

3

4

)d
|x4 − x1|d ;

∆2(x3, x2, x1, x4) = ε(1− ε)
∣∣∣∣x3 + x2

2
− x1

∣∣∣∣d = ε(1− ε)
∣∣∣∣x3 + (x1 + x3)/2

2
− x1

∣∣∣∣d
= ε(1− ε)

(
3

4

)d
|x3 − x1|d ≤ (1− ε)

(
3

4

)d
|x3 − x1|d ;

∆3(x3, x2, x1, x4) = ε(1− ε)
∣∣∣∣x2 − x1 + x4

2

∣∣∣∣d ≤ ε(1− ε)(1

2

)d
|x4 − x1|d

≤ ε
(

3

4

)d
|x4 − x1|d ;

∆4(x3, x2, x1, x4) = ε2 |x2 − x1|d ≤ ε2
∣∣∣∣x1 + x3

2
− x1

∣∣∣∣d
≤ ε2

(
1

2

)d
|x3 − x1|d ≤ ε

(
3

4

)d
|x3 − x1|d .

Adding these four inequalities gives

∆(x3, x2, x1, x4) ≤
(

3

4

)d
|x3 − x1|d +

(
3

4

)d
|x4 − x1|d .(6.7)

Step 2.3. We bound the four terms of ∆(x1, x3, x2, x4):

∆1(x1, x3, x2, x4) = (1− ε)2

∣∣∣∣x1 + x3

2
− x2 − x4

2

∣∣∣∣d ≤ (1− ε)2

(
1

2

)d
|x4 − x1|d

≤ (1− ε)
(

3

4

)d
|x4 − x1|d ;

∆2(x1, x3, x2, x4) = ε(1− ε)
∣∣∣∣x1 + x3

2
− x2

∣∣∣∣d ≤ ε(1− ε)(1

2

)d
|x3 − x1|d

≤ (1− ε)
(

3

4

)d
|x3 − x1|d ;

∆3(x1, x3, x2, x4) = ε(1− ε)
∣∣∣∣x1 − x2 + x4

2

∣∣∣∣d ≤ ε(1− ε) ∣∣∣∣x1 − (x1 + x3)/2 + x4

2

∣∣∣∣d
= ε(1− ε)

∣∣∣∣2x4 − x3 − 3x1

4

∣∣∣∣d ≤ ε(1− ε)(3

4

)d
|x4 − x1|d

≤ ε
(

3

4

)d
|x4 − x1|d ;
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∆4(x1, x3, x2, x4) = ε2 |x2 − x1|d ≤ ε2
∣∣∣∣x1 + x3

2
− x1

∣∣∣∣d
= ε2

(
1

2

)d
|x3 − x1|d ≤ ε

(
3

4

)d
|x3 − x1|d .

Adding these four inequalities gives

∆(x1, x3, x2, x4) ≤
(

3

4

)d
|x3 − x1|d +

(
3

4

)d
|x4 − x1|d .(6.8)

Step 2.4. Adding the three bounds (6.6), (6.7), and (6.8), and using the definition
of c, we obtain

∆(x1, x2, x3, x4) + ∆(x3, x2, x1, x4) + ∆(x1, x3, x2, x4)

≤ 1

4
(1 + ε)

∑
i<j

|xi − xj |d + 2

(
3

4

)d
|x3 − x1|d + 2

(
3

4

)d
|x4 − x1|d

≤
[

1 + ε

4
+ 2

(
3

4

)d]∑
i<j

|xi − xj |d ≤ 1

2
c
∑
i<j

|xi − xj |d .

This inequality is (6.2), which settles Case 2, which settles the lemma.
Using the preceding lemma, we can prove the contraction result that we desire.
Lemma 6.3 (contraction lemma). If D is a probability distribution on R and d

is a nonnegative real number, then

Md(G(D)) ≤ cMd(D),

where c = max(2ε, 1+ε
2 ) + 6( 3

4 )d.
Proof. Let x be a random vector in R4 such that x1, x2, x3, and x4 are indepen-

dent random variables with distribution D. Note that the three tuples (x1, x2, x3, x4),
(x3, x2, x1, x4), and (x1, x3, x2, x4) are identically distributed. In particular, we have

E(∆̃(D,D,D,D)) = E(∆(x1, x2, x3, x4))

= E(∆(x3, x2, x1, x4))

= E(∆(x1, x3, x2, x4)).

Hence, from the identity (6.1) and Lemma 6.2, we get

Md(G(D)) = E(∆̃(D,D,D,D))

=
1

3
[E(∆(x1, x2, x3, x4)) + E(∆(x3, x2, x1, x4)) + E(∆(x1, x3, x2, x4))]

≤ 1

6
c
∑

1≤i<j≤4

E(|xi − xj |d)

=
1

6
c
∑

1≤i<j≤4

Md(D)

= cMd(D).

This inequality completes the proof.
This lemma is a contraction result: The constant c can be made less than 1.

Because ε < 1
2 , every sufficiently large d makes c < 1. In fact, the choice d = 8 ln 6

1−2ε
works.
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7. Majorization. In this section we relate our random process to another ran-
dom process that is easier to analyze, using a concept called majorization. This
argument is similar to the majorizing argument in Boppana and Narayanan [7].

Definition 7.1 (majorization). Let C and D be probability distributions on R.
Say that C majorizes D, written C � D, if there are random variables x and y such
that

(i) the random variable x has distribution C,
(ii) the random variable y has distribution D, and

(iii) the inequality x ≥ y always holds.
Say that C is majorized by D, written C � D, if D majorizes C.

Note that majorization is transitive. Also, if C � D, then E(C) ≥ E(D).
We now show that the transformation G (from Definition 4.6) is “stochastically

increasing.”
Lemma 7.2 (increasing). If C and D are distributions on R such that C � D,

then G(C) � G(D).
Proof. Note that g(b, x, y) is increasing in x and y. By the definition of G and

the hypothesis C � D, it follows that

G(C) = g̃(Bool(ε), C, C) � g̃(Bool(ε), D,D) = G(D).

That inequality completes the proof.
We next define a random process G′i that is majorized by our original process Gi

but which can be analyzed exactly. (Compare the next definition with Definition 4.6.)
Definition 7.3 (smaller random numbers). (a) If b is a Boolean value, and x

and y are (nonnegative) real numbers, then g′(b, x, y) is the (nonnegative) real number
defined by

g′(b, x, y) =

{
min(x, y)/2 if b is true,

max(x, y)/2 otherwise.

(b) If D is a probability distribution on R (or R+), then G′(D) is the probability
distribution on R (R+) defined by

G′(D) = g̃′(Bool(ε), D,D).

(c) If i is a nonnegative integer, then G′i is the probability distribution on R+

defined recursively by

G′i =

{
Bern(1− ε) if i = 0,

G′(G′i−1) if i > 0.

We now compare the unprimed distributions Gi to the primed distributions G′i.
Lemma 7.4 (majorization). (a) If b is a Boolean value, and x and y are nonneg-

ative real numbers, then g(b, x, y) ≥ g′(b, x, y).
(b) If D is a distribution on R+, then G(D) � G′(D).
(c) If i is a nonnegative integer, then Gi � G′i.
Proof.
(1) By the definitions of g and g′, and the nonnegativity of x and y, we have

g(b, x, y) = g′(b, x, y) +
1

2
min(x, y) ≥ g′(b, x, y).
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(2) Let b, x, and y be independent random variables such that b has distribu-
tion Bool(ε), and x and y have distribution D. By the definition of G [or G′], the
random variable g(b, x, y) [g′(b, x, y)] has distribution G(D) [G′(D)]. But g(b, x, y) ≥
g′(b, x, y) by part (a). The definition of majorization implies that G(D) � G′(D).

(3) The proof is by induction on i.
Base case (i = 0). By the definitions of G0 and G′0, we have

G0 = Bern(1− ε) = G′0.

Inductive case (i > 0). By the definition of Gi, Lemma 7.2 and the inductive
hypothesis, part (b), and the definition of G′i, we have

Gi = G(Gi−1) � G(G′i−1) � G′(G′i−1) = G′i.

Hence all three parts of the lemma have been proved.
We next show that the primed distributions G′i are simple two-point distributions.
Definition 7.5 (probability recurrence). If i is a nonnegative integer, then pi is

the nonnegative real number defined recursively by

pi =

{
ε if i = 0;

2εpi−1 + (1− 2ε)p2
i−1 if i > 0.

Lemma 7.6 (two-point distribution). If i is a nonnegative integer, then the
distribution G′i maps 1/2i to 1− pi and maps 0 to pi.

Proof. The proof is by induction on i.
Base case (i = 0). By the definitions of G′0 and p0, we have

G′0 = Bern(1− ε) = Bern(1− p0),

which completes the base case.
Inductive case (i > 0). Let b, x, and y be independent random variables such

that b has distribution Bool(ε), and x and y have distribution G′i−1. By the definitions
of G′i and G′ and g′, by independence, by the inductive hypothesis, and finally by the
definition of pi, we have

G′i(0) = G′(G′i−1)(0)

= g̃′(Bool(ε),G′i−1,G′i−1)(0)

= Pr[ g′(b, x, y) = 0 ]

= Pr[ b ∧min(x, y) = 0 ] + Pr[ b ∧max(x, y) = 0 ]

= Pr[ b ] · Pr[ min(x, y) = 0 ] + Pr[ b ] · Pr[ max(x, y) = 0 ]

= Pr[ b ] · Pr[x = 0 ∨ y = 0 ] + Pr[ b ] · Pr[x = 0 ∧ y = 0 ]

= ε[1− (1− pi−1)2] + (1− ε)p2
i−1

= 2εpi−1 + (1− 2ε)p2
i−1

= pi.

Similarly, we can calculate that G′i(1/2i) = 1 − pi. This calculation completes the
induction.

Next we show that the probabilities pi are approaching 0.
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Lemma 7.7 (vanishing probability). If i is a nonnegative integer, then pi ≤
ε(3ε− 2ε2)i.

Proof. The proof is by induction on i.
Base case (i = 0). This case holds (with equality) from the definition of p0.
Inductive case (i > 0). By the definition of pi, and by the inductive hypothesis,

and because 3ε− 2ε2 < 1, we have

pi = 2εpi−1 + (1− 2ε)p2
i−1

≤ 2ε2(3ε− 2ε2)i−1 + (1− 2ε)ε2(3ε− 2ε2)2(i−1)

≤ 2ε2(3ε− 2ε2)i−1 + (1− 2ε)ε2(3ε− 2ε2)(i−1)

= ε(3ε− 2ε2)i.

This inequality completes the induction.
Because 3ε− 2ε2 < 1, the preceding lemma implies that limi→∞ pi = 0.
As i approaches infinity, the good news is that G′i is mostly concentrated on one

value, so that G′i has small moments (even relative to its expectation). The bad news
is that the expectation of G′i approaches 0. Therefore we introduce a hybrid of Gi and
G′i that preserves the good news but avoids the bad news.

Choose a nonnegative integer j so that pj ≤ 1
2 [(1 − c1/d)/(2ε)]d. Such a j exists

because limi→∞ pi = 0.
Definition 7.8 (hybrid distribution). If i is a nonnegative integer, then the

probability distribution Hi on R+ is defined recursively by

Hi =

{
G′i if i ≤ j,
G(Hi−1) if i > j.

As Gi � G′i (Lemma 7.4), and as G is stochastically increasing (Lemma 7.2), it
follows (by induction on i) that Gi � Hi.

8. Tail bound. In this section, we finally prove the tail bound (5.1), completing
the proof of our main result on the existence of εn-resilient election protocols (for
every fixed ε < 1

2 ).
It is easy to see, from the definition of g, that

g(b, x, y) =
1

2
(x+ y)− 1

2
[b] |x− y| ,

where [b] is the indicator of b—namely 1 if b is true and 0 otherwise. From the
definition of G, it follows that if D is a distribution on R, then

E(G(D)) = E(D)− 1

2
εM1(D).(8.1)

(Recall that the expected value of a distribution is just the expected value of a random
variable with that distribution.)

We need the following relation between moments. The power mean inequality [12,
Theorem 16] implies the inequality

Mα(D)1/α ≤ Mβ(D)1/β ,

whenever 0 < α ≤ β.
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By Lemmas 7.6 and 7.7, we have

E(G′i) = (1− pi)/2i ≥ (1− ε)/2i ≥ 1/2i+1(8.2)

and

Md(G′i) = 2pi(1− pi)/2id ≤ 2pi/2
id.(8.3)

Next, we show that the expectations of Gi are bounded away from 0. By replacing
Gk with Hk, iterating the identity (8.1), applying the power mean inequality and
the contraction lemma, summing the geometric series, applying the bounds (8.2)
and (8.3), and finally plugging in the definition of j, we obtain

E(Gk) ≥ E(Hk)

= E(Hj)− 1

2
ε
k−1∑
i=j

M1(Hi)

≥ E(Hj)− 1

2
ε
k−1∑
i=j

Md(Hi)1/d

≥ E(Hj)− 1

2
ε
k−1∑
i=j

(
ci−j Md(Hj)

)1/d
≥ E(Hj)− 1

2
ε
Md(Hj)1/d

1− c1/d

= E(G′j)−
1

2
ε
Md(G′j)1/d

1− c1/d

≥ 1

2j+1
− 1

2
ε
(2pj)

1/d/2j

1− c1/d

=
1

2j+1

[
1− ε (2pj)

1/d

1− c1/d
]

≥ 1

2j+2
.

(8.4)

Because j is fixed, the expectation is indeed bounded away from 0.
Finally we prove the tail bound (5.1). By the expectation bound (8.4), Cheby-

shev’s inequality [11, section IX.6], the power mean inequality, and the contraction
lemma, we have

Pr[Gk ≤ 1/2j+3] ≤ Pr[Gk ≤ E(Gk)/2]

≤ Pr[|Gk − E(Gk)| ≥ E(Gk)/2]

≤ Var(Gk)/(E(Gk)/2)2

= 2 M2(Gk)/E(Gk)2

≤ 2 Md(Gk)2/d/E(Gk)2

≤ 2c2k/d Md(G0)2/d/E(Gk)2

= 2c2k/d[2ε(1− ε)]2/d/E(Gk)2

≤ 2c2k/d[2ε(1− ε)]2/d22(j+2).
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As k gets large, the right side approaches 0, and in particular becomes less than
1/
(
n
εn

)
for k on the order of n. We thus obtain the tail bound (5.1). As discussed in

section 5, this bound implies the existence of an εn-resilient election protocol, which
proves our main result.
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NODE-DISJOINT PATHS ON THE MESH AND A NEW TRADE-OFF
IN VLSI LAYOUT∗
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Abstract. A number of basic models for VLSI layout are based on the construction of node-
disjoint paths between terminals on a multilayer grid. In this setting, one is interested in minimizing
both the number of layers required and the area of the underlying grid. Building on work of Cutler
and Shiloach [Networks, 8 (1978), pp. 253–278], Aggarwal et al. [Proc. 26th IEEE Symposium on
Foundations of Computer Science, Portland, OR, 1985; Algorithmica, 6 (1991), pp. 241–255], and
Aggarwal, Klawe, and Shor [Algorithmica, 6 (1991), pp. 129–151], we prove an upper-bound trade-off
between these two quantities in a general multilayer grid model. As a special case of our main result,
we obtain significantly improved bounds for the problem of routing a full permutation on the mesh
using node-disjoint paths; our new bound here is within polylogarithmic factors of the bisection
bound. Our algorithms involve some new techniques for analyzing the structure of node-disjoint
paths in planar graphs and indicate some respects in which this problem, at least in the planar case,
is fundamentally different from its edge-disjoint counterpart.

Key words. combinatorial optimization, VLSI layout, disjoint paths problem
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1. Introduction. The basic node-disjoint paths problem is as follows. We are
given a graph G and pairs of vertices in G. The two natural objectives we consider
are to

(1) simultaneously route as many pairs as possible on node-disjoint
paths in G;
(1′) route all pairs in as few “rounds of communication” as possible,
where all paths routed in a single round must be node-disjoint.

Finding node-disjoint paths between designated pairs of vertices in a planar graph is
fundamental to a number of routing and embedding problems. In particular, in many
models of VLSI layout, effective layout strategies rely on heuristics for finding node-
disjoint paths; many current routing software systems rely extensively on such an
approach (see also [13]). Node-disjointness constraints can arise as well in the context
of virtual circuit routing in networks, when one requires paths to be node-disjoint for
the sake of fault tolerance or because of bottlenecks involving switches rather than
links.

At the same time, the basic node-disjoint paths problem is NP-hard even for
the two-dimensional mesh [10], and very little is known in the way of reasonable
approximation algorithms for the problem. Given the basic nature of the problem,
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we are interested in looking for techniques with provable performance guarantees for
constructing node-disjoint paths in planar graphs, as such techniques may help in
answering questions of the form (1) and (1′) as they arise in practice.

The study of this problem is also interesting to us precisely because its structure,
in the case of planar graphs, is very different from the analogous edge-disjoint paths
problem. This is true even in a technical sense; for example, work of Kleinberg and
Tardos [9] has shown that for many planar graphs including the mesh, a natural
cut condition is sufficient to within polylogarithmic factors for the feasibility of edge-
disjoint paths. But this is far from true in the node-disjoint case, where one encounters
a variety of “topological” obstructions to the existence of the paths. See section 1.1
for a discussion of some of these issues.

Let us discuss a very basic problem that arises in this setting. We say a set
of terminal pairs in a graph is a permutation if each vertex of the graph appears in
exactly one pair. If G denotes the n×n two-dimensional mesh graph, and we are given
a permutation in which every pair needs to cross the center column, then the standard
bisection bound says that at most n terminal pairs can be routed simultaneously, and
so at least 1

2n rounds, in the sense of (1′), are required.

The lack of understanding of this area is such that the following has remained
open; again, let G denote the mesh:

(2) For every permutation on G, does there exist a set of Ω(n1−ε)
pairs that can be simultaneously routed on node-disjoint paths for
every ε > 0?
(2′) Can every permutation on G be routed in O(n1+ε) rounds for
every ε > 0?

Again, by way of contrast, these questions are straightforward to resolve in the affir-
mative when one requires only edge-disjoint paths.

These latter questions turn out to be closely related to open problems of Aggarwal
et al. [1] in the setting of multilayer VLSI layout. In multilayer VLSI layouts, typically
a pin (a node, in our terminology) goes through several layers at the same location,
and the routing among pins at each layer is planar. If a routing wire needs to change
a layer, then a via (or contact cut) has to be made between two layers, and this
usually affects the yield of the output chip (as well as affecting the general quality of
the circuit). Consequently, it is practically useful to route as many connections on a
single layer as possible (in order to reduce the vias); for more details see [1, 6, 15].
These constraints thus result directly in problems of the type (1) and (1′), with layers
now playing the role of “rounds.”

One typically reduces the number of layers by introducing spacing between the
terminals. In the model of [1, 6], for a parameter d, consider a dn×dn mesh Gd, with
an n× n grid of terminals at a uniform spacing of d. By this we mean that terminals
are placed at the set of nodes of Gd whose row and column numbers are multiples of
d; thus, d− 1 paths can now be routed between adjacent terminals. The goal in this
model is to find the tightest trade-off possible between the spacing d and the number
of layers required in the worst case.

Cutler and Shiloach [6] showed that spacing d = O(n2) suffices to route all pairs in
a single layer; and [1, 2, 8] showed that this value of d was tight up to constant factors.
In terms of a general trade-off between d and the minimum number of layers required,
the techniques of [6, 1] are sufficient only to show that, for spacing d, O(( n√

d
)4/3)

layers are sufficient. However, guided by (2′), a reasonable question is the following:

(3′) With spacing d, are O(( n√
d
)1+ε) layers sufficient to route any
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permutation on the mesh, for every ε > 0?
This contains the result of [6] in the case d = Θ(n2) and question (2′) in the case
d = 1.

The main results of this paper provide affirmative answers to questions (2), (2′),
and (3′). Specifically, we prove the following theorems.

Theorem 1.1. Every permutation on the mesh contains a set of Ω(n/ logn)
terminal pairs that can be simultaneously routed on node-disjoint paths. Moreover,
every permutation on the mesh can be routed in O(n log2 n) rounds.

Theorem 1.2. With spacing d, every permutation on the mesh contains a set of
Ω(n
√
d/ logn) pairs that can be routed in one layer, and the entire permutation can

be routed in O(nd−
1
2 log2 n) layers.

This strengthens the bounds of [6, 1] on the number of layers required for routing
a permutation. Within the context of VLSI, where the number of layers is typically a
fixed small number, the “dual” maximization versions of these theorems may in fact
be of greater interest. Namely, these are the first algorithms that can provably extract
from any permutation on the mesh a routable set of terminal pairs whose size is within
polylogarithmic factors of the bisection bound. Moreover, the approach we develop
is fundamentally different from that of Cutler and Shiloach [6], which was essentially
the only previous method applicable in this setting. Given the basic importance of
the problem, we feel that the introduction of new techniques for constructing node-
disjoint paths with improved performance guarantees could be of value in suggesting
additional heuristic approaches to these problems.

We mentioned above that questions (2) and (2′) are easy in the case of edge-
disjoint paths; in fact, one can construct a set of paths meeting the bisection bound
using only one bend in each path. On the other hand, the paths in the Cutler–Shiloach
construction, as well as our constructions in Theorems 1.1 and 1.2, use many bends.
Thus it is natural to ask how many rounds are required with a routing that uses only
a constant number of bends. Getting o(n2) rounds is not immediate, and it appears
that no previous construction in the literature achieves it. We address this in the
following theorem.

Theorem 1.3. Every permutation on the mesh can be routed in O(n7/5) rounds,
with each path in the routing using only six bends.

1.1. The node-disjoint paths problem. For the sake of concreteness, we give
some definitions. Throughout this paper, let G = (V,E) denote the n × n two-
dimensional mesh. Let T = {(s1, t1), . . . , (sm, tm)} denote a set of terminal pairs,
where each si, ti ∈ V . A permutation is a set T of terminal pairs that partitions the
vertex set; a partial permutation is a set of terminal pairs in which each node appears
at most once. These are the only types of sets T we will be considering.

We say that a subset T ′ of T is realizable in G if all pairs in T ′ can be simultane-
ously connected by node-disjoint paths, and we define χ(T ) to be the minimum size
of a partition of T into realizable sets. This corresponds to the minimum number of
rounds of communication—or the minimum number of layers—required, in the sense
of (1′).

In this language, Theorem 1.1 simply says that for any permutation T , we have
χ(T ) = O(n log2 n). For the model of [6, 1], with a dn×dn mesh and terminals evenly
spaced at distance d, we use χd(T ) to denote the minimum size of a partition of T
into routable sets. Thus our second result is that χd(T ) = O(nd−

1
2 log2 n) for any

permutation T .
In addition to connections with VLSI and network routing, we mention that in the
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context of edge-disjoint paths the quantity χ(T ) can also be viewed as the minimum
number of wavelengths required to route T under an optical routing model in which
two paths can share an edge as long as they are assigned different wavelengths. Bounds
for χ(T ) for permutations T on a d-dimensional mesh are a result of Raghavan and
Upfal [14], and our work here can be seen to provide node-disjoint analogues of some
of these bounds. However, optical routing is not, strictly speaking, a motivation of
this work, since we do not know of proposals for architectures based on optical routing
in which paths sharing a wavelength must remain node-disjoint.

When the number of terminal pairs is restricted to be a fixed constant, and
the graph is planar, a polynomial-time algorithm for (1) and (1′) was first given by
Robertson and Seymour in [16]. A more practically efficient algorithm for this case
was subsequently given by Schrijver [17], who also gave a polynomial-time algorithm
for the case in which all terminals lie on the boundaries of a designated set of faces,
and the homotopies of the paths with respect to these faces is fixed. This extends
work by Cole and Siegel [4] and Leiserson and Maley [12] for the mesh. This approach
based on homotopy appears not to be directly applicable to our problem, for although
we could test any fixed choice of homotopies for our paths in polynomial time, there
are exponentially many choices of homotopies to try.

Let us also indicate some ways in which the node-disjoint paths problem on the
mesh differs fundamentally from its edge-disjoint counterpart. First of all, letting vi,j
denote the node at row i and column j of the mesh, consider the set T of consisting
of all pairs of the form (vi,1, vn,i), i = 1, . . . , n. This set of terminal pairs satisfies
the usual cut condition, stating that there is no way to delete k nodes and separate
k+1 pairs of terminals, and in fact the set T is routable in one round on edge-disjoint
paths. However, since any two paths in a routing of T must cross, T requires n rounds
when paths must be node-disjoint.

This example actually does not rely on the terminals being positioned near the
boundary of the mesh. Consider an infinite grid graph; let p = m2 for some parameter
m and let T denote the set of all pairs of the form (vim+j,0, vjm+i,p), with 1 ≤ i, j ≤ m.
Then it is not hard to show by a crossing number argument (using a lemma of [11])
that χ(T ) = Θ(

√
p), although T is again routable in a single round using edge-disjoint

paths.
As a final example, we show that while Theorem 1.3 implies that six bends are

sufficient to route any permutation in O(n7/5) rounds, there exist partial permutations
that require Ω(n2) rounds in any one-bend routing.

Proposition 1.4. There exists a partial permutation T on G for which there is
no one-bend routing using fewer than 1

8n
2 rounds.

Proof. Assume for simplicity that n is even; so n = 2m. Let T consists of all
pairs of the form (vi,j , vm+j,m+i), where 1 ≤ i, j ≤ m. Let

X = {vi,j : 1 ≤ i ≤ m < j ≤ 2m},

Y = {vi,j : 1 ≤ j ≤ m < i ≤ 2m}.
Then in any one-bend routing of T , at least 1

8n
2 of the paths pass though either X

or Y , and every pair of such paths must cross at some node.

1.2. Sketch of the algorithm. We will show that it is possible, with a constant-
factor loss in the bound, to reduce the problem for an arbitrary set of terminals to
one in which there are two k×k subsquares of G, denoted A and B, which are spaced
4k apart from one another; also, every terminal pair has one end in A and the other
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in B. If there are p terminal pairs, we will show how to route p/(k log k) of them
simultaneously; applying this process greedily gives the bound of Theorem 1.1.

The approach of Cutler and Shiloach [6] requires, in order to route q terminals
in a single round, that the interterminal spacing be at least q. Using this, one can
therefore be sure only of routing a set of size p1/3, resulting in an overall bound of
n4/3 for χ(T ).

We start by considering the following simple notion: Suppose we tried choosing at
most one terminal from each row of A and at most one from each row of B, and then
join as many of these terminals as possible in the region between A and B. There
are a number of difficulties with this; in particular, there may be no way to choose
terminals in this way so that nearly p/k can be joined in node-disjoint fashion. Let
us call this above approach row-selection—one tries to pick a unique terminal from
each row so that the selected terminals in A can be routed out of A on their rows and
then joined with their selected counterparts in B, in such a way that no paths cross.

Our main technique is the following generalization of row selection: Although
there may be no good way to choose unique terminals from the rows of A and B, we
show that there exists a “rotation” of A and a “rotation” of B, so that the resulting
set of rows allows for such a good selection. Now, meshes are discrete objects, so
the notion of rotation has to be defined carefully—we use monotone random walks of
varying biases as a basic way of “rotating” A and B.

Having chosen a candidate pair of rotations, we decompose A and B into pseudo-
rows. The task of pseudorow selection—choosing a unique terminal from each pseudo-
row—is based on analyzing the bipartite graph H on the set of pseudorows, in which
a pseudorow of A is joined to a pseudorow of B if there is some terminal pair with one
end in each. We show that one can choose rotations of A and B so that this bipartite
graph contains a large monotone matching—one in which no edges cross. The pairs
corresponding to the edges of this matching can be routed in a single round.

With interterminal spacing of d > 1, a very similar approach is applicable. The
main difference is that we can now afford to choose edge sets of the bipartite graph
H which are not necessarily monotone matchings; we can handle a limited amount of
nonmonotonicity using the technique of Cutler–Shiloach within each pseudorow.

2. Preliminaries. In this section we develop some basic lemmas that will be
useful in analyzing our algorithms. In section 3 we consider the basic problem of
a permutation on the mesh, and we prove Theorem 1.1. In section 4 we give our
algorithm for routing with interterminal spacing in the model of [6, 1]. Finally, in
section 5 we discuss algorithms for routing with only a constant number of bends per
path.

Lemma 2.1. Let x1, . . . , xd be positive integers for which
∑
i xi = a and

∑
i x

2
i =

b. Then d ≥ a2b−1.
Proof. a2 = (

∑
i xi)

2 ≤ d∑i x
2
i = db.

The following is easily proved by induction on b.
Lemma 2.2. For nonnegative integers a and b, one has∫ 1

0

xa(1− x)b dx = (a+ b+ 1)−1

(
a+ b

b

)−1

.

Lemma 2.3. Consider the following random experiment: We first choose a bias
α for a coin uniformly from the interval [0, 1] and then flip the coin n times. The
probability that the number of heads is k is equal to 1

n+1 .
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Proof. The probability is equal to(
n

k

)∫ 1

0

αk(1− α)n−k dα,

which by Lemma 2.2 is equal to 1
n+1 .

There is also a purely combinatorial proof of this, which we leave as an exercise
for the reader.

2.1. Monotone matchings. We make use of a notion that we call a monotone
matching. Here we define and develop some basic facts about monotone matchings
at a general level.

In this section, let H denote a bipartite graph with bipartition (U, V ), U =
{u1, . . . , un}, V = {v1, . . . , vn}, and let e denote the number of edges of H. As usual,
by a matching in H we mean a set of edges that have no endpoints in common, and
we let µ(H) denote the size of the largest matching in H.

Definition 2.4. A matching in H is said to monotone if it consists of edges
(ui1 , vj1), . . . , (uik , vjk) such that the sequence i1, . . . , ik is increasing and the sequence
j1, . . . , jk is either increasing or decreasing. We say the matching is increasing in the
former case and decreasing in the latter.

We give two lower bounds on the size of the largest monotone matching in H.

Lemma 2.5. H has a monotone matching of size at least
√
µ(H).

Proof. Let M be a matching of maximum size in H, and order its edges so that
their endpoints in U have increasing indices. Consider the resulting sequence of indices
in V . By a lemma due to Erdös and Szekeres [7], this sequence must have either an
increasing sequence or a decreasing sequence of length at least

√|M | = √µ(H). The
edges corresponding to this sequence constitute a monotone matching.

Lemma 2.6. H has an increasing monotone matching of size at least e/2n.

Proof. Let Mk denote the set of all edges (ui, vj) for which j = i+ k mod n. Let
M ′k denote the subset of Mk in which j ≥ i and M ′′k the subset of Mk in which j < i.
Now, each M ′k and M ′′k is a monotone matching, and since they are all disjoint one
has size at least e/2n.

An example by Coppersmith [5] shows that for every d ≤ n there exist d-
regular bipartite graphs on 2n nodes with no monotone matching of size greater than
O(max(d,

√
n)).

Finally, it is also useful to establish “covering” versions of these lemmas. The
edges of a bipartite graph of maximum degree ∆ can be partitioned into ∆ matchings;
from the proof of Lemma 2.5, it follows that any matching can be partitioned into
O(
√
n) monotone matchings. Thus we have the following lemma.

Lemma 2.7. The edges of H can be covered by O(∆
√
n) monotone matchings,

where ∆ is the maximum degree of H.

The monotone matchings constructed in the proof of Lemma 2.6 cover the edges
of H; thus we have the following.

Lemma 2.8. The edges of H can be covered by 2n increasing monotone matchings.

3. The bound for χ(T ). For vertices x, y ∈ G, let d(x, y) denote the shortest-
path distance between them. As indicated above, we will first consider the following
special case: There are k × k subsquares A and B of G, with d(A,B) ≥ 4k, each
terminal pair has one end in A and the other in B, and we must use paths that stay
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A B

Fig. 3.1. Decomposing into pseudorows.

within d(A,B) of A ∪ B. Below we show how a bound for this special case can be
used to prove Theorem 1.1.

We represent A as a union of pseudorows, as follows. Let v1 denote the lower
left vertex of A. We choose α ∈ [0, 1] uniformly at random and perform the following
random walk for k time steps starting from v1:

(i) With probability 1− α, move one step to the right.
(ii) With probability α, move one step up and then one step to the right.

Let Lα1 denote the path traversed by this walk; note that it is contained in A. For
−k ≤ i ≤ k, define Lαi to be a copy of this path translated (i− 1) steps upward and
then intersected with A. The sets Lαi will be called pseudorows.

See Figure 3.1 for an example of such pseudorows.
For x ∈ A, let Rαx = {i : x ∈ Lαi }. The following is immediate from the construc-

tion but worth noting.
Lemma 3.1. If v ∈ A belongs to both Lαi and Lαj , then |j − i| = 1. Thus |Rαv | ≤ 2

(v belongs to at most two of these sets) and, in particular, E|Rαv | ≤ 2.
We say that x, y ∈ A are collinear if there is some pseudorow that contains them

both; in this case we write x ∼ y.
For a vertex x ∈ G, let a(x) denote its row number and b(x) denote its column

number. For two vertices x and y, let d∞(x, y) denote the L∞ distance between them;
that is,

d∞(x, y) = max (|a(x)− a(y)|, |b(x)− b(y)|) .
Lemma 3.2. The probability that x, y ∈ A are collinear is at most 2

d∞(x,y) .

Proof. Suppose without loss of generality that b(x) ≤ b(y). We have

Pr(x ∼ y) =

∫ 1

0

Pr(x ∼ y | α = t) dt

≤
∫ 1

0

∑
i

Pr(x, y ∈ Lti) dt

=

∫ 1

0

∑
i

Pr(x ∈ Lti) · Pr(y ∈ Lti | x ∈ Lti) dt

=

∫ 1

0

Pr(y ∈ Lti | x ∈ Lti) ·
∑
i

Pr(x ∈ Lti) dt

=

∫ 1

0

Pr(y ∈ Lti | x ∈ Lti) · E|Rtx| dt

≤ 2

∫ 1

0

Pr(y ∈ Lti | x ∈ Lti) dt.



1328 A. AGGARWAL, J. KLEINBERG, AND D. P. WILLIAMSON

If it is not the case that b(y) − b(x) ≥ a(x) − a(y) ≥ 0, then this last integral is 0.
Otherwise, it is simply the probability, over a uniformly distributed bias, that a given
number of heads will come up when a coin with that bias is flipped d∞(x, y) times.
By Lemma 2.3, this is 1

1+d∞(x,y) . The lemma follows.

Lemma 3.3. There is an absolute constant c′ so that if there are p terminal pairs
with ends in A and B, then there is a realizable subset of size at least p/(c′k log k).

Proof. We first choose a random α and decompose A into pseudorows. We do the
same for B, using a random β. Now, by Lemma 3.1 we can choose half the pseudorows
of A and half the pseudorows of B so that all pseudorows are disjoint and at least
q = p/4 of the terminal pairs have both ends in these chosen pseudorows. Let T ′
denote a set of q such pairs.

Define a collineation to be a pair i, j such that si and sj are collinear in A and
ti and tj are collinear in B. We wish to bound the expected number of collineations
among the pairs in T ′; this is simply the sum∑

i,j

Pr(si ∼ sj) · Pr(ti ∼ tj).

By the Cauchy–Schwarz inequality, this dot product will be maximized if Pr(si ∼
sj) = Pr(ti ∼ tj) for all pairs i, j.

Thus the expected number of collineations is bounded by the largest possible sum∑
x,y∈S

Pr(x ∼ y)2,

where S is a subset of A of size q. We can write this sum as

1

2

∑
x∈S

∑
y∈S\{x}

Pr(x ∼ y)2 ≤ 1

2

∑
x∈S

∑
y∈S\{x}

4

d∞(x, y)2
,

with the inequality following from Lemma 3.2. This inner sum is maximized by having
the vertices y fill in an L∞ ball centered at x, in which case its value is bounded by

1
2

√
q∑

i=1

32i

i2
≤ 32 + 16 ln q ≤ c ln q

for an absolute constant c. Thus, summing over all x, we see that the expected number
of collineations in T ′ is at most 1

2cq ln q.
Thus there exist α, β and decompositions of A and B into pseudorows for which

there is a subset T ′ of q terminal pairs whose number of collineations is at most
1
2cq ln q. For this set T ′, let us build the following bipartite multigraph H. There is
one vertex ui on the left for each chosen pseudorow A and one vertex vj on the right
for each chosen pseudorow B. We now put wij parallel edges from ui to vj if there
are wij terminals with one end in the pseudorow ui and the other end in vj . From
H, we build a simple graph H ′ which contains an edge (ui, vj) iff wij > 0.

We claim that the number of edges of H ′ is at least q/(2c ln q). To see this, note
that the number of collineations in T ′ is precisely∑

i,j

(
wij
2

)
,
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whence we have
∑
i,j w

2
ij ≤ 2cq ln q. Since q = |T ′| = ∑i,j wij , the claim follows from

Lemma 2.1.
Finally, the number of vertices in each half of the bipartition of H ′ is at most k,

so by Lemma 2.6 H ′ has a monotone matching of size at least

q

4ck ln q
≥ p

16ck ln q
≥ p

32ck log k
.

We can route one terminal for each edge of the monotone matching, which implies
the lemma with c′ = 32c. Note that we need d(A,B) = Ω(k) in order to ensure that
we correctly align the matched pseudorows of A with the corresponding pseudorows
of B.

Lemma 3.4. All terminal pairs with ends in A and B can be routed in O(k log2 k)
rounds.

Proof. We produce the partition into realizable sets greedily, using Lemma 3.3.
The bound follows since the number of remaining terminals goes down by a (1− c′

k log k )
fraction for each realizable set we produce.

Proof of Theorem 1.1. For an integer τ , let Tτ denote the set of terminal pairs
(si, ti) for which 1

2τ ≤ d(si, ti) ≤ τ . We prove that Tτ can be routed in O(τ log2 τ)
rounds; the overall bound on the number of rounds then follows since, for an absolute
constant c′′,

χ(T ) ≤
dlog ne∑
i=0

χ(T2i)

≤
dlog ne∑
i=0

c′′2i log2(2i)

≤ 4c′′n log2 n.

To prove that χ(Tτ ) = O(τ log2 τ), we show that Tτ can be partitioned into a constant
number of sets, and each of these sets can be partitioned into pairs of well-separated
squares; we then invoke the algorithm of Lemma 3.4 on all the pairs in a single set
simultaneously.

Choose τ ′ = 1
16τ and define Sij to be the τ ′× τ ′ subsquare of G whose upper-left

corner lies in row iτ ′ and column jτ ′. Each pair of squares (Sij , S`m) defines a subset
of Tτ , consisting of those terminal pairs with one end in Sij and the other in S`m. We
call such a pair active if it contains a terminal pair in Tτ . By definition, any active
pair (Sij , S`m) satisfies

6 ≤ |`− i|+ |m− j| ≤ 16.

Thus, by Lemma 3.4, we can route all the terminal pairs in the set defined by any
active pair in O(τ log2 τ) rounds.

We say that active pairs (Sij , S`m) and (Si′j′ , S`′m′) interfere with one another
if there is some vertex within distance τ of both Sij ∪ S`m and Si′j′ ∪ S`′m′ . Let us
build a graph K on the set of active pairs, joining two by an edge if they interfere
with one another. This graph has constant degree and hence can be colored with a
constant number of colors. But we can use the same set of rounds for routing all the
active pairs in a single color class, and thus χ(Tτ ) = O(τ log2 τ).

The proof of the other statement of Theorem 1.1, that every permutation contains
a routable set of size Ω(n/ logn), is strictly analogous. We first argue, using the
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interference graph K and Lemma 3.3 instead of Lemma 3.4, that Tτ contains a routable
set of size Ω(|Tτ |/τ log τ). The bound now follows since for some τ ∈ {2i : 0 ≤ i ≤
dlogne} we have |Tτ | = Ω(nτ).

4. Terminals with spacing. The proof of Theorem 1.2 is essentially that of
Theorem 1.1, with one additional step. As before, we can specialize to the case of two
kd× kd squares A and B that contain p terminal pairs. To construct pseudorows, we
first partition A and B into disjoint d× d subsquares, contract these subsquares, and
then use the previous construction.

Lemma 4.1. There is an absolute constant c′ so that if there are p terminals with
ends in A and B, then there is a realizable subset of size at least p

√
d/(c′k log k).

Proof. We follow the proof of Lemma 3.3 up through the construction of the
bipartite graph H ′ with at most k vertices in each half of its bipartition, and with
at least q/(c ln q) edges. Now define a slice in H ′ to be a set of the form U ′ ∪ V ′,
where U ′ is a set of

√
d consecutive vertices on the left side of H ′ and V ′ is a set of√

d consecutive vertices on the right side. The crucial point is that there are only d
edges of H ′ with both ends in a given slice, and so using the technique of [1, 6], we
can route one terminal pair for each of these edges in a single round.

We now construct a graph H ′′ by identifying blocks of
√
d consecutive vertices

of H ′ on the left and on the right. (We can essentially think of edges of H ′′ as
corresponding to particular slices of H ′.) Let us give each edge (u∗, v∗) in H ′′ a
weight equal to the number of edges of H ′ that have ends in the supernodes u∗ and
v∗; thus these weights are integers between 0 and d. By the weighted analogue of
Lemma 2.6, H ′′ has a monotone matching of weight at least

weight(H ′′)
2|V (H ′′)| =

|E(H ′)|
2|V (H ′′)| ≥

q
√
d log k

4ck ln q
≥ p

√
d

32ck log k
.

We can route a number of terminals equal to the weight of any monotone matching
in H ′′, as argued above; this implies the lemma.

Proof of Theorem 1.2. Again reducing to the case of kd× kd squares A and B,
we use a greedy approach based on Lemma 4.1. Each time, we reduce the number

of remaining terminals by a factor of at least (1− c′
√
d

k log k ); thus we route all terminal

pairs in O(kd−
1
2 log2 k) rounds.

5. Constant-bend routing. As in the previous sections, let us first consider the
case in which all terminal pairs have ends in k×k squares A and B, with d(A,B) ≥ 4k.
Here, we additionally assume that A and B are each at a distance of at least Ω(k7/10)
from the boundary of the mesh. Let us suppose that the lowest column number of a
node in A is less than or equal to the lowest column number of a node in B.

The main difficulty we encounter here is this: Since we wish to use only a con-
stant number of bends, the approach based on pseudorows appears to be inherently
inapplicable, as it involves partitioning A and B into paths with many bends. Thus,
in this case, we build a graph H with a vertex ui for each row of A, and a vertex
vj for each row of B. We give the edge (ui, vj) a weight wij equal to the number of
terminal pairs with one end in each row.

To give a sense of the algorithm, we first mention a very easy algorithm for routing
in O(k3/2) rounds. This is as follows. First replace each edge (ui, vj) of H with wij
parallel edges. Now by Lemma 2.7 the edges of H can be covered by O(k3/2) monotone
matchings. Moreover, we may assume that each matching in the cover contains at
most O(k1/2) edges. We claim that all the terminal pairs corresponding to a single one
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Fig. 5.1. Routing with a constant number of bends.

of these matchings can be routed in a single round. If the matching is increasing, then
the pairs can be routed by having each terminal leave A along its row through the
east wall, and enter B along the matching row through the west wall; if the matching
is decreasing, then the pairs can be routed by having each terminal leave A along
its row through the west wall and enter B along the matching row through the west
wall. (See Figure 5.1 for a version of the latter case.) Moreover, since A and B are at
least Ω(k1/2) distance from the boundary of the mesh, there is room for all the paths
corresponding to a single matching to be routed in the region outside A ∪B.

To get a bound of O(k7/5), we need a slight strengthening of this technique. We
divide the edges into log k classes, by assigning each edge to the smallest power of 2
greater than its weight. Let Hw denote the subgraph of H consisting only of edges
that are assigned the weight w, and let Tw denote the set of terminals corresponding
to edges of Hw.

Lemma 5.1. Tw can be routed in at most 2kw rounds, using at most four bends.
Proof. Using Lemma 2.8, we can partition the edges of Hw into 2k (increasing)

monotone matchings. Each edge of Hw corresponds to at most w terminals, so all
terminals can be routed in 2kw rounds. It is easy to construct paths for these terminals
using at most four bends.

Lemma 5.2. Tw can be routed in at most

max[O(k3/2/w1/4), O(k13/10)]

rounds, using at most six bends.
Proof. Since each edge of Hw corresponds to at least w/2 terminals, the maximum

degree of a vertex in Hw is at most 2k/w; thus we can partition the edges of Hw into
2k/w matchings. Let us say that a matching M is well spaced if for edges (ui, vj)
and (uk, v`) of M the difference between i and k is at least

√
w and the distance

between j and ` is at least
√
w. By an easy coloring argument, we can partition any

matching in Hw into O(
√
w) well-spaced matchings, and thus we can partition the

edges of Hw into O(k/
√
w) well-spaced matchings. Finally, each of these well-spaced

matchings is only on O(k/
√
w) vertices, so by Lemma 2.7 we can partition each one

into O(
√
k/w1/4) monotone matchings.

Thus we now have a total of O(k3/2/w3/4) monotone matchings covering the
edges of Hw, and each has the property that the endpoints of its edges are mutually
at distance

√
w. We use a different set of rounds for routing each monotone matching.
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Now, how many rounds are needed for a single monotone matching M? (Recall
that each edge of M represents up to w terminals.) Let Ai (resp., Bi) denote the
set of vertices in the ith row of A (resp., B). Since the edges of M are anchored in
rows of A and B that are mutually

√
w apart, we can assign to each edge e = (ui, vj)

a “band” of rows of width Ω(
√
w) around row Ai and a similar band around row

Bj . The pairs corresponding to an edge e are themselves a matching on the vertex
set Ai ∪ Bj . Thus these pairs can be partitioned, again by Lemma 2.7, into O(

√
w)

monotone matchings, and each of these monotone matchings can be routed in a single
round in the bands surrounding rows Ai and Bj .

Finally, we can do this simultaneously (i.e., using the same set of rounds) for all
edges of a single well-spaced monotone matching, provided there is sufficient room
between the squares A and B and the boundary of the mesh for routing all the paths.
If there is sufficient room, then the number of rounds used is O(k3/2/w1/4). Otherwise,
we must break up the rounds that use too many paths into subrounds that route only
O(k7/10) terminals at a time; the resulting bound is O(k13/10) rounds.

Lemma 5.3. The set of terminals with ends in A and B can be routed in O(k7/5)
rounds, using at most six bends.

Proof. Let r(T ) denote the total number of rounds required for routing T with
six bends. Then

r(T ) ≤
∑
w=2i

r(Tw)

≤
∑

w=2i≤k2/5

r(Tw) +
∑

k2/5≤w=2i≤k4/5

r(Tw) +
∑

w=2i≥k4/5

r(Tw)

≤ O(k)
∑

w=2i≤k2/5

w +O(k3/2)
∑

k2/5≤w=2i≤k4/5

w−1/4 +O(k13/10)
∑

w=2i≥k4/5

1.

Since all three of the terms in this last sum are easily seen to be O(k7/5), the bound
follows.

Proof of Theorem 1.3. We use the notion of an interference graph K on pairs
of subsquares as in the proof of Theorem 1.1. The only change is that we can now
work only with k × k squares that have either no row or no column within O(k7/10)
of the boundary. (It is enough to have this guarantee for either rows or columns,
since we just as well could have built our graph H on the set of columns of one of the
squares.) To handle this, we define G′ to be the subgraph of G induced by all nodes
within distance O(n2/5) of the boundary, or within distance O(n7/10) of a corner of
the mesh. Since |G′| = O(n7/5), we can use a different round for each terminal pair
with an end in G′; we then run the algorithm above (using the interference graph K)
in G \G′.

6. Conclusion. There are a number of natural questions suggested by this
work. First, the algorithm of Theorem 1.2 routes a permutation with spacing d in
O(nd−1/2 log2 n) rounds and thereby gives an upper-bound trade-off between inter-
terminal spacing and the number of rounds required. However, we do not know how
close to optimal this trade-off is for all values of d. At the extreme ends of the
range 0 ≤ d ≤ n2, the number of rounds used by our algorithm is tight to within
polylogarithmic factors—this follows from the bisection bound when d = Θ(1) and
from [1] when d = Θ(n2). While it is possible that the trade-off is tight to within
polylogarithmic factors for all values of d, we are not able to prove this.
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For constant-bend routing, we do not know whether there is an absolute constant b
such that every permutation on the mesh can be routed in O(n logO(1) n) rounds using
at most b bends per path. It would also be interesting to understand the quantitative
trade-off between the number of bends and the number of rounds needed.

In a somewhat different direction, the algorithm of Theorem 1.1 gives a routing
for a set T of terminal pairs for which the number of rounds used is close to the best
possible in the worst case. However, it is not an approximation algorithm, since we
do not have a result relating the number of rounds we require for a given set T to the
optimal value χ(T ). It would be very interesting to obtain such an algorithm, since
it would appear to require new techniques for analyzing χ(T ) in cases when the cut
condition gives no information.

Finally, it would be interesting to decide whether χ(T ) = O(n) for every permu-
tation on the mesh.
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Abstract. We consider the problem of triangulating a d-dimensional region. Our mesh gen-
eration algorithm, called QMG, is a quadtree-based algorithm that can triangulate any polyhedral
region including nonconvex regions with holes. Furthermore, our algorithm guarantees a bounded
aspect ratio triangulation provided that the input domain itself has no sharp angles. Finally, our
algorithm is guaranteed never to overrefine the domain, in the sense that the number of simplices
produced by QMG is bounded above by a factor times the number produced by any competing
algorithm, where the factor depends on the aspect ratio bound satisfied by the competing algorithm.
The QMG algorithm has been implemented in C++ and is used as a mesh generator for the finite
element method.
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1. Introduction. The finite element method refers to a family of numerical
methods for solving boundary value problems and is used extensively in electromag-
netics, thermodynamics, structural analysis, acoustics, chemistry, and astronomy. A
crucial preprocessing step is mesh generation. A mesh generator is an algorithm for
subdividing a finite subset of R2 or R3 into small convex cells, typically triangles or
quadrilaterals in two dimensions and tetrahedra or hexahedra (brick shapes) in three
dimensions.

We propose a mesh generation algorithm called QMG for nonconvex polyhedral
regions in any dimension. QMG takes as input a representation of a polyhedral
region in Rd and produces as output a simplicial complex that is a subdivision of the
input region. QMG uses a quadtree technique: the domain is covered with a large
d-dimensional cube, and then cubes are recursively split into 2d subcubes until each
subcube is triangulated.

For good accuracy bounds in the finite element method, it is necessary that the
tetrahedra have bounded aspect ratio. The aspect ratio of a simplex is defined as
its maximum side length divided by its minimum altitude. For an analysis of the
accuracy of the finite element method, see Johnson [9].

The mesh produced by QMG is guaranteed to have good aspect ratio. Let ρQMG

be the worst aspect ratio among all simplices in the QMG triangulation of a particular
input polyhedron P . Let ρS be the worst aspect ratio among all simplices in any other

∗Received by the editors December 27, 1996; accepted for publication (in revised form) May 28,
1999; published electronically February 29, 2000. This work supported in part by an NSF PYI
award with matching funds from AT&T, Sun Microsystems, Tektronix, and Xerox. Support was also
received from the Mathematical, Information, and Computational Sciences Division subprogram of
the Office of Computational and Technology Research, U.S. Department of Energy, under contract W-
31-109-Eng-38 through Argonne National Laboratory. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

http://www.siam.org/journals/sicomp/29-4/31412.html
†Computational Mechanics and Visualization Department, Sandia National Laboratories, Albu-

querque, NM 87185 (samitch@sandia.gov).
‡Department of Computer Science, Cornell University, Ithaca, NY 14853 (vavasis@cs.cornell.edu).

Part of this work was done while the author was visiting Argonne National Laboratory.

1334



QUALITY MESH GENERATION 1335

triangulation S of P , where S is produced by some other competing algorithm. Then
Theorem 15.2 says that ρQMG ≤ cρS , where c is a universal constant, in the case
d = 2 or d = 3. The technique used to prove this theorem is as follows. First, a lower
bound is proved stating that any triangulation S of P must have at least one simplex
with aspect ratio at least as large as c/θ(P ), where θ(P ) denotes the sharpest angle of
P and c is some other constant. Then we prove that QMG’s aspect ratio is bounded
above by c/θ(P ). In the case d > 3, a weaker version of this result is proved.

Our second main theorem is that the number of simplices generated by QMG
is the smallest possible; that is, the mesh is as coarse as possible, in the following
sense. Let nQMG be the number of simplices produced by QMG when applied to a
particular polyhedral domain P , and let nS be the number of simplices in some other
triangulation S of P . Then nQMG ≤ f(d, ρS) · nS , where f is some function of d, the
dimension, and of ρS , the aspect ratio bound satisfied by the competing triangulation.
In other words, nQMG is much larger than nS only in the case when S has simplices
with poor aspect ratio. The precise values of the constants present in these two main
results are not worked out explicitly in this article but are expected to be quite large.

The importance of bounding the number of tetrahedra is as follows. The running
time of the finite element method is a function of the number of nodes and elements in
the triangulation. In particular, if n is the number of nodes (or elements—for bounded
aspect ratio triangulations, the number of nodes and elements are within a constant
factor of each other), then the running time of the finite element method is O(nα),
where α is at least 1 and depends on the method used for solving the sparse linear
equations. Thus, there is a significant penalty for meshes with too many elements. On
the other hand, small elements are necessary for high accuracy with the finite element
method. Practitioners usually address this tradeoff by using meshes with varying
degrees of refinement: such a mesh has small elements in the part of the domain
of interest where high accuracy is desired, and larger elements are used elsewhere.
Because QMG generates the coarsest mesh possible (up to the multiplicative factor
f(d, ρS)), it can be used as the starting point for further refinement. Indeed, the
implementation of QMG allows a user-specified refinement function to control the
degree of refinement.

Our work is closely related to earlier work by Bern, Eppstein, and Gilbert [4],
who solved the corresponding problem for two-dimensional (2D) polygonal domains.
These authors also used a quadtree approach, but the extension of their technique to
higher dimensions is far from straightforward. Our QMG algorithm differs in many
ways from that earlier paper.

Other work on triangulation problems with optimality guarantees is the result
of Baker, Grosse, and Rafferty [1], whose algorithm triangulates 2D polygons with
nonobtuse angles and Chew’s [7] triangulation of 2D polygons with guaranteed aspect
ratio using a Delaunay approach. Chew’s work was extended by Ruppert [14] to
handle varying degrees of refinement (and thus establishing the Bern et al. optimality
properties), and later by Chew also [8] to curved surfaces.

In three dimensions, no work previous to ours guaranteed bounded aspect ratio
triangulations, although Chazelle and Palios [6] developed an algorithm with the best
possible bound (up to a constant factor) on the cardinality of the triangulation in
terms of reflex angles.

Our triangulation uses Steiner points, meaning that it introduces new vertices into
the domain not present in the original input. Indeed, as shown by Schönhardt [15],
Steiner points are necessary for triangulating nonconvex polyhedra in three dimensions
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and higher. For additional background on optimal triangulation, we refer the reader
to the excellent surveys of Bern and Eppstein [3] and Bern and Plassmann [5]. Note
that, because of the importance of mesh generation, there is a vast body of literature
on mesh generation algorithms. We do not attempt to survey this literature here
because the majority of these papers are not concerned with mathematical quality
guarantees.

The remainder of this article is organized as follows. In section 2 we describe the
class of allowable input domains for QMG. In sections 3 and 4 we present a high-level
description of the QMG algorithm. In sections 5–7 we provide more details about
the algorithm. In sections 8 and 9 we formally define aspect ratio and sharp angles
and establish some results about them. In sections 10–17 we provide the analysis of
QMG, including the proofs of the two main optimality properties mentioned above.
In section 18, we consider the asymptotic running time of QMG, and in section 19 we
briefly describe the implementation.

This article has a companion paper [12] that describes how to triangulate a grid
of uniform boxes cut by a k-affine space. The method in that paper is used as a
subroutine here, and we need some of the results of the analysis in that other paper
for the analysis in section 10.

Besides the QMG algorithm and its analysis, the other main contribution of this
paper is a series of new bounds that apply to any possible triangulation of a polyhedral
domain (see section 9) and other results that apply to any possible bounded aspect
ratio triangulation of a polyhedral domain (see section 16). The results in these
sections act as lower bounds for proving QMG’s optimality, but they would be useful
for the analysis of other triangulation algorithms.

This article, along with the companion [12], supersedes our earlier work [13]. We
briefly summarize the difference between this article and the earlier work. First, this
work applies to d-dimensional regions for any d, whereas the earlier work was limited
to three dimensions. A consequence of this generalization is that we have discarded
the case-based proofs used in [13] in favor of more uniform treatment here. The
notion of enforcing a “balance” condition in the quadtree has been dropped. Further,
the idea of “warping” has been replaced by the approach in the companion paper,
together with the “alignment” procedure described here.

2. Nonconvex polyhedra. Recall that the input to our algorithm is a noncon-
vex polyhedron P in Rd. Mathematically, a nonconvex polyhedron is the set resulting
from a finite number of union and intersection operations applied to halfspaces. We
assume P is compact. We assume that P is presented via a boundary representation;
in fact, from now on, we refer to polyhedra as “b-reps.” The b-rep of P consists of a
lattice of faces: zero-dimensional faces are called vertices, one-dimensional (1D) faces
are called edges, and the d-dimensional face is P itself. Each face of dimension 1 or
higher has boundaries that are faces of one lower dimension. Thus, a b-rep is stored as
a layered directed acyclic graph with one node for each face, and with arcs to indicate
the “is-a-boundary-of” relation. Nodes at level 0 (vertices) have coordinates stored
with them.

Finally, to simplify our presentation, we assume that P is a d-manifold with
boundary, although the implementation of QMG allows many nonmanifold features,
such as internal boundaries.

3. Boxes. The main data structure of QMG is a box. A box is a d-dimensional
cube embedded in an axis-parallel manner in Rd. Our algorithm is a quadtree-based
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algorithm, meaning that it starts with a single d-cube and then subdivides it into 2d

equal-size smaller cubes. The subdivision continues recursively.
Boxes of dimension less than d occur as separate data items. These lower-

dimensional boxes are discussed in more detail in section 7. We ignore the existence
of these lower-dimensional boxes until section 7 to allow a simplified presentation of
QMG’s quadtree generation in the next three sections.

Initially, there is one large d-dimensional box, called the top box, which contains
all of P and also a neighborhood around P . This box is considered active. Other
boxes are generated from the top box by applying one of three operations recursively.
First, an active box may be split, meaning that it is replaced by 2d smaller boxes each
of equal size, as mentioned above. Second, a box may be duplicated, meaning that
it is replaced by two or more boxes with the same size and position as the original
box. Third, an active box may be protected, in which case it is no longer active and
no longer available for splitting or duplicating. The collection of boxes is called a
quadtree.

The data items stored with a box are as follows. QMG stores its position and
size. Because of the dyadic nature of the quadtree, the position and size are both
represented exactly (as integers). As mentioned in the last paragraph, boxes are
either active or protected. An active box B has stored with it its content, which is
denoted co(B). The definition of content is as follows. Let ex(B) denote a cube in Rd

that is concentric with B but has a diameter larger by a constant factor 1+γ, where γ
is defined below. Note that P ∩ex(B) is a polyhedral region. If P ∩ex(B) is connected
(in the topological sense), then we define co(B) = P ∩ ex(B). If P ∩ ex(B) is not
connected, then QMG makes duplicates of B, one for each component of P ∩ ex(B),
and assigns one component to each duplicate. Thus, co(B) is always a connected
polyhedral region. More details are given in section 5.

A protected box is always associated with a particular face F of P , and F must
meet ex(B). Thus, a protected box has stored with it a reference to F and also a close
point. The close point is a point in Rd lying in F ∩ ex(B). The coordinates of the
close points are stored in an auxiliary table, and the protected box stores an index
into this table. (This is because several protected boxes can share the same close
point.) The collection of close points makes up the vertices of the final triangulation.

4. High-level description of the quadtree generation. The mesh genera-
tion algorithm has two parts: quadtree generation and triangulation. See Figures 4.1–
4.2 for the high-level outline of quadtree generation. Triangulation is described in
section 7. Not all the terms in these figures have been defined yet.

Quadtree generation is divided into d + 1 phases numbered 0, . . . , d. We use k
throughout the article to denote the current phase. Phase k works primarily with
the k-dimensional faces of P . (Thus, in phase d we look at P itself.) Each phase is
subdivided into two stages, the separation stage and the alignment stage. During the
separation stage, active boxes are split. There is also splitting of active boxes during
the alignment stage. The alignment stage also turns some active boxes into protected
boxes.

5. Separation stage. In this section we describe the separation stage of phase
k in more detail. At the start of the phase there is a list of active boxes Ik and the
(initially empty) idle list Ik+1. During the phase we repeatedly remove one active
box, say, B, from Ik and test it for crowdedness (defined below). If B is crowded, it
is split. Let us use the term children to denote the boxes on the next deeper level
resulting from the split. All the children with a nonempty content are inserted back
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/* Quadtree generation */.
Initialize I0 := {top box}.
Initialize J := {}.
for k := 0, . . . , d do

Initialize Ik+1 := {}.
Initialize OF := {} for each k-dimensional P -face F .
/* Phase k separation stage. */
while Ik is nonempty do

Remove an active box B from Ik.
if B is crowded or too big for the size function then

Split B into B1, . . . , B2d ; duplicate as necessary.
Delete Bi’s with empty content.
Put remaining Bi’s into Ik.

elseif co(B) contains a (necessarily unique) k-face F of P then
OF := OF ∪ {B}.

else
Ik+1 := Ik+1 ∪ {B}.

end if
end while

Fig. 4.1. High-level description of QMG’s quadtree generation (continued in Figure 4.2).

into Ik. Box B itself is deleted, and the children with empty content are deleted. On
the other hand, if B is not crowded, we check whether it has a P -face of dimension
k, say, F , in its content. If so, the box is transferred to orbit OF . If not, the box is
transferred to the idle list. In this manner Ik is eventually emptied.

We now explain the terms “content” and “crowdedness.” First, we define ex(B)
for an active box B to be a d-dimensional cube in Rd concentric with B but expanded
in each dimension by a multiplicative factor 1 +γ. Parameter γ must satisfy γ ≥ ε0,F
for each P -face F , where ε0,F is the tolerance for alignment described in section 6.
For instance, γ = 0.5 is acceptable.

The content of an active box B, denoted co(B), is a b-rep and is typically P ∩
ex(B). However, if P ∩ ex(B) has more than one connected component, we identify
the components of P ∩ex(B), say, C1, . . . , Cp, and we replace B with p copies of itself,
say, B1, . . . , Bp. Then we define co(Bi) = Ci for i = 1, . . . , p.

Say B is split, and say B′ is one of the child boxes. We compute co(B′) by
intersecting co(B) with ex(B′). (Notice that our definition of ex(B) guarantees that
ex(B′) is a proper subset of ex(B).) In particular, we do not compute co(B′) by
intersecting the original b-rep P with ex(B′). This is because this latter approach
could reintroduce connected components that were duplicated into a box different
from B at some earlier level of splitting.

We say that a box B is crowded if either

• co(B) meets any P -face of dimension k − 1 or less, or
• co(B) meets a P -face F of dimension k, and co(B) meets another P -face G

that is not a superface of F .

Thus, a box B is not crowded during phase k if either co(B) does not meet any
P -faces of dimension k or lower, or co(B) meets exactly one P -face F of dimension
k, no P -faces of dimension less than k, and every P -face of dimension higher than k
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/* Phase k alignment stage. */
for each k-dimensional P -face F do

while OF is nonempty do
Remove the highest-precedence box B from OF .
Find the highest-priority subface B′ of B that is close to F .
if B has no such close subface then

Ik+1 := Ik+1 ∪ {B}.
elseif the alignment condition is satisfied for B then

Protect B; its associated P -face is F .
Find the close point on F for B (near B′).
J := J ∪ {B}.

else
Split B into B1, . . . , B2d ; duplicate as necessary.
Delete the Bi’s with no content.
Put remaining Bi’s into OF .

end if
end while

end for
end for /* end of k loop */

Fig. 4.2. High-level description of QMG’s quadtree generation (continued from Figure 4.1).

in co(B) is a superface of F . A box that is not crowded is transferred either to Ik+1

in the first case (i.e., when co(B) does not meet any P -faces of dimension k or lower)
or to OF in the second case. Some examples of crowdedness are given in Figure 5.1.

Another rule used in the separation stage is that we split boxes if their side length
is greater than the user-specified mesh refinement function that was mentioned in the
introduction. We do not say any more about this here, since the analysis in subsequent
sections does not involve a user-specified mesh refinement function.

The reader may notice that there appears to be a potential infinite loop: if an
active box B in phase k has a P -face of dimension k−1 or less in its interior, this will
cause an infinite recursion of splitting because there will always be a crowded subbox.
Fortunately, this situation can never occur. The reason is that a box whose interior
meets a P -face of dimension k − 1 or less would have had a close subface identified
in an earlier phase and would have become protected or would have been crowded in
an earlier phase. (See the next section for a description of close subfaces.) Therefore,
it could never end up in Ik. It is possible, however, for a box in Ik to have a face of
dimension k − 1 or less inside ex(B) but outside B. This can happen because, in the
previous phase, a (k − 1)-face F could lie in the content of B and yet not be close
enough to come close to a subface of B. In this case the box will be split until the
d-cubes ex(B) have shrunk enough that they do not meet the low-dimensional P -face.
The number of times that a box can be split is analyzed in subsequent sections.

The computation of co(B) (that is, computing the geometric intersection co(B′)∩
ex(B), where B′ is the parent of B, and then checking whether this intersection is
connected) is among the most computationally intensive tasks of QMG. We carry out
the search for connected components with a ray-shooting algorithm that we do not
describe here. The worst-case running time of this ray-shooting algorithm is O(n2),
where n is the total combinatorial complexity of co(B) (i.e., the total number of
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u

v

w

Fig. 5.1. Examples of crowdedness: solid lines indicate boxes, dotted lines indicate ex(B) for
these boxes, dashed lines indicate the boundary of P , and shading represents the interior of P .
Suppose we are in the separation stage of the phase 0 in the case d = 2. All boxes in the top row
are uncrowded. The first box would be placed into Ou. The second box would be placed into I1. The
third box in the top row must be duplicated, and then one duplicate would go into Ov and the other
into Ow. Both boxes in the bottom row are crowded and must be split.

boundary faces), but in practice the running time will usually be closer to O(n).
In the case d = 2, it is possible to find connected components of co(B) via a plane

sweep in O(n logn) operations. In the case d = 3, an O(n logn) plane sweep can also
be used provided that P is preprocessed with O(N2) preprocessing steps, where N is
the combinatorial complexity of the input polyhedron P . This efficient algorithm for
d = 3 is described in our earlier paper [13]. We have not implemented a plane-sweep
procedure for either d = 2 or d = 3.

6. Alignment. In this section we describe the alignment stage. Recall that the
alignment stage processes each orbit independently. For this section, assume we are
in phase k and are processing orbit OF of P -face F whose dimension is k.

First, a sequence of parameters

0 = εd,F = εd−1,F = · · · = εd−k,F < εd−k−1,F < εd−k−2,F < · · · < ε0,F < 0.5

is chosen for F . The method for choosing positive scalars εd−k−1,F , εd−k−2,F , . . . , ε0,F
is described in [12], which must be slightly modified to take into account the contain-
ment relationship between P -faces of different dimensions. These parameters have
positive upper and lower bounds depending only on d and k.

We now process boxes in OF in the order described below. Let B be the high-
precedence box in the orbit. Let B′ be any subface of B. We construct the ∞-
norm neighborhood of radius εr,F around B′, denoted N(B′), where r stands for the
dimension of B′. Thus, this neighborhood is an axis-parallel parallelepiped (which
could be degenerate if εr,F = 0). If F meets N(B′), then F is said to be close to B′.
The close subface of B is the box subface of lowest dimension that is close to F . If
there is a tie (i.e., there are several faces of the same lowest dimension all close to F ),
then we break the tie with a priority rule, which is described below. A box with no
close subface is transferred to Ik+1.
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Because γ ≥ ε0,F , if F is close to B (i.e., if B has a close subface), then F must
meet ex(B). Thus, we can check whether B has a subface close to F by examining
co(B). Indeed, it is important that we query co(B) rather than the original P , because
it might be difficult to determine from queries on P whether the P -face in question
is associated with B or with a duplicate of B.

Next we claim a partial converse: if F meets ex(B), then B has a subface close
to F . We define ex(B) to be a cube concentric with B and expanded by εd−k−1,F

in each dimension. Because 0 < εd−k−1,F < γ, it follows that B ⊂ ex(B) ⊂ ex(B).
Furthermore, it follows from Lemmas 1 and 2 of [12] that if any P -face F meets ex(B),
then B has a subface close to F . The cube ex(B) is not used in our algorithm, but it
plays a role in the analysis below.

Once every box in the orbit has chosen its close subface, we now test the alignment
condition. The alignment condition is as follows. Define the extended orbit of F to be
OF united with protected boxes from earlier phases that are associated with proper
subfaces of F . For every active box B in the orbit, the close subface of B must be
completely covered by boxes in the extended orbit (either active or protected) that
are the same size or larger. For an example of the alignment condition, see Figure 6.1.
We provide motivation for the alignment condition in section 7.

Let us now comment further on the alignment condition. First, we have to explain
what is meant by “completely covered.” We say that a box subface B′ is completely
covered by some collection of boxes {B1, . . . , Bn} provided that for any point p in
the relative interior of B′, there exists an open neighborhood N of p such that N ⊂
B1 ∪ · · · ∪Bn. (Note that if B′ is a 0-dimensional box subface, i.e., a vertex, then its
relative interior is B′ itself.)

With these definitions of “extended orbit” and “completely covered,” we can now
state the priority rule for choosing a close subface. Recall that the close subface of
B is the box subface of lowest dimension close to F . Let l be the dimension of this
subface. If there is a tie (i.e., there is more than one face of B of the dimension l close
to F ), then we favor the subfaces that are completely covered by boxes the same size
or larger in the extended orbit (i.e., those close subfaces of dimension l for which the
alignment condition holds). If there is still a tie, we use a lexicographic tie-breaking
rule.

Recall that boxes can get duplicated during the separation stage, and thus several
active boxes can cover the same geometric region in Rd. We claim that two boxes
with overlapping geometric regions in Rd cannot end up in the same orbit. (This fact
simplifies the sorting necessary to check the alignment condition.) The reason is as
follows. Suppose B and B′ are two boxes whose interiors have a common point in Rd,
and suppose both co(B) and co(B′) contain a point of P -face F . By the tree-nature
of the quadtree, two boxes that share a common interior point must have the property
that one is contained in the other.

We claim that co(B) and co(B′) both must meet a proper subface of F . If not,
then co(B) would have to contain the intersection of ex(B) with the entire affine hull
of F (because no boundaries of F are in co(B)). Similarly, co(B′) also would contain
the intersection ex(B′) with the hull of F . (See section 8 for definition of “affine
hull” and other mathematical terminology.) Since one box contains the other, this
means that one box contains points from F that the other box also contains. But
then there could not be two distinct connected components of P in co(B) and co(B′),
so duplication would not have taken place.

Thus, co(B), co(B′) each contain proper subfaces of F . But in this case, the boxes
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E

a

b

Fig. 6.1. The alignment condition in the case d = 2, k = 1: the boxes in this figure are the
extended orbit of a P -edge E, which is the dashed line. The two large boxes at the ends are protected
boxes for the endpoints of E, protected from phase 0. In this figure, box a must be split because the
alignment condition does not hold for this box. Its close subface, which could be either its lower
left-hand corner or upper right-hand corner, is contained by another box smaller than a. All other
boxes satisfy the alignment condition. For example, box b does not have to be split; its close subface
could be either its bottom edge or right edge. The right edge will have higher priority, since the
alignment condition holds for that edge.

could not end up in OF (i.e., if they were still active in phase dim(F ), they would be
crowded).

As mentioned earlier, a box is protected if the alignment condition holds for its
close subface. We make the following claim: if the alignment condition holds for B at
the time it is protected, then the condition continues to hold for the remainder of the
algorithm. In other words, the following situation cannot occur: a box B with close
subface B′ is deemed to satisfy the alignment condition and becomes protected. Later
a neighboring box B̄ also containing B′ as a subface gets split because the alignment
condition does not hold for B̄, thus causing the alignment condition to be violated
for B.

To prove the claim in the last paragraph, we must describe the order in which
QMG processes the boxes in an orbit OF . “Process” means that QMG determines
whether the box satisfies the alignment condition; if so, then protect it, and if not,
then split it. The correct order is to start with the largest boxes in the orbit, working
down to the smallest. Within the set of boxes of the same size, we process those with
the lowest-dimensional close subfaces first, working toward highest-dimensional close
subfaces.
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We claim that this order assures that if the alignment condition holds for a box B
at the time it is processed, then the alignment condition holds for B for the remainder
of the algorithm. Suppose we are at the step when B is processed and the alignment
condition is satisfied. Let B′ be the close subface of B, and let l be the dimension
of B′. Let B1, . . . , Bn be the boxes in the extended orbit that cover B′. Some of
B1, . . . , Bn will be larger than B′ and hence already protected. Protected boxes are
not split again, so they will continue to cover B′ for the rest of the algorithm. Consider
a box Bi that is the same size as B. If Bi has a close face of dimension less than l,
then Bi is already protected (because we process boxes with lower-dimensional close
faces first). The dimension of the close face of Bi cannot be greater than l, because
B′ is a subface of Bi and has higher priority than any subface of Bi of dimension l+1
or more. Therefore, the only remaining possibility is that Bi is the same size as B
and that the close subface of Bi has dimension exactly l. But then this subface, if it
is not B′, must also be completely covered by boxes in the orbit because otherwise
B′ would have higher priority. (Recall that faces that are completely covered have
higher priority.) So we see that Bi will become protected as well and cannot be split.

When a box B is protected, as mentioned above, we have identified a close subface
B′ of B. This subface has the property that F meets an∞-norm neighborhood of B′.
We now select a point lying on F in this neighborhood (see [12] for more details on
selecting the close point). The rule used for choosing the close point has the property
that any other box B′′ that is the same size as B and also has B′ as its close subface
will choose the same close point. Thus, several adjacent boxes that are in the same
orbit and are the same size might share a close point.

The alignment stage continues until there are no boxes left to process; every box is
either protected or has been moved to the idle list. When OF is empty, the alignment
moves onto a different orbit. Once the orbits of all dimension-k faces of P are empty,
the phase is over.

7. Triangulation. After phase d of quadtree generation, QMG triangulates the
quadtree. In the triangulation procedure, the collection of protected boxes is trian-
gulated into a simplicial complex.

To describe the triangulation procedure, we must first bring lower-dimensional
boxes into the picture. In this section, we revisit some of the concepts from earlier
sections and revise some of the algorithm steps to take into account lower-dimensional
boxes. The lower-dimensional boxes serve two purposes: first, they simplify the data
structures needed for checking the alignment condition, and second, they serve as the
basis for generating the final triangulation.

In QMG, boxes can have dimension 0 up to d. Initially, there is only one active
box of dimension d, namely, the top box. Lower-dimensional boxes get created each
time a box is protected by QMG. At the moment an i-dimensional active box B is
changed from active to protected during the alignment stage for orbit OF , all its faces
of dimension i − 1 are launched as new active boxes (there are 2i such faces). Let
B′ be one of these new active boxes. It is dealt with in a manner analogous to the
way QMG handles subboxes after a split. We compute co(B′) as the intersection
co(B)∩ ex(B′). We determine the disposition of B′ using the same rules as before: if
co(B′) is empty, then we delete B′. If co(B) ∩ ex(B′) has more than one connected
component, then we duplicate B′. If co(B′) does not meet F (and hence meets only
P -faces of dimension k+ 1 and higher), then we place B′ in Ik+1. If co(B′) meets F ,
then we place B′ in OF .

It is possible that B′ will also become immediately protected; this happens, for
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instance, when the close subface of B is also a subface of B′.
The same operations are performed on an i-dimensional box as are performed on

a full-dimensional box: such a box can be tested for crowdedness, split for separation,
protected, and so on. When an i-dimensional box is split, 2i new subboxes are created.
If B is i-dimensional, it is said to extend over i of the possible d coordinate axes, and
it is flat over the remaining d− i coordinate axes.

The definition of ex(B) for a box of dimension less than d is as follows. Every
box B has associated with it a number called its size, which we denote size(B) and
which is the side length of B in a dimension over which it extends. The size of every
box is equal to the size of the top box multiplied by a factor 2−p, where p is the
number of times the top box was split to reach this box. If B is a box, then ex(B)
is an axis-parallel full-dimensional parallelepiped in Rd concentric with B, with side
lengths (1 + γ) size(B) for axes over which B extends, and side length γ size(B) for
the axes in which B is flat. This choice ensures that all properties of ex(B) asserted
earlier are still valid, namely, if B has a subface close to F , then the subface meets
ex(B). Also, if B is split, then ex(B′) for each subbox B′ is contained in ex(B).
Finally, if subfaces of B are launched as new active boxes when B is protected, then
each new subface B′ also satisfies ex(B′) ⊂ ex(B). Note that for consistency, even
zero-dimensional boxes must have a size. When a zero-dimensional box B is split,
there is only one child, but splitting still has significance because the size is halved,
which diminishes ex(B) and therefore co(B).

Earlier, when describing the alignment condition, we introduced the terms “ex-
tended orbit” and “completely cover.” Recall that we defined extended orbit to be
the union of the orbit OF of a face F united with the protected boxes for all proper
subfaces of F from previous phases. In fact, QMG never forms extended orbits; in-
stead, the lower-dimensional active box faces of protected boxes act as proxies for
the protected boxes. A system of weights is used to determine the complete coverage
condition. In particular, every active box in QMG stores a weight associated with
each of its subfaces. Thus, an i-dimensional active box has 3i weights stored with it.
Each weight is a number between 0 and 1 that indicates what fraction of the subface
is “owned” by that active box. Initially, the top box owns all of its subfaces. When a
box is split, the weights are divided up among children. We omit the details of how
the weights get split up, but the upshot is that QMG can test whether a box subface
is completely covered by boxes in its orbit by adding up the weights associated with
that subface contributed by all the boxes containing it; complete coverage is indicated
by a weight sum of 1.0.

Although many details are omitted, we do mention one key point that reduces the
amount of searching and sorting in QMG. When testing the complete coverage rule,
it is necessary to look only at boxes of a single size. This means that the complete
coverage condition can be tested with a simple hash table. Consider the example in
Figure 7.1.

It can be shown that these more complicated rules introduced in this section are
equivalent to the definitions in the preceding sections in the following sense. For a
given input P , the quadtree generation procedure produces the same sequence of full-
dimensional boxes whether we follow the rules of this section or preceding sections.

The protected boxes are linked together by pointers; in particular, a protected
box of dimension i has pointers to all the protected boxes of dimension i+ 1 of which
it is a subface. This data structure serves as the basis for triangulation.

The triangulation algorithm is based on our other paper [12] and is as follows.
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u

E

B

B’

B’’

Fig. 7.1. The alignment condition taking into account lower-dimensional boxes. The lower
left-hand box B is protected in phase 0 for the vertex u of P in its interior. The right edge of this
box—call it B′—becomes a new active box. It is uncrowded; its associated P -face is E (E is the
dashed segment); and its close subface is the whole box B′. During the alignment phase 1, this
1D box is split because the weight of B′ associated with B′ itself is only 0.5. Once B′ is split in
half, its lower half no longer meets E and hence is placed into I2. Its upper half, together with
the full-dimensional active box labeled B′′, completely covers the upper half of B′ so the alignment
condition is satisfied.

Let a chain be a sequence of nested boxes B0, . . . , Bd such that the dimension of Bi
is i. “Nested” means that, for each i, Bi is a face or subset of a face of Bi+1. Let
v0, . . . ,vd be the close points of B0, . . . , Bd. Then the simplex whose vertices are
v0, . . . ,vd is put in the triangulation. Thus, the triangulation has one simplex for
each chain. The only exception is when a close point is repeated in this chain; in this
case, the simplex is said to be null and is not included in the triangulation. QMG
enumerates all possible chains with a stack-based search algorithm. An example of
the triangulation algorithm is presented in Figure 7.2.

We can now explain the importance of the alignment condition in Figure 7.3.
As is seen from the figure, if the alignment condition were not enforced, then the
triangulation algorithm described in the preceding paragraph would be invalid.

8. Aspect ratio. In our analysis of QMG, which begins in section 10, we demon-
strate two optimality properties: the triangulation generated by QMG has optimal
aspect ratio, up to a certain factor, and also optimal cardinality (compared with all
other bounded aspect ratio triangulations), up to a certain factor. Before demon-
strating these properties, we must provide definitions for aspect ratio, sharp angle,
and so on. This mathematical background is the topic of this section and the next
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Fig. 7.2. An example of the triangulation procedure in the case d = 2. All six full-dimensional
protected boxes in this figure are associated with P -edge E. The dotted lines are boundaries of boxes
that are not present in the final triangulation. The solid segments are all part of the triangulation.
The close point for the two small boxes on the left is the point near (0, 2) marked in the figure. An
example of a nonnull chain in this figure would be starting from the vertex (0, 0) (whose close point
is at (0, 0) and is associated with the 2D face P itself), then the edge {0}× [0, 2] containing it, whose
close point is the marked point on E near (0, 2), and finally the box [0, 4]× [0, 4], whose close point is
the marked point near (4, 4) on E. An example of a null chain would be the vertex at (4, 0) (whose
close point is at (4, 0)), the edge {4} × [0, 4] (whose close point is on E near (4, 4)), and finally the
box [4, 8] × [0, 4], which has the same close point near (4, 4). This figure shows a triangulation on
both sides of E for illustrative purposes, although if E were a boundary edge, in fact only one side of
E would be triangulated. As mentioned in the introduction, however, the actual implementation of
QMG allows internal boundaries, so the above situation of triangulating both sides of an edge does
occur with QMG.

B

p

E

v

u

F

Fig. 7.3. An inconsistency that would arise during triangulation if the alignment condition
were not enforced. In particular, the close point of box B is point p, which lies on P -face F and also
on the right edge of box B. Thus, the close face for B is this edge. The alignment condition does
not hold; that is, the close face of B is covered by smaller boxes on the right. If the triangulation
algorithm were applied despite the violation of the alignment condition, then an illegal triangulation
would result. For instance, the close point of edge E is one of its endpoints, say, endpoint v. Then
the chain consisting of u, then E (whose close point is v), and then B (whose close point is p) is
a flat simplex, that is, a triangle with collinear vertices. Such a simplex has infinite aspect ratio
and must not be allowed in a triangulation. Note that a degenerate simplex like this is not a null
simplex as defined in section 7: this degenerate simplex does not have any repeated vertex, and hence
it cannot be legally dropped from the triangulation.
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section. In this section, all norms are assumed to be Euclidean norms (i.e., 2-norms),
although most of the bounds are valid for other standard norms as well (since the
bounds include a multiplicative factor depending on d).

First, we provide some standard definitions from linear algebra. An affine set X
is the solution to a system of linear equations, that is, X = {x ∈ Rd : Ax = b}
for some m× d matrix A with linearly independent rows and some m-vector b. The
dimension of this affine set is d −m. Let Y be any subset of Rd. The affine hull of
Y is defined to be the lowest-dimensional affine set that contains Y and is denoted
aff(Y ). It can be shown that aff(Y ) is uniquely determined by this definition. In
particular, it can be shown that aff(Y ) is the set of all points that can be written in
the form α1y1 + · · ·+ αsys, where s is an arbitrary positive integer, y1, . . . ,ys ∈ Y ,
and α1, . . . , αs is an arbitrary sequence of real numbers that add up to 1. Let F be a
face of P . Since P is polyhedral, aff(F ) and F have the same dimension.

We now define aspect ratio.
Definition 8.1. Let T be a d-simplex in Rd with vertices v0, . . . ,vd. Then

the altitude of T at vi is defined to be dist(vi, aff(v0, . . . ,vi−1,vi+1, . . . ,vd)). The
minimum altitude of T , denoted minalt(T ), is the minimum altitude over all choices
of vi for i = 0, . . . , d.

Definition 8.2. For a d-simplex T in Rd, the maximum side length of T ,
denoted maxside(T ), is defined to be

max{‖vi − vj‖ : i, j = 0, . . . , d},

where v0, . . . ,vd are the vertices of T .
Definition 8.3. The aspect ratio of a simplex T is defined to be

asp(T ) = maxside(T )/minalt(T ).

Thus, the aspect ratio is always at least 1, and large aspect ratios indicate poor-
quality elements.

In the remainder of this section, we characterize aspect ratio in terms of matrix
norms. Given a d-simplex T , we define its associated matrix MT to be the d×d matrix
whose ith column, i = 1, . . . , d, is vi − v0. Thus, MT depends on the numbering of
the vertices, and in particular, v0 plays a distinguished role. However, we note the
following: if we define M ′T according to a different numbering of the vertices, the
columns of M ′T can be obtained from the columns of MT by subtracting pairs of
columns in MT and then permuting. In linear algebra terms, there exists a d × d
matrix L all of whose entries are 0’s except for possibly one 1 and one −1 in each
column such that M ′T = MTL, and such that L−1 has the same properties (all 0’s
except for possibly one 1 and one −1 per column).

The following two results hold for any numbering. These lemmas use the following
well-known linear algebra fact. The norm of a d × d matrix is bounded above and
below by constant multiples (where the constant depends on d) of the maximum norm
among its columns, and also above and below by constant multiples of the maximum
norm among its rows. In the remainder of this article, cd denotes a constant depending
only on d, which may change from formula to formula.

Lemma 8.4. Let σ denote maxside(T ). Then

cdσ ≤ ‖MT ‖ ≤ Cdσ,

where cd, Cd are two constants depending only on d.
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Proof. There are two cases, depending on whether σ is the length of a side
adjacent to v0. In the first case, say that σ = ‖v1 − v0‖. Then both inequalities are
easy because σ is the norm of the first column of MT , and all the other columns of
MT have norms bounded above by σ.

The other case is that σ is the length of a side not adjacent to v0. We can
reduce to the first case by renumbering the vertices and noting that the norms of
the transformation matrices mentioned above, ‖L‖ and ‖L−1‖, are bounded above by
constants depending only on d.

Lemma 8.5. Let µ = minalt(T ). Then

cd/µ ≤ ‖M−1
T ‖ ≤ Cd/µ,

where cd, Cd are two constants depending only on d (not necessarily the same constants
as in the previous lemma).

Proof. Let uT be the ith row of M−1
T . Then MT

T u is a column of the identity ma-
trix. (The superscript T denotes transpose. The subscript T indicates the association
of M with simplex T .) Geometrically, this means that u is orthogonal to d−1 columns
ofMT ; in particular, u is orthogonal to the plane aff(v0, . . . ,vi−1,vi+1, . . . ,vd). Thus,
u is parallel to the altitude from vertex i. Its length is chosen so that its inner product
with vi − v0 is 1, which implies that its inner product with the true altitude vector
is 1. Thus, the ith row of M−1

T is parallel to the altitude vector from vi but is scaled
so that its length is the reciprocal of the altitude.

Then we see that the rows of M−1
T have lengths equal to reciprocals of altitudes

from v1, . . . ,vd, with the shortest altitude being the reciprocal of the norm of the
largest row. This proves the lemma, provided that the minimum altitude is not
adjacent to v0. The case when the minimum altitude is adjacent to v0 is handled by
renumbering as in the previous proof.

We conclude from these two lemmas that asp(T ) is within a constant factor of
‖MT ‖ · ‖M−1

T ‖, that is, the condition number κ(MT ). Combining these lemmas with
the Hadamard inequality yields the following well-known result:

cd minalt(T )d ≤ vol(T ) ≤ Cd maxside(T )d.(8.1)

9. Angles and PL paths. In the preceding section, we defined “aspect ratio.”
It turns out that we can show that QMG produces triangulations whose aspect ratio
is bounded above in terms of the sharpest angle of the input domain P . In this
section, we provide the definition of “sharpest angle” and a theorem stating that any
possible triangulation of P has aspect ratio bounded below in terms of the sharpest
angle. Thus, the theorem in this section is the lower bound necessary to prove that
the QMG triangulation is optimal.

Let x,y be two points in P . A piecewise linear (PL) path Π from x to y is a path
composed of a finite number of line segments. The endpoints of the segments are the
breakpoints of Π. The length of this path, denoted lth(Π), is the sum of the lengths
of the individual segments. Suppose that x ∈ F and y ∈ G, where F and G are two
faces of P . We will say that Π is contractible if there exists a point z such that the
segment xz lies in F , the segment yz lies in G, and for all v ∈ Π, the segment vz
lies in P . Note that this definition forces z to lie in both F and G. Thus, a necessary
condition for contractibility is that F and G have a nonempty common subface.

Note that we should really apply this term “contractible” to a triplet (Π, F,G),
since the definition depends on the specification of F and G as well as on the path Π.



QUALITY MESH GENERATION 1349

x

y

z

F

G

Π
1

Π
2

Fig. 9.1. In the d = 2 case, F and G are two boundary segments meeting at boundary vertex
z. The polygon has a square hole in it: the interior of P is shaded. The PL path Π1 connects a
point x ∈ F to y ∈ G. This path is contractible to z. On the other hand, path Π2 is incontractible.

When we use the term, the choice of F and G will be understood from context. The
opposite of contractible is incontractible.

Let T be an arbitrary triangulation of P (not necessarily the triangulation pro-
duced by QMG). If a path Π is contractible, we can obtain a lower bound on the
aspect ratios of simplices of T that meet Π. On the other hand, if Π is incontractible,
we can obtain an upper bound on the minimum altitude of simplices that meet Π.
The remainder of this section is devoted to stating and proving these two results.

We start with the definition of the “angle” between two P -faces F and G, which
is defined by contractible paths.

Definition 9.1. Let F,G be two faces of P , and suppose x ∈ F and y ∈ G. Let
Π be a contractible PL path from x to y. Let A be the affine set aff(F )∩ aff(G). The
angle determined by (x,y, F,G,Π) is

θ =
lth(Π)

min(dist(x, A),dist(y, A))
.(9.1)

We say that the sharpest angle formed by F and G is the infimum of (9.1) over all
contractible paths from F to G (assuming that at least one contractible path from F
to G exists). Finally, we say that the sharpest angle in P is the infimum over all
angles.

In the denominator of (9.1), “dist” denotes ordinary Euclidean distance. Note
that z, the base of the contraction, does not appear in (9.1). An example of a
contractible path is given in Figure 9.1. We are concerned with the case when this
angle is small, so large angles have no significance. Thus, the degenerate case when
the denominator of (9.1) is 0 (which happens, for instance, if F is a superface of G or
vice versa) is not relevant for our analysis.

In the case d = 2, the previous definition is within a constant factor of the
ordinary notion of an angle between two edges of a polygon, since only the case
dim(F ) = dim(G) = 1 matters when d = 2.

Now for the first main result of this section: we show that if there is a contractible
path Π forming an angle θ, then θ−1 is a lower bound on the aspect ratio of at least
one simplex in every possible triangulation of P .

Theorem 9.2. Let F,G be two P -faces, and assume there is a contractible path
from F to G. Let θ be the value of the sharpest angle between F and G. Let T be an
arbitrary triangulation of P . Then there is a simplex T in the triangulation with a
vertex lying on F ∩G such that asp(T ) ≥ cd/θ.
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Proof. Let (x,y,Π) be the triple defining the sharpest angle θ between F and
G, and let z be the point in F ∩ G to which we can contract Π. (Stating this more
carefully, since sharpest angle is defined as an infimum, we should say that (x,y,Π)
defines an angle of size (1 + ε)θ, where ε > 0 is arbitrarily small. But the 1 + ε factor
can be absorbed by the cd factor.) Let H be the P -face contained in F ∩ G that
contains z. (If there is more than one P -face H satisfying z ∈ H ⊂ F ∩ G, choose
any such H.) Let A = aff(F ) ∩ aff(G). Note that H ⊂ A, since H ⊂ F ∩G.

In the triangulation of P , restrict attention to simplices of T that have at least
one vertex on H. Call this collection of simplices T ′. Since T ′ is a finite set, there
is an ε > 0 such that every point in v ∈ P satisfying dist(v,z) ≤ ε and vz ⊂ P is
contained in a simplex from T ′. Then we can contract (x,y,Π) toward z (i.e., replace
x by (1 − λ)z + λx, y by (1 − λ)z + λy, and each point v ∈ Π by (1 − λ)z + λv
for some fixed λ ∈ (0, 1]) so that, without loss of generality, all of Π is covered by
simplices in T ′. Note that the contraction operation does not affect the value of θ
because the numerator and denominator of (9.1) scale by the same amount when we
contract toward z.

Without loss of generality, dist(x, A) ≥ dist(y, A); define α = dist(y, A). Define
β = lth(Π). Thus, θ = β/α is the sharpest angle. Now define a continuous piecewise
linear function f : P → R as follows. We first define f on the vertices of T as follows.
For each T -vertex v ∈ G we define f(v) = dist(v, A) where distance is measured in
the ordinary Euclidean sense. Since H ⊂ A, this fixes f(v) = 0 for vertices v ∈ H.
For all other vertices v of T we define f(v) = 0. Notice that all vertices v of F have
f(v) = 0 because the intersection of F and G is contained in A. Now extend f to all
of P by linearly interpolating over each simplex. This yields a uniquely determined
piecewise linear function f : P → R. Notice that f is identically 0 on F .

Next, we claim that f(y) ≥ α. Notice that for points on G, f is a linear inter-
polation of the function u 7→ dist(u, A). This latter function is a convex function
because A is convex. A linear interpolant of a convex function is always greater than
or equal to the function value itself; thus f(y) ≥ dist(y, A) = α.

On the other hand, f(x) = 0 because x ∈ F . Let f |Π be the restriction of f to Π;
then f |Π is PL and continuous and increases by α. The length of Π is β. Therefore,
there is a point u where the directional derivative of f at u parallel to Π is at least
α/β in magnitude. Let T be the simplex of T containing u (if there is more than one
such T , choose arbitrarily). Note that T ∈ T ′ because we are assuming Π is covered
by T ′. On this simplex T , since the gradient is constant, ‖∇f‖ ≥ α/β.

There is an analytic expression for ∇f on T as follows. Let us number the vertices
of T with v0, . . . ,vd so that v0 is a vertex on H. (Recall that every simplex in T ′ has
at least one vertex on H.) Let ri = f(vi) for i = 0, . . . , d. Thus, r0 = 0 because f
is zero on H, as noted above. Then one checks that f(u) on T is given by the linear
mapping f(u) = rTM−1

T (u − v0), where MT was defined earlier, and rT denotes
(r1, . . . , rd). Then we see that ∇f on T is given by (MT

T )−1r, so

‖∇f‖ ≤ ‖M−1
T ‖ · ‖r‖ ≤ cd · (max |ri|)/minalt(T ).

Notice that max |ri| is the maximum distance of a vertex of T from A, but this is at
most maxside(T ), since T has an edge from each of its vertices to v0, which lies on
A. Thus,

‖∇f‖ ≤ cd maxside(T )/minalt(T )

= cd asp(T ).
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On the other hand, we showed in the previous paragraph that ‖∇f‖ ≥ α/β, which is
the reciprocal of θ. Thus, we have proved that the aspect ratio of T is bounded below
by the reciprocal of the sharpest angle between F and G.

The previous result shows that the presence of a contractible path gives a useful
bound that is applicable to any triangulation T . On the other hand, the presence of
an incontractible path also gives a useful bound. We start with a lemma and then
prove the main result.

Lemma 9.3. Let Π be an incontractible path from x ∈ F to y ∈ G. Let T be an
arbitrary triangulation of P . Let F1, . . . , Fm be an enumeration of all the faces (of all
dimensions including d) of T that meet Π. Then F1 ∩ · · · ∩ Fm = ∅.

Proof. Suppose that F1, . . . , Fm have a common point z. Since the triangulation
is boundary conforming, z lies on a common subface of F and G (because the lowest-
dimensional triangulation face meeting x must be a subface of F , and similarly for
the lowest-dimensional face meeting y). Furthermore, every point v on Π is covered
by a simplex that also covers z. Since simplices are convex, this simplex also covers
the segment vz. Thus, Π is contractible to z, contradicting the assumption.

Theorem 9.4. Let F,G be two P -faces, and let Π be an incontractible path from
x ∈ F to y ∈ G. Let T be an arbitrary triangulation of P . Then T contains a simplex
T meeting Π such that

minalt(T ) ≤ cd lth(Π).

Proof. Let F1, . . . , Fm be an enumeration of faces of T meeting Π. By the
preceding lemma, F1 ∩ · · · ∩ Fm = ∅. Let the vertices of F1 be denoted v0, . . . ,vs,
where s ≤ d. Since Π meets F1, there is a point, say, z, on Π that can be written as
a convex combination of the vertices of F1:

z = λ0v0 + · · ·+ λsvs,

where each λi is nonnegative, and λ0 + · · · + λs = 1. Therefore, for some i, λi ≥
1/(s+ 1) ≥ 1/(d+ 1). Without loss of generality, say that λ0 ≥ 1/(d+ 1). Note that
since the Fi’s are disjoint, there is some Fi that does not contain v0. Let this other
face be denoted F2.

Let f : P → R be a PL continuous function defined as follows. We set f(v0) = 1.
For all other vertices v of T , set f(v) = 0. Now extend f to all of P by linear
interpolation over the simplices in T . Note that f(z) = λ0f(v0) + · · ·+ λsf(vs), and
hence f(z) ≥ 1/(d + 1). On the other hand, let w be the point where Π meets F2;
note that f(w) = 0 since f is identically zero on F2 (because f is defined to be zero
on all vertices of F2).

We now conclude the proof using the same technique as in Theorem 9.2. Along
path Π, f is PL and continuous and decreases by at least 1/(d + 1) (from z to w).
Therefore, there is a point u on Π such that f has a directional derivative at u parallel
to Π whose magnitude is at least (1/(d+1))/ lth(Π). Let T be the simplex containing
u. Then on this simplex T , since the gradient is constant, ‖∇f‖ ≥ 1/((d+ 1) lth(Π)).

We obtain an analytic expression for ∇f on T as follows. Let us number the
vertices of T with v0, . . . ,vd. Let ri = f(vi) − f(v0) for i = 0, . . . , d. Thus, |ri| ≤ 1
for each i. As earlier, ∇f on T is given by (MT

T )−1r, so

‖∇f‖ ≤ ‖M−1
T ‖ · ‖r‖ ≤ cd/minalt(T ).

Combining this inequality with the inequality proved in the previous paragraph proves
the theorem.
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10. QMG aspect ratio in terms of neighboring box sizes. In this section
we begin our analysis of the aspect ratio bound for QMG. In general, we cannot
establish a universal constant upper bound on the aspect ratio of the triangulation
produced by QMG because if P has sharp angles, then any possible triangulation,
including QMG, will have poor aspect ratio near the sharp angle, as proved by The-
orem 9.2. Thus, we want to show that the sharpest angle of any simplex-generated
QMG is very sharp only if the input polyhedron itself has a sharp angle.

In this section we argue that the worst-case aspect ratio produced by QMG is
bounded in terms of the ratio of sizes of neighboring boxes. This section requires an
understanding of the analysis in our paper [12]. In subsequent sections, we bound
this box-size ratio in terms of the sharpest angle. Thus, the combination of these
arguments bounds the aspect ratio of QMG in terms of θ(P ).

From now on, we denote the sharpest angle in P by θ(P ). In particular,

θ(P ) = min(1,min{θ(x,y, F,G,Π)}),(10.1)

where θ(x,y, F,G,Π) is defined as in (9.1) and the inner min is taken over all allowable
choices of (x,y, F,G,Π) for (9.1). The outer min is included because, as mentioned
above, we are concerned only about the case of small angles. If the minimum angle
is large, then it has no impact on our bounds.

Let B be a box. As above, we define size(B) to be the length of a side of B. Let
B,B′ be two neighboring protected boxes such that co(B) and co(B′) have a common
point. (Here, co(B) refers to the content of B at the time it became protected.
The contents of two neighboring boxes might not have a common point if the boxes’
common subface is completely outside P because of boundaries that cut through the
boxes or because of duplication.) Suppose size(B) ≥ size(B′). These boxes have
box-size ratio size(B)/ size(B′). Let r be the maximum box-size ratio in the whole
triangulation produced by QMG. We argue in this section that the worst aspect ratio
in QMG is at most cdr.

Consider a simplex T generated by QMG. As in [12], this simplex comes from a
chain of d+ 1 nested box subfaces. Unlike [12], these box subfaces can have different
sizes; in particular, the subfaces in the chain can grow in size as the dimension of the
box face increases.

A consequence of the alignment condition presented in section 6 is as follows. Let
Bi, Bi+1 be two boxes in a chain, so that dim(Bi) = i and dim(Bi+1) = i + 1. Let
the close points of these boxes be vi,vi+1. Then either vi = vi+1 or

dist(vi+1, aff(Bi)) ≥ cd size(Bi+1).(10.2)

The reason is as follows. Let C be the close face of Bi+1. Let B∗ be the i-dimensional
face of Bi+1 that contains Bi. If C is a subface of B∗, then the alignment condition
implies that B∗ must also be protected, and hence B∗ = Bi and vi = vi+1. Else C is
not a subface of B∗, which means that vi is bounded away by cd size(Bi+1) from B∗

as argued in [12], because the neighborhoods N(·) defined earlier create an exclusion
zone around B∗.

Let MT be the d×d matrix associated with T defined above, with columns ordered
according to the chain order. Because of (10.2), MT , when scaled to unit box size,
satisfies analogues of the inequalities that were developed in [12] in the case of unit
box size.

In particular, let ST be the d× d diagonal matrix whose ith entry is the box side
length of the ith box face in the chain defining T . Then the matrix N = MTS

−1
T
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has its columns rescaled so that each column corresponds to a difference between two
vertices in a unit-size cube. Slight generalizations of the bounds proved in [12] apply
to N (actually, that paper considered the transpose NT). In particular, the bounds
in [12] imply that ‖N‖ and ‖N−1‖ are at most cd.

Since κ(MT ) ≤ κ(N)κ(ST ), we have from the last paragraph that κ(MT ) ≤
cdκ(ST ). Note that all the box faces in a chain come from mutual neighboring cubes,
so κ(ST ) ≤ r. Therefore, κ(MT ) ≤ cdr. This argument has established the following
theorem.

Theorem 10.1. Let ρQMG(P ) denote the worst-case aspect ratio produced by
QMG when applied to polyhedral domain P . Then there exist two neighboring protected
boxes B,B′ such that co(B) ∩ co(B′) 6= ∅ and such that

ρQMG(P ) ≤ cd · size(B)/ size(B′).

In subsequent sections, we bound the maximum box-size ratio in terms of the
sharpest angle θ(P ). The ultimate goal is Theorem 15.1, which bounds ρQMG(P ) in
terms of θ(P ).

11. A bound on splitting for alignment. As we saw in the preceding section,
the aspect ratio of QMG can be bounded if we can bound the number of times boxes
are split. The following is the key theorem about how many times a box can be split.
The proof of Theorem 11.1 will be the topic of this and the next few sections.

Theorem 11.1. Let P be the input polyhedral region, whose sharpest angle is
θ(P ) defined by (10.1). Let B be a protected box produced by QMG. Then there exists
an active box Ba that is an ancestor of B such that

size(Ba) ≤ cdθ(P )−φ(d) size(B),(11.1)

where φ(d) = (d − 1)(d − 2)/2 + 1, and such that co(Ba) contains an incontractible
path Π satisfying lth(Π) ≤ cd size(Ba). We call Ba the anchor of B.

Recall that QMG splits boxes in both the separation and alignment stages. The
purpose of this section is to show that the amount of splitting for alignment is bounded
by cd, which is one step in the proof of Theorem 11.1. We start with two preliminary
lemmas, which lead to the main result, Lemma 11.4, at the end of this section. That
lemma is one step in the proof of Theorem 11.1.

Lemma 11.2. Let B be a box with a neighbor B′ such that co(B) ∩ co(B′) 6= ∅.
There is a constant cd such that if size(B′) ≤ cd size(B), then co(B′) ⊂ co(B).

Proof. Let s = size(B) and s′ = size(B′). Then ex(B) extends out by γs from all
sides of B. Hence ex(B) contains any point within ∞-norm distance γs from B. In
particular, if (1 + γ)s′ ≤ γs, then ex(B′) would be completely contained in ex(B); let
cd in the lemma be this factor γ/(1 + γ). Let x be a point in co(B′) ∩ co(B). Then
every point in co(B′) is reachable by a PL path in co(B′) from x. This means that
all of co(B′) is contained in the component of P ∩ ex(B) that contains x, which must
be co(B).

Lemma 11.3. Let B be a box that is split for alignment: in particular, say B is
split during processing of OF in phase k for some face F . Then there exists another
active box B∗ created by QMG such that (1) size(B∗) = size(B), (2) B∗ was split
before the phase k alignment stage (i.e., B∗ was split during phases 0, . . . , k− 1 or in
the phase k separation stage), and (3) there is a PL path in P from co(B) to co(B∗)
of length at most cd size(B).

Proof. Let us first prove the lemma for the simplified version of QMG in which
all the boxes are full dimensional. In this case, the alignment condition was described
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in section 6 as follows: B is split for alignment because its high-priority close face,
say, C, is not completely covered by (full-dimensional) boxes in the extended orbit of
F the same size or larger when B is processed.

Consider the collection of boxes obtained by taking all boxes produced by any
step of simplified QMG that are the same size as B. Consider also all those boxes
larger than B that are leaf boxes (i.e., protected). Notice that this collection of boxes,
say, Q, completely covers the input domain; some parts of Rd could be double covered
because of duplication.

Let the enumeration of all boxes inQ that cover C be denoted B1, . . . , Bm; exclude
B itself from this enumeration. Since F is close to C, F meets N(C) and hence also
co(B). Let x be a point where F meets N(C). Among B1, . . . , Bm, consider only
those Bi such that x ∈ co(Bi). The case when x /∈ co(Bi) could occur only because
of duplication; there could be duplicates of neighbors of B that do not contain x.

Rename the remaining boxes again as B1, . . . , Bm; note that these boxes together
with B must cover C. Since the alignment condition does not hold for B, one of
them, say, Bi, is already split at the time B is processed. The box that is already
split must have the same size as B (i.e., it cannot be one of the larger boxes in Q
because those boxes are all protected). Without loss of generality, Bi is the earliest
box among B1, . . . , Bm to be split.

Case 1 is that this box Bi was split during a phase 0, . . . , k−1, or during phase k
separation. In this case the lemma is proved with B∗ = Bi; note that the two boxes
contain x in their content so that condition (3) of the lemma is trivial.

The remaining case, case 2, is that Bi is split during the phase k alignment stage
before B is processed. Rename Bi as B′. Note that since co(B′) meets F , then B′

must be in OF . Since B′ is the first box among B1, . . . , Bm to be split during phase k
alignment, C is still covered by boxes in the orbit of the same size or larger at the time
the alignment condition is checked for B′. Let C ′ be the close face of B′. Note that C ′

is not covered by boxes in the orbit of the same size or larger, since we are assuming
B′ is split for alignment in phase k. It is not possible that dim(C ′) ≥ dim(C) because
then C would have higher priority than C ′ and hence C ′ would not be selected as the
close face of B′. (Recall that the priority rule favors faces of lower dimension and,
among faces of the same dimension, favors faces completely covered by boxes in the
orbit.) Thus, dim(C ′) < dim(C). Start the proof of this lemma over again with B′

and C ′. In other words, consider the boxes in the quadtree at the level of B′ that
cover C ′. Either for B′ we will “exit” this argument in case 1 (i.e., we find a box B∗

that satisfies the lemma for B′), or we will have to restart the argument another time.

But note that each time we restart the above argument, the dimension of the close
face in question decreases by 1. Thus, we can repeat the argument at most d times
before terminating at case 1. Let the sequence of boxes constructed by repeating this
argument be B,B′, B′′, . . . , B(r), B∗, where B∗ is a box split before phase k alignment.
Note that r ≤ d as just mentioned. Also, all boxes in this sequence are the same size,
and B(i) is adjacent to B(i+1) for each i. Furthermore, co(B(r)) has a common point
with co(B∗), and all of B(1), . . . , B(r) are in OF . This means that we can find a PL
path in P from B to B(r) by traversing F through each box. (Recall that a box in
OF cannot meet any boundaries of F in its content.) The length of the PL path
constructed in this manner is at most cd size(B). This proves the lemma.

If we wanted to extend this proof to the case of the complete version of QMG (in-
cluding lower-dimensional boxes), we would use the same proof as above, except that
we would have to restate the meaning of “completely covered” in terms of the weight
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system mentioned in section 7. Because we have incompletely described the weight
system and skipped the lemmas showing that lower-dimensional boxes do indeed act
like proxies for the full-dimensional boxes that contain them, we do not have enough
machinery to prove this lemma in the general case; hence we merely assert it.

The preceding lemma now leads to the main result of this section, which says that
during splitting for alignment, boxes can become only a constant factor smaller.

Lemma 11.4. Let B be a box that results from splitting for alignment during the
processing of OF for some k-face F . Then B is descended from an active box B′ at
the start of the phase k alignment stage such that size(B′) ≤ cd size(B).

Proof. Let B0 be a parent of B, so that B0 was split for alignment during the
processing of OF and so that size(B0) = 2 size(B). By the preceding lemma, there
is another box B∗ that was either protected from an earlier phase or was split for
separation such that there is a PL path Π in P from co(B∗) to co(B0) of length at
most cd size(B0).

Let B′ be the ancestor of B0 at the beginning of phase k alignment in OF .
Observe that there is a constant χd depending on d such that if B′ satisfied size(B′) ≥
χd size(B0), then co(B′) would contain co(B∗) as a subset. This follows from the same
proof technique used for Lemma 11.2; in particular, if B′ were sufficiently larger than
B0, it would contain the whole path Π and also co(B∗).

On the other hand, it is impossible that co(B′) contains co(B∗). This is because
B∗ was split for separation in phase k or was split in a phase earlier than k. Whatever
P -faces caused B∗ to be split would cause B′ to be crowded, and hence B′ could not
end up in OF .

Thus, we conclude size(B′) < χd size(B0), which proves the lemma.
This lemma shows that all splitting for alignment can be lumped into the factor

cd in (11.1).

12. Splitting boxes for weak crowding. Recall that a box is split for sepa-
ration if and only if it is crowded. Recall also that there are two ways that B can be
crowded in phase k: (1) co(B) contains a P -face of dimension k − 1 or lower, or (2)
co(B) contains a P -face F of dimension k, and another P -face G of dimension k or
greater that is not a superface of F .

We call the former “weak crowding” and the latter “strong crowding.” In this
section we show that all splitting for weak crowding can also be lumped into the factor
cd in (11.1), which is another step toward proving Theorem 11.1.

Lemma 12.1. Let B be a box that is split for weak crowding; that is, in the
phase k separation stage, co(B) meets a P -face of dimension k − 1 or lower. Then
B has an ancestor B0 that is an active box at the beginning of phase k such that
size(B) ≥ cd size(B0).

Proof. The assumption implies that the P -face F of dimension k − 1 or lower
meets ex(B). Let B0 be the ancestor of B from the beginning of phase k. We claim
that B0 can be at most a constant factor cd larger than B. This is because the
expansion factors for ex(B) and ex(B) are off by a constant cd. Recall that ex(B)
was defined in section 6 and is applied here with respect to face F . Therefore, the
ancestor of B0, if it is much larger than B, would contain this P -face F in ex(B0).
Recall that if F meets ex(B0), then B0 has a subface close to F . Hence B0 would
have been protected in phase dim(F ), which is less than k, or would have been split
for separation. Thus, B0 is at most cd larger than B.

Thus, all splitting for weak crowding can also be lumped into the factor cd in
(11.1).
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F

Fig. 13.1. Lemma 13.1 in the case k = d = 2. Face F is a single vertex. The boundary of P is
the solid line. The convex set C is the dashed square in the figure. The shaded region is U . Notice
that every point in U is visible to F .

13. Splitting for strong crowding. In this section we analyze splitting for
strong crowding and finally prove Theorem 11.1. Recall that “strongly crowded”
means that there is a P -face F of dimension k in co(B), and another P -face G of
dimension l ≥ k in co(B) that is not a superface of F . From now on, we say that G
is “foreign” to F if G is not a superface of F . We say that two points x and y are
“visible” to each other with respect to P if segment xy lies in P . We start with two
lemmas about visibility.

Lemma 13.1. Let P be a k-dimensional polyhedral domain in Rd, and let C be
a closed convex subset of Rd. Suppose P ∩C is not empty, and let U be a component
of P ∩C. Suppose that U meets a P -face F and that U does not meet any faces of P
that are foreign to F . Then every point in U is visible to every point in F ∩U , where
“visibility” is with respect to U .

See Figure 13.1 for an illustration of this lemma.
Proof. Let x be a point in F∩U and y a point in U . Consider the segment L = xy;

suppose that this segment is not contained in U . We will derive a contradiction. Since
y ∈ U and U is closed, there must be some point z ∈ L different from x such that z is
in U , but there is a sequence of points z1,z2, . . . lying on L and converging to z that
are not in U . Note that all of these points lie in C because C is convex and L joins
two points in C. Thus, since these points are not in P ∩C, we conclude that they are
not in P . This means that there is at least one facet H of P (where “facet” refers to
a face of dimension k − 1) passing through z such that aff(H) does not contain L as
a subset.

But this is impossible, because every facet of P meeting U in this component
is a superface of F by assumption. This means in particular that for H in the last
paragraph, x ∈ aff(H). But since aff(H) is convex and contains x and z, it also
contains L.

Lemma 13.2. Let P be a k-dimensional polyhedral domain in Rd, and let C be
a closed convex subset of Rd. Suppose P ∩C is not empty, and let U be a component
of P ∩ C. Suppose that U meets a P -face F , and suppose that U also meets a face
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F
H

G

Fig. 13.2. Lemma 13.2 for d = 2. Face F is a single vertex. The convex set C is the dashed
square in the figure. The shaded region is U . Note that there is a vertex G of P that is foreign to
F . This means that there is a face, namely, vertex H in U , that is also foreign to F but is visible
to F ∩ U .

G of P foreign to F . Then for any point x ∈ F ∩ U , there is a point y ∈ U that is
visible to x (with respect to U) such that y lies on a P -face foreign to F (which may
or may not be G).

See Figure 13.2 for an illustration.
Proof. For λ ∈ [0, 1], let C(λ) denote the contraction by λ of C toward x (i.e.,

v ∈ C iff λv+(1−λ)x ∈ C(λ)). Let U(λ) be the component of C(λ)∩P that contains
x. Find the parameter value λ∗ > 0, such that U(λ∗) still meets a foreign face, but
U(λ∗ − ε) meets no faces foreign to F for all small ε > 0. By the preceding lemma,
every point in U(λ∗ − ε) is visible to x. Since the set of points visible to x is closed,
this means that every point in U(λ∗) is also visible to x, and this set includes a point
from a foreign face.

We now conclude the proof of Theorem 11.1. Let B be a protected box that
is produced by QMG. Write down its sequence of ancestors B0, B1, . . . , Br, where
Br = B and B0 is the top box. This sequence is not necessarily unique if Br is not
full dimensional, in which case any sequence of ancestors will do. Now, delete boxes
Bi in this sequence such that Bi+1 arises from Bi via subface launching. Denote the
new list B0, . . . , Br again. Each box is now a factor 2 smaller than its predecessor.
From this list, delete boxes that are split either for alignment or for weak crowding,
and denote the new list again as B0, B1, . . . , Br. This new list contains boxes that
are split only for strong crowding, as well as the protected box Br, which is not split.
By Lemmas 11.4 and 12.1, in this new sequence of boxes, each box differs from its
predecessor in size by a factor at most cd.

Each box B0, . . . , Br−1 is split during some phase 0 to d − 1. (There cannot be
any strong crowding in phase d by definition of strong crowding.) Therefore, mark
the location where each phase begins and ends in the sequence B0, . . . , Br−1. This
divides the sequence B0, . . . , Br−1 into periods, where the kth period consists of boxes
split during phase k.

Now subdivide each period into subperiods, using the following procedure. Focus
on one particular period k, and suppose it starts at Bl and ends with Bm (i.e., Bl
is the first box of the sequence split in phase k, and Bm is the last). Since Bm is
strongly crowded, there is a k-face of P , say, F , meeting co(Bm), and there is another
face G foreign to F meeting co(Bm). Pick a point x ∈ F ∩ co(Bm). Without loss of
generality, by Lemma 13.2, we can assume that there is a segment in co(Bm) from x
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to a point y ∈ G (else choose a different G). Similarly, without loss of generality, y is
not in any proper subface of G. (If y is in a proper subface of G, simply reselect G
to be the subface: because G is foreign to F , every subface of G is also foreign to F .)

We will construct a PL path Π in co(Bm). The first segment of the path is xy.
Consider whether G has any boundary faces that meet co(Bm). If not, then the
construction of Π is complete, and we let Π = xy. The other case is that a boundary
of G meets co(Bm). By Lemma 13.2, there is a segment in co(Bm) from y to a
boundary face of G. (In this application of Lemma 13.2, the “polyhedral domain”
in the lemma is G itself. Note that a boundary of G is foreign to G, i.e., is not a
superface.) Append this new segment to Π. We can continue in this manner until
we reach a point to which we will now reassign the name y, such that y lies on P -
face foreign to F , which we rename G, such that G does not have any boundaries
that meet co(Bm). Note that lth(Π) is at most d · √d(1 + γ) size(Bm). The factor√
d(1 + γ) size(Bm) is the diameter of ex(Bm) (in the worst case when Bm is full

dimensional) and hence is the maximum length of any segment in co(Bm), and the
factor d comes from the fact that Π has at most d segments in it. This is because in
the preceding construction of Π, each time a new segment is added, the dimension of
the boundary face in question decreases by at least 1. Thus, lth(Π) ≤ cd size(Bm).

Note that Π ⊂ co(Bi) for each i = l, . . . ,m, since co(Bm) ⊂ co(Bm−1) ⊂ · · · ⊂
co(Bl). On the other hand, in an ancestor of Bm, it might be possible to extend Π with
one or more additional segments so that it reaches a lower-dimensional boundary face
of G. Find the lowest numbered box Bq (largest in size) in the period Bl, . . . , Bm such
that it is not possible to extend Π to a P -face of lower dimension that is a boundary
of G. We will say that the subsequence Bq, Bq+1, . . . , Bm is one subperiod of period
k. Each box in this subperiod is associated with the quintuple (x,y, F,G,Π) defined
in the last paragraph. If q = l, we are done; this is the only subperiod of period k.

On the other hand, if q > l, then in Bq−1 it is possible to extend Π to reach
a face of lower dimension than was reached in Bq. Extend Π with one or more
additional segments, yielding a path Π′ to a face G′ that is a proper subface of G.
Now we repeat the above argument to find the predecessor of Bq−1, say, Bq′ , such
that Π cannot be extended in Bq′ but can be extended in Bq′−1 (or else q′ = l),
and we let Bq′ , Bq′+1, . . . , Bq−1 be another subperiod of period k, associated with
(x,y′, F,G′,Π′). We continue in this manner until we finally get back to Bl. The
maximum number of subperiods in period k is seen to be d − k. The reason is that
each time we back up to a new subperiod, the dimension of the face reached by Π
decreases by at least 1. The maximum possible dimension of G initially is d− 1, and
the minimum possible dimension is k (because no box among Bl, . . . , Bm is weakly
crowded).

Thus, we have divided the sequence of boxes B0, . . . , Br−1 into at most d periods
numbered 0, . . . , d − 1, and period k is divided into at most d − k subperiods. We
have also associated with each box a choice of (x,y, F,G,Π).

Now we can classify each box in the sequence according to whether its associated
path Π is contractible or not. Let Ba be the highest numbered (smallest) box in
B0, . . . , Br−1 such that its associated path is incontractible. (Notice that Ba exists
because B0 certainly satisfies this condition.) Thus, Ba satisfies the conditions of
Theorem 11.1 that it contains an incontractible path of length at most cd size(Ba),
and that it is an ancestor of B. All that remains is to establish (11.1). Note that the
anchor box must be the last one in its subperiod, because all boxes in a subperiod
have the same associated path. From now on, we consider only the portion Ba, . . . , Br
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Π
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ex(Bm)

ex(Bq)

Fig. 13.3. Items x,y, F,G,Π, A arising in the proof of (13.1). The boundaries of ex(Bq) and
ex(Bm) are the dashed lines. In this figure A is zero dimensional and is equal to F ∩ G, but in
general A will be a superset of F ∩G.

of the original sequence.
We start with the following intermediate result. Let Bm be a box in the sequence

with m > a, and suppose it is contained in a subperiod beginning with Bq (so a <
q ≤ m). Then we claim

size(Bm) ≥ cd · θ(P ) · size(Bq).(13.1)

Let us assume that Bm is a proper descendent of Bq because when m = q, (13.1) is
trivially true. Let (x,y, F,G,Π) be the quintuple associated with Bm; by definition
of subperiod, the same quintuple is associated with Bq. Since Π is contractible (by
choice of Ba), F ∩ G is nonempty. Let A denote aff(F ) ∩ aff(G). We claim that A
does not meet ex(Bq). See Figure 13.3 for an illustration of the items constructed
in the proof of this claim. Note that no boundary face of F meets co(Bq), because
co(Bq) does not meet any P -faces of dimension k− 1 or less (because it is not weakly
crowded). Thus, co(Bq) must contain all of aff(F ) ∩ ex(Bq). Similarly, co(Bq) does
not contain any boundary faces of G by construction of Π (else Π could be extended).
Thus, co(Bq) also contains all of aff(G) ∩ ex(Bq). Suppose that aff(F ) ∩ aff(G) met
ex(Bq); then co(Bq) would have to contain all of aff(F )∩aff(G)∩ex(Bq) = A∩ex(Bq)
by the foregoing argument. In particular, F and G would meet in co(B) at all points
in A ∩ ex(Bq). But this is impossible, because neither has any boundaries in co(Bq).

Since A does not meet ex(Bq), there is a lower bound of the form cd size(Bq)
on the distance from A to ex(Bm). This is because ex(Bq) extends a small fraction
cd multiplied by size(Bq) beyond ex(B′) for any proper descendant B′ of Bq. In
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particular, this means dist(x, A) ≥ cd size(Bq) and dist(y, A) ≥ cd size(Bq). On the
other hand, lth(Π) ≤ cd size(Bm), as argued above. Thus, in the definition of sharp
angle (9.1) applied to (x,y,Π), we see that F and G make an angle less than or equal
to cd size(Bm)/ size(Bq). Since θ(P ) is the sharpest angle,

θ(P ) ≤ cd size(Bm)/ size(Bq).

This equation proves (13.1).

We now deduce (11.1) from (13.1). If Bq is the beginning of a subperiod with
q > a, and Bm is its end, then size(Bq) ≤ cdθ(P )−1 size(Bm) from (13.1). Thus, if
φ stands for the total number of subperiods between Ba+1 and Br, then size(Ba) ≤
(cdθ(P ))−φ size(Br), where c−φd accounts for the factor in box size shrinkage between
the end of one subperiod and the beginning of the next, and θ(P )−φ accounts for
box shrinkage within the φ subperiods. Since there are at most d − k subperiods in
period k, the total number of subperiods φ can be bounded φ(d) = d(d+ 1)/2. Thus,

size(Ba) ≤ cdθ(P )−d(d+1)/2 size(Br) (where we have renamed c
−φ(d)
d as cd).

In fact, we can immediately improve this estimate on φ(d) with the following
observation. Note that if Bi is in period 0, then its path Π constructed above cannot
be contractible. This is because F in phase 0 is a vertex and hence is disjoint from
any foreign face G. Thus, the anchor box Ba either is the last box of period 0 or is
in a later period. This means that the only subperiods that matter are in period 1 or
later. Thus, we can improve the estimate to φ(d) = (d− 1)d/2.

We can further improve the estimate to (13.2) below with the following more
complicated analysis. We claim that in period 1, a single subperiod suffices. The
proof is as follows. Assume that the anchor box is in period 0 or 1 (else we would
not need to include subperiods of period 1 in the count of φ, so (13.2) holds already).
Let us review why we constructed subperiods in the first place. Let Bm be the box
at the end of a subperiod, let (x,y, F,G,Π) be its associated quintuple such that Π
is contractible, and let Bq be the first box in the subperiod ending at Bm. In the
above derivation of (13.1), we used the fact aff(F ) ∩ aff(G) cannot meet ex(Bq). To
derive this fact, we needed to know that G does not have any boundaries in co(Bq).
The above method of constructing subperiods indeed assures that G does not have
boundaries in co(Bq).

But consider the special case of period 1, so that dim(aff(F )) = 1. Let Bm
be the last box in period 1, and redefine Bq to be the first box of period 1, or the
child of the anchor Ba, whichever comes later. Let (x,y, F,G,Π) be the quintuple
for Bm. Since dim(F ) = 1, dim(aff(F ) ∩ aff(G)) is either 0 or 1. The case when
dim(aff(F ) ∩ aff(G)) = 1 cannot occur by the way we construct Π. In particular,
if dim(aff(F ) ∩ aff(G)) = 1, then aff(F ) ⊂ aff(G), which means that G either is a
superface of F (contradicting the choice of G as a foreign face) or has a boundary in
co(Bm) (contradicting the fact that Π reaches a face of minimal dimension).

The other case is that dim(aff(F ) ∩ aff(G)) = 0; in other words, aff(F ) ∩ aff(G)
is a single point {v}. Since Π is contractible, F and G have a common subface which
must therefore be {v} itself. Thus {v} is a face of P . But since Bq is not weakly
crowded, co(Bq) cannot contain a 0-dimensional face of P . Thus, without making
any assumption about whether G has boundaries in co(Bq), we have determined that
aff(F )∩aff(G) does not meet ex(Bq). Therefore, a single subperiod suffices for period
1.

Thus, we have the following improved estimate for φ, which is the total number
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Fig. 13.4. Faces arising in the proof of the strengthened version of Corollary 13.3 when d = 2.
Box B and path Π are not depicted; both are enclosed in B′a in the figure.

of subperiods after Ba:

φ(d) = (d− 1)(d− 2)/2 + 1.(13.2)

This concludes the proof of Theorem 11.1.
Notice that by combining Theorems 9.4 and 11.1 we immediate obtain the fol-

lowing corollary.
Corollary 13.3. Let B be a protected box generated by QMG. Then there

exists an ancestor Ba of B such that (11.1) holds and such that for any triangulation
T of P , there is a simplex T meeting co(Ba) such that minalt(T ) ≤ cd size(Ba).

In fact, we can strengthen Corollary 13.3 (though not Theorem 11.1) in the case
d = 2. The strengthened version of Corollary 13.3 asserts that

size(Ba) ≤ c size(B)(13.3)

holds when d = 2, in place of (11.1) (i.e., the factor of θ(P )−1 goes away). The
argument for this strengthening is as follows. In the following argument, c denotes an
absolute constant whose value may change from formula to formula.

Consider how the factor θ(P )−1 arises in the first place. Let B be a protected
box and Ba its anchor. This factor comes when anchor Ba is from period 0, and then
in period 1 we split a strongly crowded box that has a contractible path that defines a
sharp angle θ. Since (11.1) and (13.3) are equivalent when θ(P ) is large, let us assume
that θ ≤ 0.1. Let B′a be the last box that is split for strong crowding at the end of
period 1. Clearly (13.3) holds for this choice of B′a (since splitting for alignment, as
well as all splitting in phase 2, incurs only an additional factor c). The contractible
path Π in B′a is from x to y. See Figure 13.4. We now must prove that for an arbitrary
triangulation T , there is a simplex T meeting Π satisfying minalt(T ) ≤ cd size(B′a).

In the figure, B0 denotes a protected box for v, the common subface of F and
G. Note that there must be an incontractible path from v to a foreign face H whose
length is at most a factor c more than size(B0) by the preceding analysis. Thus, x
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and y must both be separated from v by at least cd dist(v, H). There are two possible
ways to choose H; either it is a subface of one of F or G, which is (a) in the figure,
or it is does not meet F and G, which is (b) in the figure.

Let T be an arbitrary triangulation. Let T1, . . . , Ts be the triangles of T that
meet Π. Take two cases. In the first case, suppose that at least one of T1, . . . , Ts, say,
T1, meets the segment denoted by Σ in (a) or that it meets the PL path Σ1∪Σ2 in (b).
Since Σ,Σ1,Σ2 are all incontractible, this means by Theorem 9.4 that minalt(T1) ≤
c lth(Σ) for (a) or minalt(T1) ≤ c lth(Σ1 ∪ Σ2) for (b). But now it is clear that
lth(Σ), lth(Σ1), lth(Σ2) are all at most cθ dist(v, H), that is, less than or equal to
c size(B′a). Thus, minalt(T1) ≤ c size(B′a), proving the corollary.

The other case is that none of T1, . . . , Ts meet Σ in (a) or Σ1∪Σ2 in (b). But this
means all of T1, . . . , Ts are contained in the polygonal region bounded by F ∪G∪Σ in
(a) or F ∪G∪Σ1∪Σ2 in (b). The width of this polygonal region is at most c size(B′a),
so any triangle in this region has minalt at most c size(B′a). This concludes the proof
that Corollary 13.3 may be strengthened in the case d = 2.

14. Maximizing the minimum altitude. In this section we consider the prob-
lem of computing a triangulation that maximizes the minimum altitude. Although this
is not the problem for which QMG is intended, we nonetheless can obtain an interest-
ing consequence from Corollary 13.3. Suppose we want to compute the triangulation
of P that maximizes the minimum altitude. In other words, for a triangulation T of
P , define

µT (P ) = min{minalt(T ) : T ∈ T }

and then consider the triangulation T ∗ that solves

µ(P ) = max{µT (P ) : T is a triangulation of P}.

It follows from Corollary 13.3 that QMG solves this problem to within a factor
cdθ(P )−φ(d) for d > 2 and within a factor c (a universal constant) when d = 2. This
is because the minimum altitude among all triangles produced by QMG is within a
factor cd of the smallest protected box generated by QMG. But, by the corollary, the
smallest protected box is within a factor of cdθ(P )−φ(d) of the minimum altitude of
any possible triangulation.

Thus, in the case d = 2, µQMG(P ) ≥ cµ(P ), and for d = 3, µQMG(P ) ≥
cθ(P )2µ(P ). In the case d = 2, more is known about this problem. In particu-
lar, the algorithm of Bern, Dobkin, and Eppstein [2] produces a triangulation T also
satisfying µT (P ) ≥ cµ(P ), and also T has an optimal (linear) number of triangles.

In the case d = 3, much less is known. For instance, we do not know whether
the bound cθ(P )−2 is tight for QMG. We have constructed an example where the
minimum altitude of the triangulation produced by QMG is off from µ(P ) by a factor
cθ(P )−1, but we have not found an example attaining the bound cθ(P )−2.

Another open question concerns a geometric characterization of µ(P ). It follows
from the optimality of QMG in the case d = 2 that µ(P ) is within a constant factor of
the minimum geodesic distance between P -faces that do not meet each other. Is there
a similar simple geometric characterization of µ(P ) for d = 3? For any d, Theorem 9.4
implies that the minimum geodesic distance between two nonmeeting faces of P is
an upper bound on µ(P ) (to within a constant cd), but it is not known whether this
bound is tight.
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15. A bound on the QMG aspect ratio. This section establishes the opti-
mality of the QMG aspect ratio using Theorem 11.1 and Corollary 13.3.

Theorem 15.1. Let ρQMG(P ) denote the worst-case aspect ratio produced by
QMG when applied to polyhedral domain P . Then

ρQMG(P ) ≤ cdθ(P )−φ(d).

Proof. Let B1, B2 be two neighboring protected boxes such that co(B1) and
co(B2) have a common point. Assume that B1 is protected in phase k and lies in OF ,
assume B2 is protected in phase l and lies in OG, and assume size(B1) > size(B2).
By Theorem 10.1, it suffices to obtain an upper bound on size(B1)/ size(B2).

We can assume that co(B2) ⊂ co(B1). If this relation did not hold, then by
Lemma 11.2 we could immediately conclude that there is a bound of the form cd on
size(B1)/ size(B2).

By Theorem 11.1, B2 has an anchor Ba containing an incontractible path such
that

cdθ(P )−φ(d) size(B2) ≥ size(Ba).(15.1)

Because B1 is protected, every point in co(B1) is visible to every point in F∩co(B1) by
Lemma 13.1, and this includes co(B2) as well. Therefore, any PL path inside co(B1)
is contractible to any point of F ∩ co(B1). Since co(Ba) contains an incontractible
path, it cannot be a subset of co(B1). Hence, size(Ba) ≥ cd size(B1). Combining this
with (15.1) shows that size(B1)/ size(B2) ≤ cdθ(P )−φ(d).

When d = 2, Theorem 15.1 shows that QMG is optimal because we already know
that for any triangulation T , ρT (P ) ≥ cθ(P )−1 by Theorem 9.2, and φ(2) = 1.

When d = 3, Theorem 15.1 shows that QMG has an aspect ratio bound of
cθ(P )−2, whereas the lower bound from Theorem 9.2 is cθ(P )−1. In fact, a more com-
plicated analysis of QMG for the d = 3 case establishes an upper bound of cθ(P )−1

on ρQMG(P ). Here is a sketch of this analysis. Recall that the only case that needs
attention is the case of a large protected box B1 next to a much smaller protected box
B2, such that co(B2) ⊂ co(B1). Suppose, for instance, that B1 is protected in phase 0
(a similar argument applies to the case when B1 is protected in phase 1), and suppose
that B2 is protected in phases 1 or 2. Find the largest ancestor B∗ of B2 with the
property that co(B∗) ⊂ co(B1); as above, size(B1)/ size(B∗) ≤ c. Consider the chain
of strongly crowded boxes from B∗ down to B2. Let P ′ be the intersection of P with
the facet of B1 separating it from B∗. Observe that splitting strongly crowded boxes
in phases 1 and 2 of three-dimensional (3D) QMG applied to the chain of boxes B∗

down to B2 is very similar to phases 0 and 1 of 2D QMG running on the polygon
P ′. In other words, with a correct modification to the definition of ex(B) in two
dimensions, whenever a 3D box on the boundary of B1 is split for strong crowding,
the corresponding 2D box would be split for strong crowding of P ′.

Since 2D QMG is optimal with respect to maximizing the minimum altitude, we
conclude that size(B2) is bounded below by the minimum geodesic distance δ in P ′

between two faces that do not meet. But now it is easy to see that δ/ size(B1) is
bounded above by the sharpest angle θ at v. Thus, size(B1)/ size(B2) ≤ cθ(P )−1.

It is likely that this line of reasoning extends to higher dimensions, although we
do not know the exact improvement to Theorem 15.1 possible with this analysis.
Furthermore, we do not know whether our lower bound from Theorem 9.2 on the best
attainable aspect ratio is tight in dimensions higher than 3.

We can summarize the conclusions of this section with the following theorem.
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Theorem 15.2. Let T be an arbitrary triangulation of P with worst-case aspect
ratio denoted ρT (P ). Then

ρQMG(P ) ≤ cd · (ρT (P ))ψ(d),

where ψ(d) = 1 for d = 2, 3 and ψ(d) ≤ φ(d) for higher dimensions.

16. Bounded aspect ratio triangulations. In the preceding section we showed
that the QMG triangulation has an aspect ratio bound. In the next section we will
show that, among all triangulations with bounded aspect ratio, QMG has the mini-
mum cardinality, up to a constant factor. First, we present some preliminary lemmas
that apply generally to any triangulation with bounded aspect ratio.

Lemma 16.1. Let T be a triangulation of a polyhedral region P whose aspect
ratio is at most ρ. Let T1, T2 be two simplices that share a common vertex v. Then
minalt(T1) ≤ ζ1(ρ, d) minalt(T2), where the function ζ1(·, ·) is defined below.

We omit the proof of this lemma, which is contained in [10]. Here is a sketch.
Two simplices S1, S2 of T that share an edge v1v2 satisfy minalt(S1) ≤ ρminalt(S2)
by the chain of inequalities:

minalt(S1) ≤ ‖v1 − v2‖
≤ maxside(S2)

= asp(S2) minalt(S2)

≤ ρminalt(S2).(16.1)

Two simplices T1, T2 that share a vertex v are connected by a chain of simplices
S1(= T1), S2, . . . , Sp(= T2) that all share v and such that Si and Si+1 have a common
edge. This is because T is a triangulation of P , which is a manifold with boundary.
It can be shown that the number of simplices p that can share a common vertex is
bounded above in terms of ρ because the solid angle of each Si at v is bounded below
in terms of ρ. Thus, p is bounded above in terms of ρ: it turns out that p ≤ cdρ

d−1.

Thus, the lemma is true with ζ1(ρ, d) = ρcdρ
d−1

.
Now for the first result of the section. This lemma bounds the rate at which

simplices can grow in a bounded aspect ratio triangulation.
Lemma 16.2. Let T be a triangulation of P whose aspect ratio bound is ρ. Let

Π be a PL path in P from x to y. Suppose that x is contained in a simplex T . Then
every simplex T ′ containing y satisfies

minalt(T ′) ≤ cdζ1(ρ, d) max(minalt(T ), lth(Π)).(16.2)

Proof. Let F1, . . . , Fs be an enumeration of the faces of T met by Π. Let Fs be
the lowest-dimensional face of T containing y.

Case 1. Fs has a vertex in common with T . Since every simplex containing y
also contains Fs, then T ′ has a common vertex with T . In this case the lemma is true
with the first term of the max in (16.2) by the preceding lemma.

Case 2. Fs does not have a vertex in common with T . In this case, define a PL
continuous function f : P → R that is 1 on vertices of Fs and 0 on all other vertices
and is linearly interpolated by T . Then, as in the proof of Theorem 9.4, there must
be a simplex S that meets Π such that the gradient of f on S is at least 1/ lth(Π),
and hence this simplex satisfies minalt(S) ≤ cd lth(Π). Notice that S and Fs must
have a common vertex because if not, the gradient of f on S would be 0. Since S and
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T ′ have a common vertex, we apply the preceding lemma to bound minalt(T ′) by the
second term of the max in (16.2), proving the lemma.

Here is our other main result about bounded aspect ratio triangulations.
Lemma 16.3. Let C be a cube in Rd of side length s. Let T1, . . . , Tn be a set of n

simplices with pairwise disjoint interiors, satisfying minalt(Ti) ≥ µ and asp(Ti) ≤ ρ
for each i. Suppose each Ti meets C. Then

n ≤ cdρd + cds
d/µd.(16.3)

Proof. For each Ti, identify a point xi ∈ Ti ∩ C. Now contract each Ti about xi
until we obtain a new simplex T ′i such that minalt(T ′i ) = µ. Since T ′i ⊂ Ti, the set
T ′1, . . . , T

′
n still enjoys the property that interiors are pairwise disjoint. Since xi ∈ T ′i ,

each T ′i still meets C. Finally, contraction affects maxside and minalt by the same
scale factor, so asp(T ′i ) = asp(Ti).

We know that maxside(T ′i ) = asp(T ′i ) minalt(T ′i ) ≤ ρµ. Therefore, for every point
y in T ′i , dist(y,xi) ≤ ρµ. Let x0 be the centroid of C. Then we have for each i that
dist(xi,x0) ≤ cds. Combining these inequalities yields the bound that for every point
y ∈ T ′i for each i, dist(y,x0) ≤ ρµ + cds. Thus, all of T ′1, . . . , T

′
n are contained in a

ball B of radius ρµ+ cds around x0. The volume of this ball is at most cd(ρ
dµd+ sd).

Each simplex has volume at least cdµ
d by equation (8.1). Since the simplices have

disjoint interiors, their number is bounded above by vol(B)/(cdµ
d), which proves the

lemma.

17. A bound on the cardinality of QMG. In this section we show that the
cardinality of the triangulation produced by QMG is always within a constant factor
of optimal among all bounded aspect ratio triangulations, where the constant depends
on the aspect ratio. We start with the following lemma.

Lemma 17.1. Let x be an arbitrary point in P , and let T be the simplex generated
by QMG that contains x. (If there is more than one, the result holds for any choice
of T .) Let S be some other triangulation of P with aspect ratio bound ρS , and let S
be the simplex in S that contains x. (If there is more than one, then the result holds
for any choice of S.) Then

minalt(S) ≤ cdζ1(ρS , d) · θ(P )−(2d+2)φ(d) ·minalt(T ).(17.1)

Proof. Recall that each simplex generated by QMG is associated with a full-
dimensional protected box, namely, the last box in its chain. Furthermore, each
full-dimensional protected box is associated with a full-dimensional anchor box as in
Theorem 11.1. Therefore, transitively, each simplex generated by QMG is associated
with an anchor box.

Let T be such a simplex, and Ba its anchor box. Clearly

minalt(T ) ≤ cd size(Ba),(17.2)

since T lies in ex(Ba). On the other hand, there is also an inequality in the other
direction. The reason is as follows. Let B be the full-dimensional protected box
containing T . Then, as argued in section 10, minalt(T ) is bounded below by the size
of the smallest neighbor of B, which, by the proof of Theorem 15.1, is bounded below
by cdθ(P )φ(d) size(B). There is a lower bound on size(B) in terms of size(Ba) given
by (11.1). Combining these bounds yields

minalt(T ) ≥ cdθ(P )2φ(d) size(Ba).(17.3)
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Let x be the arbitrary point in P specified by the lemma. Let T be the simplex
generated by QMG that contains x, let B be the protected box associated with T ,
and let Ba be the anchor of B. In the next few paragraphs we will construct a PL
path Σ from x to a simplex S̄ ∈ S satisfying minalt(S̄) ≤ size(Ba) and such that
lth(Σ) is bounded above in terms of size(Ba).

Observe that co(Ba) contains an incontractible path Π1 by definition of “an-
chor.” Therefore, let S1 be the simplex in S that meets Π1 and satisfies minalt(S1) ≤
cd size(Ba), as specified in Theorem 9.4. Let y be a point in Π1 ∩ S1. Construct the
shortest PL path (the geodesic path) from x to y lying in co(Ba), and call it Σ1. Note
that there is no a priori upper bound on lth(Σ1) in terms of size(Ba) because co(Ba)
could contain geodesic paths possibly much longer than size(Ba).

Let T1, T2, . . . , Tp be an enumeration of the QMG simplices met by Σ1, listed in
the order they are encountered starting with x. Note that no simplex can appear
twice in this enumeration; this is because Σ1 is a geodesic path and therefore would
not return to the same simplex more than once.

Let Tq be the first simplex in the sequence that fails to satisfy (17.3). If there
is no such q, then take q = p + 1. Thus, T1, . . . , Tq−1 all satisfy (17.3). We claim
that q − 1 ≤ cdθ(P )−2dφ(d). This follows from (16.3). Observe that T1, . . . , Tq−1 is a
set of simplices with disjoint interiors all meeting ex(Ba). We use (17.3) as a lower
bound on the minimum altitudes of T1, . . . , Tq−1, cd size(Ba) as the size of ex(Ba),
and Theorem 15.1 to get upper bounds on aspect ratios. In this use of (16.3), the
second term dominates the first on the right-hand side.

Suppose that q = p+1; in other words, every simplex in the enumeration satisfies
(17.3). Then define Σ = Σ1; we claim that

lth(Σ) ≤ cdθ(P )−2dφ(d) size(Ba).(17.4)

This is because Σ passes through q−1 simplices, and the length of its segment in each
simplex is at most cd size(Ba). This choice of Σ has all the properties named above:
it connects x to a point on a simplex S1 (which satisfies minalt(S1) ≤ cd size(Ba))
and satisfies (17.4). This concludes the construction of S̄ for the case q = p + 1; in
particular, we take S̄ = S1.

The other case is that q < p−1. In this case, we truncate Σ1 at the point where it
enters Tq, which we denote x1; call the truncated path Σ′1. Clearly Σ′1 satisfies (17.4)
by the same argument as in the last paragraph. Now notice that the anchor box for
Tq cannot be Ba because Tq does not satisfy (17.3) by choice of q.

Therefore, identify the anchor of Tq, which we will call Bb, and start the construc-
tion anew from x1. In other words, find the incontractible path Π2 in co(Bb), find the
simplex S2 of S that meets the incontractible path and has altitude at most cd size(Bb),
and let Σ2 be the path x1 to a point in S2 ∩ Π2. Note that size(Bb) ≤ size(Ba)/2,
because Bb must be smaller than Ba so that (17.3) can be satisfied for the new anchor.
Find the first simplex in this new path that fails to satisfy (17.3) for Bb and so on.
Notice that Σ′2, the truncation of Σ2, satisfies (17.4) with size(Bb) taking the place of
size(Ba) on the right-hand side. Therefore, the upper bounds given by the right-hand
side of (17.4) on lth(Σ′1), lth(Σ′2), . . . form a series decreasing by a factor of 2 each
time. Eventually the procedure terminates at Σl because there is a finite lower bound
on the smallest protected box in QMG. When the procedure terminates, concatenate
Σ′1,Σ

′
2, . . . ,Σ

′
l−1,Σl into a PL path Σ. (This concatenation is possible because Σ′1

ends at x1, which is where Σ′2 begins, and so on.)
This path Σ has the following properties. It satisfies (17.4) with the original Ba on

the right-hand side, multiplied by an additional factor of 2 that arises from summing a
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decreasing geometric series. It connects x, the given point in P contained in a simplex
T of QMG anchored at Ba, to a point y that is in a simplex Sl in triangulation S
and that satisfies minalt(Sl) ≤ cd size(Ba). In this case, we take S̄ = Sl to satisfy the
conditions mentioned above.

This is exactly the setup we need to apply Lemma 16.2. Let S be the simplex in
S that contains x. From Lemma 16.2 applied to Σ we conclude that

minalt(S) ≤ cdζ1(ρS , d) ·max(lth(Σ),minalt(S̄))

≤ cdζ1(ρS , d) · θ(P )−2dφ(d) size(Ba).(17.5)

The second line was obtained by substituting the bound (17.4) for lth(Σ) and then
noting that this bound dominates the upper bound of cd size(Ba) that applies to
minalt(S̄).

Now the lemma is proved because we combine (17.5) with the bound on size(Ba)
in terms of minalt(T ) given by (17.3).

Theorem 17.2. Let nQMG(P ) be the number of simplices in the triangulation
produced by QMG. Let S be some other triangulation of P with aspect ratio bound ρS ,
and let the cardinality of S be nS . Then

nQMG(P ) ≤ cdζ1(ρS , d)dρdS · θ(P )−(2d+2)dφ(d) · nS .(17.6)

Proof. Let fQMG : P → R be the piecewise constant function defined as follows.
Let T be a simplex generated by QMG. The value of fQMG on T is defined to be
1/ vol(T ). On boundaries of simplices, a measure-zero set, we leave fQMG undefined.
Function fS : P → R is defined similarly in terms of S. Note that

nQMG =

∫
x∈P

fQMG(x) dx

because the value of the integral over each individual simplex is exactly 1. A similar
expression holds for nS .

Define piecewise constant functions gQMG : P → R to be 1/minalt(T )d on T ,
where T is a simplex in QMG, gS similarly for S. Finally, define hS to the piecewise
constant function that is 1/maxside(S)d on S, as S ranges over simplices in S.

Then we have the following chain of inequalities.

nQMG =

∫
x∈P

fQMG(x) dx

≤ cd
∫
x∈P

gQMG(x) dx

≤ cdζ1(ρS , d)d · θ(P )−(2d+2)dφ(d) ·
∫
x∈P

gS(x) dx

≤ cdζ1(ρS , d)dρdS · θ(P )−(2d+2)dφ(d) ·
∫
x∈P

hS(x) dx

≤ cdζ1(ρS , d)dρdS · θ(P )−(2d+2)dφ(d) ·
∫
x∈P

fS(x) dx

= cdζ1(ρS , d)dρdS · θ(P )−(2d+2)dφ(d) · nS .
In these inequalities, we used (8.1) to obtain the second line, (17.1) for the third line,
the aspect ratio bound for S for the fourth line, and (8.1) again for the fifth line. This
proves the theorem.
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Note that this theorem allows the ratio nQMG/nS to be arbitrarily large if the
competing triangulation S has bad aspect ratio. This is not merely an artifact of
our analysis but is a feature of bounded aspect ratio triangulations, as illustrated by
the following example. Consider a p × 1 rectangle with p � 1. On such a domain,
QMG would require Ω(p) triangles (as would any algorithm guaranteeing bounded
aspect ratio), but this domain can be triangulated with just two triangles by inserting
a diagonal. This latter triangulation has aspect ratio of Ω(p).

Note also that ρS ≥ cdθ
−1 by Theorem 9.2. Thus, the entire right-hand side of

(17.6) can be bounded above with the more compact formula f(ρS , d) · nS .

18. Running time analysis. In this section we briefly discuss the running time
of QMG. The running time for the separation stages is proportional to the number
of boxes created multiplied by the time per box. There is no prior upper bound
on the number of boxes in terms of the input. There is also no prior upper bound
on the number of boxes in terms of the output, that is, in terms of the number of
simplices produced, which we denote s. However, a modification to QMG would allow
us to claim that the total number of boxes is bounded above by a multiple of s. The
modification would be an additional operation to short circuit a series of splitting
operations that make no progress. More specifically, the modification is as follows.
When we split a box, we check whether only one of its children has nonempty content.
If so, we discard the other children, and we immediately shrink that box by a power-
of-two factor, until it is sufficiently small that we can be guaranteed that the next
split will produce more than one child with nonempty content.

The amount of time to process a box depends on the combinatorial complexity
of its content. A crude upper bound is that the complexity of the content is bounded
by O(N), where N is the complexity of the input domain P . Processing the content
requires a connected component computation; the time for this computation in higher
dimensions is O(N2), although, as mentioned in section 5, more efficient algorithms
are available for two and three dimensions.

Thus, an estimate for the separation stage running time, using the modifica-
tion mentioned above, is O(N2s) operations. The operations in the alignment stage
(checking complete coverage) can be done with a hash table as mentioned in section
7. Thus, alignment requires O(s) operations. Finally, the triangulation part of the
algorithm also requires O(s) operations. Thus, the total running time is O(N2s).

19. Implementation. A 2D version of QMG, called “tripoint,” was imple-
mented by S. Mitchell in C++ and is available on the World Wide Web [11]. A
full version of QMG has been implemented in C++ by S. Vavasis; the implemen-
tation QMG1.1 is more general than the version described in this paper because it
can also handle nonmanifold features, including several kinds of internal boundaries.
QMG1.1 is available on the Web [16]. The implementation is slightly different from
the algorithm described in this article; in particular, the alignment procedure uses an
adaptive method for selecting tolerances and a different rule for choosing a close face.
Computational experiments will be described elsewhere.

20. Open questions. Some of the open questions raised by this work include
the following:

(1) Is there a triangulation algorithm with stronger optimality properties? For
instance, the QMG aspect ratio is optimal (up to a constant factor) only in two and
three dimensions.

(2) Several open questions were posed in section 14. For instance, is there a
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characterization of the maximal value of the min-altitude in a triangulation of 3D
polyhedra?

(3) Can this work be extended to curved boundaries? It appears that the main
bottleneck is a solution to the subproblem of triangulating a uniform grid of boxes
posed in the companion paper [12].

(4) Is there a mesh generation algorithm for three-dimensional domains that
guarantees dihedral angles bounded by π/2? Such a bound is important for some
finite element problems [17]. It is known [3] how to solve the corresponding problem
in two dimensions.

(5) Can the running time bound be improved?
(6) The optimality properties demonstrated here all involve constant factors that

are apparently very large. The QMG implementation in practice often produces
meshes that are factors of 50 off from the minimum number of tetrahedra, and also
factors of 50 off from the best aspect ratio. This leads to the following practical open
question: Is there a mesh generation algorithm with theoretical guarantees comparable
to QMG’s, and yet with better theoretical constants or better performance in practice?
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Abstract. In the optimization of queries in an object-oriented database (OODB) system, a
natural first step is to use the typing constraints imposed by the schema to transform a query into
an equivalent one that logically accesses a minimal set of objects. We study a class of queries for
OODBs called conjunctive queries. Variables in a conjunctive query range over heterogeneous sets
of objects. Consequently, a conjunctive query is equivalent to a union of conjunctive queries of a
special kind, called terminal conjunctive queries. Testing containment is a necessary step in solving
the equivalence and minimization problems. We first characterize the containment and minimization
conditions for the class of terminal conjunctive queries. We then characterize containment for the
class of all conjunctive queries and derive an optimization algorithm for this class. The equivalent
optimal query produced is expressed as a union of terminal conjunctive queries, which has the
property that the number of variables as well as their search spaces are minimal among all unions
of terminal conjunctive queries. Finally, we investigate the complexity of the containment problem.
We show that it is complete in Πp

2.

Key words. object-oriented database, query optimization, conjunctive queries, containment,
equivalence, minimization, complexity
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1. Introduction. The initial attempts at constructing object-oriented databases
(OODBs) provided only navigational programming languages for manipulating data
[21, 5]. The lack of query languages like those available in relational systems has been
criticized as a major drawback of the object-oriented approach [30, 4]. Consequently,
most, if not all, commercial OODBs now provide, or will provide, some form of high-
level declarative query language (e.g., [23, 13, 22, 17, 18]). These query languages, like
those of the relational model, transfer the burden of choosing an efficient execution
plan for a query to the database system. This has led to a resurrection of the study of
query optimization in the object-oriented setting (e.g., [26, 7, 6, 27, 15, 19, 10, 12]).
Most of these papers develop transformations that reduce the cost of evaluating a
given query but do not necessarily produce an optimal equivalent query.

In the setting of relational databases, a well-accepted notion of query optimality
exists for the class of conjunctive queries [11], and the classical theory is based on
the notion of query containment. A query Q1 is said to be contained in a query
Q2 if, in every database instance, the set of answers to Q1 is a subset of the set of
answers to Q2. In this paper, we study the containment and optimization problems
for a class of conjunctive queries in an object-oriented setting. The closely related
equivalence problem has previously been addressed for object-oriented queries by Hull
and Yoshikawa [15]. Our results are complementary to their work, in that the language
in [15] is object-generating, while our language is object-preserving. Our language
enables a user to retrieve objects from a database, but not to create new complex

∗Received by the editors January 14, 1994; accepted for publication (in revised form) March 13,
1999; published electronically March 6, 2000.

http://www.siam.org/journals/sicomp/29-4/26244.html
†Department of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1 Canada

(epfchan@emap.uwaterloo.ca).
‡School of Computing Sciences, University of Technology, Sydney, Australia (ron@

socs.uts.edu.au).

1371



1372 EDWARD P. F. CHAN AND RON VAN DER MEYDEN

objects. Moreover, our language, like the one in [7], is defined on an inheritance
hierarchy, whereas most languages studied in the literature are basically languages for
complex objects without inheritance. The need to deal with inheritance introduces
an extra level of complexity into the containment and optimization problems.

In an OODB, classes are named collections of similar objects. A class C may
be refined into subclasses. Conversely, the class C is said to be a superclass of its
subclasses. Subclasses are specializations of their superclasses. Consequently, objects
in a class are also contained in its superclasses. Specialization of a class is often
achieved by refining and/or adding properties to its superclasses. Since properties
of a superclass are also properties of its subclasses, a subclass is said to inherit the
properties of its superclasses. Class–subclass relationships form an acyclic directed
graph called an inheritance or generalization hierarchy.

Inheritance is a powerful modeling tool because it allows for a better structured
and more concise description of the schema and helps in factoring out shared im-
plementations in applications [3]. Objects belonging to the same class share some
common properties. Properties are attributes or methods defined on types; they are
applicable only to instances of the types. In effect, therefore, types are constraints
imposed on objects in the classes. Properties are formally denoted as attribute type
pairs in this paper. A natural first step in query optimization is to use the typing
constraints implied by the schema to minimize the search space for variables involved
in the query. The following example illustrates how this idea may be applied to the
kind of object-oriented conjunctive query we consider.

Example 1.1. Figure 1 is a schema for a vehicle rental database. It keeps track of
all rental transactions for vehicles in the company. In this application, Auto, Trailer,
and Truck are subclasses of the superclass Vehicle. There are clients, called discount
customers, who are known to the company and receive special treatment. Discount
customers receive a special rate and are not required to pay a deposit on the vehicles
rented. However, discount customers are only allowed to rent automobiles and not
other types of vehicles. Note that this constraint is captured by the more restrictive
typing of the attribute VehRented in the subclass Discount of the class Client. Let
us assume further that all superclasses are partitioned by their respective subclasses.

Suppose we want to find all those vehicles that have been rented to a discount
client. Expressed in a calculus-like language, the query looks like the following:

Q1 : {x | ∃y (x ∈ Vehicle & y ∈ Discount & x ∈ y.VehRented)}.

Since discount clients are allowed to rent automobiles only, the above query is equiv-
alent to the following query:

Q2 : {x | ∃y (x ∈ Auto & y ∈ Discount & x ∈ y.VehRented)}.

Q2 is considered to be more optimal since the number of variables as well as their
search spaces are minimal, given the typing constraints implied by the schema. Let
us consider another query. Assume that we want to find those clients who rented a
truck. It can be expressed as follows:

Q3 : {x | ∃y (x ∈ Client & y ∈ Truck & y ∈ x.VehRented)}.

Since discount clients are allowed to rent automobiles only (but not other kinds of
vehicles); Q3 is the same as the following query:

Q4 : {x | ∃y (x ∈ Normal & y ∈ Truck & y ∈ x.VehRented)}.
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Normal Discount

VehRented:{Auto}
DiscountRate: Int.

Client

RentalPeriod: Date
VehRented:{Vehicle}

#OfSeat: Int. Facilities:{Str.} CargoCap: Int.

TrailerAuto Truck

Id: Int.
Model: Str.

Vehicle

Deposit: Money

Customer:Renter

Maker:Str.

Fig. 1. A vehicle rental database.

Relational conjunctive queries have been studied extensively in the literature. A
variable in a relational query ranges over a homogeneous relation. On the other hand,
as illustrated by the above example, variables in an object-oriented query range over
classes which could consist of heterogeneous sets of objects. This is because a class
may be refined to various subclasses in which shared attribute names may correspond
to different types or classes. For example, the variable x in Q3 in Example 1.1 ranges
over a heterogeneous set Client = Normal ∪ Discount. All the members of this set
have the attribute VehRented, but only for members x of Normal can x.VehRented
contain an element of the class Truck. This implies that clients who rent a truck are
normal clients. This constitutes a significant divergence from the relational case. For
instance, syntactically correct relational conjunctive queries are always satisfiable, but
this is not true for object-oriented conjunctive queries [9]. The additional complexity
is also reflected in the containment problem, as illustrated by the following example.

Example 1.2. The schema in Figure 2 records the employer–employee relation-
ships among a group of people. The Employee attribute indicates the set of employees
hired by a person.

Consider the following two queries defined on the above inheritance hierarchy. Q1

retrieves all people x who hire a person u and a male v such that u is also an employee
of v and u hires a female employee w. Q2 finds all those people x who hire a male
employee y who in turn hires a female employee z. Expressed in our language, they
are as follows.

Q1 : {x | ∃u ∃v ∃w (x ∈ Person & u ∈ Person & v ∈ Male & w ∈ Female

&u ∈ x.Employee & v ∈ x.Employee & u ∈ v.Employee

& w ∈ u.Employee)}.
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Person

Employee:{Person}

FemaleMale

Fig. 2. An employer-employee schema.

Q2 : {x | ∃y ∃z (x ∈ Person & y ∈ Male & z ∈ Female & y ∈ x.Employee

& z ∈ y.Employee)}.

The above two queries are best visualized as the two graphs in Figure 3.

Q

x

v

u

w

x

y

z

M

F

M

F

1 2
Q

x
: x hires y

y

Fig. 3. A query graph.

We claim that Q2 contains Q1, meaning that whenever there is an answer for Q1,
it will also be an answer for Q2. The person u is either a male or a female. If u is
a male, then y and z in Q2 can be mapped to u and w, respectively. Similarly if u
is a female, variables y and z in Q2 can be mapped to v and u, respectively. Thus,
whenever there is an answer for Q1, it will also be an answer for Q2.

The above examples illustrate the kind of conjunctive queries we are interested
in. Examples 1.1 and 1.2 demonstrate that the analysis of containment of conjunctive
queries is more difficult than its counterpart in the relational case. This is due to the
fact that the domains of attributes impose certain constraints on a query, and the
analysis of the containment problem also involves analysis of disjunctive information.

The following is an overview of the problem and the approach we took in solving
it. Given a conjunctive query Q(S), where S is an object-oriented database schema
denoted by an inheritance hierarchy, we want to find an equivalent query Q′(S) that is,
in some sense, optimal. Moreover, we are interested in determining when a conjunctive
query is contained in another one. Both problems require an understanding of what a
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conjunctive query represents. We first observe that a conjunctive query, like the ones
in Examples 1.1 and 1.2, can be decomposed as a union of a special kind of conjunctive
queries called terminal conjunctive queries. As typing constraints in an inheritance
hierarchy are restrictions on objects in a database, not every terminal conjunctive
query is satisfiable. With typing constraints implied by an inheritance hierarchy,
unsatisfiable terminal conjunctive queries can be determined and are eliminated from
a union. Having removed unsatisfiable terminal conjunctive queries, characterization
of containment and optimization are then derived. The technique employed and the
result obtained are similar to those in select-project-join-union (SPJU)-expressions in
the relational theory [24].

Most work on query optimization in OODBs concentrates on complex object
optimization without considering the typing constraints imposed by the inheritance
hierarchy (e.g., [26, 6, 27, 15, 19, 12]). Type checking of queries in the presence of
nonstrict inheritance hierarchy was studied in [7]. Our work is different from all pre-
vious approaches in several important respects. First, we use the typing constraints
imposed by an inheritance hierarchy to study the containment, equivalence, and op-
timization of queries. Second, our optimization is an exact minimization while most
of the previous work deals with algebraic transformations and/or heuristics (e.g.,
[26, 27, 6, 19, 12]). Third, with reasons similar to those noted in [24], characterizing
equivalence does not suffice to solve the optimization problem. Instead, we need to
understand the containment problem as well. This work, to our best knowledge, is the
first work that provides a characterization for containment of queries in an object-
oriented setting. This result could also find applications in a view definition and
classification in an OODB. For instance, to correctly integrate a virtual class or view
into an inheritance hierarchy, it is imperative to resolve the containment problem for
the view definition language [25]. Last, we demonstrate that the idea of containment
mappings of relational conjunctive queries [11] can be extended to its object-oriented
counterpart. Our proposed language, on the other hand, is perhaps more restrictive
than some other query languages studied in the literature.

The next section defines the class of conjunctive queries and the basic notation
needed throughout the discussion. In characterizing the containment and equivalence
of terminal conjunctive queries, it is assumed that the query involved is satisfiable.
We present an efficient algorithm for solving the satisfiability problem for terminal
conjunctive queries in section 3. The results in that section were proven in [9] and
are needed in the subsequent discussions. Sections 4 and 5 characterize the contain-
ment, equivalence, and minimization conditions for terminal conjunctive queries. In
section 6, we solve the containment problem and derive an algorithm for optimizing
the class of all conjunctive queries. The notion of optimization captures the intuition
of minimization of the number of variables as well as their search spaces. In section 7,
we analyse the complexity of testing containment of conjunctive queries. The main
result shows that the problem is Πp

2-complete. Finally, we give our conclusions in
section 8.

2. Definitions and notation. In this section, we introduce notation that is
necessary for the rest of the discussion.

2.1. Types, classes, and schemas. We suppose, given the following pairwise
disjoint sets:

1. A set T of atomic type domains, where each atomic type domain is an infinite
set of atomic values. Examples of atomic type domains are the set of integers
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and the set of strings over some alphabet. We asssume distinct atomic type
domains are disjoint.

2. A countably infinite set O of symbols which are called object identifiers.
3. A set B of atomic types, containing for each atomic type domain T ∈ T , a

symbol T naming that type domain. For brevity, we abuse notation by using
the same symbol T for a type domain and its name. Thus B = T .

4. A countably infinite set A of symbols, the attributes.
5. A countably infinite set C of symbols which are called classes.

The set
⋃
T∈T T is said to be the set of atomic values. The elements of A will

be used as attribute names in tuple types, and the elements of C serve as names for
user-defined classes.

A type expression over a set C ⊆ C of class names is an expression defined as
follows:

1. Every element of B is a type expression, called an atomic type.
2. Every element of C is a type expression, called a class.
3. If t is an atomic type or a class, then {t} is type expression, called a set type.
4. If a1, . . . , an are distinct attributes in A and t1, . . . , tn are atomic types, set

types or classes, where n ≥ 0, then [a1 : t1, . . . , an : tn] is a type expression,
called a tuple type. As in a relation scheme, the order of attributes is imma-
terial. The empty tuple [] is also a tuple type. The type ti is said to be the
type of the attribute ai, for each i = 1, . . . , n.

We write type-expr(C) for the set of all type expressions over C.

Following [20, 8], we introduce the notion of schema. A schema S is a triple
(C, σ,≺), where C is a finite subset of C, σ is a function from C to tuple types, and
≺ is a partial order on C. The mapping σ associates to each class in C a tuple type
in type-expr(C), which describes its structure. As noted in [14], there is no loss of
representational power in restricting the structures of classes to be tuple types. The
relationship ≺ among classes represents the user-defined inheritance hierarchy. We
assume that the hierarchy has no cycle of length greater than 1. A class A ∈ C is
said to be terminal if there is no class B �= A such that B ≺ A. Otherwise, A is
nonterminal. A class B is a descendant (or an ancestor) of a class A if B ≺ A (or
A ≺ B, respectively).

Following [1, 20], we derive from this hierarchy a subtyping relation ≤ among
expressions in type-expr(C). Let S = (C, σ,≺) be a schema. The subtyping relation
among expressions in type-expr(C) is the smallest ordering ≤, which satisfies the
following axioms:

1. A ≤ A if A ∈ B.
2. B ≤ C if B ≺ C, for all classes B and C in C.
3. {t} ≤ {s}, for all types s, t such that t ≤ s.
4. [a1 : t1, . . . , an : tn, . . . , an+p : tn+p] ≤ [a1 : s1, . . . , an : sn], for all atomic

types, set types or classes t1, . . . , tn, s1, . . . , sn such that ti ≤ si, for all i =
1, . . . , n.

The order of arguments in a tuple type is immaterial, so we have [a3 : C3, a2 : C2, a1 :
C1] ≤ [a1 : C1, a2 : C2].

For any expressions E1 and E2 in type-expr(C), E1 is a subtype of E2 if E1 ≤ E2.
It is worth noting that the subtyping relation is a reflexive and transitive relation.
As inheritance hierarchies are given by users, some schemas may not be meaningful.
Let S = (C, σ,≺) be a schema. S is consistent if, for all classes B and C such that
B ≺ C, we have σ(B) ≤ σ(C). We consider only consistent schemas throughout
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this paper. The schemas we have defined are essentially the same as those defined
in ODMG-93 [8]. Thus, our results are applicable to systems conforming to this
standard. Let C ∈ C. Attributes in σ(C) are called the attributes of C. The type of
C.A, denoted type(C.A), is the type t of A in σ(C). In consistent schemas, subclasses
are specializations of their superclasses. Specialization of subclasses is represented
formally by refining types of inherited attributes and/or adding new attribute type
pairs.

2.2. States, domains, and objects. Let S = (C, σ,≺) be a schema and ≤ be
the subtyping relation on type-expr(C). Let O be a finite subset of O and Ic be a
function from O to C. Given O and Ic, each type expression T in type-expr(C) is
interpreted as a set of possible values, called the domain of T , denoted as dom(T ).
In order to represent inapplicable attributes, we introduce a new symbol “Λ.” The
domain of a type with respect to O and Ic is defined as follows:

1. If T ∈ B is an atomic type naming the type domain T , then dom(T) = T .
2. For each class D ∈ C, we define dom(D) = {o | o ∈ O and Ic(o) = E, where

E ≺ D}.
3. For each set type {t}, we define dom({t}) = {v | v ⊆ dom(t)}.
4. For each tuple type [a1 : t1, . . . , an : tn], we define dom([a1 : t1, . . . , an :

tn]) = {[a1 : v1, . . . , an : vn] | vi ∈ dom(ti) ∪ {Λ} for all i = 1, . . . , n}.
Note that the value of an attribute of a tuple may be the null value Λ. This is to

be interpreted as the attribute being inapplicable.
A state s on a schema S = (C, σ,≺) is a triple (O, Ic, Iv), where O is a finite

subset of O, Ic, which is a function from O to C, and Iv is a function from O to
tuple values in domains of types with respect to O and Ic. The function Iv maps each
element in O to a tuple value which satisfies the following:

∀o ∈ O, Iv(o) ∈ dom
(
σ
(
Ic(o)

))
.

That is, Iv defines the data value of an object and the (tuple) value of an object
defined on a class must satisfy the type specification associated with the class. The
set {〈o, Iv(o)〉 | o ∈ O} is the set of objects in the state s. Two objects in a state
are identical if and only if they have the same identifier, so we may sometimes abuse
terminology by referring to the identifier o as an object of s.

Let [a1 : v1, . . . , an : vn] be a tuple value. Then [a1 : v1, . . . , an : vn].ai is vi. We
call vi the value of attribute ai in the tuple. If the attribute a does not occur in a
tuple, then the value of attribute a in the tuple is Λ.

In many, if not most, existing object-oriented database systems (e.g., [22, 17, 23]),
an object is defined on exactly one most specialized class in an inheritance hierarchy.
Consequently, as in [1, 17], we assume the following throughout the discussion.

2.2.1. Terminal class partitioning assumption. Given any state s = (O, Ic,
Iv) on a schema S, the class Ic(o) is a terminal class in S for every object o in O.
That is, every nonterminal class is partitioned by its terminal descendants.

2.3. A class of object-preserving conjunctive queries. In this subsection,
we define a calculus-like query language for an object-oriented database.

Queries are constructed from a set of variables, symbols from the set of atomic
values, the equality operator “=,” the membership operator “∈,” the OR operator
“�,” the logical operator “&,” as well as the existential quantifier “∃.” The set of
variables is assumed to be disjoint from other sets of symbols.
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First we define the concept of term. Terms enable us to refer to an object or a
component of an object. A term is an expression of one of the following forms: c or
x or x.A, where c is an atomic value, i.e., c is in some atomic type domain, x is a
variable, and A is an attribute. A term of the form x or x.A is called a variable term.
An attribute term is of the form x.A.

An atom or an atomic formula is defined to be one of the following:
1. x ∈ C1 � · · · � Cn, where the Ci’s are classes or atomic types, and x is a

variable. An atom x ∈ C1 � · · · � Cn is called a range atom and it asserts
that the variable x denotes an object in the class Ci or a value in the atomic
type Ci, for some 1 ≤ i ≤ n.

2. t1 = t2, where t1 and t2 are terms. Such an atom is called an equality atom.
An equality atom asserts that the operands denote identical objects or are of
the same atomic value.

3. x ∈ y.A, where x and y are variables. The atom x ∈ y.A is called a mem-
bership atom. A membership atom asserts that the object or atomic value
denoted by x is a member of the set object denoted by y.A.

It is worth noting that path expressions of the form x.A1 . . . An (as used in [33])
and of the form x.A1[y1] . . . An[yn] (as used in [16]), where x and yi’s are variables
or atomic values, can all be represented indirectly in our language. Likewise, atoms
of the forms c ∈ x.A and y.A ∈ C1 � · · · � Cn, and of the form x.A ∈ y.B, where x
and y are variables and c is an atomic value, can again be expressed indirectly in our
language.

A formula is constructed from atomic formulas, the logical operator “&,” as
well as existential quantifiers. Bound and free variables are defined in the usual
manner. A query is an expression of the form { t | Φ(t)}, where t is either a variable
or an atomic value and Φ(t) is a formula. The term t is called the distinguished
term of the query. A query {s0 | Φ(t)} is called conjunctive if Φ(t) is of the form
∃s1 · · · ∃sm(M), where M is a formula containing no quantifier that is a conjunction
of atomic formulas.1 ∃s1 · · · ∃sm is called the prefix and M is called the matrix of the
formula or of the query. We also make use of union queries, which are expressions of
the form Q1 ∪ · · · ∪Qn, where each Qi is a conjunctive query.

2.4. Semantics of queries. We now give the semantics of queries and define the
notion of query containment. It is convenient, for technical reasons that will become
apparent below, to state the semantics in terms of a mapping to a language that uses
the objects and atomic values of a state as basic syntactic entities. We remark that
the semantics are slightly nonstandard, in that they require that the terms occurring
in an atom have a nonnull value in order for the atom to be true: this was handled
in [9] using a three-valued logic, but since only the truth of atoms is relevant to the
containment question for conjunctive queries, we simplify this here.

Define a term over a state s = (O, Ic, Iv) to be an expression of one of the following
forms: an atomic value c, an object o ∈ O, or an expression o.A, where o ∈ O is an
object and A is an attribute. The value Val(t) of a term t over s is defined as follows:

1. If t is an atomic value c, then Val(t) = c.
2. If t is an object o ∈ O, then Val(t) = o.
3. If t is the expression o.A, where o ∈ O is an object and A is an attribute,

then Val(t) is the value of attribute A in Iv(o).
Note that Val(t) may be an atomic value, object, set, or the null value Λ.

1The results in this paper can be extended to conjunctive queries with more than one free variable.
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An atom over s is an expression of one of the following forms:

1. t ∈ C1 � · · · � Cn, where t is a term over s and the Ci are classes or atomic
types;

2. t1 = t2, where t1 and t2 are terms over s, or
3. t ∈ o.A, where t is a term over s, where o is an object of s, and where A is

an attribute.

We define certain atoms A over a state s, to be satisfied in s, written s |= A, as
follows:

1. s |= t ∈ C1�· · ·�Cn, where t is a term over s and each Ci is a class or atomic
type, if Val(t) ∈ dom(Ci) for some i = 1, . . . , n;

2. s |= t1 = t2, where t1 and t2 are terms over s, if Val(t1) = Val(t2) and neither
value is equal to Λ;

3. s |= t ∈ o.A, where t is a term over s, the o is an object of s, and A is
an attribute, if Val(t) is not equal to Λ and Val(o.A) is a set that contains
Val(t).

Note that in order for an atom to be satisfied, all of its terms must have nonnull
values.

An assignment for a query Q in a state s = (O, Ic, Iv) is a function α mapping
each variable of Q either to an atomic value or to an object in O. Assignments may
be extended to mappings from the terms and atoms of Q to terms and atoms over s,
respectively, as follows:

1. for terms which are atomic values c we define α(c) = c,
2. for terms of the form x.A, where x is a variable, we define α(x.A) to be the

expression o.A, where o = α(x), and
3. for atoms A of Q we define α(A) to be the atom over s obtained by substi-

tuting for each term t in A the term α(t).

Using the notion of satisfaction of atoms over a state in that state, we now define
a formula Φ to be satisfied in a state s with respect to an assignment α, written
s, α |= Φ, in the usual way. For atomic formulae A we have s, α |= A if s |= α(A).
The cases of Boolean operators and quantifiers are as in the standard semantics of
first order logic, where the universe consists of the union of the sets dom(T ), where
T ranges over all type expressions.

A query Q = {t | Φ(t)} is said to be satisfied in a state s with respect to an
assignment α, written s, α |= Q, if s, α |= Φ(t). The assignment α is called a satisfying
assignment for Q in this case. We say that the object or value a is an answer of Q
with respect to s if there exists a satisfying assignment α for Q such that a = α(t),
where t is the distinguished term of Q. If Q is a query and s is a state, we write Q(s)
for the set of all answers of Q with respect to s. For union queries Q of the form
Q1 ∪ · · · ∪Qn we define Q(s) to be the set Q1(s) ∪ · · · ∪Qn(s).

A query Q is said to be satisfiable if there is a state s such that Q(s) is nonempty.
Given two queries Q1 and Q2 (on a schema S), Q1 is said to contain Q2 with respect
to S, denoted Q1 ⊇ Q2, if Q1(s) ⊇ Q2(s), for all states s on S. Two queries Q1 and
Q2 are said to be equivalent with respect to schema S, denoted Q1 ≡ Q2, if they
contain each other with respect to S.

We note that for conjunctive queries, the existential quantifiers are not strictly
essential: the query {t | ∃x1 · · · ∃xn(Φ)} is equivalent to the query {t | Φ}. Conse-
quently, we assume henceforth, for purposes of analysis, that queries do not contain
existential quatifiers. This yields the following simple characterization of satisfaction:
α is a satisfying assignment for a conjunctive query Q in a state s if and only if
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s |= α(A) for all atoms A of Q. (It is still sometimes convenient to write formulae
with quantifiers in order to scope variables and avoid naming conflicts.)

2.5. Well-formed conjunctive queries. We consider only those queries in
which each term either denotes an object or a value, or a set of objects or values,
but not both. We call such queries well-formed. The following defines when a query
is well formed. First we note that, given a conjunctive query, additional equalities
among terms could be inferred with the following algorithm. It is easy to see that the
inferences performed in the algorithm are correct.

Algorithm EqualityGraph. Given a conjunctive query, generate additional
implied equality edges.

Input: A conjunctive query Q.
Output: An undirected graph E(Q), called the complete equality relationship graph

for Q.
Method: The edges {x, y} in the graph E(Q) are called equality edges, and are also

denoted by ‘x = y’.
(1) Generate a graph with terms in Q as nodes. (If x.A is a term of Q, then

so is x.) Generate additional nodes and equality edges by applying the
following three steps exhaustively to the graph until no more edges can
be derived.
(i) For each node t, derive the equality edge t = t. For each equality

atom “s = t” of Q, generate an equality edge between the node s
and the node t.

(ii) If s = t and t = u are equality edges, then derive the equality edge
s = u.

(iii) If x and y are variable nodes, x = y is an equality edge, and x.A is
a node in the graph, then add the node y.A, if it does not already
exist, and derive the equality edge x.A = y.A.

(2) Output the graph constructed.

By substeps (i) and (ii), the complete equality relationship graph E(Q) for a
conjunctive query Q yields an equivalence relation R, defined by tRt′, if there exists
an equality edge between t and t′. For each term t in E(Q), the equivalence class [t]
of R containing t is the set {t′ | t′ is a node in E(Q) and there is an equality edge
between t and t′}. These sets are said to be the equivalence classes of E(Q).

Let Q be a query. An occurrence of a term x.A in the matrix of Q is a set
occurrence if the occurrence appears on the right-hand side of a membership atom.
All other occurrences of terms in the matrix of Q are object occurrences. A term s
is an object term if some term t in the equivalence class [s] has an object occurrence
in the query. A term s is a set term if there is a set occurrence in the query of some
term t ∈ [s]. Intuitively, a set term is one that must denote a set, and an object term
is one that must denote an object or atomic value. A conjunctive query Q is well
formed if

(i) every term in Q is either an object term or a set term, but not both,
(ii) each object term of the form x.A is equated, directly or indirectly, to some

variable or atomic value; that is, there is a variable or an atomic value in the
equivalence class [x.A], and
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(iii) every variable in Q ranges over exactly one disjunction of classes or atomic
types; that is, there is exactly one range atom associated with each variable.

Condition (i) is necessary for the satisfiability of the query and arises from the
obvious constraint that no term can simultaneously denote both an object and a set.
It is worth remarking that this condition implies that a set term cannot occur within
an equality atom in the query, for such an occurrence would be an object occurrence,
making the term simultaneously a set term and and object term. Note, moreover,
that no object term can ever denote a set, for, by conditions (ii) and (iii), an object
term must denote an element of some union of classes and atomic types.

For terms denoting objects or atomic values, condition (ii) is not a real restriction,
since such a term can always be equated to some new existentially quantified variable
ranging over all classes and atomic types. This condition is needed to simplify the
discussion in the subsequent sections. In the case of condition (iii), note that because
of the terminal class partitioning assumption, a query is unsatisfiable if it contains
both x ∈ C and x ∈ D, where C and D are distinct terminal classes. Such a
query may be satisfiable if C and D are nonterminal classes, but in this case the two
range atoms can be replaced (given a schema) with the single atom x ∈ C1 � · · · �Cn,
where C1, . . . , Cn are the common terminal descendants of C and D. Moreover, if the
variable x occurs in no range atom, then we may clearly add the atom x ∈ C1�· · ·�Cn,
where C1, . . . , Cn are all terminal classes and atomic types, without changing the
meaning of the query.

For the rest of this paper, we use the term conjunctive queries to denote well-
formed conjunctive queries. Well-formed queries include safe as well as unsafe queries
that produce infinite answers [31].

2.6. Terminal conjunctive queries. A terminal conjunctive query is a con-
junctive query in which every range atom is of the form “x ∈ C,” where C is a terminal
class or an atomic type.

Every conjunctive query can be expressed as a union of terminal conjunctive
queries, as follows. First, define an expansion of a query Q to be a query obtained by
replacing each range atom of the form x ∈ C1 � · · · �Cn by one of the atoms x ∈ Ci.
For example, the query

{
x | (x ∈ C �D) ∧ (y ∈ E � F ) ∧ (x.A = y)

}

has four expansions, one of which is the query

{
x | x ∈ D ∧ y ∈ E ∧ x.A = y

}
.

Note that every expansion of a conjunctive query is a terminal conjunctive query.

Proposition 2.1. Let Q be a conjunctive query and let Q1, . . . , Qn be all the
expansions of Q. Then Q is equivalent to Q1 ∪ · · · ∪Qn.

Proof. See [9].

This result states that, semantically, a conjunctive query corresponds to a union
of terminal conjunctive queries. Each terminal conjunctive query in a union could
have variables defined on different domains. To solve the containment and equiv-
alence problems, it is necessary to solve the satisfiability problem and to identify
exactly the set of objects or values over which a variable is ranging. In section 3, we
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present an algorithm for solving these problems for the terminal conjunctive queries.
This algorithm employs typing constraints to determine satisfiability of a terminal
conjunctive query. Queries that are not terminal could, by Proposition 2.1, first be
decomposed into a union of terminal conjunctive queries. We can then apply the
algorithm in section 3 to each subquery in the union to determine its satisfiability
and delete the unsatisfiable subqueries from the union. In sections 4 and 5, we shall
derive algorithms for testing containment and for minimizing terminal conjunctive
queries. Section 6.1 deals with containment of unions of conjunctive queries, which
can be used to determine containment of arbitrary conjunctive queries.

3. An efficient algorithm for testing satisfiability of terminal conjunc-
tive queries. Testing the satisfiability of restricted classes of conjunctive queries is
an NP-complete problem [9]. However, determining if a terminal conjunctive query
is satisfiable is tractable. We present in this section an algorithm that solves this
problem in polynomial time, from [9], along with a sketch of its correctness proof.
The aspect of this proof that is germane to our purposes in the present paper is that
if the input query is satisfiable, it is possible to construct a “minimal” state with
respect to which the query returns a nonempty result. Various properties of the state
constructed are needed in the proof of the characterization of containment of terminal
conjunctive queries.

One of the reasons for unsatisfiability of a query is the incompatibility of the
typing of its terms implied by the schema. Note that a query Q and schema S =
(C, σ,≺) together determine a type type(t) for every term t of the query. (In every
case, this type is in fact a class or atomic type.) For every atomic value c in an
atomic type T , we define type(c) = T . For every variable x in Q, define type(x) to be
the unique class or atomic type C such that Q contains an atom of the form x ∈ C.
For every term of the form x.A in Q, define type(x.A) as the type of attribute A in
σ(type(x)), if type(x) is a class and A is an attribute of σ(type(x)), and undefined
otherwise.

In order for the query to be satisfiable, the type assigned to its terms must be
consistent. By the terminal class partitioning assumption, terms denoting the same
object must belong to the same terminal class or atomic type, and an object belonging
to a set must be of a type admissible for that set. The following definition helps to
check these conditions. If T is an atomic type or a class, we say D is a terminal
subtype of T if either T is an atomic type and D is T , or D is a terminal descendant
of T . Let t be an object term in Q. Define SatType(t) to be the set of all D such that

1. for all terms u ∈ [t], D is a terminal subtype of type(u), and
2. for every ‘u ∈ z.A’ in Q, where u ∈ [t], D is a terminal subtype of C, where

type(z.A) is {C}.

Intuitively, SatType(t) is the set of terminal types that are consistent with all the
typing information on t derivable from the query. Since every object term must be
equated to some variable, which must range over a terminal type, or to an atomic
value, SatType(t) contains at most a single element. Note that the definition depends
only on the equivalence class of t, so we may also write SatType([t]) for SatType(t).
Note also that if Q is satisfiable, then SatType(t) is a singleton set for every variable
object term t in Q. For if SatType(t) were empty, then it would be impossible to
construct a satisfying assignment.
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Algorithm SatTestUT. Verify if a terminal conjunctive query Q is satisfiable.
Input: A terminal conjunctive query Q on S.
Output: yes if Q is satisfiable, and no otherwise.
Method: Compute the complete equality relationship graph E(Q) for Q.

(1) If there is an object term of the form x.A for which type(x.A) is undefined
or equal to a set type, or there is a set term of the form x.A, for which
type(x.A) is undefined or is not equal to a set type, then output no and
exit.

(2) If there is an object term t in Q such that SatType(t) is empty, then
output no and exit.

(3) If there is an object term t with two distinct atomic values c1 and c2
both in [t], then output no and exit.

(4) Output yes.

Lemma 3.1. If the algorithm SatTestUT outputs yes, then Q is satisfiable.
Proof. Suppose the algorithm outputs yes. We construct a state sQ and a satisfy-

ing assignment α for Q in sQ. This assignment will be called the canonical asssignment
for Q in sQ. The details of the construction will be applied in later results.

First, to each equivalence class [t] of the complete equality relationship graph of
Q, we associate a distinct value [t]α and a terminal class or an atomic type typeα([t]).
The type typeα([t]) is defined to be type(s) for any term s of the query in [t]. This
is well defined in the case of object terms by statement (2). For set terms x.A, note
that if t ∈ [x.A], then t must be of the form y.A for some variable y ∈ [x], by the
fact that set terms do not occur in equations in Q and construction of E(Q). Thus
typeα([x.A]) may be defined to be type(x.A) in this case. The values [t]α are assigned
as follows.

Val1: If typeα([t]) is an atomic type, and there is an atomic value c in [t], then [t]α
= c. By statement (3), c is the unique atomic value in [t].

Val2: If typeα([t]) is an atomic type and there is no atomic value in [t], then take
[t]α to be any value of type typeα([t]), such that no two distinct equivalence
classes are assigned the same value. (This is possible because the atomic
types are infinite.)

Val3: If typeα([t]) is a terminal class, then the value [t]α is defined to be just the
equivalence class [t] itself. In this case these values will be interpreted below
as objects in the state to be constructed.

Val4: If none of the above cases apply, then typeα([t]) is a set type. In this case [t]α
is defined to be the set {[v]α | “v ∈ z.A” is an atom in Q for some variable
z in [t]}. (Note that the variables v must be object variables, so the values
[v]α are already defined by cases Val1–Val3.)

Observe that it follows from this definition that distinct equivalence classes are as-
signed distinct values.

We now construct a state sQ = (O, Ic, Iv). We take the set of objects O of this
state to be {[t] | [t] is an equivalence class of Q such that typeα([t]) is a terminal
class}. These objects are assigned to terminal classes by putting Ic([t]) = typeα([t]),
for every [t] ∈ O. The mapping Iv, defined below, maps each [t] ∈ O to a tuple value
on typeα([t]). First, for each [t] ∈ O, define attr([t]) to be the set of attributes A such
that x.A is a term of Q for some variable x ∈ [t]. We now define attribute values
for the object [t] as follows. Note that by conditions (1) and (2), the set attr([t]) is



1384 EDWARD P. F. CHAN AND RON VAN DER MEYDEN

a subset of the set of attributes in Ic([t]). For each attribute A ∈ attr([t]), the value
assigned to the attribute A for the object [t] is [x.A]α, where x is any variable in
[t] such that x.A is a term of Q. (Note that the definition of the complete equality
relationship graph ensures that if x and y are variables in [t] such that x.A and y.A
are terms of Q, then [x.A] = [y.A], so this definition is independent of the choice of
x.) If A is an attribute in typeα([t]) but not in attr([t]), a null value is assigned to A
for the object [t]. This completes the definition of the state s.

Finally, we define a mapping α from the variables of Q to this state. For each
variable x, we let α(x) be the value [x]α. By Lemma 3.2, Q is satisfiable.

Lemma 3.2. The query Q is satisfied in the state sQ under the assignment α.
See [9] for more details (on a slightly different approach to the proof).
Theorem 3.3. A terminal conjunctive query Q on S is satisfiable if and only if

the algorithm SatTestUT outputs yes.
Proof. See [9].
Unless otherwise stated, we consider only satisfiable terminal conjunctive queries

for the rest of this paper.

4. Containment of terminal conjunctive queries. We now set about de-
veloping a condition that characterizes containment of terminal conjunctive queries.
We remark that some of the results of this section depend crucially on the notion of
atoms over a state defined in section 2.4. For the rest of sections 4 and 5, a query Q
refers to a terminal conjunctive query Q.

We begin by defining a relation that is intended to capture the equations that
must be satisfied under any satisfying assignment for a query. Recall that the terms
in an equation must have nonnull interpretations for the equation to hold. Given a
query Q, define the relation ≈ on the set of terms by s ≈ t if either

1. s and t are both terms in the complete equality relationship graph of Q and
[s] = [t], or

2. s and t are the same term, which is an atomic value.
Note that the relation ≈ is an equivalence relation when restricted to the set of terms
of the complete equality relationship graph of Q. However, ≈ is not an equivalence
relation in general, since we do not have t ≈ t for terms t that are not an atomic value
or in the complete equality relationship graph of Q. Intuitively, this reflects the fact
that such terms may have interpretation Λ under a satisfying assignment, so that the
equation t = t does not hold. (We do have c ≈ c for atomic values c because the
equation c = c will hold under every satisfying assignment.)

We can extend the relation ≈ on terms to a relation on atoms by defining A ≈ A′

if A and A′ are atoms of the same syntactic form and the terms in corresponding
positions are ≈-related. (For example, if [x] = [y] and z.A is a term of the complete
equality relationship graph, then we have x ∈ z.A ≈ y ∈ z.Z, but not x = z.A ≈ y ∈
z.Z, because these atoms are of different syntactic forms.)

Lemma 4.1. If α is a satisfying assignment for Q in a state s, then
(i) If s and t are terms with s ≈ t, then both Val(α(s)) and Val(α(t)) are nonnull

and Val(α(s)) = Val(α(t)).
(ii) If A and A′ are atoms with A ≈ A′, then s |= α(A) if and only if s |= α(A′).
Proof. The claim of part (i) is trivial for constants c, since we always have that

Val(α(c)) = c is nonnull. The case where s and t are terms of the complete equality
relationship graph with [s] = [t] is by induction on the construction of the complete
equality relationship graph, proving also the additional property that Val(α(t)) is
nonnull for any term in the complete equality relationship graph.
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Note that for all terms t of Q, we must have that Val(α(t)) is nonnull, since this is
required for the atom in which t occurs to be satisfied under α. (There is one exception
to this observation, the case in which t is the distinguished term and not equal to a
variable. But then t must be an atomic value c, for which Val(α(t)) = c is nonnull.)
For equations s = t in Q we must have Val(α(s)) = Val(α(t)) in order for α to be
satisfying. It is trivial that for an equality edge t = t we have Val(α(t)) = Val(α(t)).
This establishes the base case of the induction. (The case of equations t = t, for terms
introduced later in the construction, is similar but uses the additional property.)

Consider next the case of edges t1 = t2 and t2 = t3 inducing an edge t1 = t3.
Since we have [t1] = [t2] and [t2] = [t3], it follows from the inductive hypothesis that
Val(α(ti)) is nonnull for i = 1, . . . , 3 and Val(α(t1)) = Val(α(t2)) and Val(α(t2)) =
Val(α(t3)). It is immediate that Val(α(t1)) = Val(α(t3)).

Finally, suppose that x and y are variables with x = y, an edge of the complete
equality relationship graph, and that x.A is a node of the complete equality relation-
ship graph. By the induction hypothesis Val(α(x)) and Val(α(y)) are nonnull and
equal, and Val(α(x).A) is nonnull. It follows that Val(α(y.A)) = Val(α(y).A) is equal
to Val(α(x).A) and hence nonnull, and equal to Val(α(x.A)).

Part (ii) follows directly from part (i) using the fact that the definition of satis-
faction depends only on the values of the terms in the atoms A and A′.

In addition to the atoms in a query, certain other atoms will always be satisfied
with respect to any satisfying assignment for the query. For example, if a query
contains atoms x = y and y ∈ C, then every satisfying assignment also makes the
atom x ∈ C true. The following notion is intended to characterize such atoms. A
query Q is said to derive an atom A if

1. A is of the form t ∈ T where T is a basic type and t ≈ c for some atomic
value c of type T , or

2. A is of the form t1 = t2, where t1 and t2 are terms satisfying t1 ≈ t2, or
3. Q contains an atom A′ such that A′ ≈ A.

We write Q � A if Q derives the atom A. The following result shows that every atom
derived by a query in fact holds under any satisfying assignment.

Lemma 4.2. Let α be any satisfying assignment for the query Q in the state s.
If A is an atom such that Q � A, then s |= α(A).

Proof. We consider each clause of the definition of derivation:

1. Suppose A is of the form t ∈ T , where T is an atomic type and t ≈ c, where c is
an atomic value of type T . By Lemma 4.1, we have Val(α(t)) = Val(α(c)) = c.
It follows that s |= α(A).

2. If A is of the form s = t with s ≈ t, then by Lemma 4.1(i), Val(α(s)) =
Val(α(t)), with both nonnull, so s |= α(A) by definition.

3. Otherwise, Q contains an atom A′ such that A′ ≈ A. Since α is a satisfying
assignment, we have that s |= α(A′). By Lemma 4.1(ii), it follows that
s |= α(A) also.

We now set about showing that a converse to this result holds for the state sQ
constructed form a query Q. We begin by relating atoms over this state to atoms
of the query. Define an inverse of the canonical mapping α for the query Q to be a
function ω mapping each object of sQ and each atomic value to either a variable of Q
or an atomic value, such that

1. for all atomic values c such that there exists a variable y of Q with α(y) = c,
we have that ω(c) is a variable with this property,

2. for all atomic values c such that there exists no variable y of Q with α(y) = c,
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we have ω(c) = c, and
3. for all objects [t] of sQ we have that ω([t]) is a variable in [t]. (Note that each

object of sQ is an equivalence class of terms that must contain a variable by
condition (ii) of the definition of well-formed queries.)

We may extend ω to a mapping from terms over the state sQ to terms formed using
the variables of Q by defining ω([t].A) = ω([t]).A for all terms of the form [t].A. The
following result explains why we call such a mapping an inverse of α. (To understand
the condition on (ii), observe that ω is not defined on sets occurring in sQ.)

Lemma 4.3. If ω is an inverse of the canonical mapping α from Q to sQ, then

(i) for all terms t of Q we have ω(α(t)) ≈ t,
(ii) for all terms t over sQ for which Val(t) is nonnull and not equal to a set, we

have ω(Val(t)) ≈ ω(t), and
(iii) for all terms t over sQ for which Val(t) is nonnull, ω(t) is either an atomic

value or a term in the complete equality relationship graph of Q.

Proof. For (i) we consider three cases, according to whether α(t) is an atomic
value, object, or attribute term.

Consider first the case where α(t) is the atomic value c. Note that t cannot be
an attribute term since these must be mapped to attribute terms. If t is an atomic
value, t must be equal to c, so ω(α(t)) = c ≈ c = t. If t is a variable, there exists
a variable y with α(y) = c and ω(c) = y. Since the construction guarantees that
distinct equivalence classes are mapped by α to distinct values, we must have t ∈ [y].
Thus ω(α(t)) = y ≈ t.

Next, consider the case in which α(t) is the object [x]. As this case can only arise
from case Val3 of the construction, we have t ∈ [x], so ω(α(t)) = ω([x]) ≈ t.

Finally, if α(t) is of the form o.A, where o is an object of sQ, then t is a term of the
form x.A, where x is a variable, and o = [x]. Thus ω(α(t)) = ω([x].A) = ω([x]).A. Let
ω([x]) be the variable y. Because y must be in [x] and x.A is a term of the complete
equality graph, y.A is also a term of the complete equality graph, with [x.A] = [y.A].
Hence we have that ω(α(t)) = y.A ≈ x.A = t.

We prove (ii) and (iii) together. Note that if t is an atomic value or an object of
sQ, then ω(t) is a variable of Q or an atomic value, so the claim of (iii) holds. In this
case we also have Val(t) = t, so the claim of (ii) follows directly from the fact that
ω(t) is an atomic value or a term of the complete equality relationship graph, so that
ω(t) ≈ ω(t).

Suppose next that t is a term over sQ of the form [x].A (where, without loss
of generality, x is a variable) for which Val(t) is defined and not equal to a set.
By definition, ω([x].A) = ω([x]).A = y.A for some variable y ∈ [x]. Moreover, by
construction of sQ, there exists a variable z ∈ [x] such that z.A is a term in the
complete equality relationship graph. It follows that ω([x].A) are in the complete
equality relationship graph, establishing the claim of (iii) in this case. (Note also that
x.A is in the complete equality relationship graph.)

Moreover, we have either Val(t) = [x.A] or Val(t) = c for some atomic value c.
To complete the proof of (ii) we consider each of these cases individually.

Suppose first that Val(t) = [x.A]. Let ω([x]) be the variable y ∈ [x]. Then x ≈ y.
Hence ω(Val(t)) = ω([x.A]) ≈ x.A ≈ y.A = ω(t). Next, if Val(t) is the atomic value
c then, by construction of sQ, one of the following cases applies:

1. In case (Val1) of the construction, we have c ∈ [x.A]. Thus ω(Val(t)) = ω(c).
If there does not exist a variable v with ω(v) = c, then ω(c) = c ≈ x.A. If
there does exist such a variable, and ω(c) = v, then we must have v ∈ [x.A].
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Hence, here ω(c) = v ≈ x.A. In either case, it follows that ω(Val(t)) ≈ ω(t).
2. In case (Val2) of the construction, x.A is of atomic type, but [x.A] con-

tains no atomic value. In this case, there exists a variable y in [x.A], for
which we must have α(y) = c. Without loss of generality, take y to be
the variable such that ω(c) = y. Then ω([x].A) = ω([x]).A ≈ x.A ≈ y =
ω(Val(t)).

We may extend an inverse ω of α to a mapping from atoms A over sQ to atoms
over the variables of Q by defining ω(A) to be the atom obtained by substituting for
each term t over sQ in A the term ω(t).

We now show that the atoms derived by a query Q completely capture the set
of atoms of a certain form holding in the state sQ. Define an atom over sQ to be
terminal if it is of one of the following forms:

1. t ∈ T , where t is a term over sQ and T is an atomic type or terminal class,
2. s = t, where s and t are terms over sQ such that neither Val(s) nor Val(s) is

a set, and
3. t ∈ o.A, where t is a term over sQ and o is an object of sQ.

Intuitively, the terminal atoms are those that may occur as images under satisfying
assigments of a well-formed query.

Lemma 4.4. Let ω be any inverse of α. Then for all terminal atoms A over sQ
such that sQ |= A we have Q � ω(A).

Proof. We consider each of the possible cases for the atom A.

1. If A is of the form c ∈ T , where c is an atomic value of type T , then Q � ω(A)
by the first clause of the definition of derivation.

2. Suppose A is of the form [t] ∈ C, where C is a terminal class and [t] is an
object of sQ, with Ic([t]) = C. By construction of sQ, there exists a variable
x ∈ [t] such that x ∈ C is an atom of Q. Since ω([t]) is also an element of
the equivalence class [t], we have x ≈ ω([t]), so the atom ω(A) is ≈-related
to the atom x ∈ C. Hence, Q � ω(A) by the third clause of the definition of
derivation.

3. Suppose that A is of the form s = t, where s and t are terms over sQ. For
this equation to hold in sQ, we must have Val(s) = Val(t), with both nonnull.
Since the atom is terminal, neither value is a set. Hence, by Lemma 4.3(ii), we
have ω(s) ≈ ω(Val(s)) = ω(Val(s)) ≈ ω(t). It follows that Q � ω(s) = ω(t)
by the second clause of the definition of derivation.

4. Suppose that A is an atom of the form a ∈ b.A, where a is a value or object
of sQ and b is an object of sQ. By construction of sQ, for this atom to hold
in sQ there must exist an object term t in Q and a set term x.A such that
t ∈ x.A is an atom of Q and α(t) = a and α(x) = b. Since ω(a) = ω(α(t)) ≈ t
and ω(b) = ω(α(x)) ≈ x by Lemma 4.3(i), it follows the third clause of the
definition of derivation that Q � ω(t) ∈ ω(b).A, i.e., Q � ω(A).

We note that the corresponding property could not be established for atoms over
sQ expressing equations between sets. For example, for the query Q = {x | 1 ∈
x.A ∧ 1 ∈ y.B} we find that in sQ we have sQ |= [x].A = [y].B, since Val([x].A) =
{1} = Val([y].B), but not Q � x.A = y.B, since [x.A] �= [y.B].

We are now ready to state the characterization of containment of queries. First,
define a variable mapping from a query Q2 to a query Q1 to be a function µ mapping
each variable of Q2 to either a variable of Q1 or to an atomic value. Such a mapping
can be extended to a mapping from terms in the complete equality graph of Q2 to
expressions formed from atomic values and variables of Q1 by taking µ(c) = c for all
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atomic values c, and µ(x.B) = µ(x).B for all variables x. (Note that the expression
µ(x).B need not be a term of the complete equality graph of Q1, or even a term. For
example, if µ(x) is the atomic value c, then this expression is c.B, which is not a term,
and is uninterpretable in our language, since atomic values do not have attributes.)

We will deal with the composition of various such mappings. Recall that if f :
X → Y and g : Y → Z are functions, then the composition g ◦ f is the function from
X to Z defined by g ◦ f(x) = g(f(x)).

Define a containment mapping µ from a query Q2 to a query Q1 to be a variable
mapping from Q2 to Q1 such that

1. if t1 is the distinguished term of Q1 and t2 is the distinguished term of Q2,
then µ(t2) ≈1 t1 (where ≈1 is the relation derived from Q1), and

2. for every atom A of Q2, we have Q1 � µ(A).
The following result shows that containment mappings characterize containment be-
tween terminal conjunctive queries.

Theorem 4.5. If Q1 and Q2 are terminal conjunctive queries, then Q1 ⊆ Q2 if
and only if there exists a containment mapping from Q2 to Q1.

Proof. Suppose first that µ is a containment mapping from Q2 to Q1. We need
to show that Q1 ⊆ Q2. For this, let s be any state and suppose that α is a satisfying
assignment for Q1 in the state s, so that α(t1) ∈ Q1(s), where t1 is the distinguished
term of Q1. We show that α(t1) is also in Q2(s). Define the assignment β for Q2

in s by β = α ◦ µ. If A is an atom of Q2, then since µ is a containment mapping
we have by definition of containment that Q1 � µ(A). By Lemma 4.2 it follows that
s |= α(µ(A)), i.e., that s |= β(A). Since this holds for every atom of Q2 it follows that
β is a satisfying assignment of Q2 in s. Thus Q2(s) contains β(t2), where t2 is the
distinguished term of Q2. Because µ is a containment mapping, we have µ(t2) ≈ t1.
Thus, by Lemma 4.1 we have that β(t2) = α(µ(t2)) = α(t1) is in Q2(s), as promised.
This completes the proof that Q1 ⊆ Q2, establishing the implication from right to left
in the lemma.

To prove the converse, assume that there exists no containment mapping from Q2

to Q1. We show that Q1 is not contained in Q2 by establishing that Q1(sQ1
) is not

a subset of Q2(sQ1
). In particular, we argue that if α is the canonical assignment of

Q1 in sQ1 and t1 is the distinguished term of Q1, then α(t1) is not in Q2(sQ1
). Note

that, on the other hand, α(t1) is an element of Q1(sQ1) by Lemma 3.2.
To show that α(t1) is not in Q2(sQ1), assume to the contrary that β is a satisfying

assignment for Q2 in sQ1 with β(t2) = α(t1), where t2 is the distinguished term of
Q2. We derive a contradiction to the assumption that there exists no containment
mapping from Q2 to Q1. In particular, let ω be any inverse of α and consider the
mapping µ = ω ◦ β. Note that this must be a variable mapping from Q2 to Q1. We
claim that µ is a containment mapping from Q2 to Q1.

To see this, note first that µ(t2) = ω(β(t2)) = ω(α(t1)) ≈ t1. Thus µ satisfies the
first clause of the definition of containment mapping. Next, note that if A is an atom
of Q2, then since β is a satisfying assignment we have that sQ1 |= β(A). Since β(A)
is a terminal atom over sQ1

we have by Lemma 4.4 that Q1 � ω(β(A)), i.e., that
Q1 � µ(A). Thus µ satisfies the second condition of the definition of containment
mapping, completing the proof that µ is a containment mapping from Q2 to Q1 and
yielding the desired contradiction.

5. Minimization of terminal conjunctive queries. In this section, we define
a notion of minimality of terminal conjunctive queries and derive an algorithm that,
given a terminal conjunctive query as input, finds a minimal equivalent query among
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all terminal conjunctive queries.

Let Q be a terminal conjunctive query. A minimal terminal conjunctive query
of Q is a terminal conjunctive query equivalent to Q with the number of variables
minimal among such terminal conjunctive queries. We now show how to find minimal
queries.

We begin with a number of lemmas concerning containment mappings. In the
rest of the discussion, we use subscripting to indicate the query with respect to which
we compute the equivalence classes.

Lemma 5.1. Let µ be a containment mapping from the satisfiable terminal con-
junctive query Q2 to the satisfiable terminal conjunctive query Q1.

(i) If t is a term of the complete equality relationship graph of Q2, then µ(t) is
either an atomic value or a term of the complete equality relationship graph
of Q1.

(ii) Let ≈1 and ≈2 be the relations on terms corresponding to the queries Q1, Q2,
respectively. For all terms s and t, if s ≈2 t then µ(s) ≈1 µ(t).

Proof. We establish (i) and (ii) simultaneously. If s ≈2 t because both s and t are
the atomic value c, then we have µ(s) = µ(t) = c, so µ(s) ≈1 µ(t). It therefore remains
to show that if [s]2 = [t]2, where s and t are terms of the complete equality relationship
graph of Q2, then µ(s) and µ(t) are terms of the complete equality relationship graph
of Q1 and [µ(s)]1 = [µ(t)]1. We prove this by induction on the construction of the
complete equality relationship graph of query Q2. Note that it is immediate from the
fact that µ is a containment mapping that for all terms s of Q such that µ(s) is not
an atomic value, we have µ(s) equal to a term in the complete equality relationship
graph of Q1. This is because s occurs in an atom A of Q2 and Q1 derives the atom
µ(A).

In the case of edges s = s, we clearly have µ(s) ≈1 µ(s). For edges s = t
corresponding to atoms of Q2, we have µ(s) ≈1 µ(t) because µ is a containment
mapping. Suppose that an edge s = u is derived from edges s = t and t = u of
the complete equality relationship graph of Q2 for which we have µ(s) ≈1 µ(t) and
µ(t) ≈1 µ(u). Since all the latter terms are in Q1, it follows from the fact that ≈1 is
an equivalence relation on the terms of Q1 that µ(s) ≈1 µ(u).

Finally, suppose that an edge x.A = y.A is derived from an edge x = y and a
term x.A of the complete equality relationship graph of Q2. We assume by way of
induction that µ(x) ≈1 µ(y) and that the term µ(x.A) occurs in the complete equality
relationship graph of Q1. Now µ(x.A) = µ(x).A, so µ(x) must be a variable, else Q1

would not be satisfiable. Since µ(x) ≈1 µ(y), it follows similarly that µ(y) must be a
variable. Thus, µ(y.A) = µ(y).A is a term of the complete equality relationship graph
of Q1 and µ(x).A ≈1 µ(y).A, by the inductive hypothesis and the construction of the
complete equality relationship graph of Q1.

Lemma 5.2. Let µ be a containment mapping from the satisfiable terminal con-
junctive query Q2 to the satisfiable terminal conjunctive query Q1. If A is an atom
such that Q1 � A, then Q2 � µ(A).

Proof. We consider the three cases of the definition of derivation. First, suppose
A is of the form t ∈ T , where T is an atomic type and t is ≈-related to the atomic value
c of type T . Then by Lemma 5.1(ii) we have µ(t) ≈1 c, so Q1 � µ(t) ∈ T . Second,
if A is the atom s = t and s ≈2 t, then by Lemma 5.1(ii) we have µ(s) ≈1 µ(t), so
Q1 � µ(s) = µ(t). Finally, if Q2 contains the atom A′ ≈2 A, then by Lemma 5.1(ii)
we have µ(A′) ≈1 µ(A). Since µ is a containment mapping it is also the case that
Q1 � µ(A′). It follows using the definition of derivation and the fact that ≈1 is
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an equivalence relation on terms of the complete equality relationship graph that
Q1 � µ(A).

Lemma 5.3. Let Q1, Q2, and Q3 be satisfiable terminal conjunctive queries. If
µ1 is a containment mapping from Q1 to Q2 and µ1 is a containment mapping from
Q2 to Q3, then µ2 ◦ µ1 is a containment mapping from Q1 to Q3.

Proof. Let t1, t2, and t3 be the distinguished terms of Q1, Q2, and Q3, respectively,
and let ≈1,≈2, and ≈3 be the relations on terms derived form these queries. Since µ1

and µ2 are containment mappings, we have µ1(t1) ≈2 t2 and µ2(t2) ≈3 t3. It follows,
using Lemma 5.1(ii), that µ2 ◦ µ1(t1) ≈3 µ2(t2) ≈3 t3. This establishes that µ2 ◦ µ1

satisfies the first condition of the definition of containment mapping.

It remains to show that if A is an atom of Q1, then Q3 � µ2 ◦ µ1(A). Since µ1 is
a containment mapping we have that Q2 � µ1(A). It follows, using Lemma 5.2 and
the fact that µ2 is a containment mapping, that Q3 � µ2 ◦ µ1(A).

Let Q = {t | M} be a conjunctive query and suppose µ is a variable mapping on
Q. Define µ(Q) to be the conjunctive query with the distinguished term µ(t) obtained
by replacing each atom A of Q by the atom µ(A).

Proposition 5.4. Let Q be a terminal conjunctive query. Suppose there is a
containment mapping µ from Q to itself. Then µ(Q) is equivalent to Q.

Proof. It is easy to check that µ is a containment mapping from Q to µ(Q), so
we have by Theorem 4.5 that µ(Q) ⊆ Q. To show Q ⊆ µ(Q), we show that there
is a containment mapping from µ(Q) to Q. We claim that the identity mapping i
is such a mapping. Note first that the distinguished term of µ(Q) is µ(t), where
t is the distinguished term of Q, and we have i(µ(t)) = µ(t) ≈ t, because µ is a
containment mapping. It remains to show that for every atom A of Q, we have for
the corresponding atom µ(A) of µ(Q) that Q � i(µ(A)). That is, we need Q � µ(A).
This is immediate from the fact that µ is a containment mapping.

The following describes how to obtain a minimal terminal conjunctive query. Say
that a variable mapping µ from a query Q1 to a query Q2 is bijective if µ(x) is a
variable of Q2 for every variable x of Q1 and the restriction of µ to the set of variables
of Q1 is a bijective mapping to the set of variables of Q2.

Theorem 5.5. A terminal conjunctive query Q is minimal if all containment
mappings from Q to itself are bijective.

Proof. Suppose that all containment mappings from Q to itself are bijective, but
that Q is not minimal. We establish a contradiction. Since Q is not minimal, there is
a minimal terminal conjunctive query Q′ equivalent to Q which has fewer variables.
Now by Theorem 4.5, the fact that Q′ ≡ Q implies that there is a containment
mapping µ from Q to Q′ and also that there is a containment mapping ω from Q′

to Q. It follows from Lemma 5.3 that the composite mapping ω ◦ µ is a variable
mapping from Q to itself. By the assumption, ω ◦ µ is bijective. But this means that
the number of variables of Q′ is at least as large as the number of variables of Q,
contradicting the choice of Q′.

The converse to Theorem 5.5 follows from the following.

Theorem 5.6. Let Q1 and Q2 be minimal terminal conjunctive queries. Suppose
Q1 ≡ Q2. Then every containment mapping from one query to the other is bijective.

Proof. Let µ be a containment mapping from Q1 to Q2. Since these queries are
equivalent, there also exists a containment mapping ω from Q2 to Q1. By Lemma 5.3,
the composite mapping µ◦ω is a containment mapping from Q2 to itself. Suppose that
the image of the set of variables of Q2 under µ ◦ ω does not contain all the variables
of Q2. Then the query (µ ◦ ω)(Q2), which is equivalent to Q2 by Proposition 5.4,
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has fewer variables than Q2. This contradicts the minimality of Q2. This shows that
the image of the set of variables of Q2 under µ ◦ ω contains all the variables of Q2.
It follows that Q1 has at least as many variables as Q2. A similar argument using
the containment mapping ω ◦ µ from Q1 to Q1 shows that Q2 has at least as many
variables as Q1. Since µ ◦ ω covers the variables of Q2, it now follows that µ must in
fact be a bijection between the variables of Q1 and Q2.

Given a satisfiable terminal conjunctive query Q, the algorithm to find a minimal
terminal conjunctive query Q′ equivalent to Q is as follows. Consider all containment
mappings µ from Q to itself. Choose Q′ to be one of the queries µ(Q) that has the
fewest variables among such queries. The minimality of Q′ follows from Theorem 5.6.

Note that there may be some further optimizations possible for the query Q′ so
obtained, since this may contain atoms of the form c ∈ T or c = c, where c is an
atomic value of type T . Such atoms, since they are derivable even from an empty
query, can be deleted, yielding an equivalent query.

6. Containment and optimization of conjunctive queries. In this section,
we study the containment of conjunctive queries and show how to obtain optimal con-
junctive queries. The optimal conjunctive queries obtained are expressed as unions of
terminal conjunctive queries and are optimal among all unions of terminal conjunctive
queries. In section 6.1, we characterize containment of conjunctive queries by solving
the containment problem for unions of terminal conjunctive queries. In section 6.2,
we give our notion of optimality. In section 6.3, we derive an algorithm, given a
conjunctive query, for finding an optimal union of terminal conjunctive queries. We
first use an example to illustrate our notion of optimality and the approach taken in
obtaining an optimal query.

Example 6.1. Let us consider the following query defined on the schema in
Example 1.1.

Q1 : {x | ∃y ∃z (x ∈ Vehicle & y ∈ Discount & z ∈ Client & x ∈ y.VehRented

& x ∈ z.VehRented)}.

This query retrieves all those vehicles that have been rented to a discount client.
By Proposition 2.1, Q1 is equivalent to the union of the following terminal conjunctive
queries:

S1 : {x | ∃y ∃z (x ∈ Auto & y ∈ Discount & z ∈ Normal & x ∈ y.VehRented

& x ∈ z.VehRented)}.
S2 : {x | ∃y ∃z (x ∈ Auto & y ∈ Discount & z ∈ Discount & x ∈ y.VehRented

& x ∈ z.VehRented)}.
S3 : {x | ∃y ∃z (x ∈ Trailer & y ∈ Discount & z ∈ Normal & x ∈ y.VehRented

& x ∈ z.VehRented)}.
S4 : {x | ∃y ∃z(x ∈ Trailer & y ∈ Discount & z ∈ Discount & x ∈ y.VehRented

& x ∈ z.VehRented)}.
S5 : {x | ∃y ∃z(x ∈ Truck & y ∈ Discount & z ∈ Normal & x ∈ y.VehRented

& x ∈ z.VehRented)}.
S6 : {x | ∃y ∃z(x ∈ Truck & y ∈ Discount & z ∈ Discount & x ∈ y.VehRented

& x ∈ z.VehRented)}.
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With algorithm SatTestUT, it can be shown that S3, S4, S5, and S6 are unsatisfi-
able. The reason for this is that discount clients are only allowed to rent automobiles
and not other types of vehicles. Hence Q1 is equivalent to S1 ∪ S2. There is a con-
tainment mapping from S2 to S1; the mapping is to map x to x and y and z to y.
By Theorem 4.5, S1 is redundant and is removed from the union. S2 can further be
minimized by mapping x to x and y and z to y. The resulting optimal query obtained
is as follows:

S′
2 : {x | ∃y(x ∈ Auto & y ∈ Discount & x ∈ y.VehRented)}.

6.1. A characterization of containment of unions of terminal conjunc-
tive queries. By Proposition 2.1, understanding containment of unions of terminal
conjunctive queries suffices to solve the containment problem of conjunctive queries.
We have found a characterization of containment for terminal conjunctive queries.
We are now ready to state the containment condition for two unions of terminal
conjunctive queries.

Theorem 6.1. Let M = Q1 ∪ · · · ∪ Qs and N = P1 ∪ · · · ∪ Pt be two unions of
terminal conjunctive queries. M ⊆ N if and only if for each Qi in M there is a Pj in
N such that Qi ⊆ Pj.

Proof. “If.” This part is trivial.
“Only if.” Let Qi be a subquery in M . Let sQi

be the state constructed for
Qi. Suppose α is a satisfying assignment from Qi to sQi

and let ω be an inverse of
α. Since M ⊆ N , there is some Pj such that there is a satisfying assignment γ of
object identifiers and atomic values in the state sQi to variables in Pj that gives rise
to the answer α(ti), where ti is the distinguished term of Qi. Then ωoγ is a variable
mapping from Pj to Qi. We show that the mapping ωoγ is a containment mapping.

Let ωoγ(tj) = v, where tj is the distinguished term of Pj . Then γ(tj) = α(ti).
Hence, ω(γ(tj)) = ω(α(ti)). By Lemma 4.3(i), ω(α(ti)) ≈ tj . Let A be an atom of
Pj . Then γ(A) is a terminal atom over sQi and sQi |= γ(A). By Lemma 4.4, Qi � ω
(γ(A)). Hence ωoγ is a containment mapping. By Theorem 4.5, Qi ⊆ Pj .

As a corollary, we solve the problem of determining when one conjunctive query
contains the other one.

6.2. Search-space-optimal queries. We now introduce our notion of optimal-
ity, which tries to capture the intuition that the number of variables as well as their
search spaces are minimal among all equivalent queries. In a conjunctive query, each
variable is associated with a set of terminal classes or atomic types which denotes the
search space of the variable. Without knowing the physical data organization for var-
ious classes, a good criterion of evaluating various equivalent queries is by comparing
the set of variables in a query and their associated search spaces.

Example 6.2. Let us consider again the vehicle rental schema. The following
three queries can be shown to be equivalent:

Q1 : {x | ∃y ∃z (x ∈ Auto & y ∈ Discount & z ∈ Vehicle & x ∈ y.VehRented

& z ∈ y.VehRented)}.
Q2 : {x | ∃y (x ∈ Vehicle & y ∈ Discount & x ∈ y.VehRented)}.
Q3 : {x | ∃y (x ∈ Auto & y ∈ Discount & x ∈ y.VehRented)}.

If we consider the domain of the type of a variable as its search space, then Q1 has
more variables and has a larger search space than Q2. Although Q2 and Q3 have the
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same number of variables, the search space associated with variables in Q2 is greater
than that in Q3. Q3 is considered to be more optimal since the number of variables
as well as the search space are minimal.

Existing work on exact minimization tries to minimize the number of joins in an
expression [2]. The notion of optimality we shall propose attempts to generalize that
idea.

A multiset is a set or bag of elements in which duplicate elements are allowed. Let
S and T be two multisets. The bag union of S and T , denoting S � T , is a multiset
obtained from merging elements in the operands, such that for every element x in S
or T , the number of occurrences of x in the bag union is the sum of the numbers of
occurrences of x in S and in T . Clearly the bag union operator is commutative and
associative. We say S is a bag subset of T and denotes S � T if for every element x
in S, if there are n occurrences of x in S, then there are at least n occurrences of x
in T .

Let Q be a conjunctive query and x a variable in Q. Define term-class(Q, x)
={E | x ∈ C1 � · · · �Cn is the range atom in Q associated with the variable x, and E
is a terminal subtype of Ci, for some 1 ≤ i ≤ n}. Informally, term-class(Q, x) gives
the terminal descendent classes or atomic types over which the variable x is ranging
in the query. Let x1, . . . , xn be the set of variables in Q. Then term-class(Q) is a
multiset defined as term-class(Q, x1) � · · · � term-class(Q, xn).

We are now ready to define our notion of optimality. Let Q = Q1 ∪ · · · ∪ Qn
and P = P1 ∪ · · · ∪ Pm be two unions of conjunctive queries. Q is said to be at
least as optimal as P , denotes Q ≤ P , if term-class(Q1) � · · · � term-class(Qn) �
term-class(P1) � · · · � term-class(Pm).

A query Q is search-space-optimal among a set of queries S if for all P in S such
that P is equivalent to Q,P ≤ Q implies Q ≤ P . For search-space-optimal queries,
the object search spaces are minimal among all equivalent queries in the set S. The
query Q3 in Example 6.2 is a search-space-optimal query.

Corollary 6.2. If Q is a minimal terminal conjunctive query, then Q is a
search-space-optimal query among all terminal conjunctive queries.

Proof. The proof of the corollary follows from Theorem 5.6 and the derivability
of range atoms.

6.3. Optimization of unions of terminal conjunctive queries. In this sub-
section, we study the optimization of unions of terminal conjunctive queries. We show
how to obtain a search-space-optimal query among all unions of terminal conjunctive
queries.

A union of terminal conjunctive queries Q1(s, t) ∪ · · · ∪Qn(s, t) is nonredundant
if there are no Qi and Qj , i �= j, such that Qi ⊆ Qj . We can transform a union of
terminal conjunctive queries to an equivalent nonredundant union by finding Qi and
Qj , i �= j, such that Qi ⊆ Qj and deleting Qi from the union until no more subquery
can be removed.

The following is an important property about nonredundant unions of terminal
conjunctive queries.

Theorem 6.3. Let M = Q1∪· · ·∪Qs and N = P1∪· · ·∪Pt be two nonredundant
unions of terminal conjunctive queries. Then M ≡ N if and only if for each Qi in
M , there is a unique Pj in N such that Qi ≡ Pj and vice versa. Moreover, s = t.

Proof. “If” follows from Theorem 6.1.
For “Only if”, suppose M ≡ N . Let Qi be a subquery in M . By Theorem 6.1,

there is a Pj in N such that Qi ⊆ Pj . By the assumption on equivalence and by
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Theorem 6.1, there is Qp in M such that Pj ⊆ Qp. If i �= p, then Qi ⊆ Pj and
Pj ⊆ Qp. This implies Qi ⊆ Qp and contradicts the nonredundancy of M . Hence
i = p and Qi ≡ Pj . If s �= t, say, s < t, then there is a Pj which is redundant. This
is a contradiction. It follows that s = t.

The following is an algorithm for finding an optimal union of terminal conjunctive
queries for a conjunctive query.

Algorithm Optimization. Given a conjunctive query Q, find an equivalent
union of terminal conjunctive queries which is search-space-optimal among all unions
of terminal conjunctive queries.
Input: A conjunctive query Q.

Output: An equivalent union of terminal conjunctive queries.
Method: (1) Convert Q into an equivalent union of terminal conjunctive queries.

(2) Remove unsatisfiable subqueries from the union using the algorithm
SatTestUT.

(3) Remove any redundant subqueries from the union.
(4) Minimize each of the remaining subqueries.
(5) Output the union of resulting terminal conjunctive queries.

Theorem 6.4. The union of terminal conjunctive queries output by Algorithm
Optimization is equivalent to Q and is a search-space-optimal query among all unions
of terminal conjunctive queries.

Proof. By Proposition 2.1, Theorem 3.3, and definitions of redundancy and mini-
mization, the union, say Q’, output is equivalent to the input Q. Let P = P1∪· · ·∪Pn
be a union of terminal conjunctive queries that is equivalent to Q. Without loss of
generality, let us assume that P is nonredundant and each subquery is minimal. By
Theorem 6.3, there is a one-to-one correspondence between the two unions. By The-
orem 5.6 and the fact that both unions are unions of terminal conjunctive queries,
Q′ ≤ P .

Let us look at the following example.
Example 6.3. Let us consider a query defined on the schema in Figure 4:

Q1 : {x | ∃y ∃s (x ∈ N & y ∈ H & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.

By Proposition 2.1, Q1 is equivalent to the union of the following terminal con-
junctive queries:

S1 : {x | ∃y ∃s (x ∈ T1 & y ∈ I & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.
S2 : {x | ∃y ∃s (x ∈ T2 & y ∈ I & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.
S3 : {x | ∃y ∃s (x ∈ T3 & y ∈ I & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.
S4 : {x | ∃y ∃s (x ∈ T1 & y ∈ J & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.
S5 : {x | ∃y ∃s (x ∈ T2 & y ∈ J & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.
S6 : {x | ∃y ∃s (x ∈ T3 & y ∈ J & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.

With algorithm SatTestUT, S2, S3, S4, and S5 are unsatisfiable. Hence Q1 is
equivalent to S1 ∪ S6. Neither subquery in the union contains the other and hence
the union is nonredundant. Since variables in S1 range over different terminal classes,
S1 is minimal. It can easily be shown that S6 can be minimized further. A minimal
form is as follows:

S′
6 : {x | ∃y (x ∈ T3 & y ∈ J & y = x.B & y ∈ x.A)}.
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21
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I J

Fig. 4. An inheritance hierarchy.

The union of terminal conjunctive queries output by the algorithm is S1 ∪ S′
6,

which is a search-space-optimal query for Q1 among all unions of terminal conjunctive
queries.

Algorithm Optimization only produces an optimal query expressed as a union of
terminal conjunctive queries. This form need not be the most desirable form to be
executed. For instance, Q1 in Example 6.3 is equivalent to the following query:

Q2 : {x | ∃y ∃s (x ∈ T1 � T3 & y ∈ H & s ∈ J & y = x.B & y ∈ x.A & s ∈ x.A)}.

Throughout the discussion, we made no assumption on how data are being phys-
ically organized. It could be the case that, given certain information on data organi-
zation, Q2 is a better form to be evaluated than the union produced by the algorithm.
However, the union of terminal conjunctive queries produced could be used as a basis
to generate an equivalent query in a more desirable form. It would be interesting to
see how other information could be used to synthesize a more optimal query for the
union.

7. Complexity of the containment problem. In this section, we investigate
the time complexity for determining containment of conjunctive queries. We begin
with the simple case of terminal conjunctive queries. The containment problem for
terminal conjunctive queries is clearly in NP. A relational query is called a select-
project-join (SPJ)-query if only selections with constant, projection, and natural join
are used in the query. It is well known that the class of relational SPJ-expressions
can be expressed as a tagged tableau [2]. Every such tagged tableau can be translated
into a conjunctive query without the set membership construct. In [2], it was shown
that the problem of determining containment of SPJ-expressions is an NP-complete
problem. Consequently, the containment problem of terminal conjunctive queries is
also NP-complete. In fact, it can be shown that the containment problem of terminal
conjunctive queries involving only range and set membership atoms is NP-complete.

Corollary 7.1. The problem of determining containment for terminal conjunc-
tive queries is an NP-complete problem.

Proof. The proof follows from the argument above.
Corollary 7.1 implies that testing containment of conjunctive queries is NP-hard.

We shall show that the problem is in ΠP
2 of the polynomial hierarchy [28]. The proof

of this result is similar to a proof in [24]. A language L is in ΠP
2 if its complement is in

ΣP2 , the class of languages which can be recognized by a nondeterministic polynomial-
time algorithm with an oracle from NP. An oracle for a class of decision problems C
enables one to decide any problem in C in unit time. The classes ΣP2 and ΠP

2 contain
NP and are contained in PSPACE.
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Theorem 7.2. The problem of determining containment for conjunctive queries
is in ΠP

2 .
Proof. Let E1 and E2 be two conjunctive queries. We describe a nondeterministic

polynomial-time algorithm with an oracle from NP that answers “yes” if and only if
E1 �⊆ E2. By Theorem 6.1, E1 �⊆ E2 if and only if there is a terminal conjunctive
query in the union for E1, say E3, such that E3 �⊆ E2. E3 can be guessed non-
deterministically from E1 by assigning terminal classes or atomic types to variables
involved. After guessing the query, we test if E3 is satisfiable. Testing satisfiability
of terminal conjunctive queries can be performed in polynomial time [9]. If E3 is
satisfiable, then we ask the oracle if E3 ⊆ E2. If the oracle answers “no,” then the
algorithm answers “yes.” It remains to show that determining E3 ⊆ E2 is in NP. By
Theorem 6.1, E3 ⊆ E2 if and only if there is a terminal conjunctive query in the union
for E2, say E4, such that E3 ⊆ E4. Thus we can guess E4 as before and then check
in nondeteministic polynomial time that E3 ⊆ E4. Hence our claim is proved.

We are now ready to show that the containment problem is ΠP
2 -hard.

A Π2 formula of quantified propositional logic is an expression,

ϕ = ∀p1 · · · pn∃pn+1 · · · pn+m[α],

where α is a formula of propositional logic containing only the propositional variables
p1, . . . , pn+m. Such an expression is true if for every assignment of Boolean truth
value to the variables p1, . . . , pn, there exists an assignment of truth values to the
variables pn+1, . . . , pn+m under which the formula α is true. The set Π2-SAT is the
set of all true Π2 formulae. This is a generalization of the problem of satisfiability to
the polynomial hierarchy. It is known that the set Π2-SAT is complete for the level
Πp

2 of this hierarchy [29, 32].
Theorem 7.3. There exists a fixed schema S such that problem of deciding, given

queries Q1 and Q2 on S, whether Q1 ⊆ Q2 is Πp
2-hard.

Proof. By reduction from Π2-SAT. We show that for every Π2 formula ϕ, there is
a pair of conjunctive queries Q1, Q2 such that ϕ is true if and only if Q1 is contained
in Q2.

Define the schema S to contain classes C,R,G, V,AND , and NOT . The subclass
relationships between these classes are given by R ≺ C and G ≺ C. Thus, the terminal
classes are R,G, V,AND , and NOT . The tuple type for both R and G is [a : C, b :
INT, c : V ], for V is the empty tuple type [], for AND is [in1 : V, in2 : V, out : V ],
and for NOT is [in : V, out : V ].

We first describe the query Q1. Part of this query will encode the truth tables for
conjunction and negation. Intuitively, there are (four) variables ranging over AND
which represent the lines of the truth table for “∧,” there are (two) variables ranging
over NOT which represent the lines of the truth table of “¬,” and there are variables
t and f in V which denote the truth values true and false, respectively. We write
TT (t, f) for the following formula:

∃u1 ∈ AND [u1. in1 = t & u1. in2 = t & u1. out = t] &

∃u2 ∈ AND [u2. in1 = t & u2. in2 = f & u2. out = f ] &

∃u3 ∈ AND [u3. in1 = f & u3. in2 = t & u3. out = f ] &

∃u4 ∈ AND [u4. in1 = f & u4. in2 = f & u4. out = f ] &

∃v1 ∈ NOT [v1. in = t & v1. out = f ] &

∃v2 ∈ NOT [v2. in = f & v2. out = t].
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Next, suppose ϕ has n universally quantified variables. Part of the query Q1 will have
the function of assigning a truth value to each of these variables. We construct for
each i = 1, . . . , n the query ASGNi(t, f) given by

∃wi1 ∈ R∃wi2 ∈ C∃wi3 ∈ G
[
wi1.a = wi2 & wi2.a = wi3 &

wi2.b = i & wi3.b = i & wi2.c = t & wi3.c = f
]
.

We now define the query Q1 to be

{t | t ∈ V & ∃f ∈ V [TT (t, f) & ASGN1(t, f) & · · ·& ASGNn(t, f)]}.

After moving the quantifiers to the front, it is clear that Q1 is a conjunctive query.
Let α be a formula of propositional logic in the propositional constants p1, . . . ,

pn+m. We define inductively the formula Φα with free variables amongst x = xpn , . . . ,
xpn+m

and xα. If α is the propositional constant pi, where i = 1, . . . , n, then

Φα = ∃zi1 ∈ R∃zi2 ∈ G
[
zi1.a = zi2 & zi2.b = i & zi2.c = xpi

]
.

If α is the propositional constant pi, where i = n + 1, . . . , n + m, then Φα is the null
formula true. (Note that the variable xα is xpi in these cases.) If α = β&γ, then
Φα(x, xα) is

∃yβ ∈ AND ∃xβxγ ∈ V

[
yβ . in1 = xβ & yβ . in2 = xγ & yβ . out = xα &
Φβ(x, xβ) & Φγ(x, xγ)

]
.

If α = ¬β, then Φα(x, xα) is

∃yβ ∈ NOT ∃xβ ∈ V
[
x. in = xβ & yβ . out = xα & Φβ(x, xβ)

]
.

We define Q2 to be the query

{
xα | xα ∈ V & ∃xp1 · · ·xpn ∈ V

[
Φα(x, xα)

]}
.

Observe that the class C does not occur in Q2. Thus, after moving the quantifiers to
the front, this query is a terminal conjunctive query.

Note that expansions of Q1 are obtained by replacing each of the n range atoms
wi2 ∈ C by either wi2 ∈ R or wi2 ∈ G. There are therefore 2n such expansions. We
first show that each of these expansions uniquely determines an assignment of truth
values to the propositional constants p1, . . . , pn.

Suppose 1 ≤ i ≤ n. Because the constant i has only two occurrences in Q1, if µ
is a mapping from the variables zi1, zi2, xpi to the variables of an expansion E of Q1

that preserves the atom zi2.b = i of the formula Φpi , then we must have µ(zi2) = wi2
or µ(zi2) = wi3. In case the atom wi2 ∈ C of ASGNi is expanded as wi2 ∈ G,
the mapping zi1  → wi1, zi2  → wi2, xpi  → t, is the only mapping that preserves all
the equality and range atoms of Φpi . This determines the assignment of true to pi.
Similarly, in case wi2 ∈ C is expanded as wi2 ∈ R, the mapping zi1  → wi2, zi2  →
wi3, xpi  → f is the only such mapping. This determines the assignment of false to pi.

Next, suppose that µ is a mapping from the variables of the formulae Φpi for
i = 1, . . . , n and the variables xpn+1 , . . . , xpn+m to the variables of an expansion E
of Q1, such that the atoms of Q2 containing these variables are preserved. As noted
above, this implies that the variables xp1 , . . . , xpn are mapped to either t or f . The
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same holds for the variables xpn+1
, . . . , xpn+m

, because of the range atoms xpi ∈ V in
Q2. Let θ be the truth value assignment that assigns the constant pi to be true if
and only if µ(xpi) = t. Under these conditions, a straightforward induction on the
complexity of α shows that there exists a unique extension of the mapping µ to a
mapping from the variables of Q2 to the variables of Q1 that preserves all the atoms
of Q2. Furthermore, we have µ(xα) = t if and only if the formula α is true with
respect to the assignment θ. Note also that this mapping µ is a containment mapping
from Q2 to the expansion E if and only if µ(xα) = t.

It now follows from the observations above that there exists a containment map-
ping from Q2 to E for each expansion E of Q1 if and only if the quantified formula ϕ
is true.

Theorem 7.4. The problem of determining containment for conjunctive queries
is complete in ΠP

2 .

Proof. The proof follows from Theorems 7.2 and 7.3.

8. Conclusion. Query optimization is an important and yet difficult problem
in an OODB. The types of attributes in an inheritance hierarchy can be considered as
constraints imposed on objects in a state. In this paper, we studied the containment,
equivalence, and optimization problems for a class of natural queries called conjunc-
tive queries. A conjunctive query can be expressed as a union of terminal conjunctive
queries. We first characterized containment and minimization for terminal conjunc-
tive queries. We then solved the problems of containment and optimization for the
class of object-preserving conjunctive queries. The optimal queries are expressed as
unions of terminal conjunctive queries. The notion of optimality captures the intu-
ition that an optimal equivalent query logically accesses, in certain sense, the least
number of objects in a database. It was shown that testing containment of terminal
conjunctive queries is an NP-complete problem. Moreover, the containment problem
of conjunctive query in general is Πp

2-complete.
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ROBUST PLANE SWEEP FOR INTERSECTING SEGMENTS∗

JEAN-DANIEL BOISSONNAT† AND FRANCO P. PREPARATA‡

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 5, pp. 1401–1421

Abstract. In this paper, we reexamine in the framework of robust computation the Bentley–
Ottmann algorithm for reporting intersecting pairs of segments in the plane. This algorithm has
been reported as being very sensitive to numerical errors. Indeed, a simple analysis reveals that it
involves predicates of degree 5, presumably never evaluated exactly in most implementations. Within
the exact-computation paradigm we introduce two models of computation aimed at replacing the
conventional model of real-number arithmetic. The first model (predicate arithmetic) assumes the
exact evaluation of the signs of algebraic expressions of some degree, and the second model (exact
arithmetic) assumes the exact computation of the value of such (bounded-degree) expressions. We
identify the characteristic geometric property enabling the correct report of all intersections by
plane sweeps. Verification of this property involves only predicates of (optimal) degree 2, but its
straightforward implementation appears highly inefficient. We then present algorithmic variants that
have low degree under these models and achieve the same performance as the original Bentley–
Ottmann algorithm. The technique is applicable to a more general case of curved segments.

Key words. computational geometry, segment intersection, plane sweep, robust algorithms
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1. Introduction. As is well known, computational geometry has traditionally
adopted the arithmetic model of exact computation over the real numbers. This model
has been extremely productive in terms of algorithmic research, since it has permit-
ted a vast community to focus on the elucidation of the combinatorial (topological)
properties of geometric problems, thereby leading to sophisticated and efficient algo-
rithms. Such an approach, however, has a substantial shortcoming, since all computer
calculations have finite precision, a feature which affects not only the quality of the
results but even the validity of specific algorithms. In other words, in this model,
algorithm correctness does not automatically translate into program correctness. In
fact, there are several reports of failures of implementations of theoretically correct
algorithms (see, e.g., [For87, Hof89]). This state of affairs has engendered a vigorous
debate within the research community, as is amply documented in the literature. Sev-
eral proposals have been made to remedy this unsatisfactory situation. They can be
split into two broad categories according to whether they perform exact computations
(see, e.g., [BKM+95, FV93, Yap97, She96]) or approximate computations (see, e.g.,
[Mil88, HHK89, Mil89]).

This paper fine-tunes the exact-computation paradigm. The numerical compu-
tations of a geometric algorithm are basically of two types: tests (predicates) and
constructions, each with clearly distinct roles. Tests are associated with branching
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decisions in the algorithm that determine the flow of control, whereas constructions
are needed to produce the output data. While approximations in the execution of
constructions are often acceptable, approximations in the execution of tests may
produce incorrect branching, leading to the inconsistencies which are the object of
the criticisms leveled against geometric algorithms. The exact-computation paradigm
therefore requires that tests be executed with total accuracy. This will guarantee that
the result of a geometric algorithm will be topologically correct albeit geometrically
approximate. This also means that robustness is in principle achievable if one is will-
ing to employ the required precision. The reported failures of structurally correct
algorithms are entirely attributable to noncompliance with this criterion.

Therefore, geometric algorithms can also be characterized on the basis of the
complexity of their predicates. The complexity of a predicate is expressed by the
degree of a homogeneous polynomial embodying its evaluation. The degree of an
algorithm is the maximum degree of its predicates, and an algorithm is robust if the
adopted precision matches the degree requirements.

The “degree criterion” is a design principle aimed at developing low-degree algo-
rithms. This approach involves reexamining under the degree criterion the rich body
of geometric algorithms known today, possibly without negatively affecting traditional
algorithmic efficiency. A previous paper [LPT96] considered as an illustration of this
approach the issue of proximity queries in two and three dimensions. As an addi-
tional case of degree-driven algorithm design, in this paper we confront another class
of important geometric problems, which have caused considerable difficulties in ac-
tual implementations: plane sweep problems for sets of segments. As we shall see,
plane sweep applications involve a number of predicates of different degree and algo-
rithmic power. Their analysis not only will lead to new and robust implementations
(an outcome of substantial practical interest) but will elucidate on a theoretical level
some deeper issues pertaining to the structure of several related problems and the
mechanism of plane sweeps.

2. Three problems associated with intersecting segments. Given is a
finite set S of line segments in the plane. Each segment is defined by the coordinates
of its two endpoints. We discuss the three following problems (see Figure 2.1):

Pb1: Report the pairs of segments of S that intersect.
Pb2: Construct the arrangement A of S, i.e., the incidence structure of the graph

obtained interpreting the union of the segments as a planar graph.
Pb3: Construct the trapezoidal map T of S. T is obtained by drawing two vertical

line segments (walls), one above and one below each endpoint of the segments
and each intersection point. The walls are extended either until they meet
another segment of S or to infinity.

Let S1, . . . , Sn be the segments of S, and let k be the number of intersecting pairs.
We say that the segments are in general position if any two intersecting segments
intersect in a single point, and all endpoints and intersection points are distinct.

The number of intersection points is no more than the number of intersecting pairs
of segments, and both are equal if the segments are in general position. Therefore, the
number of vertices of A is at most k, the number of edges of A is at most n+2k, and
the number of vertical walls in T is at most 2(n + k), the bounds being tight when
the segments are in general position. Thus the sizes of both A and T are O(n + k).
We didn’t consider here the two-dimensional faces of either A or T . Including them
would not change the problems we address.
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S

A

T

Fig. 2.1. A set of segments S, the corresponding arrangement A and its trapezoidal map T .

3. Algebraic degree and arithmetic models. It is well known that the ef-
ficient algorithms that solve Pb1–Pb3 are very unstable when implemented using
nonexact arithmetic, and several frustrating experiences have been reported [For85].
This motivates us to carefully analyze the predicates involved in those algorithms. We
first introduce here some terminology borrowed from [LPT96]. See also [Bur96, For93].
We consider each input data (i.e., coordinates of an endpoint of some segment of S)
as a variable.

An elementary predicate is the sign −, 0, or + of a homogeneous multivariate
polynomial whose arguments are a subset of the input variables. The degree of an
elementary predicate is defined as the maximum degree of the irreducible factors
(over the rationals) of the polynomials that occur in the predicate and that do not
have a constant sign. A predicate is more generally a Boolean function of elementary
predicates. Its degree is the maximum degree of its elementary predicates.
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The degree of an algorithm A is defined as the maximum degree of its predicates.
The degree of a problem P is defined as the minimum degree of any algorithm

that solves P .
In most problems in computational geometry, d = O(1). However, as d affects the

speed and/or robustness of an algorithm, it is important to measure d precisely.
In the rest of this paper we consider the degree as an additional measure of

algorithmic complexity. Note that, qualitatively, degree and memory requirements
are similar, since the arithmetic capabilities demanded by a given degree must be
available, albeit they may be never resorted to in an actual run of the algorithm
(since the input may be such that predicates may be evaluated reliably with lower
precision).

We will consider two arithmetic models. In the first one, called the predicate arith-
metic of degree d, the only numerical operations that are allowed are the evaluations of
predicates of degree at most d. Algorithms of degree d can therefore be implemented
exactly in the predicate arithmetic model of degree d. This model is motivated by
recent results that show that evaluating the sign of a polynomial expression may be
faster than computing its value (see [ABD+97, BY97, BEPP97, Cla92, She96]). This
model, however, is very conservative since the nonavailability of the arithmetics re-
quired by a predicate is assimilated to an entirely random choice of the value of the
predicate.

The second model, called the exact arithmetic of degree d, is more demanding.
It assumes that values (and not just signs) of polynomials of degree at most d be
represented and computed exactly (i.e., roughly as d-fold precision integers). However,
higher-degree operations (e.g., a multiplication operation of whose factors is a d-fold
precision integer) are appropriately rounded. Typical rounding is rounding to the
nearest representable number, but less accurate rounding can also be adequate as will
be demonstrated later.

Let P be a predicate (polynomial) of degree d. We ignore for simplicity the size
of the coefficients of P , because they are typically small constants; if the input data
are all b-bit integers, the size of each monomial in predicate P is upper bounded by
2bd. Moreover, let v be the number of variables that occur in a predicate; for most
geometric problems and, in particular, for those considered in this paper, v is a small
number. Since the polynomial P is homogeneous, it may contain only highest-degree
monomials, whose number is bounded by vd. It follows that an algorithm of degree d
requires precision p ≤ db+d log v = db+O(1) in the exact arithmetic model of degree
d.

4. The predicates and the degree of problems Pb1–Pb3. In this section,
we analyze the degree of problems Pb1–Pb3 (in subsections 4.1–4.3) and of the stan-
dard algorithms for solving these problems (in subsection 4.4).

We use the following notations. The coordinates of point Ai are denoted xi and
yi. Ai <x Aj means that the x-coordinate of point Ai is smaller than the x-coordinate
of point Aj . The same is true for <y. [AiAj ] denotes the line segment whose left and
right endpoints are, respectively, Ai and Aj , while (AiAj) denotes the line containing
[AiAj ]. Ai <y (AjAk) means that point Ai lies below line (AjAk).

4.1. Predicates. Pb1 requires only that we check if two line segments intersect
(Predicate 2′ below).

Pb2 requires in addition the ability to sort intersection points along a line segment
(Predicate 4 below).

Pb3 requires the ability to execute all the predicates listed below.
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Predicate 1: A0 <x A1.
Predicate 2: A0 <y (A1A2).
Predicate 2′: [A0A1]

⋂
[A2A3] �= ∅.

Predicate 3: A0 <x [A1A2]
⋂
[A3A4].

Predicate 4: [A0A1]
⋂
[A2A3] <x [A0A1]

⋂
[A4A5].

Predicate 5: [A0A1]
⋂
[A2A3] <x [A4A5]

⋂
[A6A7].

Two other predicates appear in some algorithms that report segment intersections.
Predicate 3′: (x = x0)

⋂
[A1A2] <y (x = x0)

⋂
[A3A4].

Predicate 4′: [A0A1]
⋂
[A2A3] <y (A4A5).

4.2. Algebraic degree of the predicates. We now analyze the algebraic de-
gree of the predicates introduced above.

Proposition 4.1. The degree of Predicates i and i′ (i = 1, . . . , 5) is i.
Proof. We first provide explicit formulae for the predicates.
Evaluating Predicate 2 is equivalent to evaluating the sign of

orient(A0A1A2) =

∣∣∣∣∣∣
x0 x1 x2

y0 y1 y2
1 1 1

∣∣∣∣∣∣ =
∣∣∣∣ x1 − x0 x2 − x0

y1 − y0 y2 − y0

∣∣∣∣ .
Predicate 2′ can be implemented as follows for the case A0 <x A2 (otherwise we

exchange the roles of [A0A1] and [A2A3]):
if A1 <x A2 then return false
if A3 <x A1

if orient(A0A1A2)× orient(A0A1A3) < 0 then return true
else return false

else
if orient(A0A1A2)× orient(A2A3A1) > 0 then return true
else return false

Therefore, in all cases, Predicate 2′ reduces to Predicate 2.
The intersection point I = [AiAj ]

⋂
[AkAl] is given by

I = Ai + (Aj −Ai)
NI
DI

(4.1)

with NI = orient(AiAkAl) and

DI =

∣∣∣∣ xj − xi xk − xl
yj − yi yk − yl

∣∣∣∣
= orient(AiAjAk)− orient(AiAjAl)

def
= Orient(AiAjAkAl).

Predicate 4′ reduces to evaluating orient(I, A0, A1), where I is the intersection of
[A2A3] and [A4A5]. It follows from (4.1) that this is equivalent to evaluating the sign
of orient(A2A3A4A5) and of

orient(A0A1A2)×Orient(A2A3A4A5)− orient(A2A4A5)×Orient(A0A1A2A3).

Predicates 3–5: Explicit formulas for Predicates 3, 4, and 5 can be immediately
deduced from the coordinates of the intersection points I = [A0A1]

⋂
[A2A3] and

J = [A4A5]
⋂
[A6A7] which are given by (4.1). If A4A5 = A0A1, it is clear from (4.1)

that (x1 − x0) is a common factor of xI − x0 and xJ − x0.
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If [A1A2] and [A3A4] do not intersect, Predicate 3′ reduces to Predicate 2. Oth-
erwise, it reduces to Predicate 3.

The above discussion shows that the degree of predicates i and i′ is at most i.
To establish that it is exactly i, we have shown in the appendix that the polynomials
of Predicates 2, 3, 4′, and 5, as well as the factor other than (x1 − x0) involved in
Predicate 4, are irreducible over the rationals.

It follows that the proposition is proved for all predicates.
Recalling the requirements of the various problems in terms of predicates, we have

the following proposition.
Proposition 4.2. The algebraic degrees of Pb1, Pb2, and Pb3 are, respectively,

2, 4, and 5.

4.3. Implementation of Predicate 3 with exact arithmetic of degree 2.
As they will be useful in section 7, in this subsection we present two approximate
implementations of Predicate 3 (of degree 3) under the exact arithmetic of degree 2.

From (4.1) we know that Predicate 3 can be written as

x01D < x21N,(4.2)

where x01 = x0 − x1, x21 = x2 − x1, D = | Orient(A1A2A3A4)|, and N = sign(D)×
orient(A1A3A4).

We stipulate to employ floating-point arithmetic conforming to the IEEE 754
standard [Gol91]. In this standard, simple precision allows us to represent b-bit integers
with b = 24 and double precision allows us to represent b′-bit integers with b′ =
2b+5 = 53. The coordinates of the endpoints of the segments are represented in simple
precision, and the computations are carried out in double precision. We denote ⊕, ⊗,
and � the rounded arithmetic operations +,×, and /. In the IEEE 754 standard,
all four arithmetic operations are exactly rounded; i.e., the computed result is the
floating-point number that best approximates the exact result.

Since Orient(A1A2A3A4) and orient(A1A3A4) are (2b + 3)-bit integers, the four
terms x01, x21, N , and D in inequality (4.2) can be computed exactly in double
precision, and the following monotonicity property is a direct consequence of exact
rounding of arithmetic operations.

Monotonicity property 1: x01 ⊗D < x21 ⊗N =⇒ x01 ×D < x21 ×N.

This implies that the comparison between the two computed expressions x01 ⊗D
and x21 ⊗N evaluates Predicate 3 except when these numbers are equal.

Since in most algorithms, an intersection point is compared with many endpoints,
it is more efficient to compute and store the coordinates of each intersection point and
to perform comparisons with the computed abscissae rather than to evaluate (4.2) re-
peatedly. We now illustrate an effective rounding procedure of the x-coordinates of
intersection points which gives an alternative approximate implementation of Predi-
cate 3.

Lemma 4.3. If the coordinates of the endpoints of the segments are simple pre-
cision integers, then the abscissa xI of an intersection point can be rounded to one
of its two nearest simple precision integers using only double precision floating-point
arithmetic operations.

Proof. We assume that the coordinates of the endpoints of the segments are
represented as b-bit integers stored as simple precision floating-point numbers. The
computations are carried out in double precision.
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The rounded value x̃I of xI is given by

x̃I = �((x21 ⊗N)�D)� ⊕ x1,

where �X� denotes the integer nearest to X (with any tie-breaking rule). If ε = 2−b
′

is a strict bound to the modulus of the relative error of all arithmetic operations,
X̃ = (x21 ⊗N)�D satisfies the following relations:

x21N

D
(1− 2ε) ≈ x21N

D
(1− ε)2 < X̃ < x21N

D
(1 + ε)2 ≈ x21N

D
(1 + 2ε).

As x21N
D = xI − x1 ≤ 2b+1, we obtain

|(x21 ⊗N)�D − x21N/D)|
<∼ 2b+122−b

′
= 2−b−3 � 1.

We round X̃ to the nearest integer �X̃�. Since �X̃� and x1 are (b+1)-bit integers,
there is no error in the addition. Therefore, x̃I is a (b+2)-bit integer and the absolute
error on x̃I is smaller than 1.

It follows that, under the hypothesis of the lemma, if E is an endpoint, I is an in-
tersection point, and Ĩ is the corresponding rounded point, the following monotonicity
property holds.

Monotonicity property 2: Ĩ <x E =⇒ I <x E,

E <x Ĩ =⇒ E <x I.

This implies that the comparison between the x-coordinates of Ĩ and E evaluates
Predicate 3, except when the abscissae of Ĩ and E coincide.

Notice that the monotonicity property does not necessarily hold for two intersec-
tion points.

Remark 1. A result similar to Lemma 4.3 has been obtained by Priest [Pri92] for
points with floating-point coordinates. More precisely, if the endpoints of the segments
are represented as simple precision floating-point numbers, Priest [Pri92] has proposed
a rather complicated algorithm that uses double precision floating-point arithmetic
and rounds xI to the nearest simple precision floating-point number. Since it applies
to the integers as well, this stronger result also implies the monotonicity property.

4.4. Algebraic degree of the algorithms. The naive algorithm for detecting
segment intersections (Pb1) evaluates Θ(n2) Predicates 2′ and thus is of degree 2,
which is degree-optimal by the proposition above. Although the time-complexity of
the naive algorithm is worst-case optimal, since 0 ≤ k ≤ 1

2n(n−1), it is worth looking
for an output sensitive algorithm whose complexity depends on both n and k. Chazelle
and Edelsbrunner [CE92] have shown that Ω(n log n + k) is a lower bound for Pb1
and therefore also for Pb2 and Pb3. A very recent algorithm of Balaban [Bal95] solves
Pb1 optimally in O(n log n+ k) time using O(n) space. This algorithm does not solve
Pb2 nor Pb3 and, since it uses Predicate 3′, its degree is 3.

Pb2 can be solved by first solving Pb1 and subsequently sorting the reported
intersection points along each segment. This can easily be done in O((n+k) log n) time
by a simple algorithm of degree 4 using O(n) space. A direct (and asymptotically more
efficient) solution to Pb2 has been proposed by Chazelle and Edelsbrunner [CE92].
Its time complexity is O(n log n + k), and it uses O(n + k) space. Their algorithm,
which constructs the arrangement of the segments, is of degree 4.

A solution to Pb3 can be deduced from a solution to Pb2 in O(n+ k) time using
a very complicated algorithm of Chazelle [Cha91]. A deterministic and simple algo-
rithm due to Bentley and Ottmann [BO79] solves Pb3 in O((n+k) log n) time, which
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is slightly suboptimal, using O(n) space. This classical algorithm uses the sweep-
line paradigm and evaluates O((n+ k) log n) predicates of all types discussed above,
and therefore has degree 5. Incremental randomized algorithms [CS89, BDS+92] con-
struct the trapezoidal map of the segments and thus solve Pb3 and have degree 5.
Their time complexity and space requirements are optimal (although only as expected
performances).

In this paper, we revisit the Bentley–Ottmann algorithm and show that a variant
of degree 3 (instead of 5) [Mye85, Sch91] can solve Pb1 with no sacrifice of performance
(section 6.1). Although this algorithm is slightly suboptimal with respect to time
complexity, it is much simpler than Balaban’s algorithm. We also present two variants
of the sweep-line algorithm. The first one (section 6.2) uses only predicates of degree
at most 2 and applies to the restricted but important special case where the segments
belong to two subsets of nonintersecting segments. The second one (section 7) uses
the exact arithmetic of degree 2. All these results are based on a (nonefficient) lazy
sweep-line algorithm (to be presented in section 5) that solves Pb1 by evaluating
predicates of degree at most 2.

Remark 2. When the segments are not in general position, the number s of in-
tersection points can be less than the number k of intersecting pairs. In the extreme,
s = 1 and k = n(n − 1)/2. Some algorithms can be adapted so that their time com-
plexities depend on s rather than k [BMS94]. However, a lower bound on the degree
of such algorithms is 4 since they must be able to detect if two intersection points are
identical, therefore to evaluate Predicate 4′.

5. A lazy sweep-line algorithm. Let S be a set of n segments whose endpoints
are E1, . . . , E2n. For a succinct review, the standard algorithm first sorts E1, . . . , E2n

by increasing x-coordinates and stores the sorted points in a priority queue X, called
the event schedule. Next, the algorithm begins sweeping the plane with a vertical line
L and maintains a data structure Y that represents a subset of the segments of S
(those currently intersected by L, ordered according to the ordinates of their intersec-
tions with L). Intersections are detected in correspondence of adjacencies created in
Y , either by insertion/deletion of segment endpoints or by order exchanges at inter-
sections. An intersection, upon detection, is inserted into X according to its abscissa.
Of course, a given intersection may be detected several times. Multiple detections can
be resolved by performing a preliminary membership test for an intersection in X and
omitting insertion if the intersection has been previously recorded. An intersection is
reported when the sweep-line reaches its abscissa. We stipulate to use another pol-
icy to resolve multiple detections, namely to remove from X an intersection point I
whose associated segments are no longer adjacent in Y . Event I will be reinserted in
X when the segments become again adjacent in Y . This policy has also the advantage
of reducing the storage requirement of Bentley–Ottmann’s algorithm to O(n) [Bro81].

5.1. Description of the lazy algorithm. We now describe a modification of
the sweep-line algorithm that does not need to process the intersection points by
increasing x-coordinates.

First, the algorithm sorts the endpoints of the segments by increasing x-coordinates
into an array X. Let E1, . . . , E2n be the sorted list of endpoints.

Then the algorithm starts processing events and maintains a dictionary Y that
stores an ordered subset of the line segments. The events consist of the endpoints and
of a subset of the pairs of segments that intersect and are adjacent in Y . Such pairs
are called processable and will be precisely defined below. The algorithm processes the
endpoints by increasing order of their x-coordinates, but, contrary to the standard
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algorithm, the processable pairs are processed in any order. As a consequence, two
intersection points or even an intersection point and an endpoint won’t necessarily
be processed in the order of their x-coordinates, and Y won’t necessarily represent
the ordered set of segments intersecting some vertical line L (as in the standard
algorithm).

The events are processed in the same way as in the standard algorithm, i.e.,
processing an endpoint means either the insertion of the corresponding segment into
Y or its deletion from it (as appropriate), and processing an intersection means its
report and the exchange of the two segments involved. The only difference is that
we maintain a set P of processable pairs: each time a pair of intersecting segments
become adjacent in Y , we check whether the pair is processable and, in the affirmative,
add it to P .

While there are processable pairs, the algorithm extracts any of them from P and
processes it. When there are no more processable pairs, the algorithm proceeds to the
next endpoint. When there are no more processable pairs and no more endpoints to
be processed, the algorithm stops.

To complete the description of the algorithm, we need to define the processable
pairs. The definition rests on the notions of active and prime pairs to be given below.
We need the following notations. We denote by L(Ei) the vertical line passing through
Ei. Slab (Ei, Ei+1) denotes the open vertical slab bounded by L(Ei) and L(Ei+1), and
(Ei, Ei+1] denotes the semiclosed slab obtained by adjoining line L(Ei+1) to the open
slab (Ei, Ei+1). For two segments Sk and Sl, we denote by Akl their rightmost left
endpoint, by Bkl their leftmost right endpoint, and by Ikl their intersection point when
they intersect (see Figure 5.1). In addition, Wkl denotes the set of segment endpoints
that belong to the (closed) region bounded by the vertical lines L(Akl) and L(Bkl)
and by the two segments (a trapezoid if the two segments do not intersect, a double-
wedge otherwise). We denote by Ekl the most recently processed element of Wkl and
by Fkl the element of Wkl to be processed next. (Note that Ekl and Fkl are always
defined, since they may respectively coincide with Akl and Bkl.) Last, we define sets
W+
kl(Ekl) and W

−
kl (Ekl) as follows. If Sk and Sl do not intersect, W+

kl(Ekl) = ∅ and
W−
kl (Ekl) consists of all points E ∈ Wkl, Ekl ≤x E. Otherwise, an endpoint E ∈ Wkl

belongs to W+
kl(Ekl) (respectively, to W

−
kl (Ekl)) if Ekl ≤x E and if the slab (Ekl, E]

does (respectively, does not) contain Ikl.
1

Definition 5.1. Let (Sk, Sl) be a pair of segments, and assume without loss
of generality that Sk

⋂
L(Ekl) <y Sl

⋂
L(Ekl). The pair is said to be active if the

following conditions are satisfied:
(1) Sk and Sl are adjacent in Y,
(2) Sk < Sl in Y,
(3) Fkl ∈W+

kl(Ekl) (emptiness condition).
Observe that the emptiness condition implies that the segments intersect (since

W+
kl(Ekl) = ∅ if they do not). We now identify a subset of the active pairs, whose

processing, as we shall see, has priority.
Definition 5.2. An active pair of segments (Sk, Sl) is said to be prime if the

next endpoint to be processed belongs to Wkl (i.e., it coincides with Fkl ∈W+
kl(Ekl)).

It should be noted that deciding if a pair of intersecting segments is active or prime
reduces to the evaluation of Predicates 2 only and the condition Fkl ∈W+

kl(Ekl) should

1For line segments or even pseudosegments, W−
kl
(Ekl) and W+

kl
(Ekl) do not depend on Ekl.

However, we keep Ekl as a parameter in preparation for the more general case of monotone arcs. See
Remark 4 at the end of this section.
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Sk

Sl

Ikl

L(Akl) L(Bkl)

Akl

Bkl

Ekl

Fkl

W+
kl(Ekl)

W−
kl (Ekl)

Fig. 5.1. For the definitions of W−
kl
(Ekl) and W+

kl
(Ekl).

not be construed as implying the comparison of the abscissae of Ikl and Fkl (Predicate
3). Indeed, if Sk

⋂
L(Akl) <y Sl

⋂
L(Akl) (which can be decided by Predicate 2), then

the emptiness condition corresponds to Fkl <y Sk and Sl <y Fkl.
For reasons that will be clear below, the set of processable pairs is not specified

in the finest detail in this section, since several different implementations are possible.
We require only that, at any time, the two following assertions remain true.

(1) All prime pairs are processable.
(2) All processable pairs are active.

In other words, the next endpoint may be processed once there are no more prime
pairs, without placing any deadline on the processing of the current active pairs as
long as they are not prime.

In the rest of this section, we will simply assume that we have an oracle at our
disposal that can decide if a given pair is processable. Clearly, for some instances
of the lazy algorithm (e.g., when considering all active pairs as processable), the
oracle can be implemented with Predicates 2 only. In such a case, the lazy algorithm
involves only Predicates 1 and 2 and is of degree 2 by Proposition 4.1. We will prove
its correctness in the next subsection.

The important issue of efficiently detecting the processable pairs will be considered
in sections 6 and 7 where several oracles will be introduced. These instances of the
lazy algorithm will still be correct but, in some cases, will have a degree higher than
2.
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5.2. Correctness of the lazy algorithm. Let Y −(Ei) and Y +(Ei) be, re-
spectively, snapshots of the data structure Y immediately before and after processing
event Ei, i = 1, . . . , 2n. Observe that Y −(Ei) and Y

+(Ei) differ only by the segment
S that has Ei as one of its endpoints. Let Y (Ei) = Y −(Ei)

⋃
Y +(Ei). The order

relation in Y is denoted by <.
Theorem 5.3. If Predicates 1 and 2 are evaluated exactly, the described lazy

sweep-line algorithm will detect all pairs of segments that intersect.
Proof. The algorithm (correctly) sorts the endpoints E1, . . . , E2n of the segments

by increasing x-coordinates into X. Consequently, the set of segments that intersect
L(E) and the set of segments in Y (E) coincide for any endpoint E. The proof of the
theorem is articulated now as two lemmas and their implications.

Lemma 5.4. Two segments have exchanged their positions in Y if and only if
they intersect and if the pair has been processed.

Proof. Let us consider two segments, say Sk and Sl, that do not intersect. Without
loss of generality, let Sk < Sl in Y (Akl). Assume for a contradiction that Sl < Sk in
Y −(Bkl). Sk and Sl cannot exchange their positions because they will never form an
active pair. Therefore, Sl < Sk in Y

−(Bkl) can happen only if there exists a segment
Sm, m �= k, l, that at some stage in the execution of the algorithm was present in Y
together with Sk and Sl and caused one of the following two events to occur.

(1) Sm > Sl and the positions of Sm and Sk are exchanged in Y .
(2) Sm < Sk and the positions of Sm and Sl are exchanged in Y .

In both cases, the segments that exchange their positions are not consecutive in Y ,
violating condition 1 of Definition 5.1.

Therefore, two segments can exchange their positions in Y only if they intersect
and this can happen only when their intersection is processed. Moreover, when the in-
tersection has been processed, the segments are no longer active and cannot exchange
their positions a second time.

We say that an endpoint E of S is correctly placed if and only if the subset of the
segments that are below E (in the plane) coincides with the subset of the segments
< S in Y (E), i.e.,

∀S′ ∈ Y (E), S′ < S ⇐⇒ S′
⋂
L(E) <y S

⋂
L(E).

Otherwise, E is said to be misplaced. (Note that S
⋂
L(E) coincides with E.)

Lemma 5.5. If Predicates 1 and 2 are evaluated exactly, both endpoints of every
segment are correctly placed.

Proof. Assume, for a contradiction, that E of S is the first endpoint to be mis-
placed by the algorithm.

Claim 1. E can be misplaced only if there exist at least two intersecting segments
Sk and Sl in Y

−(E) such that E belongs to Wkl.
Proof. First recall that Predicate 2 is the only predicate involved in placing S in

Y .
Consider first the case where E is the left endpoint of S. Let (Sk, Sl) be any pair

of segments in Y −(E). If E �∈Wkl, then both Sl and Sk are either above or below E,
and their relative order does not affect the placement of E. This establishes that E
will be correctly placed in Y +(E) (i.e., the contrapositive of the necessary condition
expressed by the claim).

Suppose now that E is a right endpoint. In this case we shall establish the lemma
in its direct form. The left endpoint of S has been correctly placed since it was
processed earlier and E is the first one to be misplaced. If E has been misplaced,
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then, by Lemma 5.4, there exists a segment S′ ∈ Y −(E) intersecting S to the left of
E such that the relative positions of S and S′ in Y +(A) and Y −(E) are the same (A
is the rightmost left endpoint of S and S′), i.e., their order in Y has not been reversed
by the algorithm. In this case, E = Bkl ∈ Wkl for Sk = S and Sl = S

′, thus proving
that there exists a pair Sl and Sk such that Sl and Sk intersect and E ∈Wkl.

Let Sk and Sl be two segments of Y
−(E) such that E ∈Wkl. Assume without loss

of generality that Sk < Sl in Y (Ekl). Since E is the first endpoint to be misplaced,
we have Sk

⋂
L(Ekl) <y Sl

⋂
L(Ekl). For convenience, we will say that two segments

Sp and Sq have been exchanged between E′ and E′′ for two endpoints E′ <x E
′′ if

Sp < Sq in Y
+(E′) and Sq < Sp in Y

−(E′′).

The case where E ∈W−
kl (Ekl) cannot cause any difficulty since Sk and Sl cannot

be active between Ekl and E, and therefore, Sk and Sl cannot be exchanged between
Ekl and E, which implies that E is correctly placed with respect to Sk and Sl.

The case where E ∈ W+
kl(Ekl) is more difficult. E is not correctly placed only

if Sk and Sl are not exchanged between Ekl and E, i.e., Sk < Sl in both Y +(Ekl)
and Y −(E). We shall prove that this is not possible and therefore conclude that S is
correctly placed into Y in this case as well.

Assume, for a contradiction, that Sk and Sl have not been exchanged between
Ekl and E. As E belongs to W+

kl(Ekl), Sk and Sl cannot be adjacent in Y
−(E) since

otherwise they would constitute a prime pair and they would have been exchanged. Let
(Sk = Sk0 , Sk1 , . . . , Skr , Skr+1 = Sl) (r ≥ 1) be the subsequence of segments of Y −(E)
occurring between Sk and Sl with the further (legitimate) assumption that (Sk, Sl) is
a pair of intersecting segments such that E ∈W+

kl(Ekl), for which r isminimal (i.e., for
which the above subsequence is shortest). For an arbitrary 1 ≤ i ≤ r, consider segment
Ski and assume, without loss of generality, that E <y Ski . As a direct consequence
of the fact that (Sk, Sk1 , . . . , Skr , Sl) is shortest, we observe that E cannot belong to
W+
kki

(Ekki) nor to W
+
kil
(Ekil). We distinguish two cases.

(i) E <y Ski (see Figure 5.2). Clearly, E ∈ Wkil, and, by the above observation,
we must have E ∈W−

kil
(Ekil). It follows that the relative y-orders of Ski and Sl along

L(Ekil) and L(E) are the same, hence Sl
⋂
L(Ekil) <y Ski

⋂
L(Ekil). As E is the first

endpoint to be misplaced, the order in Y +(Ekil) agrees with the geometry; i.e., we
have Sl < Ski in Y

+(Ekil). Moreover, since the pair (Ski , Sl) is not active (between
Ekil and E, because E ∈ W−

kil
(Ekil)) and therefore cannot be exchanged, the same

inequality holds in Y −(E), which contradicts the definition of Ski .

(ii) Ski <y E. This case is entirely symmetric to the previous one. It suffices to
exchange the roles of Sk and Sl and to reverse the relations < and <y.

Since a contradiction has been reached in both cases, the lemma is proved.

We now complete the proof of the theorem. The previous lemma implies that
the endpoints are correctly processed. Indeed let Ei be an endpoint. If Ei is a right
endpoint, we simply remove the corresponding segment from Y and update the set of
active segments. This can be done exactly since predicates of degree ≤ 2 are evaluated
correctly. If Ei is a left endpoint, it is correctly placed in Y on the basis of the previous
lemma.

The lemma also implies that all pairs that intersect have been processed. Indeed
if Sp and Sq are two intersecting segments such that Sp

⋂
L(Apq) <y Sq

⋂
L(Apq) and

Sq
⋂
L(Bpq) <y Sp

⋂
L(Bpq), the lemma shows that Sp < Sq in Y

+(Apq) and Sp > Sq
in Y −(Bpq), which implies that the pair (Sp, Sq) has been processed (Lemma 5.4).

This concludes the proof of the theorem.

Remark 3. Handling the degenerate cases does not cause any difficulty, and the
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Sk

Sl

E

Ski

L(Ekl) L(E)

Fig. 5.2. For the proof of correctness of the lazy algorithm.

previous algorithm will work with only minor changes. For the initial sorting of
the endpoints, we can take any order relation compatible with the order of their
x-coordinates, e.g., the lexicographic order.

Remark 4. Theorem 5.3 applies directly to pseudosegments, i.e., curved segments
that intersect in at most one point. Lemmas 5.4 and 5.5 also extend to the case of
monotone arcs that may intersect at more than one point. To be more precise, in
Lemma 5.4, we have to replace “intersect” with “intersect an odd number of times”;
Lemma 5.5 and its proof are unchanged provided that we define W+

kl(Ekl) (respec-
tively, W−

kl (Ekl)) as the subset of Wkl consisting of the endpoints E, Ekl ≤x E, such
that the slab (Ekl, E] contains an odd number (respectively, none or an even number)
of intersection points. As a consequence, the lazy algorithm (which still uses only
Predicates 1, 2, and 2′) will detect all pairs of arcs that intersect an odd number of
times.

Remark 5. For line segments, observe that checking whether a pair of segments
is active does not require knowing (and therefore maintaining) Ekl. In fact, we can
replace condition 3 in the definition of an active pair by the following condition:
Sl <y Fkl <y Sk and Ikl <x Fkl. If Ekl <x Ikl, the two definitions are identical and if
Ikl <x Ekl, the pair is not active since, by Lemma 5.5, condition 2 of the definition
won’t be satisfied.

6. Efficient implementations of the lazy algorithm in the predicate
arithmetic model. The difficulty of efficiently implementing the lazy sweep-line
algorithm using only predicates of degree at most 2 (i.e., in the predicate arithmetic
model of degree 2) is due to verification of the emptiness condition in Definition 5.1
and of the prime-pair condition expressed by Definition 5.2: both conditions require
examination of all endpoints that have not been processed yet. One can easily check
that various known implementations of the sweep achieve straightforward verification
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of the emptiness condition by introducing algorithmic complications. The following
subsection describes an efficient implementation of the lazy algorithm in the predi-
cate arithmetic model of degree 3. The second subsection improves on this result in a
special but important instance of Pb1, namely the case of two sets of nonintersecting
segments. The algorithm presented there uses only predicates of degree at most 2.

6.1. Robustness of the standard sweep-line algorithm. We shall run our
lazy algorithm under the predicate arithmetic model of degree 3. We then have the
capability to correctly compare the abscissae of an intersection and of an endpoint. We
refine the lazy algorithm in the following way. Let Ei be the last processed endpoint
and let Ei+1 be the endpoint to be processed next. An active pair (Sk, Sl) that occurs
in Y between Y (Ei) and Y

−(Ei+1) will be processed if and only if its intersection point
Ikl lies to the right of Ei and not to the right of Ei+1. As the slab is free of endpoints
in its interior, any pair of adjacent segments encountered in Y (between Y (Ei) and
Y −(Ei+1)) and that intersect within the slab is active. Moreover the intersection
points of all prime pairs belong to the slab. It follows that this instance of the lazy
algorithm need not explicitly check whether a pair is active or not and therefore is
much more efficient than the lazy algorithm of section 5. This algorithm is basically
what the original algorithm of Bentley–Ottmann2 becomes when predicates of degree
at most 3 are evaluated. (Recall that the standard algorithm requires the capability
to correctly execute predicates of degree up to 5.)

We therefore conclude with the following theorem.

Theorem 6.1. If Predicates 1, 2, and 3 are evaluated exactly, the standard sweep-
line algorithm will solve Pb1 in O((n+ k) log n) time.

It is now appropriate to briefly comment on the implementation details of the
just described modified algorithm. Data structure Y is implemented as usual as a dic-
tionary. Data structure X, however, is even simpler than in the standard algorithm
(which uses a priority queue with dictionary access). Here X has a primary compo-
nent realized as a static search tree on the abscissae of the endpoints E1, . . . , E2n.
Leaf Ej points to a secondary data structure L(Ej) realized as a conventional linked
list, containing (in an arbitrary order) adjacent intersecting pairs in slab (Ej , Ej+1].
Remember that, when Ej has been processed, all intersecting pairs of L(Ej) are ac-
tive. Insertion into L(Ej) is performed at one of its ends, and so is access for reporting
(when the plane sweep reaches slab (Ej , Ej+1]). Since access to events occurs in data
structure X, each pair in X must have pointers to the two corresponding segments
in Y , in order to enable the necessary updates. In addition, to effect constant-time
removal of a pair (Sh, Sk) due to loss of adjacency, all that is needed is to make
bidirectional the mentioned pointers. Notice that the elements of X correspond to
pairs of adjacent segments in Y , so that at most two records in X are pointed to by
any member of Y . We finally observe that a segment adjacency arising in Y during
the execution of the algorithm must be tested for intersection; however, an intersect-
ing pair of adjacent segments is eligible for insertion into X only as long as the plane
sweep has not gone beyond the slab containing the intersection in question. As regards
the running time, beside the initial sorting of the endpoints and the creation of the
corresponding primary tree in time O(n log n), it is easily seen that each intersection
uses O(log n) time (amortized), thereby achieving the performance of the standard
algorithm.

2With the policy concerning multiple detections of intersections that is stipulated at the beginning
of section 5.
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S1

S3

S4

S2

I12

I23

I34

Fig. 6.1. Assume that the computed x-coordinate of the intersection I12 of S1 and S2 is (erro-
neously) found to be smaller than the x-coordinate of the left endpoint of S3. Y is implemented as a
balanced binary search tree. The key associated to a node is the �n

2
�th element of the corresponding

subtree. If all predicates of degree at most 2 are evaluated exactly, S3 is correctly inserted below S2,
and S4 is correctly inserted above S1 and S2. The different states of Y are (S1), (S1, S2), (S2, S1),
(S3, S2, S1), and (S3, S2, S1, S4). Since segments S3 and S4 are never adjacent, their intersection
I34 will not be detected. Observe that the missed intersection point can be arbitrarily far from the
intersection point involved in the wrong decision.

Finally, we note that if only predicates of degree ≤ 2 are evaluated correctly,
the algorithm of Bentley–Ottmann may fail to report the set of intersecting pairs of
segments. See Figure 6.1 for an example.

Remark 6. The fact that the sweep-line algorithm does not need to sort intersection
points had already been observed by several authors including Myers [Mye85], Schorn
[Sch91], and Hobby [Hob93]. Myers does not use it for solving robustness problems
but for developing an algorithm with an expected running time of O(n log n + k).
Schorn uses this fact to decrease the precision required by the sweep-line algorithm
from fivefold to threefold; i.e., Schorn’s algorithm uses exact arithmetic of degree 3.
Using Theorem 5.3, we will show in section 7 that double precision suffices.

6.2. Reporting intersections between two sets of nonintersecting line
segments. In this subsection, we consider two sets of line segments in the plane,
Sb (the blue set) and Sr (the red set), where no two segments in Sb (similarly, in
Sr) intersect. Such a problem arises in many applications, including the union of two
polygons and the merge of two planar maps. We denote by nb and nr the cardinalities
of Sb and Sr, respectively, and let n = nb + nr.

Mairson and Stolfi [MS88] have proposed an algorithm that works for arcs of curve
as well as for line segments. Its time complexity is O(n log n+k), which is optimal, and
requires O(n+ k) space (O(n) in case of line segments). The same asymptotic time-
bound has been obtained by Chazelle et al. [CEGS94] and by Chazelle and Edelsbrun-
ner [CE92]. The latter algorithm is not restricted to two sets of nonintersecting line
segments. Other algorithms have been proposed by Nievergelt and Preparata [NP82]
and by Guibas and Seidel [GS87] in the case where the segments of Sb (and Sr) are
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Sb

Sr

Tbr

L−
b

L+
b

Ibr

Fig. 6.2. Notations for the case of two sets of nonintersecting line segments.

the edges of a subdivision with convex faces. With the exception of the algorithm of
Chazelle et al. [CEGS94], all these algorithms construct the resulting arrangement
and therefore have degree 4. The algorithm of Chazelle et al. requires comparing the
ordinates of the intersections of two segments with a vertical line passing through an
endpoint. Therefore it is of degree 3.

We propose here an algorithm that computes all the intersections but not the ar-
rangement. This algorithm uses only predicates of degree ≤ 2 and has time complexity
O((n+ k) log n).

Segments are assumed to be nonvertical since intersections with vertical segments
can be easily handled with predicates of degree ≤ 2. We say that a point Ei is vertically
visible from a segment Sb ∈ Sb if the vertical line segment joining Ei with Sb does
not intersect any other segment in Sb (the same notion is applicable to Sr). For two
intersecting segments Sb ∈ Sb and Sr ∈ Sr, let L be a vertical line to the right of
Abr such that no other segment intersects L between Sb and Sr (i.e., Sb and Sr are
adjacent). We let Tbr denote the wedge defined by Sb and Sr in the slab between L
and L(Ibr) (see Figure 6.2). For a point set F , we let CH+(F) and CH−(F) denote
its upper and lower convex hulls, respectively.

Our algorithm is based on the following observation.

Lemma 6.2. Tbr contains blue endpoints if and only if it contains a blue endpoint
that is vertically visible from Sb. Similarly, Tbr contains red endpoints if and only if
it contains a red endpoint vertically visible from Sr.

Proof. The sufficient condition is trivial, so we prove only necessity. Assume
without loss of generality that Sr

⋂
L(Abr) <y Sb

⋂
L(Abr). Let E be the subset of

the blue endpoints that belong to Tbr. Clearly, all vertices of CH
+(E) are vertically

visible from Sb.

Our algorithm has two phases. The second one is the lazy algorithm of section
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5. The first one can be considered as a preprocessing step that will help to efficiently
find active pairs of segments.

More specifically, our objective is to develop a quick test of the emptiness con-
dition based on the previous lemma. The preprocessing phase is aimed at identifying
the candidate endpoints for their potential belonging to wedges formed by intersecting
adjacent pairs. Referring to Sb (and analogously for Sr), we first sweep the segments
of Sb and construct for each blue segment Sb the lists L−

b and L+
b of blue endpoints

that are vertically visible from Sb and lie respectively below and above Sb. The sweep
takes time O(n log n) and the constructed lists are sorted by increasing abscissa. Since
there is no intersection point, only predicates of degree ≤ 2 are used. The total size
of the lists L−

b , L
+
b , L−

r , and L+
r is O(n).

As mentioned above, the crucial point is to decide whether or not the wedge Tbr
of a pair of intersecting segments Sb and Sr, adjacent in Y , contains endpoints of
other segments. Again, we assume that Sr < Sb in Y . If such endpoints exist, then
Tbr contains either a blue vertex of CH

+(L−
b ∩L+) or a red vertex of CH−(L+

b ∩L+).
(L+ is the half-plane to the right of line L.)

We will show below that, using predicates of degree ≤ 2, the lists can be prepro-
cessed in time O(n log n) and that deciding whether or not Tbr contains endpoints can
be done in time O(log n), using only predicates of degree at most 2.

Assuming for the moment that this primitive is available, we can execute the plane
sweep algorithm described earlier. Specifically, we sweep Sb and Sr simultaneously,
using the lazy sweep-line algorithm of section 5.3 Each time we detect a pair of
(adjacent) intersecting segments Sb and Sr, we can decide in time O(log n) whether
they are “active” or “not active,” using only predicates of degree ≤ 2.

We sum up the results of this section in the following theorem.
Theorem 6.3. Given n line segments in the plane belonging to two sets Sb and Sr,

where no two segments in Sb (analogously, in Sr) intersect, there exists an algorithm
of optimal degree 2 that reports all intersecting pairs in O((n + k) log n) time using
O(n) storage.

We now return to the implementation of the primitive described above. Suppose
that, for some segment Si (i = b or r) we have constructed the upper hull CH+(L−

i ∩
L+). Then we can detect in O(log n) time if an element of a list, say L−

b , lies above
some segment Sr. More specifically, we first identify among the edges of CH+(L−

b ∩L+)
the two consecutive edges whose slopes are, respectively, smaller and greater than the
slope of Sr. This requires only the evaluation of O(log |L−

b |) predicates of degree 2.
It then remains to decide whether the common endpoint E of the two reported edges
lies above or below the line containing Sr. This can be answered by evaluating the
orientation predicate orient(E,Ar, Br).

The crucial requirement of the adopted data structure is the ability to efficiently
maintain CH+(L−

i ∩ L+). To this purpose, we propose the following solution.
The data structure associated with a list L−

i (i = b or r) represents the upper
convex hull CH+(L−

i ) of L−
i . (Similarly, the data structure associated with a list L+

i

represents the lower convex hull CH−(L+
i ) of L+

i .) This implies that a binary search
on the convex hull slopes uniquely identifies the test vertex. Since the elements of
each list are already sorted by increasing x-coordinates, the data structures can be
constructed in time proportional to their sizes and therefore in O(n) time in total.
It can be easily checked that only orientation predicates (of degree 2) are involved
in this process. To guarantee the availability of CH+(L−

i ∩ L+), we have to ensure

3We can adopt the policy of processing all active pairs before the next endpoint.
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that our data structure can efficiently handle the deletion of elements. As elements
are deleted in order of increasing abscissa, this can be done in amortized O(log |S|)
time per deletion [HS90, HS96]. It follows that preprocessing all lists takes O(n) time,
uses O(n) space, and requires only the evaluation of predicates of degree ≤ 2.

7. An efficient implementation of the lazy algorithm under the exact
arithmetic model of degree 2. We shall run the lazy algorithm of section 6.1
under the exact arithmetic model of degree 2, i.e., Predicates 1 and 2 are evaluated
exactly but Predicate 3 is implemented with exact arithmetic of degree 2 as explained
in section 4.3. Several intersection points may now be found to have the same abscissa
as an endpoint. We refine the lazy algorithm in the following way. Let Ei be the last
processed endpoint and let Ei+1 be the endpoint with an abscissa strictly greater than
the abscissa of Ei to be processed next. An active pair (Sk, Sl) will be processed if
and only if its intersection point is found to lie to the right of Ei and not to the right
of Ei+1.

We claim that this policy leads to efficient verification of the emptiness condition.
Indeed, the intersections of all prime pairs belong to (Ei, Ei+1], because Ei+1 ∈
W+
kl(Ekl) =⇒ Ikl ≤x Ei+1, and, by the monotonicity property, both implementations

of Predicate 3 of section 4.3 will report that Ikl ≤x Ei+1.

The crucial observation that drastically reduces the time complexity is the fol-
lowing. A pair of adjacent segments (Sk, Sl) encountered in Y between Y (Ei) and
Y (E−

i+1) whose intersection point is reported to lie in slab (Ei, Ei+1] is active if and

only if Ei+1 �∈ W−
kl (Ekl). Indeed, since Ikl is found to be <x Ei+2, the monotonicity

property implies that Ikl <x Ei+2. Therefore, when checking if a pair is active, it is
sufficient to consider just the next endpoint, not all of them.

Theorem 5.3 therefore applies. If no two endpoints have the same x-coordinate, the
algorithm is the same as the algorithm in section 6.1 apart from the implementation
of Predicate 3. Otherwise, we construct X on the distinct abscissae of the endpoints
and store all endpoints with identical x-coordinates in a secondary search structure
with endpoints sorted by y-coordinates. This secondary structure will allow us to
determine if a pair is active in logarithmic time by binary search. We conclude with
the following theorem.

Theorem 7.1. Under the exact arithmetic model of degree 2, the instance of the
lazy algorithm described above solves Pb1 in O((n+ k) log n) time.

8. Conclusion. Further pursuing our investigations in the context of the exact-
computation paradigm, in this paper we have illustrated that important problems on
segment sets (such as intersection report, arrangement, and trapezoidal map), which
are viewed as equivalent under the Real-RAM model of computation, are distinct if
their algebraic degree is taken into account. This sheds new light on robustness issues
which are intimately connected with the notion of algebraic degree and illustrates the
richness of this new direction of research.

For example, we have shown that the well-known plane sweep algorithm of Bentley–
Ottmann uses more machinery than strictly necessary and can be appropriately mod-
ified to report segment intersections with arithmetic capabilities very close to optimal
and no sacrifice in performance.

Another result of our work is that exact solutions of some problems can be ob-
tained even if approximate (or even random) evaluations of some predicates are per-
formed. More specifically, using less powerful arithmetic than demanded by the appli-
cation, we have been able to compute the vertices of an arrangement of line segments
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by constructing an arrangement which may be different from the actual one (and may
not even correspond to any set of straight line segments) but still has the same vertex
set.

Our work shows that the sweep-line algorithm is more robust than usually be-
lieved, proposes practical improvements leading to robust implementations, and pro-
vides a better understanding of the sweeping line paradigm. The key to our technique
is to relax the horizontal ordering of the sweep. This is one step further after similar
attempts, aimed though at different purposes [Mye85, MS88, EG89].

A host of interesting open questions remain. One such question is to devise an
output-sensitive algorithm for reporting segment intersections with optimal time com-
plexity and with optimal algebraic degree (that is, 2). It would also be interesting to
examine the plane sweep paradigm in general. For example, with regard to the con-
struction of Voronoi diagrams in the plane, one should elucidate the reasons for the
apparent gap between the algebraic degrees of Fortune’s plane sweep solution and of
the (optimal) divide-and-conquer and incremental algorithms.

Appendix. In connection with reducibility of polynomials over a domain of ra-
tionality, we choose the rationals as the latter. “Reducible” means “reducible over
the rationals.”

We first recall that a general determinant is irreducible if its entries are regarded
as independent variables [Boc07]. This suffices to prove directly that the degree of
Predicate 2 is 2 and will be crucial for completing the proof of irreducibility of the
polynomials pertaining to the other predicates. Use will be made of the following
theorem.

Let p(x1, . . . , xn) be a multivariate homogeneous polynomial, and let I be a subset
of {1, . . . , n}, such that for any j ∈ I, xj is a variable of degree 1 in p. For i ∈ {1, . . . , n}
p can be expressed as

p = pixi + pi0,

where pi and pi0 are polynomials in all variables except xi. Two polynomials are
not considered distinct if they differ just by a multiplicative constant. We have the
following.

Theorem 8.1. Let p(x1, . . . , xn) be a multivariate homogeneous polynomial with
degree at least 3 and |I| ≥ 2. If for some i, j ∈ I, coefficients pi and pj are distinct
and irreducible, then p is irreducible.

Proof. Assume, for a contradiction, that p is reducible. This means that p can be
expressed as p = φψ, where φ and ψ are multivariate homogeneous polynomials over
the same variables satisfying 1 ≤ degree(φ), degree(ψ) < degree(p). Each degree-1
variable obviously appears in exactly one of the factors. With complete generality,
assume that xi appears in φ. We distinguish two cases.

(1) degree(φ) > 1. Expanding φ around xi we obtain φ = φixi + φi0, so that

p = φψ = (φixi + φi0)ψ = φiψxi + φi0ψ.

This means that pi = φiψ, with degree(φi), degree(ψ) ≥ 1, i.e., pi is reducible,
a contradiction.

(2) degree(φ) = 1. Variable xj appears either in φ or in ψ. In the first case, pi and
pj are both proportional to ψ, i.e., they may differ only by a multiplicative
constant and are not distinct, a contradiction.
In the second case, by an argument analogous to that of Case 1, we reach the
conclusion that pj = φψj and that degree(ψj) = degree(p)−degree(φ)−1 ≥
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3− 1− 1 = 1. Since pj = φψj and degree(φ), degree(ψj) ≥ 1, pj is reducible,
another contradiction.

This completes the proof of the theorem.
The calculation of coefficients pi, pj corresponds to taking formal derivatives of p

with respect to xi,xj . Notice that a derivation reduces the degree by 1. The reader may
verify, by explicit and not very enlightening calculations, that the following schedules
of derivations lead to irreducible 2 × 2 determinants. The indices conform with the
notation of section 4.1.

Predicate 3: Apply Theorem 8.1 to the pair (x1, x2).
Predicate 4: Apply Theorem 8.1 first to (x2, x3) and then to (y6, y7).
Predicate 4′: Apply Theorem 8.1 first to (x0, x1) and then to (x2, x3)
Predicate 5: Apply Theorem 8.1 first to (x1, x2), next to (x7, x8), and finally to

(y5, y6).
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Abstract. We consider the practical problem of constructing binary space partitions (BSPs)
for a set S of n orthogonal, nonintersecting, two-dimensional rectangles in R

3 such that the aspect

ratio of each rectangle in S is at most α, for some constant α ≥ 1. We present an n2O(
√
logn)-time

algorithm to build a binary space partition of size n2O(
√
logn) for S. We also show that if m of the n

rectangles in S have aspect ratios greater than α, we can construct a BSP of size n
√
m2O(

√
logn) for

S in n
√
m2O(

√
logn) time. The constants of proportionality in the big-oh terms are linear in log α.

We extend these results to cases in which the input contains nonorthogonal or intersecting objects.
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1. Introduction. Rendering a set of opaque or partially transparent objects
in R

3 quickly and in a visually realistic way is a fundamental problem in computer
graphics [15]. A central component of this problem is hidden-surface removal : given
a set of objects, a viewpoint, and an image plane, compute the scene visible from the
viewpoint as projected onto the image plane. Because of its importance, the hidden-
surface removal problem has been studied extensively in both the computer graphics
and the computational geometry communities [14, 15, 28]. One of the conceptually
simplest solutions to this problem is the z-buffer algorithm [8, 15]. This algorithm
sequentially processes the objects; for each object, it updates the pixels of the image
plane covered by the object, based on the distance information stored in the z-buffer.
A very fast hidden-surface removal algorithm can be obtained by implementing the z-
buffer in hardware. However, only special-purpose and costly graphics engines contain
fast z-buffers, and z-buffers implemented in software are generally inefficient. Even
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when fast hardware z-buffers are present, they are not fast enough to handle the huge
models (containing hundreds of millions of polygons) that often have to be displayed
in real time. As a result, other methods have to be developed either to “cull away” a
large subset of invisible polygons so as to decrease the rendering load on the graphics
pipeline (when models are large; see, e.g., [29]) or to completely solve the hidden-
surface removal problem (when there are very slow or no z-buffers).

One technique to handle both of these problems is the binary space partition
(BSP), a data structure introduced by Fuchs, Kedem, and Naylor [16] that is based on
work by Schumacker et al. [27]. Fuchs, Kedem, and Naylor use the BSP to implement
the so-called “painter’s algorithm” for hidden-surface removal; the painter’s algorithm
draws the objects to be displayed on the screen in a back-to-front order (in which no
object is occluded by any object earlier in the order). In general, it is not possible
to find a back-to-front order from a given viewpoint for an arbitrary set of objects.
By fragmenting the objects, the BSP ensures that a back-to-front order from any
viewpoint can be determined for the fragments [16].

The BSPs have subsequently proven to be versatile, with applications in many
other problems—global illumination [6], shadow generation [10, 11], visibility prob-
lems [4, 29], solid modeling [22, 24, 30], geometric data repair [19], ray tracing [21],
robotics [5], approximation algorithms for network design [17], and surface simplifi-
cation [3]. Algorithms have also been developed to construct BSPs for moving ob-
jects [1, 2, 12, 23, 31].

Informally, a BSP B for a set of (d−1)-dimensional objects in R
d is a binary tree.

Each node v of B is associated with a convex region Rv. The regions associated with
the children of v are obtained by splitting Rv with a hyperplane. If v is a leaf of B,
then the interior of Rv does not intersect any object. The regions associated with the
leaves of the tree form a convex decomposition of R

d. The (d−1)-dimensional faces of
the cells of this decomposition intersect the objects and divide them into fragments;
these fragments are stored at appropriate nodes of the BSP.

The efficiency of most algorithms that use BSPs depends on the number of nodes
in the BSP. As a result, there has been a lot of effort to construct BSPs of small
size. Although several simple heuristics have been developed for constructing BSPs of
reasonable sizes [4, 7, 16, 20, 29, 30], provable bounds were first obtained by Paterson
and Yao. They show that a BSP of size O(n log n) can be constructed for n disjoint
segments in R

2; they also show that a BSP of size O(n2) can be constructed for n dis-
joint triangles in R

3, which is optimal in the worst case [25]. But in graphics-related
applications, many common environments like buildings are composed largely of or-
thogonal rectangles, and nonorthogonal objects are approximated by their orthogonal
bounding boxes [15]. Paterson and Yao [26] prove that a BSP of size O(n) exists for
n nonintersecting, orthogonal segments in R

2, and a BSP of size O(n
√
n) exists for n

nonintersecting, orthogonal rectangles in R
3. These bounds are optimal in the worst

case.

In all known lower bound examples of orthogonal rectangles in R
3 requiring BSPs

of size Ω(n
√
n), most of the rectangles are “thin.” For example, the lower bound proof

presented by Paterson and Yao uses a configuration of Θ(n) orthogonal rectangles,
arranged in a

√
n×

√
n×

√
n grid, for which any BSP has size Ω(n

√
n) (see Fig-

ure 1.1).All rectangles in their construction have aspect ratio Ω(
√
n). Such configura-

tions of thin rectangles rarely occur in practice. Many real databases consist mainly of
“fat” rectangles; i.e., the aspect ratios of these rectangles are bounded by a constant.

It is natural to ask whether BSPs of near-linear size can be constructed if most
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(a)

(b)

Fig. 1.1. (a) Lower bound for orthogonal rectangles. (b) Model of a building—85% of the
rectangles have aspect ratio at most 25.

of the rectangles are “fat.” We call a rectangle fat if its aspect ratio (the ratio of the
longer side to the shorter side) is bounded by a fixed constant; for specificity, we use
α ≥ 1 to denote this constant. A rectangle is said to be thin if its aspect ratio is
greater than α. In this paper, we consider the following problem:

Given a set S of n nonintersecting, orthogonal, two-dimensional rectangles
in R

3, of which m are thin and the remaining n−m are fat, construct a BSP
for S.

We first show how to construct a BSP of size n2O(
√

logn ) for n fat rectangles in
R

3 (i.e., when m = 0). We then show that if m > 0, a BSP of size n
√
m2O(

√
logn )

can be built. We also prove a lower bound of Ω(n
√
m) on the size of such a BSP.

We finally prove two important extensions to these results. If p of the n input
objects are nonorthogonal, we show that an np2O(

√
logn )-size BSP exists. Unlike in

the case of orthogonal objects, fatness does not help in reducing the worst-case size
of BSPs for nonorthogonal objects. In particular, we prove that there exists a set
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of n fat triangles in R
3 for which any BSP has Ω(n2) size. However, nonorthogonal

objects can be approximated by orthogonal bounding boxes. The resulting bounding
boxes might intersect each other. Motivated by this observation, we also consider the
problem in which n fat rectangles contain k intersecting pairs of rectangles, and we
show that we can construct a BSP of size (n+ k)

√
k2O(

√
logn ).

In all cases, the constant of proportionality in the big-oh terms is linear in logα,
where α is the maximum aspect ratio of the fat rectangles. Our algorithms to construct
these BSPs run in time proportional to the size of the BSPs they build. Experiments
demonstrate that our algorithms work well in practice and construct BSPs of near-
linear size when most of the rectangles are fat, and perform better than most known
algorithms for constructing BSPs for orthogonal rectangles [18].

As far as we are aware, ours is the first work to consider BSPs for the practical and
common case of (two-dimensional) fat polygons in R

3. De Berg considers a weaker
model, the case of (three-dimensional) fat polyhedra in R

3 (a polyhedron is said to
be fat if its volume is at least a constant fraction of the volume of the smallest sphere
enclosing it), although his results extend to higher dimensions [13].

One of the main ingredients of our algorithm is the construction of an O(n log n)-
size BSP for a set of n fat rectangles that are “long” with respect to a box B; i.e.,
none of the vertices of the rectangles lie in the interior of B. To prove this result,
we crucially use the fatness of the rectangles. We then develop an algorithm to
construct a BSP of size n2O(

√
logn ) for n fat rectangles by simultaneously simulating

the algorithm for long rectangles and partitioning the vertices of rectangles in S in a
clever manner.

The rest of the paper is organized as follows: section 2 gives some preliminary
definitions. In section 3, we show how to build an O(n log n)-size BSP for n long
rectangles. Sections 4 and 5 present and analyze our algorithm to construct a BSP of
size n2O(

√
logn ) for n fat rectangles. We extend this result in section 6 to construct

BSPs for cases in which some objects in the input are thin or nonorthogonal. We
conclude in section 7 with some open problems.

2. Geometric preliminaries. A binary space partition B for a set S of pairwise-
disjoint, (d− 1)-dimensional, polyhedral objects in R

d is a tree defined as follows:
Each node v in B represents a convex polytope Rv and a set of objects Sv =
{s ∩ Rv | s ∈ S} that intersect Rv. The region associated with the root is R

d it-
self. If Sv is empty, then node v is a leaf of B. Otherwise, we partition Rv into two
convex polytopes by a cutting hyperplane Hv. At v, we store the equation of Hv
and {s | s ∈ Sv, s ⊆ Hv}, the subset of objects in Sv that lie in Hv. If we let H+

v be
the positive halfspace and H−

v the negative halfspace bounded by Hv, the polytopes
associated with the left and right children of v are Rv ∩H−

v and Rv ∩H+
v , respec-

tively. The left subtree of v is a BSP for the set of objects S−v = {s ∩H−
v | s ∈ Sv}

and the right subtree of v is a BSP for the set of objects S+
v = {s ∩H+

v | s ∈ Sv}.
The size of B is the sum of the number of nodes in B and the total number of faces
of all dimensions of the objects stored at all the nodes in B.

In our case, S is a set of orthogonal rectangles in R
3. In our algorithms, we will

use orthogonal cutting planes. Therefore, the region Rv associated with each node
v in B is a box (rectangular parallelepiped). We say that a rectangle r is long with
respect to a box B if none of the vertices of r lie in the interior of B. Otherwise, r is
said to be short (see Figure 2.1). A long rectangle is free if none of its edges lies in
the interior of B; otherwise it is nonfree. A free cut is a cutting plane that does not
cross any rectangle in S and that either divides S into two nonempty sets or contains



1426 P. K. AGARWAL, E. F. GROVE, T. M. MURALI, AND J. S. VITTER

s

(a) (b)

Fig. 2.1. (a) Long and (b) short rectangles. Heavy dots indicate the vertices of these rectangles
that lie on the boundary of the box. Rectangle s is a free rectangle.

x-axis

y-axis

z-axis

Front face

Right face

Top face

Fig. 2.2. Different classes of rectangles.

a rectangle in S. Note that the plane containing a free rectangle is a free cut. Free
cuts play a critical role in preventing excessive fragmentation of the rectangles in S.

We will often focus on a box B and construct a BSP for the rectangles intersecting
it. Given a set of rectangles R, let

RB = {s ∩B | s ∈ R}

be the set of rectangles obtained by clipping the rectangles in R within B. For a set
of points P , let PB be the subset of P lying in the interior of B.

A box B has six faces: top, bottom, front, back, right, and left, as shown in
Figure 2.2. We assume, without loss of generality, that the back, bottom, left corner
of B is the origin (i.e., the back face of B lies on the yz-plane). A rectangle s that
is long with respect to B belongs to the top class if two parallel edges of s ∩ B are
contained in the top and bottom faces of B. We similarly define the front and right
classes. A long rectangle belongs to at least one of these three classes; a nonfree
long rectangle belongs to a unique class. See Figure 2.2 for examples of rectangles
belonging to different classes.

Although a BSP is a tree, we will often discuss just how to partition the box
represented by a node into two boxes. We will not explicitly detail the associated
construction of the actual tree itself, since the construction is straightforward once
we specify the cutting plane. Sometimes we will abuse notation and use B to refer to
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face g

(a) (b)

Fig. 2.3. (a) Long rectangles in the top class. (b) Projections of the rectangles in (a) onto
the top face g; heavy dots indicate the vertices of these rectangles that lie in the interior of g. The
dashed line is the cut satisfying (2.1).

the corresponding node in the BSP as well.
In the rest of the paper, we assume that the vertices of the rectangles in S are

sorted by x-, y-, and z-coordinates, and that for each axis, the rectangles perpendicular
to that axis are sorted by intercept. The cost of this sort will not affect the asymptotic
running times of our algorithms.

We now state two preliminary lemmas that we will use in our algorithms. The
first lemma characterizes a set of rectangles that are long with respect to a box and
belong to one class. The second lemma applies to two classes of long rectangles.

Lemma 2.1. Let C be a box, P a set of points in the interior of C, R a set of
rectangles long with respect to C, and w ≥ 1 a real number. If the rectangles in RC
belong to one class, then the following two conditions hold (see Figure 2.3):

(i) There exists a face g of the box C that contains exactly one of the edges of
each rectangle in RC . Let V be the set of those vertices of the rectangles in RC that
lie in the interior of g.

(ii) We can find a plane that partitions C into two boxes C1 and C2 so that
for i = 1, 2,

|V ∩ Ci| + w|PCi | ≤
|V | + w|P |

2
.(2.1)

If the rectangles in RC and the points in P are sorted along each of the three axes,
the partitioning plane can be computed in O(|RC | + |P |) time.

Proof. (i) follows from the definition of a class. To prove part (ii) of the lemma,
let P ∗ be the set of projections of the points in P onto g. Assume g is the top face
of C. If we associate a weight of 1 with each point in V and a weight w with each
point in P ∗, the total weight of the points in V ∪P ∗ is |V |+w|P |. By sweeping g, we
can find a line l lying in g and parallel to the x-axis that contains a point in V ∪ P ∗

and divides V ∪ P ∗ into two sets, each with weight at most (|V | + w|P |)/2. We split
C into two boxes C1 and C2 using the plane containing l that is orthogonal to g. By
construction, C1 and C2 satisfy (2.1). The time bound follows easily.

Lemma 2.2. Let C be a box, P a set of points in the interior of C, R a set of
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rectangles long with respect to C, and w ≥ 1 a real number. If the rectangles in RC
belong to two classes, then one of the following two conditions holds (see Figure 2.4):

(i) We can find one free cut that partitions C into two boxes C1 and C2 so that

|RCi | + w|PCi | ≤
2 (|RC | + w|P |)

3
(2.2)

for i = 1, 2.
(ii) We can find two parallel free cuts that divide C into three boxes C1, C2,

and C3 such that all rectangles in RC2
belong to the same class and such that

|RC2 | + w|PC2 | ≥
|RC | + w|P |

3
.(2.3)

If the rectangles in RC and the points in P are sorted along each of the three axes,
these free cuts can be computed in O(|RC | + |P |) time.

Proof. We assume without loss of generality that the rectangles in RC belong to
the top and right classes. Let r̄ denote the projection of a rectangle r ∈ RC onto the
x-axis: r̄ is either a point or an interval. Similarly, let p̄ denote the projection of a
point p ∈ P onto the x-axis. Set

U =



( ⋃
r∈RC

r̄

)
∪


⋃
p∈P
p̄




.

The set U is a collection of disjoint intervals, some of which may be single points. Let
r1 (resp., r2) be a rectangle in RC belonging to the top (resp., right) class. Since the
rectangles in RC are disjoint, it is easily seen that r̄1 and r̄2 are also disjoint. Hence,
each connected component of U contains the projections of rectangles belonging to at
most one class. For any connected component I of U define

µ(I) = |{r ∈ RC | r̄ ⊆ I}| + w|{p ∈ P | p̄ ⊆ I}|.

Set W = |RC | + w|P |. If U contains a connected component I = [β, γ] with µ(I) >
W/3, then the two free cuts are x = β and x = γ. The cuts partition the box C into
three boxes C1, C2, and C3, where C2 denotes the middle box. By construction, all
rectangles in RC2 belong to at most one class. Hence, condition (ii) holds. 1

If there is no such connected component of U , then let I = [β, γ] be the leftmost
connected component of U with

∑
I′≤I µ(I ′) > W/3 (we say that I ′ ≤ I if I ′ lies

to the left of I). Since µ(I) ≤W/3 and
∑
I′<I µ(I ′) < W/3,

∑
I′≤I
µ(I ′) ≤ 2W/3.

We partition C into two boxes C1 and C2 using the cut x = γ. In this case, condition
(i) holds.

If the rectangles in RC and the points in P are sorted along the x-axis, it is clear
that the components in U can be computed and sorted in O(|RC |+|P |) time. The free
cut(s) used to partition C can be found in the same time by sweeping the components
of U .

1If β = γ, i.e., I is a point, then C2 is regarded as a degenerate box. If I is the first (resp., last)
connected component of U , then C1 (resp., C3) may be a degenerate box.
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x-axis
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h2
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C

C3C1 C2
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Fig. 2.4. (a) Free cut h partitions box C into two boxes C1 and C2. (b) Two parallel free cuts
h1 and h2 partition C into three boxes: C1, C2, and C3.

3. BSPs for long fat rectangles. Let S be a set of fat rectangles. Assume
that all the rectangles in S are long with respect to a box B. In this section, we show
how to build a BSP for SB , the set of rectangles clipped within B. In general, SB
can have all three classes of rectangles. We first exploit the fatness of the rectangles
to prove that whenever all three classes are present in SB , a small number of cuts
can divide B into boxes, each of which has only two classes of rectangles. Then we
describe an algorithm that constructs a BSP for rectangles belonging to only two
classes.

3.1. Reducing three classes to two classes. Assume, without loss of gener-
ality, that the longest edge of B is parallel to the x-axis. The rectangles in SB that
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Fig. 3.1. (a) Rectangles belonging to the sets R and T . (b) The back face of B; dashed lines
are intersections of the back face with the α-cuts.

belong to the front class can be partitioned into two subsets: the set R of rectangles
that are vertical (and parallel to the right face of B) and the set T of rectangles that
are horizontal (and parallel to the top face of B); see Figure 3.1. Let e be the edge
of B that lies on the z-axis, and let e′ be the edge of B that lies on the y-axis. The
intersection of each rectangle in R with the back face of B is a segment parallel to
the z-axis. Let r̄ denote the projection of such a segment r onto the z-axis, and let
R̄ = {r̄ | r ∈ R}. Let z1 < z2 < · · · < zk−1 be the endpoints of intervals in R̄ that
lie in the interior of e but not in the interior of any interval of R̄. Note that k − 1
may be less than 2|R|, as in Figure 3.1, if some of the projected segments overlap. If
no two intervals in R̄ share an endpoint, then {z1, z2, . . . , zk−1} is the set of vertices
of the union of the intervals in R̄; otherwise, {z1, z2, . . . , zk−1} includes endpoints
common to two intervals in R̄ and not lying in the interior of any other interval in R̄.
Similarly, for each rectangle t in the set T , let t̄ be the projection of t onto the y-axis,
and let T̄ = {t̄ | t ∈ T}. Let y1 < y2 < · · · < yl−1 be the endpoints of intervals in T̄
that lie in the interior of e′ but not in the interior of any interval of T̄ .
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We divide B into kl boxes by drawing the planes z = zi for 1 ≤ i < k and the
planes y = yj for 1 ≤ j < l; see Figure 3.1. This decomposition of B into kl boxes can
easily be constructed in a treelike fashion by performing (k− 1)(l− 1) cuts. We refer
to these cuts as α-cuts. If any resulting box has a free rectangle, we divide that box
into two boxes by applying the free cut along the free rectangle. Let C be the set of
boxes into which B is partitioned in this manner. We can prove the following lemma
about the decomposition of B into C.

Lemma 3.1. The set C of boxes formed by the above process satisfies the following
properties:

(i) Each box C in C has only two classes of rectangles,
(ii) there are at most 26α2n boxes in C, and

(iii)
∑
C∈C |SC | ≤ 16αn.

Proof. Let z0 and zk, where z0 < zk, be the endpoints of e, the edge of the box B
that lies on the z-axis. Similarly, define y0 and yl, where y0 < yl, to be the endpoints
of the edge of B that lies on the y-axis.

(i) Let C be a box in C. If C does not contain a rectangle from T∪R, the claim is
obvious since the rectangles in T and R together constitute the front class. Suppose C
contains rectangles from the set R. Rectangles in R belong to the front class and are
parallel to the right face of B. We claim that C cannot have any rectangles from the
right class. Indeed, consider an edge of C parallel to the z-axis. The endpoints of
this edge have z-coordinates zi and zi+1, for some 0 ≤ i < k. Since C contains a
rectangle from R, by construction, the interval zizi+1 must be covered by projections
of rectangles in R (onto the z-axis). If C also contains a rectangle r belonging to the
right class, then let zi < z < zi+1 be the z-coordinate of a point in r ∩ C. Let r′ be
a rectangle in R whose projection on the z-axis contains z. Since both r and r′ are
long with respect to C, the interiors of r and r′ intersect, which contradicts the fact
that the rectangles in S are nonintersecting. A similar proof shows that if C contains
rectangles from T , then C does not contain any rectangle in the top class.

(ii) We first show that both k and l are at most 2�α� + 3. Let a (resp., b, c)
denote the length of the edges of B parallel to the z-axis (resp., y-axis, x-axis). By
assumption, a, b ≤ c. Let r ∈ R be a rectangle with dimensions β and γ, where β ≤
γ. Consider r̄, the projection of r onto the z-axis. Suppose that r̄ ⊆ zizi+1, for
some 0 < i < k − 1, i.e., r̄ lies in the interior of the edge e of B lying on the z-axis.
Since r is a rectangle in the front class and is parallel to the right face of B, we
have β ≤ a ≤ c = γ. If r̂, the rectangle supporting r in the set S, has dimensions β̂

and γ̂, where β̂ ≤ γ̂ ≤ αβ̂, we have β = β̂ (since r̄ ⊆ int(e)) and γ ≤ γ̂. (If i is 0 or

k − 1, we cannot claim that β = β̂; in these cases, it is possible that β � β̂.) See
Figure 3.2. Thus, we obtain

a ≤ c = γ ≤ γ̂ ≤ αβ̂ = αβ.

It follows that the length of the interval r̄, and hence the length of zizi+1, is at least
a/α. Since every alternate interval zizi+1, 0 < i < k − 1 contains the projection of
at least one rectangle of R, we have k ≤ 2�α� + 3. In a similar manner, l ≤ 2�α� + 3.
Hence, the planes z = zi, 1 ≤ i ≤ k − 1 and the planes y = yj , 1 ≤ j ≤ l − 1 parti-
tion B into at most kl ≤ (2�α� + 3)2 boxes. Each such box C can contain at most
n rectangles. Hence, at most n free cuts can be made inside C. The free cuts can
divide C into at most n+ 1 boxes. This implies that the set C has at most kl(n+ 1)≤
26α2n boxes.

(iii) Each rectangle r in SB is cut into at most kl pieces. The edges of these pieces
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γ = c

a

γ̂

β = β̂r

r̂

Fig. 3.2. Projections of r̂ (the dashed rectangle), r = r̂ ∩B (the shaded rectangle), and the
right face of B onto the zx-plane.

form an arrangement on r. Each face of the arrangement is one of the at most kl
rectangles that r is partitioned into. Only 2(k + l− 2) faces of the arrangement have
an edge on the boundary of r. All other faces can be used as free cuts. Hence, after all
possible free cuts are made in the boxes into which B is divided by the (k− 1)(l− 1)
cuts, only 2(k + l − 2) pieces of each rectangle in SB survive. This proves that∑
C∈C |SC | ≤ 16αn.

Remark. The only place in the whole algorithm where we use the fatness of the
rectangles in S is in the proof of Lemma 3.1. If the rectangles in S are thin, then
Lemma 3.1(ii) is not true; both k and l can be Ω(n).

If SB contains a short rectangle, the α-cuts partition the short rectangle into a
constant number of pieces. Hence, Lemma 3.1(ii) and 3.1(iii) hold even when SB
contains short rectangles.

3.2. BSPs for two classes of long rectangles. Let C be one of the boxes into
which B is partitioned by the α-cuts. We now present an algorithm for constructing
a BSP for the set of clipped rectangles SC , which has only two classes of long rectan-
gles. We recursively apply the following steps to each of the boxes produced by the
algorithm until no box contains a rectangle.

1. If SC has a free rectangle, we use the free cut containing that rectangle to
split C into two boxes.

2. If SC has two classes of rectangles, we use Lemma 2.2 (with R = S and P = ∅)
to split C into at most three boxes, using at most two parallel free cuts.

3. If SC has only one class of rectangles, we split C into two by a plane, using
Lemma 2.1 (with R = S and P = ∅).

In steps 2 and 3, since P = ∅, we can use any value of w in Lemmas 2.2 and 2.1.

We first analyze the algorithm for two classes of long rectangles. The BSP pro-
duced has the following structure: If step 3 is executed at a node v, then step 2 is not
invoked at any descendant of v. Note that the cutting planes used in steps 1 and 2 do
not intersect any rectangle of SC , so only the cuts made in step 3 increase the number
of rectangles. Hence, repeated execution of steps 1 or 2 on SC constructs a top sub-
tree TC of the BSP with O(|SC |) nodes such that each leaf in TC has only one class
of rectangles and the total number of rectangles in all the leaves is at most |SC |. The
operations at a box D in TC involve determining the cuts to be made at D, partition-
ing D according to these cuts, identifying the resulting free rectangles and applying
free cuts containing them, and partitioning the rectangles in SD into the new boxes.
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Since we assume that we have sorted the vertices of the rectangles in S at the very
beginning, Lemmas 2.1 and 2.2 imply that the cuts to be made at B can be deter-
mined in O(|SD|) time. The free cuts resulting after partitioning D according to these
cuts are parallel to each other. Hence, all free cuts can be applied in O(|SD|) time.
Further, the number of rectangles at each child of D is at most 2|SD|/3. Hence, TC
can be constructed in O(|SC | log |SC |) time. At each leaf v of the tree TC , recursive
invocations of steps 1 and 3 build a BSP of size O(|Sv| log |Sv|) in O(|Sv| log |Sv|) time
(see [25] for details). Since

∑
v Sv ≤ |SC |, where the sum is taken over all leaves v of

TC , the total size of the BSP constructed inside C is O(|SC | log |SC |). It also follows
that the BSP inside C can be constructed in O(|SC | log |SC |) time.

We now analyze the overall algorithm for long rectangles. The algorithm first
applies the α-cuts to the rectangles in SB , as described in section 3.1. Consider the
set of boxes C produced by the α-cuts. Each of the boxes in C contains only two
classes of rectangles (by Lemma 3.1(i)). In view of the above discussion, for each box
C ∈ C, we can construct a BSP for SC of size O(|SC | log |SC |) in time O(|SC | log |SC |).
Lemma 3.1(ii) and (iii) imply that the total size of the BSP is

O(n)+
∑
C∈C
O(|SC | log |SC |) = O(n log n).

The time spent in building the BSP is also O(n log n). We can now state the following
theorem.

Theorem 3.2. Let S be a set of n fat rectangles and B a box so that all rectangles
in S are long with respect to B. An O(n log n)-size BSP for the clipped rectangles SB
can be constructed in O(n log n) time. The constants of proportionality in the big-oh
terms are linear in α2, where α is the maximum aspect ratio of the rectangles in S.

Remark. We can show that the height of the BSP constructed by the above
algorithm is O(log n). We can also modify our algorithm to construct a BSP of size
O(n) for n long rectangles as follows: If a box C has two classes of long rectangles,
we apply step 1 or 2 of the previous algorithm. If the rectangles in C belong to one
class, we use the algorithm of Paterson and Yao for constructing BSPs for orthogonal
segments in the plane [26] to construct a BSP of linear size for SC . However, the
height of the BSP can now be Ω(n) in the worst case.

4. BSPs for fat rectangles. We now describe our main algorithm for construct-
ing a BSP for a set S of n fat nonintersecting rectangles, in which we simultaneously
simulate the algorithm for long fat rectangles presented in section 3 and partition
the vertices of the rectangles in S. The algorithm proceeds in rounds. Each round
simulates a few steps of the algorithm for long rectangles and partitions the vertices
of the rectangles in S into a small number of sets of approximately equal size. At the
beginning of the ith round, for i > 0, the algorithm has a top subtree Bi of the BSP
for S. Let Qi be the set of boxes associated with the leaves of Bi containing at least
one rectangle. The initial tree B1 consists of one node and Q1 consists of one box
that contains all the input rectangles. Our algorithm maintains the invariant that for
each box B ∈ Qi, all long rectangles in SB are nonfree. If Qi is empty, we are done.
Otherwise, in the ith round, for each box B ∈ Qi, we construct a top subtree TB of
the BSP for the set SB and attach it to the corresponding leaf of Bi. This gives us
the new top subtree Bi+1. Thus, it suffices to describe how to build the tree TB on a
box B during a round.

Let F ⊆ SB be the set of rectangles that are long with respect to B. Set f = |F|,
and let k be the number of vertices of rectangles in SB that lie in the interior of B
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(note that each such vertex is a vertex of an original rectangle in the input set S). By
assumption, all rectangles in F are nonfree. We choose a parameter a, which remains
fixed throughout the round. We pick

a = 2
√

log(f+k)

to optimize the size of the BSP that the algorithm creates. We now describe the ith
round in detail. See Figure 4.1 for an outline of B’s structure.

C

Bi

Bi+1

Separating

Dividing

Stage C︷ ︸︸ ︷

B1

B

TB
Stage

Qi︷ ︸︸ ︷

Fig. 4.1. Overall structure of B.

If k = 0 (i.e., if all rectangles in SB are long), we use Theorem 3.2 to construct
a BSP for SB . Otherwise, we perform a sequence of cuts in two stages that partition
B as follows:
Separating stage. We apply the α-cuts, as described in section 3.1. We make these

cuts with respect to the rectangles in F, i.e., we consider only those rectangles
of SB that are long with respect to B. Let C be the set of boxes into which
B is partitioned by the α-cuts.

Dividing stage. We refine each box C in C by applying cuts similar to the ones made
in section 3.2, as described below. Let kC denote the number of vertices
of rectangles in SC that lie in the interior of C. Recall that FC is the set
of rectangles in F that are clipped within C. We recursively invoke the
dividing stage until |FC | + 2akC ≤ (f + ak)/a and SC does not contain any
free rectangles.

1. If C has any free rectangle, we use the free cut containing that rectangle
to split C into two boxes.

2. If the rectangles in FC belong to two classes, let PC denote the set of
vertices of the rectangles in SC that lie in the interior of C. We apply at
most two parallel free cuts that satisfy Lemma 2.2, with R = F, P = PC ,
and w = 2a.

3. If the rectangles in FC belong to just one class, we apply one cut using
Lemma 2.1, with R = F, P = PC , and w = 2a.

The cuts introduced during the dividing stage can be made in a treelike fashion.
At the end of the dividing stage, we have a set of boxes so that for each box D in
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this set, SD does not contain any free rectangle and |FD| + akD ≤ (f + ak)/a. Notice
that as we apply cuts in C and in the resulting boxes, rectangles that are short with
respect to C may become long with respect to the new boxes. We ignore these new
long rectangles until the next round, unless they induce a free cut.

5. Analysis of the algorithm. We now analyze the size of the BSP constructed
by the algorithm and the time complexity of the algorithm. In a round, the algorithm
constructs a top subtree TB of the BSP for the set of clipped rectangles SB . Recall
that F is the set of rectangles that are long with respect to B, f = |F|, and k is the
number of vertices of rectangles in SB that lie in the interior of B. For a node C
in TB , recall that kC denotes the number of vertices of rectangles in SC that lie in
the interior of C.

We now define some more notation that we need for the analysis. For a node C
in TB , let TC be the subtree of TB rooted at C, LC be the set of leaves in TC , φC
be the number of long rectangles in FC (recall that FC is the set of rectangles in F
that intersect C and are clipped within C), and νC be the number of long rectangles
in SC \ FC (recall that a rectangle in SC \ FC is a portion of a rectangle in SB that
is short with respect to B). For a box D corresponding to a leaf of TB , let fD
be the number of long rectangles in SD. Note that fD counts both the “old” long
rectangles in FD (pieces of rectangles that were long with respect to B) and the “new”
long rectangles in SD \ FD (pieces of rectangles that were short with respect to B, but
became long with respect to D due to the cuts made during the round); fD = φD+νD.

In a round, the separating stage first splits B into a set of boxes C. For each
box C ∈ C, FC has only two classes of long rectangles. The algorithm then executes
the dividing stage on each such box C. As in the case of the algorithm for long
rectangles (see section 3), the subtree constructed in C has the following property: if
step 4 is executed at a node v, then step 4 is not executed at any descendent of v.
In Lemma 5.1, we prove a bound on the total number of long rectangles at each leaf
of TB . For a box C ∈ C, we bound the number of long rectangles at the leaves of TC
in Lemmas 5.2 and 5.3. In Lemma 5.4, we prove a bound on the size of the tree TB .
Finally, we use these lemmas to establish bounds on the size of the BSP constructed
by our algorithm and the running time of our algorithm (see Theorem 5.5).

Lemma 5.1. For a box D associated with a leaf of TB,

fD + 2akD ≤ f + 2ak

a
.

Proof. We know that νD is at most k (since a rectangle in SD \ FD must be a piece
of a rectangle short with respect to B, and there are at most k short rectangles in B).
Since fD + 2akD ≤ φD + 2akD + νD and φD + 2akD ≤ (f + ak)/a (by construction),
the lemma follows.

Lemma 5.2. Let C be a box associated with a node in TB. If all rectangles in FC
belong to one class, then

∑
D∈LC

fD ≤ 2φC + 2νC max

{
2 (φC + akC)

µ
, 1

}
+ 4kC

(
φC + akC
µ

)
,

where µ = (f + ak)/a.
Proof. Assume, without loss of generality, that all rectangles in FC belong to the

top class, and let g be the top face of C. By Lemma 2.1(i), g contains an edge of
every rectangle in FC . Let ρC be the number of vertices of the nonfree long rectangles
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in FC that lie in the interior of g; obviously, φC ≤ ρC ≤ 2φC . Set

Φ(ρC , νC , kC) = max
∑
D∈LC

fD,

where the maximum is taken over all boxes C and over all sets S of rectangles with
ρC vertices of rectangles in FC lying in the interior of the top face of C, νC long
rectangles in SC \ FC , and kC vertices in the interior of C. We claim that

Φ (ρC , νC , kC) ≤ ρC + 2νC max

{
ρC + 2akC

µ
, 1

}
+ 2kC

(
ρC + 2akC

µ

)
,(5.1)

which implies the lemma, because ρC ≤ 2φC .
Note that if SC contains m ≥ 1 free rectangles, we apply the free cuts containing

these rectangles to partition C (by repeatedly invoking step 4 of the dividing stage)
until the resulting boxes do not contain any free rectangle. The free cuts partition C
into a set E of m+ 1 boxes. Since we have created the boxes in E using free cuts,

ρE + 2akE ≤ ρC + 2akC , for any box E in E ,(5.2) ∑
E∈E
νE ≤ νC ,

∑
E∈E
kE ≤ kC ,

∑
E∈E
ρE ≤ ρC .(5.3)

These inequalities imply that if (5.1) holds for each box in E , then (5.1) holds
for C as well. Therefore, we prove (5.1) for all boxes C such that FC contains only
one class of rectangles and SC does not contain any free rectangle. We proceed by
induction on ρC + 2akC .

Base case. 0 ≤ ρC + 2akC ≤ µ. Since 0 ≤ ρC + 2akC ≤ µ and SC does not con-
tain any free rectangle, C is a leaf of TB , i.e., LC = {C}. We have

Φ (ρC , νC , kC) =
∑
D∈LC

fD = fC = φC + νC ≤ ρC + νC ,(5.4)

which implies (5.1).
Induction step. ρC + 2akC > µ. In this case, C is split into two subboxes C1

and C2 by a cutting plane h. Since
∑
D∈LC

fD =
∑
D∈LC1

fD +
∑
D∈LC2

fD,

Φ (ρC , νC , kC) = Φ (ρC1
, νC1

, kC1
) + Φ (ρC2

, νC2
, kC2

) ,

where kC1 + kC2 ≤ kC and ρC1 + ρC2 ≤ ρC .
Note that h does not contain a free rectangle. For i = 1, 2, each long rectangle

in SCi \ FCi is contained either in a long rectangle in SC \ FC or in a short rectangle
in SC . Since h intersects each rectangle in SC at most once and a short rectangle
intersected by h is divided into one short and one long rectangle,

νC1 + νC2 ≤ 2νC + kC .(5.5)

By Lemma 2.1(ii), we have

ρCi
+ 2akCi

≤ ρC + 2akC
2

, for i = 1, 2.(5.6)

Let E1 (resp., E2) be the set of boxes obtained by applying all the free cuts in SC1

(resp., SC2) in step 4 of the dividing stage. Clearly,

Φ(ρC , νC , kC) =
∑
E∈E1

Φ(ρE , νE , kE) +
∑
E∈E2

Φ(ρE , νE , kE).
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We consider two cases.
Case (i). µ < ρC + 2akC ≤ 2µ. For each i = 1, 2

ρCi + 2akCi ≤
ρC + 2akC

2
≤ µ.

As a result, all boxes in E1 and E2 are leaves of TB . Using (5.3) and (5.4), we obtain

Φ(ρC , νC , kC) ≤
∑
E∈E1

fE +
∑
E∈E2

fE ≤
∑
E∈E1

(ρE + νE) +
∑
E∈E2

(ρE + νE)

≤ ρC1 + νC1 + ρC2 + νC2 .

It now follows from (5.5) that

Φ(ρC , νC , kC) ≤ ρC + 2νC + kC ,(5.7)

which implies (5.1), because ρC + 2akC > µ.
Case (ii). ρC + 2akC > 2µ. For any box E in E1 ∪ E2, by (5.2) and (5.6),

max

{
ρE + 2akE

µ
, 1

}
≤ max

{
ρC + 2akC

2µ
, 1

}
=
ρC + 2akC

2µ
.

By (5.2) and the induction hypothesis,

Φ(ρC , νC , kC) ≤
∑
E∈E1

(
ρE + 2νE

(
ρC + 2akC

2µ

)
+ 2kE

(
ρC + 2akC

2µ

))

+
∑
E∈E2

(
ρE + 2νE

(
ρC + 2akC

2µ

)
+ 2kE

(
ρC + 2akC

2µ

))

≤ (ρC1
+ ρC2

) + 2 (νC1
+ νC2

)

(
ρC + 2akC

2µ

)

+ 2 (kC1 + kC2)

(
ρC + 2akC

2µ

)
.

Using (5.5), we obtain

Φ(ρC , νC , kC) ≤ ρC + 2 (2νC + kC)

(
ρC + 2akC

2µ

)
+ 2kC

(
ρC + 2akC

2µ

)

= ρC + 2νC

(
ρC + 2akC

µ

)
+ 2kC

(
ρC + 2akC

µ

)
,

which implies (5.1).
Lemma 5.3. Let C be a box associated with a node in TB. If all rectangles in FC

belong to two classes, then

∑
D∈LC

fD ≤ O
(
φC + (νC + kC)

(
φC + 2akC

µ

)3
)
,

where µ = (f + ak)/a.
Proof. Similar to the proof of Lemma 5.2. See the Appendix for details.
Lemma 5.4. The tree TB constructed on box B in a round has the following

properties:
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D

B

Separating Stage

Dividing Stage

C︷ ︸︸ ︷

︸ ︷︷ ︸
LC︸ ︷︷ ︸
LB

C

Fig. 5.1. The tree TB constructed in a round.

(i)
∑
D∈LB

kD ≤ k,

(ii)
∑
D∈LB

fD = O(f + a3k), and

(iii) |TB | = O((f + a3k) log a).
Proof. The bound on

∑
D∈LB

kD is obvious, since each vertex in the interior of
SB lies in the interior of at most one box of LB . Next, we use Lemma 5.3 to prove a
bound on

∑
D∈LB

fD.
Let C be the set of boxes into which B is partitioned by the separating stage;

see Figure 5.1. Obviously,
∑
D∈LB

fD =
∑
C∈C

∑
D∈LC

fD. For each box C ∈ C,
Lemma 3.1(i) implies that all rectangles in FC belong to at most two classes. Hence,
by Lemma 5.3,

∑
D∈LB

fD ≤
∑
C∈C
O

(
φC + (νC + kC)

(
φC + 2akC

µ

)3
)
.

Arguing as in the proof of Lemma 3.1(3), we can show that
∑
C∈C φC = O(f) and that∑

C∈C νC = O(k). We also know that
∑
C∈C kC ≤ k and µ = (f + ak)/a. Therefore,

∑
D∈LB

fD = O

(
f + k

(
f + 2ak

µ

)3
)

= O
(
f + a3k

)
.

We now sketch the proof that |TB | = O((f + a3k) log a). Following the same
argument as in the proof of Lemma 3.1(2), we can show that the separating stage
creates a tree with O(f + k) nodes. We now count the number of nodes in TB that
are created by the dividing stage. Let D ∈ TB be such a node. If D is partitioned
by a cut containing a free rectangle (i.e., step 4 of the dividing stage is invoked at
D), we charge D to its nearest ancestor C ∈ TB such that C is not partitioned by
a free cut (i.e., step 4 or 4 of the dividing stage is executed at C). Otherwise, we
charge a cost of 1 to D itself. Let C be a node in TB that is not partitioned by a free
cut. Since a free rectangle can be created only by partitioning a long rectangle, the
cut used to partition C creates O(φC + νC) free rectangles, which implies that C is
charged O(φC + νC + 1) times by the above argument. Hence,

|TB | = O

(∑
C

(φC + νC + 1)

)
,
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where C ranges over all nodes in TB where step 4 or 4 of the dividing stage is executed.
By following an inductive argument similar to the ones used to prove Lemmas 5.2
and 5.3, we can show that |TB | = O((f + a3k) log a). Informally, the charging scheme
compresses TB by collapsing all nodes that are split by free cuts. Lemma 2.1 and 2.2
imply that the height of the compressed tree is O(log a). We can show that

∑
C(φC +

νC + 1) is roughly the product of the height of the tree and
∑
D fD, the total number

of long rectangles intersecting the leaves of the tree.
We now present our main result regarding the performance of our algorithm.
Theorem 5.5. Given a set S of n rectangles in R

3 such that the aspect ratio of
each rectangle in S is bounded by a constant α ≥ 1, we can construct a BSP of size
n2O(

√
logn ) for S in time n2O(

√
logn ). The constants of proportionality in the big-oh

terms are linear in logα.
Proof. We first bound the size of the BSP constructed by the algorithm. Let

S(f, k) denote the maximum size of the BSP produced by the algorithm for a box B
that contains f long rectangles and k vertices in its interior. If k = 0, Theorem 3.2 im-
plies that S(f, k) = O(f log f). For k > 0, by Lemma 5.4(iii), we construct the subtree
TB on B of size O((f + a3k) log a) in one round, and recursively construct subtrees
for each box in the set of leaves LB . Therefore, there exist constants c1, c2, c3 > 0 so
that the size S(f, k) satisfies the following recurrence:

S(f, k) ≤




c1f log f for k = 0,

∑
D∈LB

S(fD, kD) + c2(f + a3k) log a for k > 0,

where

fD + 2akD ≤ f + 2ak

a

for every box D in LB (by Lemma 5.1), and

∑
D

kD ≤ k,
∑
D

fD ≤ c3(f + a3k)

(by Lemma 5.4(i) and 5.4(ii). Using induction on f + 2ak, we can prove that the
solution to the above recurrence is

S(f, k) = (f + k)2O(
√

log(f+k) ),

where the constant of proportionality is linear in logα. Intuitively, the algorithm con-
structs the BSP for B in O(log a) = O(

√
log(f + k)) rounds, and the total number of

long rectangles increases roughly by a constant factor in each round. The n2O(
√

logn )

bound on the size of the BSP constructed by the algorithm follows, since f ≤ n and
k ≤ 4n at the beginning of the first round.

We now bound the running time of our algorithm. Recall that we initially sorted
the vertices of the rectangles in S by x-, y-, and z-coordinates. Suppose SB does not
contain a free rectangle. By Lemmas 2.1 and 2.2, the cuts to be made at B can be
determined in O(|SB |) time. Suppose C is a box obtained by partitioning B according
to these cuts; we can easily obtain the sorted order of the vertices of the rectangles
in SC from the sorted order in B. Let E be the set of boxes obtained by applying
C using all the free rectangles in SC . Since the free rectangles in SC are parallel to
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each other, we can partition the rectangles in SC among the boxes in E in O(|SC |)
time. Therefore, we can construct the tree representing the partition of B into the
set of boxes E in O(|SB |) time. Hence, we obtain the same n2O(

√
log n ) bound for the

running time of the algorithm.

Remark. We can modify our algorithm to prove that the height of the BSP
constructed is O(log n): if SB contains free rectangles, we assign appropriate weights
to the free rectangles, and partitionB using the weighted median of the free rectangles.
We leave the details to the reader. Paterson and Yao [25] use a similar idea to bound
the height of BSP they construct for segments in the plane.

6. Extensions. In this section, we extend the algorithm of section 4 to the
following two cases: (i) some of the input rectangles are thin and (ii) some of the
input polygons are triangles.

6.1. Fat and thin rectangles. Let us assume that the input S = F ∪ T has
n rectangles, consisting of m ≥ 1 thin rectangles in T and n−m fat rectangles in F.
We first describe our algorithm and then construct a set of rectangles for which any
BSP has size Ω(n

√
m). The algorithm we use now is very similar to the algorithm

for fat rectangles. Given a box B, let f be the number of long rectangles in FB , k the
number of vertices of rectangles in FB that lie in the interior of B, and t the number
of rectangles in TB . We fix a parameter a = 2

√
log(f+k) and perform the following

steps:

1. If SB contains a free rectangle, we use the corresponding free cut to split B
into two boxes.

2. If k = t = 0, we use the algorithm for long rectangles to construct a BSP for
the set of clipped rectangles SB .

3. If t ≥ (f + k), we use the algorithm by Paterson and Yao for orthogonal
rectangles in R

3 to construct a BSP for SB [26].
4. If (f + k) > t, we perform one round of the algorithm described in section 4,

with the difference that we also use thin rectangles to make free cuts.

This algorithm is recursively invoked on all the resulting subboxes. Let S(f, k, t)
be the maximum size of the BSP produced by this algorithm for a box B with k
vertices in its interior, f long rectangles in FB , and t thin rectangles in TB . Note that
in section 5, during the analysis of a round, we did not use the fact that the short
rectangles were fat. As a result, Lemmas 5.2 and 5.3 hold for step 6.1 above, with
νC + kC + tC replacing the term νC + kC . We can similarly extend Lemma 5.4 to
obtain the following recurrence for S(f, k, t). Here D ranges over all the boxes that
B is divided into by a round of cuts, as described above in step 6.1.

S(f, k, t) =




O(f log f), for k = t = 0,

O(t
√
t), for t ≥ f + k,

∑
D

S(fD, kD, tD) +O(f log a+ a3k + a3t), for f + k > t,

where
∑
D kD ≤ k, fD + 2akD ≤ (f + 2ak)/a,

∑
D fD = O(f + a3k), and

∑
D tD =

O(a3t).
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Fig. 6.1. Lower bound construction for thin and fat rectangles.

We can analyze this recurrence as in section 5 and show that its solution is

S(f, k, t) = (f + k)
√
t2O(

√
log(f+k) ),

where the constant of proportionality is linear in logα. The following theorem is
immediate.

Theorem 6.1. Let S be a set of n rectangles in R
3, of which m ≥ 1 are thin.

A BSP of size n
√
m2O(

√
logn ) for S can be constructed in n

√
m2O(

√
logn ) time. The

constants of proportionality in the big-oh terms are linear in logα, where α is the
maximum aspect ratio of the fat rectangles.

We can show that Theorem 6.1 is almost optimal by constructing a set of n
rectangles of whichm are thin, for which any BSP has size Ω(n

√
m). Recall that there

exists a set of m thin rectangles in R
3 for which any BSP has size Ω(m

√
m) [26]. To

complete the proof of the lower bound, we now exhibit a set S = T∪F of n rectangles,
where T is a set of m thin rectangles and F is a set of n−m fat rectangles, for which
any BSP has size Ω((n−m)

√
m). The rectangles in T are arranged in a

√
m×

√
m grid;

each rectangle in T is a segment of length n−m+ 5(n−m)/(2
√
m) + 1 perpendicular

to the yz-plane. The rectangles in F are divided into (n−m)/(2
√
m) sets, each

consisting of 2
√
m squares with side length

√
m+ 2. Each set consists of

√
m squares

parallel to the xy-plane and
√
m squares parallel to the xz-plane so that the following

three conditions are satisfied (see Figure 6.1).

1. In each set, a square parallel to the xy-plane is at a distance of 2ε from any
square parallel to the xz-plane,

2. For any square, the closest square in a different set is at a distance of 1− 2ε,
and

3. For any square, the closest thin rectangle is at a distance of ε.
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We can show that there are (n−m)
√
m/2 points such that a cube of side 2ε centered

at any such point intersects a thin rectangle t of T and two squares r and s of F. For
each such cube ψ, we can show that at least one edge of r, s, or t is crossed in the
interior of ψ by a cutting plane of B, which implies that the cutting planes in B and
the edges of the rectangles in S cross at Ω((n−m)

√
m) points, thus proving the lower

bound on the size of B.

6.2. Fat rectangles and triangles. Suppose that p ≥ 1 polygons in the input S
are (nonorthogonal) triangles and that the rest are fat rectangles. To construct a BSP
for S, we use nonorthogonal cutting planes; hence, each region is a convex polytope
and the intersection of a triangle with a region is a polygon, possibly with more than
three edges. We can extend the algorithm of section 6.1 to this case as follows: In
step 6.1, we check whether we can make free cuts through the nonorthogonal polygons
too. In step 6.1, if the number of triangles at a node is greater than the number of fat
rectangles, we use the algorithm of Agarwal et al. for triangles in R

3 to construct a
BSP of size quadratic in the number of triangles in near-quadratic time [2]. Proceeding
as in the previous section, we can prove the following theorem.

Theorem 6.2. A BSP of size np2O(
√

log n ) can be constructed in np2O(
√

logn )

time for n polygons in R
3, of which p ≥ 1 are nonorthogonal and the rest are fat

rectangles. The constants of proportionality in the big-oh terms are linear in logα,
where α is the maximum aspect ratio of the fat rectangles.

Unlike the case of rectangles, the fatness assumption does not help in constructing
BSPs of small size for triangles. More specifically, we can show that there exists a
set of n fat triangles in R

3 such that any BSP for these triangles has Ω(n2) size by
modifying Chazelle’s construction for proving a quadratic lower bound on the size of
convex decompositions of polyhedra in R

3 [9].

7. Conclusions. In this paper, we have studied the problem of constructing
BSPs for orthogonal rectangles under the natural assumption that most rectangles
are fat. Our result shows that this assumption allows a smaller worst-case size of
BSPs. Our algorithm constructs a BSP for any set of orthogonal rectangles; it is only
the analysis of the algorithm that depends on the fatness of the input rectangles. We
have implemented a variant of our algorithm and compared its performance to that of
other known algorithms [18]. Our algorithm is indeed practical: it constructs a BSP
of near-linear size on real data sets. It performs better than not only Paterson and
Yao’s algorithm [26] but also most heuristics described in the literature [4, 16, 30].

We now briefly mention another extension to our algorithms. If the n fat rectan-
gles contain k ≥ 1 crossing pairs, we can construct a BSP of size (n+ k)

√
k2O(

√
logn )

for these rectangles as follows: for each crossing pair r and s, we partition one of the
rectangles (say, r) into two smaller rectangles that do not intersect s. We construct
a BSP for the resulting n + O(k) rectangles by invoking our algorithm for a set of
fat and thin triangles. We can also construct a set of n fat rectangles with k crossing
pairs for which any BSP has size Ω(n+ k

√
k).

It seems very probable that BSPs of a size smaller than n2O(
√

logn ) can be built
for n fat rectangles in R

3. The only lower bound we have is the trivial Ω(n) bound. It
would be interesting to see if simple heuristics (e.g., choose the next splitting plane to
be one that intersects the smallest number of rectangles) can be proven to construct
BSPs of (close to) optimal size. An even more challenging open problem is determining
the right assumptions that should be made about the input objects and the graphics
display hardware so that provably fast and practically efficient algorithms can be
developed for doing hidden-surface elimination of these objects.
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Appendix. Proof of Lemma 5.3.
Lemma 5.3. Let C be a box associated with a node in TB. If all rectangles in FC

belong to two classes, then

∑
D∈LC

fD ≤ O
(
φC + (νC + kC)

(
φC + 2akC

µ

)3
)
,

where µ = (f + ak)/a.
Proof. Let

Ψ(φC , νC , kC) = max
∑
D∈LC

fD,

where the maximum is taken over all boxes C and over all sets S of rectangles with φC
long rectangles in FC , νC long rectangles in SC \ FC , and kC vertices in the interior
of C. The rectangles in FC belong to at most two classes. We claim that

(A.1)

Ψ(φC , νC , kC) ≤ 2φC + 5νC max

{(
φC + 2akC

µ

)3

, 1

}
+ 6kC

(
φC + 2akC

µ

)3

,

which proves the lemma.
If SC contains m ≥ 1 free rectangles, we apply the free cuts containing these

rectangles to partition C (by repeatedly invoking step 4 of the dividing stage) until
the resulting boxes do not contain any free rectangles. Let E be the set of boxes into
which C is so partitioned. Then

φE + 2akE ≤ φC + 2akC , for any box E in E ,(A.2) ∑
E∈E
φE ≤ φC

∑
E∈E
νE ≤ νC

∑
E∈E
kE ≤ kC .(A.3)

These inequalities imply that if (A.1) holds for each box in E , then (A.1) holds for
C as well. Therefore, we prove (A.1) for all boxes C such that FC contains at most
two classes of rectangles and SC does not contain any free rectangles. We proceed by
induction on φC + 2akC .

Base case. φC + 2akC ≤ µ. Since φC + 2akC ≤ µ and SC does not contain any
free rectangles, C is a leaf of TB . We have

Ψ (φC , νC , kC) =
∑
D∈LC

fD = fC = φC + νC ,(A.4)

which implies (A.1).
Induction step. φC + 2akC > µ. The cuts made in step 4 of the dividing stage

fall into one of two categories (see Lemma 2.2). Note that none of these cuts contains
a free rectangle.

Case (i). We divide C into two boxes, C1 and C2, using a plane h that does not
cross any rectangle in FC . As a result,

φC1 + φC2 ≤ φC and kC1 + kC2 ≤ kC .

Since h intersects each rectangle in SC at most once, (5.5) holds in this case too; i.e.,

νC1
+ νC2

≤ 2νC + kC .(A.5)
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Lemma 2.2 implies that

φCi
+ 2akCi

≤ 2(φC + 2akC)

3
for i = 1, 2.(A.6)

Let E1 (resp., E2) be the set of boxes obtained by applying all the free cuts in SC1

(resp., SC2) in step 4 of the dividing stage. Clearly,

Ψ(φC , νC , kC) ≤
∑
E∈E1

Ψ(φE , νE , kE) +
∑
E∈E2

Ψ(φE , νE , kE).

We consider two cases.
(a) µ ≤ φC + 2akC ≤ 3µ/2. In this case, by (A.2) and (A.6),

φE + 2akE ≤ 2(φC + 2akC)

3
≤ µ,

for each box E in E1 and E2. Since E does not contain a free rectangle, E is a leaf of
TB . Using (A.5), (A.3), and (A.4), we obtain

Ψ(φC , νC , kC) ≤
∑
E∈E1

fE +
∑
E∈E2

fE

≤
∑
E∈E1

(φE + νE) +
∑
E∈E2

(φE + νE)

≤ φC1 + νC1 + φC2 + νC2

≤ φC + 2νC + kC ,

which implies (A.1), because φC + 2akC > µ.
(b) φC + 2akC > 3µ/2. For a box E in E1 ∪ E2, by (A.2) and (A.6), we have

max

{(
φE + 2akE

µ

)3

, 1

}
≤ max

{(
2

3

(
φC + 2akC

µ

))3

, 1

}
=

8

27

(
φC + 2akC

µ

)3

.

By the induction hypothesis, and by using (A.3) and (A.5),

Ψ(φC , νC , kC) ≤
∑
E∈E1

(
2φE + 5νE

(
8

27

(
φC + 2akC

µ

)3
)

+ 6kE

(
8

27

(
φC + 2akC

µ

)3
))

+
∑
E∈E2

(
2φE + 5νE

(
8

27

(
φC + 2akC

µ

)3
)

+ 6kE

(
8

27

(
φC + 2akC

µ

)3
))

≤ 2 (φC1 + φC2) + 5 (νC1 + νC2)

(
8

27

(
φC + 2akC

µ

)3
)

+ 6 (kC1 + kC2)

(
8

27

(
φC + 2akC

µ

)3
)

≤ 2φC + 5 · 8

27
(2νC + kC)

(
φC + 2akC

µ

)3

+ 6 · 8

27
kC

(
φC + 2akC

µ

)3

≤ 2φC + 5νC

(
φC + 2akC

µ

)3

+ 6kC

(
φC + 2akC

µ

)3

,
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which implies (A.1).
Case (ii). We find two parallel planes h1 and h2 that divide C into three boxes

C1, C2, and C3 (in this order) so that all rectangles in FC2 belong to one class.
Lemma 2.2 implies that the rectangles in FC are partitioned among C1, C2, and C3.
Moreover, h1 and h2 partition the vertices in the interior of C. Thus,

φC1 + φC2 + φC3 ≤ φC and kC1 + kC2 + kC3 ≤ kC .

The planes h1 and h2 can intersect the rectangles in SC \ FC . Each long rectangle
in SC \ FC is partitioned into at most three long rectangles. Each short rectangle in
SC is partitioned into at most three rectangles; if two of these rectangles are long,
then one of the long rectangles must be in SC2 , since C2 is sandwiched between C1

and C3 (see the proof of Lemma 2.2). In other words,

νC1 + νC3 ≤ 2νC + kC and νC2 ≤ νC + kC .(A.7)

Lemma 2.2 also implies that

(A.8)

φCi + 2akCi
≤ 2(φC + 2akC)

3
, for i = 1, 3, and φC2 + 2akC2 ≤ φC + 2akC .

Let Ei, 1 ≤ i ≤ 3 be the set of boxes obtained by applying all the free cuts in SCi in
step 4 of the dividing stage. Note that for each box E ∈ E2, FE contains only one
class of rectangles. It is clear that

Ψ(φC , νC , kC) ≤
∑
E∈E1

Ψ(φE , νE , kE) +
∑
E∈E2

Φ(2φE , νE , kE) +
∑
E∈E3

Ψ(φE , νE , kE),

where Φ( ) is as defined in the proof of Lemma 5.2. We again consider two cases.
(a) µ < φC + 2akC ≤ 3µ/2. By (A.8), each box in E1 and E3 is a leaf of TB .

Therefore, by (A.4),

Ψ(φC , νC , kC) ≤
∑
E∈E1

fE +
∑
E∈E2

Φ (2φE , νE , kE) +
∑
E∈E3

fE

≤
∑
E∈E1

(φE + νE) +
∑
E∈E3

(φE + νE) +
∑
E∈E2

Φ (2φE , νE , kE)

≤ (φC1
+ φC3

) + (νC1
+ νC3

) +
∑
E∈E2

Φ (2φE , νE , kE) .

For each box E ∈ E2, φE + 2akE ≤ 3µ/2. Hence, by (5.7), we have

Φ (2φE , νE , kE) ≤ 2φE + 2νE + kE .

As a result,

Ψ(φC , νC , kC) ≤ (φC1 + φC3) + (νC1 + νC3) +
∑
E∈E2

(2φE + 2νE + kE)

≤ (φC1
+ φC3

) + (νC1
+ νC3

) + (2φC2
+ 2νC2

+ kC2
)

≤ 2φC + 4νC + 4kC ,

where the last inequality follows from (A.7). This inequality implies (A.1).
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(b) φC + 2akC > 3µ/2. For a box E ∈ E1 ∪ E3,

max

{(
φE + 2akE

µ

)3

, 1

}
≤ max

{(
2

3

(
φC + 2akC

µ

))3

, 1

}
=

8

27

(
φC + 2akC

µ

)3

.

Similarly, for a box E ∈ E2,

max

{
2

(
φE + akE
µ

)
, 1

}
≤ 2

(
φC + 2akC

µ

)
.

By the induction hypothesis and (5.1),

Ψ(φC , νC , kC) ≤
∑
E∈E1

(
2φE + 5 · 8

27
νE

(
φC + 2akC

µ

)3

+ 6 · 8

27
kE

(
φC + 2akC

µ

)3
)

+
∑
E∈E2

(
2φE + 4νE

(
φC + 2akC

µ

)
+ 4kE

(
φC + 2akC

µ

))

+
∑
E∈E3

(
2φE + 5 · 8

27
νE

(
φC + 2akC

µ

)3

+ 6 · 8

27
kE

(
φC + 2akC

µ

)3
)
.

Since φC + 2akC > 3µ/2,

φC + 2akC
µ

≤ 4

9

(
φC + 2akC

µ

)3

.

Therefore, using (A.7), we have

Ψ(φC , νC , kC) ≤ 2 (φC1 + φC2 + φC3) + 5 · 8

27
(νC1 + νC3)

(
φC + 2akC

µ

)3

+
16

9
νC2

(
φC + 2akC

µ

)3

+ 6 · 8

27
(kC1

+ kC3
)

(
φC + 2akC

µ

)3

+
16

9
kC2

(
φC + 2akC

µ

)3

≤ 2φC + 5νC

(
φC + 2akC

µ

)3

+ 6kC

(
φC + 2akC

µ

)3

,

which implies (A.1).
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Abstract. In the classical consensus problem, each of n processors receives a private input value
and produces a decision value which is one of the original input values, with the requirement that
all processors decide the same value. A central result in distributed computing is that, in several
standard models including the asynchronous shared-memory model, this problem has no determinis-
tic solution. The k-set agreement problem is a generalization of the classical consensus proposed by
Chaudhuri [Inform. and Comput., 105 (1993), pp. 132–158], where the agreement condition is weak-
ened so that the decision values produced may be different, as long as the number of distinct values is
at most k. For n > k ≥ 2 it was not known whether this problem is solvable deterministically in the
asynchronous shared memory model. In this paper, we resolve this question by showing that for any
k < n, there is no deterministic wait-free protocol for n processors that solves the k-set agreement
problem. The proof technique is new: it is based on the development of a topological structure
on the set of possible processor schedules of a protocol. This topological structure has a natural
interpretation in terms of the knowledge of the processors of the state of the system. This structure
reveals a close analogy between the impossibility of wait-free k-set agreement and the Brouwer fixed
point theorem for the k-dimensional ball.
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1. Introduction.

1.1. Wait-free algorithms and the k-set agreement problem. In totally
asynchronous multiprocessor systems without global clocks, the execution speed of
each processor may fluctuate widely. A highly desirable property for protocols in such
a system is that no processor ever wait indefinitely for an action by another processor,
that is, unless a processor fails (stops running) it is guaranteed to complete its task
regardless of the relative speeds of the other processors, even if other processors stop
participating. Protocols with this property are said to be wait-free.

We are interested in the standard model of shared-memory distributed systems
with atomic registers [20]; an essentially equivalent model has been studied as asyn-
chronous parallel random access machines (PRAMs) (e.g., [12, 22]). We restrict con-
sideration to the case where each processor is deterministic. Informally such a system
consists of a set of processors each with its own local memory accessible only to itself,
and a set of shared registers. Each shared register supports atomic read and write
operations, which means that (1) if two processors access a register simultaneously,
the register automatically serializes the accesses, so there are no collisions, and (2)
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a processor cannot simultaneously both read and write to a register. A protocol is
defined by a set of programs, one for each processor, where each program involves
“private computations,” together with reads and writes to the shared memory. The
system is completely asynchronous and the protocol makes no reference to a clock.

In executing a particular protocol the system may exhibit a wide range of behav-
ior, depending on the relative speeds of the processors. The execution thus depends
on the schedule of the processors, i.e., the way in which the program steps of the indi-
vidual processors are interleaved. For a protocol to be correct, it should be correct for
all schedules. A useful way to think about this requirement is to view the schedule as
being chosen by an adversary who seeks to force the protocol to behave incorrectly.

Effective computation in such systems requires some coordination among the pro-
cessors. The consensus problem was introduced as an abstraction of one coordination
problem. In this problem, each processor p receives a private input xp and must
produce as output a decision value dp, subject to the following requirements:

Validity. Each decision value is the input value of some processor.
Consistency. All processors that decide must decide the same value.
A fundamental result for the deterministic shared memory model outlined above

is that there is no wait-free protocol that solves the consensus problem. This result
was proven for this model by Herlihy [16] and independently by Loui and Abu-Amara
[21] by adapting the proof of the seminal impossibility result for consensus in message
passing systems with one failing processor proved by Fischer, Lynch, and Paterson
[15].

This impossibility result spawned considerable activity along several fronts. One
direction is to strengthen the model (i.e., introduce randomization, strengthen the
shared memory primitives) so as to make consensus achievable. A second direction,
pioneered by Herlihy, is the classification of data objects according to the number of
processors that can achieve consensus using this data object [16]. A third direction
has been to understand fully what can and can’t be done in the deterministic atomic
register shared-memory model.

As a step toward this third goal, it is natural to consider a weaker version of the
consensus problem called the k-set agreement problem. This problem is identical to
the consensus problem except that the consistency condition is replaced by a weaker
condition:

k-Consistency. The set of decision values produced by the processors has cardi-
nality at most k.
This problem was proposed and studied by Chaudhuri [10], who considered it in

the message passing model and obtained some results relating the difficulty of this
problem to various other related problems. In the shared atomic register model the
main question is, For which values of n and k is there a wait-free algorithm for n
processors to achieve k-set agreement in the shared-memory model? Trivially such
an algorithm is possible for n ≤ k and (by the result for consensus) is impossible for
k = 1 and n > 1. Chaudhuri conjectured that k-set agreement is impossible for any
n > k. To appreciate the deceptive difficulty of the problem, the reader may consider
the first previously unsolved case k = 2 and n = 3. This seemingly elementary brain
teaser is already quite challenging.

1.2. Main results. In this paper we prove the following theorem.
Theorem 1.1. For k < n, there is no deterministic wait-free protocol in the

shared atomic registers model which solves the k-set agreement problem in a system
of n processors.
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The first step in the proof is the formulation of a new formal model for shared-
memory atomic register systems, called the weakly synchronous model. For our pur-
poses, this model is at least as powerful as the standard ones (so impossibility proofs
for this model apply to those) but it has the advantage of a particularly simple com-
binatorial structure. This allows us to reformulate the given problem in purely com-
binatorial terms.

We then develop a new approach for reasoning about computability issues in dis-
tributed systems. The basis of this approach is to shift focus from the structure of
protocols for a distributed system to the structure of the set of possible schedules of a
distributed system. To accomplish this shift for a given protocol, we fix (“hardwire”)
a particular set of input values to the processors and observe that having done this,
the processor schedule now completely determines the output values of the processors
and thus can be viewed as the “input” to the system. We introduce two key notions:
(i) two schedules are “indistinguishable” if for any protocol they exhibit the same
output behavior, (ii) a set S of schedules is “knowable” if there is a protocol which
“recognizes” it, in the sense that for some specified output symbol, the protocol pro-
duces that symbol during an execution if and only if the execution proceeds according
to some schedule from S.

These two concepts lead naturally to the definition of a topology on the set of
schedules, and Theorem 1.1 is proved by analyzing this topology. Our approach reveals
and exploits a close analogy between the impossibility of wait-free k-set agreement
and a lemma of Knaster, Kuratowski, and Mazurkiewicz (KKM lemma) [1], which is
equivalent to the fixed point theorem for the closed unit ball Bm in m-dimensional
Euclidean space: if f is a continuous map from Bm to itself, then there exists a point
x ∈ Bm such that f(x) = x. Very roughly, f corresponds to a distributed protocol Π,
and the fixed point x corresponds to the schedule for which Π fails to solve the k-set
agreement. The increase in difficulty of the k-set agreement proof in going from the
case k = 1 to the case k > 1 corresponds to the increase in difficulty in going from
the fixed point theorem for the interval [−1, 1], which is very simple, to the theorem
for balls in higher dimension, which, while elementary, is considerably harder. An
additional obstacle in our work is that, while the topological structure of Bm is well
understood, we must develop the topological structure for the set of schedules from
scratch.

While the explicit use of topology can be avoided, we have retained the topological
structure of the proof, because this is what drove the proof and it provides important
insight into what is going on. Our topological structure has an intuitive interpretation
in terms of the information about an execution which is “public knowledge.” We
believe that it will be worthwhile to explore the connection with the formal theory of
distributed knowledge [14].

The inspiration for the topological approach came from Chaudhuri’s work [10], in
which the combinatorial properties of triangulations inRk were used to obtain certain
reductions among various decision problems. There is a considerable literature con-
cerning topologies underlying computation in general [27] and distributed computing
in particular [26]. The main body of this work seems to center on the use of topology
as a tool for describing various semantic constructs in distributing computing, rather
than as a tool for proving impossibility results.

Two other research teams—Borowsky and Gafni [7] and Herlihy and Shavit [17]—
independently discovered the topological approach to proving impossibility theorems
and proved Theorem 1.1. Borowsky and Gafni [7] considered a class of protocols that
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is similar to our weakly synchronous model, and Herlihy and Shavit [17] considered full
information protocols that bear similarities to both. The proof of Borowsky and Gafni
[7] is similar to ours but does not make the explicit connection to topology. By an
additional computational reduction they extend the result to prove the impossibility of
k-set agreement for n processors in the presence of k faults. Herlihy and Shavit [17]
developed a more general technique for proving impossibility results in this model
based on simplicial homology theory. Subsequent developments along these lines
include the papers [8, 11, 18].

This paper is organized as follows. In section 2, we formalize the model, the
problem, and the above-mentioned notions of indistinguishable schedules and know-
able sets. We also present a proof of the impossibility of (1-set) consensus using the
new terminology. In section 3, we use this notation to reformulate Theorem 1.1, and
we observe a close analogy between this reformulation and the aforementioned KKM
lemma. In section 4, we provide an explicit bijection between the set of 2-processor
schedules and the points of the closed unit interval that provides an alternative, al-
beit more complicated, proof of the impossibility of 2-processor consensus, and we
sketch an (unproved) correspondence between n-processor schedules and the n-vertex
simplex. This informal sketch motivates the combinatorial constructions discussed
later. Section 5 contains an outline of the steps that we will follow to emulate the
proof of the KKM lemma. Section 6 contains the proof of the main theorem. Some
additional facts about the underlying topological structure in our proof are given in
an appendix.

2. Definitions and preliminary results.

2.1. Input-output problems and k-set agreement. We fix, once and for all,
the set P = {1, 2, . . . , n} of processors. The k-set agreement problem for P is a special
case of a larger class of input-output problems [23, 6, 5]. In an input-output problem,
each processor receives an input value from some set I and must produce an output
value from some set D, where the output values must satisfy certain restrictions
depending on the input. Formally, such a problem is specified by the input set I,
output set D, and a relation R ⊂ In ×Dn.

For the k-set agreement problem, we take I = D = N, the set of natural numbers,
and the relation consists of pairs (�x, �d) satisfying the following: The set of values

appearing in �d has size at most k and is a subset of the set of values appearing in �x.

2.2. Informal description of the model. The results in this work will be
proved for a specific formalization of the general model of asynchronous distributed
computing described in the introduction. For reasons that will be apparent, we call
this model the weakly synchronous model. This formalization was chosen because it
is technically simple and is well suited to formal impossibility proofs. Informally the
features of the model are as follows.
WS.1 Each register is a single-writer–multiple-reader register. The unique processor

who may write to a register is referred to as the owner of the register.
WS.2 We assume that each process can simultaneously write to all of the registers

it owns in a single atomic step. We model this by having each processor own
only one register, whose set of allowed values is an arbitrary infinite set. Thus
an arbitrary amount of information can be encoded in a single write.

WS.3 Each register holds an ordered list of values. When a value v is written to the
register it is appended to the list rather than overwriting the existing values.
Thus the register contains a record of all the writes ever done to it. At all
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times, the length of this list is equal to the total number of write operations
that have been performed by the owner.

WS.4 When a processor performs a read operation, it reads the entire shared mem-
ory in one atomic step.

WS.5 Each processor’s program consists of an infinite loop. Each iteration of the
loop consists of a write to its shared register, followed by a read of the entire
shared memory, followed by some arbitrary private computation.

WS.6 In solving a decision problem each processor p starts with a private initial
input xp from some input domain I. Each processor must write its decision
value in the shared register that it owns. If D is the set of possible deci-
sion values, then the first element of D (if any) that the processor writes is
considered to be its decision.

WS.7 The system satisfies a weak synchronicity condition. The processors execute
their programs in a sequence of synchronous rounds. For each round the
scheduling adversary chooses an arbitrary nonempty subset of processors to
be active and each active processor executes one iteration of its loop. Since
the round is synchronous all active processor writes are completed before any
read begins.

We make the informal claim that our model is at least as powerful as other shared-
memory models (e.g., [20, 16, 5]). It has been shown in [25] and [19, 13] that restricting
to single-writer registers does not reduce the power of the model. Intuitively features
2, 3, and 4 provide more power than the standard models. Features 5 and 6 provide
a “normal form” for protocols that solve input-output problems; a program in some
other model can easily be converted to one of this form. Feature 7 restricts the power
of the adversary by limiting the possible behaviors of the system. Note that this makes
it easier for a protocol to be correct and thus harder for there to be an impossibility
proof. We will not present a formal justification of these claims; the interested reader
can do this for a favorite model.

2.3. Formal description of the model. A protocol Π for a processor set P =
{1, . . . , n} and an input domain I is referred to as a (P, I)-protocol and it is specified
by a tuple (S, V, e, w, u), where

(1) S is an arbitrary set. S corresponds to the set of possible states for each
processor.

(2) V is an arbitrary set. V corresponds to the set of possible values that a
processor can write in a register. Thus by WS.2 each register holds an element
of V ∗, which is the set of finite lists of elements of V .

(3) e is a map from I × P to S. It determines the initial state of each processor
from the processor’s input value and the processor’s ID.

(4) w is a map from S to V . It determines the value a processor will write in its
register on the next step.

(5) u is a map from S × (V ∗)
n
to S. It determines the next state of a processor

after executing a read operation. The evaluation of u corresponds to an
arbitrary private computation by a processor.

A system configuration is a pair (�s;�l), where �s = (s1, . . . , sn) ∈ Sn is called the
state configuration and �l = (l1, . . . , ln) ∈ (V ∗)

n
is called the memory configuration.

Here si is the state of the ith processor and li = v1; . . . ; vk ∈ V ∗ is the list stored in
the ith register.

A block J is a nonempty subset of P . The configuration update operator ✁ = ✁Π

takes as operands a system configuration and a block J ⊂ P and produces a system
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configuration as follows:

(�t, �m) = (�s,�l)✁ J,

where

mi = li if i �∈ J,
mi = li, w(si) if i ∈ J,
ti = si if i �∈ J,
ti = u(si, �m) if i ∈ J.

The operator corresponds to the modification of the system configuration which
occurs after the synchronous execution of a program loop by the set J of processors.
This corresponds to condition WS.7 in the informal description.

A schedule is an infinite sequence of blocks σ = σ1σ2σ3 . . . . For a nonempty
J ⊆ P, Σ(J) = {σ = σ1σ2 . . . |σi ⊆ J, σi �= ∅ } denotes the set of all schedules whose
blocks are subsets of J . If p ∈ σi we say that processor p takes a step at time i. If
p ∈ P and σ is a schedule, then stepsp(σ) is equal to the (possibly infinite) number
of steps that p takes in σ. We say that p is

• active in σ if stepsp(σ) ≥ 1, i.e., p appears in at least one block. Active(σ) is
the set of active processors.

• inactive in σ if stepsp(σ) = 0, i.e., p appears in no block. Inactive(σ) is the
set of inactive processors.

• nonfaulty in σ if stepsp(σ) is infinite. Nonfaulty(σ) is the set of nonfaulty
processors.

• faulty in σ if stepsp(σ) is finite. Faulty(σ) is the set of faulty processors.
Observe that Σ(J) consists of those schedules whose set of active processors is a

subset of J .
A schedule is always an infinite sequence of blocks. A finite sequence of blocks is

called a fragment. Φ(J) denotes the set of fragments whose blocks are subsets of J .
The above definitions of stepsp(σ), active, and inactive can be extended to fragments,
but faulty and nonfaulty make sense only for schedules. If τ is a fragment and φ is
a schedule or fragment, then τφ represents their concatenation and is a schedule or
fragment. If σ = τφ we say that τ is a prefix of σ or that σ is an extension of τ .

If J is a subset of P, we denote by [J ] the schedule whose blocks are all equal to
J . If J is equal to the singleton set {p}, we typically write [p] for [{p}].

A run (resp., partial run) is a triple (Π, �x, σ), where Π is a (P, I) protocol, �x ∈ In
is the input, and σ is a schedule (resp., a fragment). The execution (resp., partial
execution) E = E(Π, �x, σ) associated to a run (resp., partial run) is defined as the
infinite (resp., finite) sequence of configurations C0C1C2 . . . , where C0 = C0(Π, �x) =

(�s 0,�l 0) is the initial configuration defined by �s 0 = (e(i1, 1), . . . , e(in, n)) and �l
0 =

(⊥, . . . ,⊥), where ⊥ denotes the empty list, and Ci+1 = Ci ✁ σi+1. The public record
of the run or partial run (Π, �x, σ) is a vector

Pub(Π, �x, σ) = (Pub1(Π, �x, σ), . . . , Pubn(Π, �x, σ)),

where Pubp(Π, �x, σ) is the (possibly infinite) list of all writes performed by p in the
execution. Note that Pubp(Π, �x, σ) is infinite if and only if σ is a schedule and p is
nonfaulty in σ. If Pubp(Π, �x, σ) is finite, then its length is the number of steps that
p takes in σ.

Next, we define what it means for a protocol to compute a relation R ⊆ In ×Dn

for some arbitrary set D. The D-decision value of p on the run (Π, �x, σ), denoted
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dDp (Π, �x, σ), is the first element d ∈ D that appears on its list, or Λ(null) if none
exists. If the element d ∈ D first appears in the sth item of its list we say that p
D-decides at step s. The vector of the D-decision values is the D-decision vector
�dD(Π, �x, σ).

A vector �b ∈ Dn is compatible with �d if it can be obtained from �d by replacing
each Λ by some element of D. An input �x is R-permissible if there is at least one
vector �d ∈ Dn such that (�x, �d) ∈ R. Protocol Π computes the relation R on schedule
σ if for all R-permissible inputs �x

(1) the D-decision value of every nonfaulty processor is not null,

(2) there is a vector �b ∈ Dn with (�x,�b) ∈ R which is compatible with the decision

vector �dD(Π, �x, σ).
A protocol Π is an f-fault tolerant protocol for R if it computes R on σ for all

σ such that |Faulty(σ)| ≤ f . A protocol that is (n − 1)-fault tolerant, i.e., one that
computes R on every schedule σ, is said to be wait-free. A protocol Π is a bounded
wait-free protocol for R if there is a B such that for every run, each processor that
takes at least B steps D-decides. It is easy to see (and is well known) that a wait-
free protocol is bounded wait-free. It is also known (see [9] and the remark following
Lemma 6.1 below) that for k-set consensus the existence of a wait-free protocol implies
the existence of a bounded wait-free protocol.

Finally, a (P, I) protocol Π is input-free if the initial state of each processor
depends on the processor ID only, that is, e is a map from P to S instead of from
I × P to S. For an input-free protocol Π we write (Π, σ) for the run or partial run,
E(Π, σ) for the execution or partial execution, and Pub(Π, σ) for the public record.
Intuitively, input-free protocols are obtained from arbitrary ones by “hardwiring” a
specific set of inputs to the individual processors.

Proposition 2.1. Let Π be a (P, I) protocol and let �x ∈ In be some fixed input
vector. Then there exists an input-free protocol Π′ such that for all σ ∈ Σ(P )∪Φ(P ),

E(Π, �x, σ) = E(Π′, σ)

2.4. Impossibility of consensus. For illustration purposes we show how to
adapt the proof of the consensus impossibility result [15, 16, 21] to prove that wait-
free consensus is impossible in the weakly synchronous model. The previous proofs in
the literature give a stronger result: there is no consensus protocol that is even 1-fault
tolerant. It is possible to strengthen the following proof to give this result, but we
do not do this here. This section is not needed for the development of the rest of the
paper.

Theorem 2.2. In the weakly synchronous model, for n > 1 there is no determin-
istic wait-free protocol for n-processor consensus.

Proof. Assume the set of possible inputs is I = {a, b}. Suppose, for contradiction,
that Π is a protocol that solves consensus for all �x ∈ In and all schedules σ. Each
run (Π, �x, σ) may be classified uniquely as a-deciding or b-deciding depending on the
decision value.

Proposition 2.3. There is an input vector �y and two schedules σ and φ such
that (Π, �y, σ) is a-deciding and (Π, �y, φ) is b-deciding.

Proof. Let �y ∈ In be an input vector with the minimum number of a’s such that
there exists a schedule σ such that (Π, �y, σ) is a a-deciding; �y has at least one a in it,
say, in coordinate p. Define φ to be the schedule with repeated blocks P − {p}. We
claim that (Π, �y, φ) is b-deciding. Let �w be the vector obtained from �y by changing
the entry in coordinate p to b. Both of the runs (Π, �y, φ) and (Π, �w, φ) have the same
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public record. Furthermore the latter is b-deciding since �w has fewer a’s from �y which
was selected to have the minimum possible such number. Therefore (Π, �y, φ) is also
b-deciding.

We restrict our attention to runs with input �y given by Proposition 2.3. We
say that a fragment τ is a-valent (resp., b-valent) if for every schedule ρ, (Π, �y, τρ)
is a-deciding (resp., b-deciding). It is bivalent if it is neither a-valent nor b-valent,
i.e., if there are schedules ρ and µ such that (Π, �y, τρ) is an a-deciding and (Π, �y, τµ)
is a b-deciding. Clearly, no processor reaches a decision on the partial execution
corresponding to a bivalent fragment. By choice of �y, the empty fragment is bivalent.

Lemma 2.4. For any bivalent fragment τ there exists a block J such that the
fragment τJ is bivalent.

Proof. Let τ be a bivalent fragment. Assume for contradiction that τJ is not
bivalent for any block J . Thus for each J, τJ is either a- or b-valent. Without loss
of generality suppose that τP (where P is the set of all processors) is a-valent. We
will show that τJ is a-valent for every J in P which would imply τ is a-valent, a
contradiction. Let J be arbitrary and J̄ = P − J . It is easy to see that the state
of the shared memory and the internal states of processors in J̄ are identical for the
partial executions PE(Π, �y, τP ) and PE(Π, �y, τJJ̄). (Note, however, that the internal
states of processors in J may differ between the two partial executions.) Recall that
[J̄ ] denotes the schedule consisting of repeated J̄ blocks. Then schedules τJJ̄ [J̄ ] and
τP [J̄ ] have identical public records. Since by our assumption τJ is not bivalent it
must be a-valent, giving the desired contradiction.

By using the above lemma, one can construct an (infinite) schedule such that
any prefix is bivalent, which contradicts that Π is a wait-free algorithm for
consensus.

2.5. Tallies and the counting protocol. We now introduce a specific protocol,
called the counting protocol, which will play a special role in our analysis. This is an
input-free protocol which we denote by Γ.

To describe this protocol, we need to introduce the notion of a tally vector, which
is a vector indexed by P whose entries are nonnegative integers. For a tally vec-
tor v, and p ∈ P, we write v[p] for the [p] entry of v. We define the partial order
on tally vectors with v ≤ w if v[p] ≤ w[p] for all p ∈ P . Two tally vectors that
are comparable under this ordering are said to be noncrossing and they are cross-
ing otherwise. If τ is a fragment, the tally of τ, denoted t(τ), is the tally vector
such that t(τ)[q] is equal to the number of steps q takes in τ . If σ = σ1, σ2, . . .
is a schedule or fragment, the tally sequence associated with σ, denoted T(σ), is
the sequence T0, T1, T2, . . . of tally vectors, where Ti is the tally of the fragment
σ1σ2 . . . σi. For example, the fragment {1, 2}{3}{1, 3}{1, 2, 3}{1}{2} has tally se-
quence (0, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 2), (3, 2, 3), (4, 2, 3), (4, 3, 3). Observe that the
tally vectors in the tally sequence of σ are noncrossing and that σ is trivially deter-
mined by T(σ).

We can now define the counting protocol Γ. As stated before, it takes no input.
The state of each processor p is a tally vector tallyp. Initially all entries of tallyp are
0. Each time p executes a step, p writes (appends) tallyp to its public register. It then
reads all of the shared registers and sets tallyp so that tallyp[q] is equal to the number
of steps that have been taken by processor q (which is equal to the length of the list in
processor q’s public register). We define Count(σ) to be the public record, Pub(Γ, σ),
of the counting protocol on schedule or fragment σ and call this the public tally of
σ. Thus for each p ∈ P, Countp(σ) is a (possibly infinite) list of length stepsp(σ),
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where each element of the list is itself a vector indexed by P . For i ≤ stepsp(σ), we
denote by Countp,i(σ) the vector corresponding to the ith write by p, and for q ∈ P,
Countp,i(σ)[q] is the value of this vector in position q. For example, on the fragment
{1, 2}{3}{1, 3}{1, 2, 3}{1}{2}, we have

Count1(σ) = (0, 0, 0); (1, 1, 0); (2, 1, 2); (3, 2, 3),

Count2(σ) = (0, 0, 0); (1, 1, 0); (3, 2, 3),

Count3(σ) = (0, 0, 0); (1, 1, 1); (2, 1, 2).

Note that the ith write by processor p is t(τ), where τ is the prefix up to the
(i−1)st step of p. Note also that the final values of the internal states of the processors,
tally1, tally2, and tally3, are, respectively, (4, 2, 3), (4, 3, 3), and (3, 2, 3), which do not
appear in the public record.

By definition, each tally that appears in the public tally of σ also appears in its
tally sequence T(σ). In particular, the set of all tally vectors that appear in the public
tally is noncrossing. We will need the following lemma.

Lemma 2.5. Let σ and φ be two schedules such that Count(σ) �= Count(φ). Then
at least one of the following holds:

(1) There exists a processor p and an integer i such that p takes at least i steps
in both σ and φ and the tally vectors Countp,i(σ) and Cp,i(φ) are different.

(2) There exists a pair of crossing tally vectors v and w so that v appears in
Count(σ) and w appears in Count(φ).

Proof. First consider the case that each processor takes exactly the same number
of steps in σ as in φ. Then since Count(σ) �= Count(φ), the first conclusion must
hold.

Next, suppose that some processor p takes a total of i steps in σ and takes at
least i+ 1 steps in φ. Let r be a processor that takes infinitely many steps in φ and
let w be a tally vector written by r on schedule φ such that w(p) ≥ i + 1. Such a w
must exist since p takes at least i+1 steps and r takes infinitely many steps. Let q be
a processor that takes infinitely many steps in σ and let v be the tally vector written
by q on schedule σ at its w(q) + 2 step. Then v(q) = w(q) + 1 and v(p) ≤ i < w(p),
and so v and w are crossing tally vectors.

2.6. Indistinguishable schedules. Two schedules or fragments σ and τ are
publicly indistinguishable if for any protocol Π and input vector �x, the public records
Pub(Π, �x, σ) and Pub(Π, �x, τ) are the same. Intuitively, this says that there is no
protocol Π and input �x that will enable an “outside observer” looking at the “final”
lists in the registers to distinguish between the schedules σ and τ . This is clearly
an equivalence relation on the set all schedules and fragments. The structure of this
equivalence relation is fundamental to the proofs of our results.

If σ and τ are publicly indistinguishable, then they must have the same public
tallies, i.e., Count(σ) = Count(τ). As we will see in Theorem 2.12, this condition is
also sufficient for public indistinguishability. This theorem will also provide another
combinatorial characterization based on a notion called compression. To introduce
this notion we will need some additional definitions.

If τ is a fragment, its length |τ | is the number of blocks in it, and its weight, w(τ),
is the sum of the block sizes. Associated to each schedule or fragment σ is its site
sequence s(σ) = (s1, s2, . . .) of length |σ|, where si is the weight of the first i blocks.
We will also refer to si as the site of the ith block of σ.

Example 2.6. P = {1, 2, 3} and τ is the fragment {1, 2, 3}{1, 2}{2, 3}{2}{3}.
Then |τ | = 5, w(τ) = 9, and s(τ) = (3, 5, 7, 8, 9).
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Let σ be a schedule or fragment. Then a block σi of σ is hidden if σi is not the
last block and no processor in σi appears in any later block. Note that any two hidden
blocks are necessarily disjoint and that whether σ is a schedule or a fragment, at least
one processor belongs to no hidden block. Thus we have the following proposition.

Proposition 2.7. A schedule or fragment σ has at most |P | − 1 hidden blocks.
A schedule or fragment that has no hidden blocks is said to be compressed.

We now define operators for “eliminating” hidden blocks. For a positive integer
s, the merge operator Ms is defined as follows. If σ is a schedule or fragment, Ms(σ)
is the schedule or fragment obtained as follows: if there is a block σi at site s and the
block is hidden, then replace σi and σi+1 by their union; otherwise, Ms(σ) = σ. The
following facts are easy to verify.

Proposition 2.8.

(1) If σ is compressed, then Ms(σ) = σ for all s.
(2) The operators Ms and Mr commute for all integers r and s.
(3) If σ is a schedule or fragment and r1, r2, . . . , rk are the sites of its hidden

blocks, then Mr1Mr2 . . .Mrk(σ) is a compressed sequence.

The compressed sequence obtained from σ in the third part of Proposition 2.8 is
called the compression of σ and is denoted σ̂. More generally, a sequence τ which can
be obtained from σ by application of some sequence of merge operators is said to be
a partial compression or σ. An easy consequence of Proposition 2.8 is the following.

Corollary 2.9. If τ is a partial compression of σ, then τ̂ = σ̂. Thus σ̂ is the
unique compressed sequence that can be obtained from σ by applying merge operators.

The compression map σ −→ σ̂ defines an equivalence relation on Σ(P ) ∪ Φ(P ):
σ and τ are compression equivalent if σ̂ = τ̂ . The equivalence class of σ is called the
compression class of σ and is denoted 〈σ〉.

Let σ be a compressed schedule, let χ be the smallest prefix of σ containing all
faulty processors, and write σ = χφ. Then any schedule that compresses to σ is of the
form τφ, where τ is a fragment of the same weight as χ. In particular, this implies
the following.

Proposition 2.10. The compression class 〈σ〉 of any schedule is finite.
Example 2.11. Suppose P = {1, 2, 3, 4} and let σ be the compressed schedule

{1, 2}{1, 3, 4}{1, 2, 3}[3] = {1, 2}{1, 3, 4}{1, 2, 3}{3}{3} . . . . There are eleven uncom-
pressed schedules whose compression is σ:

σ1 = {1, 2}{1, 3, 4}{1}{2, 3}[3],
σ2 = {1, 2}{1, 3, 4}{2}{1, 3}[3],
σ3 = {1, 2}{1, 3, 4}{1}{2}[3],
σ4 = {1, 2}{1, 3, 4}{2}{1}[3],
σ5 = {1, 2}{1, 3, 4}{12}[3],
σ6 = {1, 2}{4}{1, 3}{1, 2, 3}[3],
σ7 = {1, 2}{4}{1, 3}{1}{2, 3}[3],
σ8 = {1, 2}{4}{1, 3}{2}{1, 3}[3],
σ9 = {1, 2}{4}{1, 3}{1}{2}[3],
σ10 = {1, 2}{4}{1, 3}{2}{1}[3],
σ11 = {1, 2}{4}{1, 3}{1, 2}[3].
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In σ10, for instance, the hidden blocks are at sites 3, 6, and 7. Applying M6 yields
σ11, and then applying M7 yields σ

6, and applying M3 yields σ.
The following result characterizes public indistinguishability. Recall the definition

of the public tally vector Count(σ) from the previous section as the public record of
the counting protocol Γ.

Theorem 2.12. Let σ and τ be schedules or fragments. Then the following are
equivalent:

(1) σ is publicly indistinguishable from τ,
(2) Count(σ) = Count(τ),
(3) σ̂ = τ̂ .
Proof. (3) ⇒ (1). Assume that σ̂ = τ̂ ; we will show that σ and τ are publicly

indistinguishable.
Lemma 2.13. σ is publicly indistinguishable from Ms(σ) for all s.
Proof. The result is trivial if σ =Ms(σ), so assume they are distinct. Then σ has

a hidden block σk at site s and

φi = σi if i < k,
φk = σk ∪ σk+1,
φi = σi+1 if i > k.

Let C(σ, i) be the configuration of the protocol Π on schedule σ after the execution of
i blocks. Clearly C(φ, i) = C(σ, i) for every i < k. The configuration C(σ, k + 1) and
C(φ, k) have exactly the same memory configuration but they may differ on the state
configuration of the processors in the set σk. But these processors will not execute
another step later in any of the schedules. Therefore, for i > k, C(φ, i) differs from
C(σ, i + 1) only in the state of the processors in σk. Therefore σ and φ are publicly
indistinguishable.

Corollary 2.14. σ is publicly indistinguishable from σ̂.
Proof. Let r1, r2, . . . , rk be the sites of the hidden blocks of σ. Then by proposition

2.8, σ̂ = Mr1Mr2 . . .Mrk(σ) and the result follows by applying the previous lemma
and induction.

Therefore σ is publicly indistinguishable from σ̂ and τ is publicly indistinguishable
from τ̂ . Since σ̂ = τ̂ , then σ and τ are publicly indistinguishable.

(1) ⇒ (2). This is trivial since if σ is publicly indistinguishable from τ, then by
definition every protocol, including Γ, has the same public record on σ as τ .

(2) ⇒ (3). Let σ and τ be schedules such that Count(σ) = Count(τ). From
Corollary 2.14 and the fact that (1) ⇒ (2) we have Count(σ) = Count(σ̂) and
Count(τ) = Count(τ̂), hence Count(σ̂) = Count(τ̂).

Now suppose for contradiction that σ̂ �= τ̂ . Write φ = σ̂ and µ = τ̂ and consider
the least k such that φk �= µk. Let φ

′ and µ′ be the prefixes ending with φk and
µk, respectively. Then the tally vectors t(φ

′) and t(µ′) are different; we may assume
that either t(φ′) < t(µ) or t(φ′) and t(µ′) are crossing vectors (defined in section
2.5). Then the vector t(φ′) does not appear in the tally sequence of µ and does not
appear in Count(µ). On the other hand, since φ is compressed, we may choose a
processor q in φk that writes again. Its next write in the counting protocol will be
t(φ′), contradicting that Count(φ) = Count(µ).

This completes the proof of Theorem 2.12.

2.7. Quasi extensions of fragments. We have defined the notion of a public
record associated to an execution as the vector �R indexed by p, where the entry �Rp is
the list of all writes done by p during the execution. It is convenient to call any such
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vector �R indexed by P, where the entry �Rp is an arbitrary list of elements, a public

record. A public record is finite if each list is finite and infinite otherwise. If �R and
�R′ are public records, then we say that �R′ is an extension of �R if each of the lists �Rp
is a prefix of the corresponding list �R′

p.

Now if τ is a fragment which is a prefix of the schedule or fragment σ, then clearly
the following condition holds:

(QE) For any protocol Π and input �x, the public record of the execution (Π, �x, σ)
is an extension of the public record of the execution (Π, �x, τ).

We say that a schedule or fragment σ is a quasi extension of the fragment τ if
condition (QE) holds. For a fragment τ, Qτ denotes the set of schedules that are
quasi extensions of τ .

Condition (QE) does not imply that τ is a prefix of σ. For instance, we have the
following.

Lemma 2.15. Let ρ be a fragment, φ a schedule or fragment, and Y ⊆ Active(φ).
If σ = ρφ and U ⊆ Active(φ), then σ quasi-extends ρU .

Proof. For any protocol, the public records of ρφ and ρU trivially agree up through
the end of ρ. Now in ρU, each of the processors in U write once more, and they write
the view observed during their last step in ρ. But for each p ∈ U, the same write will
occur when executing ρφ since p ∈ Active(φ).

We have the following combinatorial characterization of quasi extension, which is
analogous to Theorem 2.12.

Theorem 2.16. Let µ be a fragment and let σ be a schedule or a fragment. Then
the following are equivalent:

(1) σ is a quasi extension of µ.
(2) Count(σ) extends Count(µ).
(3) There exists a prefix ρ of σ, a schedule or fragment φ, and a subset U of

Active(φ) such that σ = ρφ and µ̂ = ρ̂U .

Proof. (1)⇒ (2). This follows from the definition of quasi extension and the fact
that Count(σ) and Count(µ) are the respective public records arising from a protocol.

(2) ⇒ (3). Write µ̂ as τU, where U is the last block of µ̂. By hypothesis, and
the fact that µ is publicly indistinguishable from µ̂, we have that Count(σ) extends
Count(τU). Since τU is compressed, there is a processor p ∈ U that also appears in
the last block of τ . Let i be the number of steps that p makes in τ . By definition of the
counting protocol, Countp,i+1(τU) = t(τ), where t(τ) is the tally vector associated
with fragment τ . By hypothesis, Countp,i+1(σ) = Countp,i+1(τU). Let ρ be the
minimal prefix of σ containing the first i steps of p. Again, by the definition of the
counting protocol, Countp,i+1(σ) = t(ρ). Hence t(τ) = t(ρ). Write σ = ρφ. Now,
since Count(ρφ) extends Count(τU) it is clear that each processor in U must take

a step in φ, so U ⊆ Active(φ). Finally, we claim that ρ̂U = τU, and for this it
is enough, by Theorem 2.12, to show that Count(ρU) = Count(τU). By Lemma
2.15, Count(ρφ) extends Count(ρU) and since Count(ρφ) also extends Count(τU)
(by hypothesis) and every processor takes the same number of steps in ρU as in τU,
we must have Count(ρU) = Count(τU), as required.

(3)⇒ (1). Assume that (3) holds. By Lemma 2.15, σ is a quasi extension of ρU .

But since ρ̂U = µ̂, ρU and µ are publicly indistinguishable and so σ is also a quasi
extension of µ.

2.8. Knowable sets. For a set of schedules S, let Ŝ = {σ̂|σ ∈ S}. In particular,
Σ̂ is the set of all compressed schedules. By Theorem 2.12, to check that a protocol
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for an input-output problem is correct, it suffices to check it for schedules in Σ̂.

In this subsection, we are interested in the dependence of the public record of a
run (Π′, �x, σ) on σ while holding Π′ and �x fixed. Therefore it is easier to consider the
corresponding input-free protocol Π given by Proposition 2.1.

In an input-free protocol, each processor’s decision depends only on the schedule.
One can view the computational steps taken by the processors as “collecting infor-
mation” about the schedule. When a processor “knows enough” about the schedule,
it can make a decision. Let K(Π, d) be the set of all compressed schedules on which
some processor running the input-free protocol Π writes d on its list. The pair (Π, d)
is an acceptor and d is its accepting value. We say that (Π, d) accepts schedule σ if
σ ∈ K(Π, d). A set K ⊆ Σ̂ is publicly knowable or simply knowable if it equals K(Π, d)
for some acceptor (Π, d). Below we give several examples. In each example, d =“@.”

Example 2.17. Σ̂ is knowable. If Π is the protocol where every processor writes
“@” at every opportunity, then Σ̂ = K(Π,@).

Example 2.18. ∅ is knowable. If Π is the protocol where every processor writes
“0” at every opportunity, then K(Π,@) = ∅.

Example 2.19. For each integer k and processor p, let Sp,k be the set of com-
pressed schedules in which processor p takes at least k steps. It is easy to see that Sp,k
is knowable; a simple input-free protocol that accepts this set is the one where proces-
sor p writes “0” for its first k − 1 steps and “@” thereafter, and all other processors
always write “0.”

Example 2.20. Let Si be the set of schedules where every processor takes at least
i steps. Si is a knowable set. The protocol that accepts the set is as follows: Each
processor has two possible states, “continue” and “accept.” While in the “continue”
state, each processor appends “0” to the list in its shared register, reads the shared
memory, and enters the “accept” state if all of the processors took i steps (have output
list of length at least i). Once the processor is in the “accept” state, it writes “@.”

Example 2.21. Let τ be any fragment. The set Q̂τ of compressed schedules
that are quasi extensions of τ is knowable. Define the following modification of the
counting protocol defined in section 2.5: if any processor ever observes that the public
record is an extension of Count(τ), then it writes “@” at its next opportunity. When
this protocol is run on an (infinite) compressed schedule σ, “@” is written if and
only if Count(σ) is an extension of Count(τ). By Theorem 2.16 this is equivalent to
σ ∈ Q̂τ .

For contrast, we give some examples of sets that are not knowable.

Example 2.22. Let Tp,k be the set of compressed schedules where processor p
takes exactly k steps for some k. Then Tp,k is not a knowable set. Suppose to the
contrary that (Π, d) is an acceptor for Tp,k. Let σ ∈ Tp,k be arbitrary; then d is written
in the public record of the run (Π, σ). Now the first write of (a, “d”) occurs at some
finite block σm of σ, so if we define φ = σ1, σ2, . . . , σm, {p}, {p}, . . . , then φ is also

accepted by (Π, d). Then φ̂ is a compressed schedule accepted by (Π, d) but not in Tp,k,
a contradiction.

Example 2.23. The complement of a knowable set need not be knowable, e.g.,
consider the complement of Sp,k and apply an argument analogous to the previous
one.

Example 2.24. Let Np be the set of compressed schedules that do not begin
with {p}. Then Np is not knowable. Suppose to the contrary that (Π, d) is an ac-
ceptor for N1. Let σ ∈ N1 be the schedule {1, 2}, {2}, {2}, . . . . Then there is a
block σk of σ such that d is first written in the public record of the run (Π, σ). If
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φ = {1}, {2}k, {1, 2}{2}, {2}, {2}, . . . , then the public record corresponding to its first
k+1 blocks will match the public record of the first k blocks of σ. Thus φ is compressed,
is not in N1, and is accepted by (Π, d), a contradiction.

The last example illustrates an important point: it is not hard to construct a
protocol such that for any schedule σ in Np, the fact “σ ∈ Np” is recorded in the
local state of at least one processor q. (Each processor q �= p records “yes” in its local
state, if its first read does not see a write by p, and p records “yes” in its local state
if its first read sees at least one write other than its own.) However, in this case, if p
appears in the first block and never writes again, this fact does not become “public.”
The term publicly knowable reflects the fact that the value v is written in the memory
and thus every nonfaulty processor “eventually knows” that the schedule belongs to
K.

An acceptor (Π, d) is said to accept a fragment τ if d appears in the public record
of Π on τ . The definition of a run of a protocol implies the following.

Proposition 2.25. Let K be a knowable set. Then a compressed schedule σ
belongs to K if and only if for some fragment τ of σ, Q̂τ ⊆ K.

The concept of knowable set allows us to reformulate the impossibility result for
a k-set agreement problem. We do this in the next section.

3. Reformulating Theorem 1.1 and a topological analogy. We want to
prove that, in the weakly synchronous model, there is no wait-free protocol that
solves the k-set agreement problem in a system of n processors for any k < n. Clearly
it suffices to prove the impossibility result for k = n− 1. As a first step in the proof
of Theorem 1.1, we use the notation of the previous section to reformulate it.

Assume, for contradiction, that there exists a wait-free protocol Π that solves
the (n − 1)-set agreement problem for a processor set P = {1, . . . , n}. Consider the
behavior of Π on the input �x = (1, . . . , n) ∈ In. For each i ∈ P, let Di be the set of
compressed schedules σ such that on the run (Π, �x, σ) at least one processor reaches
decision i. By definition, each Di is a knowable subset of Σ̂. Also, if Π is correct, then
for any schedule σ, at least one processor decides some value in {1, . . . , n}, so the sets
D1, D2, . . . , Dn together cover Σ̂. An arbitrary sequence A1, A2, . . . , An of subsets of
Σ̂ satisfies the activity property if for each p ∈ P, processor p is active in each σ ∈ Ap.
In other words Ap is disjoint from Σ̂(P − {p}).

Proposition 3.1. If Π is a fully fault-tolerant protocol for k-set agreement, then
the sequence of sets D1, D2, . . . , Dn satisfies the activity property.

Proof. Assume for the sake of contradiction that for some schedule σ ∈ Dp,
processor p is not active. Consider a run of protocol Π on σ with the input vector
�y defined by yp = n + 1 and yq = xq for q �= p. Then Pub(Π, �x, σ) = Pub(Π, �y, σ);
therefore, on input �y some processor decides p although p does not appear in �y, which
violates the validity condition.

Our main theorem will thus follow from the following general result about know-
able sets.

Theorem 3.2. If K1, . . . ,Kn is a collection of knowable subsets of Σ̂(P ) that
cover Σ̂ and satisfy the activity property, then

n⋂
p=1

Kp �= ∅.

Applying this to the sets D1, D2, . . . , Dn, we obtain that there is a single schedule
σ in which every possible decision 1, 2, . . . , n is reached, contradicting that Π solves
the (n− 1)-set agreement problem.



WAIT-FREE k-SET AGREEMENT IS IMPOSSIBLE 1463

Table 1
The syntactic correspondence between Rn and knowable set topologies.

Hull(EP ) ←→ Σ̂(P )

point �z ∈ Hull(EP ) ←→ compressed schedule σ

relatively open subset of Hull(EP ) ←→ knowable subset of Σ̂(P )

Hull(EP−{p}) ←→ Σ̂(P − {p})
boundary property ←→ activity property

vertex �ep ←→ schedule [p] = {p}{p} . . .

There is a striking analogy between the statement of Theorem 3.2 and a well-
known theorem concerning the topology of Euclidean space. Let Hull(Z) denote the
convex hull of a set of points Z in the Euclidean space. Let EP = {�e p|p ∈ P} be
the set of standard unit basis vectors of RP , which we identify with Rn. Note that
Hull(EP ) is the (n − 1)-dimensional simplex consisting of the set of nonnegative
vectors whose coordinates sum to 1. We say that a sequence of subsets A1, A2, . . . , An
of Hull(EP ) satisfies the boundary property if for each p ∈ {1, . . . , n}, Ap is disjoint
from Hull(EP−{p}), which is the face of Hull(EP ) opposite the vertex �e p, i.e, each
vector �z ∈ Ap has positive pth coordinate. Finally, a subset U is relatively open in
Hull(EP ) if it is the intersection of Hull(EP ) with an open subset of Rn.

The following theorem is essentially equivalent to the Brouwer fixed point theorem
for the (n− 1)-dimensional closed ball.

Theorem 3.3 (KKM theorem; see [1]). If U1, . . . , Un is a collection of relatively
open subsets of Hull(EP ) that cover Hull(EP ) and satisfy the boundary property,
then

n⋂
i=1

Ui �= ∅.

There is a tight syntactic correspondence between the two situations described by
Theorems 3.2 and 3.3, which is given in Table 1.

The obvious question is, Is there some way to make use of this correspondence to
prove the desired result for knowable sets? The natural way to do this would be to find
a bijection between Σ̂(P ) and Hull(EP ) which obeys the syntactic correspondence.
Given such a bijection Theorem 3.2 would follow from Theorem 3.3. In fact, we believe
that there is such a bijection and that we have an existential argument for this. But
the technical details involved in turning this argument into a rigorous proof seem to
be considerable and except for the case n = 2, we have not completed such a proof.

It turns out we don’t really need such a bijection. We prove Theorem 3.2 directly
by analyzing and imitating the proof of Theorem 3.3. Nevertheless, the ideas of the
proof are based on the intuition we developed in trying to construct an appropriate
bijection between Σ̂(P ) to Hull(EP ). In the next section, we discuss some of these
intuitions and give an explicit bijection for the n = 2 case (which corresponds to the
impossibility of 2-processor consensus), a not-so-explicit bijection for the n = 3 case,
and a glimpse at the n > 3 case. While our proofs do not explicitly depend on this
section, it provides the key intuitions which motivate the succeeding sections.

4. Bijections between Σ̂(P )and Hull(EP ). As described in the previous
section, the most natural way to prove our result would be to provide a bijection f
obeying the syntactic correspondence. For n = 2 we can explicitly construct such a
map. For higher dimensions we have no explicit map, although we are fairly certain
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that the facts we develop later could, if one wanted, be used to prove existence of
such a map. We emphasize that the proofs of our results do not rely on this section,
and so we freely make claims here without proof.

The conditions we need on a bijection between Σ̂(P ) and Hull(EP ) are
(A) for J ⊆ P, each compressed schedule σ ∈ Σ̂(P ) is mapped to the simplex

Hull({ei : i ∈ J});
(B) the image of any knowable set of Σ̂(P ) is a relatively open subset ofHull(EP ).
The first condition is fairly explicit; it says, for instance, that schedules of the

form (p)(p)(p) . . . must be mapped to a corner vertex �e p. The second relies on the
notion of knowable sets, whose definition in terms of protocols is hard to deal with
directly. We now state a combinatorial characterization of knowability. We don’t
prove this now, but we note that it is equivalent to the characterization proved below
as Theorem A.4. If τ is a schedule fragment, the cylinder of τ, Bτ is the collection of
all schedules that have τ as a prefix.

Theorem 4.1. A set S of compressed schedules is knowable if and only if the set
{σ ∈ Σ(P )|σ̂ ∈ S} can be expressed as a (possibly infinite) union of cylinders.

Now suppose we can find a function f whose domain is the set Σ(P ) of all schedules
(not just compressed ones), such that f satisfies the following four conditions:

(1) f maps Σ(P ) onto Hull(EP ).
(2) Each schedule σ is mapped to the simplex Hull({ei : i ∈ J}), where J =

Active(σ).
(3) f(σ) = f(τ) if and only if σ and τ have the same compression.
(4) f maps schedules with a “large” common prefix to points that are “close.”

More precisely, there exists a function α(j) on the nonnegative integers that
tends to 0 such that for any two schedules σ and φ, if σ and φ have a common
prefix of j blocks, then ‖f(σ) − f(φ)‖ ≤ α(j), where ‖ · ‖ denotes the usual
Euclidean length.

The second condition is just condition (A) above. It is not hard to show that
conditions (1), (3), and (4) together with Theorem 4.1 imply condition (B). Note
that given a map f satisfying (1) and (3), its restriction to the set σ̂ of compressed
schedules is a bijection.

The following definitions will be useful. A schedule σ is degenerate if it has a
unique nonfaulty processor. Such a schedule is uniquely of the form τ [p] for some
segment τ and processor p, where either τ is the null fragment or the last block B of
τ is not equal to {p}. Writing τ as µB, we say that µ is the fundamental fragment of
σ and B is the fundamental block. We also say that σ is p-degenerate. A degenerate
schedule whose fundamental fragment has weight at most w is said to be w-admissible.

We now describe such a function f for the n = 2 case and give some indication
how it can be extended to the n ≥ 3 case.

4.1. A bijection for the 2-processor case. For simplicity, in the description
of f, we consider the range to be the interval [0, 1] instead of Hull(E{1,2}).

Let us start by describing a mapping that does not work. Take each schedule σ
and interpret it as an infinite ternary string t = t(σ) by mapping {1} to 0, {1, 2} to
1, and {2} to 2. Then any schedule can be interpreted as a real number between 0
and 1. Furthermore, this mapping is easily seen to satisfy properties (1), (2), and
(4) above: the map is onto, it sends the schedule [1] = {1}{1} . . . to the endpoint 0
and [2] to endpoint 1, and two schedules with a common prefix of j blocks map to
points that differ by at most (1/3)j . The problem is condition (3). The map sends
the schedules {1}[2] and {1, 2}[1] to the point 1/3, yet they do not have the same
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0

[1]

1

[2]

1
3

{1, 2}[2]

2
3

{1, 2}[1]

1
9

{1}{1, 2}[2]

❄

2
9

{1}{1, 2}[1]

❄

4
9

{1, 2}{1, 2}[1]

❄

5
9

{1, 2}{1, 2}[2]

❄

7
9

{2}{1, 2}[2]

❄

8
9

{2}{1, 2}[1]

❄

Fig. 1. The map from Σ̂({1, 2}) to the [0, 1] interval.

compression, and {1}[2] and {1, 2}[2] which have the same compression are mapped
to 1/3 and 2/3, respectively. To fix this problem we modify t = t(σ). Given t = t(σ),
define the infinite sequence a by ai = ti if t1, t2, . . . , ti−1 has an even number of 1’s
and ai = 2 − ti otherwise. Interpret a as a real number between 0 and 1 written in
base 3. The map f is now defined to take f(σ) = a. It still satisfies (1), (2), and (4),
but now it can also be shown to satisfy (3).

Figure 1 depicts the restriction of the mapping to compressed schedules. Under
this map, degenerate schedules get mapped to rational numbers whose denominators
are powers of 3. Observe that for n = 2, a compressed schedule σ is equal to the
compression of some other schedule if and only if it is degenerate, in which case there
is exactly one uncompressed schedule whose compression is σ. The mapping sends
these two schedules to the same point. For example, the inverse image of 2/9 is
{1}{1, 2}[1] and {1}{2}[1].

The bijection has a geometric description. Each prefix τ is associated with an
interval Rτ which corresponds to the schedules that start with this prefix. The end-
points of the interval τ are the images of the schedules τ [1] and τ [2]. The empty
prefix corresponds to the entire interval, and if τ is a prefix of µ, then the interval
corresponding to µ is a subinterval of that corresponding to τ . In general, the interval
corresponding to τ is divided into three subintervals, corresponding to τ{1}, τ{1, 2},
and τ{2}.

It will be useful to describe this process of subdivision in levels. The level 0 subdi-
vision is the subdivision into three intervals, corresponding to the prefixes {1}, {1, 2},
and {2}. The level i subdivision is obtained from the level i−1 subdivision by taking
each interval corresponding to a prefix of weight i (that is, the sum of the block sizes
is i) and subdividing it into three subintervals as above. Thus the level 1 subdivision
consists of the subdivision of the intervals [0, 1/3] and [2/3, 1] into three parts and
the level 2 subdivision subdivides each of the intervals [0, 1/9], [2/9, 1/3], [1/3, 2/3],
[2/3, 7/9], and [8/9, 1] into three intervals.

4.2. The case of more than two processors. For P = {1, 2} we were able to
give an explicit map from schedules to Hull(EP ). For |P | > 2, we don’t know how
to do this. However, in the 2-processor case, we saw that the map can be defined by
a process of successive subdivision. For each fragment τ we defined an interval Rτ
which is the image of all schedules with prefix τ . For each schedule σ, the sequence of
regions Rσi , where σi is the unique prefix of σ that appears in the level i subdivision,
are nested, and their intersection is the image of σ. It should also be apparent that
the lengths of the intervals into which we subdivided each interval are not critical;
all we really needed was that the length of Rτ goes to 0 as we take larger and larger
prefixes.

For |P | ≥ 3 we will attempt to construct a map along similar lines. We will
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[1]

{13}[3] {12}[2]

{13}[1] {12}[1]

{123}[2]                  {123}[3]

{123}[1]

[3] {23}[2] {23}[3] [2]

{1}

{13} {12}

{123}

{3}

{23}

{2}

Fig. 2. The subdivision D0({1, 2, 3}).

construct a sequence Dm(P ) of decompositions of the simplex Hull(E
P ). The de-

composition D0(P ) consists of 2
|P | − 1 regions RJ , one for each nonempty subset of

J of P ; all schedules with first block J are mapped to RJ . This tiling is called the
level 0 decomposition of the simplex. More generally, in the level m decomposition
Dm(P ), m ≥ 0, the regions correspond to fragments that are minimal subject to their
weight being greater than m. The level m + 1 decomposition is obtained from the
level m decomposition by taking each region corresponding to a fragment τ of weight
exactly m and tiling it by 2n − 1 regions corresponding to the fragments of the form
τJ, where J is a block. The region Rτ is the image of the map applied to schedules
with prefix τ . Given the level m decomposition for all m, the image of a schedule σ
is determined as follows: for each m, σ is assigned to a unique Rm(σ) region in the
level m decomposition corresponding to the appropriate prefix of σ. The sequence of
regions Rm(σ) is nested and their diameters tend to 0, so σ is mapped to the unique
point in their intersection. A key property will be that a point on the boundary of two
or more regions will correspond to a set of schedules all having the same compression,
where each schedule corresponds to one of the regions. The “vertices” of the decom-
position Dm(P ) will correspond to schedules whose compression is an m-admissible
degenerate schedule.

We now sketch how this can be done for |P | = 3; the same approach would also
seem to work for higher dimensions. The combinatorial structure underlying the map
is regular, but it is sufficiently complicated that writing a complete description and a
rigorous proof that it works seems to be a very tedious undertaking, which is why we
do not rely explicitly on this construction in the proof of our main result. The devel-
opment in the later sections is closely related to the present construction; the reader
will see that this construction is the basis for the “triangulation graphs” presented in
section 6.2. Conversely, the interested reader can use the precise description of the
triangulation graphs to get a precise description of the map in higher dimensions.

Let P = {1, 2, 3}. Figure 2 shows the level 0 decomposition, D0(P ) into seven
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regions. Each region is labeled by a nonempty subset of P . Each singleton set
corresponds to a pentagonal region and each other set corresponds to a triangular
region. All 0-admissible compressed degenerate schedules map to vertices in the fig-
ure. Each vertex is labeled by the unique compressed schedule that maps to it, and
for each such vertex its inverse image is the set of all schedules whose compression is
equal to its label. For example, the vertex labeled {1, 2, 3}[2] lies on the boundary
of the four regions {1}, {3}, {1, 3}, {1, 2, 3} and for each such region there is a cor-
responding schedule that maps to that vertex: of {1}{2, 3}[2], {3}{1, 2}[2], {1, 3}[2],
and {1, 2, 3}[2]. Consider a segment that separates two regions. Each point on the
segment corresponds to two schedules, one that begins with the fragment defining
the first region and one that begins with the fragment defining the other region. For
example, the segment joining {1, 2, 3}[2] and {1, 3}[1] separates the regions {3} and
{1, 3} and each point on the segment is the image of exactly two schedules {1, 3}σ
and {3}{1}σ, where σ ∈ Σ({1, 2}).

In the higher level decompositions, we successively subdivide each region into
seven subregions. When we focus on a region associated to fragment τ, it is useful to
relabel each vertex of the region by the unique schedule beginning with τ that maps
to that vertex. Thus, for instance, for the region {1, 2}, we can view its vertices as
{1, 2}[1], {1, 2}[2], and {1, 2}[3]. When we subdivide this region we do it in a way anal-
ogous to the level 0 decomposition of the entire triangle, with {1, 2}[i] corresponding
to the schedule [i]. Any triangular region is subdivided in this way.

To decompose a pentagonal region we treat it as a “distorted” triangle. In general,
a pentagonal region will correspond to a fragment τ whose last block is a singleton
set {i}. (The reader should follow this for the region labeled {1}.) The vertices of the
region will correspond to the schedules τ [i], τ [j], τ{j, k}[k], τ{j, k}[j], τ [k]. When we
subdivide, we view τ [i], τ [j], τ [k] as the vertices of the distorted triangle. The three
segments joining τ [j] and τ [k] are together viewed as one “side” of the triangle. The
two intermediate vertices τ{j, k}[k] and τ{j, k}[j] play the role of the vertices that
are added when we subdivide that side.

Figure 3 depicts the level 1 decomposition with the vertices labeled and Figure 4
shows the decomposition with faces labeled. Note that the level 1 decomposition is
produced from the level 0 decomposition by decomposing each of the three pentagons
corresponding to regions whose fragment has weight 1.

The level 2 decomposition is not shown; it is obtained from the level 1 decompo-
sition by subdividing each of the 12 regions that correspond to fragments of weight 2.

This completes our discussion of our attempt to prove Theorem 3.2 by an ap-
propriate bijection between Hull(EP ) and Σ̂(P ). While we did not complete this
approach, the constructions motivate much of what comes in the proof.

5. Reviewing the geometric case. As we stated, the proof of Theorem 3.2
is obtained by following closely the proof of its geometric analog Theorem 3.3. It is
useful to review the outline of that proof.

Recall that we have a cover of the simplex Hull(EP ) by relatively open sets
U1, . . . , Un that satisfy the boundary property and we want to show that there is
a point belonging to all of the sets. We begin with a lemma which applies to an
arbitrary open cover of Hull(EP ). For �x ∈ Hull(EP ), let B(x, ε), the closed ε-ball
around x, denote the set of points �y ∈ Hull(EP ) within Euclidean distance ε of �x.

Lemma 5.1. For any finite collection U of open sets that covers Hull(EP ) there
is an ε = ε(U) > 0 such that for each point �x ∈ Hull(EP ), some member of U contains
B(�x, ε).
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{2}{12}[2]

{2}{12}[1]

{2}{23}[3]

[1]

{13}[3] {12}[2]

{13}[1] {12}[1]

{123}[2]                  {123}[3]

{123}[1]

[3] {23}[2] {23}[3] [2]

{1}{13}[3]

{1}{13}[1]

{1}{12}[2]

{1}{12}[1]

{1}{123}[2] {1}{123}[3]

{1}{123}[1]

{3}{13}[3]

{3}{13}[1]

{3}{123}[3]{3}{123}[2] {2}{123}[3]{2}{123}[2]

{3}{23}[3]{3}{23}[2] {2}{23}[2]

{3}{123}[1] {2}{123}[1]

Fig. 3. The subdivision D1({1, 2, 3}) with vertex labels.

{1}{1}

{1}{13} {1}{12}

{1}{123}

{1}{3} {1}{2}

{1}{23}
{13} {12}

{123}

{3}{1} {3}{12}                      {2}{13} {2}{1}

{3}{13}
{3}{123}

{3}{2}

{23}

{2}{3}

{2}{123} {2}{12}

{3}{3}

{3}{23}

{2}{2}

{2}{23}

Fig. 4. The subdivision D1({1, 2, 3}) with face labels.

The key point is that the same ε works for all �x. Now given our covering U1, . . . , Un
satisfying the boundary property we choose an ε > 0 for which the conclusion of the
above lemma is satisfied. We then define a function (labeling) λ of the points of
Hull(EP ) to [n] = {1, . . . , n} as follows: λ(�x) is the minimum j such that B(�x, ε) ⊆
Uj . Note that, by the boundary property, this labeling satisfies the following coherence
condition: for each J ⊂ P, each point of Hull(EJ) is labeled by an element of J . It
suffices to show that
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(**) for some �y ∈ Hull(EP ), B(�y, ε) contains n points with distinct labels, since
then �y ∈

⋂n
i=1 Ui.

The proof of (**) relies on the notion of a triangulation of the simplex. Roughly,
a triangulation T of Hull(EP ) is a decomposition into a finite collection of n-vertex
simplices with the property that any two simplices in the triangulation are disjoint or
their intersection is a face of each (where by a face, we mean a subsimplex spanned
by a subset of the vertices). The set of all simplices in T and faces of simplices in T
are the faces of T .

For the ε given by Lemma 5.1, we construct a triangulation T satisfying the
following.

Lemma 5.2. For each positive ε there exists a triangulation T of Hull(EP ) all
of whose simplices have diameter at most ε.

Consider the labeling λ restricted to the vertices of T . The following lemma now
completes the proof of (**) and Theorem 3.3.

Lemma 5.3 (Sperner’s lemma [1]). Let λ : Hull(EP ) −→ [n] be a coherent
labeling and let T be a triangulation of Hull(EP ). Then some n-vertex simplex of T
has all of its vertices distinctly labeled.

6. Proof of Theorem 3.2. Recall that we have knowable sets K1,K2, . . . ,Kn

that cover Σ̂(P ) and satisfy the activity property. We wish to show that they have a
nonempty intersection.

The first step in adapting the proof of Theorem 3.3 is to prove an analog of Lemma
5.1. Recall that for a fragment τ the set of schedules that are quasi extensions of τ is
denoted Qτ , and Q̂τ = Σ̂P ∩Qτ . The sets Q̂τ play the role of ε-balls. For example,
for each compressed schedule φ, and for each integer w, let φ(w) denote the maximal
prefix of φ whose weight (sum of block sizes) is at most w. If we consider the sequence
of sets Q̂φ(w) we see that Q̂φ(1) ⊇ Q̂φ(2) ⊇ · · · and that the intersection of all of them
is just φ itself. This is analogous to a sequence of balls of decreasing radius around a
particular point. The analog of Lemma 5.1 is the following.

Lemma 6.1. Let K be a collection of knowable sets that covers Σ̂(P ). Then there
is an integer w = w(K) with the property that for each schedule φ, some member of
K contains Q̂φ(w) .

Proof. Suppose for contradiction that for each w there is a schedule φ(w) such
that the set Q̂φ(w)(w) is not contained in any member of K. Let Φ = {φ(w) : w ≥ 1}.
Construct a schedule σ as follows. Let σ1 be any set that is the first block of infinitely
many members of Φ, and inductively for i > 1, having defined σ1 . . . σi−1, let σi be a
set such that σ1σ2 . . . σi is a prefix of infinitely many members of Φ. The compression
σ̂ must belong to some member K ∈ K. By Proposition 2.25, there is a fragment τ of
σ̂ such that Q̂τ ⊆ K. By construction of σ, τ is a prefix of infinitely many members of
Φ. In particular, it belongs to some φ(w) with w > w(τ). Then Q̂φ(w)(w) ⊆ Q̂τ ⊆ K
contradicts the choice of φ(w).

Remark. The above result implies the fact mentioned in section 2.1 that the
existence of a wait-free protocol Π for k-set agreement implies the existence of a
bounded wait-free protocol. Given Π, define protocol Π′, where each processor behaves
as in Π except that if it sees that any processor has decided before it has decided, it
immediately takes the lowest decision value it sees as its decision value. Clearly Π′ is
correct if Π is. Letting Di be the set of schedules where some processor decides i, the
above Lemma implies that there is a w such that after at most w total steps (by all
of the processors) some processor has reached a decision. Thus, after taking at most
w + 2 steps a processor will have decided and written its decision value.
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Now given our covering K1, . . . ,Kn satisfying the activity property we choose an
m for which the conclusion of the above lemma is satisfied. We then define a function
(labeling) λ of the points of Σ̂(ΣP ) to [n] = {1, . . . , n} as follows: λ(σ̂) is the minimum
j such that Q̂σ̂(m) ⊆ Uj . Note that, by the activity property, this labeling satisfies

the following coherence condition: for each J ⊂ B, each σ̂ ∈ Σ̂(ΣJ) is labeled by an
element of J . It suffices to show the following analog of (**).

Lemma 6.2. Let K1, . . . ,Kn be knowable sets that cover Σ̂(P ) and let λ be a
labeling of the schedules that satisfies the coherence condition. Then for any integer
m ≥ 1, there is a fragment τ of weight at least m that is a prefix of n schedules having
different labels.

The proof of this relies on abstracting the notion of a triangulation for the set of
compressed schedules and proving an analog of Sperner’s lemma.

6.1. Triangulation graphs. By analyzing the proof of Sperner’s lemma, it can
be seen that the lemma can be interpreted as a statement about graphs embedded in
Hull(EP ) that have certain properties. This motivates the definition of the following
class of graphs defined on Σ̂(P ).

A triangulation graph on Σ̂(P ) is a finite graph G = (V,E) whose vertex set is a
subset of Σ̂(P ) and which satisfies the following properties:

(1) For each p ∈ P, the schedule [p] = {p}{p}{p} . . . is a vertex.
(2) If C is a clique contained in Σ̂(J) of size |J | − 1, then

(a) if C is contained in Σ̂(I) for any proper subset I of J, then there is a
unique clique of size |J | in Σ̂(J) that contains C;

(b) if C is not contained in Σ̂(I) for any proper subset I of J, then there are
exactly two cliques of size |J | in Σ̂(J) that contain C.

Here we use clique to mean a not necessarily maximal complete subgraph.

These conditions correspond to those satisfied by the skeleton of a triangulation
in the geometric case. The first condition comes by associating the schedules [p]
to the generators �e p of the simplex Hull(EP ), which are necessarily vertices of any
triangulation. The second condition corresponds to the fact that in any triangulation
of the simplex, if a (|J | − 1)-vertex face of T lies in Hull(EJ), then (i) if it lies on the
boundary of Hull(EJ), then it is a face of a unique |J |-vertex face of T, while (ii) if
it lies in the interior of Hull(EJ), then it is the common boundary of a pair of |J |-
vertex faces of T .

These conditions are sufficient to prove an analog of Sperner’s lemma.

Lemma 6.3. Let λ : Σ̂(P ) −→ [n] be a coherent labeling and let G be a triangu-
lation graph on Σ̂([n]). Then some n-vertex clique of G has all of its vertices labeled
differently.

Proof. For k ∈ [n], let g(k) be the number of k vertex cliques in Σ̂([k]) whose
vertices are labeled differently. Since λ is coherent these labels must be {1, 2, . . . , k}.
The key step is the following claim.

Claim. For each k between 2 and n, g(k) ≡ g(k − 1) mod 2.
It then follows that g(n) ≡ g(1) ≡ 1 mod 2 since the schedule [1] is the unique

vertex in Σ̂([1]), and we conclude that g(n) �= 0.

It suffices to prove the claim. For k between 2 and n, define p(k) to be the number
of pairs (C ′, C), where C is a k-clique in Σ̂([k]) and C ′ is a (k − 1)-clique contained
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in C that is distinctly labeled 1, 2, . . . , k − 1. Then the claim follows from

g(k) ≡ p(k) mod 2,

p(k) ≡ g(k − 1) mod 2.

The first relation is obtained by computing p(k) in the following manner. Each
k-clique C in Σ̂([k]) which is not distinctly labeled contains either 0 or 2 cliques of
size k − 1 that are labeled 1, 2, . . . , k − 1 and so contribute 0 mod (2) to p(k). On
the other hand, each distinctly labeled k-clique C has a unique subclique of size k− 1
that is labeled 1, 2, . . . , k − 1 and so contributes 1 to p(k).

The second relation follows by considering, for each (k − 1)-clique C ′ with labels
1, 2, . . . , k−1, the number of k-cliques of Σ̂([k]) to which it belongs. By the definition
of triangulation graph, if C ′ does not lie in Σ̂(I) for some proper subset I of [k],
then it belongs to exactly two cliques C of size k in Σ̂([k]) and so contributes 0 mod
(2) to p(k). On the other hand, if C ′ ⊂ Σ̂(I) for some proper subset I of [k], then
the definition of triangulation graph implies that C ′ is in a unique k-vertex clique
C ⊂ Σ̂([k]) and so contributes exactly 1 to p(k). Thus p(k) mod 2 counts the parity
of the number of (k− 1)-cliques C ′ labeled by 1, 2, . . . , k− 1 that are in Σ̂(I) for some
I properly contained in [k]. But the fact that C ′ contains all labels 1, 2, . . . , k − 1
implies, by the coherence of λ, that I contains [k−1] and so C ′ must be in Σ̂([k−1]).
Therefore, p(k) ≡ g(k − 1) mod 2.

Next we will prove the following lemma.
Lemma 6.4. For any integer w, there exists a triangulation graph G on Σ̂(P )

with the property that for any clique of G there is a fragment τ of weight at least w
such that every vertex of the clique is contained in Q̂τ .

Together with Lemma 6.3, this lemma completes the proof of Lemma 6.2 and
hence of Theorems 3.2 and 1.1.

Finally, it remains to show the existence of the desired triangulation graphs. This
turns out to be the most technically arduous part of the proof.

6.2. Constructing triangulation graphs. We will define a sequence of trian-
gulation graphs {Gm(P )|m ≥ 0} on Σ̂(P ) with the property that any clique of Gm(P )
is a subset of Q̂τ for some fragment τ of weight at least w = m− n (where n = |P |).

The precise description of Gm(P ) is technical, but the “picture” of the construc-
tion is nice. The graph Gm(P ) is closely related to the decomposition Dm(P ), de-
scribed in section 4, but since we have only given a hint as to the general construction
ofDm(P ), we cannot use theDm(P ) explicitly in our formal description of theGm(P ).
Nevertheless to help understand the technical description, the reader should compare
the graphs G0(P ) and G1(P ) depicted in Figures 5 and 6 with the pictures of D0(P )
and D1(P ) in section 4. The following properties are evident from the examples and
will also hold in general:

(1) The vertex set of Gm(P ) corresponds to the vertex set of Dm(P ), i.e., it is
the set Vm(P ) of m-admissible compressed degenerate schedules in Σ(P ).

(2) The graphGm(P ) is obtained from the decompositionDm(P ) by adding edges
in order to triangulate the pentagonal regions in Dm(P ). Recall that each
pentagonal face is labeled by a fragment that ends with a singleton block, i.e.,
one of the form τ = µ{i}. The pentagon is triangulated by connecting the
vertex corresponding to (the compression of) τ [i] to the vertices corresponding
to (the compression of) τ{j, k}[j] and τ{j, k}[k].
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{13}[1] {12}[1]
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Fig. 5. The graph G0({1, 2, 3}).

{2}{12}[2]

{2}{12}[1]

{2}{23}[3]

[1]

{13}[3] {12}[2]

{13}[1] {12}[1]

{123}[2]                  {123}[3]

{123}[1]

[3] {23}[2] {23}[3] [2]

{1}{13}[3]

{1}{13}[1]

{1}{12}[2]

{1}{12}[1]

{1}{123}[2] {1}{123}[3]

{1}{123}[1]

{3}{13}[3]

{3}{13}[1]
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{3}{123}[1] {2}{123}[1]

Fig. 6. The graph G1({1, 2, 3}).

(3) The edges in Gm(P ) are depicted as either solid or dashed lines. The reason
for this distinction will be clear only after we give a precise definition of the
graphs.

Let us now give the formal definition of the graphs Gm(P ). A schedule σ is de-
generate if it has a unique nonfaulty processor. Let V (J) denote the set of compressed
degenerate schedules σ with Active(σ) ⊆ J . We say that σ ∈ V (J) is p-degenerate if
p is the unique nonfaulty processor, and we denote by V p(J) the set of p-degenerate
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schedules. Note that a p-degenerate schedule can be written in the form τ [p], where τ
is a fragment and [p] denotes the schedule all of whose blocks are singleton p blocks.

Recall that the weight of a fragment is the sum of its block sizes. For an arbitrary
schedule σ and nonnegative integer m, let σ(m) be the maximal prefix of σ having
weight less than or equal to m and let Bm(σ) be the block of σ following σ

(m). We
say that σ is m-admissible if (i) it belongs to V (P ) and (ii) all blocks after Bm(σ)
are singleton p blocks. (This definition is equivalent to the definition of m-admissible
given in section 4.) Thus an m-admissible schedule is of the form σ(m)Bm(σ)[p]. Note
that if σ is m-admissible, then it is j-admissible for all j ≥ m. Also, observe that
since σ is compressed, p ∈ Bm(σ). We denote by V pm(J) the set of m-admissible
p-degenerate schedules in V (J) and Vm(J) is the union over p of V

p
m(J). Vm(P ) is the

vertex set of Gm(P ). Note that for j ≥ m, this implies that the vertex set of Gm(P )
is a subset of the vertex set of Gj(P ).

We now define the edge set of Gm(P ). The edge set is the union of two relations:
m-similarity, which is an equivalence relation, and m-shadowing, which is acyclic.

Two m-admissible schedules σ and φ in Vm(P ) are m-similar if σ
(m) = φ(m) and

Bm(φ) = Bm(σ). This is clearly an equivalence relation.

If σ ∈ V pm(P ) and φ ∈ V qm(P ), we say that σ m-shadows φ if there is a set T
satisfying q ∈ T ⊆ Bm(σ) − {p} such that the compression of the fragment σ(m)T
is equal to φ(m)Bm(φ). In particular this implies that φ is equal to the compression
of σ(m)T [q]. The m-shadow relation is acyclic since σ m-shadows φ implies that
w(σ(m)Bm(σ)) > w(φ

(m)Bm(φ)).

Example 6.1. Consider the compressed schedules:

σ = {1, 2}{2, 3}{1, 2}[2],
ρ = {1, 2}{1, 2, 3}[1],
φ = {1, 2}{1, 2, 3}[2],
ν = {1, 2}{1, 3}[3],
µ = {1, 2}[1].

Each of the schedules is in Vm(P ) for m ≥ 4, all but σ also belong to V2(P ) and
V3(P ), and µ belongs to V0(P ) and V1(P ). σ 4-shadows ρ, and is otherwise unrelated
to all other schedules. ρ is m-similar to φ for 2 ≤ m ≤ 4 and does not m-shadow
any of the other schedules for any m. φ 2-shadows both µ and ν and 3-shadows ν. ν
2-shadows µ.

We can now define the edge set Em(P ) of the graph Gm(P ). The pair (σ, φ) ∈
Em(P ) if either (i) σ and φ are m-similar, (ii) σ m-shadows φ, or (iii) φ m-shadows σ.
In Figures 5 and 6, the solid edges correspond to those that come from m-similarity
and the dashed edges arise from m-shadowing. It should be emphasized that while
Vi(P ) ⊂ Vj(P ) for i < j, the edge sets are not nested.

To complete the proof of Lemma 6.4 and hence the proof of the impossibility of
wait-free m-set agreement it is now enough to prove two facts, as follows.

Lemma 6.5.

(1) The graph Gm is a triangulation graph for Σ̂(P ).
(2) For any clique C in Gm(P ), C is contained in a set of the form Q̂τ for some

fragment τ with m− n < w(τ).
Gm(P ) trivially satisfies the first condition of triangulation graphs since [p] is

m-admissible for all m ≥ 0.
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Table 2
Summary of terminology for cliques and flags.

σ(m) the largest prefix of σ with weight ≤ m

Bm(σ) the first block of σ following σ(m)

σ is m-admissible σ is compressed and of the form σ(m)Bm(σ)[p]

flag F a finite family of nested sets including ∅

F is a J-flag the largest set in F is J

F+(p) the unique smallest set in F containing element p

I-clique consists of a p-degenerate vertex for each p ∈ I

(I, J)-clique I-clique contained in Vm(J)

(τ,F) is (m,J)-admissible τ a fragment, F a J-flag, Active(τ) ⊆ J,
w(τ) ≤ m, and w(τF ) > m for F ∈ F − {∅}

CI(τ,F) {σp|p ∈ I} where σp is the compression of τF+(p)[p]

(τ,F) is a (m,J)-flag
representation of I-clique C C = CI(τ,F) and (τ,F) is (m,J)-admissible

The hard part is proving that Gm(P ) satisfies the second condition of triangula-
tion graphs. The key is to obtain a complete characterization of the cliques of Gm(J).
Along the way we will also prove the second part of Lemma 6.5 (which will follow
from Lemma 6.7). We advise the reader to refer frequently to Figure 6 to help in
understanding what follows.

Alas, we need some more definitions. (Table 2 provides a summary of some of the
key definitions.) Let J ⊆ P . A flag is a finite family F of sets that are totally ordered
by inclusion and includes the emptyset. The unique maximal set of F is denoted FM .
If J = FM we say that F is a J-flag. For p ∈ J, F+(p) denotes the unique smallest
set containing p, and F−(p) denotes the unique largest set not containing p.

By the definition of the edge set, any clique C consists of schedules that are p-
degenerate for distinct p. If I ⊆ P and C is a clique that consists of one p-degenerate
schedule for each p ∈ I, then C is a called an I-clique. We typically denote such a
clique by {σ(p)|p ∈ I}, where σ(p) denotes a p-degenerate schedule.1 As noted when
defining m-admissibility, each σ(p) is equal to σ(p)(m)Bm(σ(p))[p]. If C is an I-clique
all of whose vertices belong to Vm(J), we say that C is an (I, J)-clique.

Let C = {σ(p)|p ∈ I} be an (I, J)-clique. A processor q ∈ I is said to be
dominant in C if it maximizes w(σ(p)(m)Bm(σ(p))) among all p ∈ I. The following
lemma provides a simple combinatorial representation for (I, J)-cliques.

Lemma 6.6. Let C = {σ(p)|p ∈ I} be an I-clique in Gm(J). Let q be a dominant
processor and τ = σ(q)(m). Then

(1) for each p ∈ I, there is a subset Fp of J containing p such that σ(p) is equal
to the compression of τFp[p];

1A remark on notation: The (p) in σ(p) is simply an index, and so σ(p) in this case stands for a
p-degenerate schedule. This should not be confused with the notation σ[p], which denotes a schedule
consisting of a fragment σ followed by an infinite sequence of {p} blocks.
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(2) the family of sets F = {Fp|p ∈ I} ∪ {∅, J} is a J-flag;
(3) for each p ∈ I, Fp = F+(p), and w(τFp) > m.

Proof. Since q is dominant in C, then for each p ∈ I − {q}, σ(q) either is m-
similar to or m-shadows σ(p), which implies that for p �= q, σ(p) is the compression
of a schedule of the form τFp[p], where p ∈ Fp ⊂ J . This proves the first part.
For the second part, let p, r ∈ I. If σ(p) is m-similar to σ(r), then the condition
that the compression of τFp is equal to the compression of τFr implies Fp = Fr.
Otherwise σ(p) m-shadows σ(r), which means that σ(r)(m)Bm(σ(r)) can be written
as the compression of σ(p)(m)B for some B ⊆ Bm(σ(p))−{p}. Since τFr and σ(p)(m)B
have the same compression and τFp and σ(p)

(m)Bm(σ(p)) have the same compression
(by comparing the total number of steps taken by each processor in each of these
fragments), we conclude that Fr ⊆ Fp − {p}. From this it follows that F = {Fp|p ∈
I} ∪ {∅, J} is a J-flag and for each p ∈ I, Fp = F+(p), completing the second part.
Finally, the m-admissibility of the vertices in C implies that w(τF ) ≥ m for all
nonempty F ∈ F+(p).

This motivates the following definitions. An (m,J)-admissible pair is a pair (τ,F),
where τ ∈ Φ(J) (recall that Φ(J) is the set of fragments whose blocks are subsets of
J) and F is a J-flag such that w(τ) ≤ m and w(τF ) > m for all nonempty F ∈ F .
For such a pair, we define CI(τ,F) to be the set {σ(p)|p ∈ I} of schedules where σ(p)
is the compression of the schedule τF+(p)[p]. Note that since p ∈ F+(p) this is equal
to the schedule obtained by compressing the fragment τF+(p) and appending [p].

From Lemma 6.6 we have that every (I, J)-clique is of the form CI(τ,F) for some
(m,J)-admissible pair. In fact, the converse of this statement also holds and we state
them together in the following lemma.

Lemma 6.7.

(1) For I ⊆ J ⊆ P, each (I, J) clique of Gm(P ) has the form CI(τ,F) for some
(m,J) admissible pair (τ,F).

(2) If (τ,F) is an (m,J)-admissible pair and I ⊆ J, then CI(τ,F) is an (I, J)-
clique.

Proof. The first part follows from Lemma 6.6. To prove the second part, suppose
that (τ,F) is m-admissible. We first must show that each schedule in CI(τ,F) =
{σ(p)|p ∈ I} is a vertex of Vm(J). Proposition 6.8 follows easily from the definition
of compression.

Proposition 6.8. If (τ,F) is (m,J) admissible, F = F+(p), and p ∈ J, then
the compression of τF [p] can be written in the form µB[p], where w(µ) ≤ w(τ) and
w(µB) = w(τF ). Thus σ(p) is m-admissible and so belongs to Vm(J).

Next we must show that for p, q ∈ I, σ(p) and σ(q) are adjacent in Gm(P ), i.e.,
either they arem-similar or onem-shadows the other. Let A = F+(p) andB = F+(q).
Thus σ(p) is the compression of τA[p] and σ(q) is the compression of τB[q], and also
w(τA) and w(τB) are both greater than m. If A = B, then τA[p] and τA[q] have
exactly the same hidden blocks, and so σ(p) and σ(q) are clearly m-similar. If A �= B,
then without loss of generality A ⊂ B. Furthermore, p ∈ A and q ∈ B − A, since
A = F+(p) and B = F+(q). Let σ(q) = µB′[q] be the compression of τB[q]. Then
B′ = B ∪C, where C is the union of some number of blocks (possibly 0) at the end of
τ . Also, w(µB′) = w(τB). Every hidden block of τB[q] is also hidden in τA[p], and
so τA[q] can be partially compressed to µA′[p], where A′ = A ∪ C. This implies that
p ∈ A′ ⊆ B′ − {q}, and so σ(q) m-shadows σ(p).

This lemma provides a nice combinatorial characterization of cliques. If C is an
I-clique and C = CI(τ,F), where (τ,F) is an (m,J)-admissible pair, then (τ,F)
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is called an (m,J)-flag representation of C. This representation is in general not
unique. Lemma 6.6 gave such a representation for each I-clique C in Vm(J). This
construction has the properties that τ is equal to the prefix σ(q)(m) for some (in fact,
any) dominant processor q and that F consists exactly of those sets Fp for p ∈ I,
where Fp is the unique set such that σ(p) is the compression of τFp[p]. In particular,
F is the unique minimal J-flag for which (τ,F) is a (k, J)-flag representation of C.
We call this representation the (m,J)-canonical representation of C. It is clear that
the (m,J)-canonical representation of the I-clique C is unique.

Example 6.2. Let m = 2 and P = {1, 2, 3, 4, 5}. The set consisting of {1, 2, 3}[3],
{1, 2}{1, 3}[1], and {1, 2}{1, 5, 3, 4}[4] has four (2, P )-flag representations: (τ,F),
(µ,F), (τ,G), and (µ,G), where F = {∅, {3}, {1, 3}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}, G =
{∅, {3}, {1, 3}, {1, 3, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}, τ = {1, 2}, and µ = {2}{1}. The
canonical representation is (τ,F).

We can now prove the second part of Lemma 6.5. If C is any I-clique, let (τ,F)
be an (m,P )-flag representation of C. The (m,P )-admissibility of (τ,F) implies that
w(τ) > m − n. Every schedule in C is the compression of a schedule of the form
τF [p] for some F ∈ F and p ∈ I and is thus a quasi extension of τ . Thus σ ∈ Q̂τ as
required.

It remains only to check that Gm(P ) satisfies the third condition of the definition
of triangulation graphs. We will prove the following.

Lemma 6.9. Let I ⊆ J ⊆ P and let C be an I-clique in Gm(J). Then the number
of (J, J)-cliques that contain C is equal to the number of distinct J-flag representations
of C.

In light of this lemma, the two parts of the second property of triangulation graphs
follow, respectively, from the two parts of the following lemma.

Lemma 6.10. Let J ⊆ P, p ∈ J, and I = J − {p}. Let C be an I-clique that is
contained in Vm(J).

(1) If C is contained in Vm(I), then C has a unique J-flag representation.
(2) If C is not contained in Vm(I), then C has exactly two J-flag representations.

Thus, all that remains is to prove Lemmas 6.9 and 6.10, which we now do. We
first make some preliminary observations about flags and flag representations.

Proposition 6.11. Let F and H be J-flags. If H+(r) = F+(r) for every r ∈ J,
then H = F .

Proof. Suppose that H �= F are J-flags and let A be a set that is in one but
not the other, say, it is in H but not in F . Then there is an element r such that
H+(r) = A, and so H+(r) �= F+(r).

Lemma 6.12. Let C = {σ(p)|p ∈ I} be an (I, J)-clique and let q be a dominant
processor. Let (τ,F) be the canonical (m,J)-flag representation of C. Let (µ,H) be
an arbitrary (m,J)-flag representation of C. Then

(1) σ(q) = τF+(q)[q].
(2) µ can be written in the form νλ, where ν is a fragment such that the com-

pression of νF+(q) is τF+(q) and λ is a possibly empty fragment consisting
of pairwise disjoint blocks.

(3) Let B denote the union of the blocks of λ. Then B ⊆ J − I and H+(p) =
F+(p)−B for each p ∈ I.

(4) I ⊆ H+(q) ⊆ F+(q) ⊆ J .
Proof. The first part follows immediately from the definition of the canonical

(m,J)-flag representation. For the second part, note that µH+(q)[q] must compress
to σ(q) = τF+(q)[q], which means that µH+(q) must compress to τF+(q). Let ν be
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the portion of µ that compresses to τ and let λ be the portion of µ that is merged
with H+(q) to form F+(q). Then µ = νλ, and λ must consist of disjoint blocks. For
the third part, if p ∈ I, then τF+(p) must have the same compression as νλH+(p),
which means that λH+(p) must compress to F+(p), so H+(p) = F+(p) − B. Since
p ∈ H+(p), we must have p �∈ B, so B ⊂ J − I. For the fourth part, H+(q) contains
H+(p) for all p ∈ I, so I ⊆ H+(q).

Lemma 6.13. Each (J, J)-clique has a unique (m,J)-flag representation.

Proof. Let C = {σ(p) : p ∈ J} be a J-clique contained in Vm(J) and let (τ,F) be
its J-canonical representation. Suppose that (µ,H) is any other J-flag representation.
Since H is a J-flag, there must be q ∈ J such that H+(q) = J . Then µJ [q] is
compressed and must be equal to σ(q). Furthermore q is dominant in C, so by the
definition of the canonical representation τ = µ.

By Proposition 6.11, if G �= F , then there exists r such that F+(r) �= G+(r). But
then the compression of τF+(r)[r] cannot be equal to the compression of τG+(r)[r].
Therefore F = G and the (m,J)-flag representation is unique.

Now we are ready to prove Lemmas 6.9 and 6.10, to finish the proof of the main
theorem.

Proof of Lemma 6.9. Let C be an (I, J)-clique, and let C1, C2, . . . , Cr be the
distinct (J, J)-cliques that contain C. By Lemma 6.13, each of the Ci has a unique
(m,J)-flag representation, (τi,Fi), and by the definition of the representation, (τi,Fi)
is also an (m,J)-flag representation of C, i.e., C = CI(τi,Fi). Also, these are the only
(m,J)-flag representations of C, since any such representation for C is also an (m,J)-
flag representation of some J-clique containing C.

Proof of Lemma 6.10. Let C = {σ(r)|r ∈ I} be an I = J − {p}-clique and let
(µ,H) denote an arbitrary (m,J)-flag representation of C. Let q denote a dominant
processor of C. From Lemma 6.12, I ⊆ H+(q) ⊆ J .

To prove the first part of the lemma, suppose that C is contained in Vm(I). Then
H+(q) �= J soH+(q) = I. Let G = H−{J}. Then (µ,G) is a (m, I)-flag representation
of C. But, by Lemma 6.13, there is only one such representation, so this implies that
(µ,H) must be the unique (m,J)-flag representation.

We proceed to the second part of the lemma. Let (τ,F) be the canonical (m,J)-
flag representation of C and let q be a dominant processor of C. We want to show that
there is exactly one other representation. Now, by Lemma 6.12, either F+(q) = J or
F+(q) = I. We proceed by analyzing these two cases separately.

Case I. F+(q) = I. First we construct another (m,J)-flag representation. Let
S be the last block of τ that contains p. There is such a block since, by hypothesis,
C �⊂ Vm(J − {p}). If S = {p}, then τF+(q) would not be compressed, contradicting
the definition of the canonical representation. So S �= {p}. Let ψ be the sequence
obtained by replacing the block S by {p} followed by S−{p}. Then (ψ,F) is also an
(m,J)-representation of C.

Now we show that this is the only other (m,J)-flag representation of C. Let
(µ,H) be an arbitrary (m,J)-flag representation of C. Then, by Lemma 6.12, I ⊆
H+(q) ⊆ F+(q) implies that H+(q) = F+(q) = I. Defining ν, λ,B as in Lemma 6.12
we must have B = ∅ and λ is the empty string. Then H+(r) = F+(r) for all r ∈ I,
and also H+(p) = F+(p) = J, so Proposition 6.11 implies H = F . Finally, µI[q] must
compress to τI[q]. Then either µI[q] is already compressed (and µ = τ) or µ contains
a hidden block. But a block in µI[q] can be hidden only if it is disjoint from I, i.e., it
is a singleton p block, and it must be the last appearance of p. This means that µ is
equal to ψ above and so (µ,H) = (ψ,F).
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Case II. F+(q) = J . Then J−{p} is not in F . Again, we must construct another
(m,J)-flag representation of C and show that this is the only other one. First note
the following.

Proposition 6.14. If (µ,H) is any (m,J)-representation of C, then either µ = τ
or µ = τ{p}.

To see this, note that by Lemma 6.12, either H+(q) = J or H+(q) = I. Also
σ(q) = τJ [q] is the compression of µH+(q)[q]. Thus if H+(q) = J, then µ = τ, and if
H+(q) = I, then µ must be τ{p}.

Now we proceed with constructing an alternative representation of C. Let A =
F−(p) ∪ {p}. Note that A �∈ F since in the canonical representation, every set in
F is of the form F+(r) for some r �= p. Let G = F ∪ {A}; then G+(r) = F+(r)
for each r �= p. Thus (τ,G) would seem to be another (m,J)-representation of C.
This is indeed true, except in one case. The problem is that the definition of (m,J)
representation requires that (τ,G+(s)) be m-admissible for all s ∈ J, which means
that w(τ) ≤ m < w(τG+(s)). Now, this is true for all s �= p, since it was true for
(τ,F). However, it is possible that w(τG+(p)) ≤ m. This happens if and only if
w(τ) < m and F−(p) = ∅ so that A = {p}. So we consider two subcases, depending
on whether this happens.

Subcase IIa: (τ,G) is (m,J)-admissible. As we have just discussed, this means
that either F−(p) �= ∅ or F−(p) = ∅ and w(τ) = m. Then (τ,G) is a second (m,J)-
representation of (τ,F); we need to prove that there are no others.

If (µ,H) is an (m,J)-flag representation of C, then let ν, λ,B be as in Lemma
6.12. Then B = {p} or B = ∅. We claim B = ∅. If B = {p}, then w(µ) = w(τ) + 1
and so the (m,J)-admissibility of (µ,H) requires w(τ) < m and so F−(p) �= ∅. Let
s ∈ F−(p); then F+(s) ⊆ F−(p). But τ{p}H+(s) must compress to τF+(s), which
is impossible since p �∈ F+(s).

Thus B = ∅, and so H+(q) = F+(q) = J, which means by Proposition 6.14 that
µ = τ . We now need to show that H = F or H = G, i.e., F ⊆ H ⊆ G. H must contain
F , since H+(r) = F+(r) for all r ∈ I and F was defined only to contain ∅, J, and the
sets F+(r) for r ∈ I. If H is not a subset of G let D be the minimal member of H−G
and let D0 be the largest subset of D in G. Choose x ∈ D−D0 and note that x �= p,
since F−(p) and A are both in G. Then H+(x) = D �= G+(x), which contradicts that
(τ,H) and (τ,G) both are (m,J) representations of C.

Subcase IIb: (τ,G) is not (m,J)-admissible. This means that F−(p) = ∅ and
w(τ) < m. Thus (τ{p}, E) is another (m,J)-flag representation, where E is obtained
from F by deleting p from each set in F and adding the set J .

Suppose that (µ,H) is any (m,J)-flag representation of C; we want to show that
(µ,H) = (τ,F) or (µ,H) = (τ{p}, E). Let ν, λ,B be as in Lemma 6.12. Once again
we have either µ = τ and B = ∅ or µ = τ{p} and B = {p}.

In the case µ = τ, we also have that F+(r) = H+(r) for all r �= p. We claim
that F+(p) = H+(p), which would imply that F = H. To see the claim, observe
that F+(p) is the smallest nonempty set of F , and it belongs to H since F ⊆ H.
Thus it suffices to show that H contains no smaller set. H cannot contain {p} since
w(τp) ≤ m would violate m-admissibility of (τ,H). H cannot contain any other
subset of H because H+(r) = F+(r) for all r �= p. Thus F = H, and (µ,H) = (τ,F).

In the case that µ = τ{p}, for any r �= q we must have that τF+(r) and τ{p}H+(r)
compress to the same vertex of C. Then for every r �= p, H+(r) = F+(r) − {p} =
E+(r). We also have H+(p) = E+(p) = J since J − {p} is a member of both of them.
From Proposition 6.11, H = E , and thus (µ,H) = (τ{p}, E).



WAIT-FREE k-SET AGREEMENT IS IMPOSSIBLE 1479

This completes the proof of Lemma 6.10 which, as explained, completes the proof
that Gm is a triangulation graph and thus completes the proof of the main theorem.

Appendix. The topology of knowable sets. In this appendix, we look
more closely at the structure of the collection of knowable sets, K = {K|K ⊆
Σ̂ is a knowable set}. In particular, we prove that K defines a compact Hausdorff
topological space on Σ̂(P ). Along the way we give two characterizations of this space:
(i) we give a nice basis for K, and (ii) we show that K is the quotient of the Cantor
topology on Σ(P ) with respect to the compression map.

Notions from point set topology are briefly reviewed as needed. For more details,
see [24].

A.1. K is a Hausdorff topology. Recall that formally, a topological space on
a set X is a collection U of subsets of X that includes ∅ and X and is closed under
arbitrary union and finite intersection. The members of U are the open sets of the
topology, and complements of members of U are the closed sets of the topology.

Theorem A.1. K is a topology on the set Σ̂.

Proof. We observed in section 2.8 that ∅ and Σ̂ are both in K. We need to
show that the union of an arbitrary collection of knowable sets is knowable and the
intersection of a finite collection of knowable sets is knowable.

Let {Ki}i∈Λ be an arbitrary collection of knowable sets. We will show that
K∪ = ∪i∈ΛK

i is a knowable set. Let (Πi, di) be an acceptor for Ki and V
i be the

set of values that can be written to the registers by this protocol. We exhibit an
acceptor (Π∪, d) for K∪. Informally the protocol simulates all the protocols in the
above collection in parallel and a processor writes the accept value d when it sees that
at least one of accept values di has been written.

More formally protocol Π∪ is defined as follows. The set of processor states S
consists of the (possibly infinite) product set

∏
i∈Λ(S

i) together with a special state
s�. Thus a state value s is either s� or a tuple (si|i ∈ Λ), where si ∈ Si. (A state
value of s� will mean that a processor is ready to write the accept value d.) The initial
state ep is the tuple (e

i
p|i ∈ Λ). The set of write values V is the product set

∏
i∈Λ V

i

together with the accept value d. If no processor has ever written d, then the contents
of shared memory �l can be viewed as a tuple (�l i : i ∈ Λ), where �l i corresponds to
the run of Πi. The write map w is defined as w(s) = d if s = s� and otherwise w(s)

is the tuple (wi(si) : i ∈ Λ). The state update map u is defined as u(s,�l) = s� if

d appears in �l or there is at least one i ∈ Λ such that di appears in �l i; otherwise
u(s,�l) = (ui(si,�l i) : i ∈ Λ). It is easy to see that the accept value d is written by Π∪

on schedule σ if and only if there is an i ∈ Λ such that di is written by Πi on σ. Thus
the set K∪ is knowable.

Next we want to show that the intersection of a finite collection of knowable
sets is knowable. As above, let {Ki}i∈Λ be a collection of knowable sets and (Π, di)
be acceptors. We define a protocol Π∩ by a minor modification of Π∪. The only
difference is in the state update map u. The condition for a processor to enter state
s� is either that some processor has written d or for every i ∈ Λ, di appears in �l i.

It is easy to see that if the accept value d is written by Π∩ on schedule σ, then for
all i ∈ Λ, di is written by Πi on σ and thus K(Π∩, d) is a subset of K∩. The reverse
containment holds if Λ is finite (although it need not hold if Λ is infinite; see below).
For σ ∈ K∩ let ji be the index of the block of σ in which di is first written and let
j be the maximum of the ji. Then any processor taking a step subsequent to block
j will see all of the decision values di and thus move to state s�. At least one such
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processor will take another step and will thus write d.

Observe that this final argument fails when the collection {Ki} is infinite because
the index j may not be defined. As an example, let Ki be the set of compressed
schedules where processor p takes at least i steps, and let i range over the positive
integers.

Next, recall that a topological space (X,U) is a Hausdorff space if for any two
distinct points x, y ∈ X there are disjoint open sets Ux and Uy with x ∈ Ux and
y ∈ Uy.

Lemma A.2. (Σ,K) satisfies the Hausdorff condition.
Proof. In this case the Hausdorff condition means that if σ and φ are distinct

compressed schedules, then there is a pair of acceptors (Π, d) and (Φ, d′) such that Π
accepts σ and Φ accepts φ and no schedule is accepted by both. We will take Π and
Φ to be a minor modification of the counting protocol: when processor p writes for
the ith time, it writes (T, p), where T is its current tally vector (instead of just T ).

Now we need to choose the accepting values for Φ and Π, which will be of the form
(T, p). Since σ and φ are distinct compressed schedules, Theorem 2.12 implies that
their tally records must be different. Apply Lemma 2.5. Under the first conclusion of
this lemma, there is a processor p and a positive integer i such that p takes at least
i steps in both schedules and tally vectors Countp,i(φ) and Countp,i(φ) are different.
Thus take d = (Countp,i(σ), p) and d

′ = (Countp,i(φ), p). Note that for any schedule
ρ, at most one of d and d′ can appear in its public tally since both can appear only
in the list of processor p, and that list can contain only one vector that has an i− 1
in position p, while both of these vectors have an i− 1 in that position.

Under the second conclusion of Lemma 2.5 there is a pair of crossing vectors v
and w such that v appears in the public tally corresponding to σ and w appears in
the public tally corresponding to φ. Let q be a processor that writes v during σ and r
be a processor that writes w during φ. Let d = (v, q) and d′ = (w, r); the fact that v
and w are crossing ensures that no schedule can be accepted by both protocols.

A.2. A basis for K. A basis for a topology (X,U) is a collection B of open sets
with the property that every open set is a union of members of B. Equivalently, B is
a basis if for any point x and open set U containing x, there is a B ∈ B such that
x ∈ B ⊆ U .

Recall that for a fragment τ, the set Qτ is the set of schedules that are quasi
extensions of τ, and Q̂τ = Qτ ∩ Σ̂(P ). Then Example 2.21 and Proposition 2.25 imply
the following.

Theorem A.3. The set {Q̂τ : τ a fragment} is a basis for the knowable set
topology.

A.3. Representing K as a quotient topology. Let (X,U) be a topological
space and f : X −→ Y be any surjective map. It is easily checked that the collection
U/f = {W ⊆ Y : f−1(W ) ∈ U} defines a topology on Y, called the quotient of (X,U)
by f . Here we represent the knowable set topology on Σ̂(P ) as a quotient of a simple
topology on Σ(P ).

For a fragment τ, let Bτ be the set of all schedules that have τ as a prefix. Let
(Σ(P ),S) be the topology whose open sets are unions of sets Bτ . (This is called the
Cantor topology on Σ(P ).)

Consider the map f : Σ −→ Σ̂, where f(σ) = σ̂. In this case, the quotient
topology R = S/f is defined on Σ̂ and is given by R = {U ⊂ Σ̂|f−1(U) ∈ S}.

Theorem A.4. K and R define the same topology on Σ̂.
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Proof. (1) K ⊆ R. Since {Q̂τ |τ ∈ Φ(P )} is a basis for K, it suffices to show that
for each fragment τ, Q̂τ is in R, i.e., that f−1(Q̂τ ) is open in the Cantor topology.
For this, it suffices to show that if σ ∈ f−1(Q̂τ ), then there is a fragment µ so that
σ ∈ Bµ ⊆ f−1(Q̂τ ). Since σ is in f−1(Q̂τ ) it is a quasi extension of τ, which by
Theorem 2.16 means that its public tally is an extension of the public tally of τ .
Since τ is finite, there is a prefix µ of σ such that the public tally of µ extends the
public tally of τ . This implies that any schedule in Bµ is a quasi extension of τ, i.e.,

Bµ ⊆ f−1(Q̂τ ).

(2) R ⊆ K. Let S ⊂ Σ̂ be a set such that f−1(S) is an open set in the Cantor
topology. We will prove that S is a knowable set. Let σ ∈ S be arbitrary. It suffices
to show that there is a knowable set K containing σ such that K ⊂ S.

Let f−1(σ) = {σ1, . . . , σk}, which is a finite set by Proposition 2.10. For each
σi ∈ f−1(σ) let Bρi be a basis set in the Cantor topology such that σ

i ∈ Bρi ⊂ f−1(S).
Choose a prefix ρ of σ that has greater weight (total number of steps) than each

of the ρi and also contains all of the steps of the faulty processors of σ. We write
σ = ρχ, where Active(χ) is equal to N, the set of nonfaulty processors of σ. Hence,
ρN is compressed since ρχ is. By Lemma 2.15, σ ∈ Q̂ρN . We claim that Q̂ρN ⊆ S,
which will complete the proof.

Let γ be an arbitrary schedule in Q̂ρN ; we show that γ ∈ S. For this it suffices to
find a j such that γ ∈ Bρj , i.e., ρj is a prefix of γ. By Theorem 2.16 there is a prefix τ

of γ, a schedule φ, and a subset U of Active(φ) such that γ = τφ and τ̂U = ρN . Since

τ̂U = ρN we must have U ⊆ N and τ = βζ, where ζ consists of some sequence of
disjoint blocks whose union is U−N and the last block of β has nonempty intersection

with N . Thus β̂N = τ̂U = ρN .

We now claim that β̂χ = σ. Now, since σ is compressed, so is χ. It is easy to see
that a block is hidden in βχ if and only if it is hidden inside β within the fragment βN,

and since the compression of βN is ρN, we have β̂χ = ρχ = σ. Hence βχ ∈ f−1(σ),
and βχ ∈ Bρj for some j. Since β and ρ have the same weight, which is at least the
weight of ρj , we have that ρj is a prefix of β. Therefore γ = βζφ ∈ Bρj .

A topological space (X,U) is compact if for any collection of open sets whose
union is X there is a finite subcollection whose union is X. We remark that since
the Cantor topology is known to be compact, and a quotient of a compact topology
is compact, we have the following.

Corollary A.5. The topological space (Σ̂,K) is compact.
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Abstract. A typical approach to estimate an unknown quantity µ is to design an experiment that
produces a random variable Z distributed in [0, 1] with E[Z] = µ, run this experiment independently
a number of times, and use the average of the outcomes as the estimate. In this paper, we consider the
case when no a priori information about Z is known except that is distributed in [0, 1]. We describe
an approximation algorithm AA which, given ε and δ, when running independent experiments with
respect to any Z, produces an estimate that is within a factor 1+ε of µ with probability at least 1−δ.
We prove that the expected number of experiments run by AA (which depends on Z) is optimal to
within a constant factor for every Z.
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mation, stochastic approximation
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1. Introduction. The choice of experiment, or experimental design, forms an
important aspect of statistics. One of the simplest design problems is that of de-
ciding when to stop sampling. For example, suppose Z1, Z2, . . . are independently
and identically distributed according to Z in the interval [0, 1] with mean µZ . From
Bernstein’s inequality, we know that if N is fixed proportional to ln(1/δ)/ε2 and
SN = Z1 + · · ·+ZN , then with probability at least 1− δ, S/N approximates µZ with
absolute error ε. Often, however, µZ is small and a good absolute error estimate of
µZ is typically a poor relative error approximation of µZ .

We say µ̃Z is an (ε, δ)-approximation of µZ if

Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] ≥ 1 − δ.

In engineering and computer science applications, we often desire an (ε, δ)-approxi-
mation of µZ in problems where exact computation of µZ is NP-hard. For example,
many researchers have devoted substantial effort to the important and difficult prob-
lem of approximating the permanent of 0−1 valued matrices [1, 4, 5, 9, 10, 13, 14]. Re-
searchers have also used (ε, δ)-approximations to tackle many other difficult problems,

∗Received by the editors January 20, 1997; accepted for publication (in revised form) December
9, 1998; published electronically March 15, 2000. An announcement of these results appears in P.
Dagum, D. Karp, M. Luby, and S. Ross, An optimal algorithm for Monte Carlo Estimation (extended
abstract), Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, 1995, pp.
142–149.

http://www.siam.org/journals/sicomp/29-5/31530.html
†Section on Medical Informatics, Stanford University School of Medicine, Stanford, CA 94305-

5479 (dagum@smi.stanford.edu). The research of this author was supported in part by National
Science Foundation operating grant IRI-93-11950.

‡International Computer Science Institute, Berkeley, CA 94704 (karp@icsi.berkeley.edu).
§International Computer Science Institute, Berkeley, CA, 94704, and Computer Science Division,

University of California at Berkeley, Berkeley, CA 94704 (luby@icsi.berkeley.edu). The research of
this author was supported in part by National Science Foundation operating grants CCR-9304722
and NCR-9416101, United States–Israel Binational Science Foundation grant 92-00226, and ESPRIT
BR grant EC-US 030.

¶Department of Industrial Engineering and Operations Research, University of California at
Berkeley, Berkeley, CA 94720 (smross@euler.berkeley.edu). The research of this author was sup-
ported in part by National Science Foundation operating grant DMI-9610046.

1484



OPTIMAL MONTE CARLO ESTIMATION 1485

such as approximating probabilistic inference in Bayesian networks [6], approximating
the volume of convex bodies [7], solving the Ising model of statistical mechanics [11],
solving for network reliability in planar multiterminal networks [15, 16], approximat-
ing the number of solutions to a DNF formula [17] or, more generally, to a GF[2]
formula [18], and approximating the number of Eulerian orientations of a graph [19].

Define

λ = (e − 2) ≈ .72,

Υ = 4λ ln(2/δ)/ε2

and let σ2
Z denote the variance of Z. Define

ρZ = max{σ2
Z , εµZ}.

We first prove a slight generalization of the zero-one estimator theorem [12, 15, 16, 17].
The new theorem, the generalized zero-one estimator theorem, proves that if

N = Υ · ρZ/µ2
Z ,(1)

then SN/N is an (ε, δ)-approximation of µZ .
To apply the generalized zero-one estimator theorem we require the values of the

unknown quantities µZ and σ2
Z . Researchers circumvent this problem by computing

an upper bound κ on ρZ/µ
2
Z and using κ in place of ρZ/µ

2
Z to determine a value for

N in (1). An a priori upper bound κ on ρZ/µ
2
Z that is close to ρZ/µ

2
Z is often very

difficult to obtain, and a poor bound leads to a prohibitive large bound on N .
To avoid the problem encountered with the generalized zero-one estimator theo-

rem, we use the outcomes of previous experiments to decide when to stop iterating.
This approach is known as sequential analysis and originated with the work of Wald
on statistical decision theory [22]. Related research has applied sequential analysis to
specific Monte Carlo approximation problems such as estimating the number of points
in a union of sets [17] and estimating the number of self-avoiding walks [20]. In other
related work, Dyer et al. describe a stopping rule–based algorithm that provides an
upper bound estimate on µZ [8]. With probability 1 − δ, the estimate is at most
(1 + ε)µZ , but the estimate can be arbitrarily smaller than µ in the challenging case
when µ is small.

We first describe an approximation algorithm based on a simple stopping rule.
Using the stopping rule, the approximation algorithm outputs an (ε, δ)-approximation
of µZ after an expected number of experiments proportional to Υ/µZ . The variance of
the random variable Z is maximized subject to a fixed mean µZ if Z takes on value 1
with probability µZ and 0 with probability 1−µZ . In this case, σ2

Z = µZ(1−µZ) ≈ µZ ,
and the expected number of experiments run by the stopping rule–based algorithm is
within a constant factor of optimal. In general, however, σ2

Z is significantly smaller
than µZ , and for small values of σ2

Z the stopping rule–based algorithm performs 1/ε
times as many experiments as the optimal number.

We describe a more powerful algorithm, the AA algorithm that, on inputs ε, δ,
and independently and identically distributed outcomes Z1, Z2, . . . generated from any
random variable Z distributed in [0, 1], outputs an (ε, δ)-approximation of µZ after
an expected number of experiments proportional to Υ · ρZ/µ2

Z . Unlike the simple,
stopping rule–based algorithm, we prove that for all Z, AA runs the optimal number
of experiments to within a constant factor. Specifically, we prove that if BB is any
algorithm that produces an (ε, δ)-approximation of µZ using the inputs ε, δ, and
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Z1, Z2, . . . , then BB runs an expected number of experiments proportional to at least
Υ · ρZ/µ2

Z . (Canetti, Even, and Goldreich prove the related lower bound Ω(ln(1/δ)/ε2)
on the number of experiments required to approximate µZ with absolute error ε with
probability at least 1−δ [2].) Thus we show that for any random variable Z, AA runs
an expected number of experiments that is within a constant factor of the minimum
expected number.

The AA algorithm is a general method for optimally using the outcomes of
Monte Carlo experiments for approximation—that is, to within a constant factor,
the algorithm uses the minimum possible number of experiments to output an (ε, δ)-
approximation on each problem instance. Thus, AA provides substantial computa-
tional savings in applications that employ a poor upper bound κ on ρZ/µ

2
Z . For

example, the best known a priori bound on κ for the problem of approximating the
permanent of size n is superpolynomial in n [13]. Yet for many problem instances of
size n, the number of experiments run by AA is significantly smaller than this bound.
Other examples exist where the bounds are also extremely loose for many typical
problem instances [7, 10, 11]. In all those applications, we expect AA to provide sub-
stantial computational savings, and possibly render problems that were intractable
because of the poor upper bounds on ρZ/µ

2
Z , amenable to efficient approximation.

2. Approximation algorithm. In subsection 2.1, we describe a stopping rule
algorithm for estimating µZ . This algorithm is used in the first step of the approxi-
mation algorithm AA that we describe in subsection 2.2.

2.1. Stopping Rule Algorithm. Let Z be a random variable distributed in
the interval [0, 1] with mean µZ . Let Z1, Z2, . . . be independently and identically
distributed according to Z.

Stopping Rule Algorithm.

Input parameters: (ε, δ) with 0 < ε < 1, δ > 0.
Let Υ1 = 1 + (1 + ε)Υ.

Initialize N ← 0, S ← 0

While S < Υ1 do: N ← N + 1; S ← S + ZN

Output: µ̃Z ← Υ1/N

Stopping Rule Theorem. Let Z be a random variable distributed in [0, 1]
with µZ = E[Z] > 0. Let µ̃Z be the estimate produced and let NZ be the number of
experiments that the Stopping Rule Algorithm runs with respect to Z on input ε and
δ. Then,

(1) Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] > 1 − δ,

(2) E[NZ ] ≤ Υ1/µZ .

The proof of this theorem can be found in section 5.

2.2. Approximation Algorithm AA. The (ε, δ)-approximation algorithm AA
consists of three main steps. The first step uses the stopping rule–based algorithm
to produce an estimate µ̂Z that is within a constant factor of µZ with probability at
least 1 − δ. The second step uses the value of µ̂Z to set the number of experiments
to run in order to produce an estimate ρ̂Z that is within a constant factor of ρ with
probability at least 1−δ. The third step uses the values of µ̂Z and ρ̂Z produced in the
first two steps to set the number of experiments and runs this number of experiments
to produce an (ε, δ)-estimate of µ̃Z of µZ .
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Let Z be a random variable distributed in the interval [0, 1] with mean µZ and
variance σ2

Z . Let Z1, Z2, . . . and Z ′
1, Z

′
2, . . . denote two sets of random variables inde-

pendently and identically distributed according to Z.
Approximation Algorithm AA.

Input Parameters: (ε, δ), with 0 < ε ≤ 1 and 0 < δ ≤ 1.
Let Υ2 = 2(1 +

√
ε)(1 + 2

√
ε)(1 + ln(3

2 )/ ln(2
δ ))Υ ≈ 2Υ for small ε and δ.

Step 1: Run the Stopping Rule Algorithm using Z1, Z2 . . . with input parameters
min{1/2,

√
ε} and δ/3. This produces an estimate µ̂Z of µZ .

Step 2: Set N = Υ2 · ε/µ̂Z and initialize S ← 0.
For i = 1, . . . , N do: S ← S + (Z ′

2i−1 − Z ′
2i)

2/2.
ρ̂Z ← max{S/N, εµ̂Z}.

Step 3: Set N = Υ2 · ρ̂Z/µ̂2
Z and initialize S ← 0.

For i = 1, . . . , N do: S ← S + Zi.
µ̃Z ← S/N .

Output: µ̃Z
AA Theorem. Let Z be any random variable distributed in [0, 1], µZ = E[Z] > 0

be the mean of Z, σ2
Z be the variance of Z, and ρZ = max{σ2

Z , εµZ}. Let µ̃Z be the
approximation produced by AA and let NZ be the number of experiments run by AA
with respect to Z on input parameters ε and δ. Then,

(1) Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] ≥ 1 − δ.
(2) There is a universal constant c′ such that Pr[NZ ≥ c′Υ · ρZ/µ2

Z ] ≤ δ.
(3) There is a universal constant c′ such that E[NZ ] ≤ c′ΥρZ/µ

2
Z .

We prove the AA theorem in section 6.

3. Lower bound. Algorithm AA is able to produce a good estimate of µZ using
no a priori information about Z. An interesting question is, What is the inherent
number of experiments needed to produce an (ε, δ)-approximation of µZ? In this
section, we state a lower bound on the number of experiments needed by any (ε, δ)-
approximation algorithm to estimate µZ when there is no a priori information about
Z. This lower bound shows that, to within a constant factor, AA runs the minimum
number of experiments for every random variable Z.

To formalize the lower bound, we introduce the following natural model. Let BB
be any algorithm that on input (ε, δ) works as follows with respect to Z. Let Z1, Z2, . . .
denote independently and identically distributed according to Z with values in the
interval [0, 1]. BB runs an experiment, and on the Nth run BB receives the value ZN .
The measure of the running time of BB is the number of experiments it runs, i.e., the
time for all other computations performed by BB is not counted in its running time.
BB is allowed to use any criteria it wants to decide when to stop running experiments
and produce an estimate, and in particular BB can use the outcome of all previous
experiments. The estimate that BB produces when it stops can be any function of
the outcomes of the experiments it has run up to that point. The requirement of BB
is that it produces an (ε, δ)-approximation of µZ for any Z.

This model captures the situation where the algorithm can only gather informa-
tion about µZ through running random experiments and where the algorithm has no
a priori knowledge about the value of µZ before starting. This is a reasonable pair
of assumptions for practical situations. It turns out that the assumption about a
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priori knowledge can be substantially relaxed: the algorithm may know a priori that
the outcomes are being generated according to some known random variable Z or to
some closely related random variable Z ′, and still the lower bound on the number of
experiments applies.

Note that Algorithm AA fits into this model, and thus the average number of
experiments it runs with respect to Z is minimal for all Z to within a constant factor
among all such approximation algorithms.

Lower Bound Theorem. Let BB be any algorithm that works as described
above on input (ε, δ). Let Z be a random variable distributed in [0, 1], µZ be the mean
of Z, σ2

Z be the variance of Z, and ρZ = max{σ2
Z , εµZ}. Let µ̃Z be the approximation

produced by BB and let NZ be the number of experiments run by BB with respect to
Z. Suppose that BB has the the following properties:

(1) For all Z with µZ > 0, E[NZ ] < ∞.
(2) For all Z with µZ > 0,

Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] > 1 − δ.

Then, there is a universal constant c > 0 such that for all Z, E[NZ ] ≥ cΥ · ρZ/µ2
Z .

We prove this theorem in section 7.

4. Preliminaries for the proofs. We begin with some notation that is used
hereafter. Let ξ0 = 0 and for k > 0 let

ξk =

k∑
i=1

(Zi − µZ).(2)

For fixed α, β ≥ 0, we define the random variables

ζ+
k = ξk − α− βk,(3)

ζ−k = −ξk − α− βk.(4)

The main lemma we use to prove the first part of the Stopping Rule Theo-
rem provides bounds on the probabilities that the random variables ζ+

k and ζ−k are

greater than zero. We first form the sequences of random variables edζ
+
0 , edζ

+
1 , . . . and

edζ
−
0 , edζ

−
1 , . . . for any real-valued d. We prove that these sequences are supermartin-

gales when 0 ≤ d ≤ 1 and β ≥ dσ2
Z , i.e., for all k > 0

E[edζ
+
k |edζ

+
k−1 , . . . , edζ

+
0 ] ≤ edζ

+
k−1 ,

and similarly,

E[edζ
−
k |edζ

−
k−1 , . . . , edζ

−
0 ] ≤ edζ

−
k−1 .

We then use properties of supermartingales to bound the probabilities that the random
variables ζ+

k and ζ−k are greater than zero. For these and subsequent proofs, we use
the following two inequalities.

Inequality 4.1. For all α, eα ≥ 1 + α.
Inequality 4.2. Let λ = (e − 2) ≈ .72. For all α with |α| ≤ 1,

1 + α + α2/(2 + λ) ≤ eα ≤ 1 + α + λ · α2.
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Lemma 4.3. For |d| ≤ 1, E[edZ ] ≤ edµZ+λd2σ2
Z .

Proof. Observe that E[edZ ] = edµZE[ed(Z−µZ)]. But from Inequality 4.2,

ed(Z−µZ) ≤ 1 + d(Z − µZ) + λd2(Z − µZ)2.

Taking expectations and applying Inequality 4.1 completes the proof.
Lemma 4.4. For 0 ≤ d ≤ 1, and for β ≥ λdσ2

Z , the sequences of random variables

edζ
+
0 , edζ

+
1 , . . . and edζ

−
0 , edζ

−
1 , . . . form supermartingales.

Proof. For k ≥ 1

edζ
+
k = edζ

+
k−1 · e−dβ · ed(ξk−ξk−1)

and thus

E[edζ
+
k |edζ

+
k−1 , . . . , edζ

+
0 ] = edζ

+
k−1 · e−dβE[ed(ξk−ξk−1)].

Similarly, for k ≥ 1

E[edζ
−
k |edζ

−
k−1 , . . . , edζ

−
0 ] = edζ

−
k−1 · e−dβE[e−d(ξk−ξk−1)].

But ξk − ξk−1 = Zk − µZ and thus from Lemma 4.3,

E[ed(ξk−ξk−1)] ≤ eλd
2σ2

Z

and

E[e−d(ξk−ξk−1)] ≤ eλd
2σ2

Z .

Thus, for β ≥ λdσ2
Z ,

E[edζ
+
k |edζ

+
k−1 , . . . , edζ

+
0 ] ≤ edζ

+
k−1 · ed(λdσ

2
Z−β) ≤ edζ

+
k−1

and

E[edζ
−
k |edζ

−
k−1 , . . . , edζ

−
0 ] ≤ edζ

−
k−1 · ed(λdσ

2
Z−β) ≤ edζ

−
k−1 .

Lemma 4.5, needed for the proof of Lemma 4.6, follows directly from the proper-
ties of conditional expectations and of martingales.

Lemma 4.5. If η0, . . . , ηk is a supermartingale, then for all 0 ≤ i ≤ k

E[ηi|η0] ≤ η0.

We next prove Lemma 4.6. This lemma is the key to the proof of the first part of
the Stopping Rule Theorem. In addition, from this lemma we easily prove a slightly
more general version of the zero-one estimator theorem.

Lemma 4.6. For any fixed N > 0, for any β ≤ 2λρZ ,

Pr[ξN/N ≥ β] ≤ e
−Nβ2

4λρZ(5)

and

Pr[ξN/N ≤ −β] ≤ e
−Nβ2

4λρZ .(6)
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Proof. Recall the definitions of ζ+
N and ζ−N from (3) and (4). Let α = 0. Then,

the left-hand side of (5) is equivalent to Pr[ζ+
N ≥ 0] and the left-hand side of (6)

is equivalent to Pr[ζ−N ≥ 0]. Let α′ = βN/2 and β′ = β/2. For 0 ≤ i ≤ N , let
ζ ′+i = ξi − α′ − β′i and ζ ′−i = −ξi − α′ − β′i. Thus, ζ ′+N = ζ+

N and ζ ′−N = ζ−N .
We now give the remainder of the proof of (5), using ζ ′+N , and omit the remainder

of the analogous proof of (6) which uses ζ ′−N in place of ζ ′+N . For any N > 0,

Pr[ζ ′+N ≥ 0] = Pr[edζ
′+
N ≥ 1] ≤ E[edζ

′+
N ].

Set d = β′/(λρZ) = β/(2λρZ). Note that β ≤ 2λρZ implies that d ≤ 1. Note also that

since ρZ ≥ σ2
Z , β′ ≥ λdσ2

Z . Thus, by Lemma 4.4, edζ
′+
0 , . . . , edζ

′+
N is a supermartingale.

Thus, by Lemma 4.5

E[edζ
′+
N |edζ

′+
0 ] ≤ edζ

′+
0 = e

−α′β′
λρZ = e

−Nβ2

4λρZ .

Since edζ
′+
0 is a constant,

E[edζ
′+
N |edζ

′+
0 ] = E[edζ

′+
N ],

completing the proof of (5).
We use Lemma 4.6 to generalize the zero-one estimator theorem [17] from {0, 1}-

valued random variables to random variables in the interval [0, 1].
Generalized zero-one estimator theorem. Let Z1, Z2, . . . , ZN denote ran-

dom variables that are independent and identically distributed according to Z. If ε < 1
and

N = 4λ ln(2/δ) · ρZ/(εµZ)2,

then

Pr

[
(1 − ε)µZ ≤

N∑
i=1

Zi/N ≤ (1 + ε)µZ

]
> 1 − δ.

Proof. The proof follows directly from Lemma (4.6), using β = εµZ , noting that
εµZ ≤ 2λρZ and that N · (εµZ)2/(4λρZ) = ln(2/δ).

5. Proof of the Stopping Rule Theorem. We next prove the Stopping Rule
Theorem. Recall that λ = (e−2) ≈ .72 and Υ1 = 1+(1+ε)Υ = 1+4λ ln(2/δ)(1+ε)/ε2.

Proof of part (1). Recall that µ̃Z = Υ1/NZ . It suffices to show that

Pr[NZ < Υ1/(µZ(1 + ε))] + Pr[NZ > Υ1/(µZ(1 − ε))] ≤ δ.

We first show that Pr[NZ < Υ1/(µZ(1 + ε))] ≤ δ/2. Let L = �Υ1/(µZ(1 + ε))�.
Assuming that µZ(1 + ε) ≤ 1, the definition of Υ1 and L implies that

L ≥ 4λ ln(2/δ)

ε2µZ
.(7)

Since NZ is an integer, NZ < Υ1/(µZ(1 + ε)) if and only if NZ ≤ L. But NZ ≤ L if
and only if SL ≥ Υ1. Thus,

Pr[NZ < Υ1/(µZ(1 + ε))] = Pr[NZ ≤ L] = Pr[SL ≥ Υ1].
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Let β = Υ1/L− µZ . Then,

Pr[SL ≥ Υ1] = Pr[SL − µZL− βL ≥ 0] = Pr[ξL/L ≥ β].

Noting that εµZ ≤ β ≤ 2λρZ , Lemma (4.6) implies that

Pr[ξL/L ≥ β] ≤ e
−Lβ2

4λρZ ≤ e
−L(εµZ )2

4λρZ .

Using inequality (7) and noting that ρZ ≤ µZ , it follows that this is at most δ/2.
The proof that Pr[NZ > Υ1/(µZ(1 − ε))] ≤ δ/2 is similar.
Proof of part (2). The random variable NZ is the stopping time such that

Υ1 ≤ SNZ
< Υ1 + 1.

Using Wald’s equation [22] and E[NZ ] < ∞, it follows that

E[SNZ
] = E[NZ ]µZ

and thus,

Υ1/µZ ≤ E[NZ ] < (Υ1 + 1)/µZ .

Similar to the proof of the first part of the Stopping Rule Theorem, we can show
that

Pr[NZ > (1 + ε)Υ1/µZ ] ≤ δ/2,(8)

and therefore with probability at least 1 − δ/2 we require at most (1 + ε)Υ1/µZ
experiments to generate an approximation. The following lemma is used in the proof
of the AA Theorem in section 6.

Stopping Rule Lemma.
(1) E[1/µ̃Z ] = O(1/µZ).
(2) E[1/µ̃2

Z ] = O(1/µ2
Z).

Proof of the Stopping Rule Lemma. E[1/µ̃Z ] = O(1/µZ) follows directly from
part (2) of the Stopping Rule Theorem and the definition of NZ . E[1/µ̃2

Z ] = O(1/µ2
Z)

can be easily proved based on the ideas used in the proof of part (2) of the Stopping
Rule Theorem.

6. Proof of the AA Theorem.
AA theorem. Let Z be any random variable distributed in [0, 1], µZ be the mean

of Z, σ2
Z be the variance of Z, and ρZ = max{σ2

Z , εµZ}. Let µ̃Z be the approximation
produced by AA and let NZ be the number of experiments run by AA with respect to
Z on input parameters ε and δ. Then

(1) Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] ≥ 1 − δ,
(2) there is a universal constant c′ such that Pr[NZ ≥ c′Υ · ρZ/µ2

Z ] ≤ δ,
(3) there is a universal constant c′ such that E[NZ ] ≤ c′ΥρZ/µ

2
Z .

Proof of part (1). From the Stopping Rule Theorem, after step (1) of AA, µZ(1−√
ε) ≤ µ̂Z ≤ µZ(1 +

√
ε) holds with probability at least 1 − δ/3. Let Φ = 2(1 +

√
ε)2.

We show next that if µZ(1 −
√
ε) ≤ µ̂Z ≤ µZ(1 +

√
ε), then in step (2) the choice of

Υ2 guarantees that ρ̂Z ≥ ρZ/2. Thus, after steps (1) and (2), Φρ̂Z/µ̂
2
Z ≥ ρZ/µ

2
Z with

probability at least 1 − δ/3. But by the generalized zero-one estimator theorem, for
N = (1 + ln(3

2 )/ ln(2
δ ))Υ · ρZ/µ2

Z ≤ Φ(1 + ln(3
2 )/ ln(2

δ ))Υ · ρ̂Z/µ̂2
Z ≤ Υ2 · ρ̂Z/µ̂2

Z , step
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(3) guarantees that the output µ̃Z of AA satisfies Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] ≥
1 − 2δ/3.

For all i, let ξi = (Z2i−1 − Z2i)
2/2, and observe that, E[ξ] = σ2

Z . First assume
that σ2

Z ≥ εµZ , and hence ρZ = σ2
Z . If σ2

Z ≥ 2(1−
√
ε)εµZ , then from the generalized

zero-one estimator theorem, after at most (2/(1 −
√
ε))(1 + ln(3

2 )/ ln(2
δ )) · Υ · ε/µZ ≤

Υ2 · ε/µ̂Z experiments, ρZ/2 ≤ S/N ≤ 3ρZ/2 with probability at least 1−2δ/3. Thus
ρ̂Z ≥ ρZ/2. If εµZ ≤ σ2

Z ≤ 2(1 −
√
ε)εµZ , then εµZ ≥ σ2

Z/(2(1 −
√
ε)), and therefore,

ρ̂Z ≥ εµ̂Z ≥ ρZ/2.
Next, assume that σ2

Z ≤ εµZ and thus ρZ = εµZ . But steps (1) and (2) guarantee
that ρ̂Z ≥ εµ̂Z ≥ ρZ(1 −

√
ε), with probability at least 1 − δ/3.

Proof of part (2). AA may fail to terminate after O(Υ·ρZ/µ2
Z) experiments either

because step (1) failed with probability at least δ/2 to produce an estimate µ̂Z such
that µZ(1 −

√
ε) ≤ µ̂Z ≤ µZ(1 +

√
ε), or, because in step (2), for σ2

Z ≤ 2(1 −
√
ε)εµZ ,

ρ̂Z = S/N and S/N is not O(εµZ) with probability at least 1 − δ/2.
But (8) guarantees that step (1) of AA terminates after O(Υ·ρZ/µ2

Z) experiments
with probability at least 1 − δ/2. In addition, we can show similarly to Lemma 4.6,
that if σ2

Z ≤ 2εµZ , then

Pr[S/N ≥ 4εµZ ] ≤ e−NεµZ/2.

Thus, for N ≥ 2Υ · ε/µZ , we have that Pr[S/N ≥ 4εµZ ] ≤ δ/2.
Proof of part (3). Observe that from the Stopping Rule Theorem, the expected

number of experiments in step (1) is O(ln(1/δ)/(εµZ)). From the Stopping Rule
Lemma, the expected number of experiments in step (2) is O(ln(1/δ)/(εµZ)). Finally,
in step (3) we observe that E[ρ̂Z/µ̂

2
Z ] = E[ρ̂Z ]E[1/µ̂2

Z ] since ρ̂Z and µ̂Z are computed
from disjoint sets of independently and identically distributed random variables. From
the Stopping Rule Lemma E[1/µ̂2

Z ] is O(ln(1/δ)/µ2
Z). Furthermore, observe that

E[ρ̂Z ] ≤ E[S/N ] + E[εµ̂Z ]. But E[S/N ] = σ2
Z and E[εµ̂Z ] = O(εµZ). Thus, if

σ2
Z ≥ εµZ , then ρZ = σ2

Z and E[ρ̂Z ] = O(σ2
Z) = O(ρZ). If σ2

Z ≤ εµZ , then ρZ = εµZ
and E[ρ̂Z ] = O(εµZ) = O(ρZ). Thus, the expected number of experiments in step
(3) is O(ln(1/δ) · ρZ/(εµZ)2)

7. Proof of the Lower Bound Theorem.
Lower Bound Theorem. Let BB be any algorithm that works as described

above on input (ε, δ). Let Z be a random variable distributed in [0, 1], µZ be the mean
of Z, σ2

Z be the variance of Z, and ρZ = max{σ2
Z , εµZ}. Let µ̃Z be the approximation

produced by BB and let NZ be the number of experiments run by BB with respect to
Z. Suppose that BB has the the following properties:

(1) For all Z with µZ > 0, E[NZ ] < ∞.
(2) For all Z with µZ > 0, Pr[µZ(1 − ε) ≤ µ̃Z ≤ µZ(1 + ε)] > 1 − δ.
Then there is a universal constant c > 0 such that for all Z, E[NZ ] ≥ cΥ ·ρZ/µ2

Z .
Let fZ(x) and fZ′(x) denote two given distinct probability mass (or in the con-

tinuous case, density) functions. Let Z1, Z2, . . . denote independent and identically
distributed random variables with probability density f(x). Let HZ denote the hy-
pothesis f = fZ and let HZ′ denote the hypothesis f = fZ′ . Let α denote the
probability that we reject HZ under fZ and let β denote the probability that we
accept HZ′ under fZ′ .

The sequential probability ratio test minimizes the number of expected sample
size under both HZ and HZ′ among all tests with the same error probabilities α and
β. Theorem 7.1 states the result of the sequential probability ratio test. We prove
the result for completeness, although similar proofs exist [21].
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Theorem 7.1. If T is the stopping time of any test of HZ against HZ′ with error
probabilities α and β, and EZ [T ],EZ′ [T ] < ∞, then

EZ [T ] ≥ 1

ωZ

(
α ln

1 − β

α
+ (1 − α) ln

β

1 − α

)

and

EZ′ [T ] ≥ 1

ωZ′

(
(1 − β) ln

1 − β

α
+ β ln

β

1 − α

)
,

where ωZ = EZ [ln(fZ′(x)/fZ(x))] and ωZ′ = EZ′ [ln(fZ′(x)/fZ(x))].

Proof. For the independent and identically distributed random variables Z1, Z2, . . .,
let λk(Zk) = ln(fZ′(Zk)/fZ(Zk)). Define ζ+

k = λk + · · · + λ1 and ζ−k = ζ+
k .

For stopping time T , we get from Wald’s first identity

EZ [ζ+
T ] = EZ [T ]EZ [λ1]

and

EZ′ [ζ−T ] = EZ′ [T ]EZ′ [λ1].

Next, let Ω denote the space of all inputs on which the test rejects HZ , and
let Ωc denote its complement. Thus by definition, we require that PrZ [Ω] = α and
PrZ [Ωc] = 1−α. Similarly, we require that PrZ′ [Ω] = 1−β and PrZ′ [Ωc] = β. From
the properties of expectations we can show that

EZ [ζ+
T ] = EZ [ζ+

T |Ω]PrZ [Ω] + EZ [ζ+
T |Ωc]PrZ [Ωc].

We can decompose EZ′ [ζ−T ] similarly. Let µ = EZ [ζ+
T |Ω] and observe that from

Inequality 4.1, EZ [eζ
+
T
−µ|Ω] ≥ 1. Thus

µ ≤ lnEZ [eζ
+
T |Ω].

But

EZ [eζ
+
T |Ω] = EZ [eζ

+
T IΩ]/PrZ [Ω],

where IΩ denotes the characteristic function for the set Ω. Thus, since

eζ
+
T =

T∏
i=1

fZ′(Zi)

fZ(Zi)
,

we can show that

EZ [eζ
+
T IΩ] = PrZ′ [Ω],

and finally,

EZ [ζ+
T |Ω] ≤ lnEZ [eζ

+
T |Ω] = ln

1 − β

α
.
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Similarly, we can show that

EZ [ζ+
T |Ωc] ≤ ln

β

1 − α
,

EZ′ [ζ−T |Ω] ≤ ln
α

1 − β
,

and

EZ′ [ζ−T |Ωc] ≤ ln
1 − α

β
.

Thus,

−EZ [T ]EZ [λ0] ≤ α ln
1 − β

α
+ (1 − α) ln

β

1 − α
,

which proves the first part of the lemma. Similarly,

−EZ′ [T ]EZ′ [λ0] ≤ (1 − β) ln
α

1 − β
+ β ln

1 − α

β
,

proves the second part of the lemma.
Corollary 7.2. If T is the stopping time of any test of HZ against HZ′ with

error probabilities α and β such that α + β = δ, then

EZ [T ] ≥ −1 − δ

ωZ
ln

2 − δ

δ

and

EZ′ [T ] ≥ 1 − δ

ωZ′
ln

2 − δ

δ
.

Proof. If α + β = δ, then

(1 − β) ln
1 − β

α
+ β ln

β

1 − α
= −α ln

1 − β

α
− (1 − α) ln

β

1 − α

achieves a minimum at α = β = δ/2. Substitution of α = β = δ/2 completes the
proof.

Before we present Lemma 7.5 that proves the Lower Bound Theorem for σ2
Z ≥

εµZ , we begin with some definitions. Let ξ = Z − µZ and for any 0 ≤ d ≤ 1 let

ψ = E0[edξ].

Define ζ = dξ − lnψ and

fZ′(x) = fZ(x) · eζ .

Lemma 7.3. 1 + d2σ2
Z/(2 + λ) ≤ ψ ≤ 1 + λd2σ2

Z .
Proof. Since ψ = EZ [edξ] we use Inequality 4.2 to show that

1 + dξ + d2ξ2/(2 + λ) ≤ edξ ≤ 1 + dξ + λd2ξ2.
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Taking expectations completes the proof.

Lemma 7.4. 2dσ2
Z/((2 + λ)ψ) ≤ EZ′ [ξ] ≤ 2λdσ2

Z/ψ.

Proof. Since EZ′ [ξ] = ψ−1ψ′, where ψ′ denotes the derivative of ψ with respect
to d, the proof follows directly from Lemma 7.3.

Lemma 7.5. If σ2
Z ≥ εµZ , then for ε < 1, E[NZ ] ≥ (1 − δ)(1 − ε)2 ln(2−δ

δ ) ·
σ2
Z/((2 + λ)2εµZ)2,

Proof. Let T denote the stopping time of any test of HZ against HZ′ . Note that
EZ′ [Z]−EZ [Z] = EZ′ [Z]−µZ = EZ′ [ξ]. If we set d = εµZ/σ

2
Z , then, by Lemmas 7.3

and 7.4, EZ′ [Z]−µZ > εµZ/(2 +λ). Thus to test HZ against H ′
Z , we can use the BB

with input ε∗ such that µZ(1 + ε∗) ≤ µZ(1 + ε/(2 +λ))(1− ε∗) < µZ′(1− ε∗). Solving
for ε∗ we obtain ε∗ ≤ ε/(2(2 + λ) + ε). But Corollary 7.2 gives a lower bound on the
expected number of experiments E[N∗

Z ] run by BB with respect the Z. We observe
that

−ωZ = EZ [ζ] = lnψ ≤ d2σ2
Z ,

where the inequality follows from Lemma 7.3. We let d = εµZ/σ
2
Z and substitute

ε = 2(2 + λ)ε∗/(1 − ε∗) to complete the proof.

We now prove the Lower Bound Theorem that holds also when σ2
Z < εµZ . We

define the density

fZ′(x) = fZ(x) · (1 − εµZ) + εµZ .

Lemma 7.6. If µZ ≤ 1/4, then EZ′ [Z] − µZ ≥ εµZ/4.

Proof. Observe that EZ′ [Z] = (1 − εµZ)EZ [Z] + εµZ/2 and therefore EZ′ [Z] −
µZ = εµZ(1/2 − µZ).

Lemma 7.7. −EZ [ln fZ′ (x)
fZ(x) ] ≤ εµZ

1−εµZ
.

Proof. Observe that

− ln
fZ′(x)

fZ(x)
≤ − ln(1 − εµZ) ≤ εµZ

1 − εµZ
.

Taking expectations completes the proof.

Lemma 7.8. If µZ ≤ 1/4, then E[NZ ] ≥ (1 − δ)(1 − ε) ln(2−δ
δ )/(16εµZ).

Proof. Let T denote the stopping time of any test of HZ against HZ′ . From
Lemma 7.6, and since µZ ≤ 1

4 , EZ′ [Z] − EZ [Z] > εµZ/4. Thus to test HZ against
H ′
Z , we can use the BB with input ε∗ such that µZ(1 + ε∗) ≤ µZ(1 + ε/4)(1 − ε∗) <

µZ′(1 − ε∗). Solving for ε∗ we obtain ε∗ ≤ ε/(8 + ε). But Corollary 7.2 gives a lower
bound on the expected number of experiments E[N∗

Z ] run by BB with respect the Z.
Next observe that, by Lemma 7.7, −ωZ in Corollary 7.2 is at most 2εµZ . Substitution
of ε = 8ε∗/(1 − ε∗) completes the proof.
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Proof of the Lower Bound Theorem. The proof follows from Lemma 7.5 and
Lemma 7.8.
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1. Introduction. While complexity theorists have made great strides in under-
standing the structure of complexity classes, they have not yet found the proper tools
to do nontrivial separation of complexity classes such as P and NP. They have devel-
oped sophisticated diagonalization, combinatorial and algebraic techniques, but none
of these ideas have yet proven very useful in the separation task.

Back in the early days of computability theory, Post [13] wanted to show that
the set of noncomputable computably enumerable sets strictly contains the Turing
complete computably enumerable sets. In what we now call “Post’s program” (see
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[11, 15]), Post tried to show these classes differ by finding a property that holds for
all sets in the first class but not for some set in the second.

We would like to resurrect Post’s program for separating classes in complexity
theory. In particular we will show how some classes differ by showing that their
complete sets have different structures. While we do not separate any classes not
already separable by known diagonalization techniques, we feel that refinements to
our techniques may yield some new separation results.

In this paper we will concentrate on the property known as “autoreducibility.” A
set A is autoreducible if we can decide whether an input x belongs to A in polynomial-
time by making queries about membership of strings different from x to A.

Trakhtenbrot [16] first looked at autoreducibility in both the unbounded and
space-bounded models. Ladner [10] showed that there exist Turing complete com-
putably enumerable sets that are not autoreducible. Ambos-Spies [1] first transferred
the notion of autoreducibility to the polynomial-time setting. More recently, Yao [18]
and Beigel and Feigenbaum [5] have studied a probabilistic variant of autoreducibility
known as “coherence.”

In this paper, we ask for what complexity classes do all the complete sets have
the autoreducibility property. In particular we show the following.

(i) All Turing complete sets for ∆EXP
k are autoreducible for any constant k,

where ∆EXP
k+1 denotes the sets that are exponential-time Turing reducible to ΣP

k .
(ii) There exists a Turing complete set for doubly exponential space that is not

autoreducible.

Since the union of all sets ∆EXP
k coincides with the exponential-time hierarchy, we

obtain a separation of the exponential-time hierarchy from doubly exponential space
and thus of the polynomial-time hierarchy from exponential space. Although these
results also follow from the space hierarchy theorems [9] which we have known for a
long time, our proof does not directly use diagonalization, but rather separates the
classes by showing that they have different structural properties.

Issues of relativization do not apply to this work because of oracle access (see [8]):
a polynomial-time autoreduction cannot view as much of the oracle as an exponential
or doubly exponential computation. To illustrate this point we show that there exists
an oracle relative to which some complete set for exponential time is not autoreducible.

Note that if we can settle whether the Turing complete sets for doubly exponential
time are all autoreducible one way or the other, we will have a major separation result.
If there exists a Turing complete set for doubly exponential time that is not autore-
ducible, then we get that the exponential-time hierarchy is strictly contained in doubly
exponential time and hence that the polynomial-time hierarchy is strictly contained
in exponential time. If all of the Turing complete sets for doubly exponential time are
autoreducible, we get that doubly exponential time is strictly contained in doubly ex-
ponential space, and thus polynomial time strictly in polynomial space. We will also
show that this assumption implies a separation of nondeterministic logarithmic space
from nondeterministic polynomial time. Similar implications hold for space-bounded
classes (see section 5). Autoreducibility questions about doubly exponential time and
exponential space thus remain an exciting line of research.

We also study the nonadaptive variant of the problem. Our main results scale
down one exponential as follows:

(i) All truth-table complete sets ∆P
k are truth-table autoreducible for any con-

stant k, where ∆P
k+1 denotes the sets polynomial-time Turing reducible to ΣP

k .
(ii) There exists a truth-table complete set for exponential space that is not
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truth-table autoreducible.
Again, finding out whether all truth-table complete sets for intermediate classes,

namely polynomial space and exponential time, are truth-table autoreducible, would
have major implications.

In contrast to the above results we exhibit the limitations of our approach: For the
restricted reducibility where we are only allowed to ask two nonadaptive queries, all
complete sets for EXP, EXPSPACE , EEXP, EEXPSPACE , etc., are autoreducible.

We also argue that uniformity is crucial for our technique of separating com-
plexity classes, because our nonautoreducibility results fail in the nonuniform setting.
Razborov and Rudich [14] show that if strong pseudorandom generators exist, “nat-
ural proofs” cannot separate certain nonuniform complexity classes. Since this paper
relies on uniformity in an essential way, their result does not apply.

Regarding the probabilistic variant of autoreducibility mentioned above, we can
strengthen our results and construct a Turing complete set for doubly exponential
space that is not even probabilistically autoreducible. We leave the analog of this
theorem in the nonadaptive setting open: Does there exist a truth-table complete
set for exponential space that is not probabilistically truth-table autoreducible? We
do show that every truth-table complete set for exponential time is probabilistically
truth-table autoreducible. Thus, a positive answer to the open question would es-
tablish that exponential time is strictly contained in exponential space. A negative
answer, on the other hand, would imply a separation of nondeterministic logarithmic
space from nondeterministic polynomial time.

Here is the outline of the paper: First, we introduce our notation and state some
preliminaries in section 2. Next, in section 3 we establish our negative autoreducibility
results, for the adaptive as well as the nonadaptive case. Then we prove the positive
results in section 4, where we also briefly look at the randomized and nonuniform
settings. Section 5 discusses the separations that follow from our results and would
follow from improvements on them. Finally, we conclude in section 6 and mention
some possible directions for further research.

1.1. Errata to conference version. A previous version of this paper [6] er-
roneously claimed proofs showing all Turing complete sets for EXPSPACE are au-
toreducible and all truth-table complete sets for PSPACE are nonadaptively au-
toreducible. Combined with the additional results in this version, we would have a
separation of NL and NP (see section 5).

However the proofs in the earlier version failed to account for the growth of the
running time when recursively computing previous players’ moves. We use the proof
technique in section 3 though unfortunately we get weaker theorems. The original
results claimed in the previous version remain important open questions as resolving
them either way will yield new separation results.

2. Notation and preliminaries. Most of our complexity theoretic notation is
standard. We refer the reader to the textbooks by Balcázar, Dı́az, and Gabarró [4, 3],
and by Papadimitriou [12].

We use the binary alphabet Σ = {0, 1}. We denote the difference of a set A with
a set B, i.e., the subset of elements of A that do not belong to B, by A \B.

For any integer k ≥ 0, a Σk-formula is a Boolean expression of the form

∃ y1 ∈ Σn1 ,∀ y2 ∈ Σn2 , . . . , Qk yk ∈ Σnk : φ(y1, y2, . . . , yk, z),(2.1)

where φ is a Boolean formula, Qi denotes ∃ if i is odd, and ∀ otherwise, and the ni’s
are positive integers. We say that (2.1) has k − 1 alternations. A Πk-formula is just
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like (2.1) except that it starts with a ∀-quantifier. It also has k − 1 alternations. A
QBFk-formula is a Σk-formula (2.1) or a Πk-formula without free variables z.

For any integer k ≥ 0, ΣP
k denotes the kth Σ-level of the polynomial-time hierar-

chy. We define these levels recursively by ΣP
0 = P and ΣP

k+1 = NPΣP
k . The ∆-levels

of the polynomial-time and exponential-time hierarchy are defined as ∆P
k+1 = PΣP

k

and ∆EXP
k+1 = EXPΣP

k , respectively. The polynomial-time hierarchy PH equals the

union of all sets ∆P
k , and the exponential-time hierarchy EXPH similarly equals the

union of all sets ∆EXP
k .

A reduction of a set A to a set B is a polynomial-time oracle Turing machine
M such that MB = A. We say that A reduces to B and write A ≤P

T B (“T” for
Turing). The reduction M is nonadaptive if the oracle queries M makes on any input
are independent of the oracle, i.e., the queries do not depend upon the answers to
previous queries. In that case we write A ≤P

tt B (“tt” for truth-table). Reductions
of functions to sets are defined similarly. If the number of queries on an input of
length n is bounded by q(n), we write A ≤P

q(n)−T B and A ≤P
q(n)−tt B, respectively;

if it is bounded by some constant, we write A ≤P
btt B (“b” for bounded). We denote

the set of queries of M on input x with oracle B by QMB (x); in case of nonadaptive
reductions, we omit the oracle B in the notation. If the reduction asks only one query
and answers the answer to that query, we write A ≤P

m B (“m” for many-one).
For any reducibility ≤P

r and any complexity class C, a set C is ≤P
r -hard for C if we

can ≤P
r -reduce every set A ∈ C to C. If in addition C ∈ C, we call C ≤P

r -complete for
C. For any integer k ≥ 0, the set TQBFk of all true QBFk-formulae is ≤P

m-complete
for ΣP

k . For k = 1, this reduces to the fact that the set SAT of satisfiable Boolean
formulae is ≤P

m-complete for NP.
Now we get to the key concept of this paper in the following definition.
Definition 2.1. A set A is autoreducible if there is a reduction M of A to itself

that never queries its own input, i.e., for any input x and any oracle B, x �∈ QMB (x).
We call such M an autoreduction of A.

We will also discuss randomized and nonuniform variants. A set is probabilistically
autoreducible if it has a probabilistic autoreduction with bounded two-sided error. Yao
[18] first studied this concept under the name “coherence.” A set is nonuniformly
autoreducible if it has an autoreduction that uses polynomial advice. For all these
notions, we can consider both the adaptive and the nonadaptive case. For randomized
autoreducibility, nonadaptiveness means that the queries only depend on the input
and the random seed.

3. Nonautoreducibility results. In this section, we show that large complex-
ity classes have complete sets that are not autoreducible.

Theorem 3.1. There is a ≤P
2−T-complete set for EEXPSPACE that is not

autoreducible.
Most natural classes containing EEXPSPACE , e.g., triply exponential time and

triply exponential space, also have this property.
We can even construct the complete set in Theorem 3.1 to defeat every proba-

bilistic autoreduction.
Theorem 3.2. There is a ≤P

2−T-complete set for EEXPSPACE that is not
probabilistically autoreducible.

In the nonadaptive setting, we obtain the following theorem.
Theorem 3.3. There is a ≤P

3−tt-complete set for EXPSPACE that is not non-
adaptively autoreducible.
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Unlike the case of Theorem 3.1, our construction does not seem to yield a truth-
table complete set that is not probabilistically nonadaptively autoreducible. In fact,
as we shall show in section 4.3, such a result would separate EXP from EXPSPACE ;
see also section 5.

We will detail in section 4.3 that our nonautoreducibility results do not hold in
the nonuniform setting.

3.1. Adaptive autoreductions. Suppose we want to construct a nonautore-
ducible Turing complete set for a complexity class C, i.e., a set A such that

1. A is not autoreducible,
2. A is Turing hard for C,
3. A belongs to C.

If C has a ≤P
m-complete set K, realizing goals 1 and 2 is not too hard: We can

encode K in A, and at the same time diagonalize against all autoreductions. A
straightforward implementation would be to encode K(y) as A(〈0, y〉), and stagewise
diagonalize against all ≤P

T -reductions M by picking for each M an input x not of the
form 〈0, y〉 that is not queried during previous stages, and setting A(x) = 1−MA(x).
However, this construction does not seem to achieve goal 3. In particular, deciding the
membership of a diagonalization string x to A might require computing A(〈0, y〉) =
K(y) on inputs y of length |x|c, assuming M runs in time nc. Since we have to
do this for all potential autoreductions M , we can only bound the resources (time,
space) needed to decide A by a function in t(nω(1)), where t(n) denotes the amount of
resources some deterministic Turing machine accepting K uses. That does not suffice
to keep A inside C.

To remedy this problem, we will avoid the need to compute K(y) on large inputs
y, say of length at least |x|. Instead, we will make sure we can encode the membership
of such strings to any set, not just K, and at the same time diagonalize against M on
input x. We will argue that we can do this by considering two possible coding regions
at every stage as opposed to a fixed one: the left region L, containing strings of the
form 〈0, y〉, and the right region R, similarly containing strings of the form 〈1, y〉. The
following states that we can use one of the regions to encode an arbitrary sequence,
and set the other region such that the output of M on input x is fixed and indicates
the region used for encoding.

Statement 3.4. Either it is the case that for any setting of L there is a setting
of R such that MA(x) accepts, or for any setting of R there is a setting of L such
that MA(x) rejects.

This allows us to achieve goals 1 and 2 from above as follows. In the former case,
we will set A(x) = 0 and encode K in L (at that stage); otherwise we will set A(x) = 1
and encode K in R. Since the value of A(x) does not affect the behavior of MA on
input x, we diagonalize against M in both cases. Also, in any case,

K(y) = A(〈A(x), y〉),

so deciding K is still easy when given A. Moreover—and crucially—in order to com-
pute A(x), we no longer have to decide K(y) on large inputs y, of length |x| or more.
Instead, we have to check whether the former case in Statement 3.4 holds or not.
Although quite complex a task, it only depends on M and on the part of A con-
structed so far, not on the value of K(y) for any input of length |x| or more: We
verify whether we can encode any sequence, not just the characteristic sequence of
K for lengths at least |x|, and at the same time diagonalize against M on input x.
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Provided the complexity class C is sufficiently powerful, we can perform this task in
C.

There is still a catch, though. Suppose we have found out that the former case
in Statement 3.4 holds. Then we will use the left region L to encode K (at that
stage), and we know we can diagonalize against M on input x by setting the bits of
the right region R appropriately. However, deciding exactly how to set these bits of
the noncoding region requires, in addition to determining which region we should use
for coding, the knowledge of K(y) for all y such that |x| ≤ |y| ≤ |x|c. In order to
also circumvent the need to decide K for too large inputs here, we will use a slightly
stronger version of Statement 3.4 obtained by grouping quantifiers into blocks and
rearranging them. We will partition the coding and noncoding regions into intervals.
We will make sure that for any given interval, the length of a string in that interval
(or any of the previous intervals) is no more than the square of the length of any
string in that interval. Then we will blockwise alternately set the bits in the coding
region according to K, and the corresponding ones in the noncoding region so as to
maintain the diagonalization against M on input x as in Statement 3.4. This way,
in order to compute the bit A(〈1, z〉) of the noncoding region, we will only have to
query K on inputs y with |y| ≤ |z|2, as opposed to |y| ≤ |z|c for an arbitrarily large c
depending on M as was the case before.

This is what happens in the next lemma, which we prove in a more general form,
because we will need the generalization later on in section 5.

Lemma 3.5. Fix a set K, and suppose we can decide it simultaneously in time
t(n) and space s(n). Let α : N → (0,∞) be a constructible monotone unbounded
function, and suppose there is a deterministic Turing machine accepting TQBF that

takes time t′(n) and space s′(n) on QBF-formulae of size 2n
α(n)

with at most log α(n)
alternations. Then there is a set A such that

1. A is not autoreducible;
2. K ≤P

2−T A;

3. We can decide A simultaneously in time O(2n
2 · t(n2) + 2n · t′(n)) and space

O(2n
2

+ s(n2) + s′(n)).
Proof. Fix a function α satisfying the hypotheses of the lemma, and let β =

√
α.

Let M1,M2, . . . be a standard enumeration of autoreductions clocked such that Mi

runs in time nβ(i) on inputs of length n. Our construction starts out with A being
the empty set, and then adds strings to A in subsequent stages i = 1, 2, 3, . . . defined
by the following sequence:

{
n0 = 0,

ni+1 = n
β(ni)
i + 1.

Note that since Mi runs in time nβ(i), Mi cannot query strings of length ni+1 or more
on input 0ni .

Fix an integer i ≥ 1 and let m = ni. For any integer j such that 0 ≤ j ≤ log β(m),

let Ij denote the set of all strings with lengths in the interval [m2j

,min(m2j+1

,mβ(m)+

1)). Note that {Ij}log β(m)
j=0 forms a partition of the set I of strings with lengths in

[m,mβ(m) + 1) = [ni, ni+1) with the property that for any 0 ≤ k ≤ log β(m), the
length of any string in ∪kj=0Ij is no more than the square of the length of any string
in Ik.

During the ith stage of the construction, we will encode the restriction K|I of K
to I into {〈b, y〉 | b ∈ {0, 1} and y ∈ I}, and use the string 0m for diagonalizing against
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if formula (3.1) holds

then for j = 0, . . . , log β(m)

(�y)y∈Ij ← (K(y))y∈Ij

(ry)y∈Ij ← the lexicographically first value satisfying

(∀ �y)y∈Ij+1, (∃ ry)y∈Ij+1
, (∀ �y)y∈Ij+2

, (∃ ry)y∈Ij+2
,

. . . , (∀ �y)y∈Ilog β(m)
, (∃ ry)y∈Ilog β(m)

: MA′
i (0m) accepts,

where A′ = A ∪ {〈0, y〉 | y ∈ I and �y = 1} ∪ {〈1, y〉 | y ∈ I and ry = 1}
end for

A← A ∪ {〈0, y〉 | y ∈ I and �y = 1} ∪ {〈1, y〉 | y ∈ I and ry = 1}
else { formula (3.2) holds }

for j = 0, . . . , log β(m)

(ry)y∈Ij ← (K(y))y∈Ij

(�y)y∈Ij ← the lexicographically first value satisfying

(∀ ry)y∈Ij+1
, (∃ �y)y∈Ij+1

, (∀ ry)y∈Ij+2
, (∃ �y)y∈Ij+2

,

. . . , (∀ ry)y∈Ilog β(m)
, (∃ �y)y∈Ilog β(m)

: MA′
i (0m) accepts,

where A′ = A ∪ {〈0, y〉 | y ∈ I and �y = 1} ∪ {〈1, y〉 | y ∈ I and ry = 1}
end for

A← A ∪ {0m} ∪ {〈0, y〉 | y ∈ I and �y = 1} ∪ {〈1, y〉 | y ∈ I and ry = 1}
end if

Fig. 3.1. Stage i of the construction of the set A in Lemma 3.5.

Mi, applying the next strengthening of Statement 3.4 to do so.
Claim 3.6. For any set A, at least one of the following holds:

(∀ �y)y∈I0 , (∃ ry)y∈I0 , (∀ �y)y∈I1 , (∃ ry)y∈I1 ,
. . . , (∀ �y)y∈Ilog β(m)

, (∃ ry)y∈Ilog β(m)
: MA′

i (0m) accepts(3.1)

or

(∀ ry)y∈I0 , (∃ �y)y∈I0 , (∀ ry)y∈I1 , (∃ �y)y∈I1 ,
. . . , (∀ ry)y∈Ilog β(m)

, (∃ �y)y∈Ilog β(m)
: MA′

i (0m) rejects,(3.2)

where A′ denotes A ∪ {〈0, y〉 | y ∈ I and �y = 1} ∪ {〈1, y〉 | y ∈ I and ry = 1}.
Here we use (Qzy)y∈Y as a shorthand for Qzy1 , Q zy2 , . . . , Q zy|Y | , where Y =

{y1, y2, . . . , y|Y |} and all variables are quantified over {0, 1}. Without loss of generality
we assume that the range of the pairing function 〈·, ·〉 is disjoint from 0∗.

Proof of Claim 3.6. Fix A. If (3.1) does not hold, then its negation holds, i.e,

(∃ �y)y∈I0 , (∀ ry)y∈I0 , (∃ �y)y∈I1 , (∀ ry)y∈I1 ,
. . . , (∃ �y)y∈Ilog β(m)

, (∀ ry)y∈Ilog β(m)
: MA′

i (0m) rejects.(3.3)

Switching the quantifiers (∃ �y)y∈Ij and (∀ ry)y∈Ij pairwise for every 0 ≤ j ≤ log β(m)
in (3.3) yields the weaker statement (3.2).

Figure 3.1 describes the ith stage in the construction of the set A. Note that the
lexicographically first values in this algorithm always exist, so the construction works
fine. We now argue that the resulting set A satisfies the properties of Lemma 3.5:

1. The construction guarantees that A(0m) = 1−M
A\{0m}
i (0m) holds by the end

of stage i. Since Mi on input 0m cannot query 0m (because Mi is an autoreduction)
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nor any of the strings added during subsequent stages (because Mi does not even have
the time to write down any of these strings), A(0m) = 1−MA

i (0m) holds for the final
set A. Thus, Mi is not an autoreduction of A. Since this is true of any autoreduction
Mi, the set A is not autoreducible.

2. During stage i, we encode K|I in the left region iff we do not put 0m into
A; otherwise we encode K|I in the right region. Thus, for any y ∈ I, K(y) =
A(〈A(0m), y〉). Therefore, K ≤P

2−T A.
3. First note that A only contains strings of the form 0m with m = ni for some

integer i ≥ 1, and strings of the form 〈b, y〉 with b ∈ {0, 1} and y ∈ Σ∗. Assume we
have executed the construction of A up to but not including stage i and stored the
result in memory. The additional work to decide the membership to A of a string
belonging to the ith stage is as follows.

(i) Case 0m. Since 0m ∈ A iff formula (3.1) does not hold and (3.1) is a

QBF2 log β(m)-formula of size 2O(mβ(m)) ≤ 2m
α(m)

, we can decide whether 0m ∈ A in
time O(t′(m)) and space O(s′(m)).

(ii) Case 〈b, z〉 where b = A(0m) and z ∈ I. Then 〈b, z〉 ∈ A iff z ∈ K, which we
can decide in time t(|z|) and space s(|z|).

(iii) Case 〈b, z〉 where b = 1 − A(0m) and z ∈ I. Say z ∈ Ik, 0 ≤ k ≤ log β(m).
In order to compute whether 〈b, z〉 ∈ A, we run the part of stage i corresponding to
the values of j in Figure 3.1 up to and including k, and store the results in memory.
This involves computing K on ∪kj=0Ij and deciding O(2|z|) QBF2 log β(m)-formulae of

size 2O(mβ(m)) ≤ 2m
α(m)

, namely one formula for each y ∈ ∪kj=0Ij which precedes or

equals z in lexicographic order. The latter takes O(2|z| ·t′(m)) time and O(2|z|+s′(m))
space. Since every string in ∪kj=0Ij is of size no more than |z|2, we can do the former

in time O(2|z|
2 · t(|z|2)) and space O(2|z|

2

+ s(|z|2)). So, the requirements for this

stage are O(2|z|
2 · t(|z|2) + 2|z| · t′(|z|)) time and O(2|z|

2

+ s(|z|2) + s′(|z|)) space.
A similar analysis also shows that we can perform the stages up to but not in-

cluding i in time O(2m ·(t(m)+t′(m))) and space O(2m+s(m)+s′(m)). All together,
this yields the time and space bounds claimed for A.

Using the upper bound 2n
α(n)

for s′(n), the smallest standard complexity class to
which Lemma 3.5 applies, seems to be EEXPSPACE . This results in Theorem 3.1.

Proof of Theorem 3.1. In Lemma 3.5, set K a ≤P
m-complete set for EEXPSPACE ,

and α(n) = n.
In section 4.2, we will see that ≤P

2−T in the statement of Theorem 3.1 is optimal:
Theorem 4.6 shows that Theorem 3.1 fails for ≤P

2−tt.
We note that the proof of Theorem 3.1 carries through for ≤EXPSPACE

T -reductions
with polynomially bounded query lengths. This implies the strengthening given by
Theorem 3.2.

3.2. Nonadaptive autoreductions. Diagonalizing against nonadaptive autore-
ductions M is easier. If M runs in time τ(n), there can be no more than τ(n) coding
strings that interfere with the diagonalization, as opposed to 2τ(n) in the adaptive
case. This allows us to reduce the complexity of the set constructed in Lemma 3.5 as
follows.

Lemma 3.7. Fix a set K, and suppose we can decide it simultaneously in time
t(n) and space s(n). Let α : N → (0,∞) be a constructible monotone unbounded
function, and suppose there is a deterministic Turing machine accepting TQBF that
takes time t′(n) and space s′(n) on QBF-formulae of size nα(n) with at most log α(n)
alternations. Then there is a set A such that
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1. A is not nonadaptively autoreducible;
2. K ≤P

3−tt A;

3. We can decide A simultaneously in time O(2n + nα(n)) · (t(n2) + t′(n))) and
space O(2n + nα(n) + s(n2) + s′(n)).

Proof. The construction of the set A is the same as in Lemma 3.5 (see Figure 3.1)
apart from the following differences.

(i) M1,M2, . . . now is a standard enumeration of nonadaptive autoreductions
clocked such that Mi runs in time nβ(i) on inputs of length n. Note that the set QM (x)
of possible queries M makes on input x contains no more than |x|β(i) elements.

(ii) During stage i ≥ 1 of the construction, I denotes the set of all strings y
with lengths in [m,mβ(m) + 1) = [ni, ni+1) such that 〈0, y〉 ∈ QMi(0

m) or 〈1, y〉 ∈
QMi(0

m), and Ij for 0 ≤ j ≤ log β(m) denotes the set of strings in I with lengths in

[m2j

,min(m2j+1

,mβ(m) + 1)). Note that the only �y’s and ry’s that affect the validity

of the predicate “MA′

i (0m) accepts” in formula (3.1) and the corresponding formulae
in Figure 3.1, are those for which y ∈ I.

(iii) At the end of stage i in Figure 3.1, we add the following line:

A← A ∪ {〈b, y〉 | b ∈ {0, 1}, y ∈ Σ∗ with m ≤ |y| < mβ(m) + 1, y �∈ I and K(y) = 1}.

This ensures coding K(y) for strings y with lengths in [ni, ni+1) such that neither
〈0, y〉 nor 〈1, y〉 are queried by Mi on input 0m. Although not essential, we choose to
encode them in both the left and the right region.

The proof that A satisfies the three properties claimed carries over. Only the time
and space analysis in the third point needs modification. The crucial simplification
over the adaptive case lies in the fact that (3.1) and the similar formulae in Figure 3.1

now become QBF2 log β(n)-formulae of size nO(β(m)) as opposed to of size 2O(mβ(m))

in Lemma 3.5. More specifically, referring to the proof of Lemma 3.5, we have the
following cases regarding the work at stage i of the construction.

(i) Case 0m. The above mentioned simplification takes care of this case.
(ii) Case 〈b, z〉, where b = A(0m) and z ∈ I. The argument of Lemma 3.5 carries

over as such.
(iii) Case 〈b, z〉, where b = 1 − A(0m) and z ∈ I. Computing K on ∪kj=0Ij and

storing the result can be done in time O(mβ(m) · t(|z|2)) and space O(mβ(m) +s(|z|2)).
Deciding the O(mβ(m)) QBF2 log β(m)-formulae of size mO(β(m)) ≤ mα(m) involved

requires no more than O(mβ(m) · t′(m)) time and O(mβ(m) + s′(m)) space.
(iv) Case 〈b, z〉 where b ∈ {0, 1}, m ≤ |z| ≤ mβ(m) + 1, and z �∈ I. This is an

additional case. By construction, 〈b, z〉 ∈ A iff z ∈ K, which we can decide in time
t(|z|) and space s(|z|).

By similar analysis, a rough estimate of the resources required for the previous
stages of the construction is O(2m · (t(m) + t′(m))) time and O(2m + s(m) + s′(m))
space, resulting in a total as stated in the lemma.

As a consequence, we can lower the space complexity in the equivalent of Theorem
3.1 from doubly exponential to singly exponential, yielding Theorem 3.3. In section
4.2 we will show we cannot reduce the number of queries from three to two in Theorem
3.3.

If we restrict the number of queries the nonadaptive autoreduction is allowed to
make to some fixed polynomial, the proof technique of Theorem 3.3 also applies to
EXP. In particular, we obtain the following theorem.

Theorem 3.8. There is a ≤P
3−tt-complete set for EXP that is not ≤P

btt-autoredu-
cible.
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4. Autoreducibility results. For small complexity classes, all complete sets
turn out to be autoreducible. Beigel and Feigenbaum [5] established this property of
all levels of the polynomial-time hierarchy as well as of PSPACE , the largest class
for which it was known to hold before our work. In this section, we will prove it for
the ∆-levels of the exponential-time hierarchy.

As to nonadaptive reductions, the question was even open for all levels of the
polynomial-time hierarchy. We will show here that the ≤P

tt-complete sets for the
∆-levels of the polynomial-time hierarchy are nonadaptively autoreducible. For any
complexity class containing EXP, we will prove that the ≤P

2−tt-complete sets are
≤P

2−tt-autoreducible.
Finally, we will also consider nonuniform and randomized autoreductions.
Throughout this section, we will assume without loss of generality an encoding

γ of a computation of a given oracle Turing machine M on a given input x with the
following properties. γ will be a marked concatenation of successive instantaneous
descriptions of M , starting with the initial instantaneous description of M on input
x, such that:

(i) Given a pointer to a bit in γ, we can find out whether that bit represents
the answer to an oracle query by probing a constant number of bits of γ.

(ii) If it is the answer to an oracle query, the corresponding query is a substring
of the prefix of γ up to that point, and we can easily compute a pointer to the
beginning of that substring without probing γ any further.

(iii) If it is not the answer to an oracle query, we can perform a local consistency
check for that bit which only depends on a constant number of previous bit positions
of γ and the input x. Formally, there exist a function gM and a predicate eM , both
polynomial-time computable, and a constant cM such that the following holds: For
any input x, any index i to a bit position in γ, and any j, 1 ≤ j ≤ cM , gM (x; i, j) is
an index no larger than i, and

eM (x; i, γgM (x;i,1), γgM (x;i,2), . . . , γgM (x;i;cM ))(4.1)

indicates whether γ passes the local consistency test for its ith bit γi. Provided the
prefix of γ up to but not including position i is correct, the local consistency test is
passed iff γi is correct.

We call such an encoding a valid computation of M on input x iff the local
consistency tests (4.1) for all the bit positions i that do not correspond to oracle
answers, are passed, and the other bits equal the oracle’s answer to the corresponding
query. Any other string we will call a computation.

4.1. Adaptive autoreductions. We will first show that every ≤P
T -complete set

for EXP is autoreducible, and then generalize to all ∆-levels of the exponential-time
hierarchy.

Theorem 4.1. Every ≤P
T-complete set for EXP is autoreducible.

Here is the proof idea: For any of the standard deterministic complexity classes
C, we can decide each bit of the computation on a given input x within C. Thus, if A
is a ≤P

T -complete set for C that can be decided by a machine M within the confines
of the class C, then we can ≤P

T -reduce deciding the ith bit of the computation of M
on input x to A. Now, consider the two (possibly invalid) computations we obtain by
applying the above reduction to every bit position, answering all queries except for x
according to A, assuming x ∈ A for one computation and x �∈ A for the other.

Note that the computation corresponding to the right assumption about A(x)
is certainly correct. Thus, if both computations yield the same answer (which we
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if R
A\{x}
µ (〈x, 2p(|x|)〉) = R

A∪{x}
µ (〈x, 2p(|x|)〉)

then accept iff R
A∪{x}
µ (〈x, 2p(|x|)〉) = 1

else i← R
A∪{x}
σ (x)

accept iff eM (x; i, R
A\{x}
µ (〈x, gM (x; i; 1)〉), RA\{x}

µ (〈x, gM (x; i, 2)〉), . . . ,
. . . , R

A\{x}
µ (〈x, gM (x; i, cM )〉)) = 0

end if

Fig. 4.1. Autoreduction for the set A of Theorem 4.1 on input x.

can efficiently check using A without querying x), that answer is correct. If not, the
other computation contains a mistake. We cannot check both computations entirely
to see which one is right, but given a pointer to the first incorrect bit of the wrong
computation, we can efficiently verify that it is mistaken by checking only a constant
number of bits of that computation. The pointer is again computable within C.

In case C ⊆ EXP, using a ≤P
T -reduction to A and assuming x ∈ A or x �∈ A

as above, we can determine the pointer with oracle A (but without querying x) in
polynomial time, since the pointer’s length is polynomially bounded.

We now fill out the details.
Proof of Theorem 4.1. Fix a ≤P

T -complete set A for EXP. Say A is accepted
by a Turing machine M such that the computation of M on an input of size n has
length 2p(n) for some fixed polynomial p. Without loss of generality the last bit of
the computation gives the final answer. Let gM , eM , and cM be the formalization of
the local consistency test for M as described by (4.1).

Let µ(〈x, i〉) denote the ith bit of the computation of M on input x. We can
compute µ in EXP, so there is an oracle Turing machine Rµ ≤P

T -reducing µ to A.

Let σ(x) be the first i, 1 ≤ i ≤ 2p(|x|), such that R
A\{x}
µ (〈x, i〉) �= R

A∪{x}
µ (〈x, i〉),

provided it exists. Again, we can compute σ in EXP, so there is a ≤P
T -reduction Rσ

from σ to A.
Consider the algorithm in Figure 4.1 for deciding A on input x. The algorithm is

a polynomial-time oracle Turing machine with oracle A that does not query its own
input x. We now argue that it correctly decides A on input x. We distinguish between
two cases.

(i) Case R
A\{x}
µ (〈x, 2p(|x|)〉) = R

A∪{x}
µ (〈x, 2p(|x|)〉). Since at least one of the

computations R
A\{x}
µ (〈x, ·〉) or R

A∪{x}
µ (〈x, ·〉) coincides with the actual computation of

M on input x, and the last bit of the computation equals the final decision, correctness
follows.

(ii) Case R
A\{x}
µ (〈x, 2p(|x|)〉) �= R

A∪{x}
µ (〈x, 2p(|x|)〉). If x ∈ A, R

A\{x}
µ (〈x, 2p(|x|)〉)

= 0, so R
A\{x}
µ (〈x, ·〉) contains a mistake. Variable i gets the correct value of the in-

dex of the first incorrect bit in this computation, so the local consistency test for

R
A\{x}
µ (〈x, ·〉) being the computation of M on input x fails on the ith bit, and we

accept x. If x �∈ A, then R
A\{x}
µ (〈x, ·〉) is a valid computation, so no local consistency

test fails, and we reject x.
The local checkability property of computations used in the proof of Theorem

4.1 does not relativize, because the oracle computation steps depend on the entire
query, i.e., on a number of bits that is only limited by the resource bounds of the base
machine, in this case exponentially many. We next show that Theorem 4.1 itself also
does not relativize.

Theorem 4.2. Relative to some oracle, EXP has a ≤P
2−T-complete set that is
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not autoreducible.
Proof. Note that EXP has the following property.
Property 4.3. There is an oracle Turing machine N running in EXP such that

for any oracle B, the set accepted by NB is ≤P
m-complete for EXPB.

Without loss of generality, we assume that N runs in time 2n. Let KB denote
the set accepted by NB .

We will construct an oracle B and a set A such that A is ≤P
2−T-complete for

EXPB and is not ≤PB

T -autoreducible.
The construction of A is the same as in Lemma 3.5 (see Figure 3.1) with β(n) =

log n and K = KB , except that the reductions Mi now also have access to the oracle
B.

We will encode in B information about the construction of A that reduces the
complexity of A relative to B but do it high enough so as not to destroy the ≤P

2−T-

completeness of A for EXPB nor the diagonalizations against ≤PB

T -autoreductions.
We construct B in stages along with A. We start with B empty. Using the

notation of Lemma 3.5, at the beginning of stage i, we add 02m

to B iff property (3.1)
does not hold, and at the end of substage j, we join B with

{〈
02m2j+1

, y

〉
| y ∈ Ij and r(y) = 1

}
if (3.1) holds at stage i,

{〈
02m2j+1

, y

〉
| y ∈ Ij and �(y) = 1

}
otherwise.

Note that this does not affect the value of KB(y) for |y| < m2j+1

nor the computations
of Mi on inputs of size at most m (for sufficiently large i such that mlogm < 2m). It
follows from the analysis in the proof of Lemma 3.5 that the set A is ≤P

2−T-hard for

EXPB and not ≤PB

T -autoreducible.
Regarding the complexity of deciding A relative to B, note that the encoding

in the oracle B allows us to eliminate the need for evaluating QBFlog β(n)-formulae

of size 2n
β(n)

. Instead, we just query B on easily constructed inputs of size O(2n
2

).
Therefore, we can drop the terms corresponding to the QBFlog β(n)-formulae of size

2n
β(n)

in the complexity of A. Consequently, A ∈ EXPB .
Theorem 4.2 applies to any complexity class containing EXP that has Property

4.3, e.g., EXPSPACE , EEXP, EEXPSPACE , etc.
Sometimes, the structure of the oracle allows us to get around the lack of local

checkability of oracle queries. This is the case for oracles from the polynomial-time
hierarchy, and leads to the following extension of Theorem 4.1.

Theorem 4.4. For any integer k ≥ 0, every ≤P
T-complete set for ∆EXP

k+1 is
autoreducible.

The proof idea is as follows: Let A be a ≤P
T -complete set accepted by the de-

terministic oracle Turing machine M with oracle TQBFk. First note that there is a
polynomial-time Turing machine N such that a query q belongs to the oracle TQBFk
iff

∃ y1, ∀ y2, . . . , Qk yk : N(q, y1, y2, . . . , yk) accepts,(4.2)

where the y�’s are of size polynomial in |q|.
We consider the two purported computations of M on input x constructed in the

proof of Theorem 4.1. One belongs to a party assuming x ∈ A, the other to a party
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assuming x �∈ A. The computation corresponding to the right assumption is correct;
the other one might not be.

Now suppose the computations differ and we are given a pointer to the first bit
position where they disagree, which turns out to be the answer to an oracle query
q. Then we can have the two parties play the k-round game underlying (4.2): The
party claiming q ∈ TQBFk plays the existentially quantified y�’s, the other one the
universally quantified y�’s. The players’ strategies will consist of computing the game
history so far, determining their optimal next move, ≤P

T -reducing this computation to
A, and finally producing the result of this reduction under their respective assumption
about A(x). This will guarantee that the party with the correct assumption plays
optimally. Since this is also the one claiming the correct answer to the oracle query
q, he will win the game, i.e., N(q, y1, y2, . . . , yk) will equal his answer bit.

The only thing the autoreduction for A has to do is determine the value of
N(q, y1, y2, . . . , yk) in polynomial time using A as an oracle but without querying x.
It can do that along the lines of the base case algorithm given in Figure 4.1. If during
this process the local consistency test for N ’s computation requires the knowledge of
bits from the y�’s, we compute these via the reduction defining the strategy of the cor-
responding player. The bits from q we need we can retrieve from the M -computations,
since both computations are correct up to the point where they finished generating q.
Once we know N(q, y1, y2, . . . , yk) we can easily decide the correct assumption about
A(x).

The construction hinges on the hypothesis that we can ≤P
T -reduce determin-

ing the player’s moves to A. Computing these moves can become quite complex,
though, because we have to recursively reconstruct the game history so far. The
number of rounds k being constant seems crucial for keeping the complexity under
control. The conference version of this paper [6] erroneously claimed the proof works
for EXPSPACE , which can be thought of as alternating exponential time with an
exponential number of alternations. Establishing Theorem 4.4 for EXPSPACE would
actually separate NL from NP, as we will see in section 5.

Proof of Theorem 4.4. Let A be a ≤P
T -complete set for ∆EXP

k+1 = EXPΣP
k accepted

by the exponential-time oracle Turing machine M with oracle TQBFk. Let gM , eM ,
and cM be the formalization of the local consistency test for M as described by (4.1).
Without loss of generality there is a polynomial p and a polynomial-time Turing
machine N such that on inputs of size n, M makes exactly 2p(n) oracle queries, all of
the form

∃ y1 ∈ Σ2p(n)

, ∀ y2 ∈ Σ2p(n)

, . . . , Qk yk ∈ Σ2p(n)

: N(q, y1, y2, . . . , yk) accepts,(4.3)

where q has length 2p
2(n). Moreover, the computations of N in (4.3) each have length

2p
3(n), and their last bit represents the answer; the same holds for the computations

of M on inputs of length n. Let gN , eN , and cN be the formalization of the local
consistency test for N .

We first define a bunch of functions computable in ∆EXP
k+1 . For each of them,

say ξ, we fix an oracle Turing machine Rξ that ≤P
T -reduces ξ to A, and which the

final autoreduction for A will use. The proofs that we can compute these functions
in ∆EXP

k+1 are straightforward.

Let µ(〈x, i〉) denote the ith bit of the computation of MTQBFk on input x, and

σ(x) the first i (if any) such that R
A\{x}
µ (〈x, i〉) �= R

A∪{x}
µ (〈x, i〉). The roles of µ and

σ are the same as in the proof of Theorem 4.1: We will use Rµ to figure out whether
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both possible answers for the oracle query “x ∈ A?” lead to the same final answer,
and if not, use Rσ to find a pointer i to the first incorrect bit (in any) of the simulated
computation getting the negative oracle answer x �∈ A. If i turns out not to point to
an oracle query, we can proceed as in the proof of Theorem 4.1. Otherwise, we will
make use of the following functions and associated reductions to A.

We define the functions η� and y� inductively for � = 1, . . . , k. At each level � we
first define η�, which induces a reduction Rη� , and then define y� based on Rη� . All of

these functions take an input x such that the ith bit of R
A\{x}
µ (〈x, ·〉) is the answer to

an oracle query (4.3), where i = R
A∪{x}
σ (x). We define η�(x) as the lexicographically

least y� ∈ Σ2p(|x|)
such that

χ[Q�+1 y�+1, Q�+2 y�+2, . . . , Qk yk :

N(q, y1(x), y2(x), . . . , y�−1(x), y�, y�+1, . . . , yk) accepts] ≡ � mod 2;(4.4)

if this value does not exist, we set η�(x) = 02p(|x|)
. Note that the right-hand side of

(4.4) is 1 iff y� is existentially quantified in (4.3).

y�(x) =

{
R
A∪{x}
η� (x) if � ≡ R

A∪{x}
µ (〈x, i〉) mod 2,

R
A\{x}
η� (x) otherwise.

(4.5)

The condition on the right-hand side of (4.5) means that we use the hypothesis x ∈ A
to compute y�(x) from Rη� in case

(i) either y� is existentially quantified in (4.3) and the player assuming x ∈ A
claims (4.3) holds,

(ii) or else y� is universally quantified and the player assuming x ∈ A claims
(4.3) fails.
Otherwise we use the hypothesis x �∈ A.

In case i points to the answer to an oracle query (4.3), the functions η� and the
reductions Rη� incorporate the moves during the successive rounds of the game un-
derlying (4.3). The reduction Rη� , together with the player’s assumption about mem-
bership of x to A, determines the actual move y�(x) during the �th round, namely

R
A∪{x}
η� (x) if the �th round is played by the opponent assuming x ∈ A, and R

A\{x}
η� (x)

otherwise. The condition on the right-hand side of (4.5) guarantees that the existen-
tially quantified variables are determined by the opponent claiming the query (4.3)
is a true formula, and the universally quantified ones by the other opponent. In
particular, (4.5) ensures that the opponent with the correct claim about (4.3) has a
winning strategy. Provided it exists, the function η� defines a winning move during
the �th round of the game for the opponent playing that round, given the way the
previous rounds were actually played (as described by the y(x)’s). For odd �, i.e.,
y� is existentially quantified, it tries to set y� such that the remainder of (4.3) holds;
otherwise it tries to set y� such that the remainder of (4.3) fails. The actual move
may differ from the one given by η� in case the player’s assumption about x ∈ A is
incorrect. The opponent with the correct assumption plays according to η�. Since
that opponent also makes the correct claim about (4.3), he will win the game. In any
case, N(q, y1, y2, . . . , yk) will hold iff (4.3) holds.

Finally, we define the functions ν and τ , which have a similar job as the functions
µ and σ, respectively, but this time for the computation of N(q, y1, y2, . . . , yk) instead

of the computation of MTQBF
k (x). More precisely, ν(〈x, r〉) equals the rth bit of

the computation of N(q, y1(x), y2(x), . . . , yk(x)), where the y�(x)’s are defined by
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if R
A\{x}
µ (〈x, 2p3(|x|)〉) = R

A∪{x}
µ (〈x, 2p3(|x|)〉)

then accept iff R
A∪{x}
µ (〈x, 2p3(|x|)〉) = 1

else i← R
A∪{x}
σ (x)

if the ith bit of R
A\{x}
µ (〈x, ·〉) is not the answer to an oracle query

then accept iff eM (x; i, R
A\{x}
µ (〈x, gM (x; i, 1)〉), RA\{x}

µ (〈x, gM (x; i, 2)〉),
. . . , R

A\{x}
µ (〈x, gM (x; i, cM )〉)) = 0

else if R
A\{x}
ν (〈x, 2p3(|x|)〉) = R

A∪{x}
ν (〈x, 2p3(|x|)〉)

then accept iff R
A\{x}
µ (〈x, i〉) �= R

A\{x}
ν (〈x, 2p3(|x|)〉)

else r ← R
A∪{x}
τ (x)

accept iff

eN (q, y1, y2, . . . , yk; r,R
A\{x}
ν (〈x, gN (q, y1, y2, . . . , yk; r, 1)〉),

R
A\{x}
ν (〈x, gN (q, y1, y2, . . . , yk; r, 2)〉),

. . . , R
A\{x}
ν (〈x, gN (q, y1, y2, . . . , yk; r, cN )〉)) = 0

where q denotes the query described in R
A\{x}
µ (〈x, ·〉)

to which the ith bit in this computation is the answer

and

y� =

{
R

A∪{x}
η� (x) if � ≡ R

A∪{x}
µ (〈x, i〉) mod 2,

R
A\{x}
η� (x) otherwise

end if

end if

end if

Fig. 4.2. Autoreduction for the set A of Theorem 4.4 on input x.

(4.5), and the bit with index i = R
A∪{x}
σ (x) in the computation R

A\{x}
µ (〈x, ·〉) is the

answer to the oracle query (4.3). We define τ(x) to be the first r (if any) for which

R
A\{x}
ν (〈x, r〉) �= R

A∪{x}
ν (〈x, r〉), provided the bit with index i = R

A∪{x}
σ (x) in the

computation R
A\{x}
µ (〈x, ·〉) is the answer to an oracle query.

Now that we have these functions and corresponding reductions, we can describe
an autoreduction for A. On input x, it works as described in Figure 4.2. We next
argue that the algorithm correctly decides A on input x. Checking the other properties
required of an autoreduction for A is straightforward.

We only consider the cases where R
A\{x}
µ (〈x, 2p3(|x|)〉) �= R

A∪{x}
µ (〈x, 2p3(|x|)〉) and

i points to the answer to an oracle query in R
A\{x}
µ (〈x, ·〉). We refer to the analysis

in the proof of Theorem 4.1 for the remaining cases.

(i) Case R
A\{x}
ν (〈x, 2p3(|x|)〉) = R

A∪{x}
ν (〈x, 2p3(|x|)〉). If x ∈ A, variable i points

to the first incorrect bit of R
A\{x}
µ (〈x, ·〉), which turns out to be the answer to an

oracle query, say (4.3). Since R
A∪{x}
ν (〈x, 2p3(|x|)〉) yields the correct oracle answer to

(4.3),

RA\{x}
µ (〈x, i〉) �= RA∪{x}

ν (〈x, 2p3(|x|)〉) = RA\{x}
ν (〈x, 2p3(|x|)〉),

and we accept x.

If x �∈ A, both R
A\{x}
µ (〈x, i〉) and R

A\{x}
ν (〈x, 2p3(|x|)〉) give the correct answer to

the oracle query i points to in the computation R
A\{x}
µ (〈x, ·〉). Thus, they are equal,

and we reject x.

(ii) Case R
A\{x}
ν (〈x, 2p3(|x|)〉) �= R

A∪{x}
ν (〈x, 2p3(|x|)〉). As described in Figure

4.2, we will use the local consistency test for R
A\{x}
ν (〈x, ·〉) being the computa-
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tion of N(q, y1(x), y2(x), . . . , yk(x)). Apart from bits in the purported computation

R
A\{x}
ν (〈x, ·〉), this test may also need bits from q and from the y�(x)’s. The y�(x)’s

can be computed straightforwardly using their definition (4.5). The bits from q we

might need can be retrieved from R
A\{x}
ν (〈x, ·〉). This is because our encoding scheme

for computations has the property that the query q is a substring of the prefix of the

computation up to the position indexed by i. Since either R
A\{x}
ν (〈x, ·〉) is correct

everywhere, or else i is the first position where it is incorrect, the description of q in

R
A\{x}
ν (〈x, ·〉) is correct in any case. Moreover, we can easily compute a pointer to

the beginning of the substring q of R
A\{x}
ν (〈x, ·〉) from i.

If x ∈ A, R
A\{x}
ν (〈x, 2p3(|x|)〉) is incorrect, so R

A\{x}
ν (〈x, ·〉) has an error as a

computation of N(q, y1(x), y2(x), . . . , yk(x)). Variable r gets assigned the index of
the first incorrect bit in this computation, so the local consistency check fails, and we
accept x.

If x �∈ A, R
A\{x}
ν (〈x, ·〉) is a valid computation of N(q, y1(x), y2(x), . . . , yk(x)), so

every local consistency test is passed, and we reject x.

4.2. Nonadaptive autoreductions. Thus far, we have constructed autoreduc-
tions for ≤P

T -complete sets A. On input x we looked at the two candidate computa-
tions obtained by reducing to A, answering all oracle queries except for x according to
A, and answering query x positively for one candidate, and negatively for the other.
If the candidates disagreed, we tried to find out the right one, which always existed.
We managed to get the idea to work for quite powerful sets A, e.g., EXP-complete
sets, by exploiting the local checkability of computations. That allowed us to figure
out the wrong computation without going through the entire computation ourselves:
With help from A, we first computed a pointer to the first mistake in the wrong
computation, and then verified it locally.

We cannot use this adaptive approach for constructing nonadaptive autoreduc-
tions. It seems like figuring out the wrong computation in a nonadaptive way requires
the autoreduction to perform the computation of the base machine itself, so the base
machine has to run in polynomial time. Then checking the computation essentially
boils down to verifying the oracle answers. Using the game characterization of the
polynomial-time hierarchy along the same lines as in Theorem 4.4, we can do this for
oracles from the polynomial-time hierarchy.

Theorem 4.5. For any integer k ≥ 0, every ≤P
tt-complete set for ∆P

k+1 is non-
adaptively autoreducible.

Parallel to the adaptive case, an earlier version of this paper [6] stated Theorem
4.5 for unbounded k, i.e., for PSPACE . However, we only get the proof to work for
constant k. In section 5, we will see that proving Theorem 4.5 for PSPACE would
separate NL from NP.

The only additional difficulty in the proof is that in the nonadaptive setting, we
do not know which player has to perform the even rounds, and which one the odd
rounds in the k-round game underlying a query like (4.2). But we can just have them
play both scenarios, and afterwards figure out the relevant run.

Proof of Theorem 4.5. Let A be a ≤P
tt-complete set for ∆P

k+1 = PΣp
k accepted by

the polynomial-time oracle Turing machine M with oracle TQBFk. Without loss of
generality there is a polynomial p and a polynomial-time Turing machine N such that
on inputs of size n, M makes exactly p(n) oracle queries q, all of the form

∃ y1 ∈ Σp(n), ∀ y2 ∈ Σp(n), . . . , Qk yk ∈ Σp(n) : N(q, y1, y2, . . . , yk) accepts,(4.6)
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where q has length p2(n). Let q(x, i) denote the ith oracle query of MTQBFk on input

x. Note that q ∈ FPΣP
k .

Let Q = {〈x, i〉 | q(x, i) ∈ TQBFk}. The set Q belongs to ∆P
k+1, so there is a

≤P
tt-reduction RQ from Q to A.

If for a given input x R
A∪{x}
Q and R

A\{x}
Q agree on 〈x, j〉 for every 1 ≤ j ≤ p(|x|),

we are home: We can simulate the base machine M using R
A∪{x}
Q (〈x, j〉) as the answer

to the jth oracle query.
Otherwise, we will make use of the following functions η1, η2, . . . , ηk computable in

∆P
k+1, corresponding oracle Turing machines Rη1 , Rη2 , . . . , Rηk defining≤P

tt-reductions

to A, and functions y1, y2, . . . , yk also computable in ∆P
k+1. As in the proof of Theorem

4.4, we define η� and y� inductively for � = 1, . . . , k. They are defined for inputs x

such that there is a smallest 1 ≤ i ≤ p(|x|) for which R
A\{x}
Q (〈x, i〉) �= R

A∪{x}
Q (〈x, i〉).

The value of η�(x) equals the lexicographically least y� ∈ Σp(|x|) such that

χ[Q�+1 y�+1, Q�+2 y�+2, . . . , Qk yk :

N(q(x, i), y1(x), y2(x), . . . , y�−1(x), y�, y�+1, . . . , yk) accepts] ≡ � mod 2;(4.7)

we set η�(x) = 0p(|x|) if such string does not exist. The right-hand side of (4.7) is 1 iff
y� is existentially quantified in (4.6).

y� =

{
R
A∪{x}
η� (x) if � ≡ R

A∪{x}
Q (〈x, i〉) mod 2,

R
A\{x}
η� (x) otherwise.

(4.8)

The condition on the right-hand side of (4.8) means that we use the hypothesis x ∈ A
to compute y�(x) from Rη� in case

(i) either y� is existentially quantified in (4.6) and the assumption x ∈ A leads
to claiming that (4.6) holds,

(ii) or else y� is universally quantified and the assumption x ∈ A leads to claim-
ing that (4.6) fails.

The intuitive meaning of the functions η� and the reductions Rη� is similar to in
the proof of Theorem 4.4: They capture the moves during the �th round of the game
underlying (4.6) for q = q(x, i). The function η� encapsulates an optimal move during
round � if it exists, and the reduction Rη� under the player’s assumption regarding
membership of x to A produces the actual move in that round. The condition on the
right-hand side of (4.8) guarantees the correct alternation of rounds. We refer to the
proof of Theorem 4.4 for more intuition.

Consider the algorithm in Figure 4.3. Note that the only queries to A the algo-
rithm in Figure 4.3 needs to make are the queries of RQ different from x on inputs 〈x, j〉
for 1 ≤ j ≤ p(|x|) and the queries of Rη� different from x on input x for 1 ≤ � ≤ k.
Since RQ and the Rη� ’s are nonadaptive, it follows that Figure 4.3 describes a ≤P

tt-
reduction to A that does not query its own input. A similar but simplified argument
as in the proof of Theorem 4.4 shows that it accepts A. Thus, A is nonadaptively
autoreducible.

Next, we consider more restricted reductions. Using a different technique, we
arrive at the following theorem.

Theorem 4.6. For any complexity class C, every ≤P
2−tt-complete set for C is

≤P
2−tt-autoreducible, provided C is closed under exponential-time reductions that only

ask one query which is smaller in length.



1514 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET

if R
A\{x}
Q (〈x, j〉) = R

A∪{x}
Q (〈x, j〉) for every 1 ≤ j ≤ p(|x|)

then accept iff M accepts x when the jth oracle query is answered R
A∪{x}
Q (〈x, j〉)

else i← first j such that R
A\{x}
Q (〈x, j〉) �= R

A∪{x}
Q (〈x, j〉)

accept iff N(q, y1, y2, . . . , yk) = R
A∪{x}
Q (〈x, i〉)

where q denotes the ith query of M on input x

when the answer to the jth oracle query is given by R
A∪{x}
Q (〈x, j〉)

and

y� =

{
R

A∪{x}
η� (x) if � ≡ R

A∪{x}
Q (〈x, i〉) mod 2,

R
A\{x}
η� (x) otherwise

end if

Fig. 4.3. Nonadaptive autoreduction for the set A of Theorem 4.5 on input x.

case truth-table of Mi on input 〈0i, x〉 with the truth-value of query x set to A(x)

constant:

accept iff MA
i rejects 〈0i, x〉

of the form “y �∈ A”:

accept iff x �∈ A

otherwise:

accept iff x ∈ A

end case

Fig. 4.4. Algorithm for the set D of Theorem 4.6 on input 〈0i, x〉.

In particular, Theorem 4.6 applies to C = EXP, EXPSPACE , and EEXPSPACE .
In view of Theorems 3.1 and 3.3, this implies that Theorems 3.1, 3.3, and 4.6 are op-
timal.

The proof exploits the ability of EXP to simulate all polynomial-time reductions
to construct an auxiliary set D within C such that any ≤P

2−tt-reductions of D to some
fixed complete set A has a property that induces an autoreduction on A.

Proof of Theorem 4.6. Let M1,M2, . . . be a standard enumeration of ≤P
2−tt-

reductions such that Mi runs in time ni on inputs of size n. Let A be a ≤P
2−tt-complete

set for C.

Consider the set D that only contains strings of the form 〈0i, x〉 for i ∈ N and
x ∈ Σ∗, and is decided by the algorithm of Figure 4.4 on such an input. Except for
deciding A(x), the algorithm runs in exponential time. Therefore, under the given
conditions on C, D ∈ C, so there is a ≤P

2−tt-reduction Mj from D to A.

The construction of D diagonalizes against every ≤P
2−tt-reduction Mi of D to

A whose truth-table on input 〈0i, x〉 would become constant once we filled in the
membership bit for x. Therefore, for every input x, one of the following cases holds
for the truth-table of Mj on input 〈0j , x〉.

(i) The reduced truth-table is of the form “y ∈ A” with y �= x. Then y ∈ A⇔
Mj accepts 〈0j , x〉 ⇔ x ∈ A.

(ii) The reduced truth-table is of the form “y �∈ A” with y �= x. Then y �∈ A⇔
Mj accepts 〈0j , x〉 ⇔ x �∈ A.

(iii) The truth-table depends on the membership to A of two strings different
from x. Then MA

j does not query x on input 〈0j , x〉, and accepts iff x ∈ A.

The above analysis shows that the algorithm of Figure 4.5 describes a ≤P
2−tt-
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if |QMj
(〈0j , x〉) \ {x}| = 2

then accept iff MA
j accepts 〈0j , x〉

else { |QMj
(〈0j , x〉) \ {x}| = 1 }

y ← unique element of QMj
(〈0j , x〉) \ {x}

accept iff y ∈ A

endif

Fig. 4.5. Autoreduction constructed in the proof of Theorem 4.6.

reduction of A.

4.3. Probabilistic and nonuniform autoreductions. The previous results
in this section trivially imply that the ≤P

T -complete sets for the ∆-levels of the
exponential-time hierarchy are probabilistically autoreducible, and the ≤P

tt-complete
sets for the ∆-levels of the polynomial-time hierarchy are probabilistically nonadap-
tively autoreducible. Randomness allows us to prove more in the nonadaptive case.

First, we can establish Theorem 4.5 for EXP.

Theorem 4.7. Let f be a constructible function. Every ≤P
f(n)−tt-complete set for

EXP is probabilistically ≤P
O(f(n))−tt-autoreducible. In particular, every ≤P

tt-complete
set for EXP is probabilistically nonadaptively autoreducible.

Proof. Let A be a ≤P
f(n)−tt-complete set for EXP. We will apply the PCP

Theorem for EXP [2] to A.

Lemma 4.8 (see [2]). There is a constant k such that for any set A ∈ EXP, there
is a polynomial-time Turing machine V and a polynomial p such that for any input
x:

(i) If x ∈ A, then there exists a proof oracle π such that

Pr
|r|=p(|x|)

[V π(x, r) accepts ] = 1.(4.9)

(ii) If x �∈ A, then for any proof oracle π

Pr
|r|=p(|x|)

[V π(x, r) accepts ] ≤ 1

3
.

Moreover, V never makes more than k proof oracle queries, and there is a proof oracle
π̃ ∈ EXP independent of x such that (4.9) holds for π = π̃ in case x ∈ A.

Translating Lemma 4.8 into our terminology, we obtain the following lemma.

Lemma 4.9. There is a constant k such that for any set A ∈ EXP there is a
probabilistic ≤P

k−tt-reduction N , and a set B ∈ EXP such that for any input x:

(i) If x ∈ A, then NB(x) always accepts.
(ii) If x �∈ A, then for any oracle C, NC(x) accepts with probability at most 1

3 .

Let R be a ≤P
f(n)−tt-reduction of B to A, and consider the probabilistic reduction

MA that on input x, runs N on input x with oracle RA∪{x}. MA is a probabilistic
≤P
k·f(n)−tt-reduction to A that never queries its own input. The following shows it

defines a reduction from A:

(i) If x ∈ A, then RA∪{x} = RA = B, so MA(x) = NB(x) always accepts.
(ii) If x �∈ A, then for C = RA∪{x}, MA(x) = NC(x) accepts with probability

at most 1
3 .
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Note that Theorem 4.7 makes it plausible why we did not manage to scale down
Theorem 3.2 by one exponent to EXPSPACE in the nonadaptive setting, as we were
able to do for our other results in section 3 when going from the adaptive to the
nonadaptive case: This would separate EXP from EXPSPACE .

We suggest the extension of Theorem 4.7 to the ∆-levels of the exponential-time
hierarchy as an interesting problem for further research.

Second, Theorem 4.5 also holds for NP.
Theorem 4.10. All ≤P

tt-complete sets for NP are probabilistically nonadaptively
autoreducible.

Proof. Fix a ≤P
tt-complete set A for NP. Let RA denote a length nondecreasing

≤P
m-reduction of A to SAT.

Define the set

W = {〈φ, 0i〉 |φ is a formula with say m variables and ∃ a ∈ Σm : [φ(a) and ai = 1]}.

Since W ∈ NP, there is a ≤P
tt-reduction RW from W to A.

We will use the following probabilistic algorithm by Valiant and Vazirani [17].
Lemma 4.11 (see [17]). There exists a polynomial-time probabilistic Turing ma-

chine N that on input a Boolean formula ϕ with n variables, outputs another quantifier
free Boolean formula φ = N(ϕ) such that:

(i) If ϕ is satisfiable, then with probability at least 1
4n , φ has a unique satisfying

assignment.
(ii) If ϕ is not satisfiable, then φ is never satisfiable.

Now consider the following algorithm for A: On input x, run N on input RA(x),
yielding a Boolean formula φ with, say m variables, and it accepts iff

φ(R
A∪{x}
W (〈φ, 0〉), RA∪{x}

W (〈φ, 00〉), . . . , RA∪{x}
W (〈φ, 0i〉), . . . , RA∪{x}

W (〈φ, 0m〉))

evaluates to true. Note that this algorithm describes a probabilistic ≤P
tt-reduction to

A that never queries its own input. Moreover, we have the following:
(i) If x ∈ A, then with probability at least 1

4|x| , the Valiant–Vazirani algo-

rithm N produces a Boolean formula φ with a unique satisfying assignment ãφ. In

that case, (R
A∪{x}
W (〈φ, 0〉), RA∪{x}

W (〈φ, 00〉), . . . , RA∪{x}
W (〈φ, 0i〉), . . . , RA∪{x}

W (〈φ, 0m〉))
equals ãφ, and we accept x.

(ii) If x �∈ A, any Boolean formula φ which N produces has no satisfying assign-
ment, so we always reject x.
Executing Θ(n) independent runs of this algorithm, and accepting iff any of them
accepts, yields a probabilistic nonadaptive autoreduction for A.

Thus, for probabilistic autoreductions, we get similar results as for deterministic
ones: Low end complexity classes turn out to have the property that their complete
sets are autoreducible, whereas high end complexity classes do not. As we will see in
more detail in the next section, this structural difference yields separations.

If we allow nonuniformity, the situation changes dramatically. Since probabilistic
autoreducibility implies nonuniform autoreducibility [5], all our positive results for
small complexity classes carry over to the nonuniform setting. But, as we will see
next, the negative results do not, because also the complete sets for large complexity
classes become autoreducible, both in the adaptive and in the nonadaptive case. Thus,
uniformity is crucial for separating complexity classes using autoreducibility, and the
Razborov–Rudich result [14] does not apply.

Feigenbaum and Fortnow [7] define the following concept of #P-robustness, of
which we also consider the nonadaptive variant.
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Table 5.1
Separation results using autoreducibility.

question yes no

Are all ≤P
T -complete sets for EXPSPACE autoreducible? NL �= NP PH �= PSPACE

Are all ≤P
T -complete sets for EEXP autoreducible?

NL �= NP
P �= PSPACE

PH �= EXP

Are all ≤P
tt-complete sets for PSPACE ≤P

tt-autoreducible? NL �= NP PH �= PSPACE

Are all ≤P
tt-complete sets for EXP ≤P

tt-autoreducible?
NL �= NP
P �= PSPACE

PH �= EXP

Are all ≤P
tt-complete sets for EXPSPACE

probabilistically ≤P
tt-autoreducible?

NL �= NP P �= PSPACE

Definition 4.12. A set A is #P-robust if #PA ⊆ FPA; A is nonadaptively
#P-robust if #PAtt ⊆ FPAtt.

Nonadaptive #P-robustness implies #P-robustness. For the usual deterministic
and nondeterministic complexity classes containing PSPACE , all ≤P

T -complete sets
are #P-robust. For the deterministic classes containing PSPACE , it is also true that
the ≤P

tt-complete sets are nonadaptively #P-robust.

The following connection with nonuniform autoreducibility holds.

Theorem 4.13. All #P-robust sets are nonuniformly autoreducible. All non-
adaptively #P-robust sets are nonuniformly nonadaptively autoreducible.

Proof. Feigenbaum and Fortnow [7] show that every #P-robust language is
random-self-reducible. Beigel and Feigenbaum [5] prove that every random-self-redu-
cible set is nonuniformly autoreducible (or “weakly coherent,” as they call it). Their
proofs carry over to the nonadaptive setting.

It follows that the ≤P
tt-complete sets for the usual deterministic complexity classes

containing PSPACE are all nonuniformly nonadaptively autoreducible. The same
holds for adaptive reductions, in which case the property is also true of nondeter-
ministic complexity classes containing PSPACE . In particular, we get the following
corollary.

Corollary 4.14. All ≤P
T-complete sets for NEXP, EXPSPACE, EEXP,

NEEXP, EEXPSPACE , . . . are nonuniformly autoreducible. All ≤P
tt-complete sets

for PSPACE, EXP, EXPSPACE , . . . are nonuniformly nonadaptively autoreducible.

5. Separation results. In this section, we will see how we can use the structural
property of all complete sets being autoreducible to separate complexity classes. Based
on the results of sections 3 and 4, we only get separations that were already known:
EXPH �= EEXPSPACE (by Theorems 4.4 and 3.1), EXP �= EEXPSPACE (by
Theorems 4.7 and 3.2), and PH �= EXPSPACE (by Theorems 4.5 and 3.3, and also
by scaling down EXPH �= EEXPSPACE). However, settling the question for certain
other classes would yield impressive new separations.

We summarize the implications in Table 5.1.

Theorem 5.1. In Table 5.1, a positive answer to a question from the first col-
umn implies the separation in the second column, and a negative answer implies the
separation in the third column.

Most of the entries in Table 5.1 follow directly from the results of the previous
sections. In order to finish the table, we use the next lemma.
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Lemma 5.2. If NP = NL, we can decide the validity of QBF-formulae of size t
and with γ alternations on a deterministic Turing machine M1 in time tO(cγ) and on
a nondeterministic Turing machine M2 in space O(cγ log t), for some constant c.

Proof. Since coNP = NP, by Cook’s theorem we can transform in polynomial
time a Π1-formula with free variables into an equivalent Σ1-formula with the same free
variables, and vice versa. Since NP = P, we can decide the validity of Σ1-formulae
in polynomial-time. Say both the transformation algorithm T and the satisfiability
algorithm S run in time nc for some constant c.

Let φ be a QBF-formula of size t with γ alternations. Consider the following
algorithm for deciding φ: Repeatedly apply the transformation T to the largest suffix
that constitutes a Σ1- or Π1-formula until the whole formula becomes Σ1, and then
run S on it.

This algorithm correctly decides the truth of φ. Since the number of alternations
decreases by one during every iteration, it makes at most γ calls to T , each time at
most raising the length of the formula to the power c. It follows that the algorithm
runs in time tO(cγ).

Moreover, since P = NL, a padding argument shows that DTIME[τ ] is con-
tained in NSPACE[log τ ] for any time constructible function τ . Therefore, the result
holds.

This allows us to improve Theorems 3.2 and 3.3 as follows under the hypothesis
NP = NL.

Theorem 5.3. If NP = NL, there is a ≤P
2−T-complete set for EXPSPACE

that is not probabilistically autoreducible. The same holds for EEXP instead of
EXPSPACE.

Proof. Combine Lemma 5.2 with the probabilistic extension of Lemma 3.5 used
in the proof of Theorem 3.2.

Theorem 5.4. If NP = NL, there is a ≤P
3−tt-complete set for PSPACE that is

not nonadaptively autoreducible. The same holds for EXP instead of PSPACE.
Proof. Combining Lemma 5.2 with Lemma 3.7 for α(n) = n yields the result

for EXP. The one for PSPACE follows, since NP = NL implies that EXP =
PSPACE .

Now, we have all ingredients for establishing Table 5.1.

Proof of Theorem 5.1. The NL �= NP implications in the “yes”-column of Table
5.1 immediately follow from Theorems 5.3 and 5.4 by contraposition.

By Theorem 3.1, a positive answer to the second question in Table 5.1 would
yield EEXP �= EEXPSPACE , and by Theorem 3.3, a positive answer to the fourth
question would imply EXP �= EXPSPACE . By padding, both translate down to
P �= PSPACE .

Similarly, by Theorem 4.4, a negative answer to the second question would imply
EXPH �= EEXP, which pads down to PH �= EXP. A negative answer to the
fourth question would yield PH �= EXP directly by Theorem 4.5. By the same
token, a negative answer to the first question results in EXPH �= EXPSPACE and
PH �= PSPACE , and a negative answer to the third question in PH �= PSPACE .
By Theorem 4.7, a negative answer to the last question implies EXP �= EXPSPACE
and P �= PSPACE .

We note that we can tighten all of the separations in Table 5.1 a bit, because
we can apply Lemmas 3.5 and 3.7 to smaller classes than in Theorems 3.1 and 3.3,
respectively. One improvement along these lines that warrants attention is replacing
“NL �= NP” in Table 5.1 with “coNP �⊆ NP ∩NSPACE[logO(1) n].” This is because



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1519

that condition suffices for Theorems 5.3 and 5.4, since we can strengthen Lemma 5.2
as follows.

Lemma 5.5. If coNP ⊆ NP ∩NSPACE[logO(1) n], we can decide the validity of
QBF-formulae of size t and with γ alternations on a deterministic Turing machine M1

in time tO(cγ) and on a nondeterministic Turing machine M2 in space O(dγ logd t),
for some constants c and d.

6. Conclusion. We have studied the question of whether all complete sets are
autoreducible for various complexity classes and various reducibilities. We obtained
a positive answer for lower complexity classes in section 4 and a negative one for
higher complexity classes in section 3. This way we separated the lower complexity
classes from the higher ones by highlighting a structural difference. The resulting
separations were not new, but we argued in section 5 that settling the very same
question for intermediate complexity classes would provide major new separations.

We believe that refinements to our techniques may lead to these separations, and
we would like to end with some thoughts in that direction.

One does not have to look at complete sets only. Let C1 ⊆ C2. Suppose we know
that all complete sets for C2 are autoreducible. Then it suffices to construct, e.g.,
along the lines of Lemma 3.5, a hard set for C1 that is not autoreducible, in order to
separate C1 from C2.

As we mentioned at the end of section 5, we can improve Theorem 3.1 a bit
by applying Lemma 3.5 to smaller space-bounded classes than EEXPSPACE . We
cannot hope to gain much, though, since the coding in the proof of Lemma 3.5 seems

to be DSPACE[2n
β(n)

]-complete because of the QBF2 log β(n)-formulae of size 2O(nβ(n))

involved for inputs of size n. The same holds for Theorem 3.3 and Lemma 3.7.
Generalizations of autoreducibility may allow us to push things further. For

example, one could look at k(n)-autoreducibility where k(n) bits of the set remain
unknown to the querying machine. Theorem 4.4 goes through for k(n) ∈ O(log n).
Perhaps one can exploit this leeway in the coding of Lemma 3.5 and narrow the gap
between the positive and negative results. As discussed in section 5, this would yield
interesting separations.

Finally, one may want to look at other properties than autoreducibility to realize
Post’s program in complexity theory. Perhaps another concept from computability
theory or a more artificial property can be used to separate complexity classes.
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Abstract. Data structures and algorithms are presented to efficiently maintain the 2- and 3-
edge-connected components of a general graph, under insertions of edges and nodes in the graph.
At any moment, the data structure can answer whether two nodes are 2- or 3-edge-connected. The
algorithms run in O(n+m.α(m,n)) time, where m is the total number of queries and edge insertions.
Furthermore, a linear-time algorithm is presented for maintaining the 2-edge-connected components
in case the initial graph is connected. Finally, a new solution is presented for the 2-vertex-connected
components of a graph.

Key words. analysis of algorithms, dynamic data structures, edge connectivity, vertex connec-
tivity
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1. Introduction. A graph algorithm is called dynamic if it maintains some
information related to a graph while the graph is being changed. Dynamic algorithms
are known for several graph problems. Examples are, e.g., maintenance of transitive
closures [16, 17, 18, 27], minimal spanning trees [7, 8], planarity testing [3, 4, 6, 25, 33],
shortest paths [1, 2, 29], k-connectivity [4, 5, 8, 9, 14, 21, 23, 24, 28, 32, 34, 35], and
nearest common ancestors in trees [12].

The general problem of maintaining the k-edge- or k-vertex-connected compo-
nents of a graph (k ≥ 1) starts with an “empty” graph of n nodes1 (i.e., a graph
with no edges) and allows subsequent edge insertions and queries that ask whether
two nodes are k-edge/vertex-connected.2 For these problems, a lower bound of
Ω(n + m.α(m,n)) [32] exists,3 which is induced by lower bounds for set merging
algorithms [10, 20]. Here m is the number of insertions and queries. So it is impor-
tant to know whether there exist algorithms that actually run in this time. For k = 2,
Westbrook and Tarjan [32] obtained the optimal running time of O(n+m.α(m,n)).
For 3-edge-connectivity, however, only combinatorial and special-case results exist.
In our companion paper [21], we developed combinatorial and special-case results for
2- and 3-edge-connectivity; we will further use these in this paper. These special-
case results concern maintaining the 3-edge-connectivity relation in 2-edge-connected
graphs and give an implementation in O((n + m).α(m,n)) time. In [14], Galil and
Italiano obtained comparable results with this complexity for maintaining the 3-edge-
connectivity relation in connected graphs.
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1In this paper, n is the number of nodes.
2For definitions, see subsection 2.5.
3α(m,n) is the inverse Ackermann function.
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Although [21] presents a solution for 3-edge-connectivity which works in time
O(n log n+m), it still leaves the problem whether the α-bound is achievable for the
general case. The general problem appears to be substantially more difficult than the
special-case problems, which can make use of the preset combinatorial structure of
the special graphs. This is also sustained by a coresult of this paper, which shows that
maintaining 2-edge-connected components in connected graphs can be done in linear
time, while in general graphs this cannot. Therefore, the important issue remains
whether the (actually more involved) 3-edge-connectivity relation can be maintained
within the α-bound.

The main objectives of this paper are presenting algorithms and data structures
that maintain the 3-edge-connectivity relation in general graphs with a running time
of O(n+m.α(m,n)). To achieve this, we develop extended combinatorial structures
(augmented cycle forests and basic cluster trees), and we present new data structures
(fractionally rooted trees). We thus construct a solution consisting of different data
structure layers to maintain the 3-edge-connectivity relation. For practical applica-
tions, however, the structures seem very well suited for implementation. Furthermore,
we also present a linear-time solution for maintaining 2-edge-connected components
in connected graphs. Since there is a nonlinear lower bound of Ω(n + m.α(m,n))
for maintaining 2-vertex-connectivity in connected graphs, this seems to be the first
result that reveals a difference in computational complexity between 2-edge- and 2-
vertex-connectivity. Finally, we also give new solutions4 for maintaining the 2-edge-
and 2-vertex-connected components of a graph, which also makes use of the above
data structures and with a similar running time of O(n+m.α(m,n)). This integrates
the approaches for 2- and 3-edge-connectivity and also connects those for 2- and 3-
vertex-connectivity (see [24]). We remark that all our results allow the insertion of
nodes as well.

The paper is organized as follows. Section 2 contains the preliminaries. In sec-
tion 3, the specifications of the operations on a new data structure, called fractionally
rooted trees, are given. In section 4, the maintenance of 2-edge-connected compo-
nents is considered, including the special case for connected graphs. In section 5–7,
the fractionally rooted tree is presented. To be precise, observations and ideas are
given in section 5; the building elements for fractionally rooted trees, called division
trees, are described in section 6; and the fractionally rooted trees themselves are pre-
sented in section 7. Their complexity is considered in section 8. The final results for
fractionally rooted trees are in section 9. In section 10, the optimal solution for main-
taining the 3-edge-connected components is presented. Furthermore, in section 11,
the maintenance of 2-vertex-connected components is briefly considered. Finally, sec-
tion 12 contains concluding remarks. Readers interested in the main outlines of the
paper can skip sections 6.2, 8.1, and 9 (except for the theorems in section 9). Readers
interested in 3-edge-connectivity only can skip subsection 4.2.

2. Preliminaries.

2.1. Graphs and terminology. Let G = 〈V,E〉 be an undirected graph with
V the set of vertices and E the set of edges. We denote an edge as a triple (e, x, y),
where e is a unique edge name and x and y are the end nodes of the edge. A graph is
called empty if it consists of nodes without edges. We use the standard terminology
(see also [15]). A path is simple if no node occurs twice in it. Two paths are called
edge disjoint if they do not have a common edge. Two (different) paths are called

4Obtained independently from [32].
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vertex disjoint if they do not have a common vertex except for their end vertices. Two
nodes are called connected if there exists a path between them. An (elementary) cycle
is a path of which the end nodes are equal and in which no edge occurs twice. A cycle
is simple if no node occurs twice except for the end nodes.

We extend the terminology. Consider a tree T . A set of nodes of T induces a
subtree of T if these nodes are the nodes of a subtree of T ; this is similar for a set of
edges. Suppose the vertex set of T is partitioned into disjoint subsets, where each set
induces a subtree of T . Let each induced subtree of T be contracted to a new node,
called contraction node. For an edge (e, x, y), where x and y are contracted to p and
q, p �= q, the edge (e, p, q) is called the contraction (edge) of (e, x, y), and (e, x, y) is
called the original of (e, p, q). (Both edges are given the same name.)

The tree CT consisting of the contraction nodes and the contraction edges is
called a contraction tree of T . For a class D of edges in T , the class of edges in CT
inherited from D consists of the contractions of edges in D. When we consider classes
of nodes in a graph, we often refer to a class that is represented by a node c by “class
c.” A singleton class, set, or tree is a class, set, or tree that consists of one element or
node, respectively. For a set or list L, |L| denotes the number of elements in L. (If
a sublist is attached to each element in L, then these sublists are not considered for
|L|.)

Consider a tree T that is rooted at node r. (This just means that node r is a
distinguished node.) The father node of an edge is the end node of the edge that
is closest to the root. Then father edge of a node x is the edge between x and the
father node of x. The father edge of an edge is the father edge of the father node of
that edge. For a subtree S of T , the maximal node of that subtree is the (unique)
node that is nearest to the root. We call an edge of subtree S a maximal edge if it is
incident with the maximal node of S.

2.2. Connectivity. Two nodes x and y are k-edge-connected (k ≥ 1) iff there
exist k edge-disjoint paths between x and y, and x and y are k-vertex-connected iff
there exist k different vertex-disjoint paths between x and y (Menger; see [26]). It is
well known that k-edge-connectivity is an equivalence relation on the set of nodes of
a graph.

Henceforth, we will usually call an equivalence class for 2-edge-connectivity a
2ec-class, and an equivalence class for 3-edge-connectivity a 3ec-class. The 2-edge-
connected components of a graph G = 〈V,E〉 are the subgraphs of G that are induced
by the 2ec-classes, i.e., subgraph 〈C, {(e, x, y) ∈ E|x, y ∈ C}〉 for each 2ec-class C.

Lemma 2.1 (see [21]). Let G = 〈V,E〉 be a graph. Let H be a 2-edge-connected
component of G. Then H is a 2-edge-connected graph. Moreover, nodes x, y ∈ H are
k-edge-connected in H iff they are k-edge-connected in G (k ≥ 1).

The notion of a 3-edge-connected component can be defined such that Lemma 2.1
holds for 3-edge-connectivity too. We refer to [21]. In our observations, we will
represent the 2ec-classes and the 3ec-classes of a graph by means of a “super” graph.
To this end, we use the notion of a class node, which is a new node (or “name”) that
represents a class.

Lemma 2.2 (see [21]). Let G = 〈V,E〉 be a graph and let k ≥ 1. Let V be
partitioned into classes, where any two nodes in the same class are k-edge-connected.
Let a new class node be related to each class. Let k′ satisfy 1 ≤ k′ ≤ k. Then two nodes
are k′-edge-connected in G iff the class nodes of their classes are k′-edge-connected in
the graph obtained from G by contracting each class to its class node.

We call a set S of at least two nodes a 2vc-class if the nodes are 2-vertex-
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connected, and if there does not exist a node outside S that is 2-vertex-connected
with the nodes of S (i.e., the class is maximal). Furthermore we define a quasi class to
be any set of two nodes that are the end nodes of a cut edge. The 2-vertex-connected
components of a graph G are the subgraphs of G that are induced by the 2vc-classes
of nodes. (Note that the 2-vertex-connected components and the subgraphs induced
by quasi classes as we defined them are usually called the blocks of a graph.)

In the sequel, we will often denote 2-edge-connectivity by “2ec-,” etc., when
we consider components or relations. For example, 3ec-components denotes 3-edge-
connected components, and 2vc-relation denotes 2-vertex-connectivity relation.

2.3. Problem description. The problems that we consider in this paper are
as follows. Let a graph be given. Then the following operations may be applied on
the graph.

insert((e, x, y)). Insert the edge (e, x, y) in the graph.
2ec-comp(x). Output the name of the 2ec-component (2ec-class) which contains

x.
3ec-comp(x). Output the name of the 3ec-component (3ec-class) which contains

x.
Is2vc(x, y). Output whether x and y are two nodes in the graph that are 2-vertex-

connected and output the name of the 2vc-component (2vc-class) in which they both
are contained (if any).

We call a problem the 2ec-problem if operations insert and 2ec-comp are consid-
ered; the 3ec-problem if operations insert, 2ec-comp, and 3ec-comp are considered;
and the 2vc-problem if operations insert and Is2vc are considered. In these problems,
we normally start with an empty graph with n nodes (unless stated otherwise). In
addition, the above collection of operations can be extended with the insertion of a
new (isolated) node in the graph. We will consider this operation only in the last
steps of our solutions.

We call the insertion of an edge an essential insertion for a given problem, if in
the graph either the connectivity relation changes or, for the 2ec-problem, the 2ec-
relation changes, or, for the 3ec-problem, the 2ec- or 3ec-relation changes, or, for the
2vc-problem, the 2vc-relation changes. An insertion is called nonessential otherwise.
Note that nonessential insertions can be omitted, which is known after a proper couple
of queries. (Thus such an insertion does not need to take more than the time for those
queries.)

2.4. The Ackermann function. The Ackermann function A is defined as fol-
lows. For i, x ≥ 0 function A is given by

A(0, x) = 2x for x ≥ 0,
A(i, 0) = 1 for i ≥ 1,
A(i, x) = A(i− 1, A(i, x− 1)) for i ≥ 1, x ≥ 1.

(1)

The row inverse a of A and the functional inverse α of A are defined in corre-
spondence to [11, 12, 19, 23] by

a(i, n) = min{x ≥ 0|A(i, x) ≥ n} (i ≥ 0, n ≥ 0),(2)

α(m,n) =min{i ≥ 1|a(i, n) ≤ 4.�m/n�} (m ≥ 0, n ≥ 1).(3)

Here we take �0� = 1. For more technical insight on these functions, we refer to [19].
Here we quote that

a(i, A(i, x)) = x (i ≥ 0, x ≥ 0),(4)
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and also that for any practical n, we have α(m,n) ≤ 3. Also, A(i, 1) = 2 and

A(i, 2) = 4 (i ≥ 0), and A(0, x) = 2x, A(1, x) = 2x, and A(2, x) = 222.
.2
}x 2s

.

Similarly we have

a(0, n) = �n2 �,
a(1, n) = �log n� = min{j|� n2j � = 1},
a(2, n) = log∗ n = min{j|�log(j) n� = 1},
a(3, n) = min{j| log∗

(j)

n = 1},

where the superscript (j) denotes the j consecutive applications. For simplicity, we
extend the Ackermann function by A(i,−1) = 0 for all i ≥ 0.

2.5. Representation and data structures. The algorithms and data struc-
tures that we present (except for the algorithm in subsection 4.2) can be implemented
on both a pointer machine and a random access machine (RAM) with the same com-
plexity. Nodes and edges of a graph are represented in memory by records, which
we will consider to be the actual nodes and edges. Each vertex has an incidence list
consisting of pointers to the incident edges. Also, each edge contains pointers to its
two end nodes. If we consider a tree T rooted at some node r, then for each node in
T , its father node and father edge are related to it by appropriate pointers. An edge
that has to be inserted is given by its record with the pointers to its end nodes as
input for the algorithms.

In the following, the Union-Find structure is used to maintain the equivalence
classes for connectivity, 2-edge-, and 3-edge-connectivity. These structures are de-
noted by UFc, UF2ec, and UF3ec, respectively, where the corresponding Finds on
elements x are denoted by c(x), 2ec(x), and 3ec(x), respectively. Many solutions
have been proposed for the Union-Find problem [19, 30, 31]: these solutions all take
O(n +m.α(m,n)) time for all Unions and m Finds on n elements, which is optimal
[10, 20]. The solution of [19] ensures that, in addition, the fth Find can be done in
O(α(f, n)) worst-case time. We call such structures α-UF structures. In this paper,
we will also make use of a class of structures UF(i) (i ≥ 1), as defined in [19].

Theorem 2.3 (see [19]). Structure UF(i) takes O(n.a(i, n)) time for all Unions
on n elements, where a Find takes O(i) worst-case time (i ≥ 1).

We consider the connectivity problem for edge insertions. Let G = 〈V,E〉 be a
graph. Suppose a sequence of edge insertions in G and queries about whether two
nodes are connected are performed. If an edge (e, x, y) is inserted, there are two cases.
If c(x) = c(y), then nothing needs to be done. Otherwise, if c(x) �= c(y), then x and
y are not connected yet and the equivalence classes c(x) and c(y) are joined. Since
apart from these Unions, each insertion takes O(1) time, it follows that all insertions
and queries can be performed in O(|E|) time plus the time needed for the Union and
Find operations. In the sequel, we use this algorithm for maintaining connectivity,
but we will not make the above computations explicit any more.

3. Fractionally rooted trees: Concept and operations. We give a formal
description of the operations supported by the data structure called fractionally rooted
tree, without considering the data structure itself yet. Let a forest F be given. Suppose
the collection of edges is partitioned into disjoint classes such that each class induces
some subtree of F . Such a partition is called an admissible partition.
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We first define some notions. Let x and y be two nodes in the same tree of F , and
let P be the tree path between x and y. By “edge classes on P ,” we mean the edge
classes of which an edge is on P . An edge class is incident with node x if it contains
an edge with x as end node. We call a node x on P a boundary node of P if it is
incident with two classes on P or if it is one of the end nodes of P . We call a node
of P an internal node otherwise. A boundary edge set for a boundary node z on P is
a set of (0, 1, or 2) edges incident with z: one from each class that is incident with z
and that is on P . (See Figure 1, where path P is drawn with heavy lines, C1 and C2

are two different edge classes, {e1, e2} ⊆ C1 and {e3, e4} ⊆ C2, and where {e1, e3},
{e1, e4}, {e2, e3}, and {e2, e4} are the possible boundary edge sets for z on P .) A
boundary list for the two nodes x and y is a list consisting of the boundary nodes of
P , where each boundary node has a sublist that contains a boundary edge set for it
on P . (Note that in a boundary list for x and y with x �= y, all nodes have a sublist
with two edges except for nodes x and y that each have one edge in their sublist.) We
say that x and y are related nodes, denoted by x ∼ y, if x = y or if all the edges on P
are in the same edge class. (Hence x ∼ y iff x and y are the only nodes in a boundary
list for x and y.)

z

e

e
e e

2

13

4

C

C 1

2

P

Fig. 1. Boundary edge sets.

We say that an edge class occurs in a list consisting of sublists of edges if an edge
of it occurs in some sublist. A joining list J is a list of nodes with sublists of edges
such that the union of the classes occurring in J induces some subtree in F . (Hence
it yields a new admissible partition of the edge set.) In addition, the nodes in J must
be the nodes incident with at least two classes occurring in J , and the sublist for each
node contains an edge for each class in J incident with the node.

The following operations, called FRT operations, may be performed on a forest
F .

link((e, x, y)). Let x and y be nodes in different trees of forest F . Then link the
two trees containing x and y by inserting the edge (e, x, y), where (e, x, y) forms a
new singleton class.

boundary(x, y). Let x and y be in the same tree of F with x �= y. Then output a
boundary list for x and y.

joinclasses(J). Let J be a joining list. Then join all the edge classes of which an
edge occurs in the list.

candidates(x, y). Return an edge incident with x and return an edge incident with
y; these edges (the candidates) are in the same class if such edges exist (i.e., x ∼ y).
Return the names of the edge classes in which the edges are contained.

Finally, we define some notions that will be used in the sequel. We say that
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a call boundary(x, y) is essential if ¬(x ∼ y) and it is nonessential if x ∼ y. An
essential sequence is a sequence of link, boundary, and joinclasses, where every call
of boundary is essential and is followed by a call joinclasses(J) such that all the edge
classes occurring in the output of boundary also occur in J . A matching sequence is
a sequence of FRT -operations where the subsequence of calls of link, essential calls
of boundary, and calls of joinclasses forms an essential sequence.

4. Two-edge-connectivity. In this section, we consider the problem of main-
taining the 2ec-components in a graph, and we will present algorithms that run in
O(n + m.α(m,n)) time for n nodes and m queries and insertions using fractionally
rooted trees. Thus we present a solution that is different from that given in [32] but
whose approach is closer to the approach for maintaining the 3ec-relation in general
graphs (section 10), and that we will use there too. We also present a linear-time
solution for maintaining the 2ec-components in case the initial graph is connected.

4.1. Graph observations. In this subsection, we recall from the companion
paper [21] the observations for inserting edges in a graph G = 〈V,E〉. The set V can
be partitioned into equivalence classes for 2-edge-connectivity: the 2ec-classes. Let
each 2ec-class C be represented by a new (distinct) node c, called the class node of
C. Let 2ec(x) be the class node of the 2ec-class in which the node x is contained. We
define the contracted graph 2ec(G) as follows:

2ec(G) = 〈2ec(V ), {(e, 2ec(x), 2ec(y))|(e, x, y) ∈ E ∧ 2ec(x) �= 2ec(y)}〉.

For example, 2ec(G) is the graph that is obtained if we contract each 2ec-class into
one class node. By Lemma 2.2, 2ec(G) is a forest (for a figure, see [21]). An edge
(e, x, y) in G is called an interconnection edge between (classes) 2ec(x) and 2ec(y) if
2ec(x) �= 2ec(y).

We consider the 2ec-relation under edge insertions by means of the graph 2ec(G).
Suppose a new edge (e, x, y) �∈ E is inserted in graph G = 〈V,E〉. We distinguish
three cases and apply Lemma 2.2.

1. c(x) �= c(y). Then (e, 2ec(x), 2ec(y)) connects two trees in 2ec(G) that have
to be joined into one tree.

2. 2ec(x) �= 2ec(y) ∧ c(x) = c(y). Then edge (e, 2ec(x), 2ec(y)) connects 2ec(x)
and 2ec(y) in a tree of 2ec(G), and all class nodes on the tree path P from
2ec(x) to 2ec(y) become 2-edge-connected in 2ec(G). Thus all the classes
“on” P must be joined.

3. 2ec(x) = 2ec(y). Then nothing happens.

4.2. Algorithms for initially connected graphs. We consider the 2ec-problem
in case the initial graph is connected. We represent the graph 2ec(G) by means of
a spanning tree of G, denoted by ST (G). Note that a 2ec-class induces a subtree in
ST (G). Since the tree ST (G) can be constructed in advance, we can use the Union-
Find algorithms of [13] to maintain the 2-edge-connected classes: this algorithm runs
in O(n + m) time for m Finds for this special case. (It runs on a RAM but not on
a pointer machine.) Moreover, as remarked in [19], a Find can be performed in O(1)
worst-case time.

We give the algorithms in case the graph G initially is a tree. We implement the
tree as a rooted tree and initialize the Union-Find structure of [13] accordingly. We
recall from [13] that the name of a set in the Union-Find structure is the (unique)
node in the set that is closest to the root. Suppose an edge (e, x, y) is inserted. If
c(x) = c(y)∧2ec(x) �= 2ec(y), then the tree path between 2ec(x) and 2ec(y) is obtained
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as in [21] by traversing the root paths of 2ec(x) and 2ec(y) in 2ec(G) stepwise in an
alternating way, where we use ST (G) with the Union-Find structure as representation
for 2ec(G). This is stopped if a class name top has been visited by both traversals;
path P between 2ec(x) and 2ec(x) consists of the two parts of these root paths up to
and including top.

We consider the time complexity. A computation of a tree path P is done inO(|P |)
time, since one of the two traversals contains nodes of P only. Since the number of
classes decreases by |P | − 1, all path computations take O(n) time altogether. All
Unions and m Finds take O(n+m) time. Finally, each insertion takes two Finds and
O(1) time, apart from the above cost.

In case the initial graph is connected but it is not a tree, then we do the following.
First obtain a spanning tree of the graph, and initialize the structure for this tree.
Then insert the edges of the graph that are not in the tree by means of the above
algorithm. Then the actual insertions can be performed.

Theorem 4.1. The 2ec-problem for graphs that are initially connected can be
solved such that a sequence of m insert operations takes O(n + m) time, where a
query takes O(1) time. The structure can be initialized O(e0) time and takes O(n)
space, where e0 is the number of edges in the initial graph.

The above theorem can be augmented to allow attachment of a single new node
by an edge connecting it with an existing node in the graph, within the same time
complexity. (Thus, the graph remains connected.) This can be done by [13, section
3].

4.3. Algorithms and data structures for general graphs. In this subsec-
tion, we will give a solution for the general 2ec-problem with a time complexity of
O(n+m.α(m,n)) for n nodes and m queries and insertions.

We represent the structure 2ec(G) by means of a forest of spanning trees of G.
We denote the forest together with additional information (defined below) by SF (G).
SF (G) is augmented with edge classes induced by the 2ec-relation.

Let (e, x, y) be an edge in SF (G). If 2ec(x) = 2ec(y), then (e, x, y)
is in the edge class named 2ec(x). Otherwise, edge (e, x, y) forms a
singleton class on its own, which we call a quasi class.

An edge class that is not a quasi class is called a real class. Note that interconnection
edges form quasi classes and vice versa.

As observed in subsection 4.2, a 2ec-class (of nodes) induces some subtree in
SF (G). Therefore, each edge class induces a subtree in SF (G). Also, if each subtree
in SF (G) induced by a real edge class is contracted to some node, then we obtain
the forest 2ec(G), where the quasi edge classes in SF (G) correspond to the edges in
2ec(G).

We consider the insertion of edge (e, x, y). If x and y are in different trees of
SF (G), then these trees need to be linked. Now suppose x and y are in the same tree
T of SF (G). Let P be the tree path in T between x and y. We use the terminology
of section 3. By the definition of edge classes, a boundary node of P is either one of
the end nodes x or y, or it is a node for which its two neighbors on P are not both in
the same 2ec-class as itself. The two neighbors of an internal node z on P are inside
class 2ec(z) too. Therefore, if we compute the boundary nodes of P only, then we
obtain one or two nodes of each 2ec-class (of nodes) that need to be joined.

We need some tree representation to compute boundary sequences efficiently while
trees are linked from time to time. One solution is to use rooted trees and, in the
case of linkings of trees, to redirect the smallest one of the two trees that are linked.
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However, this takes O(n. log n) for the linkings. To improve the time complexity, we
use the fractionally rooted trees (FRT ) structure.

We solve the 2ec-problem by the so-called 2EC structure, which is given as follows.
We use the above forest SF (G) with the 2ec-classes and the above edge classes. A
node x in SF (G) that is not in a singleton 2ec-class has a pointer assoc to an edge
that is incident with x and that is in the class named 2ec(x). (Such an edge exists.)
We call such an edge an associated edge for x. Forest SF (G) is implemented as a
FRT structure, denoted by FRT2ec. Moreover, all 2ec-classes of nodes (in SF (G)) are
implemented by a Union-Find structure, denoted by UF2ec. All connected components
of nodes are implemented by a Union-Find structure, denoted by UFc.

The initialization and the queries are straightforward. The insertion of edge
(e, x, y) in graph G is done by procedure insert2ec((e, x, y)) as follows.

1. If c(x) �= c(y), then link((e, x, y)) is performed, and the two connected com-
ponents c(x) and c(y) are joined (in UFc).

2. If c(x) = c(y) ∧ 2ec(x) �= 2ec(y), then the following is done. First, operation
boundary(x, y) is performed, returning boundary list BL. All the (node)
classes in which the boundary nodes are contained are joined in UF2ec. For
each node z in BL, the associated edge e of z (if any) is obtained. If edge e is
not in an edge class occurring in the sublist of z in BL, then e is inserted in
its sublist. (This ensures that 2ec(e) = 2ec(z) remains true after subsequent
joinings.) The end nodes of BL are removed in case their sublists contain
one edge only. Then, if BL �= ∅, operation joinclasses(BL) is performed.
Finally, for each node z in BL without an associated edge, an edge in its (old)
sublist is made its associated edge.

3. If 2ec(x) = 2ec(y), nothing is done.

Note that starting from a graph with n nodes, there are at most 2(n−1) essential
insertions, since in each essential insertion at least two connected components or 2ec-
classes are joined.

Observation 4.2. In a 2EC structure, the time needed for a sequence of essential
insertions is linear to the time for a matching sequence of O(n) operations on n nodes
in FRT2ec and for O(n) Unions and Finds in UFc and UF2ec. Each nonessential
insertion takes time linear to θ(1) Finds in UFc and UF2ec.

A 2EC(i) structure is the structure described above, where FRT2ec = FRT (i)
(see section 9), UF2ec = UF (i), and UFc = UF (i).

Theorem 4.3. A 2EC(i) structure solves the 2ec-problem such that the total time
for all essential insertions is O(n.i.a(i, n)), where a query and a nonessential insertion
can be performed in O(i) time, and where the data structure can be initialized in O(n)
time and takes O(n) space (i ≥ 1, n ≥ 2).

Proof. Theorem 4.3 can be proved by Observation 4.2, Theorem 2.3, and Theo-
rem 9.1.

We denote the Union-Find structures UF2ec and UFc together by UF . We con-
sider the UF structures to be one structure on O(n) elements. Now take FRT(α(n, n))
as FRT2ec for a graph with n nodes, where α(n, n) is obtained as in [19], and take for
UF the α-UF structure (see subsection 2.5). Then we obtain the following.

Theorem 4.4. The 2ec-problem can be solved such that the time is O(m.α(m,n))
in total (where m is the number of edge insertions and queries), where the f th query
takes O(α(f, n)) time. The data structure can be initialized in O(n) time and takes
O(n) space.

Proof. Each query and nonessential insertion corresponds to O(1) Finds in the
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UF structures. Moreover, all essential insertions take at most O(n) Finds. Hence by
[19] the fth operation is performed in O(α(f, n)) time if it is a query or nonessential
insertion. The remaining statements follow by Theorem 9.1 (with n′ ≤ min{2m,n}),
by (3), and by subsection 2.5.

The above theorem can be augmented to allow insertion of new nodes in the
graph with a time complexity of O(n + m.α(m,n)): then α-FRT is used instead of
FRT(α(n, n)) (cf. section 9).

5. Fractionally rooted trees: Observations and ideas. We give some of
the ideas and observations regarding fractionally rooted trees. We consider a forest F ,
with an admissible partition of the edge set (see section 3).

A tree T in F is partitioned into subtrees that all are (locally) rooted, i.e.; each
subtree has its own root independent of the remainder of the tree and subtrees. Each
subtree is contracted to a new node, which yields a contracted tree T ′. The collection
of edges of T ′ is partitioned into edge classes inherited from the edge classes of T .

A boundary list B between two nodes x and y in T can now be obtained as
follows. Let c and d be the nodes in T ′ to which x and y are contracted, respectively.
Suppose c �= d. Let P be the tree path between x and y in T . Let P ′ be the tree
path between c and d in T ′. Since an edge class induces a subtree, it follows that
each boundary node of P ′ contains a boundary node of P , and the other way around.
For a boundary node b on P ′, let Pb be the part of P inside b, and let s and t be
its end nodes. Then, obviously, for a node z �∈ {s, t} contained in b, z is a boundary
node of Pb iff it is one of P . If we extend Pb to Pbb with the other edges es and et
on P incident with s and t, respectively (if they exist), then it follows that a node
contained in b is a boundary node of Pbb iff it is one of P .

Now suppose that es exists. Then the boundary set for b contains an edge that
is in the same edge class as the contraction of es. Let fs be the original of this edge.
Then es and fs are in the same class, and, hence, the tree path connecting them
consists of edges in this class only. Therefore, if we change Pb by replacing the “end
edge” es by fs, the boundary nodes contained inside b remain unchanged. We can do
the same for t. Hence, the boundary nodes contained in b are those contained in the
local tree path between the originals of the edges in the boundary edge set of b or x or
y (if x or y are contained in b). (See Figure 2 for an illustration within T , where the
subtree of T that is contracted to b in T ′ is surrounded by an ellipsoid.)

e

eP

b

u

v

P b

s

sf

t

f t

Fig. 2. Boundary nodes in b.

Hence we can compute a boundary list B for x and y as follows. First we compute
a boundary list B′ in T ′ for the nodes c and d. Then for each boundary node b in B′,
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we obtain the nodes u and v in b that are x, y, or end nodes of the originals of the
edges in the boundary edge set of b. Subsequently, we compute the “local” boundary
list bl(b) for u and v. Finally, we extend the sublists of the end nodes u and v with
the appropriate originals of the edges in the boundary edge set of b; if u (or v) is not
a boundary node for x and y after all, then it is removed from bl(b). Then these local
boundary lists bl(b) together form B.

6. Division trees.

6.1. Description. Division trees form the base of the fractionally rooted trees.
For the terminology regarding contractions we refer to section 2.1.

Let F be a forest with an admissible partition of the edge set into edge classes,
distinguished as global edge classes. Let T be a tree in F . Let CT (T ) be a contraction
tree of T , where CN(T ) is the collection of contraction nodes and for each b ∈ CN(T ),
tree(b) is the subtree of T that is contracted to b. Then T together with set CN(T )
and with subtrees tree(b) is called a division tree. An edge is called internal if it is
contained in some tree(b), and external otherwise. For a contraction node b, the ex-
tended tree extree(b) is tree(b) extended with the external edges incident with tree(b).
The edge set of a extree(b) is partitioned into local edge classes induced by the global
edge classes of T . This yields an admissible partition. Tree extree(b) is rooted at
some node.

An external edge (e, x, y) may contain different information pertaining to the
two extended subtrees in which it is contained. Therefore, we distinguish two rep-
resentatives called (edge) sides, one for each of its end nodes (e, x, y)x and (e, x, y)y.
For external edge (e, x, y), (e, x, y)x is the representative for extree(contr(x)), where
contr(x) is the node to which x is contracted. For internal edges, both sides are
considered to be identical. We often omit referring to the proper side, however.

The class of edge e in extree(b) is denoted by class(e). Every edge class contains
at most one edge that is marked by a so-called d-mark, which must be an external
edge and which contains a direct pointer d(e) to the name of the edge class. (So, the
class name can be obtained fast.) For each edge class C in extree(b), the following
edges are distinguished (with direct pointers to them):

• max(C) is a maximal edge of C in the rooted tree extree(b). Such an edge
is then called the maximal edge of that class and is marked by an m-mark
(which is done implicitly).

• ext(C) is an external edge in it (if there exists any).
• direct(C) is the d-marked edge in it (if it exists).

For a node x in extree(b), the father edge of x or an m-marked edge incident with x
is called a preferred edge for x. Note that for node x and a class C incident with x,
there is exactly one preferred edge for x in C.

We describe the operations that we want to perform on F .
basic-external-link((e, x, y)). Let x and y be nodes in two different trees Tx and

Ty. Then link these trees by the edge (e, x, y), yielding tree T , where the partition of
the node set remains unchanged. This means that CN(T ) = CN(Tx)∪CN(Ty), and
for each b ∈ CN(T ), tree(b) is not affected by the operation. The new edge (e, x, y)
forms a new singleton class on its own.

basic-internal-link((e, x, y), y). Let x and y be nodes in two different trees Tx and
Ty. Let c = contr(x). Then link these trees by the edge (e, x, y), yielding tree T , where
tree(c) is extended with edge (e, x, y) and tree Ty. For example, CN(T ) = CN(Tx),
and tree(b) remain unchanged for b ∈ CN(Tx)\{c}. The new edge (e, x, y) forms a
new singleton class on its own. The edges in Ty are called affected.
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basic-integrate(x, f). Let x be a node in tree T , and let f be a (possibly new)
contraction node not occurring in CN(T ). Then change the partition of T such that
it consists of just one subtree, with contraction node f . For example, afterward
CN(T ) = {f}. The edges in T are called affected.

basic-boundary(x, y). Let contr(x) = contr(y). Then return a boundary list BL
for x and y, where the edges in BL are preferred.

basic-joinclasses(J). Let J be a joining list with one node such that there is at
most one edge class occurring in J that contains a d-marked edge. Then join the edge
classes occurring in J .

Note that for affected edges, the father relations andm-marks of these edges (edge
sides) may change during these calls.

6.2. Implementation. We implement the structures as follows. A tree T in F
is implemented in the common way. Each node x in T contains a pointer contr(x)
to the contraction node in which it is contained, and, conversely, for each contraction
node b, the list nodes(b) consists of the nodes in tree(b). Similarly, each external edge
has a pointer to its contraction edge and vice versa. An edge is marked external or
internal. The edge classes in extree(b) are represented by a Union-Find structure,
called the local class Union-Find structure. The initialization of a division tree with
one contraction node is straightforward.

The operations are implemented as follows. We omit straightforward implemen-
tation details regarding, e.g., handling marks, (special) pointers, lists, etc. Note that
converting an edge from external to internal may have consequences for classes, marks,
and pointers.

basic-external-link((e, x, y)) and basic-integrate(x, f). The implementation of these
operations is obvious. Note that maximal edges can be found by checking for each
edge whether its father edge is in the same class.

basic-internal-link((e, x, y), y). Let c = contr(x). First, basic-integrate(y, c) is
performed, edge (e, x, y) is inserted, and x is made the father of y. Then max(class(e))
is set to (e, x, y).

basic-boundary(x, y). If x = y, then return the boundary list BL consisting of
node x with empty sublist. Otherwise, the following is done. First, two boundary
lists s(x) and s(y) for the root paths of x and y are stepwisely computed in an
alternating way, until a node top has been visited by both computations. This is
as follows. List s(x) starts with visiting node x, and a step for s(x) is as follows:
obtain the father edge (e, z, z′) of the node z that is visited (if any), obtain the edge
max(class(e)) = (e′, u, v), and visit the father node of e′. Shorten the lists s(x) and
s(y) such that they are boundary lists for x and top and for y and top respectively.
Boundary list BL is created from s(x) and s(y), where if top �∈ {x, y} and the two
edges related to top are in the same edge class, then top is removed from the list (since
it cannot be a boundary node of P ).

basic-joinclasses(J). First a list CJ is created consisting of all (names of) edge
classes occurring in J . Then the classes in CJ are joined, and the edges ed, em, and
eex (given below) are related to this new class appropriately. Edge em is the maximum
edge of the class of the father edge of x if this class occurs in CJ , and of any class in
CJ otherwise. Edge ed is the (unique) d-marked edge in one of the classes in CJ (if
it exists), and eex is the external edge of some class in CJ (if any).

7. Fractionally rooted trees: The data structure. We present the recursive
data structure called the fractionally rooted trees. We consider a dynamic forest F0

with an admissible partition of its edge set.
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Let i ≥ 1. Let Fi consist of contractions of a number of trees in F0. The edge
set of forest Fi is partitioned into the edge classes that are inherited from the edge
classes of F0 We introduce the structures FRT(i) for Fi for i ≥ 1.

Each tree of Fi has a name in FRT(i) being some (new) unique node. For each tree
in Fi, its data structure contains its tree name s and a collection of at most i layers,
numbered from i in a decreasing order (say, down to down(s)). Each existing layer j
consists of a division tree, denoted by tree(s, j). For layer i, tree(s, i) is the tree in
Fi with name s. For existing layer j < i, tree(s, j) is the contraction of tree(s, j+1),
and its global edge classes are inherited from those of tree(s, j + 1). Finally, tree
name s forms the contraction tree of tree(s, down(s)). (The above number down(s)
is only used in the description.) We denote by tree0(s) the original in F0 of tree(s, i)
in Fi. To each tree name some parameters are associated, which will be given in the
following sections. The structure FRT(i) allows the operations on Fi as described in
section 3, where we add the parameter i to easily allow recursion. Thus we have (with
the following modifications) the operations link((e, x, y), s, t, i), where x ∈ tree(s, i)
and y ∈ tree(t, i); boundary(x, y, i), where the returned boundary list consists of
preferred edges; joinclasses(J, i); and candidates(x, y, i), which does not return the
names of edges classes, and where the returned edges are preferred. In addition, we
have an operation treename(x) that trivially outputs the name s of the tree in which
a node x occurs.

For implementation purposes, we mention that the edge classes in F0 are repre-
sented by a Union-Find structure UF0. If FRT(i) is used as a complete structure,
directly on F0 (i.e., Fi = F0), then UF0 = UF (i) (see subsection 2.5), and each
operation joinclasses(J, i) also joins all classes in F0 occurring in J (in UF0).

The structures FRT(i) are defined inductively (in terms of divisions trees). The
method of induction has relations to those in [11, 12, 19, 23]. We start from a base
structure FRT(1) that corresponds to the idea using ordinary rooted trees. This
structure takes O(n. log n) time for an essential sequence of operations.

7.1. The structure FRT(1). Structure FRT(1) is a structure for a forest F1

that satisfies the following conditions. For each tree name s, we have a parameter
weight(s, 1) that contains the number of nodes in tree(s, 1). The local class Union-
Find structure for F1 is UF(1). FRT(1) is initialized as a forest of division trees with
one contraction node each. The algorithms for the operations are as follows.

link((e, x, y), s, t, 1). W.l.o.g. suppose that weight(s, 1) ≤ weight(t, 1). Then
basic-internal-link((e, x, y), x) is performed.

boundary(x, y, 1). Boundary list BL is obtained by a call basic-boundary(x, y).

joinclasses(J, 1). The joining of classes is performed by calls basic-joinclasses(Jx)
for each node x in J , where Jx consists of x and its sublist in J .

candidates(x, y, 1). Let ex and ey be the father edges of x and y, respectively (if
they exist). Obtain the edges mx := max(class(ex)) and my := max(class(ey)). If
mx is incident with y, then e′y := mx (now e′y is m-marked for y), otherwise e′y := ey;
this is similar for e′x. Output e′x and e′y. (Now e′x and e′y are preferred.)

We remark that procedure candidates(x, y, 1) yields a correct pair of edges, since
if x and y are incident with the same edge class C, at least one of the father edges of
x and y must be in C, and if the father edge of, say, x is not in C, then the m-marked
edge of C is incident with x.

7.2. The structure FRT(i) for i > 1. Let i > 1. Structure FRT(i) is a
structure for a forest Fi that satisfies the following conditions. For each tree name
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s, we keep a parameter weight(s, i) that contains the number of nodes of tree(s, i).
Also, we have a parameter lowindex(s, i) which is an integer ≥ −1 that satisfies

2.A(i, lowindex(s, i)) ≤ weight(s, i).(5)

(The parameter lowindex is incremented from time to time by the algorithms.) The
Union-Find structure for local classes in Fi is UF(i).

Two cases are distinguished.

• If weight(s, i) = 1, then down(s) = i. Hence CN(tree(s, 1)) = {s}.
• Otherwise, if weight(s, i) > 1, then down(s) < i. A contraction node b ∈
CN(tree(s, i)) satisfies (besides | nodes(b) |≥ 2)

| nodes(b) |≥ 2.A(i, lowindex(s, i)).(6)

If layer i is removed, then the remaining part, starting from tree(s, i − 1)
in layer i − 1, is an FRT(i − 1)-structure. For an external edge (e, x, y) in
tree(s, i), side (e, x, y)x is d-marked if its contraction edge is preferred for
contr(x).

Note that every edge class C in extree(b) for some b ∈ CN(tree(s, i)) contains at
most one d-marked edge, since every edge class in tree(s, i− 1) contains at most one
preferred edge incident with b.

7.2.1. Implementation. The initialization is done by initializing a forest of
division trees with one contraction node each. For singleton trees, the contraction
node is the tree name, where for nonsingleton trees, new tree names are recursively
related to them in the next layer. All the corresponding lowindex-values are set to
−1.

We give the algorithms for the operations. Note that, by (5), lowindex(s, i) ≥ 0
implies that down(s) < i.

link((e, x, y), s, t, i). W.l.o.g., we assume that lowindex(s, i) ≥ lowindex(t, i).

Let newweight := weight(s, i) + weight(t, i) and let ls := lowindex(s, i). There
are three cases. (For more intuition behind this operation, we refer to the comments
and figures in [19].)

• lowindex(s, i) > lowindex(t, i). A call basic-internal-link((e, x, y), y) is per-
formed. (Now, tree(t, i) is contracted to contr(x).) Then t and its related
layers j with j < i are disposed.

• lowindex(s, i) = lowindex(t, i) ∧ newweight ≥ 2.A(i, ls + 1). Then a new
contraction node f is created in layer i− 1. Then basic-external-link(e, x, y)
and basic − integrate(x, f) are called, and contr(f) := s. (Now, tree(f)
consists of the former tree(s, i), tree(t, i), and (e, x, y).) The old existing
layers j related to s and t with j < i are disposed, including tree name t.
Finally, lowindex(s, i) := lowindex(s, i) + 1 and lowindex(s, i− 1) := −1.

• lowindex(s, i) = lowindex(t, i) ∧ newweight < 2.A(i, ls + 1). Then we want
to do the actual linking on a lower layer. Therefore, first basic-external-
link((e, x, y)) is executed. Then the contraction edge (e, c, d) of (e, x, y) is
created, and a recursive call link((e, c, d), s, t, i − 1) is performed, where all
the affected edges in layer i− 1 are obtained. For each edge (e′, u, v) in layer
i that is (e, x, y) or the original of an affected edge in layer i− 1, the d-marks
are updated: if its contraction edge is preferred for contr(u), then (e′, u, v)u
is d-marked; otherwise, (e′, u, v)u is un-d-marked. The same is done for v.
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boundary(x, y, i). Perform candidates(x, y, i) yielding edges ex and ey. If ex and
ey are in the same edge classes in F0, then the desired boundary list consists of x and
y with ex and ey in their sublists. Otherwise, let c = contr(x) and d = contr(y). Then
the boundary list BB for c and d in layer i−1 is (recursively) computed: if c = d, then
BB contains just c, and otherwise a recursive call boundary(c, d, i− 1) is performed,
returning BB. For each boundary node b in BB, we obtain the nodes u and v in
tree(b) that are x, y, or end nodes of the originals of the edges in the boundary edge
set of b. Then a “local” boundary list for u and v in tree(b) is computed by basic-
boundary(u, v), where the sublists of the end nodes u and v are extended with the
originals of the (at most 2) appropriate edges in BB: if u (or v) is not a boundary
node for x and y after all, then it is removed from the local list. These local boundary
lists are concatenated, yielding the desired boundary list.

joinclasses(J, i). First a list JJ for layer i − 1 is made, consisting of the nodes
contr(x) for nodes x ∈ J , where the sublist for c is the concatenation of all sublists
for x ∈ J with contr(x) = c. Then, for each node c ∈ JJ , the classes occurring in its
sublist are obtained, and its sublist is replaced by a sublist that contains for each such
class one external edge (if any). All nodes of JJ with a sublist containing at most one
edge are removed. If JJ �= ∅, then joinclasses(JJ, i − 1) is called. All the original
edge sides of the edges that have been un-m-marked in layer i − 1 are un-d-marked
in layer i. Finally, for each node x in J , basic-joinclasses(Jx) is executed, where Jx
contains x and its sublist in J .

candidates(x, y, i). Let c = contr(x) and d = contr(y). If c = d, then do the same
as for i = 1. Otherwise, perform candidates(c, d, i − 1) that returns the (preferred)
edges ec and ed. Let edge e1 ∈ extree(c) be the (d-marked) original of ec. Let
e2 := max(d(e1)). If e2 is incident with x, then ex := e2 (ex is m-marked w.r.t. x);
otherwise, ex is the father edge of x. The same is done for y, yielding ey. Return the
edges ex and ey. This is a correct pair of edges, which follows by the specification
of candidates(i − 1) and similar observations as for i = 1. Note that by using d(e1)
instead of class(e1), we need to follow one pointer only, instead of performing a Find.

We are left with the problem of how to obtain and store the values weight,
lowindex, and the Ackermann values. All these values depend on both the tree name
and the layer number. The values lowindex(s, j) and weight(s, j) for all relevant j
are stored in a list for s. For further details and for the problem of how to obtain
Ackermann values for all the structures (viz., by means of one “Ackermann net” for
2n), we refer to [19].

8. Complexity of FRT(i). We consider the time and space complexity of
FRT(i) structures (i ≥ 1). In the notation, we omit the procedure parameters except
for the layer number i. Operations treename and candidates(i) can be performed in
O(i) time, and a nonessential call boundary(i) can be done in O(i) time plus O(1)
Finds in UF0. For candidates, this is seen as follows. If contr(x) = contr(y), it
takes one Find in UF(i), which is O(i) time. Otherwise, all instructions except for
the recursive call can be done in constant time (because of the d-marks and preferred
edges), giving O(i) time by induction. For a nonessential call boundary, we see that
if i = 1 then x ∼ y, and thus basic-boundary(x, y) is similar to candidates(x, y, 1),
while if i > 1, then candidates(x, y, i) is executed together with two Finds.

In the sequel, we consider the complexity of essential sequences (see section 3). We
determine the time complexity in steps, where one step denotes a Find operation (in
any involved Union-Find structure), a candidates operation, a nonessential boundary
operation, or one ordinary elementary computation step not included in these three
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operations. Hence each candidates operation and each nonessential call of boundary
takes 1 step.

We obtain the following result. The proof is given in subsection 8.1 (which can
be skipped at first reading). Note that if Fi = F0, then UF0 = UF (i) and the set
unions take O(n.a(i, n)) time (see Theorem 2.3).

Lemma 8.1. An essential sequence in an FRT(i) structure with n nodes needs a
total of O(n.a(i, n)) steps, except for joining edge classes in F0 (i ≥ 1, n ≥ 2).

8.1. Proof of Lemma 8.1. Lemma 8.1 is proved by induction in a way similar
to the proof in [19]. We first consider the net cost of the basic operations, i.e., the
cost of the operations except for the cost of set unions. Then basic-integrate(y, f) and
basic-internal-link((e, x, y), y) take net O(|Ty|) steps, where Ty is the tree containing
y; basic-external-link((e, x, y)) takes net O(1) steps. A call basic-boundary(x, y)
takes O(|BL|) steps if BL is the resulting boundary list, and basic-joinclasses(J)
takes O(|EJ |) net steps, where EJ is the number of edges in J .

We now consider the complexity of the structures FRT(i). As in [19], we do not
need to consider the complexity of storing and obtaining the information for each
layer related to a tree name, since this can be charged easily to other operations. We
show that an essential sequence in FRT(i) takes O(n.a(i, n)) steps on n nodes (except
for the cost on F0). Moreover, we show that the number of times that an edge
becomes affected (see section 6) is at most a(i, n). We prove all this by considering
the procedures link(i), (essential) boundary(i), and joinclasses(i), where the cost
of set union or essential recursive calls is considered separately. Here an essential
recursive call is any recursive call of these procedures with the restriction that recursive
boundary calls are essential.

8.1.1. FRT(1). We consider the cost of an essential sequence on n nodes (n > 1)
in FRT(1) by determining for each procedure the cost of all its calls.

Procedure link((e, x, y), s, t, 1) takes at mostO(|weight(t, 1)|) steps, where, w.l.o.g.
tree(t, i) is the smallest of the two sets to be joined. Charge each node in tree(t, 1) for
O(1) cost. Since the nodes in tree(t, 1) become elements of a tree with at least double
size, all calls take at most �log n� ≤ a(1, n) steps together. Similarly, the number of
times that an edge is affected is at most a(1, n).

A call boundary(x, y, 1) takes O(|BL|) steps. Note that at least |BL|−1 different
classes occur in BL. Charge O(1) cost to the encountered classes. In the essential
sequence, all these classes are subsequently joined by a call joinclasses. This gives
at most O(n) steps.

Procedure call joinclasses(J, 1) takes O(1) steps for each class that is joined; thus
the total amount of steps is O(n) steps apart from the joinings.

Finally, since there are at most 2n edge sides, the time for set unions in UF(1) is
O(n.a(1, n)) (Theorem 2.3).

Therefore, FRT(1) takes at most d.n.a(1, n) steps for an essential sequence on n
nodes (n > 1) for some constant d. Moreover, the number of times that a node is
affected is at most a(1, n).

8.1.2. FRT(i) for i > 1. We consider the cost for an essential sequence on n
nodes (n > 1) in FRT(i) with i > 1. We perform the analysis by means of induction
on i. Suppose FRT(i− 1) takes at most c.k.a(i− 1, k) steps in an essential sequence
on k nodes (k > 1), where c is some arbitrary constant. Moreover, suppose that
the number of times that an edge in the FRT(i − 1) structure is affected is at most
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a(i− 1, k). For each procedure or specific part of the computation, we determine the
cost of all its calls.

For an essential call of boundary(i), we have the following. First, the calls of
candidates(i) and the recursive call boundary(i − 1) take O(1) net steps. (The call
boundary(i − 1) takes net O(1) steps if it is nonessential and it takes no steps if it
is essential.) Then local boundary lists are computed and manipulated (but do not
become empty, see section 5). Hence the net cost is O(|BL|) steps. Since afterward
all classes occurring in BL must be joined by a call of joinclasses in the essential
sequence, it follows that the total net amount of steps is O(n).

Procedure joinclasses(i) takes a net number of steps linear to the number of
classes that will be joined, apart from the recursive call. Hence this is O(n) in total.

We divide link ((e, x, y), s, t, i) into several parts and compute the net cost of each
of these parts for all executions together. First, the removal of parts of structures
can be charged to their creation. Second, the calls of procedure basic-internal-link
and basic-integrate take at most O(the number of processed nodes) steps. Therefore,
we charge these steps to the processed nodes. Note that in both cases the processed
nodes will (henceforth) be contained in a new tree with higher lowindex value and
that there are at most a(i, �n+1

2 �) + 2 ≤ 3.a(i, n) different lowindex values (cf. (5)).
Therefore, the total cost of these calls is O(n.a(i, n)) steps. Similarly, it follows that
an edge is affected is at most a(i, n) times. Third, the cost for changing d-marks of
edges in procedure link(i) is linear to the number of times that contraction edges are
affected in the recursive call link(i−1). In Observation 8.4 we will show that this is at
most 1

2 .n.a(i, n). Hence this takes O(n.a(i, n)) steps altogether. Last, the rest of the
procedure requires O(1) net time per call of link(i), which gives O(n) time altogether.
In conclusion, all calls of link take at most O(n.a(i, n)) steps net and affect an edge
at most a(i, n) times.

The required time for set unions in UF(i) is O(n.a(i, n)) (Theorem 2.3), since
there are at most 2n edge sides.

Finally, we consider the essential recursive calls (performed on contraction nodes).
We first have two observations (the latter can be proved as in [19]).

Observation 8.2. The operations on contraction trees (for layer i) by procedure
link((e, x, y), i) are the creation of a singleton tree and the linking and removal of trees;
procedures joinclasses(i) and boundary(i) only change edge classes in contraction
trees.

Observation 8.3. In link((e, x, y), s, t, i), a recursive call is performed only if

1 < lowindex(s, i) = lowindex(t, i) ≤ a(i, n)
∧weight(s, i) + weight(t, i) < 2.A(i, lowindex(s, i) + 1).

For a contraction node c ∈ CN(tree(s, i)), we denote by lowindex(c) the value
lowindex(s, i), which is fixed during its existence. We call c an l-contraction node
if lowindex(c) = l. Similarly, we say that a recursive call link((e, c, d), s, t, i − 1)
is an l-call if l = lowindex(s, i) = lowindex(t, i). A recursive call boundary(i − 1)
or joinclasses(i − 1) is an l-call if l = lowindex(s, i), where s is the name of the
tree on which the operation is applied. Obviously an l-call operates on l-contraction
nodes only, and vice versa. We compute the cost of all l-calls for fixed value l,
−1 ≤ l ≤ a(i, n). Note that any tree of l-contraction nodes with l ≤ 0 consists of one
contraction node. Hence an l-call of boundary(i − 1) and joinclasses(i − 1) occurs
only if l ≥ 1. By Observation 8.3 and since |nodes(b)| ≥ 2 for each contraction node
b, it follows in case of an l-call link (s, t, i− 1) that l > 1, and that weight(s, i− 1) +
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weight(t, i−1) < A(i, l+1). By this and by Observation 8.2, the maximal size of any
tree of l-contraction nodes is < A(i, l + 1).

Now let l be fixed number with 1 ≤ l ≤ a(i, n). Partition the total collection of
all l-contraction nodes involved in l-calls into the existing maximal sets. Then the
size of such a maximal set is at most A(i, l+1). It easily follows that the sequence of
essential recursive l-calls on the nodes of a maximal set in FRT(i− 1) is an essential
sequence. For each such maximal set of k contraction nodes, the cost of all (previous)
essential l-calls on these nodes in FRT(i − 1) is at most c.k.a(i − 1, k) ≤ c.k. a(i −
1, A(i, l + 1)). Hence the total cost of all essential l-calls in FRT(i − 1) on l-cluster
nodes is at most c.(number of l-cluster nodes). a(i−1, A(i, l+1)). By (6), there are at
most n/(2.A(i, l)) l-contraction nodes. Therefore, this cost is at most c. n

2.A(i,l) . a(i−
1, A(i, l+ 1)), which is at most 1

2c.n by using i > 1 and equations (1) (on A(i, l+ 1))
and (4), respectively.

Since at most a(i, n) values l of lowindex occur, the cost of all these FRT(i− 1)-
calls is at most 1

2c.n.a(i.n).
Similar to the above, by the induction hypothesis, the number of times that l-

contraction edges are affected in the l-calls link(i− 1) is at most 1
2 .n for fixed l.

Observation 8.4. The number of times that contraction edges are affected in
recursive calls at most link(i− 1) is 1

2 .n.a(i, n).
Combining all the above results yields that the total number of steps is at most

c1.n + c2.n.a(i, n) +
1
2c.n.a(i, n) for some c1 and c2 (independent of c). By taking

c = max{d, 2.(c1 + c2)}, it follows by induction that an essential sequence in FRT(i)
takes at most c.n.a(i, n) steps and affects an edge at most a(i, n) times. This concludes
the proof of Lemma 8.1.

9. FRT structures. We consider FRT(i)-structures with Fi = F0 and express
the operations of section 3 in terms of section 7. It is easily seen how to use the latter
for the former; we may only need an additional call of treename or O(1) Finds in UF0

for the proper result. Thus Lemma 8.1 remains valid for the operations in section 3
(in order of magnitude). Note that by Theorem 2.3, a step, as defined in the previous
subsection, is O(i) time.

Theorem 9.1. An essential sequence in FRT(i) on n nodes needs a total time of
O(n.i.a(i, n)) (i ≥ 1, n ≥ 2). Each candidates operation and each nonessential call
boundary takes O(i) time. The structure can be initialized in O(n) time and takes
O(n) space.

Note that if n′ is the number of nodes that are not still contained in singleton
trees after the execution of the above sequence (thus n′ ≤ n), then the total time is
even O(n′.i.a(i, n′)). Also, the theorem can be extended with the insertion of new
(isolated) nodes in the structure with the same complexity bounds, where the insertion
of a new node takes O(1) time (see also [19]).

We define an α-FRT structure as follows. Initially, FRT(α(n, n)) is used. From
time to time, a transformation is performed, replacing an FRT(i) structure by an
FRT(i − 1) structure, viz., each time that α(q, n) decreases by one, where at any
moment q is the number of queries candidates performed until then. This is performed
in a way similar to the proof of Theorem 5.2 of [19] (full paper), where now the query
candidates plays the role of the Finds, and where link and joinclasses play the role of
the Union operations. The building of a new FRT(i−1) is done similar to Theorem 5.2
in [19], but instead of building just parts of FRT(i−1) during candidates operations,
we have for all pointers in F0 two versions, and we build and handle FRT(i− 1) with
the unused pointer version. (This duplication is only relevant in case we want a single
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candidates query to have O(α(q, n)) worst-case time.) Then we obtain the following
result.

Theorem 9.2. Let an α-FRT structure for an “empty” forest with n nodes be
given. Then a matching sequence in α-FRT needs a total of O((n+m).α(m,n)) time
(where m is the number of operations candidates and boundary that is performed),
where the qth call of candidates takes O(α(q, n)) time. The structure can be initialized
in O(n) time and takes O(n) space.

Proof. The proof is related to the proof of Theorem 5.2 in [19]. We leave this as
an exercise for the reader (and refer to [22, 23]).

Note that if n′ is defined as before (and, hence, the essential subsequence of the
matching sequence consists of θ(n′) operations), then the total time is even O((n′ +
m).α(m,n)) time. Also, by using the same transformation techniques as in Theo-
rem 6.2 in [19], the above theorem can be extended with the insertion of new (isolated)
nodes in the structure with the corresponding complexity bound O((n+m).α(m,n))
(where m and n denote the current number at the time of consideration), where the
insertion of a new node takes O(1) time. We will not give details here but refer to
[22, 23]. (We want to remark that if at any time m = O(n), as for the 2ec-and the
3ec-problem, then only rebuildings from FRT(i) to FRT(i+ 1) are needed.)

In practice there is no need to perform transformations of FRT-structures or to
compute Ackermann values [19]. This is because α(m,n) ≤ 3 for any practical n.
Thus, structures FRT(i) with i ∈ {2, 3} are suited for all practical situations and only
need the nontrivial Ackermann values A(2, 3) = 16 and A(2, 4) = A(3, 3) = 65536.
An essential sequence in FRT(2) takes ≤ c.2.n.a(2, n) = 2cn. log∗ n time, which is
≤ 8cn for n ≤ 216 and ≤ 10cn for n ≤ 265536, where c is not too large a constant
(see section 8). Therefore, we conjecture that FRT(2) can be implemented as a fast
structure for all practical situations, with constant-time queries.

10. 3-edge-connectivity. We will now extend the results to the maintenance
of 3ec-components in a graph, with a time complexity of O(n + m.α(m,n)) for n
nodes and m queries and insertions. In subsection 10.1 we consider maintaining the
3ec-relation within 2-edge-connected graphs and, subsequently, in subsection 10.2 we
consider the problem for general graphs.

Let G = 〈V,E〉 be a graph. The set V can be partitioned into equivalence classes
for 3-edge-connectivity, called 3ec-classes. Each 3ec-class C is represented by a new
node c, called the class node of C. Let 3ec(x) be the class node of the 3ec-class in
which the vertex x is contained. We define the graph 3ec(G) as follows.

3ec(G) = 〈3ec(V ), {(e, 3ec(x), 3ec(y))|(e, x, y) ∈ E ∧ 3ec(x) �= 3ec(y)}〉.

Hence, 3ec(G) is the graph that is obtained if we contract each 3ec-class into one
class node (see Figure 3 if G is 2-edge-connected). No two nodes in 3ec(G) are 3-
edge-connected (by Lemma 2.2).

10.1. 2-edge-connected graphs. In this subsection, we suppose that graph G
is 2-edge-connected, and we state results from the companion paper [21]. Every two
distinct class nodes must lie on a common elementary cycle in 3ec(G), while simple
cycles in 3ec(G) cannot intersect in more than one class node.

Let Cyc(3ec(G)) be the graph that is constructed from 3ec(G) as follows. Each
nontrivial simple cycle is represented by a distinct node called a cycle node. Let
cn(3ec(G)) be the set of cycle nodes. For a cycle node s, let cycle(s) be the set of
all class nodes that are on the cycle s. The graph Cyc(3ec(G)) consists of the class
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nodes and cycle nodes of 3ec(G), where a class node c is adjacent to a cycle node s in
Cyc(3ec(G)) iff c lies on cycle s in 3ec(G). Therefore, graph Cyc(3ec(G)) shows the
incidence relation for class nodes and cycles. Moreover, graph Cyc(3ec(G)) is a tree
called the cycle tree of G. The structure of Cyc(3ec(G)) is illustrated in Figure 3,
where the cycle nodes are drawn as boxes.

Fig. 3. A 2-edge-connected graph G and the related graphs 3ec(G) and Cyc(3ec(G)).

10.1.1. Edge insertions. We maintain the 3ec-relation under edge insertions
by means of Cyc(3ec(G)). Suppose a new edge (e, x, y) is inserted in G. If 3ec(x) =
3ec(y), then by Lemma 2.2, the 3ec-relation, 3ec(G), and Cyc(3ec(G)) remain un-
changed. So, we can assume that 3ec(x) �= 3ec(y) ∧ 2ec(x) = 2ec(y). Then edge
(e, 3ec(x), 3ec(y)) arises as a new edge in 3ec(G).

Lemma 10.1 (see [21]). Let G be a 2-edge-connected graph. Suppose that an edge
(e, 3ec(x), 3ec(y)) is inserted to the graph 3ec(G). Then all the class nodes on the
tree path P from 3ec(x) to 3ec(y) in Cyc(3ec(G)) become 3-edge-connected in 3ec(G),
while the other pairs of distinct class nodes in 3ec(G) stay only 2-edge-connected.

Thus, for all class nodes on P , all the corresponding classes form a new class (by
Lemma 2.2). The update can now be performed as follows:

• obtain the tree path P between 3ec(x) and 3ec(y) in Cyc(3ec(G)),
• join all the classes “on” P into one new class C ′, and
• adapt the cycle tree Cyc(3ec(G)) accordingly.

The update heavily changes the structure of Cyc(3ec(G)). (For illustrations, we refer
to [21].) The cycle tree changes as follows. Consider the simple cycle s and the class
nodes c and d (c �= d) such that s, c, and d are on P and c, d ∈ cycle(s). Then classes
c and d are joined into the new class c′. The original simple cycle s splits into two
“smaller” simple cycles, each one consisting of the class node c′ and of one of the two
parts of the former cycle between c and d (we refer to [21]).

Lemma 10.2 (see [21]). Given a 2-edge-connected graph G of n nodes with a
cycle tree, there exists a data structure for the 3ec-problem (that also maintains a
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cycle tree) such that the following holds. The total time for m insertions and queries
is O(m+ n) time plus the time needed to perform O(m+ n) Finds and O(n) Unions
and Splits in a Union-Find or a Circular Split-Find structure for O(n) elements. The
data structure takes O(n) space.

Here, the Circular Split-Find problem [23] is a problem closely related to the
Split-Find problem [11]. It deals with splitting cyclic lists into two new cyclic lists,
determined by two splitting nodes. In [23], solutions for this problem are given with
similar complexities as the UF-structures (cf. section 2.5). (They are closely related
to [11].) We denote such structures similarly by GSF(i) and α-GSF structures. Later,
we choose appropriate structures when applying Lemma 10.2.

10.2. General graphs.

10.2.1. Observations. We extend the solution of the previous section to general
graphs. We first state observations of [21] (to which we refer for further details and
figures). For detecting the 3ec-classes it suffices to detect the 3ec-classes inside the 2ec-
components. Therefore, our algorithms for general graphs maintain the 2ec-classes (as
in section 4), and they maintain the 3ec-classes within 2ec-components. We consider
the forest of all cycle trees for the 2ec-components, called the cycle forest Cyc(3ec(G))
of G.

Suppose edge (e, x, y) is inserted in graph G yielding graph G′. If c(x) �= c(y),
then the 2ec-classes and the 3ec-classes do not change. Otherwise, if 2ec(x) = 2ec(y),
then (e, x, y) is inserted inside a 2ec-component and the changes as described in sub-
section 10.1.1 occur. Otherwise, we have 2ec(x) �= 2ec(y) ∧ c(x) = c(y). Consider
2ec(G). Let P2 be the tree path between 2ec(x) and 2ec(y) in 2ec(G) (see subsec-
tion 4.1). Then the major changes are that

1. all 2ec-classes corresponding to class nodes on P2 form one new 2ec-class,
2. for each 2ec-class C on P2, the 3ec-classes inside C are changed, and
3. a new cycle s of 3ec-classes arises; the new cycle node s links the (updated)

cycle trees that are contained in the 2ec-classes on P2.
We consider the changes more precisely. The first part is identical to subsection 4.1.
For the second part, we consider the changes of the 3ec-classes that occur in 2ec-
classes on P2. Consider a 2ec-class C on P2 in 2ec(G). Let u and v be the two nodes
in C that are x, y, or end nodes of interconnection edges between C and other classes
on P . (We call u and v the interconnection nodes for C.) Then there is a new path
between u and v in G′ that does not intersect with C except for u and v, where
such a path did not previously exist in G. Hence, considered within C only, this
corresponds to inserting a temporary edge between the nodes u and v, since the 3ec-
classes are completely determined by the 2ec-components in which they are contained
(see Lemma 2.1). For the third part, now suppose all these “local” insertions are
performed in the 2ec-classes on P2. Then the two interconnection nodes in a 2ec-
class C on P2 are in the same (updated) 3ec-class in C, called the interconnection
3ec-class in C. All these interconnection 3ec-classes form a new cycle s. Then in the
cycle forest s must be linked to these interconnection 3ec-classes, and thus it links the
corresponding cycle trees.

10.2.2. Data structures and approach. We observe that when an edge (e, x, y)
is inserted in a 2ec-component H, the changes in the 3ec-relation and Cyc(3ec(H))
are fully determined by just the 3ec-classes in which x and y are contained.

Consider a graph G = 〈V,E〉. We change the cycle forest Cyc(3ec(G)) by aug-
menting the collection of nodes of G and partitioning the thus-obtained 3ec-classes
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into subclasses. We do this as follows. Each 3ec-class in G may be extended with
an arbitrary number of new, auxiliary nodes that are considered to be nodes in that
3ec-class (conceivably by means of artificial edges). The auxiliary nodes are not dis-
tinguished from the original nodes.

Each (extended) 3ec-class C of G is partitioned into subclasses of nodes. To each
subclass a (new) distinct node is related called the subclass node. We call these the
subclass nodes for C. The subclass node of the subclass to which x belongs is denoted
by sub(x). Now an augmented cycle forest AFG for G is a forest on the subclass nodes
and the cycle nodes of Cyc(3ec(G)) such that for each 3ec-class C of G the subclass
nodes for C induce a subtree of AFG and such that Cyc(3ec(G)) is obtained if for
each 3ec-class C its subclass nodes are contracted into one node. We call an edge that
links two subclass nodes of a 3ec-class C a connector for 3ec-class C. The set of all the
connectors for C is called the connector class for C. Stated informally, AFG can be
obtained by replacing each class node in Cyc(3ec(G)) by some tree of subclass nodes
and connectors. See Figure 4, where cycle nodes are drawn as boxes and (sub)class
nodes as dots.

Fig. 4. Graphs Cyc(3ec(G)) and AFG.

We consider the insertion of an edge (e, x, y) in a 2-edge-connected graph G
in terms of AFG. Let 2ec(x) = 2ec(y) ∧ 3ec(x) �= 3ec(y). The 3ec-classes on the
tree path from 3ec(x) to 3ec(y) in Cyc(3ec(G)) correspond to the 3ec-classes that
have at least one subclass on the tree path P between sub(x) and sub(y) in AFG.
Hence we can update the structure according to the following observations (also cf.
subsection 10.1.1).

• Two successive subclass nodes on P (without a cycle node in between) cor-
respond to the same class. Hence it suffices to obtain just the subclass nodes
on P that are adjacent to a cycle node on P .

• All the classes of which a subclass node is “on” P must be joined into one
new class C ′.

• The augmented cycle tree AFG must be adapted. Hence, all subclass nodes
for C ′ must form a (sub)tree. This can be done by splitting each cycle s
occurring on P and by joining the two subclasses that are the neighbors of
s on P . (These updates can be performed locally as for cycle trees for each
part of P without adjacent subclass nodes.)

Our goal structure is now as follows. To a graph G we relate a forest bc(G) and
an augmented cycle forest AFG that satisfy the following. The graph G = 〈V,E〉
is extended with an (incremental) collection of auxiliary nodes, which are 3-edge-
connected to least one original node. The (thus extended) vertex set is partitioned
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into disjoint sets, called basic-clusters. Each basic-cluster has a (new) unique node
called cluster node. The nodes of forest bc(G) are these cluster nodes. We call the
edges of bc(G) bc-edges. The following constraints are satisfied.

• Each 3ec-class C is partitioned into subclasses by intersecting C with the
basic clusters. Then AFG is an augmented cycle forest for G, based on this
partition into subclasses.

• Each subclass node is considered to be contained in the basic cluster that
contains its subclass. Then for a basic-cluster b, the subclass nodes that are
contained in b together with appropriate cycle nodes of AFG induce a subtree
of AFG denoted by tree(b).

• Every connector in AFG corresponds to exactly one edge in bc(G) (and vice
versa).

It follows that for a cluster b, tree(b) does not have two adjacent subclass nodes.
Therefore, tree(b) is a cycle tree of some 2-edge-connected graph that has the nodes
of basic-cluster b as its nodes together with a number of appropriate edges that induce
the 3ec-relation as represented by tree(b).

We observe that bc(G) can be obtained from AFG by contracting all subclass
nodes in a basic-cluster b to cluster node b. Thus bc(G) is an other contraction of
AFG (different from Cyc(G)). See Figure 5 for the example of Figure 4. We now
define edge classes on bc(G) as the classes inherited from the connector classes in
AFG (see section 2.1). Note that if two bc-edges incident with a cluster node b are in
the same bc-edge class, then their originals in AFG must have the same end node (a
subclass node) in cluster b.

Fig. 5. Forests AFG and bc(G).

Now the strategy for inserting an edge (e, x, y) in 2-edge-connected graph G can
be put in terms of bc(G) as follows. Let c and d be the basic clusters containing x
and y, respectively. Suppose that c �= d.

• Let P ′ be the tree path in bc(G) between c and d. Let P be the tree path in
AFG between sub(x) and sub(y). To obtain the relevant parts of P , it suffices
to obtain a boundary list BL for c and d in bc(G). This is seen as follows.
The two incident bc-edges of an internal node b on P ′ are in the same bc-edge
class. Hence their originals (which lie on P ) have the same end node sb in
b, which, therefore, is not adjacent to a cycle node on P . Note that for a
boundary node b �∈ {c, d} of P ′, its two incident bc-edges on P ′ are not in the
same bc-edge class, and thus cluster b contains at least two subclass nodes
and one cycle node of P .
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• For each such cluster b with b ∈ BL, a local update of the local cycle tree
must be performed by joining all subclasses on the part Pb of P inside cluster
b and by updating the local cycle tree correspondingly. The end nodes sb1
and sb2 of Pb are sub(x), sub(y), or the end nodes in cluster b of the originals
of the bc-edges on P ′. The latter can also be obtained from the bc-edges in the
sublist of b in BL. The update thus corresponds to the update for inserting a
temporary edge between any two nodes of G that are contained in subclasses
sb1 and sb2.

10.2.3. Data structures and algorithms. In this section, we describe a data
structure for the 3ec-problem, called 3EC structure. We distinguish between the
different layers of representation.

The representation of graph G is as follows. The vertex set of G may be extended
from time to time with auxiliary nodes. There is a structure 2EC to maintain the
2ec-classes of G. This structure works on the regular nodes only, and, hence, the
additional nodes are not involved. There is a “global” Union-Find structure UF3ec

for implementing the 3ec-classes of nodes of G. We recall that in the 2EC structure,
there are Union-Find structures UFc and UF2ec.

Each node x has a pointer clus(x) to the cluster node in which it is contained.
Forest bc(G) is implemented as a fractionally rooted tree structure (FRT ) denoted
by FRT3ec.

The augmented cycle forest AFG is not implemented as a whole. In fact, it
is implemented in parts, viz., by cycle trees inside basic-clusters and by separate
connectors. To be precise, we have the following implementation. Instead of a subclass
node s as the end node of a connector, we take a node in subclass s as an end node.
This is because subclasses are joined from time to time. Then the subclasses that are
the ends of a connector (e, x, y) are sub(x) and sub(y). For a basic-cluster b, tree(b) is
implemented and maintained as a cycle tree as in Lemma 10.2. We refer to this as the
local structure. The Union-Find and Circular Split-Find structures used in the local
structure are denoted by UFloc and GSFloc. To each subclass, we relate a connector
that has one of its end nodes in that subclass (if it exists) its associated connector.

The initialization for an empty graph is straightforward: each basic cluster con-
tains one node. Also, a query corresponds to a Find in UF3ec.

Suppose some new edge (e, x, y) is inserted in G, resulting in graph G′. Let
the corresponding clusters for x and y be c and d. Then procedure insert3((e, x, y))
updates the structure as follows if 3ec(x) �= 3ec(y).

1. c(x) �= c(y). Then insert2((e, x, y)) is performed
2. c(x) = c(y) ∧ 2ec(x) = 2ec(y) ∧ 3ec(x) �= 3ec(y). If c = d, then list BL is the

list consisting of c with empty sublist; otherwise, boundary(c, d) is performed
in FRT3ec, yielding boundary list BL in bc(G). List BL is copied as list J
but with empty sublists.
For each basic cluster b in BL, the following is done. First, the nodes u and
v in tree(b) are obtained that are x, y, or end nodes of the originals of the
bc-edges in the sublist of b (if any). If 3ec(u) �= 3ec(v), then the following
is done. A local insertion (Lemma 10.2) of a temporary edge (e′, u, v) in
basic-cluster b is performed to update tree(b). Then an associated connector
is obtained for each of the subclasses that are joined in cluster b, and the
corresponding bc-edges are put in the sublist for b in J (since all classes must
be joined later in the global structure). One of these connectors (if any) is
assigned to the resulting subclass as its associated edge.
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All the 3ec-classes of which a subclass was involved in the joinings are joined
in UF3ec (e.g., by taking a node from each subclass). Finally, the FRT3ec

structure is updated by means of call joinclasses(J) (where if the sublist of
node c or d is empty, then this node is removed from J .)

3. c(x) = c(y) ∧ 2ec(x) �= 2ec(y). First, the 2ec-classes that will be joined
into one new class are determined. This is done as follows. A boundary list
BL for x and y is computed in 2EC (this is only the first part of the call
insert2((e, x, y))). Subsequently, the names of the 2ec-classes are obtained.
Then a linear list L is constructed that consists of these names and of those
edges in BL with end nodes in different 2ec-classes: the names and edges
alternate in L such that an edge is bracketed by the two corresponding 2ec-
classes. Now L contains the tree path between 2ec(x) and 2ec(y) in 2ec(G)
in the proper order.
For each 2ec-class C in L the following is done. We obtain the nodes u and
v in C that are x, y, or the end nodes of the surrounding edges in L. If
3ec(u) �= 3ec(v) then a temporary edge between u and v in C is inserted by a
call insert3((e

′, u, v)). Afterward, a new, auxiliary node zC is created, and it
is inserted in the interconnection 3ec-class 3ec(u). A connector (e′C , zC , z

′
C)

is created between zC and some node z′C of 3ec-class 3ec(u).
The nodes zC (C ∈ L) together form a new basic cluster b. Thus a cycle tree
corresponding to the cycle of the new subclasses {zC} (C ∈ L) is initialized
in cluster b (in the same order as the 2ec-components C in L).
Cluster node b is linked with the involved trees in bc(G) by means of new
bc-edges as follows. For each zC and connector (e′C , zC , z

′
C), let b

′ = clus(z′C).
Then a bc-edge (e′C , b, b

′) is created for this connector, and a call link((e′C , b, b
′))

is performed in bc(G). Edge (e′C , zC , z
′
C) is associated with sub(zC) and

sub(z′C). If sub(z
′
C) already had an associated edge (e′′, z′′, z′′′), then (e′C , b, b

′)
is put in the class containing (e′′, clus(z′′), clus(z′′′)) by a call of joinclasses.
The 2ec-classes in L are joined by performing a real call insert2((e, x, y)) in
2EC.

10.2.4. Complexity. We consider the complexity of the above algorithm. Re-
garding the creation of auxiliary nodes, suppose the initial graph G0 has n (regular)
nodes. The total number of new nodes created by the algorithm is at most 2n−1, since
a new node is created for each 2ec-class that is joined. Similarly, the total number of
created clusters is at most n−1. Hence we only need FRT and Union-Find structures
for O(n) nodes. We denote all the Union-Find structures used independently in 3EC
(not as part of FRT3ec or FRT2ec) by UF . We consider the UF structures to be one
structure, on O(n) elements. Obviously, a nonessential insertion takes time linear to
O(1) Finds.

Lemma 10.3. In a 3EC structure, the time for a sequence of essential insertions
is at most linear to the time for a matching sequence of O(n) operations on O(n)
nodes in FRT3ec and FRT2ec and for O(n) Unions, Splits, and Finds in the UF and
GSFloc structures.

Proof. We define a step to be an ordinary computational step or a Find operation
in any UF or GSFloc structure. We consider a collection of essential insert3 opera-
tions, including the insert3 calls during the execution of an insert3 itself. Therefore,
we do not consider the cost of an essential call insert3 inside insert3. Obviously,
there are at most O(n) essential insertions possible. So the essential insert3 opera-
tions yield a matching sequence of O(n) operations in FRT3ec. Also, all calls insert2
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in the calls insert3 are essential. Therefore, by Observation 4.2, the lemma holds for
the operations in 2EC.

We consider the net cost of the sequence of essential insert3 calls: i.e., the cost
of the parts of the computations apart from the computations considered above, from
O(1) steps per call insert3, and from the Unions and Splits in the UF and GSFloc
structures.

1. Case c(x) �= c(y). Then there is no net cost.
2. Case 2ec(x) = 2ec(y) ∧ 3ec(x) �= 3ec(y). We consider the net cost of a call

insert3. One part corresponds to the cost of essential local insertions inside
clusters. This takes O(1) steps for each such cluster and for each subclass
that is joined. These O(1) steps are considered to be included in the cost for
joining two subclasses by a local insertion (at most 2 of these clusters have
no subclasses that are joined).
Since, in total, at most O(n) essential local insertions can occur, the net cost
is linear to O(n) Finds in these structures (by Lemma 10.2).

3. c(x) = c(y)∧ 2ec(x) �= 2ec(y). The computation of a boundary list in 2EC is
a part of an essential call insert2. The remainder takes O(|L|) steps, plus a
number of (other) insert3 calls (this latter cost is included in case 2). Since
the 2ec-classes in L are joined, the total net cost is O(n) steps.

A 3EC(i) structure is a 3EC structure where FRT3ec = FRT (i), FRT2ec =
FRT (i), UF = UF (i), and GSF = GSF (i).

Theorem 10.4. A 3EC(i) structure solves the 3ec-problem such that the follow-
ing holds. The total time that is needed for all essential insertions is O(n.i.a(i, n)),
whereas a query and nonessential insertion can be performed in O(i) time. The struc-
ture can be initialized in O(n) time and takes O(n) space (i ≥ 1, n ≥ 2).

Proof. By Lemma 10.3, Theorems 2.3 and 9.1, and [23] (for GSF(i)), the theorem
follows.

The α-3EC structure is a 3EC structure with FRT3ec = FRT (α(n, n)), FRT2ec =
FRT (α(n, n)), UF = α-UF , and GSF = α-GSF , where in the latter structures the
number of Finds is replaced by the number of insert operations and queries. Then,
similarly as for Theorem 4.4, we obtain the following.

Theorem 10.5. The 3ec-problem can be solved in O(m.α(m,n)) total time (where
m is the number of edge insertions and queries), where the f th query can be performed
in O(α(f, n)) time. The structure can be initialized in O(n) time and takes O(n)
space.

By using the α-3EC structure where FRT3ec = α-FRT and FRT2ec = α-FRT
instead, the above theorem can be augmented to allow insertions of new nodes in the
graph with a time complexity of O(n+m.α(m,n)) (cf. section 9).

11. A solution for 2-vertex-connectivity. We consider the problem of main-
taining the 2-vertex-connected components in a graph, and we will present algorithms
with a time complexity of O(n+m.α(m,n)) for n nodes and m queries and insertions
using fractionally rooted trees. Similar to 2-edge-connectivity, we thus present a
solution that is different from that given in [32] but whose approach is closer to the
approach for maintaining the 3-vertex-connectivity relation in general graphs [24].

11.1. Graph observations. Let G = 〈V,E〉 be a graph. We define the graph
2vc(G) as follows. For each 2vc-class or quasi class, there is a unique node related to
that class called the class node. The vertices of 2vc(G) are the nodes of G together
with these class nodes. For each node x, there is an edge between x and each class
node c such that x is contained in 2vc-class c. (Thus we obtain a collection of trees
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corresponding to so-called block trees.) Hence 2vc(G) is a forest, where each tree
in 2vc(G) corresponds to a connected component in G. For the insertion of an edge
(e, x, y) in G, we have that all the classes of which the class node is on the tree path
P between x and y in 2vc(G) form one new 2vc-class together (if P exists), while the
other 2vc-classes and quasi classes remain unchanged.

We represent 2vc(G) by means of a spanning forest SF (G) of G. We augment
SF (G) with edge classes on its set of edges. An edge class contains all the edges that
connect two vertices that are in some 2vc-class or quasi class. An edge class consisting
of a cut edge of G is called a quasi edge class, and a real edge class otherwise. Hence, a
class of edges together with the end nodes of these edges induces a subtree in SF (G),
since for two 2-vertex-connected nodes x and y, all nodes on the tree path between x
and y are 2-vertex-connected with them too. Also, two nodes x and y are 2-vertex-
connected iff x and y are incident with 2 edges of the same real edge class. We use
names of edge classes as the names of the corresponding 2vc-classes and quasi classes.
Note that if each edge (e, x, y) in SF (G) is replaced by two edges connecting class
node C with x and y, where C is the edge class containing (e, x, y), then we obtain
2vc(G).

For the insertion of a new edge (e, x, y) �∈ E in G, we now have the following. If
c(x) �= c(y), then (e, x, y) connects two connected components, and it thus connects
two trees in SF (G). If ¬Is2vc(x, y) ∧ c(x) = c(y), then all edge classes occurring
on the tree path between x and y in SF (G) must be joined. Otherwise, we have
Is2vc(x, y)∧ c(x) = c(y), and the insertion of (e, x, y) will not affect the 2vc-relation.

11.2. Algorithms. We use a fractionally rooted tree structure FRT on forest
SF (G), denoted by FRT2vc. All quasi edge classes are marked as being quasi. All
other classes are not marked. There is a Union-Find structure for connected compo-
nents denoted by UFc. The initialization for an empty graph is straightforward. A
query Is2vc(x, y) is performed by first performing a call candidates; then false is
returned if the returned edge-class names are distinct or correspond to a quasi edge
class, while true and the (common) edge-class name are returned otherwise. For the
insertion of a new edge (e, x, y) in G, we distinguish the two relevant cases.

1. c(x) �= c(y). Then link((e, x, y)) is performed, and the two connected com-
ponents c(x) and c(y) are joined (in UFc).

2. ¬Is2vc(x, y) ∧ c(x) = c(y). Then a boundary list BL for x and y in SF (G)
is obtained by boundary(x, y). If BL contains nodes x and y only, then x
and y form a quasi class; then the edge class obtained in the call Is2vc(x, y)
is unmarked, reflecting that the edge class is real now. Otherwise, nodes
x and y are deleted from BL (their sublists contain one edge only), and
joinclasses(BL) is called.

A 2V C(i) structure is the above structure where FRT2vc = FRT (i) and where
UFc = UF (i). Then we obtain the following result in a way similar to subsection 4.3.

Theorem 11.1. A 2VC(i) structure solves the 2vc-problem such that the follow-
ing holds. The total time that is needed for all essential insertions is O(n.i.a(i, n)),
where a query and a nonessential insertion can be performed in O(i) time. The struc-
ture can be initialized in O(n) time and takes O(n) space (i ≥ 1, n ≥ 2).

Now take α-FRT as FRT2vc for a graph with n nodes, and take α-UF for UFc.
Then we obtain the following result in a way similar to subsection 4, where now
Theorem 9.2 is used instead of Theorem 9.1.

Theorem 11.2. The 2vc-problem can be solved in O(m.α(m,n)) total time
(where m is the number of edge insertions and queries), where the f th query can
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be performed in O(α(f, n)) time. The structure can be initialized in O(n) time and
takes O(n) space.

The above theorem can be augmented to allow insertion of new nodes in the graph
with a time complexity of O(n+m.α(m,n)) (cf. section 9).

12. Concluding remarks. We have presented solutions for maintaining the 2-
edge and the 3-edge-connected components of graphs under insertion of edges and
vertices and for the 2-vertex-connected components. The solutions take O(n +
m.α(m,n)) time in total and are optimal on pointer machines and cell probe machines.
The optimality follows from the Ω(n + m.α(m,n)) lower bound for k-edge/vertex-
connectivity (k ≥ 1) in general graphs [32]. Also, for all practical problem sizes, there
is no need to perform transformations of FRT-structures; we recall that a(2, n) =
log∗ n and refer to section 9. Therefore, we conjecture that FRT(2), 2EC(2), 3EC(2),
and 2VC(2) can be implemented as fast and easy structures in practical situations as
well, with constant-time queries.

We have also presented linear-time algorithms for maintaining 2-edge-connectivity
in a connected graph on a RAM. Since there is a nonlinear lower bound of Ω(n +
m.α(m,n)) for maintaining 2-vertex-connectivity in connected graphs on a RAM
[32], this shows an interesting difference in computational complexity between 2-edge-
connectivity and 2-vertex-connectivity.

Finally, we remark that the problem of maintaining the 3-vertex-connected com-
ponents of general graphs can be solved with the optimal complexity of O(n +
m.α(m,n)) time for m insertions and queries. This generalizes the special-case re-
sult in [4] for maintaining the 3-vertex-connectivity relation inside 2-vertex-connected
graphs with such a time bound. We refer to [24].
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[23] J. A. La Poutré, Dynamic Graph Algorithms and Data Structures, Ph.D. thesis, Utrecht
University, The Netherlands, 1991.
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[25] J. A. La Poutré, Alpha-algorithms for incremental planarity testing, in Proc. 26th Annual
ACM Symposium on Theory of Computing (STOC), 1994, pp. 706–715.

[26] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness,
EATCS Monograph Series, Springer-Verlag, Berlin, 1984.

[27] F. P. Preparata and R. Tamassia, Fully dynamic techniques for point location and transitive
closure in planar structures, in Proc. 29th Annual Symposium on Foundations of Computer
Science (FOCS), 1988, pp. 558–567.

[28] M. H. Rauch, Fully dynamic biconnectivity in graphs, Algorithmica, 13 (1995), pp. 503–538.
[29] H. Rohnert, A dynamization of the all pairs least cost path problem, in 2nd Annual Symposium

on Theoretical Aspects of Computer Science, K. Mehlhorn, ed., Lecture Notes in Comput.
Sci. 182, Springer-Verlag, Berlin, 1985, pp. 279–286.

[30] R. E. Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput.
Mach., 22 (1975), pp. 215–225.

[31] R. E. Tarjan and J. van Leeuwen, Worst-case analysis of set union algorithms, J. Assoc.
Comput. Mach., 31 (1984), pp. 245–281.

[32] J. Westbrook and R. E. Tarjan, Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7 (1992), pp. 433–464.

[33] J. Westbrook, Fast incremental planarity testing, in Proc. 19th International Colloq. on
Automata, Languages, and Programming (ICALP), 1992, pp. 342–353.

[34] Ye. Dinitz and J. Westbrook, Maintaining the classes of y-edge-connectivity in a graph
on-line, Algorithmica, 20 (1998), pp. 242–276.

[35] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen, On-line maintenance of the
four-connected components of a graph, in Proc. 32nd Annual Symp. on Foundations of
Computer Science (FOCS), 1991, pp. 793–801.



RESTRUCTURING PARTITIONED NORMAL FORM RELATIONS
WITHOUT INFORMATION LOSS∗

MILLIST W. VINCENT† AND MARK LEVENE‡

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 29, No. 5, pp. 1550–1567

Abstract. Nested relations in partitioned normal form (PNF) are an important subclass of
nested relations that are useful in many applications. In this paper we address the question of
determining when every PNF relation stored under one nested relation scheme can be transformed
into another PNF relation stored under a different nested relation scheme without loss of information,
referred to as the two schemes being data equivalent. This issue is important in many database
application areas such as view processing, schema integration, and schema evolution. The main
result of the paper provides two characterizations of data equivalence for nested schemes. The first is
that two schemes are data equivalent if and only if the two sets of multivalued dependencies induced
by the two corresponding scheme trees are equivalent. The second is that the schemes are equivalent
if and only if the corresponding scheme trees can be transformed into the other by a sequence of
applications of a local restructuring operator and its inverse.
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1. Introduction. It is widely accepted now that the flat relational model, as
defined by [5], needs to be extended or modified to cater to the demands of new
application areas such as those involving textual, spatial, or scientific data [4, 17, 22,
25, 27]. One of the most important of these extensions is the nested relational model,
originally proposed in [14], which removes the 1NF restriction that attributes values
to be atomic and instead allows sets and relations as attribute values. Many aspects
of nested relational databases have been investigated in the last decade including
query languages and algebras, query optimization, normalization, and user interfaces
[12, 13, 17, 19, 23, 24, 29]. Several research prototypes of nested databases have been
implemented [20, 23, 26] and several major commercial database systems, such as
ORACLE System 8 and ILLUSTRA [27], support nested relations.

Several subclasses of nested relations have also been investigated [29] and one sub-
class that has received considerable attention is the class of partitioned normal form
(PNF) nested relations [1, 12, 21]. In a PNF relation the set of atomic attributes
at every level of the nested relation must be a key. It has been shown that PNF
relations possess several desirable properties that nested relations in general do not
possess, such as nesting and unnesting operations commuting, which results in the
semantics of PNF nested relations and their query languages being more transparent
than for general nested relations [18]. It has been suggested that PNF relations are
sufficient to model all practical applications of nested relations [7]. The issue that is
investigated in this paper is determining when every PNF nested relation stored un-
der one nested relation scheme can be transformed into another PNF nested relation
stored under a different nested relation scheme without loss of semantic content, re-
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ferred to as the two schemes being data equivalent. Determining whether two schemes
are data equivalent is an important issue in all data models, not only the nested re-
lational model, and has impact on a variety of areas such as view processing, scheme
integration, schema evolution, and schema translation in heterogeneous database sys-
tems [9, 10, 15, 16]. In particular, the recent work in [15, 16] has highlighted the
importance of data equivalence, and the more general notion of data dominance, in
the development of correct techniques for schema integration and schema transla-
tion and demonstrated that several existing methodologies were incorrect because of
insufficient attention being paid to the issues of data equivalence and data dominance.

The approach to formalizing the notion of data equivalence used in this paper is
based on the seminal work in [9, 11]. The essential idea of data equivalence is that
two database schemes are data equivalent if there exists a bijection which maps from
every instance of one scheme to an instance in the other. If this property is satisfied,
then every instance of one scheme can be mapped to an instance in the other scheme
and then recovered since the mapping is 1–1. If no restriction is placed on the instance
mapping apart from the requirement that it be a bijection, then this notion of data
equivalence is referred to as absolute equivalence. Several more restrictive notions
of data equivalence were also introduce in [9, 11] based on further restricting the
instance mapping. In particular, the other types of data equivalence introduced were
(in increasing order of restrictiveness) internal equivalence (which does not allow the
instance mapping “invent” more than a fixed set of constants), generic equivalence
(which requires that the instance mapping commutes with permutations of the data
values which leave the instances unchanged), and query equivalence (which requires
that the instance mapping be a query in the data model). It has been shown that
in the case of the relational model, the different notions of data equivalence are not
identical, whereas in the format model introduced in [9, 11], absolute equivalence,
internal equivalence, and generic equivalence are identical. In this paper, we will
show that all four notions of data equivalence are identical for single nested relational
schemes.

The main result of this paper is to provide two characterizations of absolute
equivalence for PNF schemes. The first shows that two PNF schemes are absolutely
equivalent if and only if the sets of multivalued dependencies (MVDs) induced by the
corresponding scheme trees are equivalent. This result confirms the importance of
considering dependencies in restructuring, an observation that had been previously
made but not fully investigated [10]. For the second characterization, we introduce
a local restructuring operator for the tree corresponding to a PNF scheme, called
COMPRESS, which merges a parent node having a single child node with the child
node. We then show that two PNF schemes are absolutely equivalent if and only
if one tree can be transformed into the other by a sequence of applications of the
COMPRESS operator and its inverse. Finally, we use these results to develop a
polynomial time algorithm for testing whether two nested schemes are absolutely
equivalent. We also point out that in the characterizing absolute equivalence we
explicitly derive a 1–1 mapping between the PNF instances of the schemes expressed
as a sequence of unnest and nest operations. The benefit of deriving an instance
mapping, and especially one that is expressible as a query, is that the instance mapping
can be used in database translation tools to translate any query expressed against one
scheme into another query expressed against an equivalent scheme [9, 10, 15, 16]. We
also note that the technique we use in proving the main result, using combinatorial
methods and the path properties of balanced scheme trees, is a novel one and differs
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from the techniques used to characterize data equivalence in related data models
[1, 2, 11].

The rest of the paper is organized as follows. In section 2 we introduce basic
definitions and notations. In section 3 we derive the main result of the paper on
characterizing absolute equivalence on nested schemes. In section 4 we discuss related
work and section 5 contains concluding comments.

2. Definitions and notation. We now introduce the definitions and notation
to be used in later sections. More complete presentations can be found in standard
references such as [3, 18].

2.1. Trees. A tree is a finite, acyclic, directed graph in which there is a unique
node, called the root, with indegree 0 and every other node has indegree 1. A node n′

is a child of a node n (or equivalently, n is the parent of n′) if there is a directed edge
from n to n′. A pair of nodes are siblings if they are children of the same node. A
node is a leaf if it has no children. A node n′ is recursively defined to be a descendant
of a node n (or equivalently, n is an ancestor of n′) if either n′ is a child of n, or n has
a child n′′ such that n′ is a descendant of n′′. The height of a tree T is the number of
nodes on the longest path from the root to a leaf node.

A tree T ′ is a subtree of a tree T if the nodes of T ′ are a subset of those of T and
for every pair of nodes n′ and n, n′ is a child of n in T if and only if n′ is a child of n
in T ′. A subtree T ′ is a principal subtree of T if the root of T ′ is a child of the root
of T . A tree T is balanced if every nonleaf node has at least two children.

2.2. Scheme trees and nested relations. Let U be a fixed countable set of
atomic attribute names. Associated with each attribute name A ∈ U is a countably
infinite set of values denoted by DOM(A) and the set DOM is defined by DOM =
∪DOM(Ai) for all Ai ∈ U . We assume that DOM(Ai) ∩ DOM(Aj) = ∅ if i �= j. A
scheme tree is a tree containing at least one node and whose nodes are labeled with
nonempty sets of attributes that form a partition of a finite subset of U . If n denotes
a node in a scheme tree T , then

ATT(n) is the set of attributes associated with n;
ATT(T ) is the union of ATT(n) for all n ∈ T ;
ANC(n) is the set of all ancestor nodes of n, including n;
A(n) is the union of ATT(n′) for all n′ ∈ ANC(n);
DESC(n) is the set of all descendant nodes of n, including n;
D(n) is the union of ATT(n′) for all n′ ∈ DESC(n);
ROOT(T ) denotes the root node of T ;
HEIGHT(T ) denotes the height of T .

Figure 2.1 illustrates an example scheme tree defined over the set of attributes
{STUDENT, MAJOR, CLASS, EXAM, PROJECT}.

If S and T are two scheme trees, then S and T are isomorphic if there exists a
bijection τ from the nodes of S to those of T such that

(i) for any pair of nodes n′ and n in S, n′ is a child of n in T if and only if
τ(n′) is a child of τ(n) in S;

(ii) for every node n ∈ S, ATT(n) = ATT(τ(n)).
We note that it follows from this definition that if scheme trees S and T are

isomorphic, then ATT(S) = ATT(T ). It also follows that the scheme tree resulting
from interchanging in a scheme tree of any pair of subtrees whose roots are siblings is
isomorphic to the original tree. If a scheme tree T has leaf nodes {n1, . . . , nm}, then
the path set of T , P(T ), is defined by P(T ) = {A(n1), . . . , A(nm)}. For instance, the



RESTRUCTURING PARTITIONED NORMAL FORM RELATIONS 1553

Fig. 2.1. An example scheme tree.

path set of the scheme tree in Figure 2.1 is {{STUDENT, MAJOR}, {STUDENT,
CLASS, EXAM}, {STUDENT, CLASS, PROJECT}}.

A nested relation scheme (NRS) for a scheme tree T , denoted by N(T ), is the set
defined recursively by the following:

(i) if T consists of a single node u, then N(T ) = ATT(u);
(ii) if A = ATT(ROOT(T )) and T1, . . . , Tk, k ≥ 1, are the principal subtrees of

T , then N(T ) = A ∪ {N(T1)} ∪ · · · ∪ {N(Tk)}.
For example, for the scheme tree T shown in Figure 2.1, N(T ) = {STUDENT,

{MAJOR},{CLASS, {EXAM}, {PROJECT}}}.
We now recursively define the domain of a scheme tree T , denoted by DOM(N(T )),

by the following:

(i) if T consists of a single node n with ATT(n) = {A1, . . . , An}, then
DOM(N(T )) = DOM(A1)× · · · ×DOM(An);

(ii) if A = ATT(ROOT(T )) and T1, . . . , Tp are the principal subtrees of T ,
then DOM(N(T ) = DOM(A)×P(DOM(N(T1)))×· · ·×P(DOM(N(Tp))), where P(S)
denotes the set of all nonempty, finite subsets of a set S.

We note in the above definition that, in contrast to the VERSO model defined in
[1], we do not allow empty sets. A discussion of the effects of this assumption on our
results is contained in section 4.

The set of atomic attributes in N(T ), denoted by Z(N(T )), is defined by Z(N(T )) =
N(T ) ∩ U . The set of higher-order attributes in N(T ), denoted by H(N(T )), is de-
fined by H(N(T )) = N(T ) − Z(N(T )). For instance, for the example shown in Fig-
ure 2.1, Z(N(T )) = {STUDENT} and H(N(T )) = {{MAJOR}, {CLASS, {EXAM},
{PROJECT}}}. Also, if V is a subset of N(T ) given by V = {A1, . . . , Ak, {Y1}, . . . ,
{Yp}}, where A1, . . . , Ak are the atomic attributes of V and {Y1}, . . . , {Yp} are the
higher-order attributes, then the atomic attributes in V , denoted by ATOM(V ), are
recursively defined by ATOM(V ) = {A1, . . . , Ak} ∪ATOM(Y1) · · · ∪ATOM(Yp).

Finally we define a nested relation over a nested relation scheme N(T ), denoted
by r(N(T )), or often simply by r when N(T ) is understood, to be a finite nonempty
set of elements from DOM(N(T )). If t is a tuple in r and Y is a nonempty subset of
N(T ), then t[Y ] denotes the restriction of t to Y and the restriction of r to Y is then
the nested relation defined by r[Y ] = {t[Y ] | t ∈ r}. An example of a nested relation
over the scheme tree shown in Figure 2.1 is shown in Table 2.1. The active domain
of a nested relation r, denoted by ACT(r), is the subset of DOM containing atomic
values appearing in r.
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Table 2.1
A nested relation.

STUDENT {MAJOR} {CLASS {EXAM} {PROJECT}}
Anna MATH CS100 mid-year Project A

Computing final Project B

Project C

Bill Physics P100 final Prac Test 1

Parc Test 2

Chemistry CH200 Test A Experiment 1

Test B Experiment 2

Test C Experiment 3

2.3. Nested operators. We now define the two restructuring operators for
nested relations, nest and unnest [28].

Let Y be a nonempty proper subset of N(T ). Then the operation of nesting a
relation r on Y , denoted by νY (r), is defined to be a nested relation over the scheme
(N(T ) − Y ) ∪ {Y } and a tuple t ∈ νY (r) if and only if (1) there exists t′ ∈ r such
that t[N(T ) − Y ] = t′[N(T ) − Y ] and (2) t[Y ] = {t′′[Y ] | t′′ ∈ r and t′′[N(T ) − Y ] =
t[N(T )− Y ]}.

Unnesting is defined as follows. Let r(N(T )) be a relation and {Y } an element of
H(N(T )). Then the unnesting of r on {Y }, denoted by µ{Y }(r), is a relation over the
nested scheme (N(T ) − {Y }) ∪ Y and a tuple t ∈ µ{Y }(r) if and only if there exists
t′ ∈ r such that t′[N(T )− {Y }] = t[N(t)− {Y }] and t[Y ] ∈ t′[{Y }].

More generally, one can define the total unnest of a relation, µ∗(r), as the flat
relation defined recursively by the following:

(1) if r is a flat relation, then µ∗(r) = r;
(2) otherwise µ∗(r) = µ∗(µ{Y }(r)), where {Y } is a higher-order attribute in the

NRS for r.
It can be shown [28] that the order of unnesting is immaterial and so µ∗ is uniquely

defined.

2.4. Constraints. We now define dependencies in a nested relation in a similar
fashion to the way they are defined in flat relations. If r(N(T )) is a nested relation
and Y and Z are subsets of N(T ), then r satisfies the functional dependency (FD)
Y → Z if and only if for all tuples t, t′ ∈ r, if t[Y ] = t′[Y ], then t[Z] = t′[Z]. The
MVD Y →→ Z is satisfied in r if and only if for all t, t′ ∈ r such that t[Y ] = t′[Y ]
there exists s ∈ r such that s[Y ] = t[Y ], s[Z] = t[Z], and s[N(T )−Z] = t′[N(T )−Z].
Given a set Σ of FDs and MVDs and an FD Z →W (or MVD Z →→W ), Σ implies
the FD Z →W (or MVD Z →→W ) if every relation in SAT(Σ) also satisfies Z →W
(or Z →→W ). The closure of a set Σ of a FDs and MVDs, denoted by Σ+, is the set
of FDs and MVDs implied by Σ. Two sets of dependencies, Σ and Ψ, are equivalent,
written as Σ ≡ Ψ, if Σ+ = Ψ+. In some places in the rest of the paper we wish to
consider only flat relations and we denote by SAT(Σ) the set of all flat relations which
satisfy a set Σ of FDs and MVDs.

The set of MVDs induced by a scheme tree T is defined as follows [17]. If (n, n′)
is an edge in T , then the MVD associated with this edge is the MVD A(n) →→ D(n′)
and MVD(T ) is the set of all such MVDs associated with all the edges in T . For
example, if T is the scheme tree in Figure 2.1, then MVD(T ) = {STUDENT →→
MAJOR, STUDENT →→ CLASS EXAM PROJECT, STUDENT CLASS →→
EXAM, STUDENT CLASS →→ PROJECT}. A join dependency (JD), denoted
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by �� [R1, . . . , Rp], where Ri ⊆ U for 1 ≤ i ≤ p, is satisfied in a flat relation r if
r = πR1(r) �� · · · �� πRp(r), where π denotes the projection operator.

The subclass of nested relations we investigate in the paper, PNF relations, was
introduced in [21]. If T is a scheme tree and PNF(T ) denotes the set of all PNF nested
relations over T , then a relation r ∈ PNF(T ) if and only if the following conditions
hold:

(i) r is a nested relation defined over N(T );
(ii) Z(N(T )) is a key for r, i.e., satisfies the FD Z(N(T )) → H(N(T ));
(iii) for every Y ∈ H(N(T )) and t ∈ r, t[Y ] is in PNF.

3. Absolute equivalence for PNF schemes. In this section we establish the
main results of the paper on characterizing absolute equivalence for scheme trees.
First, we recall the definition of absolute equivalence between schemes [9].

Definition 3.1. Let T and S be scheme trees where ATT(T ) = ATT(S) = U and
let X ⊆ DOM. The set DOMX(T ) is defined by DOMX(T ) = {r | r ∈ PNF(T ) and
ACT(r) ⊆ X}. Then T is absolutely equivalent to S if there exists a positive integer
N such that for all X ⊆ DOM such that |X ∩ DOM(Ai)| ≥ N 1 for every Ai ∈ U ,
there exists a bijection from DOMX(T ) to DOMX(S) ( |X| denotes the cardinality of
a set X).

A simple consequence of Definition 3.1 is the following alternative characteriza-
tion [9] of absolute equivalence in terms of domain sizes. This characterization is
fundamental to the later results in this paper.

Lemma 3.2. Let T and S be scheme trees where ATT(T ) = ATT(S) and let
X ⊆ DOM. Then T and S are absolutely equivalent if and only if there exists a
positive integer N such that for all X ⊆ DOM such that |X ∩ DOM(Ai)| ≥ N for
every Ai ∈ U, |DOMX(T )| = |DOMX(S)|.

We now show that |DOMX(T )| can be computed by the following recursively
defined integer function.

Definition 3.3. If T is a scheme tree and X ⊆ DOM, then the integer function
αX(T ) is recursively defined as follows:

(i) if T consists of a single node with attributes A1, . . . , Ak, then

αX(T ) = 2x1···xk − 1,

where xi = |X ∩DOM(Ai)|, 1 ≤ i ≤ k;
(ii) otherwise if T has a root node n with attributes A1, . . . , Am and nonempty

principal subtrees T1, . . . , Tp, then

αX(T ) = (αX(T1) · · ·αX(Tp) + 1)x1···xm − 1.

For example, given the scheme trees S and T shown in Figure 3.1,

αX(T ) = 2x1x2x3 − 1,

αX(S) = ((2x2−1)(2x3 − 1) + 1)x1 − 1.

Lemma 3.4. If T is scheme tree and X ⊆ DOM, then |DOMX(T )| = αX(T ).
Proof. Part (i) of Definition 3.3 follows immediately from the fact that for any

set with x elements, the number of nonempty subsets is 2x − 1. Part (ii) follows

1This is done to avoid combinatorial interaction that can occur with small domains [2].
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Fig. 3.1. Example scheme trees.

from the following combinatorial argument. There are x1 · · ·xm distinct values for
the set of attributes A1 · · ·A (we will also refer to this set of attributes as the key
for T ) and so, by the PNF assumption, any relation in PNF(T ) can contain at most
x1 · · ·xm tuples. To count the number of possible relations, each key value is either
not present in a relation or, if it is, it can be associated with αX(T1) · · ·αX(Tp)
distinct values for the other attributes. There are thus αX(T1) · · ·αX(Tp)+1 different
tuples involving a key value (the +1 for the case where the key value is missing from
a relation). Then since there are x1 · · ·xm possible tuples in a relation, there are
(αX(T1) · · ·αX(Tp) + 1)x1···xm − 1 possible relations (the −1 is because we do not
permit empty sets) [9].

A straightforward corollary of the previous Lemma 3.2 is the following which
characterizes absolute equivalence using αX(T ).

Lemma 3.5. Let T and S be scheme trees where ATT(T ) = ATT(S) and let
X ⊆ DOM. Then T is absolutely equivalent to S if and only if there exists a positive
integer N such that for all X ⊆ DOM such that |X ∩ DOM(Ai)| ≥ N for every
Ai ∈ U,αX(S) = αX(T ).

Another interesting corollary of Lemma 3.4 is the following result which provides
a characterization of the number of flat relations which satisfy MVD(T ); a result that
the reader can verify is not easy to obtain directly.

Corollary 3.6. If DOMX(MVD(T )) = {r | r ∈ SAT(MVD(T )) and ACT(r) ⊆
X where X ⊆ DOM}, then |DOMX(MVD(T ))| = αX(T ).

Proof. From Lemma 3.18 (see later), there exists a bijection from PNF(T )
to SAT(MVD(T )) which preserves active values and so |DOMX(MVD(T ))| =
|DOMX(T )| and the result follows from Lemma 3.4.

We now introduce a restructuring operator for PNF scheme trees, called COM-
PRESS.2 As will be shown shortly, the application of the COMPRESS operator yields
a scheme tree which is absolutely equivalent to the original scheme tree. We will also
show later, in the main result of the paper, that the COMPRESS operator is com-
plete in the sense that two scheme trees are absolutely equivalent only if one can be
transformed into the other by repeated application of the COMPRESS operator and
its inverse.

Definition 3.7. Let T be a scheme tree and n a node in T with a single child node
n′ having children n1, . . . , nk. Then the COMPRESS operator results in replacing the
subtree with root n by a subtree with root containing ATT(n) ∪ ATT(n′) and having
children n1, . . . , nk.

The COMPRESS operator is illustrated in Figure 3.2.
Next, we show that the number of PNF instance of a scheme tree is invariant

under the COMPRESS operator and so COMPRESS preserves absolute equivalence.

2The inverse of COMPRESS is referred to as elementary compaction in [1]
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Fig. 3.2. COMPRESS operator.

Lemma 3.8. If T is a scheme tree, then αX(T ) = αX(COMPRESS(T )), where
COMPRESS(T ) denotes the scheme tree obtained by applying the COMPRESS oper-
ator to an arbitrary node in the tree.

Proof. From Definition 3.3, it suffices to show that αX(T ) = αX(S) where, from
Figure 3.2, T is the subtree rooted at node n and S is the subtree rooted at node n′′.
From Definition 3.3 we have

αX(T ) = (αX(T ′) + 1)x1···xj − 1,

where T ′ is subtree at n′. If n′ has no children, then αX(T ) can be written as

αX(T ) = (2xj+1···xm − 1 + 1)x1···xj − 1

= 2x1···xm − 1

= αX(S).

Alternatively, if n′ has children n1, . . . , nk and corresponding subtrees T1, . . . , Tk
rooted at these nodes, then αX(T ) can be written as

= ((αX(T1) · · ·αX(Tk) + 1)xj+1···xm − 1 + 1)x1···xj − 1

= (αX(T1) · · ·αX(Tk) + 1)x1···xm − 1

= αx(S).

It follows from this result that by repeatedly applying the COMPRESS operator
to a scheme tree T until no more applications can be applied, a balanced tree is
obtained which is absolutely equivalent to the original tree. In the terminology of
[11], this tree can be considered as a normal form tree for T . We now show the crucial
result that for balanced scheme trees, the absolute equivalence property coincides with
the trees being isomorphic. It is interesting to note that the property of a scheme tree
being balanced is unique to the context of PNF relations, since the property does not



1558 MILLIST W. VINCENT AND MARK LEVENE

arise in the normal form trees developed in related nested data models which do not
enforce PNF [2, 11].

Theorem 3.9. If S and T are balanced scheme trees such that ATT(S) =
ATT(T ), then S and T are absolutely equivalent if and only if S and T are iso-
morphic.

The proof of the “only if” part this theorem (the “if” part is trivial) requires
several steps in the form of several preliminary lemmas and so we first summarize
these steps. We first show that if S and T are not isomorphic, then there exist
attributes A and B such that A and B belong to the same path in one scheme tree,
say S, but not in T . We then establish lower and upper bounds for αX(S) and αX(T )
and show that if we construct a domain X where the number of attribute values of
any attribute in X, except for those of A and B, is fixed the number of A and B
values in X are allowed to be large but identical, then αX(S) > αX(T ) and so S
and T cannot be absolutely equivalent. To establish the first preliminary lemma on
the relationship between isomorphisms and path sets in scheme trees, we need the
following definitions.

Definition 3.10. For any pair of attributes A and B in a scheme tree T,A ∼ B
denotes that there exists an element of P(T ) to which they both belong, and A �∼ B
denotes the converse. If S and T are scheme trees such that ATT(S) = ATT(T ),
then S and T are defined to be path equivalent, denoted by S ∼ T , if for all A,B ∈
ATT(S), A ∼ B in T if and only if A ∼ B in S. We denote by S �∼ T the fact that S
and T are not path equivalent.

For example, in the scheme tree S in Figure 3.1, A1 ∼ A2, A1 ∼ A3, but A2 �∼ A3

and so S �∼ T since A2 ∼ A3 in T . We now show that for two balanced scheme trees,
path equivalence coincides with the trees being isomorphic.

Lemma 3.11. If T and S are balanced scheme trees such that ATT(T ) = ATT(S),
then S and T are isomorphic if and only if T ∼ S.

Proof. If : the proof is by induction on Max (HEIGHT(T ), (HEIGHT(S)). The re-
sult clearly holds when Max (HEIGHT(T ), (HEIGHT(S)) = 1, so assume inductively
that the result is true for all trees where Max (HEIGHT(T ), (HEIGHT(S)) < k, k > 1,
and we shall establish the result is true when Max (HEIGHT(T ), (HEIGHT(S)) = k.

We first prove that the sets of attributes belonging to leaf nodes in S and T are
the same. If not, there exists an attribute A which, without loss of generality, is in a
leaf node of S but in a nonleaf node n in T . From the balanced assumption, n has at
least two children and so there exists an attribute B in one child of n and an attribute
C in another and so B �∼ C in T . This is a contradiction since by assumption S ∼ T
and so A ∼ B and A ∼ C, but this implies that B ∼ C in S since an attribute in a
leaf node belongs to at most one element of the path set of a scheme tree.

Next we claim that there is a bijection ρ from the leaf nodes of S to the leaf nodes
of T such that ATT(n) = ATT(ρ(n)) for every leaf node n in S. Otherwise, since the
sets of attributes in leaf nodes are the same, there must exist a pair of attributes A
and B such that A and B are in the same leaf node in S but in different leaf nodes
of T thus contradicting the assumption that S ∼ T .

Since the sets of leaf attributes are the same in both trees, the sets of attributes
in nonleaf nodes are the same and so by the induction hypothesis the scheme trees S′

and T ′ are isomorphic, where S′ and T ′ are the trees obtained by removing the leaf
nodes from S and T , respectively. Hence there exists a bijection τ from the nodes of
S′ to those of T ′. Consider the mapping from the nodes of S to those in T defined
by σ(n) = ρ(n) if n is a leaf node in S and τ(n) otherwise. It is clear that σ satisfies
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property (ii) of a scheme tree isomorphism from the induction hypothesis and the
property of ρ established above. Also, by the induction hypothesis, σ satisfies the
property (i) for any pair of nodes in S′ and so to complete the proof it suffices to
show that a leaf node n′ in S has a parent node n if and only if σ(n′) has parent node
σ(n) in T . If this is not the case, then by the induction hypothesis σ(n) must be a leaf
node in T ′ such that ATT(n) = ATT(ρ(n)) and so A ∼ B in S for any A ∈ ATT(n)
and B ∈ ATT(n′), but A �∼ B in T which completes the proof of the “if” part.

Only if: This part is immediate from the definition of isomorphism between
scheme trees.

We note that the previous result holds only if the trees are balanced. For example,
if S and T are scheme trees such that N(S) = {A, {B}} and N(T ) = {B, {A}}, then
T ∼ S but S and T are not isomorphic. We next introduce two auxiliary functions
and show that they are upper and lower bounds for αX(T ).

Definition 3.12. If T is a scheme tree with ATT(T ) = {A1, . . . , An} and X ⊆
DOM, then the integer function βX(T ) is defined by

βX(T ) = 2pX(T ),

where pX(T ) is defined recursively by

pX(T ) = x1 · · ·xn if T consists of a single node;

otherwise

pX(T ) = x1 · · ·xm(pX(T1) + · · ·+ pX(Tk) + 1),

where ATT(ROOT(T )) = {A1, . . . , Am}, xi = |X ∩ DOM(Ai)|, 1 ≤ i ≤ n, and
T1, . . . , Tk denote the principal subtrees of T .

For example, for the scheme trees S and T shown in Figure 3.1,

βX(T ) = 2x1x2x3 and βX(S) = 2(x2+x3+1)x1 .

Definition 3.13. If T is a scheme tree with ATT(T ) = {A1, . . . , An} and X ⊆
DOM, then the integer function δX(T ) is defined by

δX(T ) = 2qX(T )

and qX(T ) is defined recursively by

qX(T ) = x1 · · ·xn − 1 if T consists of a single node;

otherwise

qX(T ) = (x1 · · ·xm − 1)(qX(T1) + · · ·+ qX(Tk)),

where ATT(ROOT(T )) = {A1, . . . , Am}, xi = |X ∩ DOM(Ai)|, 1 ≤ i ≤ n, and
T1, . . . , Tk denote the principal subtrees of T .

For example, for the scheme trees S and T shown in Figure 3.1,

δX(T ) = 2x1x2x3−1 and δX(S) = 2(x2−1+x3−1)(x1−1).

Lemma 3.14. If T is a scheme tree where ATT(T ) = {A1, . . . , An} and |X ∩
DOM(Ai)| > 1, 1 ≤ i ≤ n, then δX(T ) < αX(T ) < βX(T ).
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Proof. We shall first show that αX(T ) < βX(T ) by induction on HEIGHT(T ).
The result clearly holds for the case where the height of tree is 1 so assume inductively
that it holds for trees of height less than some positive integer p. Then

αX(T ) = (αX(T1) · · ·αX(Tk) + 1)x1···xm − 1 by definition

< (αX(T1) · · ·αX(Tk) + 1)x1···xm

< (βX(T1) · · ·βX(Tk) + 1)x1···xm by the induction hypothesis

= (2pX(T1)+···+pX(Tk) + 1)x1···xm by definition of βX(T )

≤ (2pX(T1)+···+pX(Tk)+1)x1···xm since 2a + 1 ≤ 2a+1 for 0 ≤ a
= 2(pX(T1)+···+pX(Tk)+1)x1···xm

= βX(T ).

We now show δX(T ) < αX(T ) again by induction on the HEIGHT(T ). First, one
can establish by a simple induction argument, which we omit, that αX(T ) > 1. In
the case that HEIGHT(T ) = 1, δX(T ) < αX(T ) since ab − 1 > ab−1 when a > 1 and
b > 1. Assume inductively that δX(T ) < αX(T ) holds for trees of height less than
some positive integer p. Then

αX(T ) = (αX(T1) · · ·αX(Tk) + 1)x1···xm − 1 by definition

> (αX(T1) · · ·αX(Tk))
x1···xm − 1

> (αX(T1) · · ·αX(Tk))
x1···xm−1 since αX(T ) > 1 and ab − 1

> ab−1 when a > 1 and b > 1

> (δX(T1) · · · δX(Tk))
x1···xm−1 by the induction hypothesis

= (2qX(T1)+···+qX(Tk))x1···xm−1 from the definition of δX(T )

= 2(qX(T1)+···+qX(Tk))(x1···xm−1)

= δX(T ).

We now use Lemma 3.14 to provide upper and lower bounds for αX(T ).

Lemma 3.15. Let T be a scheme tree, ATT(T ) = {A1, . . . , An}, and Ai, Aj ∈
ATT(T ).

(i) If Ai ∼ Aj in T and if xi = xj = x and xk > 1 for all k, 1 ≤ k ≤ n, then

αX(T ) > 2(x−1)2 .
(ii) If Ai �∼ Aj in T and if xi = xj = x and xk > 1 for all k, 1 ≤ k ≤ n, then

there exist expressions C1 and C2, independent of x, such that αX(T ) < 2C1x+C2 .

Proof. (i) We first note that one can easily see by an inductive argument that
qX(T ) > 1, where qX(T ) is defined in Definition 3.13. Next we prove by induction on
the height of T that qX(T ) > (xi − 1) for all i, 1 ≤ i ≤ n. This result clearly holds
when HEIGHT(T ) = 1. Assume inductively then that the result holds for all trees of
height up to k and consider the case where the height of T is k + 1. If Ai is in the
root of T , then

qX(T ) = (x1 · · ·xi · · ·xm − 1)(qX(T1) + · · ·+ qX(Tk))

> xi − 1 since qX ’s > 1 and all the x’s are > 1 by assumption.



RESTRUCTURING PARTITIONED NORMAL FORM RELATIONS 1561

If instead Ai is in a principal subtree Tp, then

qX(T ) = (x1 · · ·xm − 1)(qX(T1) + · · ·+ qX(Tp) . . .+ qX(Tk))

> (x1 · · ·xm − 1)qX(Tp)

> qX(Tp)

> xi − 1 by the induction hypothesis.

We now complete the proof of (i) by using induction on HEIGHT(T ) to show
that pX(T ) > (x − 1)2 from which (ii) follows using Lemma 3.14. In the case where
HEIGHT(T ) = 1, then Ai and Aj must both be in ROOT(T ), and so

qX(T ) = x1 · · ·xi · · ·xj · · ·xm − 1

> x2 − 1 since all the x’s are > 1

> (x− 1)2 since x > 1.

Assume inductively then that the result holds for all trees up to height k, and let
T be of height k + 1. If Ai and Aj are both in ROOT(T ), then

qX(T ) = (x1 · · ·xi · · ·xj · · ·xm − 1)(qX(T1) + · · ·+ qX(Tk))

> (x− 1)2(qX(T1) + · · ·+ qX(Tk))

> (x− 1)2 since qX(T ) > 1 as noted above.

Alternatively, suppose that Ai is in ROOT(T ) and Aj is in a principal subtree
Tp. Then

qX(T ) = (x1 · · ·xi · · ·xm − 1)(qX(T1) + · · ·+ qX(Tp) · · ·+ qX(Tk))

> (x− 1)qX(Tp)

> (x− 1)2 since qX(Tp) > (x− 1).

Alternatively, suppose that Ai and Aj are both in a principal subtree Tp. Then
qX(T ) > qX(Tp) from the definition of qX(T ) and so qX(T ) > (x−1)2 by the induction
hypothesis. The other case, where Ai and Aj are in different principal subtrees cannot
occur because Ai ∼ Aj .

To prove (ii), we first note that one can prove, using a similar method to the one
used above in proving qX(T ) > (xi − 1), that pX(T ) = B1xi + B2, where B1 and
B2 are arithmetic expressions which do not involve xi. We next show by induction
on HEIGHT(T ) that pX(T ) < C1x + C2 from which (ii) follows using Lemma 3.14.
Consider the case where HEIGHT(T ) = 2. Then Ai and Aj must be in different
children of the root and so, by Definition 3.12, pX(T ) = D1(D2x + D3x + 1) where
D1, D2, and D3 are arithmetic expressions which do not contain x and so, by simple
rearrangement of terms, the induction hypothesis is satisfied. Assume inductively
then that the result holds for all trees up to height k and let T be of height k + 1.

If Ai and Aj belong to different principal subtrees of T , which without loss of
generality we denote by Ti and Tj , respectively, then pX(T ) = C(pX(Ti)+pX(Tj)+D),
where C and D are expressions not containing x, and so the result follows using the
above result that both pX(Ti) and pX(Tj) are equal to expressions which are linear
in x. Alternatively, if Ai and Aj occur in the same principal subtree of T , then the
result follows by the inductive hypothesis and rearranging terms in the expression for
pX(T ).
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Finally, we complete the proof of Theorem 3.9.

Proof of Theorem 3.9. If : This part is immediate.

Only if: We prove the contrapositive that if S and T are not isomorphic, then
they are not absolutely equivalent. Let ATT(T ) = {A1, . . . , An}. If S and T are
not isomorphic, then by Lemma 3.11 there exist attributes Ai and Aj such that,
without loss of generality, Ai ∼ Aj in S but Ai �∼ Aj in T . So by Lemma 3.15,

αX(S) > 2(x−1)2 and 2C2x+C2 > αX(T ). It follows by elementary properties of the

exponential function that there exists a constant N such that 2(x−1)2 > 2C2x+C2 for
x > N and so αX(S) > αX(T ) when xk > 1 for all k, 1 ≤ k ≤ n, and xi = xj = x.
This contradicts Lemma 3.5 and so S and T cannot be absolutely equivalent.

We note that Theorem 3.9 is not valid if the scheme trees are not balanced. For
example, if one takes scheme trees S and T , where N(S) = {A, {B}} and N(T ) =
{A,B}, then it follows from Definition 3.3 and Lemma 3.5 that S and T are absolutely
equivalent yet they are not isomorphic. It also follows from this theorem that the
scheme trees S and T in Figure 3.1 are not absolutely equivalent since they are
balanced but not isomorphic.

We now use Theorem 3.9 to show that the (balanced) normal form tree for T ,
denoted by B(T ), is unique (up to an isomorphism). We write S ⇒ T if there
exists a sequence of scheme trees S1, . . . , Sn such that S1 = S, . . . , Sn = T and
Si = COMPRESS(Si−1), n ≥ i > 1.

Lemma 3.16. If S is a scheme tree and S1 and S2 are balanced scheme trees such
that S ⇒ S1 and S ⇒ S2, then S1 and S2 are isomorphic.

Proof. It suffices to show that ⇒ is Church–Rosser, i.e.,

(i) every sequence of COMPRESS operation terminates;
(ii) if S ⇒ S1 and S ⇒ S2, then there is a pair of isomorphic trees T1 and T2

such that S1 ⇒ T1 and S2 ⇒ T2.

Since COMPRESS reduces the number of nodes in the scheme tree by 1, (i)
follows immediately. For (ii), it follows from (i) that there exist balanced scheme
trees T1 and T2 such that S ⇒ S1 ⇒ T1 and S ⇒ S2 ⇒ T2. Applying Lemmas 3.5
and 3.8 shows that T1 and T2 are absolutely equivalent and so they are isomorphic by
Theorem 3.9.

To complete the preliminaries needed to prove the main result of the paper, we
follow the approach of [29] and define a generalized nest operator and then show that
it can be used to construct a bijection between PNF instances of two scheme trees
whose induced sets of scheme trees are equivalent.

Definition 3.17. Let T be a scheme tree and s be a flat relation defined over U .
Then nesting s according to T , denoted by ν∗T (s), is defined by ν∗T (s) = νXk

· · · νX0
(s)

such that

(i) for every nonroot node n ∈ T there exist one and only one Xi such that
N(Tn) = Xi, where Tn is the subtree of T with root n;

(ii) if node n is a descendent of node n′ in T , then the nest operation on the
set corresponding to n is performed before the nest operation on the set corresponding
to n′.

For example, given the scheme tree T in Figure 2.1, then one nest sequence
to construct ν∗T (s) is νMAJOR νCLASS,{EXAM},{PROJECT} νEXAM νPROJECT(r). The
following properties of ν∗T (s) can be easily shown using the results in [28, 29].

Lemma 3.18. If s is a flat relation in SAT(MVD(T )), then

(i) ν∗T (s) is uniquely defined;
(ii) if r ∈ PNF(T ), then ν∗T (µ

∗(r)) = r;
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(iii) µ∗(ν∗T (s)) = s.

We use this result to show that if MVD(S) and MVD(T ) are equivalent, then
there exists a bijection from PNF(S) to PNF(T ).

Lemma 3.19. If S and T are scheme trees where ATT(T ) = ATT(S) and
MVD(S) ≡ MVD(T ), then the mapping from PNF(S) to PNF(T ) defined by F (r) =
ν∗T (µ

∗(r)), r ∈ PNF(S), is a bijection.

Proof. We shall verify that F has each of the properties of a bijection.

(i) F is total. If r ∈ PNF(S), then µ∗(r) ∈ SAT(MVD(S)) (Theorem 7.5 in
[18]) and so µ∗(r) ∈ SAT(MVD(T )) since MVD(S) ≡ MVD(T ) and hence ν∗T (µ

∗(r)) ∈
PNF(T ) (again by Theorem 7.5 in [18]).

(ii) F is onto. Let r ∈ PNF(T ) and consider the relation r1 where r1 =
ν∗S(µ

∗(r)). From the same argument as in (i), r1 ∈ PNF(S). By Lemma 3.18(iii),
µ∗(ν∗S(µ

∗(r))) = µ∗(r) and so F (r1) = ν∗T (µ
∗(ν∗S(µ

∗(r)))) = ν∗T (µ
∗(r)), and by

Lemma 3.18(ii), ν∗T (µ
∗(r)) = r and so F is onto.

(iii) F is 1–1. Suppose that there are relations r1 and r2 ∈ PNF(S) such that
F (r1) = F (r2), i.e., ν

∗
T (µ

∗(r1)) = ν∗T (µ
∗(r2)). Then applying µ∗ to both sides and

using Lemma 3.18(iii) shows that µ∗(r1) = µ
∗(r2) and applying ν∗S to both sides and

using Lemma 3.18(ii) shows that r1 = r2 and so F is 1–1.

Combining these preliminary results now leads to the main result of this paper
which provides two characterization of absolute equivalence for nested schemes.

Theorem 3.20. If T and S are scheme trees where ATT(S) = ATT(T ), then
the following statements are equivalent:

(i) S and T are absolutely equivalent;
(ii) B(S) and B(T ) are isomrphic;
(iii) MVD(S) ≡ MVD(T ).

Proof. We shall show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii). From Lemmas 3.5 and 3.8, if S and T are absolutely equivalent, then
B(S) and B(T ) are absolutely equivalent and so B(S) and B(T ) are isomorphic by
Theorem 3.9.

(ii) ⇒ (iii). It follows directly from the definition of a scheme tree isomorphism
that if B(S) and B(T ) are isomorphic, then MVD(B(S)) = MVD(B(T )) and so it
suffices to show that MVD(T ′) ≡ MVD(COMPRESS(T ′)), where COMPRESS(T ′)
denoted the tree obtained by any application of the COMPRESS operator to an
arbitrary scheme tree T ′. This follows immediately from the observation that P(T ′) =
P(COMPRESS(T ′)) and the result [18] that MVD(T ′) ≡ �� [P(T ′)].

(iii) ⇒ (i). This is immediate from Lemma 3.19 and noting that for any r ∈
PNF(S), ACT(r) = ACT(F (r)).

Some observations on this theorem and its consequences are appropriate at this
point. We first note that a consequence of the equivalence of (i) and (ii) is that the
COMPRESS operator (and its inverse) are complete in the sense that two scheme
trees are absolutely equivalent if and only if one tree can be obtained from the other
by a sequence of applications of the COMPRESS operator and its inverse. Second,
from (i) ⇒ (iii) and Lemma 3.19 it follows that absolute equivalence implies query
equivalence in the context of the nested query language of [28]. So all the types of data
equivalence coincide for nested schemes since it is well known that query equivalence
⇒ generic equivalence ⇒ internal equivalence ⇒ absolute equivalence [10].

The theorem also results in two polynomial time algorithms for testing scheme
tree equivalence, one by checking for the equivalence of the sets of MVDs and the
other by converting each scheme tree to a balanced tree and then checking if the
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trees are isomorphic. Using the MVD approach, it follows from the results in [6]
that the implication problem of testing whether a set of MVDs Σ implies an MVD
Z →→W can be solved in at worst in O(N log |U |) time, where N is the total number
of occurrences of attributes in Σ. Testing whether two sets of MVDs are equivalent
then reduces to running the membership test for each MVD in both sets and can be
solved in at worst in O(|Σ|N log |U |) time, assuming that |Σ| and N are upper bounds
for both MVD sets.

The alternative approach can be implemented by first imposing an arbitrary total
ordering on U and thereafter sorting first the attributes in each node of the scheme
tree and then the children of each node according to the first attribute in a child.
This sort can be done in at worst in time t = Σi(ci log ci + ki log ki) where the sum is
taken over all the nodes in the tree and ci and ki represent the number of attributes
in node i of the tree and the number of children of node i, respectively. Using the
properties of the log function we can derive t = log(Πic

ci
i k

ki
i ) and so t ≤ O(|U | log |U |)

because Σici = |U | and Σiki ≤ |U |. After sorting the scheme tree, compressing them
can be done in at worst in O(|U |) time since there are at most |U | nodes in the tree.
Finally, testing if the trees are isomorphic can be done in at worst O(|U |) time since
each attribute needs to be checked at most once and appears only once in a scheme
tree. Hence the total cost of testing for absolute equivalence using this method is at
worst O(|U | log |U |) time. This compares favorably with the MVD approach when
|U | < |Σ| N , which one expects normally to hold. The next lemma summarizes this
result.

Lemma 3.21. Testing whether two PNF scheme trees are absolutely equivalent
can be done in O(|U | log |U |) time.

4. Related work. The concept of absolute equivalence and the investigation of
necessary and sufficient conditions for absolute equivalence for a nested-type model,
called the format model, was first carried out in [11]. The format model uses three
data constructors—collection (which corresponds to set construction), composition
(which corresponds to tuple construction), and classification (an alternate construc-
tion similar to a variant record construction). A set of local restructuring operators
was then defined and proven to be complete for preserving absolute equivalence be-
tween formats. The format model is a more general model than the nested model
used in this paper in a number of aspects. First, the nested model does not use the
classification construction; second, the nested model requires that the collection and
composition operators alternate, which is not required in the format model; and last,
the nested model requires the PNF condition, whereas the format model does not.
As a consequence, while the essential problem addressed in this paper and [11] is
the same, the results differ because of the different underlying models. In particular,
none of the restructuring operators in [11] is equivalent to our COMPRESS operator
and the balanced property of a normal form tree in this paper is not a property of
the normal form trees in [11]. The work in [11] was later extended in [2], where the
problem of restructuring and data equivalence of the format model was extended to
include finite attribute domains. Also, restructuring operators which augment the
data capacity of a scheme were introduced. Once again, the results in [2] differ from
the results in this paper because of the different model assumptions.

The work in [1] examined data equivalence in the context of the VERSO model.
The VERSO model is closer to the one used in this paper than those in [2, 11] but
there are still two important differences. First, the VERSO model allows empty sets
at all levels in a relation, whereas the model used in this paper, based on [28], does



RESTRUCTURING PARTITIONED NORMAL FORM RELATIONS 1565

not permit empty sets. Second, the data manipulation language in VERSO differs
from that of the nested model used in this paper and, in particular, does not include
the nest and unnest operators for restructuring. Instead, the effect of restructur-
ing an instance of a VERSO scheme is defined indirectly via a set of flat relations
corresponding to the instance. As a result, the restructuring between two arbitrary
VERSO schemes defined over the same set of atomic attributes may not be defined
and so the VERSO restructuring operator is less powerful than the unnest and nest
operators. For instance, given the scheme trees S and T with N(S) = {A,B,C} and
N(T ) = {A, {B}, {C}}, then a relation defined over S can be transformed into one
over T by two applications of the nest operator but S cannot be transformed into
T with the VERSO restructuring [10]. As a result, the notion of data equivalence
between two schemes in [1] is restricted to those schemes for which the VERSO re-
structuring operator is defined. In contrast, we place no restrictions on the nested
schemes apart from the obvious requirement of them being defined over the same set
of atomic attributes. It is interesting to then compare the results on data equivalence
in [1] with ours. Their main result shows that two VERSO schemes are data equiv-
alent if and only if they are identical apart from the trivial restructuring operations
of permuting the order of attributes within a node of the scheme tree or permuting
the left-to-right ordering of the children of a node. This is a more negative result
than ours which allows nontrivial restructuring of the scheme tree using the COM-
PRESS operator and its inverse. The other difference between the work in [1] and
ours is that they consider the issue of data dominance, a more general notion than
data equivalence, whereas we have only considered data equivalence.

A different aspect to restructuring PNF relations was investigated in [8]. The
motivation for the work was based on the observation that if empty sets are permitted,
then restructuring using the nest and unnest operators may result in losing more
information than is necessary. A restructuring operator was then defined which maps
directly from one nested scheme to another without the use of the nest and unnest
operator, using a similar but more general approach to that used in [1], with the
aim of minimizing information loss in the restructuring. However, this paper did not
address the question of characterizing when the new restructuring operator preserved
information content and this was posed as an open problem.

In [12] two restructuring operations were considered in the context of nested
relations not necessarily in PNF. The first operation, called empty node insertion,
allows the insertion of a node with the empty set of attributes between two other nodes
in the path of a scheme tree. Empty node insertion preserves absolute equivalence but
is not considered herein, since nodes having an empty set of attributes are disallowed.
The motivation for allowing such nods in [12] is the restructuring of a forest of scheme
trees so that they be joinable. The second operation, called root weighting, is a
generalization of the COMPRESS operator which allows us to remove a node in
the scheme tree and add its attributes to one of its ancestor nodes. As a result
of Theorem 3.20 it is easy to verify that any root weighting not corresponding to
an application of the COMPRESS operator does not preserve absolute equivalence,
resulting in dominance instead.

5. Conclusion. In this paper we have investigated the problem of when two
nested relational schemes are data equivalent and provided two characterizations of
data equivalence. The first is that two nested schemes are data equivalent if and
only if the sets of MVDs induced by the corresponding scheme trees are equivalent.
The second is that two schemes are data equivalent if and only if the corresponding
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scheme trees can be transformed into each other by a sequence of applications of a
tree restructuring operator called COMPRESS (and its inverse). The COMPRESS
operator merges a parent and child nodes in a scheme tree if the parent has only
one child node. We also used these characterizations to derive two polynomial time
algorithms for determining when two nested schemes are data equivalent.

There are several other related topics that also warrant further investigation.
Data equivalence can be viewed as a special case of data dominance [8] which holds
if there is 1–1 (but not necessarily onto) mapping from the instances of one scheme
to the instances of another scheme. Then finding a complete set of restructuring
operators for a scheme tree which preserve data dominance is an important question
that arises in contexts such as schema integration where one often wants to ensure
that the integrated scheme dominates the original schemes. The approach in this
paper has also assumed that attribute domains are disjoint and it would be useful to
characterize data equivalence and dominance if this assumption is dropped. Another
aspect that needs further investigation is to extend the approach in this paper, which
has characterized data equivalence for only a single nested scheme, to characterizing
absolute equivalence and dominance for nested database schemes.
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ments helped to improve the presentation of this paper.
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Abstract. Given a multiset X = {x1, . . . , xn} of real numbers, the floating-point set summation
problem asks for Sn = x1 + · · ·+ xn. Let E∗

n denote the minimum worst-case error over all possible
orderings of evaluating Sn. We prove that if X has both positive and negative numbers, it is NP-hard
to compute Sn with the worst-case error equal to E∗

n. We then give the first known polynomial-time
approximation algorithm that has a provably small error for arbitrary X. Our algorithm incurs a
worst-case error at most 2(�log(n− 1)�+ 1)E∗

n. (All logarithms log in this paper are base 2.) After
X is sorted, it runs in O(n) time. For the case where X is either all positive or all negative, we give
another approximation algorithm with a worst-case error at most �log logn�E∗

n. Even for unsorted
X, this algorithm runs in O(n) time. Previously, the best linear-time approximation algorithm had
a worst-case error at most �logn�E∗

n, while E
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n was known to be attainable in O(n logn) time using
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tion, NP-hardness, approximation algorithms
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1. Introduction. Summation of floating-point numbers is ubiquitous in numer-
ical analysis and has been extensively studied (for example, see [2, 4, 5, 6, 7, 8, 10, 11,
12]). This paper focuses on the floating-point set summation problem which, given a
multiset X = {x1, . . . , xn} of real numbers, asks for Sn = x1 +x2 + · · ·+xn. Without
loss of generality, let xi �= 0 for all i throughout the paper. Here X may contain both
positive and negative numbers. For such a general X, previous studies have discussed
heuristic methods and obtained statistical or empirical bounds for their errors. We
take a new approach by designing efficient algorithms whose worst-case errors are
provably small.

Our error analysis uses the standard model of floating-point arithmetic with unit
roundoff α � 1:

fl(x+ y) = (x+ y)(1 + δxy), where |δxy| ≤ α.

Since the operator + is applied to two operands at a time, an ordering for adding X
corresponds to a binary addition tree of n leaves and n − 1 internal nodes, where a
leaf is an xi and an internal node is the sum of its two children. Different orderings
yield different addition trees, which may produce different computed sums Ŝn in
floating-point arithmetic. We aim to find an optimal ordering that minimizes the
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error En = |Ŝn − Sn|. Let I1, . . . , In−1 be the internal nodes of an addition tree T
over X. Since α is very small even on a desktop computer, any product of more than
one α is negligible in our consideration. Using this approximation,

Ŝn ≈ Sn +

n−1∑
i=1

Iiδi.

Hence En ≈ |
∑n−1
i=1 Iiδi| ≤ α

∑n−1
i=1 |Ii|, giving rise to the following definitions.

• The worst-case error of T , denoted by E(T ), is α
∑n−1
i=1 |Ii|.

• The cost of T , denoted by C(T ), is
∑n−1
i=1 |Ii|.

Our task is to find a fast algorithm that constructs an addition tree T overX such that
E(T ) is small. Since E(T ) = α·C(T ), minimizing E(T ) is equivalent to minimizing
C(T ). We further adopt the following notations.

• E∗
n (respectively, C∗

n) is the minimum worst-case error (respectively, minimum
cost) over all orderings of evaluating Sn.

• Tmin denotes an optimal addition tree over X, i.e., E(Tmin) = E∗
n or, equiva-

lently, C(Tmin) = C∗
n.

In section 2, we prove that if X contains both positive and negative numbers, it is
NP-hard to compute a Tmin. In light of this result, we design an approximation algo-
rithm in section 3.1 that computes a tree T with E(T ) ≤ 2(�log(n−1)�+1)E∗

n. After
X is sorted, this algorithm takes only O(n) time. This is the first known polynomial-
time approximation algorithm that has a provably small error for arbitrary X. For
the case where X is either all positive or all negative, we give another approximation
algorithm in section 3.2 that computes a tree T with E(T ) ≤ (1 + �log log n�)E∗

n.
This algorithm takes only O(n) time even for unsorted X. Previously [5], the best
linear-time approximation algorithm had a worst-case error at most �log n�E∗

n, while
E∗
n was known to be attainable in O(n log n) time using Huffman coding [9].

2. Minimizing the worst-case error is NP-hard. IfX contains both positive
and negative numbers, we prove that it is NP-hard to find a Tmin. We first observe
the following properties of Tmin.

Lemma 2.1. Let z be an internal node in Tmin with children z1 and z2, sibling u,
and parent r.

1. If z > 0, z1 ≥ 0, and z2 > 0, then u ≥ 0 or r < 0.
2. If z < 0, z1 ≤ 0, and z2 < 0, then u ≤ 0 or r > 0.
Proof (By symmetry). We prove only the first statement. C(Tr) = |r|+ |z|+Cf ,

where Cf = C(Tz1) +C(Tz2) +C(Tu). Assume to the contrary that u < 0 and r ≥ 0.
Then z ≥ |u|. We swap Tz1 with Tu. Let z′ = u + z2. Now r becomes the parent of
z′ and z1. This rearrangement of nodes does not affect the value of node r, and the
costs of Tz1 , Tz2 , and Tu remain unchanged. Let T ′

r be the new subtree with root r.
Let T ′ be the entire new tree from the swapping. Since u and z2 have the opposite
signs, |z′| < max{|u|, z2} ≤ z. Hence, C(T ′

r) = r + |z′| + Cf < r + z + Cf = C(Tr).
Thus, C(T ′) < C(Tmin), contradicting the optimality of Tmin. This completes the
proof.

For the purpose of proving that finding a Tmin is NP-hard, we restrict all xi to
nonzero integers and consider the following optimization problem.

MINIMUM ADDITION TREE (MAT).
Input: A multiset X of n nonzero integers x1, . . . , xn.
Output: Some Tmin over X.
The following problem is a decision version of MAT.
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ADDITION TREE (AT).
Instance: A multiset X of n nonzero integers x1, . . . , xn, and an integer k ≥ 0.
Question: Does there exist an addition tree T over X with C(T ) ≤ k?
Lemma 2.2. If MAT is solvable in time polynomial in n, then AT is also solvable

in time polynomial in n.
Proof. The proof is straightforward.
In light of Lemma 2.2, to prove that MAT is NP-hard, it suffices to reduce the

following NP-complete problem [3] to AT.
3-PARTITION (3PAR).
Instance: A multiset B of 3m positive integers b1, . . . , b3m, and a positive integer

K such that K/4 < bi < K/2 and b1 + · · ·+ b3m = mK.
Question: Can B be partitioned into m disjoint sets B1, . . . , Bm such that for

each Bi,
∑
b∈Bi

b = K? (Bi must therefore contain exactly three elements from B.)
Given an instance (B,K) of 3PAR, let

W = 100(5m)2K; ai = bi +W ; A = {a1, . . . , a3m}; L = 3W +K.

Lemma 2.3. (A,L) is an instance of 3PAR. Furthermore, it is a positive instance
if and only if (B,K) is a positive instance.

Proof. Since K/4 < bi < K/2, K/4 +W < ai < K/2 +W , and thus L/4 < ai <
L/2. Next, a1 + a2 + · · · + a3m = 3mW +mK = mL. This completes the proof of
the first statement. The second statement follows from the fact that bi+ bj + bk = K
if and only if ai + aj + ak = L.

Write

ε =
1

400(5m)2
; h = �4εL�; H = L+ h;

h = β0H; ai =

(
1

3
+ βi

)
H; ai =

(
1

3
+ εi

)
L; aM = max{ai : i = 1, . . . , 3m}.

Lemma 2.4.
1. |εi| < ε for i = 1, . . . , 3m.
2. 0 < β0 < 4ε, and |βi| < 4ε for i = 1, . . . , 3m.
3. 3aM < H.
Proof. Statement 1. Note that bi + W = (1/3 + εi)(3W + K). Thus, bi =

K/3 + εi(300(5m)2 + 1)K. Since K/4 < bi < K/2, −1/12 < εi(300(5m)2 + 1) < 1/6.
Hence 4(5m)2|εi| < 10−2, i.e., |εi| < ε.

Statement 2. Since 4εL > 1, we have β0 > 0. Also, sinceH > L and β0H = �4εL�,
we have β0 < 4ε. Next, for each ai, we have βi = (εiL− h/3)/(L+ h). Then by the
triangular inequality and Statement 1, |βi| < 7ε/3 < 4ε.

Statement 3. By Statement 1, ai < (1/3 + ε)L. Thus 3aM < L + 3εL. Then,
since 3εL < 3K ≤ h, 3aM < L+ h = H.

To reduce (A,L) to an instance of AT, we consider a particular multiset

X = A ∪ {−H, . . . ,−H} ∪ {h, . . . , h}

with m copies of −H and h each. Given a node s in Tmin, let Ts denote the subtree
rooted at s. For convenience, also let s denote the value of node s. Let v(Tmin) denote
the value of the root of Tmin, which is always 0. For brevity, we use λ with or without
scripts to denote the sum of at most 5m numbers in the form of ±βi. Then all nodes
are in the form of (N/3 + λ)H for some integer N and some λ. Since by Lemma 2.4,
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|λ| ≤ (5m)(4ε) = (500m)−1, the terms N and λ of each node are uniquely determined.
The nodes in the form of λH are called the type-0 nodes. Note that Tmin has m type-0
leaves, i.e., the m copies of h in X.

Lemma 2.5. In Tmin, type-0 nodes can only be added to type-0 nodes.

Proof. Assume to the contrary that a type-0 node z1 is added to a node z2 in the
form of (±N/3 + λ)H with N ≥ 1. Then |z1 + z2| ≥ (1/3 + λ′)H for some λ′. Let z
be the parent of z1 and z2. Since v(Tmin) = 0, z cannot be the root of Tmin. Let u be
the sibling of z. Let r be the parent of z and u. Let t be the root of Tmin. Let Pr be
the path from t to r in Tmin. Let mr be the number of nodes on Pr. Since Tmin has
5m− 1 internal nodes, mr < 5m− 1.

We rearrange Tmin to obtain a new tree T ′ as follows. First, we replace Tz with
Tz2 ; i.e., r now has subtrees Tz2 and Tu. Let T ′′ be the remaining tree; i.e., T ′′

is Tmin after removing Tz1 . Next, we create T ′ such that its root has subtrees Tz1
and T ′′. This tree rearrangement eliminates the cost |z1 + z2| from Tr but may
result in a new cost in the form of λH on each node of Pr. The total of these
extra costs, denoted by Cλ, is at most mr(5m)(4ε)H < (5m − 1)(5m)(4ε)H. Then,
C(T ′) = C(Tmin)−|z1+z2|+Cλ ≤ C(Tmin)− (1/3+λ′)H+Cλ < C(Tmin)+(−1/3+
(5m)2(4ε))H = C(Tmin) + (−1/3 + 10−2)H < C(Tmin), contradicting the optimality
of Tmin. This completes the proof.

Lemma 2.6. Let z be a node in Tmin.

1. If z < 0, then |z| ≤ H.
2. If z > 0, then z < H.

Proof. Statement 1. Assume that the statement is untrue. Then, since all negative
leaves have values −H, some negative internal node z has an absolute value greater
than H and two negative children z1 and z2. Since v(Tmin) = 0, some z has a positive
sibling u. We pick such a z at the lowest possible level of Tmin. Let r be the parent of
z and u. By Lemma 2.1(1), r > 0. Then u > |z| > H. Since all positive leaves have
values less than H, u is an internal node with two children u1 and u2. Since u > 0,
z < 0, and r > 0, by Lemma 2.1(1), u must have a positive child and a negative child.
Without loss of generality, let u1 be positive and u2 be negative. Then u = u1 − |u2|.
Since z is at the lowest possible level, |u2| ≤ H, for otherwise we could find a z at a
lower level under u2. We swap Tz with Tu2 . Let T

′
r be the new subtree rooted r. Let

u′ = u1 + z. Since u2 + u′ = r > 0 and u2 < 0, we have u′ > 0. Since |u2| ≤ H < |z|,
we have u′ = u1 − |z| < u1 − |u2| = u. Let Cf = C(Tz) + C(Tu1

) + C(Tu2
). Then

C(T ′
r) = r + u′ +Cf < r + u+Cf = C(Tr), which contradicts the optimality of Tmin

because the costs of the internal nodes not mentioned above remain unchanged.

Statement 2. Assume that this statement is false. Then, since all positive leaves
have values less than H, some internal node z has a value of at least H as well as
two positive children. Since v(Tmin) = 0, some such z has a negative sibling u. By
Statement 1, |u| ≤ H. Hence z + u ≥ 0, contradicting Lemma 2.1(1).

The following lemma strengthens Lemma 2.6.

Lemma 2.7.

1. Let z be a node in Tmin. If z > 0, then z is in the form of λH, (1/3 + λ)H,
or (2/3 + λ)H.

2. Let z be an internal node in Tmin. If z < 0, then z is in the form of λH,
(−1/3 + λ)H, or (−2/3 + λ)H.

Proof. Statement 1. By Lemma 2.6, z < H. Thus z = (N/3 + λ)H with
0 ≤ N ≤ 3. To rule out N = 3 by contradiction, assume z = (1 + λ)H with λ < 0.
Since by Lemma 2.4 all positive leaves have values less than (1/3 + 4ε)H, z is an
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internal node. By Lemmas 2.5 and 2.6, z has two children z1 = (2/3 + λ′) and
z2 = (1/3 + λ′′). Since v(Tmin) = 0, z is not the root, and by Lemmas 2.5 and 2.6, z
has a negative sibling u. By Lemma 2.6, |u| ≤ H. Let r be the parent of z and u. Then
C(Tr) = |r|+z+C(Tz1)+C(Tz2)+C(Tu). We swap Tz2 with Tu. Let z

′ be the parent
of z1 and u. Now r is the parent of z′ and u. Let T ′

r be the new subtree rooted at r after
the swapping. Since r remains the same, C(T ′

r) = |r|+ |z′|+C(Tz1)+C(Tz2)+C(Tu).
If |u| ≥ z1, then |z′| = |u| − z1 ≤ H − z1 = (1/3− λ′)H < z1 < z; otherwise, |u| < z1
and thus |z′| = z1 − |u| < z1 < z. In either case, C(T ′

r) < C(Tr), contradicting the
optimality of Tmin.

Statement 2. The proof is similar to that of Statement 1. By Lemma 2.6, z =
(−N/3 + λ)H with 0 ≤ N ≤ 3. To rule out N = 3 by contradiction, assume z =
(−1+λ)H with λ < 0. By Lemmas 2.5 and 2.6, z has a positive sibling u < H and two
children z1 = (−2/3 + λ′)H and z2 = (−1/3 + λ′′)H. Let r be the parent of z and u.
Then C(Tr) = |r|+ |z|+C(Tz1)+C(Tz2)+C(Tu). We swap Tz2 with Tu. Let z

′ be the
parent of z1 and u. Now r is the parent of z′ and u. Let T ′

r be the new subtree rooted at
r after the swapping. Since r is the same, C(T ′

r) = |r|+ |z′|+C(Tz1)+C(Tz2)+C(Tu).
If u ≥ |z1|, then |z′| = u − |z1| < (1/3 − λ′)H < |z|; otherwise, u < |z1| and thus
|z′| = |z1| − u < |z1| < |z|. So C(T ′

r) < C(Tr), contradicting the optimality of
Tmin.

The following lemma supplements Lemma 2.7(1).

Lemma 2.8. Let z be a node in Tmin. If z = (1/3 + λ)H, then z is a leaf.

Proof. Assume to the contrary that z = (1/3+λ)H is not a leaf. By Lemmas 2.5
and 2.7, z has two children z1 = (2/3+λ1)H and z2 = (−1/3+λ2)H. By Lemmas 2.5
and 2.7, z1 has two children z3 = (1/3 + λ3)H and z4 = (1/3 + λ4)H, contradicting
Lemma 2.1(1).

The following lemma strengthens Lemma 2.7(2).

Lemma 2.9. Let z be an internal node in Tmin. If z < 0, then z can be only in
the form of λH or (−1/3 + λ)H.

Proof. To prove the lemma by contradiction, by Lemma 2.7, we assume z =
(−2/3 + λ)H. Let z1 and z2 be the two children of z. Let u be the sibling of z; by
Lemmas 2.5 and 2.7, u = (2/3 + λ′)H or (1/3 + λ′)H. Let r be the parent of z and
u. Then C(Tr) = |r|+ |z|+C(Tz1) +C(Tz2) +C(Tu). By Lemmas 2.5 and 2.7, there
are two cases based on the values of z1 and z2 with the symmetric cases omitted.

Case 1. z1 = (−1/3 + λ1)H and z2 = (−1/3 + λ2)H. Swap Tu with Tz2 . Let z′

be the new parent of z1 and u. Then r is the parent of z′ and u. Let T ′
r be the new

subtree rooted at r. Then C(T ′
r) = |r| + |z′| + C(Tz1) + C(Tz2) + C(Tu). Whether

u = (2/3 + λ′)H or (1/3 + λ′)H, we have |z′| < |z| and thus C(T ′
r) < C(Tr), which

contradicts the optimality of Tmin.

Case 2. z1 = (1/3 + λ1)H and z2 = −H. There are two subcases based on u.

Case 2A. u = (2/3+ λ′)H. We swap Tz1 with Tu. Let z
′ be the new parent of z2

and u. Then |z′| < |z|.
Case 2B. u = (1/3+ λ′)H. We swap Tz2 with Tu. Let z

′ be the new parent of z1
and u. By Lemma 2.8, both z1 and u are leaves, and thus by Lemma 2.4, 2z1+u < H.
Therefore, |z′| = z1 + u < H − z1 = |z|.

Therefore, in either subcase of Case 2, the swapping results in an addition tree
over X with a smaller cost than Tmin, reaching a contradiction.

Lemma 2.10. C(Tmin) ≥ m(H + h). Moreover, C(Tmin) = m(H + h) if and only
if (A,L) is a positive instance of 3PAR .
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Proof. By Lemmas 2.5, 2.7, 2.8, and 2.9, each ai ∈ A can be added only to some
aj ∈ A or to some z1 = (−1/3 + λ1)H. In turn, z1 can be only the sum of −H and
some z2 = (2/3 + λ2)H. In turn, z2 is the sum of some ak and a� ∈ A. Hence in
Tmin, 2m leaves in A are added in pairs. The sum of each pair is then added to a leaf
node −H. This sum is then added to a leaf node in A. This sum is a type-0 node
with value −|λ′|H, which can be added only to another type-0 node. Let ap,1, ap,2,
and ap,3 be the three leaves in A associated with each −H and added together as
((ap,1+ap,2)+(−H))+ap,3 in Tmin. The cost of such a subtree is 2H−(ap,1+ap,2+ap,3).

There are m such subtrees Rp. Their total cost is 2mH−
∑3m
i=1 ai = mH+mh. Hence

C(Tmin) ≥ mH +mh.
If (A,L) is not a positive instance of 3PAR, then for any Tmin, there is some

subtree Rp with ap,1 + ap,2 + ap,3 �= L. Then, the value of the root ri of Rp is
ap,1+ap,2+ap,3−H �= −h. Since ri is a type-0 node, it can be added only to a type-0
node. No matter how the m root values rk and the m leaves h are added, some node
resulting from adding these 2m numbers is nonzero. Hence C(Tmin) > mH +mh.

If (A,L) is a positive instance of 3PAR, let {ap,1, ap,2, ap,3} with 1 ≤ p ≤ m
form a 3-set partition of A; i.e., A is the union of these m 3-sets and for each p,
ap,1 + ap,2 + ap,3 = L. Then each 3-set can be added to one −H and one h as
(((ap,1 + ap,2) + (−H)) + ap,3) + h, resulting in a node of value zero and contributing
no extra cost. Hence C(Tmin) = mH +mh. This completes the proof.

Theorem 2.11. It is NP-hard to compute an optimal addition tree over a multiset
that contains both positive and negative numbers.

Proof. By Lemma 2.2, it suffices to construct a reduction f from 3PAR to AT. Let
f(B,K) = (X,mH +mh), which is polynomial-time computable. By Lemma 2.10,
(X,mH +mh) is a positive instance of AT if and only if (A,L) is a positive instance
of 3PAR. Then, by Lemma 2.3, f is a desired reduction.

3. Approximation algorithms. In light of Theorem 2.11, for X with both
positive and negative numbers, no polynomial-time algorithm can find a Tmin unless
P = NP [3]. This motivates the consideration of approximation algorithms.

3.1. Linear-time approximation for general X. This section assumes that
X contains at least one positive number and one negative number. We give an ap-
proximation algorithm whose worst-case error is at most 2(�log(n− 1)�+ 1)E∗

n. If X
is sorted, this algorithm takes only O(n) time.

In an addition tree, a leaf is critical if its sibling is a leaf with the opposite sign.
Note that if two leaves are siblings, then one is critical if and only if the other is
critical. Hence an addition tree has an even number of critical leaves.

Lemma 3.1. Let T be an addition tree over X. Let y1, . . . , y2k be its critical
leaves, where y2i−1 and y2i are siblings. Let z1, . . . , zn−2k be the noncritical leaves.

Let Π =
∑k
i=1 |y2i−1 + y2i| and ∆ =

∑n−2k
j=1 |zj |. Then C(T ) ≥ (Π +∆)/2.

Proof. Let x be a leaf in T . There are two cases.
Case 1. x is some critical leaf y2i−1 or y2i. Let ri be the parent of y2i−1 and y2i

in T for 1 ≤ i ≤ k. Then |ri| = |y2i−1 + y2i|.
Case 2. x is some noncritical leaf zj . Let wj be the sibling of zj in T . Let qj be

the parent of zj and wj . There are three subcases.
Case 2A. wj is also a leaf. Since zj is noncritical, wj has the same sign as zj and

is also a noncritical leaf. Thus |qj | = |zj |+ |wj |.
Case 2B. wj is an internal node with the same sign as zj . Then |qj | ≥ |zj |.
Case 2C. wj is an internal node with the opposite sign to zj . If |wj | ≥ |zj |,
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then |qj | + |wj | ≥ |zj |; if |wj | < |zj |, then |qj | + |wj | = |zj |. So, we always have
|qj |+ |wj | ≥ |zj |.

Observe that

C(T ) ≥
k∑
i=1

|ri|+
1

2


 ∑
zj in Case 2A

|qj |


+

∑
zj in Case 2B

|qj |+
∑

zj in Case 2C

|qj |;

C(T ) ≥
∑

zj in Case 2C

|wj |.

Simplifying the sum of these two inequalities based on the case analysis, we have
2C(T ) ≥ Π+∆ as desired.

In view of Lemma 3.1, we desire to minimize Π + ∆ over all possible T . Given
xt, xt′ ∈ X with t �= t′, (xt, xt′) is a critical pair if xt and xt′ have the opposite signs.
A critical matching R of X is a set {(xt2i−1 , xt2i) : i = 1, . . . , k} of critical pairs where

the indices tj are all distinct. For simplicity, let yj = xtj . Let Π =
∑k
i=1 |y2i−1 + y2i|

and ∆ =
∑
z∈X−{y1,...,y2k} |z|. If Π +∆ is the minimum over all critical matchings of

X, then R is called a minimum critical matching of X. Such an R can be computed as
follows. Assume that X consists of . positive numbers a1 ≤ · · · ≤ a� and m negative
numbers −b1 ≥ · · · ≥ −bm.

Algorithm 1.
1. If . = m, let R = {(ai,−bi) : i = 1, . . . , .}.
2. If . < m, let R = {(ai,−bi+m−�) : i = 1, . . . , .}.
3. If . > m, let R = {(ai+�−m,−bi) : i = 1, . . . ,m}.

Lemma 3.2. If X is sorted, then Algorithm 1 computes a minimum critical
matching R of X in O(n) time.

Proof. By case analysis, if ai ≤ aj and bi′ ≤ bj′ , then |ai − bi′ | + |aj − bj′ | ≤
|ai−bj′ |+|aj−bi′ |. Thus if . = m, then pairing ai with−bi returns the minimum Π+∆.
For the case . < m, let ε be an infinitesimally small positive number. LetX ′ beX with
additionalm−. copies of ε. Then

∑�
i=1 |ai−bi+m−�|+

∑m−�
i=1 |ε−bi| = (.−m)ε+Π+∆

is the minimum over all possible critical matchings of X ′. Thus Π+∆ is the minimum
over all possible critical matching of X. The case . > m is symmetric to the case
. < m. Since X is sorted, the running time of Algorithm 1 is O(n).

We now present an approximation algorithm to compute the summation over X.
Algorithm 2.
1. Use Algorithm 1 to find a minimum critical matching R of X. The numbers

xi in the pairs of R are the critical leaves in our addition tree over X, and
those not in the critical pairs are the noncritical leaves.

2. Add each critical pair of R separately.
3. Construct a balanced addition tree over the resulting sums of step 2 and the

noncritical leaves.
Theorem 3.3. Let T be the addition tree over X constructed by Algorithm 2. If X

is sorted, then T can be obtained in O(n) time and E(T ) ≤ 2(�log(n−1)�+1)E(Tmin).
Proof. Steps 2 and 3 of Algorithm 2 both take O(n) time. By Lemma 3.2, step 1

also takes O(n) time and thus Algorithm 2 takes O(n) time. As for the error analysis,
let T ′ be the addition tree constructed at step 3. Then C(T ) = C(T ′) + Π. Let h
be the number of levels of T ′. Since T ′ is a balanced tree, C(T ′) ≤ (h − 1)(Π + ∆)
and thus C(T ) ≤ h(Π + ∆). By assumption, X has at least two numbers with the
opposite signs. So there are at most n − 1 numbers to be added pairwise at step
3. Thus h ≤ �log(n − 1)� + 1. Next, by Lemma 3.1, since R is a minimum critical
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matching of X, we have C(Tmin) ≥ (Π+∆)/2. In summary, E(T ) ≤ 2(�log(n− 1)�+
1)E(Tmin).

3.2. Improved approximation for single-sign X. This section assumes that
all xi are positive; the symmetric case where all xi are negative can be handled
similarly.

Let T be an addition tree over X. Observe that C(T ) =
∑n
i=1 xidi, where di is

the number of edges on the path from the root to the leaf xi in T . Hence finding an
optimal addition tree over X is equivalent to constructing a Huffman tree to encode
n characters with frequencies x1, . . . , xn into binary strings [9].

Fact 3.1. If X is unsorted (respectively, sorted), then a Tmin over X can be
constructed in O(n log n) (respectively, O(n)) time.

Proof. If X is unsorted (respectively, sorted), then a Huffman tree over X can be
constructed in O(n log n) [1] (respectively, O(n) [9]) time.

For the case where X is unsorted, many applications require a faster running
time than O(n log n). Previously, the best O(n)-time approximation algorithm used
a balanced addition tree and thus had a worst-case error at most �log n�E∗

n. Here we
provide an O(n)-time approximation algorithm to compute the sum over X with a
worst-case error at most �log log n�E∗

n. More generally, given an integer parameter
t > 0, we wish to find an addition tree T over X such that C(T ) ≤ C(Tmin) + t · |Sn|.

Algorithm 3.

1. Let m = �n/2t�. Partition X into m disjoint sets Z1, . . . , Zm such that each
Zi has exactly 2t numbers, except possibly Zm, which may have less than 2t

numbers.
2. For each Zi, let zi = max{x : x ∈ Zi}. Let M = {zi : 1 ≤ i ≤ m}.
3. For each Zi, construct a balanced addition tree Ti over Zi.
4. Construct a Huffman tree H over M .
5. Construct the final addition tree T over X from H by replacing zi with Ti.

Theorem 3.4. Assume that x1, . . . , xn are all positive. For any integer t > 0,
Algorithm 3 computes an addition tree T over X in O(n+m logm) time with C(T ) ≤
C(Tmin) + t|Sn|, where m = �n/2t�. Since |Sn| ≤ C(Tmin), E(T ) ≤ (1 + t)E(Tmin).

Proof. For an addition tree L and a node y in L, the depth of y in L, denoted
by dL(y), is the number of edges on the path from the root of L to y. Since H is a
Huffman tree over M ⊆ X and every Tmin is a Huffman tree over X, there exists some
Tmin such that for each zj , its depth in Tmin is at least its depth in H. Furthermore,
in Tmin, the depth of each y ∈ Zi is at least that of zi. Therefore,

m∑
i=1

∑
xj∈Zi

xj · dH(zi) ≤ C(Tmin).

Also note that for xj ∈ Zi, dT (xj)− dH(zi) ≤ log 2t = t. Hence

C(T ) =
∑
xi∈X

xi · dT (xi)

=

m∑
i=1

∑
xj∈Zi

xj · dH(zi) +

m∑
i=1

∑
xj∈Zi

xj · (dT (xj)− dH(zi))

≤ C(Tmin) + t
∑
xi∈X

xi.
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In summary, C(T ) ≤ C(Tmin) + tSn. Since step 4 takes O(m logm) time and the
others take O(n) time, the total running time of Algorithm 3 is as stated.

Corollary 3.5. Assume that n ≥ 4 and all x1, . . . , xn are positive. Then,
setting t = �log((logn) − 1)�, Algorithm 3 finds an addition tree T over X in O(n)
time with E(T ) ≤ �log log n�E(Tmin).

Proof. The proof follows from Theorem 3.4.
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Abstract. This paper introduces the concept of precision-sensitive algorithms, analogous to the
well-known output-sensitive algorithms. We exploit this idea in studying the complexity of the 3-
dimensional Euclidean shortest path problem. Specifically, we analyze an incremental approximation
approach and show that this approach yields an asymptotic improvement of running time. By using
an optimization technique to improve paths on fixed edge sequences, we modify this algorithm to
guarantee a relative error of O(2−r) in a time polynomial in r and 1/δ, where δ denotes the relative
difference in path length between the shortest and the second shortest path.

Our result is the best possible in some sense: if we have a strongly precision-sensitive algorithm,
then we can show that unambiguous SAT (USAT) is in polynomial time, which is widely conjectured
to be unlikely.

Finally, we discuss the practicability of this approach. Experimental results are provided.
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1. Introduction.

1.1. Precision-sensitivity versus output-sensitivity. The complexity of ge-
ometric algorithms generally falls under one of two distinct computational frameworks.
In the algebraic framework, the (time) complexity of an algorithm is measured by the
number of algebraic operations (such as +,−,×,÷,

√
·) on real-valued variables, as-

suming exact computations. In simple cases, the input size has one parameter n
corresponding to the number of input values. In the bit framework, (time) complexity
is measured by the number of bitwise Boolean operations, assuming input values are
encoded as binary strings. The input size parameter n above is usually supplemented
by an additional parameter L which is an upper bound on the bit-size of any input
value; see [6].

Currently, practically every computational geometry algorithm is based on the
algebraic model. For instance, we usually say that the planar convex hull problem
can be solved in optimal O(n log n) time. This presumes the algebraic framework.
What about the bit framework? One can easily deduce that the bit complexity is
O(n log nµ(L)), where µ(L) is the bit complexity of multiplying two L-bit integers.
However, it is not clear that this is optimal. Thus the possibility for faster planar
convex hull algorithms seems wide open in the bit model. Of course, the situation
with other problems in computational geometry is similar.
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This paper is interested in bit complexity and may be seen as a follow-up to
[6]. Besides its inherent interest, there are other reasons for believing that the bit
model will become more important for computational geometry in the future. As
the field now begins to address implementation issues in earnest, it must focus on
low-level operations (what was previously dismissed as “constant time operations”).
In low-level operations, it is the bit-size of numbers that is the main determinant of
complexity. Second, there are reasons to think that “exact computation” (see [16])
will be an important paradigm for future implementations of geometric algorithms.
(The emphasis here is on “implementations” since exact computation is already the de
facto standard in theoretical algorithms.) In exact computation, complexity crucially
depends on the bit-sizes of input numbers.

The main conceptual contribution in this paper is the idea of precision-sensitive
algorithms. Today, the concept of output-sensitive algorithms has become an impor-
tant pillar of computational geometry. But output-sensitivity is basically a concept
in the algebraic framework. We suggest that precision-sensitivity is the analogous
concept in the bit framework. As in output-sensitive algorithms, we may define some
implicit parameter δ = δ(I) for any input instance I. Instead of measuring the out-
put size, δ now measures the “precision-sensitivity” of I. Intuitively, the parameter
δ measures the precision or number of bits needed for output. We seek to design
algorithms that can take advantage of this parameter δ. (Our idea is related to recent
work in numerical analysis which quantifies the distance from an input instance to
the nearest singularity.)

As an example, consider the well-studied 2-dimensional Euclidean shortest path
problem. In the algebraic model, the time complexity of this problem was recently
shown to be O(n log n) [8], a significant improvement upon the previous O(n2) tech-
niques. But little is known about this problem in the bit model. Here, the question
reduces to whether we can compare the sums of n square roots of integers in polyno-
mial time. This problem may require exponential time because the difference between

two such sums, as far as we know, may be as small as 2−2Cn

for some C > 0. Blömer
[3, 4] considers this problem1 and its extensions. We may let the precision-sensitive
parameter δ be the difference in path length between the sought shortest path and
the next shortest path. In practical situations, the gap δ is unlikely to be exponen-
tially small. For such inputs, it may be possible to compute the shortest path in time
polynomial in n (the number of obstacle vertices), L (the bit length of input numbers)
and δ, provided our algorithm is “precision-sensitive.”

The introduction of precision-sensitivity paves the way for studying problems that
were previously considered hopeless or “solved.” Notice that the same situation arises
with the introduction of output-sensitivity. To take one example, the hidden surface
elimination which is trivially Θ(n2) in the usual complexity model (ergo, “uninter-
esting”) becomes very interesting when we consider output-sensitive algorithms. See
[1, 2] for some interesting results that exploit output-sensitivity in this problem.

1.2. Precision-sensitive approach to 3ESP. This paper focuses on the 3-
dimensional Euclidean shortest path (3ESP) problem: given a collection of polyhedral
obstacles inR3, and source and target points s, t ∈ R3, construct an obstacle-avoiding
polygonal path

pmin = (s, x1, . . . , xk, t),(1)

1Interestingly, Blömer and Yap noted that the equality of two sums of square roots can be decided
in polynomial time.
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k ≥ 0, from s to t with minimal Euclidean length. Here, the xi’s are called breakpoints
of the path and are required to lie on edges of the obstacles. This problem is ideal
for introducing precision-sensitivity because conventional approaches are doomed to
failure due to the problem’s NP -hardness, a result of Canny and Reif [5]. It is also
useless to introduce output-sensitivity here because the output-size is O(n).

On the other hand, something interesting is going on in the bit model: the alge-
braic numbers that describe the lengths of the shortest paths may have exponential
degrees (see section 2.2). This means that to compare the lengths of two combinato-
rially distinct shortest paths may require exponentially many bits. “Combinatorially
distinct” means that the respective paths pass through different sequences of edges,
and each is shortest for its edge sequence. In this paper, we use the relative difference
between the length d1 of a shortest path and the length d2 of the combinatorially
distinct next shortest path as our measure of “precision-sensitivity,”

δ = δ(I) := (d2 − d1)/d1.(2)

It should be noted that δ may be 0. One possibility for δ = 0 is when the shortest
path passes through a concave corner. Taking δ into account is a crucial step towards
a practical 3ESP algorithm.

First we clarify some further aspects of 3ESP. The exponential behavior of 3ESP
has two sources: not only is the bit complexity apparently exponential, the number
of combinatorially distinct shortest paths can also be exponential. In fact, Canny
and Reif’s NP -hardness construction exploits the latter property of 3ESP. We can
separate the combinatorial aspects from the algebraic aspects as follows. Define the
combinatorial 3ESP problem which, with input as in 3ESP, asks for a shortest edge
sequence

Smin = (e1, . . . , ek),(3)

such that xi ∈ ei for i = 1, . . . , k, where the xi are the breakpoints of some shortest
path pmin given by (1). Once Smin is obtained, there are effective numerical methods
to zoom into the actual breakpoints x1, . . . , xk, as we shall see. Thus the “purely”
numerical part of ESP is delegated to a subsequent phase of computation.

How hard is the combinatorial 3ESP problem? Define the implicit parameter s(I)
of an input I to 3ESP to be s = s(I) = | log(|d1 − d2|)|. We say an algorithm for the
combinatorial 3ESP problem is strongly precision-sensitive if it is polynomial-time in
the parameters n,L, s. By a careful analysis of the Canny–Reif proof, we show the
following theorem.

Theorem 1. If there exists a strongly precision-sensitive algorithm for the com-
binatorial 3ESP problem, then USAT can be solved in polynomial-time.

Here USAT is the unambiguous satisfiability problem, commonly believed not to
be in polynomial-time [11, 14]. Note that the parameter s(I) is an absolute measure
while our sensitivity parameter δ(I) is a relative one. But this difference is not crucial.
What is more important is the fact that s(I) is roughly logarithmic in δ(I). In some
sense, this theorem justifies our choice of δ(I).

1.3. Towards a practical algorithm. In hopes of developing a “practical al-
gorithm,” Papadimitriou [10] introduces the approximate 3ESP problem. The input
is as in 3ESP plus a new input parameter ε > 0. The problem is to compute an
ε-approximate shortest path, i.e., one whose length is at most (1+ ε) times the length
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of the shortest path. The bit-complexity of this approach is resolved in [6], yielding
an algorithm with time

T (n,M,W ) = O((n3M logM + (nM)2) · µ(W )),(4)

where M = O(nL/ε), W = O(log(n/ε) + L) and µ(W ) = O(W logW log logW ) is
the complexity of multiplying two W -bit numbers. Despite initial hopes, this result is
still impractical, even for small examples, because the stated complexity is, roughly
speaking, achieved for every input instance. Our goal is to remedy this by introducing
precision-sensitivity.

Recall that Papadimitriou’s approach is to subdivide each obstacle edge into seg-
ments in a clever way and, by treating these segments as nodes in a weighted graph,
to reduce the problem to finding the shortest path in a graph.

In order to introduce precision-sensitivity, we exploit the alternative scheme in-
troduced in [6] for subdividing edges into segments. The subdivision is parameterized
by a choice of ε > 0. Our scheme has the property that the ε/2-subdivision is a
refinement of the ε-subdivision and hence we can incrementally reduce the approx-
imation error. The idea is to discard in each refinement step all segments that are
provably not used by the shortest path; what remains are called essential segments.
While it is obvious that such an implementation can drastically decrease running time
in practice, we show that, depending on the parameter δ, this improvement is also
asymptotical.

Assuming nondegeneracy (see section 2.1) of Smin in (3), we prove the following
theorem.

Theorem 2. There is an incremental algorithm to compute an ε-approximate
shortest path in time that is polynomial in 1/δ and 1/ε. Omitting logarithmic factors,
the dependency on 1/ε is only linear rather than quadratic.

In case the shortest path sequence Smin is unique (i.e., δ > 0), we can use
techniques from mathematical optimization as soon as we have reached a refinement
in which only Smin is left. The convergence depends on the spectral bounds µ, ρ
corresponding to the minimum and maximum (respectively) eigenvalue of the Hessian
H of the path length function l(λ1, . . . , λk), where λ1, . . . , λk ∈ R parameterize the
points x1, . . . , xk on Smin.

Theorem 3. The length of the shortest path can be approximated to relative error
ε in time polynomial in 1/δ, log(1/ε), n, L and the spectral bounds µ, ρ.

This theorem and the remark in Theorem 2 about a linear dependency on 1/ε are
of practical significance.

It is important to note that the given running times in Theorems 2 and 3 are
upper bounds, they are tight only for ε ≤ δ. For ε > δ, and in particular for δ = 0,
the running time of both algorithms can be bounded by the running time of the
nonincremental approach in [6].

In section 5 we shall provide some experimental results, addressing the practica-
bility of the incremental technique.

2. Preliminaries. Throughout the paper, we assume that the input is given by
a source point s, a target point t, and a set of pairwise disjoint polyhedral obstacles,
with a total of less than n edges. For each obstacle edge e, denote its endpoints by
s(e), t(e) and write e = s(e)t(e). Let [e] denote the infinite line through e. We assume
that s, t as well as endpoints of edges are specified by L-bit rational numbers. For
any point q ∈ R3, ‖q‖ denotes its Euclidean norm. The scalar product of two k-tuples
x, y is denoted 〈x, y〉.
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2.1. Basic properties. We assume the notation in the preceding introduction.
In particular, pmin is a global shortest path from s to t in the free space FS defined
by the obstacles. Here, FS is defined as the closure of the complement of the union
of the obstacles.

First we fix an edge sequence S = (s, e1, . . . , ek, t). The sequence S is degenerate if
s ∈ [e1], t ∈ [ek], or [ej ] = [ej+1] for some j ∈ {1, . . . , k−1}. Note that nondegeneracy
of S excludes two edges ei and ej from lying in a common line [ei] = [ej ] only when
|i− j| = 1, but not if |i− j| > 1.

A path

p = (s, x1, . . . , xk, t)

is called an S-path if xi ∈ [ei] for all i. An S-path p is admissible if xi ∈ ei for all i.

A breakpoint xi of p that lies on the line between its neighboring vertices, xi ∈
xi−1xi+1, is called redundant. Without loss of generality we may assume that pmin
in (1) contains no redundant vertices.

We will parameterize points xi ∈ [ei] by a scalar λi according to the equation

xi = s(ei) + λiu(ei), with u(ei) =
t(ei)− s(ei)

‖t(ei)− s(ei)‖
.

Let x0 = s and xk+1 = t. Then the polygonal path p = (s, x1, . . . , xk, t) over S has
length

lS(λ1, . . . , λk) =

k∑
i=0

‖xi+1 − xi‖.

We also write |p| for lS(λ1, . . . , λk). Let pmin(S) be defined to be the path p over S
that minimizes the function lS(λ1, . . . , λk), without consideration of the obstacles and
without requiring admissibility.

A necessary condition for lS : Rk → R to take its global minimum at λ =
(λ1, . . . , λk) is that all partial derivatives vanish at λ. This condition can be inter-
preted as Snell’s law, and, as the next lemma will reveal, is also a sufficient condition
to specify shortest paths.

Lemma 1. The function lS : Rk → R is convex. If the shortest path over the
lines [ei] has no redundant breakpoints, then lS has a unique minimizer ζ ∈ Rk.

Proof. (1) Let l = lS =
∑k
i=0 li, where

li(λ1, . . . , λk) := ||xi+1 − xi||.

We may interpret li as a function in two variables λi and λi+1 (unless i = 0 or k, in
which case li depends on a single variable λ1 or λk).

To show that l is convex, it suffices to show that each of the li is convex (the sum
of convex functions is convex). The convexity of li is a special case of a general result
in convex analysis: for any norm ||.|| : Rk → R and any linear function f : Rm → Rk,
the function ||f || : Rm → R is convex (see, e.g., [12]).

(2) The convexity of l guarantees that every local minimum of l is a global min-
imum, say, dS , and that the set of points λ ∈ Rk satisfying l(λ) = dS (the set of
minimizers) is convex.
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Assume that there are two distinct minimizers ζ1, ζ2 ∈ Rk. Then every µ(t) =
(µ1(t), . . . , µk(t)) := ζ1+t(ζ2−ζ1), t ∈ [0, 1], is a minimizer, and hence l(µ(t)) ≡ const.
But

l(µ(t)) =
k∑
i=0

li(µ(t)),

where

li(µ(t)) =
√

Ai(t−Bi)2 + Ci

with Ai ≥ 0 and Ci ≥ 0. This can be constant only if each of the functions li(µ(t)) is
linear in t, i.e., Ai = 0 or Ci = 0 (this directly follows from ∂2l(µ(t))/∂t2 ≡ 0).

Now let j be the first index for which µi(t) is not constant, i.e., µi(t) ≡ const ∀ i =
1, . . . , j − 1 and µj(t) �≡ const (j may be equal to 1).

The fact that lj(µ(t)) is linear then implies that xj−1 ∈ [ej ]: the point xj(t) :=
s(ej)+µj(t)u(ej) is moving on the line [ej ] while keeping distance lj(µ(t)) to the fixed
point xj−1 = s(ej−1) + µj−1(t)u(ej−1).

Thus xj−1 and xj(t) lie on the same line [ej ] for all t ∈ [0, 1]. From Snell’s law
it follows that also xj+1(t) must lie on this line, showing that the vertex xj(t) is
redundant.

Note that, in contrast to this proof, the known proof for the uniqueness of the
shortest path [13] (see also [16, appendix]) uses geometrical arguments.

Lemma 2. Let S = (s, e1, . . . , ek, t) be nondegenerate.
(i) If [ei] ∩ [ei+1] = ∅ ∀i, then the Hessian H = H(λ) of lS = lS(λ) is positive-

definite.
(ii) If a path p = (s, x1, . . . , xk, t) is such that

xi �∈ [ei−1] ∪ [ei+1], i = 1, . . . , k,

then H(λ) is locally positive-definite at p.
Proof. The Hessian H = H(λ) of l = lS is a tridiagonal k × k-matrix

H =




a1 b1
b1 a2 b2

b2
. . .

bk−1

bk−1 ak




.

Let Hi be the Hessian of the function li = ||xi+1 − xi||, interpreted as function over
λi and λi+1 if 1 ≤ i ≤ k − 1, and over λ1 (resp., λk) if i = 0 (resp., i = k):

H0 = (a−1 ), Hi =

(
a+
i bi

bi a−i+1

)
, Hk = (a+

k ),

with

a+
i =

∂2li
∂λ2

i

, a−i+1 =
∂2li
∂λ2

i+1

, bi =
∂2li

∂λi∂λi+1
.

Then H and the Hi are related by ai = a−i +a+
i . Abusing the notation, we may write

H = H0 + · · ·+Hk.
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To prove that H is positive-definite, it remains to show that the determinant of
H is not zero. Write

H =




a1 b1
b1

H ′


 , H+ =




a+
1 b1

b1
H ′


 ,

where H ′ is the matrix obtained by deleting the first row and first column of H. Then

det(H) = det(H+) + a−1 det(H ′).

As all Hi are positive-semidefinite, it follows H+ = H1 + · · · + Hk is positive-semi-
definite, and thus det(H+) ≥ 0.
This implies

det(H) ≥ a−1 det(H ′).

Continuing recursively, we finally get

det(H) ≥ a−1 · · · · · a−k .

Abbreviating

vi =
xi+1 − xi

||xi+1 − xi||
,

we have

a−i =
1− 〈vi−1, u(ei)〉2

||xi − xi−1||
.

This is strictly positive under conditions (i) or (ii) in the statement of the lemma.
Hence det(H) > 0.

2.2. Bit complexity. The goal of this section is to provide some background
on the algebraic complexity of 3ESP.

First, we specify shortest paths over edge sequences algebraically. Let S =
(s, e1, . . . , ek, t) be a fixed edge sequence.

For given intervals Ii ∈ { {0}, {|ei|}, [0, |ei|] }, we define a Boolean formula (in
the free variables λ1, . . . , λk)

BS(I1, . . . , Ik) :

k∧
i=1

(Essentiali ∧ Optimali)

with the predicate

Essentiali ⇔
〈

xi+1 − xi
‖xi+1 − xi‖

,
xi − xi−1

‖xi − xi−1‖

〉2

�= 1,

specifying that xi is nonredundant, and the predicate

Optimali ⇔



Snell(ei), Ii = [0, |ei|]
λi = 0, Ii = {0}
λi = |ei|, Ii = {|ei|},
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specifying that — according to Ii — the point xi is fixed at an endpoint of ei or obeys
Snell’s law Snell(ei) at some point in the relative interior of ei (so Ii only serves as a
“flag”).

It is obvious that the predicates Essentiali and Optimali can be written as a
Boolean combination of a constant number of polynomial inequalities of bounded de-
gree over the variables λi−1, λi, λi+1 and a constant number of “additional variables.”
(Note that roots

√
r can be eliminated by introducing a new variable a, substituting√

r by a and adding (a2 = r ∧ a ≥ 0) to the formula. The variable a may be
introduced by the quantifier ∃.)

As a corollary of Lemma 1, we get the following lemma.

Lemma 3. For any fixed edge sequence S and intervals I1, . . . , Ik, the formula
BS(I1, . . . , Ik) is satisfied by at most one algebraic point λ = (λ1, . . . , λk). If pmin(S)
is a shortest path over S with nonredundant vertices xi = s(ei) + λiu(ei), then there
exist intervals I1, . . . , Ik such that λ satisfies BS(I1, . . . , Ik).

In particular, there exists a sequence S = (s, e1, . . . , ek, t) and there exist intervals
I1, . . . , Ik such that the shortest path pmin is parameterized by the single solution λ
of BS(I1, . . . , Ik).

To derive some upper bounds on the bit complexity of the 3ESP problem, we
shall use several results on quantifier elimination and root separation (see, e.g., [9]):

• Quantifier elimination: Given a Tarski formula with free variable y

(P) ∃x ∈ Rn :
∨
i

∧
j

pij(x, y)∆ij0

with ≤ m polynomials pij(x, y) each of degree ≤ d, with integer coefficients of
bit-size ≤ L, and ∆ij ∈ {>,≥,=}, then there exists an equivalent predicate

(P′)
∨
i

∧
j

hij(y)∆
′
ij0

with (md)O(n) polynomials hij of degree (md)O(n) and coefficients of bit-size
L(md)O(n). (“Equivalent” means that (P) is true for a fixed y = c if and
only if (P′) is true for y = c.) The predicate (P′) can be constructed in time
polynomial in L and (md)O(n).

• Cauchy’s bound : Given any univariate polynomial A(y) =
∑d
i=0 aiy

i with
integer coefficients ai of bit-size ≤ L, every root α �= 0 of A satisfies |α| ≥
2−2L.

• Root separation: If α and β are two distinct roots of A(y), then |α − β| ≥
(d2L)−Cd (for some C > 0 that does not depend on A). Isolating intervals
for all roots of A(y) can be computed in time polynomial in L and d.

Let us consider the formula BS(I1, . . . , Ik) from Lemma 3. With the above results
we immediately get the following lemma.

Lemma 4. Every coordinate λi of a parameter tuple λ satisfying BS(I1, . . . , Ik)
has a defining polynomial hλi

of degree nO(n) with integer coefficients of bit-size
LnO(n). The polynomial hλi together with an isolating interval for λi can be com-
puted in time polynomial in L and nO(n).

Proof. Consider the formula

(P1) ∃λ1 . . .∃λi−1∃λi+1 . . .∃λk : BS(I1, . . . , Ik).
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The formula (P1) contains O(n) polynomials in O(n) variables of bounded degree
with rational (resp., integer) coefficients of size O(L). The stated quantifier elimina-
tion result provides nO(n) polynomials hij of degree nO(n), with integer coefficients of
bit-size LnO(n).

If there is a tuple λ satisfying (P1), then λi will be a root of one of the polynomials
hij (recall that λ is unique).

Now consider the product

h :=
∏
i,j

hij .

Using root separation, we compute isolating intervals for each of the nO(n) roots
of h. For each root, we can check if it satisfies (P1).

Clearly, the whole computation can be done in time polynomial in L and
nO(n).

To determine which choice of intervals I1, . . . , Ik specifies the shortest path over
a given sequence S and to determine the shortest path pmin we need to compute and
compare shortest path lengths.

Lemma 5. Let λ and λ′ be solutions of BS(I1, . . . , Ik) and BS′(I ′1, . . . , I
′
k′), re-

spectively, and let p and p′ be the corresponding paths. Then |p| = |p′| or

|(|p| − |p′|)| ≥ 2−Ln
Cn

(for a global constant C > 0).

Proof. The difference in path length between p and p′ is the unique solution y of

(P2) ∃λ1 . . . λk∃λ′
1 . . . λ

′
k′ :

y =

k∑
i=0

||xi+1 − xi|| −
k′∑
i=0

||x′
i+1 − x′

i||

∧ BS(I1, . . . , Ik) ∧ BS′(I ′1, . . . , I
′
k′)

The formula (P2) can again be written as a Tarski formula. Analogous to Lemma
4, one can use quantifier elimination to obtain a polynomial h with h(y) = 0. The
coefficients of h are of bit-size LnO(n). The claim follows immediately from Cauchy’s
bound.

In order to actually compute the shortest path pmin, we have to filter out those
shortest paths, or solutions to BS(I1, . . . , Ik), which would collide with obstacles.
Having calculated the parameter λ satisfying BS(I1, . . . , Ik), this amounts to answer-
ing the query “xixi+1 ∈ FS ?”, for i = 0, . . . , k. But this query can be expressed as a
Tarski sentence in a fixed number of variables and can be decided in time polynomial
in L and nO(n). We finally obtain the following theorem.

Theorem 4. It is possible to compute algebraic representations of all combina-
torially distinct shortest paths in time polynomial in L and nO(n).

In this theorem, we may assume that each shortest path is represented by a se-
quence (S, I1, . . . , Ik, λ1, . . . , λk), where S = (s, e1, . . . , ek, t) is an edge sequence, the
Ij ’s are interval flags for S, and the λj satisfy the formula BS(I1, . . . , Ik). Further-
more, each λj is represented by one of its isolated interval representations.
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3. Combinatorial 3ESP is as hard as USAT. Recall that the exponential
complexity of the 3ESP problem has a combinatorial and an algebraic source. We give
evidence that 3ESP remains intractable even after eliminating the algebraic source of
complexity.

We briefly review the Canny–Reif construction (see [5, section 2.5]): Given a
3SAT formula f in conjunctive form with m clauses and n variables b1, . . . , bn, it is
possible to construct an environment E(f) such that the following holds for a fixed
“reference length” l = 23n and ∆ = 2−nm−3n−4: To each instantiation of (b1, . . . , bn)
there corresponds an edge sequence S = S(b1, . . . , bn) such that the shortest path p
over S lies in free space and satisfies

|p| ∈
{

[l, l + ∆] if f(b1, . . . , bn) = 1,
[l + 2∆,∞) if f(b1, . . . , bn) = 0.

The number of edges of E(f) as well as the maximal bit-size of coordinates is polyno-
mial in n and m. Deciding the satisfiability of f is reduced to deciding if the shortest
path in E(f) has length ≤ l + ∆.

A careful analysis shows the following property of E(f): if the formula f is
uniquely satisfiable, i.e., by exactly one instantiation of (b1, . . . , bn), then the shortest
path in E(f) is unique and the gap in length between this path and any path that
passes over a different edge sequence is single-exponential (i.e., > c−nm for some
c > 1).

The argument is as follows: The basic construction elements in [5] are parallel, 2-
dimensional plates with (for ease of description) 1-dimensional slots. The construction
is based on a scene with 2n shortest paths, with length l′ ≤ l + ∆. In the final step,
obstacles are introduced which stretch all paths that correspond to nonsatisfying
instances by at least ∆. It remains to verify that there are no further locally shortest
paths that use other edge sequences and have length close to l′. The use of parallel
plates ensures that these paths would have additional legs between slots. The spacing
between plates and between the breakpoints of the shortest paths in the slots gives a
lower bound on the additional length and is again roughly ∆. Finally, the gap ∆ is
single-exponential.

Now assume that we have a strongly precision-sensitive algorithm as defined in
section 1.2. Consider the satisfiability problem restricted to 3SAT formulas that are
satisfiable by at most one variable instance, known as the unambiguous satisfiability
problem USAT. Assume we are given such a formula f . By constructing E(f) and
running our algorithm, we would be able to decide the satisfiability of f in polynomial
time. This proves Theorem 1.

4. Approximation. For simplicity, we shall describe algorithms in this section
in the algebraic framework. It is important to note that the hardness result of section
3 is not valid in this model. However, as in [6], the technique extends to the bit
framework. In particular, it suffices to compute intermediate numbers to precision
W = O(log(n/ε) + L).

We review the approximation scheme for 3ESP in [6]: the algorithm mainly con-
sists of three steps. In the first step, the edges are subdivided into segments using a
method that depends on some given parameter ε′ > 0. This ε′-subdivision (as it is
called) satisfies the properties given in the following lemma.

Lemma 6 (see [6]).
(1) Each edge is divided into O(L/ε′) segments.
(2) Each segment σ of the subdivision satisfies |σ| ≤ ε′dist(s, σ).
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(3) The ε′/2-subdivision is a refinement of the ε′-subdivision.
In the second step of the algorithm, the visibility graph G0 = (V0, E0) of the

segments is constructed. The nodes of the graph comprise the subdivision segments
including s and t. The edges comprise pairs (σ, σ′) of segments that can “see each
other,” meaning that there exists x ∈ σ and x′ ∈ σ′ such that xx′ ∈ FS. In the
third step, the visibility graph G0 is weighted by assigning to each edge (σ, σ′) the
Euclidean distance between the midpoints of σ and σ′. Finally, the shortest path Σ in
G0 is computed by running Dijkstra’s shortest path algorithm. This path is a segment
sequence Σ = (s, σ1, . . . , σk, t). Its “weight” according to the midpoint distances is
further denoted as |Σ|.

The following lemma relates |Σ| to |pmin| (and shows the correctness of the ap-
proximation scheme).

Lemma 7. For ε′ = ε/Cn, C a given constant, Σ satisfies |Σ| ≤ (1+2ε/C)|pmin|
and |pmin| ≤ (1 + 2ε/C)|Σ|.

Proof. Consider the path Σmin in G0 which corresponds to pmin (Σmin is equiv-
alent to a path that connects the midpoints of the segments used by pmin). By the
triangle inequality the weight of each leg (σi, σi+1) of Σmin can be bounded by the
length of the corresponding leg of pmin, plus the length of the segments σi and σi+1.
Hence, we obtain

|Σ| ≤ |Σmin| ≤ |pmin|+ 2

k∑
j=1

|σj |.

With k ≤ n, |σj | ≤ ε′dist(s, σj), and dist(s, σj) ≤ |pmin|, we get

|Σ| ≤ (1 + 2ε/C)|pmin|.

To prove the second inequality, we consider the path p over Σ which connects pairwise
visible points x1

i ∈ σi, x
2
i+1 ∈ σi+1, and which connects the points x1

i , x
2
i on each σi

by additional legs. By the triangle inequality, we obtain

|pmin| ≤ |p| ≤ |Σ|+ 2

k∑
j=1

|σj |.

With k ≤ n, |σj | ≤ ε′dist(s, σj), and dist(s, σj) ≤ |Σ|, we finally get

|pmin| ≤ (1 + 2ε/C)|Σ|.

4.1. An incremental algorithm. The above algorithm uses a fixed subdivi-
sion. In the following, we shall exploit property (3) in Lemma 6 by successively halving
the error bound ε and by refining only those segments which the global shortest path
could potentially use.

Let εi = 2−i and ε′i = εi/Cn, for the fixed constant C = 32. (This is a significant
improvement to the conference version of this paper, where we divide by Cn2 instead
of Cn.) Let Gi = (Vi, Ei) be the weighted visibility graph for any set of segments
Vi fulfilling the basic inequality (2) of Lemma 6, and let li denote the length of the
shortest path from s to t in Gi. By Lemma 7, we get li ≤ (1 + εi/16)|pmin| and
|pmin| ≤ (1 + εi/16)li.

Lemma 8. If Σ = (s, σ1, . . . , σk, t), k ≤ n, is a path in Gi with |Σ| > (1+ εi/4)li,
then any path p over Σ satisfies |p| > |pmin|.
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Proof. Assume |p| ≤ |pmin|. By the triangle inequality, we get

|Σ| ≤ |p|+ 2

k∑
j=1

|σj |.

With k ≤ n, |σj | ≤ εidist(s, σj)/32n, and dist(s, σj) ≤ |p| ≤ |pmin|, we get

|Σ| ≤ (1 + εi/16)|pmin|.

With |pmin| ≤ (1 + εi/16)li, we finally get

|Σ| ≤ (1 + εi/4)li,

a contradiction.

We define the essential subgraph Gess
i = (V ess

i , Eess
i ) of Gi to be the subgraph

which is spanned by the union of all (s, t)-paths Σ in Gi with |Σ| ≤ (1 + εi/4)li.

Lemma 9. If pmin leads over a segment sequence Σ = (s, σ1, . . . , σk, t) in Gi,
then Σ is in Gess

i .

To approximate a shortest path pmin by successive refinement, we need thus only
to consider the segments in V ess

i in the next step.

We can compute Gess
i as follows: run Dijkstra’s single source shortest path al-

gorithm on Gi twice, starting at s and starting at t, and assign to each σ ∈ Vi the
distances ds(σ) (resp., dt(σ)) to s (resp., t) in Gi. This implies li = ds(t) = dt(s). Let
the weight of edge (σ, σ′) in Gi be denoted by ω(σ, σ′). Then we can choose Eess

i to
be the set of all (σ, σ′) ∈ Ei that satisfy

ds(σ) + dt(σ
′) + ω(σ, σ′) ≤ (1 + εi/4)li.

In practice, Gess
i should be significantly smaller than Gi. In fact, it approaches

the 1-dimensional skeleton formed by all global shortest paths as εi → 0. In the
next lemma we show that, depending on the precision-sensitivity parameter δ, the
incremental construction of Gess

i will eventually resolve the edge sequence Smin of
the global shortest path pmin.

Lemma 10. Let εi < δ and let (σ, σ′) be an arbitrary edge of Gess
i with σ ∈ e, σ′ ∈

e′ (e and e′ are obstacle edges). Then either e = e′ or (e, e′) is an edge of Smin.

Proof. The graph Gess
i contains a path Σ = Σ1 · (σ, σ′) ·Σ2, where Σ1 is a shortest

path from s to σ and Σ2 is a shortest path from σ′ to t. By construction of Gess
i , Σ

satisfies |Σ| ≤ (1 + εi/4)li. Let p = p1 · (x, x′) · p2 be an admissible path over Σ, i.e.,
a path which realizes the visibility relation (p is a zig-zag path which uses additional
legs on segments). As Σm, m = 1, 2, is a shortest path in Gess

i , Σm enters and leaves
an obstacle edge e at most once (otherwise, there would be a cycle and a shortcut on
e). Hence, each Σm leads over k ≤ n segments σj . By the triangle inequality, we get

|p| ≤ |Σ|+ 4

k∑
j=1

|σj |.

With |σj | ≤ εidist(s, σj)/32n and dist(s, σj) ≤ |Σ|, we get

|p| ≤ (1 + εi/4)|Σ|.
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With |Σ| ≤ (1 + εi/4)li and li ≤ (1 + εi/4)|pmin|, we obtain |p| < (1 + εi)|pmin|. By
definition of δ, p must lie on Smin. Finally, the edge (σ, σ′) used by p must lie on the
same obstacle edge e of Smin or must correspond to an edge (e, e′) of Smin.

We are now ready to formulate the incremental algorithm to get a relative error
of ε = 2−r:
(1) i := 0; ε′0 := 1/Cn;
(2) Compute the initial ε′0-subdivision V0;
(3) Repeat
(4) Construct the visibility graph Gi = (Vi, Ei);
(5) Compute Gess

i = (V ess
i , Eess

i );
(6) Compute Vi+1 by refining V ess

i ;
(7) i := i+ 1; ε′i := ε′i−1/2;
(8) Until i = r + 1.

4.2. Spectral analysis. Our first goal in this section is to characterize the
behavior of the incremental algorithm for a fixed edge sequence S.

Let l = lS , and let again H be the Hessian of l with spectral bounds µ and ρ. Let
ζ = (ζ1, . . . , ζk) be the parameter tuple specifying pmin(S), and zj the breakpoint of
pmin(S) on ej , specified by ζj . Our goal is to show that a path p over S whose length
differs only slightly from |pmin(S)| must also have a parameter λ which is close to ζ.
Taylor’s theorem shows that for any λ ∈ Rk, there exists τ ∈ Rk such that

l(λ)− l(ζ) = 〈∇l(ζ), λ− ζ〉+ 1

2
〈λ− ζ,H(τ)(λ− ζ)〉.(5)

The first term is equal to zero as ζ minimizes the function lS (see section 2.1). The
second term can be bounded by the “spectrum” of H:

µ‖λ− ζ‖2 ≤ 〈λ− ζ,H(τ)(λ− ζ)〉 ≤ ρ‖λ− ζ‖2.(6)

This implies

l(λ)− l(ζ) ≥ µ

2
‖λ− ζ‖2.

Thus, the parameter λ of any path p over S with |p| − |pmin(S)| ≤ ε̃ satisfies
‖λ− ζ‖2 ≤ 2ε̃/µ (for any ε̃ > 0).

In the next lemma, we consider Gess
i after the edge sequence Smin of the unique

shortest path has been resolved.
Lemma 11. Let εi < δ, let σ ∈ Gess

i be a segment with σ ⊆ e, let x ∈ σ be an
arbitrary point, and let z ∈ e be the breakpoint of the shortest path pmin on e. Then

||x− z|| ≤
(
2εi

|pmin|
µ

) 1
2

.

Proof. By Lemma 10, we can assume that x = xj is the jth vertex of a path
p over Smin with |p| ≤ (1 + ε)|pmin|. Accordingly, let z = zj be the jth vertex of
pmin. Now, let λ be the parameter of p, and let ζ be the parameter of pmin. Setting
ε̃ = εi|pmin|, we get

||xj − zj || = |λj − ζj | ≤ ||λ− ζ||

≤
(
2εi

|pmin|
µ

) 1
2

.
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Now assume we run our incremental algorithm for the fixed edge sequence Smin
and are in step i (i.e., the ith iteration step). Then on each edge ej those segments
whose distance from zj is more than const · √εi will automatically not be considered.

Here, const =
√

2|pmin|/µ depends on S but not on i.
By construction, each segment σ on ej has length |σ| ≥ ajεi/32n (with aj the

distance from ej to the source s). Thus we refine at most

C(S) · nεi−
1
2

segments on each ej in the ith step, with

C(S) =
32

a

√
2
|pmin|

µ

and a = minj{aj}.
Let ε = 2−r be the desired relative error. Summing over i = 1, . . . , r, we produce

a total of O(r
√

1/εr) segments. This is a significant improvement to the original (not
precision-sensitive) scheme, which would produce O(1/εr) segments.

The described effect occurs in the overall algorithm as soon as εi < δ. Lemmas 10
and 11 then imply that the essential subgraphGess

i contains less thanO(nC(Smin)2
i/2)

segments per edge. On the other hand, if εi > δ, then Gess
i contains O(nL/εi) =

O(nL/δ) segments per edge. (This is the number of segments produced by the non-
incremental scheme in [6].) This yields the following lemma.

Lemma 12. The essential subgraph Gess
i contains less than

Mi = O

(
n

(
L

δ
+ C(Smin) · 2

i
2

))

segments per edge.
We note that the number of segments per edge which are produced by the algo-

rithm in [6] is also an upper bound for Mi.
The visibility relation between segments can be computed separately for each of

the O(r) refinement steps by a sweep algorithm, as described in [6]. The cost of this
algorithm dominates the computation of Gess

i . Thus, the running time of the ith step
is T (n,Mi,W ), with T as in (4). The running time of the total algorithm can be
bounded by

O(r · T (n,Mr,W )).

Thus, we have proven Theorem 2.

4.3. Path optimization. With the incremental approach above, we have a tool
to determine Smin in (3) in time polynomial in 1/δ. As soon as there is only one
possible edge sequence (or only a few combinatorially distinct sequences) left, it is
however more efficient to use an optimization technique to approximate the actual
shortest path. We propose to use a steepest descend method (see, e.g., [7, section
C-5]):

Let the spectrum of H be bounded below by µ > 0 and above by ρ (choose µ as
the smallest, and ρ as the biggest eigenvalue of H). We can derive explicit values for
these bounds (especially for ρ) as described in section 4.4.
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Let I = [ 1
2ρ ,

3
2ρ ]. Define the sequence

λi+1 = λi − κ∇l(λi),

with κ ∈ I and λ0 the known approximation. Then this sequence converges to the
unique minimizer ζ of l at the rate of a geometric progression with ratio q = 1−µ/ρ:

||λi+1 − ζ|| ≤ q||λi − ζ|| ≤ qi+1||λ0 − ζ||.

With

||l(λi)− l(ζ)|| ≤ ρ

2
||λi − ζ||2

and

||λ0 − ζ||2 ≤ 2

µ
(l(λ0)− l(ζ)) ≤ 2δ

µ
l(ζ),

we get

||l(λi)− l(ζ)|| ≤ ρδ

µ
q2i|pmin|.

To achieve ||l(λi)− l(ζ)|| < 2−r|pmin|, it is sufficient to choose i > N with

N = Θ

(
ρ

µ

(
r + | log δ|+

∣∣∣∣log ρ

µ

∣∣∣∣
))

.

Again, it is important to note that this method — e.g., because of the freedom
of choice for κ — easily extends to the bit framework. The running time of the whole
algorithm can be resolved as

O(log(1/δ) · T (n,Mδ,W ) +Nnµ(W )),

where Mδ = O(nL/δ). This finally proves Theorem 3.

4.4. Spectral bounds. In this section, we discuss two different methods to get
bounds on the spectrum of the Hessian H of the path length function l = lSmin

. We
shall use the notations of section 2.

By the theory of Gerschgorin circles, the eigenvalues of H are bounded above by
ρ = maxi{ ai + |bi|+ |bi−1| }, with ai and bi as in the proof of Lemma 2.

With the help of ρ, we can directly give a bound on µ. As the determinant of H
is equal to the product of all k eigenvalues of H, we get

µ ≥ det(H)

ρk−1
,

where the determinant of H satisfies the inequality

det(H) ≥
k∏
i=1

a−i .

A crucial deficiency of the above bound is that it is exponential in k, the number
of intermediate vertices of pmin.
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A bound on µ not depending on k can be obtained by a method based on the
theorem of Courant–Fischer (see [15, pp. 101–102]):

Let A, B and C be positive-semidefinite symmetric matrices with C = A + B,
and α (resp., β) the smallest eigenvalue of A (resp., B). Then each eigenvalue γ of
C satisfies γ ≥ α + β. Assuming k to be even (the case of odd k can be similarly
treated), we split H = A+B according to

A =

k/2∑
i=0

H2i , B =

k/2∑
i=1

H2i−1.

The matrices A and B are block matrices, and the eigenvalues are the eigenvalues of
the Hi. It follows that

µ ≥ min{ µi ; i = 0, . . . , k },

where µi is the smallest eigenvalue of Hi. This bound has the nice property that it
depends only on pairs of edges of Smin.

5. Experimental results. The preceding algorithms for the approximate 3ESP
problem have a high polynomial dependency on the number of edges n or the desired
error bound ε. But these theoretical bounds need not reflect the “average behavior”
or practical situations. This suggests some empirical studies.

To verify the practicability of our incremental approach, we implemented a simpli-
fied version of the proposed algorithm. The simplification is based on the observation
that for certain special cases, the visibility relation between segments can be replaced
by the visibility of segment midpoints:

Let the obstacles be 2-dimensional facets arranged in h parallel planes separating
the start and target points. Let ε′ = ε/h, and consider the subdivision defined in
section 4. Then the following lemma holds.

Lemma 13. There exists a free polygonal path p from s to t, which connects
segment midpoints and satisfies |p| ≤ (1 + ε)|pmin|.

Proof. The shortest path pmin from s to t is strictly monotone in the direction
of the normal vector of the planes containing the obstacle facets. Now pick an arbi-
trary vertex v of pmin and move this vertex on the incident edge in either direction
while keeping the other path vertices fixed. We continue this deformation until the
(deformed) path hits another obstacle facet or until v hits a segment midpoint. In the
first case, we consider the intersection point as a further path vertex, and in the latter
case we continue the process by picking another path vertex until all vertices coincide
with segment midpoints. It is easy to see that this process terminates after at most
h deformation steps, introducing an absolute error of at most hε′|pmin|.

Further, we used a uniform subdivision for each edge by starting with the edges
as segments and successively halving the segments.

Tables 1 and 2 show the result of the incremental algorithm for the situation
in Figures 1 and 2. The figures visualize the situation after 10 iteration steps: the
essential segments are the solid black parts of the edges, and the shortest paths from
start to goal determined so far are drawn dashed. In the first example there are two
shortest paths, which are resolved after the 8th iteration step. In the second example,
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Table 1
Performance statistics for the example “Horizontal obstacles 1.”

Steps 0 2 4 6 8 10

Error 1.6771 0.4193 0.1048 0.0262 0.0066 0.0016

Length 2.4852 2.3746 2.3290 2.3252 2.3250 2.3250

Segments 19 76 224 186 366 728

Table 2
Performance statistics for the example “Horizontal obstacles 2.”

Steps 0 2 4 6 8 10

Error 2.2500 0.5625 0.1406 0.0352 0.0088 0.0022

Length 2.4116 2.3263 2.3085 2.3070 2.3069 2.3069

Segments 28 112 290 334 368 430

Fig. 1. Horizontal obstacles 1.

Fig. 2. Horizontal obstacles 2.
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the unique shortest path is resolved after the 10th step.

The tables show the guaranteed relative error in path length, the length of the
shortest path in the current visibility graph, and the number of the essential segments.
The running time of the algorithm is mostly quadratic in this number, and was, for
these examples, in the range of seconds on a state-of-the-art workstation.

The following behavior has been typical for the examples we tried: until the error
bound εi is small enough to discard, the number of essential segments is doubled per
step. Then comes a phase where the segment number does not change significantly.
Once the shortest paths are resolved, the number of essential segments is doubled
every two iteration steps, as predicted by the theoretical results.

6. Final remarks. We have developed the first precision-sensitive algorithms for
3ESP. Beyond its intrinsic interest, it demonstrates a critical exploitation of precision-
sensitivity. We conjecture that other previously intractable problems may likewise
yield to this approach.

If the sensitivity parameter δ is zero, we can modify our approach to take advan-
tage of the “next sensitivity” parameter, namely, the gap between the second and the
third shortest path, etc. A general treatment of this may be interesting.

We note that attention has to be paid to degenerate situations in this problem.
But it seems unavoidable to take this into account because degeneracy seems to be one
cause of intrinsic complexity in 3ESP. Note that there has been some recent literature
on degeneracy in geometric problems.

The merits of the incremental 3ESP seem evident: in our examples, there would
have been no chance to detect the shortest path by the exhaustive approach [6]. Our
algorithm is a useful tool when a researcher needs to determine the real shortest path
in a particular small environment.
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Abstract. The World Wide Web provides access to vast amounts of information, but content
providers are considering charging for the information and services they supply. Thus the consumer
may face the problem of balancing the benefit of asking for information against the cost (in terms
of both money and time) of acquiring it. We study information-gathering strategies that maximize
the expected value to the consumer. In our model there is a single information request, which has
a known benefit to the consumer. To satisfy the request, queries can be sent simultaneously or in
sequence to any of a finite set of independent information sources. For each source we know the
monetary cost of making the query, the amount of time it will take, and the probability that the
source will be able to provide the requested information. A policy specifies which sources to contact
at which times, and the expected value of the policy can be defined as some function of the likelihood
that the policy will yield an answer, the expected benefit, and the monetary cost and time delay
associated with executing the policy. The problem is to find an expected-value-maximizing policy.

We explore four variants of the objective function V: (i) V consists only of the benefit term
subject to threshold constraints on both total cost and total elapsed time, (ii) V is linear in the
expected total cost of the policy subject to the constraint that the total elapsed time never exceeds
some deadline, (iii) V is linear in the expected total elapsed time subject to the constraint that the
total cost never exceeds some threshold, and (iv) V is linear in the expected total monetary cost and
the expected time delay of the policy. The problems of devising an optimal querying policy for all
four variants and approximating an optimal querying policy for variants (iii) and (iv) are shown to
be NP-hard. For (i), and with a mild simplifying assumption for (iii), we give a fully polynomial
time approximation scheme. For (ii), we consider batched querying policies, and design an O(n2)
time approximation algorithm with ratio 1

2
and a polynomial time approximation scheme for optimal

single-batch policies, and an O(kn2) time approximation algorithm with ratio 1
5

for optimal k-batch
policies.
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1. Introduction. The Internet is rapidly becoming the foundation of an infor-
mation economy. Valuable information sources include online travel agents, nation-
wide yellow pages, job listing services, online malls, and many more. Currently, most
of this information is available free of charge, and as a result parallel search tools
such as MetaCrawler [16] and BargainFinder [9] respond to requests by querying
numerous information sources simultaneously to maximize the information provided
and minimize delay. However, information providers may start charging for their ser-
vices [7, 11]. Billing protocols to support an “information marketplace” have been
announced by large players such as Visa and Microsoft [15] and by researchers [18].
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Once billing mechanisms are in place, consumers of information may face the
problem of balancing the benefit of obtaining information against the cost (both
monetary and temporal) of obtaining it. Information providers will differ in the
quality of the information they provide as well as the amount they charge and the
speed at which they deliver information. The consumer thus faces the problem of
developing a schedule of queries to the providers that maximizes expected value,
which can be expressed in terms of (1) the benefit associated with a successful query,
(2) the likelihood that a particular query will yield successful results, (3) the cost of
making a query, and (4) the amount of time it takes.

This paper analyzes the “query scheduling” problem for a number of variants of
the objective function. We begin by stating the problem precisely and then summarize
our main results.

1.1. The model. The basic problem is to find a policy for obtaining the answer
to a (single) query. The policy will dictate which information source will be queried
and when. To define a policy we begin with a (finite) set of information sources,
s1, . . . , sn. For each source si we introduce a cost parameter ci and a duration param-
eter di. The former is the monetary cost assessed when the source is activated and
the latter is the amount of time it takes the source to process the query. The cost and
duration are known with certainty and are charged whether or not the source returns
an answer to the query.1 Finally we have pi, the probability that si will return an
answer to the query. Success probabilities are independent for distinct sources, and
whether or not si will answer a query is uncertain but consistent: if si successfully
answers a query it will always do so subsequently, and if it fails to answer a query it
will always fail to do so subsequently.2 We assume that accurate estimates of these
parameters are obtainable from the history of the interactions with the information
sources.

A policy can be represented as a sequence of pairs P = (si1 , t1), . . . , (sim , tm),
where t1 ≤ t2 ≤ · · · ≤ tm. This specifies that source si1 will be initiated at t1, si2 will
be initiated at t2, and so on. An execution of the policy is terminated either when
some source returns a correct answer or when the policy has been exhausted. Since
each source in a policy succeeds probabilistically, a policy generates a probability
distribution over outcomes, where each outcome is one possible way that the policy
might be played out. We use S(O), C(O), and T (O) to denote the outcome’s success
(1 or 0), total cost, and duration, respectively. The value of an outcomeO is a function
of S(O), C(O), and T (O). The first component of the value function of an outcome
O is always a constant reward R if the query was answered and 0 otherwise. The
function additionally contains two additive components, one a function of C(O) and
one a function of T (O). The expected value of a policy P, denoted V (P), is simply
the expectation of the values of all its outcomes.

Our objective is to find a policy to maximize the expected value. We will consider
four versions of the objective function: linear and threshold versions of the cost and
time components. With suitable scaling of the monetary and time costs, the four
objective functions assume the forms given in Table 1.1. We will hereafter refer to
the four problems by their acronyms: TT for threshold in cost and time, LT for linear
in cost and threshold in time, TL for threshold in cost and linear in time, and LL for
linear in cost and time. Note that in the threshold cases we try to find a policy with

1All our results can be extended to the case when the cost is charged only if the query is successful.
Cost expectations in place of costs should be used in a few of the models.

2As a result it is never profitable to query a source more than once.
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Table 1.1
The four objective functions. Here, O denotes a possible outcome of the policy P to be found.

Objective Time threshold Linear in time

Cost TT: max E[R · S(O)] s.t. TL: max E[R · S(O)− T (O)]
threshold ∀O C(O) ≤ ς and T (O) ≤ τ s.t. ∀O C(O) ≤ ς
Linear LT: max E[R · S(O)− C(O)] LL:
in cost s.t. ∀O T (O) ≤ τ max E[R · S(O)− C(O)− T (O)]

the maximum expected value subject to the constraint that the policy never violates
the threshold. In the remainder of the paper, assume without loss of generality that
R = 1, unless otherwise stated.

1.2. “Batched” policies. The results in this paper concerning the model LT
will reflect one more simplifying assumption: that the duration parameters di are the
same for each source. This assumption is powerful because it allows us to consider
scheduling sources in simultaneous “batches”: all sources will be scheduled at t =
0, d, 2d, . . ., where d is the common duration.

Although not fully general, this is a reasonable model of the current and proba-
ble future state of information access on the Internet. The current common mode of
providing information is to supply small amounts of information quickly and cheaply
(rather than process large-scale lengthy requests) [16]. As a result the duration for
processing a single query relative to the user’s time threshold is typically small. Fur-
thermore, the number of providers continues to grow dramatically. In the case in
which there are many information providers but each takes a short amount of time,
the assumption of equal process duration may be an excellent approximation: the
error introduced by assuming equal times will tend to be small relative to the amount
of time the user is willing to wait for his information (and thus will not affect the
quality of the schedule significantly), yet the sheer number of potential providers will
still require an algorithm to choose carefully among its sources since a simple policy
of completely serial or parallel queries is liable to be a very bad one.

1.3. Summary of our results. We show that finding an optimal policy is NP-
hard for models TT and LT. Reductions from the problems in LT and TT show that
even approximating an optimal policy for models LL and TL is NP-hard. A fully
polynomial time approximation scheme (FPTAS) is obtained for the model TT, using
an extension of the well-known rounding technique for Knapsack [6]. The FPTAS
also works for the model TL under a weak assumption: every source is “profitable”
individually according to the TL objective function, i.e., for every source si, Rpi−di ≥
0. The approximation algorithms for the case LT, where the objective function is
linear in total cost subject to a time threshold, are perhaps the most interesting
technically. We assume that all sources have the same time duration and consider
batched policies with a bounded number of batches. We will first present an O(n2)
time approximation algorithm for optimal single-batch policies with ratio 1

2 , and then
extend it to a polynomial time approximation scheme (PTAS). For any constant
r > 1, the PTAS runs in time O(nr+1) to achieve an approximation ratio r−1

r+1 . The
algorithms are simple and are similar to the ones in [14] for Knapsack, but the analyses
are more sophisticated. We then design an approximation algorithm with ratio 1

5 for
optimal k-batch policies, running in time O(kn2). The algorithm is based on the ratio
1
2 algorithm for single-batch policies, but it also involves some new ideas.
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1.4. Related work. Scheduling problems have been studied in many contexts
including job-shop scheduling, processor allocation, etc. However, our Internet-inspired
query scheduling problem has a unique flavor due to the need to balance the competing
time and cost constraints on policies with unbounded parallelism. We here consider a
number of alternative models that have appeared in the literature, underscoring the
difference from our own. If we constrain the policies to be serialized, then an optimal
solution can be found in polynomial time (see section 4 for the LT case). Similar
problems have been addressed in [4, 8, 12, 17] and elsewhere. The difference in this
paper is the ability to query any number of sources in parallel. Papers [3, 5] study
scheduling tasks with unlimited parallelism, but their models are different because all
tasks have to be executed successfully, whereas in our model a successful answer from
any single source suffices. Furthermore, the positive results in [3, 5] are restricted to
an exponential time dynamic programming algorithm and some heuristics. Another
model of optimal information gathering has recently been studied in [2]. There, the
objective is to find a query policy that minimizes the expected value of a linear com-
bination of the total dollar cost and total time cost. A constant ratio approximation
algorithm is obtained. Note that their model omits the positive reward associated
with the successful completion of a query, which changes the nature of the problem
as far as the design of approximation algorithms is concerned.

This paper provides complete proofs and adds new results to the work appearing
in [1]. The paper is organized as follows. The hardness results for all four models
are given in the next section. Sections 3 and 4 present the approximation algorithms
with their analyses for optimal single-batch policies and optimal k-batch policies in
the LT model. The FPTASs for the two models involving a cost threshold are given
in section 5. The proofs of some technical claims are provided in the appendix.

2. The complexity of computing optimal querying policies. We first
prove that computing an optimal policy in models TT and LT is NP-hard. The
proofs are reductions from the Partition problem: Given a finite multiset S of posi-
tive integers wi ∈ S, is there a subset I ⊂ S such that

∑
wi∈I wi =

1
2

∑
wi∈S wi? The

only subtlety is that we have to use exponential numbers in the constructions.
Theorem 2.1. Finding an optimal policy in model TT is NP-hard.
Proof. It is clear that any optimal policy in this model is in fact a single-batch

policy. Hence we need only to consider single-batch policies. We show that Partition
reduces to this problem. Assume that the duration parameters of all the sources are
less than the deadline. Then, the expected value of any policy P in this model is

V (P) = 1−
∏
si∈P

(1− pi).

Thus, maximizing V (P) subject to a cost threshold is equivalent to minimizing∏
si∈P(1 − pi) under the same constraint, which in turn means maximizing∑
si∈P − ln(1− pi) under the same constraint.
Consider an instance of Partition consisting of a set S = {w1, . . . , wn} of integers,

and let C =
∑n

i=1 wi. For each source si, let its cost ci = wi, success probability
pi = 1− (1 + 1/C)−wi , and time duration di = 0. Take the cost threshold to be C/2,
and the time threshold to be some positive number. The expression (1 + 1/C)−wi

can be evaluated using the standard repeated squaring technique or a binomial series
expansion approximation. It will become clear that we have only to keep at most
3 logC + log n precision bits during the process.

Clearly, V (P) ≤ 1−(1+1/C)−
C
2 for any feasible policy P. Now, let x =

∑
wi∈P wi
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and treat x as a continuous variable. Consider function h(x) = 1−(1+1/C)−x, which
is clearly increasing in x. Since

(1 + 1/C)−
C
2 +1 − (1 + 1/C)−

C
2 = (1 + 1/C)−

C
2 (1/C) > 1/(

√
eC),

where e is the natural constant, there is a separation of at least 1/(
√
eC) in the value

of the function h(x) between point C
2 and any point less than or equal to C

2 − 1. If
we keep 3 logC + log n bits during calculation of each 1 − (1 + 1/C)−wi , then each
pi would have 2 logC + log n precision bits. Thus, the precision of our evaluation of
V (P) = 1 −

∏
si∈P(1 − pi) is at least 2 logC bits, which is sufficient to allow us to

distinguish between the case
∑

si∈P ci =
C
2 and the case

∑
si∈P ci <

C
2 , due to the

above 1/(
√
eC) separation.

For the problem instance LT we prove a stronger result by showing that a special
case of the problem is NP-hard.

Theorem 2.2. Finding an optimal single-batch policy for the LT objective func-
tion is NP-hard.

Proof. Note that the objective in the single-batch case is to find a set P of sources
to query in parallel such that the function

V (P) = R

(
1−

∏
si∈P

(1− pi)

)
−
∑
si∈P

ci(2.1)

is maximized. This is equivalent to minimizing the quantityR
∏
si∈P(1−pi)+

∑
si∈P ci

over all possible sets of sources.
Consider an instance of Partition consisting of a set S = {w1, . . . , wn} of integers,

and let C =
∑n

i=1 wi. Define the parameters for the optimal single-batch policy
problem as follows:

ci = wi,

pi = 1− (1 + 1/C)−wi ,

R = [ln(1 + 1/C)]−1(1 + 1/C)
C
2 .

Again, it will become clear that only 4 logC + log n bits must be kept in the
calculation of pi’s and R. For any subset S1 ⊆ S we have∑
wi∈S1

ci +R
∏

wi∈S1

(1− pi) =
∑
wi∈S1

wi + [ln(1 + 1/C)]−1(1 + 1/C)
C
2

∏
wi∈S1

(1 + 1/C)−wi

=
∑
wi∈S1

wi + [ln(1 + 1/C)]−1(1 + 1/C)
C
2 −
∑

wi∈S1
wi
.

Again, let x =
∑

wi∈S1
wi and treat x as a continuous variable. We want to locate

the minimum of the following function:

h(x) = x+ [ln(1 + 1/C)]−1(1 + 1/C)
C
2 −x.

Setting the derivative to zero,

h′(x) = 1 + [ln(1 + 1/C)]−1[− ln(1 + 1/C)](1 + 1/C)
C
2 −x = 0

⇒ 1 = [ln(1 + 1/C)]−1 ln(1 + 1/C)(1 + 1/C)
C
2 −x

⇒ 1 = (1 + 1/C)
C
2 −x

⇒ x =
C

2
.
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We also note that the second derivative of h(x) is always positive, which shows
the convexity of the function:

h′′(x) = [ln(1 + 1/C)]−1[ln(1 + 1/C)]2(1 + 1/C)
C
2 −x > 0.

The following shows that there is a separation of Ω(1/C2) in the value of the
function h(x) between the points C

2 and C
2 ± 1(assume that C > 2):

h

(
C

2
− 1

)
− h

(
C

2

)
= C−1[ln(1 + 1/C)]−1 − 1

> C−1

(
6C3

6C2 − 3C + 2

)
− 1

=
3C − 2

6C2 − 3C + 2

> 1/(6C2),

h

(
C

2
+ 1

)
− h

(
C

2

)
= 1−

(
1

C + 1

)
(ln(1 + 1/C))−1

> 1−
(

1

C + 1

)(
2C2

2C − 1

)

> 1/(6C2).

Therefore, we have only to keep 4 logC + log n precision bits in the calculation of
R and pi’s. Hence the reduction can be done in polynomial time.

Hence the problem of deciding whether the expected value of some policy for the
single-batch case exceeds a certain threshold is NP-hard. This problem readily reduces
to a problem in the LL model where the duration parameters of the sources are all set
to the threshold in question. In this case, it is not hard to see that there is a policy
with a positive value for the LL model problem if and only if there is a policy for the
single-batch model problem with expected value greater than the threshold. Below, by
a positive approximation we mean constructing a policy which has positive expected
value if and only if the value of an optimal policy is positive. Positive approximation
is a very relaxed approximation criterion, and we just argued that even positively
approximating the optimal in model LL is hard. A similar reduction from model TT
shows that positively approximating problems in model TL is NP-hard as well.

Theorem 2.3. Positively approximating an optimal policy for the objective func-
tions in the models TL or LL is NP-hard.

3. Approximating optimal single-batch policies. In this and the following
sections our focus is on the LT model. In this section we consider policies that send
out all their queries in a single batch, i.e., all queries are sent in parallel at time t = 0.
We present an algorithm that approximates the optimal single-batch policy with ratio
1/2 and then develop a PTAS. Although the PTAS is a straightforward extension of
the ratio 1/2 algorithm, its analysis is very different.

Recall again that a single-batch policy is just a set of sources, and our goal is to
maximize the objective function in equality (2.1).

The following simple facts and definitions will be useful in this and the next
sections. The first lemma shows the subadditivity of the objective function for batched
policies.
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Lemma 3.1. Let OPT0 be an optimal k-batch policy. For any partition of
OPT0 into two subpolicies OPT1 and OPT2, where the sources in OPT1 and OPT2

are scheduled in the same batches as they are in OPT0, V (OPT0) ≤ V (OPT1) +
V (OPT2).

Proof. We prove it for k = 2; the extension to the general k is straightforward.
For each i = 0, 1, 2 and j = 1, 2, let Pi,j and Ci,j be the collective success probability
and cost of the sources in batch j of OPTi, respectively. Then

V (OPT0) = P0,1 − C0,1 + (1− P0,1)(P0,2 − C0,2)

= P1,1 − C1,1 + P0,1 − P1,1 − C2,1 + (1− P0,1)(P0,2 − C0,2).

Since P0,1 = P1,1 + P2,1 − P1,1P2,1,

P0,1 − P1,1 = P2,1(1− P1,1) ≤ P2,1.

Hence

P1,1 − C1,1 + P0,1 − P1,1 − C2,1 ≤ P1,1 − C1,1 + P2,1 − C2,1.

Similarly, we have

P0,2 − C0,2 ≤ P1,2 − C1,2 + P2,2 − C2,2.

Because OPT0 is optimal, P1,2 − C1,2 ≥ 0 and P2,2 − C2,2 ≥ 0. Therefore,

V (OPT0) ≤ (P1,1 − C1,1 + P2,1 − C2,1) + (1− P0,1)(P1,2 − C1,2 + P2,2 − C2,2)

= (P1,1 − C1,1 + (1− P0,1)(P1,2 − C1,2)) + P2,1 − C2,1

+ (1− P0,1)(P2,2 − C2,2)

≤ (P1,1 − C1,1 + (1− P1,1)(P1,2 − C1,2)) + P2,1 − C2,1

+ (1− P2,1)(P2,2 − C2,2),

and thus

V (OPT0) ≤ V (OPT1) + V (OPT2).

Lemma 3.2. Suppose that P is any k-batch policy, i is an index between 1 and k,
and sj is a source not appearing in P. Let P1,P2,P3 denote the subpolicies consisting
of the first i − 1 batches, the ith batch, and the last k − i batches of P, respectively.
Also denote the expected cost and collective success probability of the sources in policy
Pl as Cl and Pl, l = 1, 2, 3. Then adding sj to the ith batch of policy P increases its
expected value by

V (P ∪ {sj})− V (P) = (1− P1)(pj(1− P2)(1− P3 + C3)− cj)

= (1− P1)pj((1− P2)(1− P3 + C3)− cj/pj).(3.1)

In particular, if k = i = 1, the net increase is

V (P ∪ {sj})− V (P) = pj(1− P2)− cj = pj(1− P2 − cj/pj).(3.2)

Proof. The expected values of the policies P and P ∪ {sj} can be written as

V (P) = (P1 − C1) + (1− P1)((P2 − C2) + (1− P2)(P3 − C3)),
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1. Sort the sources so that c1/p1 ≤ · · · ≤ cn/pn.
2. APPR = ∅. (* APPR is the best policy found so far. *)
3. For i := 1 to n
4. S := {si}. (* S is the current policy constructed. *)
5. Q := 1− pi. (* Q is the collective failure probability of S. *)
6. For j := 1 to n, where j �= i
7. If Q ≥ cj/pj then (* profitability check *)
8. S := S ∪ {sj}.
9. Q := Q(1− pj).
10. else exit to step 11.
11. If V (APPR) < V (S) then APPR := S.
12. Output policy APPR.

Fig. 3.1. The algorithm Pick-a-Star.

V (P∪{sj}) = (P1−C1)+(1−P1)((P2+pj−P2pj−C2−cj)+(1−P2)(1−pj)(P3−C3)).

Taking the difference gives us the lemma.
Thus, in the case of k = 1, adding sj to the policy P results in an increased

expected value if and only if the collective failure probability 1 − P2 of the sources
in P is strictly greater than the cost-to-success-probability ratio cj/pj of source sj .
Observe that the increased value pj(1 − P2 − cj/pj) is proportional to the success
probability pj as long as the ratio cj/pj is kept constant. Also observe that, for
general k, 1− P3 +C3 = 1− (P3 −C3) = 1− V (P3). It follows from Lemma 3.2 that
a source si with ci > pi is not useful if V (P3) ≥ 0. Hence we can assume from now
on that pi ≥ ci for all i.

We say that a source s is profitable in a policy P if s is queried in P and dropping
it from P would not increase the expected value of P. The above lemma states
that source sj in batch i of the k-batch policy P is profitable in P if and only if
cj/pj ≤ (1 − P2,j)(1 − V (P3)), where P2,j is the collective success probability of
sources in batch i excluding source sj . A policy P is irreducible if every source in P
is profitable in P. Clearly, every optimal k-batch policy is irreducible.

3.1. A ratio 1
2 approximation algorithm. Our algorithm, as shown in Fig-

ure 3.1, is somewhat similar to the greedy approximation algorithm for Knapsack
given in [14], though the analysis of its performance is more complex.

The algorithm Pick-a-Star sorts the sources in ascending order of the ratio ci/pi.
It then goes over each source si, picks it, and then picks the rest from the sorted list
(with si removed) until either the list is exhausted or it reaches a source sj which
cannot be profitable, meaning that the profitability criterion

∏
k=i or k<j

(1− pk) ≥ cj/pj

is not satisfied. Equality (3.2) in Lemma 3.2 and the comments following the lemma
explain the choice of the criterion. Pick-a-Star keeps track of the policy with the
highest expected value over the iterations. Clearly the running time is O(n2).

Now we analyze the performance of Pick-a-Star and show that it results in an
expected value that is at least half of the optimum. Let APPR be the policy obtained
by Pick-a-Star and OPT be an optimal single-batch policy. Since Pick-a-Star picks the
first source optimally (i.e., through exhaustive search), V (APPR) ≥ V ({si}) = pi−ci
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for all i ≤ n. Thus, without loss of generality, we may assume |APPR| > 1. Moreover,
we will assume henceforth that the first source picked by Pick-a-Star is the “most
profitable” source in OPT, i.e., some source si with the maximum V ({si}) over all
sources in OPT. Let slast be the last source picked by Pick-a-Star. We can assume
that the collective failure probability of APPR is at least the ratio clast/plast, because
otherwise we could modify APPR by decreasing plast while keeping clast/plast constant
until the collective failure probability of APPR becomes equal to clast/plast. This is
possible since the collective failure probability of APPR − {slast} is greater than
clast/plast. By Lemma 3.2 such modification could only worsen the expected value of
APPR. Note that if slast appears also in OPT , then it is treated as a different copy
and kept intact. Hence we do not change the expected value of OPT in this case (or
in any other case). Note also that this potential modification does not affect the first
source picked by Pick-a-Star since |APPR| > 1.

Define S0 = APPR ∩ OPT, S1 = APPR − S0, and S2 = OPT − S0. For each
i = 0, 1, 2, let Ci and Pi be the collective cost and success probability of the sources
in Si. Note that if the success probability of source slast is modified in APPR as
mentioned above and slast also appears in OPT, then the two copies of slast in APPR
and OPT are viewed as distinct sources and thus slast will not be included in S0. On
the other hand, if slast is not modified in APPR and slast appears in OPT, then the
two copies of slast in APPR and OPT are viewed as the same source and thus slast
will be included in S0. Observe that

∀si ∈ S1∀sj ∈ S2,
ci
pi

≤ cj
pj

.(3.3)

Let us first consider the (easier) case in which S2 = ∅. Observe that S1 ⊆
{s1, . . . , slast}. Since the collective failure probability of APPR − {slast} is greater
than clast/plast ≥ · · · ≥ c1/p1, every element of S1 is profitable in the set APPR −
{slast}. By Lemma 3.2, V (APPR−{slast}) ≥ V (OPT−{slast}). We also know that
V (APPR) ≥ V (APPR − {slast}) by Lemma 3.2. Since V (APPR) ≥ V ({slast}) and
V (OPT) ≤ V (OPT− {slast}) + V ({slast}) by Lemma 3.1,

2V (APPR) ≥ V (OPT− {slast}) + V ({slast}) ≥ V (OPT).

Now suppose that S2 �= ∅. Since OPT is irreducible and Pick-a-Star picks sources
until no remaining source can be profitable, S1 �= ∅. Let m = |S2| and l = |S1|. Let

α1 = max
si∈S1

ci
pi(1− P0)

≤ clast
plast(1− P0)

,

α2 = min
si∈S2

ci
pi(1− P0)

.

By relation 3.3, clearly α1 ≤ α2. The next lemma relating α1, α2 to P1, P2 is a key to
our analysis.

Lemma 3.3. (i) α1 ≤ 1− P1 ≤ α2 and (ii) 1− P2 ≥ α
m

m−1

2 .
Proof. Recall that we have assumed that (1 − P0)(1 − P1) ≥ clast/plast. Thus

1−P1 ≥ α1. Since Pick-a-Star stopped before picking anything from S2, (1−P0)(1−
P1) ≤ ci/pi for any si ∈ S2. These prove (i). To prove (ii), let pmin = minsi∈S2

pi.
Since OPT is irreducible, (1−P0)(1−P2)/(1− pmin) ≥ cmin/pmin ≥ (1−P0)α2. So,

(1− P2)
m−1
m ≥ (1− P2)/(1− pmin) ≥ α2,
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i.e., 1− P2 ≥ α
m

m−1

2 .
Now we want to find a lower bound for the ratio

V (APPR)

V (OPT)
=

P0 − C0 + (1− P0)P1 − C1

P0 − C0 + (1− P0)P2 − C2
.(3.4)

Since V (S0) ≥ V (S2)/m by the choice of the first source picked by Pick-a-Star and
the fact that S0 is irreducible,

V (OPT) ≤ V (S0) + V (S2) ≤ (m+ 1)V (S0).

This implies

(1− P0)P2 − C2

P0 − C0 + (1− P0)P2 − C2
≤ m

m+ 1
.

Define

r =
(1− P0)P1 − C1

(1− P0)P2 − C2
.(3.5)

To obtain a lower bound of 1/2 for the ratio in equality (3.4), we need

1

m+ 1
+ r

m

m+ 1
≥ 1

2
, i.e., r ≥ m− 1

2m
,(3.6)

which we show below. The following lemma gives a clean lower bound for ratio r.
Lemma 3.4.

r ≥ min
α1≤1−P1≤α2

P1 − l(1− (1− P1)
1/l)α1

(1− α
m/(m−1)
2 )(1− α2)

.

Proof. Observe that

r =
(1− P0)P1 − (

∑
si∈S1

pi
ci
pi
)

(1− P0)P2 − C2

≥
(1− P0)P1 − (

∑
si∈S1

pi)(1− P0)α1

(1− P0)P2 − C2

≥
P1 − (

∑
si∈S1

pi)α1

P2 − C2/(1− P0)

≥
P1 − (

∑
si∈S1

pi)α1

P2 − P2α2

≥
P1 − (

∑
si∈S1

pi)α1

(1− α
m/(m−1)
2 )(1− α2)

.

The last step follows from (ii) of Lemma 3.3. Since

∑
si∈S1

(1− pi) ≥ l

[ ∏
si∈S1

(1− pi)

]1/l

= l(1− P1)
1/l,

∑
si∈S1

pi ≤ l− l(1−P1)
1/l. Hence the lemma follows from (i) of Lemma 3.3.
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Now we try to simplify the lower bound function.3

Claim 3.5. The ratio

P1 − l(1− (1− P1)
1/l)α1

(1− α
m/(m−1)
2 )(1− α2)

is increasing in P1 when 1− P1 ≥ α1.
By Lemma 3.3, the smallest P1 can be is 1 − α2. The above ratio is clearly

decreasing in α1 ≤ α2. For convenience, let x = α2. We set P1 = 1 − x and α1 = x,
and we get

r ≥ 1

1− xm/(m−1)

[
1− x− l(1− x1/l)x

1− x

]
.(3.7)

Claim 3.6. The right-hand side of inequality (3.7) is nonincreasing in l.
Taking the limit

lim
l→∞

l(1− x1/l) = lim
l→∞

1− x1/l

1/l
= lim

l→∞

(−x1/l)(lnx)(−1/l2)

−1/l2
= − lnx,

we get

r ≥ 1

1− xm/(m−1)

[
1− x+ x lnx

1− x

]
.(3.8)

Claim 3.7. The right-hand side of inequality (3.8) is decreasing in x ∈ (0, 1).
Since the right-hand side expression is undefined at x = 1, we take the limit

r ≥ lim
x→1

[
1

1− xm/(m−1)

(
1− x+ x lnx

1− x

)]

= lim
x→1

1− x+ x lnx

1− x− x
m

m−1 + x
2m−1
m−1

= lim
x→1

−1 + lnx+ x/x

−1− m
m−1x

1
m−1 + 2m−1

m−1 x
m

m−1

= lim
x→1

1/x

− m
m−1

1
m−1x

2−m
m−1 + 2m−1

m−1
m

m−1x
1

m−1

=
1

− m
(m−1)2 + m(2m−1)

(m−1)2

=
1

m
m−1 (

−1+2m−1
m−1 )

=
m− 1

2m
.

This verifies inequality (3.6) and completes the proof that V (APPR)/V (OPT) ≥
1/2.

Theorem 3.8. Pick-a-Star produces a single-batch policy with an expected value
that is at least half of the optimum.

3The proofs of the claims appear in the appendix.
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3.2. Extending Pick-a-Star to a PTAS. The extension of the algorithm is
straightforward. Let r ≥ 1 be any fixed constant. The new algorithm iterates over all
possible choices of at most r sources and schedules the rest of the sources based on the
cost-to-success probability ratio using the same stopping criterion. It then outputs
the best policy found in all iterations. Call the new algorithm Pick-r-Stars. Clearly, it
runs in O(nr+1) time. We show that Pick-r-Stars achieves an approximation ratio of
r−1
r+1 . The analysis is different from the previous subsection in that we will make use of
the r sources in the optimal policy with the highest success probability instead of the
the most profitable ones. We would like to remark here that this new strategy does not
work for Pick-a-Star, nor does our analysis of Pick-a-Star work for general r because
the best lower bound that the analysis yields for the ratio defined in equality (3.5) is
m−1
2m .

Let APPR be the policy found by Pick-r-Stars and OPT an optimal policy. As
in the previous subsection, we assume without loss of generality that (i) |APPR| > r
and |OPT| > r, (ii) APPR contains the r sources in OPT with the highest success
probability, and (iii) the collective failure probability of APPR is at least the ratio
clast/plast, where slast is the last source picked by Pick-r-Stars. Since OPT is irre-
ducible, we can also assume that APPR �⊆ OPT, because otherwise APPR = OPT.

Again, let S0 = APPR ∩ OPT, S1 = APPR − S0, and S2 = OPT − S0 and the
corresponding collective costs and success probabilities Ci and Pi, for each i = 0, 1, 2.
We also have ci/pi ≤ cj/pj for all si ∈ S1, sj ∈ S2. Define l = |S1|, m = |S2|, and

α0 = max
si∈S0

ci
pi
,

α1 = max
si∈S1

ci
pi

≤ clast
plast(1− P0)

,

α2 = min

{
1, min

si∈S2

ci
pi

}
.

Then we again have

α1 ≤ (1− P0)(1− P1) ≤ α2.(3.9)

To obtain a clean lower bound for the approximation ratio V (APPR)/V (OPT),
we go through a sequence of simplifying steps. In the process we will guarantee that
the ratio V (APPR)/V (OPT) never improves and inequality (3.9) always holds.

First, we will assume that |S0| = r, i.e., APPR and OPT share exactly r common
sources, by the following argument. Let si ∈ S0 be any source. Then

V (APPR)

V (OPT)
=

1− (1− P0)− C0 + (1− P0)P1 − C1

1− (1− P0)− C0 + (1− P0)P2 − C2

=

1
1−pi −

1−P0

1−pi − C0

1−pi +
(1−P0)P1

1−pi − C1

1−pi
1

1−pi −
1−P0

1−pi − C0

1−pi +
(1−P0)P2

1−pi − C2

1−pi

=

1−ci
1−pi −

1−P0

1−pi − C0−ci
1−pi + (1−P0)P1

1−pi − C1

1−pi
1−ci
1−pi −

1−P0

1−pi − C0−ci
1−pi + (1−P0)P2

1−pi − C2

1−pi

>
1− 1−P0

1−pi − C0−ci
1−pi + (1−P0)P1

1−pi − C1

1−pi

1− 1−P0

1−pi − C0−ci
1−pi + (1−P0)P2

1−pi − C2

1−pi

.
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The last step holds because pi − ci = V ({si}) > 0 and thus 1− ci > 1− pi. Hence we
can define a new pair of APPR and OPT by removing the source si and dividing the
cost of every remaining source in S0 by 1− pi. Clearly inequality (3.9) still holds for
the new pair.

Second, we can assume that α1 = α2 = (1 − P0)(1 − P1). This can be achieved
by increasing the cost of each source in S1 and decreasing the cost of each source in
S2. So now, ci = α1pi for each si ∈ S1 ∪ S2.

Third, we assume without loss of generality that the r sources in S0 have the
same success probability p = 1− (1−P0)

1/r. Since these sources are assumed to have
the largest success probability in OPT, pi ≤ p for each si ∈ S2. Moreover, we can
assume that pi = p for each si ∈ S2 by the following argument. If pi < p, we increase
pi to p and ci to α1p. By Lemma 3.2, this improves V (OPT) because the set OPT is
irreducible. If this results in a set that is not irreducible, we can make it irreducible
by dropping some sources in S2, again improving the expected value of OPT.

Fourth, we can assume that ci/pi = α0 for all si ∈ S0. The condition can
be achieved by increasing the costs of the sources in S0. This would decrease the
expected value of both APPR and OPT by the same amount and thus decrease the
ratio V (APPR)/V (OPT).

Finally, we can worsen APPR by assuming that

pi = 1− (1− P1)
1/l = 1− (α1/(1− P0))

1/l = 1− (α1/(1− p)r)1/l

for each pi ∈ S1, as mentioned in the previous subsection.
Now we have clean formulas for the expected values:

V (APPR) = 1− (1− p)r
α1

(1− p)r
− α0rp− lα1

[
1−

(
α1

(1− p)r

)1/l
]
,

V (OPT) = 1− (1− p)r+m − α0rp− α1mp.

We further simplify the formulas by getting rid of l and m.
Lemma 3.9.

V (APPR) ≥ 1− α1 − α0rp+ α1 ln

(
α1

(1− p)r

)
.

Proof. Since α1/(1− p)r < 1 by inequality 3.9, the function −lα1[1− ( α1

(1−p)r )
1/l]

is nonincreasing in l by Claim 3.6 in the last subsection. Taking the limit, we get
V (APPR) ≥ liml→∞ 1− α1 − α0rp− lα1(1− ( α1

(1−p)r )
1/l) or

V (APPR) ≥ 1− α1 − α0rp+ α1 ln

(
α1

(1− p)r

)
.

Lemma 3.10.

V (OPT) ≤ 1 +
α1p

ln(1− p)
− α0rp−

α1p

ln(1− p)
ln

[
−α1p

(1− p)r ln(1− p)

]
.

Proof. We can treat m as a continuous variable and maximize 1− (1− p)r+m −
α0rp − α1mp over all real values of m. Taking the derivative with respect to m and
setting it to 0, we get

m =
1

ln(1− p)
ln

(
−α1p

(1− p)r ln(1− p)

)
.
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Hence

max
m

1− (1− p)r+m − α0rp− α1mp = 1 +
α1p

ln(1− p)

−α0rp−
α1p

ln(1− p)
ln

−α1p

(1− p)r ln(1− p)
.

Now we are ready to show that V (APPR)/V (OPT) ≥ (r− 1)/(r+ 1). It suffices
to prove that

V (OPT)− V (APPR)

V (APPR)
≤ 2

r − 1
.(3.10)

We first give an overestimate of the difference V (OPT) − V (APPR). The following
simple mathematical facts for 0 < p < 1 will be useful:

p < − ln(1− p) = p+
p2

2
+

p3

3
+ · · · < p

1− p
,

0 < 1 +
p

ln(1− p)
= 1− 1

1 + p/2 + p2/3 + · · ·

< 1− 1

1 + p+ p2 + · · ·
= p

− ln

(
−p

ln(1− p)

)
= − ln

(
1−

(
1 +

p

ln(1− p)

))

> 1 +
p

ln(1− p)
.

Let f1(α1) = α1p
2 − α1p ln(

α1

(1−p)r ).

Lemma 3.11. V (OPT)− V (APPR) < f1(α1).
Proof. From Lemmas 3.9 and 3.10, we know

V (OPT)− V (APPR) ≤ α1

(
1 +

p

ln(1− p)

)
− α1

(
1 +

p

ln(1− p)

)
ln

(
α1

(1− p)r

)

− α1p

ln(1− p)
ln

(
−p

ln(1− p)

)
.

Therefore,

V (OPT)− V (APPR) < α1

(
1 +

p

ln(1− p)

)
− α1p ln

(
α1

(1− p)r

)

+
α1p

ln(1− p)

(
1 +

p

ln(1− p)

)

= α1

(
1 +

p

ln(1− p)

)2

− α1p ln

(
α1

(1− p)r

)

or

V (OPT)− V (APPR) ≤ α1p
2 − α1p ln

(
α1

(1− p)r

)
.
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Next we find an underestimate of V (APPR). Observe that the following condi-
tions follow from inequality (3.9), the simplifying assumptions on the sources in Si
(e.g., ∀ si ∈ S0, ci/pi = α0), and the arguments for the second claim of Lemma 3.3:

(1− p)r > α1,

(1− p)r−1 = ((1− p)r)
r−1
r > α0.

Let f2(α1) =
r(r−1)

2 (1− p)r−2p2 + α1 ln(
α1

(1−p)r ) + (1− p)r − α1.

Lemma 3.12.

V (APPR) > f2(α1) =
r(r − 1)

2
(1− p)r−2p2 + α1 ln

(
α1

(1− p)r

)
+ (1− p)r − α1.

Proof.

V (APPR) ≥ 1− α1 − α0rp+ α1 ln

(
α1

(1− p)r

)

= 1− (1− p)r − α0rp+ α1 ln

(
α1

(1− p)r

)
+ (1− p)r − α1

> 1− (1− p)r − (1− p)r−1rp+ α1 ln

(
α1

(1− p)r

)
+ (1− p)r − α1

= p2(1 + 2(1− p) + · · ·+ (r − 1)(1− p)r−2) + α1 ln

(
α1

(1− p)r

)

+ (1− p)r − α1.

Thus

V (APPR) >
r(r − 1)

2
(1− p)r−2p2 + α1 ln

(
α1

(1− p)r

)
+ (1− p)r − α1.

Hence we have the following clean lower bound on the ratio V (OPT)−V (APPR)
V (APPR) .

Lemma 3.13.

V (OPT)− V (APPR)

V (APPR)
> min

α1<(1−p)r
f1(α1)

f2(α1)
.

Lemma 3.14. For all α1 < (1− p)r, f1(α1)/f2(α1) > 1/(r − 1).
Proof. First consider the case α1 ≥ (1 − p)2r−1. Let α1 = (1 − p)x. Hence

r < x ≤ 2r − 1. Observe that because the function y ln y + 1 − y is positive for all
y > 0,

α1 ln

(
α1

(1− p)r

)
+(1−p)r−α1 = (1−p)r

(
α1

(1− p)r
ln

(
α1

(1− p)r

)
+ 1− α1

(1− p)r

)
> 0.

This means f2(α1) >
r(r−1)

2 (1− p)r−2p2. Thus

f1(α1)

f2(α2)
<

(1− p)xp2 − (x− r)(1− p)xp ln(1− p)
r(r−1)

2 (1− p)r−2p2
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<
(1− p)xp2 + (x− r)(1− p)x−1p2

r(r−1)
2 (1− p)r−2p2

<
1 + x− r

r(r − 1)/2

≤ 2r

r(r − 1)

=
2

r − 1
.

When α1 ≤ (1−p)2r−1, we claim that the function f2(α1)− r−1
2 f1(α1) is decreasing

in α1.
Claim 3.15. The function

f2(α1)−
r − 1

2
f1(α1) =

r(r − 1)

2
(1− p)r−2p2 + α1 ln

(
α1

(1− p)r

)

+ (1− p)r − α1 −
r − 1

2

(
α1p

2 − α1p ln

(
α1

(1− p)r

))

is decreasing in α1 for α1 ≤ (1− p)2r−1.
Hence, for any α1 ≤ (1− p)2r−1,

f2(α1)−
r − 1

2
f1(α1) ≥ f2((1− p)2r−1)− r − 1

2
f1((1− p)2r−1) > 0.

This concludes the analysis for Pick-r-Stars.
Theorem 3.16. Pick-r-Stars produces a single-batch policy with an expected

value that is at least (r − 1)/(r + 1) of the optimum.

4. Approximating optimal k-batch policies. Here we present an algorithm
for the linear cost and time threshold (LT) model that approximates optimal k-batch
policies with a constant ratio 1/5. Recall that our simplifying assumption here is
that time durations are equal; consequently, optimal batched policies exist. The
k-batch approximation algorithm, called Reverse-Greedy, is illustrated in Figure 4.1.
The algorithm works by constructing an irreducible policy. It greedily constructs the
policy batch by batch, starting from the last batch (rightmost) and going in reverse
time. For each batch it invokes the single-batch algorithm Pick-a-Star, but with a
modified profitability criterion that follows from equality (3.1) of Lemma 3.2 (see the
comments following the lemma). Even though each source is profitable at the time it
is added to a partially constructed batch, the completed batch may not be irreducible,
i.e., some of the sources picked before the last source may become nonprofitable after
the addition of the last source. Thus after each call to Pick-a-Star, the algorithm scans
back over the newly created batch and drops any source that is nonprofitable. In this
way, the final policy is surely irreducible. Clearly Reverse-Greedy can be implemented
to run in time O(kn2).

The analysis of Reverse-Greedy makes use of Theorem 3.8. The difficulty here
is that because the sources can be scheduled in different batches, some batches of an
optimal k-batch policy could be arbitrarily better individually than their counterparts
in APPR. To get around this, we relate an irreducible k-batch policy to its optimally
serialized version. For any policy P, let P denote the optimal serial policy for the
sources in P. It is not hard to see that V (P) ≥ V (P). Note that a serial policy
P may violate the time threshold, however we use V (P) in the analysis as a means
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1. Sort the sources so that c1/p1 ≤ · · · ≤ cn/pn.
2. APPR = ∅. (* APPR denotes the k-batch policy. *)
3. For i := k downto 1
4. S = ∅. (* S is the best ith batch found so far. *)
5. Q = 1. (* Q is the collective failure probability of S. *)
6. For j := 1 to n, where sj /∈ APPR
7. S1 := {sj}.
8. Q1 := 1− pj . (* Q1 is the collective failure probability of S1. *)
9. For l := 1 to n, where l �= j and sl /∈ APPR
10. If Q1(1− V (APPR)) ≥ cl/pl then (* profitability check *)
11. S1 := S1 ∪ {sl}.
12. Q1 := Q1(1− pl).
13. else exit to step 14.
14. If V (S) < V (S1) then S := S1;Q = Q1.
15. For each sj in S (* Make S irreducible. *)

16. If cj/pj > Q
1−pj

(1− V (APPR))

17. S = S − {sj}; Q = Q/(1− pj);
18. Add S to APPR as the ith batch.
19. Output policy APPR.

Fig. 4.1. The algorithm Reverse-Greedy.

of bounding the value of an optimal scheduling of the sources in P. First, let us
characterize an optimal serial policy.

Lemma 4.1. For any set of sources, an optimal serial policy (including all sources
in the set) sorts the sources in the nondecreasing order of their cost to success proba-
bility ratios.

Proof. Consider any serial policy P = si1 , . . . , sim . Then

V (P) = pi1 − ci1 + (1− pi1)(pi2 − ci2) + · · ·+
m−1∏
j=1

(1− pij )(pim − cim).

Hence swapping source sij and source sij+1 would result in a net value of

j−1∏
l=1

(1− pil)(pij+1 − cij+1 + (1− pij+1)(pij − cij ))

−
j−1∏
l=1

(1− pil)(pij − cij + (1− pij )(pij+1 − cij+1))

=

j−1∏
l=1

(1− pil)(pij+1
cij − pijcij+1

),

which is positive if cij+1/pij+1 < cij/pij .
The following property of optimal serial policies is a side product of the above

lemma and will be useful in the analysis.
Corollary 4.2. Let S1 and S2 be two sets of sources and S1 ⊆ S2. An optimal

serial policy for S2 gives an expected value at least that of an optimal serial policy for
S1.
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Proof. Recall our basic assumption from section 3 that pi ≥ ci for all sources si.
As a consequence an optimal serial policy for the sources in S2 exists that includes all
the sources in S2. Starting from such an optimal serial policy for S2, we can gradually
swap the sources that are not in S1 towards the end of the sequence and eventually
remove them. By Lemma 4.1, no such swap or removal can increase the expected
value.

The following lemma, which is somewhat surprising, is a key to our analysis. It
states that serializing an irreducible batched policy can at most triple the expected
value.

Lemma 4.3. Let P denote the success probability of an irreducible batched policy
P. Then V (P) ≤ (2 + P )V (P).

Proof. The proof is by induction on the number of sources of the policy. Assume
that the statement holds for any irreducible policy consisting of n−1 ≥ 1 sources, and
consider an irreducible policy P consisting of n sources. Let S denote the set of sources
in the first (leftmost) batch and sn denote a source in S. In order to maximize the
difference between V (P) and V (P) we assume that the cost-to-success-probability
ratios of all the sources in S are at the maximum possible (without violating the
irreducibility condition). We perturb the initial policy P and transform it into another
irreducible policy P ′, by moving sn to the left in the time-line so that it finishes before
all the other sources. We increase the cost of source sn and other sources in S by
amounts to be described below. Note that policy P ′ will not be different from policy
P if S − {sn} = ∅. Due to the potential increase in costs in the transformation, we
will see that V (P ′) ≤ V (P) and V (P ′) ≤ V (P). We first show that

2 (V (P)− V (P ′)) ≥ V (P)− V (P ′).(4.1)

We complete the proof by showing, using the inductive hypothesis, that the statement
of the lemma holds for policy P ′.

Let Q denote the collective failure probability of the sources in S and Va denote
the expected value of policy P without batch S. Let S′ = S − {sn}. Since the
cost-to-success-probability ratios of sources in S are as high as possible, we have
ci/pi = Q/(1− pi)(1− Va) for si ∈ S according to the definition of irreducibility. Let
c′n and c′i be the costs of sources sn and si ∈ S′ in policy P ′. Again, we set these
costs to be as high as they can be: c′i = pi(Q/(1− pi)(1− pn))(1− Va) = ci/(1− pn)
and c′n = pn(Q/(1− pn) +

∑
si∈S′ c′i −Q/(1− pn)Va). Therefore we have that ∀si ∈

S′, c′i− ci = c′i− (1− pn)c
′
i = c′ipn and c′n− cn =

∑
si∈S′ pnc

′
i. Thus the change in the

cost of sn is equal to the total change in the costs of the sources in S′.
We have V (P ′) = 1 − Q − c′n − (1 − pn)

∑
si∈S′ c′i + QVa, and V (P) = 1 − Q −∑

si∈S ci + QVa. Thus V (P) − V (P ′) = c′n − cn = pn
∑

si∈S′ c′i. In other words, in
going from policy P ′ to policy P, only the reduction in the cost of source sn is felt in
the increase of the expected value. Observe that this reduction is exactly half of the
total change in all costs. Now it is easy to see that 2 (V (P)− V (P ′)) ≥ V (P)−V (P ′):
In the transition from the optimal serial policy P ′ to the optimal serial policy P, the
reduction in the costs of both source sn and the sources in S′, which is twice the
reduction in the cost of source sn, is reflected in the increase of the expected value.
However, V (P) − V (P ′) ≤ 2pn

∑
si∈S′ c′i, since in a serial policy the effect of a cost

reduction on each source is reduced due to the success probability of the sources
queried earlier.

Next we show

V (P ′) ≤ (2 + P )V (P ′).(4.2)
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Note that source sn is the only scheduled source in the leftmost batch of policy P ′,
and since its cost-to-success-probability ratio cn/pn is maximized, cn/pn = 1 − V ,
where V denotes the expected value of the policy P ′ excluding sn. Again, since cn/pn
is maximized, V = V (P ′), i.e., the presence of sn in P ′ does not increase V (P ′) (see
Lemma 3.2). Hence cn/pn = 1 − V (P ′). Consider the subpolicy A consisting of the
sources in P ′ with cost-to-success-probability ratio less than 1 − V (P ′), and let PA
denote its success probability. Let B denote the subpolicy consisting of the rest of
the sources in P ′ with success probability PB . The sources in B have higher cost-to-
success-probability ratios than the sources in A; hence they are queried later than the
sources in A in policy P ′. Therefore we have V (P ′) = V (A) + (1 − PA)V (B). Since
P ′ is irreducible, V (A) ≤ V (P ′), and because subpolicy A is irreducible and does not
include sn, we have V (A) ≤ (2 + PA)V (A) ≤ (2 + PA)V (P ′) by induction. It is not
hard to see that V (B) ≤ PBV (P ′): Let the sources in B be s1, . . . , sm, and let αi
denote the cost-to-success-probability ratio of si, where α1 ≤ · · · ≤ αm. Then

V (B) = p1(1− α1) + (1− p1)p2(1− α2) + · · ·+
(
m−1∏
i=1

(1− pi)

)
pm(1− αm)

≤
(
p1 + (1− p1)p2 + · · ·+

(
m−1∏
i=1

(1− pi)

)
pm

)
(1− α1)

≤ PBV (P ′).

Therefore

V (P ′) = V (A) + (1− PA)V (B)

≤ 2V (P ′) + PAV (P ′) + (1− PA)PBV (P ′)

= 2V (P ′) + (PA + (1− PA)PB)V (P ′)

= (2 + P )V (P ′).

We complete the proof using inequalities (4.1) and (4.2):

V (P) ≤ 2(V (P)− V (P ′)) + V (P ′)) ≤ 2V (P)− 2V (P ′) + (2 + P )V (P ′)

or

V (P) ≤ 2V (P) + PV (P) = (2 + P )V (P).

A similar proof shows that Lemma 4.3 also holds for the general case of an ir-
reducible schedule with sources that can have unequal durations. However the irre-
ducibility criterion is slightly more complicated than what is derived from (3.2) for
batched schedules, and unfortunately, unlike for the case for batched schedules, we
don’t know how to use that fact to derive an approximation algorithm for the general
case. The interested reader is referred to [10] for a proof for the general case. Inter-
estingly, serializing a single irreducible batch of sources can at most double the value
(this result was used in [1]).

Now we analyze the performance of algorithm Reverse-Greedy. Just as in the
case for single-batch policies, we will also use set operations on k-batch policies when
there is no ambiguity. Denote the optimal policy as OPT, and partition OPT as

OPT1 = APPR ∩OPT,

OPT2 = OPT−OPT1,
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where the sources in OPT1 and OPT2 are scheduled in the same batches as they are
in OPT. By Lemma 3.1,

V (OPT) ≤ V (OPT1) + V (OPT2).

We compare the performances of OPT1 and OPT2 with that of APPR separately.
Lemma 4.4. V (OPT1) ≤ 3V (APPR).
Proof. This follows immediately from Corollary 4.2 and Lemma 4.3.
Lemma 4.5. V (OPT2) ≤ 2V (APPR).
Proof. For each i = 1, . . . , k, let OPT2(i) and APPR(i) denote the subpolicies of

OPT2 and APPR consisting of the last k−i+1 batches. We prove inductively, starting
from the last batch, that V (OPT2(i)) ≤ 2V (APPR(i)). Without loss of generality,
we may assume that V (APPR(i)) ≤ V (OPT2(i)) for all i because otherwise we could
always replace the last k − i+ 1 batches of OPT2 with those of APPR and continue
with the induction. This could only improve V (OPT2).

The base of the induction is clearly true by Theorem 3.8. Note that making each
batch irreducible can only increase the expected value of the batch. Suppose that
the claim holds for i + 1 ≤ k, and consider batch i. Let Po, Co be the collective
success probability and cost of the sources in the ith batch of OPT2 and Pa, Ca the
corresponding quantities for APPR. By Lemma 3.2,

V (APPR(i))− V (APPR(i+ 1)) = Pa(1− V (APPR(i+ 1)))− Ca,

V (OPT2(i))− V (OPT2(i+ 1)) = Po(1− V (OPT2(i+ 1)))− Co.

Taking the ratio and noting that V (APPR(i+ 1)) ≤ V (OPT2(i+ 1)),

Pa(1− V (APPR(i+ 1)))− Ca

Po(1− V (OPT2(i+ 1)))− Co
=

1− V (APPR(i+ 1))

1− V (OPT2(i+ 1))

[
Pa − Ca

1−V (APPR(i+1))

Po − Co

1−V (OPT2(i+1))

]

≥ Pa − Ca/(1− V (APPR(i+ 1)))

Po − Co/(1− V (OPT2(i+ 1)))

≥ Pa − Ca/(1− V (APPR(i+ 1)))

Po − Co/(1− V (APPR(i+ 1)))
.

Let set S consist of all sources that do not appear in APPR(i + 1). Clearly, S
includes all sources in OPT2 and thus all sources in the ith batch of OPT2. Divide
the cost of each source by 1− V (APPR(i+ 1)). Then on input S, Pick-a-Star would
return exactly the same set as the ith batch of APPR with expected value being
Pa − Ca/(1 − V (APPR(i + 1))). By Theorem 3.8, the value is at least half of the
optimal expected value for set S which is in turn at least Po−Co/(1−V (APPR(i+1))).
This means

2(V (APPR(i))− V (APPR(i+ 1))) ≥ V (OPT2(i))− V (OPT2(i+ 1)),

and hence 2V (APPR(i)) ≥ V (OPT2(i)).
Lemmas 4.4 and 4.5 together give the following theorem.
Theorem 4.6. Algorithm Reverse-Greedy returns a k-batch policy with an ex-

pected value at least 1/5 of the optimum.
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5. Approximation algorithms for the cost threshold models. We first
present an FPTAS for model TL under a weak assumption: pi − di ≥ 0 for every
source si (di is the time duration of si), i.e., every source considered is profitable by
itself. The extension to model TT (with no restriction) is straightforward. Note that
in model TT our goal is simply to maximize the overall probability of getting the
information under the time and cost constraints.

The main idea is the rounding technique introduced in [6] for Knapsack. As
mentioned before, in the cost threshold model TL, an optimal policy should be in
fact a single-batch policy. Let P = {si1 , . . . , sim} be a single-batch policy, where
di1 ≤ · · · ≤ dim . Then

V (P) = 1−
m∏
j=1

(1− pij )−
m∑
j=1

j−1∏
l=1

(1− pil)pijdij −
m∏
j=1

(1− pij )dim .

We cannot apply the rounding technique to the above objective function directly
because it involves subtractions. We rewrite the expression as

V (P) =
m∑
j=1

j−1∏
l=1

(1− pil)pij (1− dij )−
m∏
j=1

(1− pij )dim

=

m−1∑
j=1

j−1∏
l=1

(1− pil)pij (1− dij ) +

m−1∏
j=1

(1− pij )(pim − dim).(5.1)

Since pi − di ≥ 0 by our assumption, every term is nonnegative in (5.1), and we can
apply rounding as follows.

Let ε > 0 be any desired relative error. Sort the sources in the ascending order
of their time durations. We will exhaustively consider every possible choice of sim .
For each i ≤ n, consider only policies that includes the source si and possibly some
others from {s1, . . . , si−1}, subject to the same cost threshold. Let OPT(i) denote
an optimal such policy. For simplicity, assume that |OPT(i)| > 1. We find a trivial
lower bound for V (OPT(i)):

V (OPT(i)) ≥ Li = max


pi − di, max

j<i

cj+ci≤ς

pj(1− dj)


 .

Similar to [6], we formulate a new instance by rounding pi − di and each pj(1− dj)
down to the nearest multiple of εLi/(2i). But here we also need round each 1− pj to
the nearest power of (1− ε/(2i))1/(i−1). In other words, we round each log(1− pj) to
the nearest multiple of (log(1− ε/(2i)))/(i− 1). We solve the new instance optimally.
Let OPTi denote an optimal policy for the new instance. It is sufficient to bound the
difference between V (OPT(i)) and V (OPTi) and we do this by obtaining an upper
bound between each term of OPT (i) and the corresponding rounded value. Each
term difference is upper bounded when the pi−di or pi(1−di) part of a term is at its
maximum Li and the probability factors in the unrounded term are all 1 (otherwise
they are factored out and reduce the difference). Thus we obtain a maximum difference

of Li − Li(1− ε
2i )[(1−

ε
2i )

1
i−1 ]i−1 for every term and there can be at most i many:

V (OPT(i))− V (OPTi) ≤ i

(
Li − Li

(
1− ε

2i

)[(
1− ε

2i

) 1
i−1

]i−1
)
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= iLi

(
1−

(
1− ε

2i

)2
)

≤ iLi

(
1−

(
1− ε

i

))
= εLi

≤ εV (OPT(i)).

Hence the new instance approximates the original problem with the desired ratio.
We can compute OPTi for the new instance by dynamic programming in the

space Si of all possible values of V (OPTi). Denote Qi =
∏
j<i(1− pj). By the above

rounding, the cardinality of Si is upper bounded by

i

(
2i

ε

)(
(i− 1) logQi

log(1− ε/(2i))

)
< i

(
2i

ε

)(
2i2 logQi

−ε

)
=

−4i4 logQi

ε2
,

which is polynomial in the input size and 1/ε. In the above inequality, the factor
2i
ε represents the number of different values that pi − di and pj(1 − dj) can have

after being rounded to the nearest multiple of εLi/(2i), and the factor (i−1) logQi

log(1−ε/(2i))
represents the number of different exponents that a product of the form

∏j−1
l=1 (1−pil)

can have after being rounded to the nearest power of (1− ε/(2i))1/(i−1).
Rewrite the expression in equality (5.1) as a nested form:

pi1(1− di1) + (1− pi1)[pi2(1− di2) + (1− pi2)[· · ·+ (1− pim−1
)(pim − dim)]].

The form easily suggests a backward inductive algorithm. The algorithm will cycle
through the list si−1, . . . , s1. For each j = i, . . . , 1 and each possible value x ∈ Si, it
computes and records a policy of expected value x for the subset of sources {sj , . . . , si}
that contains the source si and costs the least. The above nested form allows the
algorithm to find the cheapest policy of a specific expected value for subset {sj , . . . , si}
by expanding the cheapest policies of the same or lower expected values recorded
before for subset {sj+1, . . . , si} to potentially include the source sj . The running
time is at most O(i2|Si|), which is polynomial in the input size and 1/ε.

Theorem 5.1. Assume that pi− di ≥ 0 for every source si. There is an FPTAS
for the problem of computing optimal policies in model TL.

Corollary 5.2. There is an FPTAS for the problem of computing optimal
policies in model TT.

Proof. Recall that the objective function in this case is

V (P) = 1−
m∏
j=1

(1− pij ),

which involves only the success probabilities of the sources queried. Hence the above
FPTAS works if we simply throw out all sources whose time duration exceeds the
deadline.

6. Concluding remarks. As charging for information on the Internet becomes
more common, information-acquisition algorithms will have to weigh the benefits of
acquiring information against the cost of doing so. Characteristics of these problems
are (1) the fact that the information provided by a source cannot be fully predicted in
all cases, so the benefit of asking for information can be uncertain, (2) the fact that
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there can be monetary and time costs associated with information requests, and (3)
the fact that information providers can be accessed both serially and in parallel.

We have developed a model that takes into account these aspects of information
scheduling and have established worst-case complexity and approximation results for
a variety of objective functions: those in which the value is linear in the cost or
time attributes and the consumer supplies a cost and/or time threshold for acquiring
information. All of these models have plausible applications for information access on
the World Wide Web.

Appendix A. Verifying the claims. We prove the claims made on the behavior
of the various functions that came up in the main proofs.

Proof of Claim 3.5. We show that the function P1 − l(1 − (1 − P1)
1/l)α1 is

decreasing in P1, where 1− P1 ≥ α1.
We take the derivative with respect to P1 and get

1− α1(1− P1)
1
l −1 = 1− α1

(1− P1)
l−1
l

.

The ratio is increasing in P1 as long as (1− P1)
l−1
l > α1.

Proof of Claim 3.6. We show that the function h(l, p1) = l(1 − (1 − p1)
1/l) is

nondecreasing in l.
Taking the derivative, we have

∂h(l, p1)

∂l
= 1− (1− p1)

1/l +
ln(1− p1)(1− p1)

1/l

l
.

We observe that ∂h(l,0)
∂l = 1− 1 + 0 = 0 and

∂h(l, p1)

∂p1∂l
= 1/l(1− p1)

1/l−1 − (1− p1)
1/l

l(1− p1)
− (1− p1)

1/l−1 ln(1− p1)

l2

= − (1− p1)
1/l−1 ln(1− p1)

l2
≥ 0.

Therefore ∂h(l,p1)
∂l is nonnegative for all p1 ∈ [0, 1.0]. Whence h(l, p1) is nondecreasing

in l.
Proof of Claim 3.7. We need show that the ratio ( 1

1−xm/(m−1) )(
1−x+x ln x

1−x ) is

decreasing in x ∈ (0, 1).
We take the derivative(
m

m−1x
1

m−1

(1− x
m

m−1 )2

)(
1− x+ x lnx

1− x

)
+

(
1

1− xm/(m−1)

)(
(1− x) lnx+ 1− x+ x lnx

(1− x)2

)

=
1

(1− xm/(m−1))(1− x)

[(
m

m−1x
1

m−1

1− x
m

m−1

)
(1− x+ x lnx) +

(
1− x+ lnx

1− x

)]
.

The factor 1
(1−xm/(m−1))(1−x) is positive in the interval; hence it suffices to show that

the term in the brackets is negative. Noting that 1− x+ x lnx in the left summand
is nonnegative (the derivative lnx is negative, and the function is zero at 1), and
that in the right summand 1 − x + lnx ≤ 0, we conclude that the left summand is
nonnegative, while the right one is nonpositive. We will verify that

1

1− x
≥

m
m−1x

1
m−1

1− x
m

m−1
.(A.1)
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This eliminates the extra factors and makes it sufficient to show that h1(x) = (1 −
x+ x lnx) + 1− x+ lnx < 0. We note that h1(x) is negative at x arbitrarily close to
zero, and zero at x = 1, and its derivative −1+ lnx+1/x = 1−x+x ln x

x is nonnegative
in the interval.

Rearranging (A.1), we need to verify that

m
m−1x

1
m−1 (1− x)

1− x
m

m−1
≤ 1.

The fraction is zero at x = 0 and, taking the limit as x approaches 1, we have

lim
x→1

m
m−1x

1
m−1 (1− x)

1− x
m

m−1
=

m
m−1 (

1
m−1 − m

m−1 )

− m
m−1

= 1.

Finally, we can verify that the derivative is nonnegative in the region. We may

ignore the factor m
m−1 , and to simplify a little, we make the substitution u = x

1
m−1 .

Hence we want to show that the derivative of h2(u) =
u(1−um−1)

1−um is positive. Taking
the derivative

h′
2(u) =

(1−mum−1)(1− um) +mum(1− um−1)

(1− um)2
,

we will show that the numerator

1−mum−1 − um +mu2m−1 +mum −mu2m−1 = um−1((m− 1)u−m) + 1

is positive. The function h3(u) = um−1((m − 1)u − m) + 1 is nonnegative on the
interval since h3(0) = 1 and h3(1) = 0 and h′

3(u) < 0 on the interval:

h′
3(u) = (m− 1)um−2((m− 1)u−m) + (m− 1)um−1

= (m− 1)um−2((m− 1)u−m+ u) = (m− 1)um−2(m(u− 1)) < 0.

Hence h′
2(u) ≥ 0.

Proof of Claim 3.15. We need to show that the function

f2(α1)−
r − 1

2
f1(α1) =

r(r − 1)

2
(1− p)r−2p2 + α1 ln

(
α1

(1− p)r

)

+ (1− p)r − α1 −
r − 1

2

(
α1p

2 − α1p ln

(
α1

(1− p)r

))

is decreasing in α1 for α1 ≤ (1 − p)2r−1. Taking the partial derivative on f2(α1) −
r−1
2 f1(α1) with respect to α1,

∂
[
r(r−1)

2
(1− p)r−2p2 + α1 ln

(
α1

(1−p)r

)
+ (1− p)r − α1 − r−1

2

(
α1p

2 − α1p ln
(

α1
(1−p)r

))]
∂α1

= ln

(
α1

(1− p)r

)
+ 1− 1− r − 1

2
p2 +

(r − 1)p

2
ln

(
α1

(1− p)r

)
+

(r − 1)p

2

< ln

(
α1

(1− p)r

)
+

(r − 1)p

2
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≤ (r − 1) ln(1− p) +
(r − 1)p

2

< −(r − 1)p+
(r − 1)p

2
≤ 0.
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Abstract. We study virtual path layouts in a very popular type of fast interconnection networks,
namely asynchronous transfer mode (ATM) networks. One of the main problems in such networks is
to construct path layouts that minimize the hop-number (i.e., the number of virtual paths between
any two nodes) as a function of the edge congestion c (i.e., the number of virtual paths going
through a link). In this paper we construct for any n vertex network H and any c a virtual path

layout with hop-number O(
diam(H) log∆

log c
), where diam(H) is the diameter of the network H and

∆ is its maximum degree. Involving a general lower bound from [E. Kranakis, D. Krizanc, and
A. Pelc, Seventh IEEE Symposium on Parallel and Distributed Processing, IEEE Computer Society,
1995, pp. 662–668], we see that these hop-numbers are optimal for bounded degree networks with
the diameter O(logn) for any congestion c. In the case of unbounded degree networks (with the
diameter O(logn)) these hop-numbers are optimal for any c ≥ ∆. For instance, this gives optimal
hop-numbers for hypercube related networks. Moreover, we improve known results for paths and
meshes and prove optimal hop-numbers for hypercubes.

Key words. ATM network, congestion, hop-number, virtual paths layout

AMS subject classifications. 68M10, 90B12

PII. S0097539796308151

1. Introduction. Broadband integrated services digital network (B-ISDN) is a
new paradigm in digital communication which integrates previous distinct networks
(telephone, cable television, computer) into a single digital network. The basic net-
work transmission medium is a fiber-optic cable capable of transferring data at very
high rates. The bottleneck caused by slow software-based switches is resolved by
special purpose fast hardware. To utilize this, a new multiplexing and switching
technology called ATM (asynchronous transfer mode) was proposed (see, e.g., [9]).
Packet routing in ATM networks is based on relatively small fixed-size packets. Mes-
sages may be transmitted through arbitrarily long virtual paths. Packets are routed
along these paths by maintaining a routing field whose subfields determine interme-
diate destinations of the packet, i.e., end-points of virtual paths on their way to the
final destination. One of the main problems in such networks is to construct path
layout that minimizes the hop-number (i.e., the number of virtual paths between any
two nodes) as a function of the edge congestion c (i.e., the number of virtual paths
going through a link).

In this paper we construct for any n vertex network H and any c a virtual path

layout with the hop-number O(diam(H) log ∆
log c ), where diam(H) is the diameter of the

network H and ∆ is its maximum degree. Involving a general lower bound from [6],
we see that these hop-numbers are optimal for bounded degree networks with the
diameter O(log n) for any congestion c. In the case of unbounded degree networks
(with the diameter O(log n)) these hop-numbers are optimal for any c ≥ ∆. For
instance, this gives optimal hop-numbers for hypercube related networks. Moreover,
we improve known results for paths and meshes of Kranakis, Krizanc, and Pelc [6].
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Finally, we prove optimal hop-numbers for hypercubes.

1.1. Model, notation, and results. The basic model of ATM networks was
introduced by Gerstel et al. in [1, 2, 4, 5] and further developed in [3, 6]. By a network
we understand any graph G = (VG, EG). By diam(G) we denote the diameter of G.
Similarly, by d(x, y) we denote the distance of the vertices x and y in G. Let ∆ denote
the maximum degree of a graph. Let G = (VG, EG) and H = (VH , EH) be graphs
such that |VG| ≤ |VH |. An embedding of G in H is a pair of mappings (φ, ψ) satisfying

φ : VG → VH is an injection, ψ : EG → { set of all paths in H },

such that if uv ∈ EG, then ψ(uv) is a path between φ(u) and φ(v). Define the
congestion of an edge e ∈ EH as cg(φ,ψ)(e) = |{f ∈ EG : e ∈ ψ(f)}| and the
congestion of G in H as cg(G,H) = min(φ,ψ) maxe∈EH

{cg(φ,ψ)(e)}. Note that if
there is no confusion we will omit the subscript (φ, ψ) in cg(φ,ψ)(e).

The paths {ψ(EG)} are called virtual paths. The virtual path problem can be
mathematically defined as follows. Given a graph H and a positive number c, among
all graphs G satisfying |VG| = |VH | and cg(G,H) ≤ c, find a graph G0 of mini-
mum diameter. The minimum diameter is called the hop-number and is denoted by
HopH(c).

Gerstel and Zaks [5] studied virtual path layouts for paths, cycles, and meshes.
They assumed an additional requirement that virtual channels are the shortest paths
in the networks. Kranakis, Krizanc, and Pelc [6] dropped the requirement and proved
several optimal results on the hop-number of paths and meshes for small c. Namely,
if Pn denotes an n-vertex path, then HopPn(2) =

√
2n + o(1), HopPn(c) = Θ(n1/c),

when c is a constant and HopPn
(log2 n/ log log n) = Θ(logn/ log log n), and if Mn

denotes an n× n mesh, then HopMn
(c) = Θ(logn) for constant c.

We assume the same model as Kranakis, Krizanc, and Pelc [6]. Our main result
says that for any c ≥ 1 and any n vertex graph H of bounded degree and diameter
O(log n), HopH(c) = Θ(logn/ log c). Several standard networks belong to this class
of graphs, e.g., mesh of trees, butterfly, cube-connected-cycles, binary de Bruijn, or
shuffle-exchange graph. If c ≥ ∆, then we construct optimal virtual path layouts for
some unbounded degree networks, e.g., star, pancake, and k-ary de Bruijn and Kautz
graphs.

Further, we improve the results of Kranakis, Krizanc, and Pelc [6] in the following
way:

(i) HopPn(c) = Θ( logn
log c ), if c ≥ log1+ε n, for any fixed ε > 0.

(ii) IfH denotes two-dimensional n×nmesh, thenHopH(c) = Θ( logn
log c )for c ≥ 2.

Finally, we show that for the n-dimensional hypercube Qn,

HopQn(c) =



Θ
(

n
logn

)
if 2 ≤ c ≤ n,

Θ
(

n
log c

)
otherwise.

2. General bounds. In this section we describe a general method for construct-
ing virtual path layouts and then apply it to some standard networks. Since we deal
only with asymptotic results, we can restrict ourselves to looking for the graph G0

among trees.
Proposition 2.1. Let a graph G0 minimize diam(G) with respect to cg(G,H) ≤

c. Then there exists a tree T with diam(T ) ≤ 2diam(G0) and cg(T,H) ≤ c.
Indeed, we can take T as a breadth first search spanning tree of H0. We will often

apply the following useful lemma from [10].
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Fig. 1. The embedding of F (4; 2, 6) in R(2, 6).

Lemma 2.2. Let G1, G2, and G3 be graphs with |VG1
| ≤ |VG2

| ≤ |VG3 |. Consider
an embedding of G1 into G2 and an embedding of G2 into G3. Then cg(G1, G3) ≤
cg(G1, G2)cg(G2, G3).

It is worth noting that an embedding of G1 into G2 followed by the embedding
of G2 into G3 induces an embedding of G1 into G3. An image of an edge under this
composed embedding is not necessarily a path but a walk in general. It is easy to
transform the walk into a path by omitting multiple edges and vertices.

Throughout, we will use a general lower bound of Kranakis, Krizanc, and Pelc [6].
Lemma 2.3. For any n vertex graph H of maximum degree ∆ and for any c ≥ 1,

HopH(c) ≥
log n

log(c∆)
− 1.

By R(k, n) we denote the complete k-ary n-level tree. Note that by a k-ary 1-level
and 0-ary k-level tree we mean a single vertex. We sometimes abbreviate this notation
in the case of R(2, n) to Bn (the complete binary tree) and R(l, 2) to Sl (the star on
l + 1 vertices).

Let T be a rooted tree. Let G be a rooted tree with l ≥ k leaves, where l and k
are positive integers. By G ∗ kT we denote the graph constructed as follows: take k
copies of T and identify the roots of the copies of T with k distinct leaves of G.

For d, i, n ≥ 1, and k = di, define the tree F (k; d, n) recursively as follows. If
i = 1, set F (k; d, n) = R(d, n). If i ≥ n, set F (k; d, n) = R(d

n−1
d−1 − 1, 2). If 1 < i < n,

set F (k; d, n) = R(d
i+1−1
d−1 − 1, 2) ∗ kF (k; d, n− i). Note that the number of vertices of

F (k; d, n) is dn−1
d−1 . A picture of F (4; 2, 6) is depicted in Figure 1 (the left tree).

Lemma 2.4. For d, i, n ≥ 1, and k = di, diam(F (k; d, n)) = 2(a+� ri ) = 2�n−1
i ,

where n− 1 = ai+ r, 0 ≤ r < i.
Proof. For n = 1, 2, the lemma is easy to observe. We assume that the lemma is

true for all l < n and we prove it for l = n. For i = 1, diam(R(d, n)) = 2(n− 1), the
lemma is true. Similarly, for i ≥ n, diam(R(d

n−1
d−1 − 1, 2)) = 2. Now, let 1 < i < n.

Hence F (k; d, n) = R(d
i+1−1
d−1 −1, 2)∗kF (k; d, n−i). Let n−1 = ai+r, 0 ≤ r < i. Since

n−i ≥ 1 and since n−i = (a−1)i+r, by induction, diam(F (k; d, n−i)) = 2(a−1+� ri ),
and diam(R(d

i+1−1
d−1 − 1, 2)) = 2. It follows from the construction of F (k; d, n) that

diam(F (k; d, n)) = diam(F (k; d, n− i)) + 2 = 2(a+ � ri ) = 2�n−1
i .

Lemma 2.5. For d, i, n ≥ 1, and k = di, cg(F (k; d, n), R(d, n)) ≤ k−1
d−1 .

Proof. We proceed by induction on n. For n = 1, 2, the result is easy to see.
Assuming the result is true for l ≤ n − 1, we prove it for l = n. For i = 1, the
statement of the lemma is true (we take as the mapping (φ, ψ) the natural isomorphism
φ : F (k; d, n) → R(d, n), and ψ the induced mapping by φ). If i ≥ n, let φ map
the root of R(d

n−1
d−1 − 1, 2) on the root of R(d, n) and other vertices, injectively in an
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arbitrary way, on the remaining vertices of R(d, n). Further, let ψ map each edge e
of R(d

n−1
d−1 − 1, 2) on the unique paths in R(d, n) connecting the images of the end-

vertices of e. It is a matter of routine to observe that the congestion of each edge
of R(d, n) induced by (φ, ψ) is at most k−1

d−1 (the maximum congestion is achieved on

edges incident with the root of R(d, n)), thus cg(R(d
n−1
d−1 −1, 2), R(d, n)) ≤ k−1

d−1 . Now,

let 1 < i < n. By definition F (k; d, n) = R(d
i+1−1
d−1 −1, 2)∗kF (k; d, n−i). It holds that

R(d, n) = R(d, i+1)∗kR(d, n− i). Using induction we can embed kF (k; d, n− i) into
kR(d, n− i) (each F (k; d, n− i) into some R(d, n− i)) with congestion ≤ k−1

d−1 and thus

cg(kF (k; d, n−i), kR(d, n−i)) ≤ k−1
d−1 . Similarly, we obtain cg(R(

di+1−1
d−1 −1, 2), R(d, i+

1)) ≤ k−1
d−1 . Obviously, these two embeddings together induce an embedding (φ, ψ) of

F (k; d, n) into R(d, n) with congestion at most k−1
d−1 .

Remark 2.1. The embedding (φ, ψ), constructed in the previous proof, has the
property that for each vertex v ∈ VF (k;d,n) there is at most one neighbor u ∈ VF (k;d,n)

such that the unique φ(v)−φ(u) path in R(d, n) contains a vertex x with d(φ(x), r) <
d(φ(v), r), where r is the root of R(d, n). This can be observed in Figure 1, where the
embedding of F (4; 2, 6) in R(2, 6) is depicted.

Lemma 2.6. Let ∆ ≥ 3, i ≥ 1, and let T be a tree with maximum degree at

most ∆. Then there exists a tree T ′ with |VT | = |VT ′ |, diam(T ′) ≤ 2�diam(T )
i , and

cg(T ′, T ) ≤ (∆−1)i−1
∆−2 .

Proof. Let v be a vertex of degree ≤ ∆− 1 in T (since T is a tree, such a vertex
always exists). For each x ∈ VT , d(x, v) ≤ diam(T ). It is easy to observe that T
can be extended to the complete (∆ − 1)-ary tree L = R(∆ − 1, diam(T ) + 1) by
successively adding vertices of degree one. Let S be the set of all added vertices to
T . Let us consider the graph G = F ((∆ − 1)i; ∆ − 1, diam(T ) + 1). By Lemma 2.4,

diam(G) ≤ 2�diam(T )
i . Moreover, by Lemma 2.5, there is an embedding (φ, ψ) of G

in L with cg(φ,ψ)(G,L) ≤ (∆−1)i−1
∆−2 . Let T ′ be defined as T ′ = G− {x : φ(x) ∈ S}.

In what follows we show that T ′ is indeed the required tree.
Let φ′ be the restricted mapping φ to the graph T ′. Obviously, φ′ is an injection.

Since φ′ is a surjection as well, |VT ′ | = |VT |. Since ψ maps each edge xy to the unique
φ(x) − φ(y) path in L and since L and T are trees, the restricted mapping ψ to the
graph T ′, say ψ′, is well defined.

Hence (φ′, ψ′) is an embedding of T ′ in T with cg(φ′,ψ′)(T
′, T ) ≤ cg(φ,ψ)(G,L)

≤ (∆−1)i−1
∆−2 . Since G is a tree, to finish the proof it is sufficient to prove that T ′ is

connected, since then diam(T ′) ≤ diam(G) ≤ 2�diam(T )
i . Let x be the last vertex

added to T in the construction of L. Since x is a leaf in L and by Remark 2.1,
it follows that φ−1(x) is a leaf in G as well. Thus after removing x and φ−1(x),
the resulting graphs will be connected. We can continue removing vertices from L
and its preimages in G (in the opposite way they were added to T ) to obtain T
and T ′, respectively. Since in each step the deleted vertex is a leaf of a subgraph
of L, by Remark 2.1, its preimage is also a leaf of a subgraph of G, and thus T ′ is
connected.

Theorem 2.7. For any graph H of maximum degree ∆ ≥ 3 and any given c ≥ 1,

HopH(c) = O

(
diam(H) log∆

log c

)
.

Proof. Let T be a breadth first search spanning tree of G. Then T has the maxi-

mum degree at most ∆ ≥ 3 and diam(T ) ≤ 2diam(H). Find i such that (∆−1)i−1
∆−2 ≤
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c < (∆−1)i+1−1
∆−2 . Now, by Lemma 2.6, there is a tree T ′ with cg(T ′, T ) ≤ (∆−1)i−1

∆−2 .

Clearly cg(T ′, H) ≤ (∆−1)i−1
∆−2 ≤ c. Similarly, by Lemma 2.6,

HopH(c) ≤ diam(T ′) ≤ 2

⌈
diam(T )

i

⌉
≤ 2

⌈
2diam(H) log(∆− 1)

log((∆− 2)c+ 1)− log(∆− 1)

⌉

= O

(
diam(H) log∆

log c

)
.

Theorem 2.7 together with Lemma 2.3 has two important consequences.
Corollary 2.8. Let H be a graph of order n with ∆ = O(1) and diam(H) ≤

O(log n). Then HopH(c) = Θ( logn
log c ) for any c.

Note that several standard networks belong to this class of graphs, e.g., mesh
of trees, butterfly, cube-connected-cycles, and binary de Bruijn, or shuffle-exchange
graph.

Corollary 2.9. Let H be a graph of order n with maximum degree ∆ ≥ 3
satisfying diam(H) log∆ = O(log n). Then HopH(c) = Θ( logn

log c ) for c ≥ ∆.
If c ≥ ∆, then the above corollary gives optimal virtual path layouts for, e.g.,

star, pancake, and k-ary de Bruijn and Kautz graphs.

3. Paths and meshes. Let Pn denote an n vertex path and Mn = Pn × Pn
denote an n×n mesh. The next theorem improves virtual path layouts for paths and
meshes of Kranakis, Krizanc, and Pelc [6].

Theorem 3.1. Let c ≥ 1. Then
(i)

HopPn
(c) = Θ

(
log n

log c

)
for c ≥ log1+ε n for any fixed ε > 0,

(ii)

HopMn(c) = Θ

(
log n

log c

)
for c ≥ 2.

Proof. Both lower bounds easily follow by applying Lemma 2.3. Consider the
upper bounds. To prove (i), first find m and k = 2i such that

2m − 1 ≤ n < 2m+1 − 1 and (k − 1)(m+ 2)/2 + 1 ≤ c < (2k − 1)(m+ 2)/2 + 1.

Setting G1 = F (k; 2,m), G2 = Bm, and G3 = P2m−1 in Lemma 2.2 and using a
result of Lengauer (based on the orthogonal projection of Bm on a horizontal line)
[8], cg(Bm, P2m−1) ≤ (m+2)/2, and by Lemma 2.5 we get an embedding of F (k; 2,m)
into P2m−1 with

cg(F (k; 2,m), P2m−1) ≤ (k − 1)(m+ 2)/2.

Now choose n − 2m + 1 new vertices and join them to leaves of F (k; 2,m) (at most
two per each leaf) in such a way that the resulting graph, say T , has m + 1 levels.
Note that this is always possible. Clearly, T has n vertices. It is easy to extend the
above embedding of F (k; 2,m) into P2m−1 to an embedding of T into Pn with

cg(T, Pn) ≤ cg(F (k; 2,m), P2m−1) + 1 ≤ c.
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Moreover, by Lemma 2.4,

HopPn
(c) ≤ diam(T ) ≤ diam(F (k; 2,m)) + 2 = 2

⌈
m− 1

i

⌉
+ 2 ≤ 2m

log k
+ 4

≤ 2 log(n+ 1)

log c
2 log n

+ 4 ≤ 2 log(n+ 1)
ε

1+ε log c− 1
+ 4 = O

(
log n

log c

)

for c ≥ log1+ε n.

For (ii) assume first the case n = 2m,m ≥ 1. Find k = 2i such that

2(k − 1) + 1 ≤ c

4
< 2(2k − 1) + 1.

Set G1 = F (k; 2, 2m), G2 = B2m, and G3 = Mn in Lemma 2.2. Zienicke [11] showed
that cg(B2m,Mn) = 2. Now we add one new vertex and edge to F (k; 2, 2m) resulting
in a graph F on n vertices embeddable into Mn with cg(F,Mn) ≤ 2(k− 1)+ 1 ≤ c/4.
The diameter of F is increased by at most 1.

Second, consider an arbitrary n. Find m such that 2m − 1 ≤ n < 2m+1 − 1.
Embed the graph F into the left lower submesh of Mn of size 2m × 2m. Similarly,
embed the graph F into the other three “corner” submeshes of Mn. We get a virtual
path layout for Mn with congestion at most 4cg(F,Mn) ≤ c and the hop-number

HopMn(c) ≤ 2diam(F ) ≤ 2(diam(F (k; 2, 2m)) + 1) ≤ 2

⌈
2m− 1

i

⌉
+ 2

≤ 2
2 log(n+ 1)

log( c+4
16 )

+ 4 = O

(
log n

log c

)
.

Note that HopPn
(c) for nonconstant c ≤ log n remains an open problem.

4. Hypercubes. The main result of this section is an optimal virtual path layout
for hypercubes. The n-dimensional hypercube, denoted by Qn, is defined, by means of
the Cartesian product of graphs, as Q0 = v (a single vertex) and Qn = Qn−1×P2. The
edges of Qn are divided into n groups in a natural way according to the dimensions
they belong to.

Let us define the tree T1 to be a single vertex. Now, for n ≥ 2 let the tree
Tn = S2k−2 ∗ kTn−i, where k = 2i ≤ n < 2i+1. Note that the number of vertices of
Tn is 2n − 1.

Lemma 4.1. The diameter of Tn satisfies

diam(Tn) <
8n

�log n� + 2�log n�.

Proof. Let depth(Tn) denote the depth of Tn. Then

depth(Tn) = depth(Tn−i) + 1,

where i = �log n�. Solving this recurrence, we get

depth(Tn) ≤
⌈
n− 2i + 1

i

⌉
+

⌈
2i − 2i−1

i− 1

⌉
+ · · ·+

⌈
22 − 21

1

⌉

<
i∑

j=1

⌈
2j

j

⌉
≤

i∑
j=1

2j

j
+ i ≤ 2i+2

i
+ i ≤ 4n

�log n� + �log n�,
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Fig. 2. The k subhypercubes Qn−i.

where the estimation of the sum was done by a straightforward induction. Noting
that diam(Tn) ≤ 2depth(Tn), we have the result.

Let G be a graph and let S (U) be a subset of EG (VG). We define the graph
induced by U under S as the graph with the vertex set U and all edges xy ∈ (U×U)∩S.

Let S be the set of all edges in some i ≤ n dimensions of Qn. Then the graph
Qn−S consists of 2i copies of Qn−i, say Q

1, Q2, . . . , Q2i

. Let v1 be a vertex of Q1. Let
vl ∈ Ql, 2 ≤ l ≤ 2i, be the corresponding vertices to v1, i.e., vl, 2 ≤ l ≤ i, is the copy
of v1 chosen in the natural way. Then the graph induced by {v1, v2, . . . , v2i} under S
is an i-dimensional hypercube, say Qi(v

1). Observe that the hypercubes Qi(x) for all
x ∈ Q1 are vertex disjoint. Moreover, the mapping ξ : Q1 → Ql, l = 2, . . . , 2i, given
by ξ(x) = y, where y ∈ Ql ∩Qi(x), is the isomorphism induced by Qi(v

1).
Lemma 4.2. For all n ≥ 1, cg(Tn, Qn) ≤ 2.
Proof. In fact we prove, by induction on n, the following stronger statement.

There exists an embedding (φ, ψ) of Tn into Qn with cg(e) ≤ 2, for all edges e ∈ Qn,
satisfying the following two additional conditions. Let r be the root of Tn and v ∈
VQn \ φ[VTn ].

(i) There exists a φ(r)− v path P such that each edge of P has congestion at
most 1, and just one neighbor of v is on P .

(ii) For all neighbors x of v in Qn, cg(vx) = 0.
Let us call the vertex v a free vertex, the path P a free path, and the embedding

a good embedding. For n = 1, 2, 3 the statement is easy to observe. Thus we assume
we have proved the statement for all integers up to n− 1 and we prove it for n ≥ 4.
By definition, Tn = S2k−2 ∗ kTn−i, where k = 2i ≤ n < 2i+1. Let us delete all edges
in some i dimensions of Qn obtaining thereby k copies of Qn−i, say Q1, . . . , Qk (see
Figure 2).

For notational convenience let us denote some important vertices of Tn. By r we
denote the root of Tn (this is also the root of S2k−2). Further, by rl we denote the
leaf of S2k−2, which is the root of F l = Tn−i (l = 1, 2, . . . , k). Note that rl are the
vertices at which the subtrees Tn−i are amalgamated with S2k−2 in Tn. Finally, by
xl (l = 3, 4, . . . , k) we denote the k − 2 remaining leaves of S2k−2.

Let v1 be any vertex of Q1. In what follows we describe for l = 1, . . . , k a good
embedding of F l into Ql. By the induction hypothesis there is a good embedding
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(φ1, ψ1) of F
1 into Q1. Since Q1 is vertex transitive, we may assume that v1 is the

free vertex in Q1. Moreover, there is a free φ1(r
1)− v1 path, say P 1. By vl we denote

the vertex corresponding to v1 in Ql. It follows from the symmetry of Qn−i that
there is a good embedding (φ2, ψ2) of F

2 into Q2 (obtained from the embedding of
F 1 into Q1) for which φ2(r

2) = v2 and the free vertex in Q2, say v, is the vertex
corresponding to φ1(r

1). Furthermore, there is a v2 − v free path P 2 in Q2. Finally,
for l = 3, . . . , k, by the existence of the isomorphism induced by Qi(v

1), there is a
good embedding (φl, ψl) of F

l into Ql for which φl(r
l) is the vertex corresponding to

φ1(r
1) and vl is the free vertex in Ql. By the same argument, there is a vl − φl(r

l)
free path P l in Ql, l = 3, . . . , k.

Since Q1 ∪Q2 ∪ · · · ∪Qk is a factor of Qn and since F 1 ∪ F 2 ∪ · · · ∪ F k ∼= kTn−i,
the embeddings (φl, ψl), l = 1, . . . , k, together induce an embedding (φ, ψ) of kTn−i
into Qn \ {v, v1, v3, v4, . . . , vk}. To obtain the required embedding we put φ(r) = v1

and φ(xl) = vl for l = 3, 4, . . . , k. Finally, we have to embed the edges of S2k−2. Since
all the vertices of S2k−2 are already embedded, it is enough to describe the paths
v1 − φ(rl), l = 1, 2, . . . , k, and the paths v1 − vl, l = 3, 4, . . . , k.

The path v1 − φ(r1) = P 1 and the path v1 − φ(r2) = v1v2. We construct the
remaining paths using neighbors of the vertex v1 in Q1. Since the degree of Qn is
n ≥ k and since P 1 is a free path, there are k − 2 neighbors of v1 which lie neither
on P 1 nor on v1v2, say c13, c

1
4, . . . , c

1
k. For each vertex c1j , j = 3, 4, . . . , k, there is the

hypercube Qi(c
1
j ). Let c

l
j be the corresponding vertex for c

1
j in Q

l. Since the mapping

on corresponding vertices is an isomorphism, the vertex clj is adjacent to the vertex

vl. Since Qi(c
1
j ) (j = 3, 4, . . . , k) is connected, there is a c1j − clj path, say P (c1j , c

l
j),

in Qi(c
1
j ). Note that all P (c1j , c

l
j) for j = 3, 4, . . . , k are vertex disjoint. Now, we

are able to describe all remaining paths. For j = 3, 4, . . . , k, the path v1 − vj =
(v1c1j ) ◦ P (c1j , c

j
j) ◦ (c

j
jv
j), and the path v1 − φ(rj) = (v1c1j ) ◦ P (c1j , c

j
j) ◦ (c

j
jv
j) ◦ P j ,

where ◦ is the concatenation operation.
The embedding is now completely defined. It is an easy but time-consuming

exercise to observe that cg(e) ≤ 2 for each edge e ∈ Qn. If we define P = (v1v2) ◦P 2,
then since P 2 is a free path, P is a φ(r) − v free path as well. Moreover, no edge
incident with v is used in the embedding, thus cg(vx) = 0 for all neighbors x of v and
the embedding (φ, ψ) is good.

Theorem 4.3. For the n-dimensional hypercube we have

HopQn(c) =



Θ
(

n
logn

)
if 2 ≤ c ≤ n,

Θ
(

n
log c

)
otherwise.

Proof. The upper bound of the first case follows from Lemmas 4.1 and 4.2. The
lower bound is implied by Lemma 2.3. The second case is proved in a similar way as
the result for the mesh using the fact from [7] that the complete binary tree on 2n−1
vertices can be embedded in the n-dimensional hypercube with congestion 1.

In particular, the above result says that if the congestion c is smaller than the de-
gree of the hypercube, then the hop-number does not depend on c. It is an interesting
open question whether this holds for other important networks of unbounded degree
like k-ary de Bruijn and star graph. Another open problem is to find an optimal
virtual paths layout for the n-vertex path if c is nonconstant and less than or equal
to log1+ε n for ε > 0.
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Abstract. Suppose P is a program designed to compute a function f defined on a group G.
The task of self-testing P , that is, testing if P computes f correctly on most inputs, usually involves
testing explicitly if P computes f correctly on every generator of G. In the case of multivariate
functions, the number of generators, and hence the number of such tests, becomes prohibitively
large. We refer to this problem as the generator bottleneck . We develop a technique that can be used
to overcome the generator bottleneck for functions that have a certain nice structure, specifically if
the relationship between the values of the function on the set of generators is easily checkable. Using
our technique, we build the first efficient self-testers for many linear, multilinear, and some nonlinear
functions. This includes the FFT, and various polynomial functions. All of the self-testers we present
make only O(1) calls to the program that is being tested. As a consequence of our techniques, we
also obtain efficient program result-checkers for all these problems.

Key words. program correctness, self-testing, generator bottleneck
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1. Introduction. The notions of program result-checking, self-testing, and self-
correcting as introduced in [4, 17, 5] are powerful tools for attacking the problem
of program correctness. These methods offer both realistic and efficient tools for
software verification. Various useful mathematical functions have been shown to have
self-testers and self-correctors; some examples can be found in [5, 3, 17, 9, 14, 19, 1,
20, 22, 6]. The theoretical developments in this area are at the heart of the recent
breakthrough results on probabilistically checkable proofs and the subsequent results
that show nonapproximability of hard combinatorial problems.

Suppose we are given a program P designed to compute a function f . Informally,
a self-tester for f distinguishes the case where P computes f correctly always from
the case where P errs frequently. A result-checker for a function f takes as input
a program P and an input q to P and outputs PASS when P correctly computes
f always and outputs FAIL if P (q) �= f(q). Given a program P that computes f
correctly on most inputs, a self-corrector for f is a program Psc that uses P as an
oracle and computes f correctly on every input with high probability.
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1.1. Definitions and basics. Before we discuss our results, we present the
basic definitions of testers, checkers, etc., and state some desirable properties of these
programs. Let f be a function on a domain D and let P be a program that purports to
compute f . The testers, correctors, and checkers we define are probabilistic programs
that take P as an oracle, and in addition, take one or both of the following parameters
as input: an accuracy parameter ε that specifies the conditions that P is expected to
meet and a confidence parameter ρ that is an upper bound on the probability that
the tester/corrector/checker fails to do its job. The following definitions formalize the
notions of self-tester [5], self-corrector [5, 17], and result-checker [4].

Definition 1.1 (self-tester). An ε-self-tester for f is a probabilistic oracle pro-
gram T that, given ρ > 0, satisfies the following conditions:

• Prx∈D[P (x) = f(x)] = 1⇒ Pr[TP outputs PASS ] = 1, and
• Prx∈D[P (x) �= f(x)] ≥ ε ⇒ Pr[TP outputs FAIL ] ≥ 1− ρ.

Definition 1.2 (self-corrector). An ε-self-corrector for f is a probabilistic oracle
program Psc that, given any input y, and ρ > 0, satisfies the following condition:

• Prx∈D[P (x) = f(x)] ≥ 1− ε ⇒ Pr[Psc(y) = f(y)] ≥ 1− ρ.

Definition 1.3 (result-checker). A checker (or result-checker) for f is a prob-
abilistic oracle program C that, given an input y and ρ > 0, satisfies the following
conditions:

• Prx∈D[P (x) = f(x)] = 1⇒ CP (y) outputs PASS, and
• P (y) �= f(y)⇒ Pr[CP (y) outputs FAIL ] ≥ 1− ρ.

We now list three important properties that are required of self-testers, self-
correctors, and result-checkers. For definiteness, we state these for the case of self-
testers. First, the self-tester T should be computationally different from and more
efficient than any program that computes f [4]. This restriction ensures that T does
not implement the obvious algorithm to compute f (and hence could harbor the same
set of bugs, or be computationally inefficient). Furthermore, this ensures that the
running time of T is asymptotically better than the running time of the best known
algorithm for f . The second important property required of T is that it should not
require the knowledge of too many correct values of f . In particular, this rules out
the possibility that T merely keeps a large table of the correct values of f for all
inputs. The third important property required of a self-tester is efficiency : an effi-
cient self-tester should only make O(1/ε, lg(1/ρ)) calls to P . For constant ε and ρ, an
efficient self-tester makes only O(1) calls to the program. (In the rest of the paper,
we often write O(1) as a shorthand for O(1/ε, lg(1/ρ)), particularly when discussing
the dependence on other parameters of interest.)

The following well-known lemma summarizes some relationships between the no-
tions of self-testers, self-correctors, and result-checkers. For the reader’s convenience,
we sketch the idea of the proof of this lemma, suppressing the details of the accuracy
and confidence parameters.

Lemma 1.4 (see [5]). (a) If f has a self-tester and a self-corrector that make
O(1) calls to the program, then f has a result-checker that makes O(1) calls to the
program.

(b) If f has a result-checker, then it has a self-tester.

Proof (sketch). For part (a), suppose that f has a self-tester and a self-corrector.
Given an input y and oracle access to a program P , first self-test P to ensure that
it doesn’t err too often. If the self-tester finds P to be too erroneous, output FAIL.
Otherwise, compute f(y) by using the self-corrector for Psc and the program P , and
output PASS iff P (y) = Psc(y).



1632 FUNDA ERGÜN, S. RAVI KUMAR, AND D. SIVAKUMAR

Clearly a perfect program always passes. Suppose P (y) �= f(y). Then one of
the following two cases must occur. The program is too erroneous, in which case the
self-tester, and hence the checker, outputs FAIL. The program is not too erroneous,
in which case the self-corrector computes f(y) correctly with high probability, so the
checker detects that P (y) �= Psc(y) and outputs FAIL.

For part (b), suppose that f has a result-checker. By using the result-checker
to test if P (x) = f(x) for many randomly chosen inputs x, the fraction of inputs
x for which P (x) �= f(x) can be estimated. Output PASS iff this fraction is less
than ε.

A useful tool in constructing self-correctors is the notion of random self-reducibility .
The fine details of this notion are beyond the scope of this paper, and we refer the
reader to the papers [3, 17] (see also the survey paper [11]). Informally, a function f is
randomly self-reducible if evaluation of f on an input can be reduced efficiently to the
evaluation of f on one or more random inputs. For a brief example, note that linear
functions are randomly self-reducible: to compute f(x), it suffices to pick a random
r, compute f(x + r) and f(r), and finally obtain f(x) = f(x + r) − f(r). All func-
tions that we consider in this paper are efficiently randomly self-reducible; therefore,
whenever required we will always assume that efficient self-correction is possible.

1.2. Building self-testers using properties. The process of self-testing
whether a program P computes a function f correctly on most inputs is usually
a two-step strategy. It is necessary to first perform some tests to verify that P agrees
on most inputs with a function g that belongs to a certain class F of functions that
contains f . Some additional tests are then needed to verify that the function g is, in
fact, the intended function f .

The standard way to test whether P agrees with some function in a class F of
functions is based on the notion of a robust property . Informally, property I is said to
be a robust characterization of a function family F if the following two conditions hold:
(1) every f ∈ F satisfies I, and (2) if P is a function (program) that satisfies I for
most inputs, then P must agree with some g ∈ F on most inputs. For example, Blum,
Luby, and Rubinfeld [5] establish that the property of linearity f(x+y) = f(x)+f(y)
serves as a robust property for the class of all linear functions, and use this to build
self-testers for linear functions. This generic technique was first formalized in [20].

Definition 1.5 (robust property). A property is a predicate If (�x = x1, . . . , xk).
A property If (�x) is (ε, δ)-robust for a class of functions F over a domain D if it
satisfies the following conditions:

• (∀f)
[
f ∈ F ⇐⇒ (∀�x ∈ Dk)[If (�x) = TRUE]

]
.

• If a function (program) P satisfies Pr�x∈Dk [IP (�x) = TRUE] ≥ 1 − ε, then
there is a function g such that

◦ (∀�x ∈ Dk)[Ig(�x) = TRUE], and
◦ Prx∈D[g(x) = P (x)] ≥ 1− δ,

that is, (∃g ∈ F) such that P agrees with g on all but δ fraction of inputs.
We now outline the process of building self-testers using robust properties (cf. [5]).

Let D be a (finite) group with generators e1, . . . , en, and let F denote some class of
functions from D into some range R. Further assume that the functions in F possess
the property of random self-reducibility and can hence be self-corrected efficiently.
Suppose P is a program that purports to compute a specific function f ∈ F . Let
If (�x) be a robust property that characterizes F .

As mentioned earlier, the process of building self-testers is a two-step process.
In the first step, we will ensure that that the program P agrees with some function
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g ∈ F on most inputs. To do this, we use the fact that If is a robust property
that characterizes F . Specifically, the self-tester will estimate the fraction of k-tuples
�x ∈ Dk for which If (�x) holds. If this fraction is at least 1− ε, then by the robustness
of If , it follows that there is some g ∈ F that agrees with P on all but δ fraction of
D. The required estimation can be carried out by a random sampling of �x and testing
the property If .

The next step is to verify that the function g is the same as the function f that
P purports to compute. This is achieved by testing that g(ei) = f(ei) for every
generator of the group D. If this is true, then by an easy induction it would follow
that g ≡ f . An important point to be made here is that the self-tester has access
only to P and not to g; the function g is only guaranteed to exist. Nevertheless,
the required values of g may be obtained by using a self-corrected version Psc of P .
Another point worth mentioning is that to carry out this step, the self-tester needs
to know the values of f on every generator of D.

1.3. The generator bottleneck. An immediate application of the basic method
outlined above to functions whose domains are vector spaces of large dimension suf-
fers from a major efficiency drawback. For example, if the inputs to the function
f are n-dimensional vectors (or n × n matrices), then the number of generators of
the domain is n (resp., n2). The straightforward approach of exhaustively testing if
Psc agrees with f on each generator makes n (resp., n

2) calls to P ; furthermore, the
self-tester built on this approach requires the knowledge of the correct value of f on
n (resp., n2) generators. When n is large, this makes the overhead in the self-testing
process too high. This issue is called the generator bottleneck problem.

In this paper, we address the generator bottleneck problem and solve it for a fairly
large class of functions that satisfy some nice structural properties. The self-testers
that we build are not only useful in themselves, but are also useful in building efficient
result-checkers, which are important for practical applications.

1.4. Our results. We present a fairly general method of overcoming the gener-
ator bottleneck and testing multivariate functions by making only O(1) calls to the
program being tested.

First we investigate the problem ofmultivariate linear functions (i.e., the functions
f satisfying f(�x)+f(�y) = f(�x+�y)). We show a general technique that can be applied
in a natural vector space setting. The main idea is to obtain an easy and uniform
way of “generating” all generators from a single generator. Using this idea, we give a
simple and powerful condition for a linear function f to be efficiently self-testable on
a large vector space. We then apply this scheme to obtain very efficient self-testers
for many functions. This includes polynomial differentiation (of arbitrary order),
polynomial integration, polynomial “mod” function, etc. We also obtain the first
efficient self-tester for Fourier transforms.

We then extend this method to the case of multilinear functions (i.e., functions
f that are linear in each variable when the other variables are fixed). We build an
efficient tester for polynomial multiplication as a consequence. Another application
we give is for large finite fields: we show that multilinear functions over finite field
extensions of dimension n can be efficiently self-tested with O(1) calls, independent of
the dimension n. We also provide a new efficient self-tester for matrix multiplication.

We next extend the result to some nonlinear functions. We give self-testers for
exponentiation functions that avoid the generator bottleneck. For example, consider
the function that computes the square of a polynomial over a finite field: f(q) = q2.
Here we do not have the linearity property that is crucial in the proof for the linear
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functions. Instead, we use the fact that the Lagrange interpolation identity (cf. Fact
4.1) for polynomials gives a robust characterization. We exhibit a self-tester for the
function f(q) = qd that makes O(d) calls to the program being tested. Extending the
technique when f is a constant degree exponentiation to the case when f is a constant
degree polynomial (e.g., f(q) = qd+ q+1, where q is a polynomial over a finite field)
is much harder. First we show a reduction from multiplication to the computation of
low-degree polynomials. Using this reduction and the notion of a result-checker, we
construct a self-tester for degree d polynomials over finite field extensions of dimension
n that make O(2d) calls to the program being tested.

1.5. Related work. One method that has been used to get around the gen-
erator bottleneck has been to exploit the property of downward self-reducibility [5].
The self-testers that use this property, however, have to make Ω(log n) calls to the
program depending on the way the problem decomposes into smaller problems. For
instance, a tester for the permanent function of n × n matrices makes O(n) calls to
the program, whereas a tester for polynomial multiplication that uses similar princi-
ples makes O(log n) calls. In [5] a bootstrap tester for polynomial multiplication that
makes O(log n) calls to the program being tested is given. It is already known that
matrix multiplication can be tested (without any calls to the program) using a result-
checker due to Freivalds [13]. The idea of Freivalds’ matrix multiplication checker can
also be adapted to build testers for polynomial multiplication that make no calls to
the program being tested. This approach, however, requires the underlying field to be
large (have at least (2+ γ)n elements, where n is the degree of the polynomials being
multiplied, and γ is a positive constant). Moreover, this scheme requires the tester
to perform polynomial evaluations, whereas ours does not. For Fourier transforms, a
different result-checker that uses preprocessing has been given independently in [6].

A useful fact. The following fact, a variant of the well-known Chernoff–Hoeffding
bounds, is often very useful in obtaining error-bounds in sampling 0/1 random vari-
ables [15].

Fact 1.6. Let Y1, Y2, . . . be independently and identically distributed 0/1 random
variables with means µ. Let θ ≤ 2. If N ≥ (1/µ)(4 ln(2/ρ)/θ2), then Pr[(1 − θ)µ ≤
Ỹ ≤ (1 + θ)µ] ≥ 1− ρ, where Ỹ =

∑N
i=1 Yi/N .

Organization of the paper. Section 2 discusses the scheme for linear functions
over vector spaces; section 3 extends the scheme for multilinear functions; section 4
outlines the approach for nonlinear functions.

2. Linear functions over vector spaces. In this section, we address the prob-
lem of self-testing linear functions on a vector space without the generator bottleneck.
We demonstrate a general technique to self-test without the generator bottleneck and
provide several interesting applications of our technique.

Definitions. Let V be a vector space of finite dimension n over a field K, and let f
be a function from V into a ring R. We are interested in building a self-tester for the
case where f(·) is a linear function, that is, f(cα+β) = cf(α)+ f(β) ∀ α, β ∈ V and
c ∈ K. For 1 ≤ i ≤ n, let ei denote the unit vector that has a 1 in the ith position and
0’s in the other positions. The vectors e1, e2, . . . , en form a collection of basis vectors
that span V . Viewed as an Abelian group under vector addition, V is generated by
e1, . . . , en. We assume that the field K is finite, since it is not clear how to choose a
random element from an infinite field.

The property of linearity If (α, β) ≡ [f(α + β) = f(α) + f(β)] was shown to
be robust in [5]. Using this and the generic construction of self-testers from robust
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properties, one obtains the following self-tester for the function f :

Property Test:

Repeat O( 1ε log
1
ρ ) times

Pick α, β ∈R V
Verify P (α+ β) = P (α) + P (β)
Reject if the test fails

Generator Tests:

For i = 1 to n
Verify Psc(ei) = f(ei)

If P passes the Property Test then we are guaranteed the existence of a linear
function g that is close to P . There are, however, two problems with the Generator
Tests: one is that the self-tester is inefficient—if the inputs are vectors of size n,
the self-tester makes O(n) calls to the program, which is not desirable. Second, the
self-tester needs to know the correct value of f on n different points, which is also
undesirable. Our primary interest is to avoid this generator bottleneck and solve both
of the problems mentioned. The key idea is to find an easy and uniform way that
“converts” one generator into the next generator. We illustrate this idea through the
following example.

Example. Let Pn denote the additive group of all degree n polynomials over a
field K. The elements 1, x, x2, . . . , xn generate Pn, and multiplying any generator xk
by x gives the next generator xk+1. For a polynomial q ∈ Pn and a scalar c ∈ K, let
Ec(q) denote the function that evaluates q(c). Clearly Ec is linear and satisfies the
simple relation Ec(xq) = cEc(q). Suppose P is a program that purports to compute
Ec, and assume that P has passed Property Test given above. Then we know by
robustness of linearity that there is a linear function g that agrees with P on most
inputs. Note that g can be computed correctly with high probability via the self-
corrector (which is easy to construct for linear functions [5]). Now, rather than verify
that g(xk) = Ec(x

k) for all generators xk of Pn, we may instead verify that g satisfies
the property g(xq) = cg(q) everywhere. By an easy induction, this implies that g
agrees with Ec at all the generators. By linearity of g, it follows that g agrees with
Ec on all inputs.

We are now faced with the task of verifying g(xq) = cg(q) ∀ q ∈ Pn, which is too
expensive to be tried explicitly and exhaustively. Instead, we prove that it suffices
to check with O(1) tests that g(xq) = cg(q) almost every place that we look at.
That is, pick many random q ∈ Pn, ask the program Psc to compute the values of
g(q) and g(xq), and cross-check that g(xq) = cg(q) holds. In other words, we prove
that the property J g(q) ≡ [g(xq) = cg(q)] is robust (in a restricted sense) under the
assumption that g is linear. (In its most general interpretation, robustness guarantees
the existence of h that satisfies h(xq) = ch(q) ∀ q ∈ Pn, and that agrees with g on a
large fraction of inputs. We actually show that h ≡ g, hence the “restricted sense.”)
The self-tester needs to know the value of f on only one point, in contrast to n, as in
the original approach of [5].

Generalization via the basis rotation function θ. We note that this idea has a
natural generalization to vector spaces. Let θ denote the basis rotation function, i.e.,
the linear operator on a vector space V that “rotates” the coordinate axes that span
V . θ, which can be viewed as a matrix, defines a one-to-one correspondence from the
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set of basis vectors to itself: for every i, θ(ei) = e(i+1) modn. The computational payoff
is achieved when there is a simple relation between f(α) and f(θ(α)) for all vectors
α ∈ V . More specifically, we show that the generator bottleneck can be avoided if
there is an easily computable function hθ,f such that

f(θ(α)) = hθ,f (α, f(α)),

∀ α ∈ V . (For instance, for polynomial evaluation Ec, f(θ(q)) = c · f(q),∀q ∈ Pn.)
From here on, when obvious, we drop the suffix f and simply denote hθ,f as hθ. If the
function f is linear, the linearity of θ implies that hθ is linear in its second argument
in the following sense: hθ(α + β, f(α + β)) = hθ(α, f(α)) + hθ(β, f(β)). What is
more important is that hθ be easy to compute, given just α and f(α). Using this
scheme, we show that many natural functions f have a suitable candidate for hθ.
The Generator Tests of [5] can now be replaced by:

Basis Test:

Verify Psc(e1) = f(e1)

Inductive Test:

Repeat O( 1ε log
1
ρ ) times

Pick α ∈R V
Verify Psc(θ(α)) = hθ(α, Psc(α))
Reject if the test fails

The following theorem proves that this replacement is valid.
Theorem 2.1. Suppose f is a linear function from the vector space V into a

ring R, and suppose P is a program for f .
(a) Let ε < 1/2, and suppose P satisfies the following condition:
(1) Prα,β∈V [P (α + β) �= P (α) + P (β)] ≤ ε. Then the function g defined by

g(α) = majorityβ∈V {P (α + β) − P (β)} is a linear function on V , and g agrees with
P on at least 1− 2ε fraction of the inputs.

(b) Furthermore, suppose hθ(α, f(α)) = f(θ(α)) and g satisfies the following
conditions:

(2) g(e1) = f(e1).
(3) Prα∈V [g(θ(α)) �= hθ(α, g(α))] ≤ ε, where α is such that θ(α) is defined.

Then g(α) = f(α) ∀ α ∈ V .
Remarks. The above theorem merely lists a set of properties. The fact that this

set yields a self-tester is presented in Theorem 2.2. Note that hypotheses (1), (2), and
(3) above are conditions on P and g, not tests performed by a self-tester.

Proof. The proof that the function g is linear and Psc computes g (with high
probability) is due to [5]. For the rest of this proof, we will assume that g is linear
and that it satisfies conditions (2) and (3) above.

We first argue that it suffices to prove that if the conditions hold, then for every
α ∈ V , g(θ(α)) = hθ(α, g(α)). By condition (2), g agrees with f on the first basis
vector. For i > 1, the basis vector ei can be obtained by θ(ei−1). If g satisfies
g(θ(α)) = hθ(α, g(α)) everywhere, it would follow that g computes f correctly on all
the basis vectors. Finally, since g is linear, it computes f correctly on all of V , since
the vectors in V are just linear combinations of the basis vectors.

Now we show that condition (3) implies that ∀α ∈ V , g(θ(α)) = hθ(α, g(α)). Fix
an arbitrary element α ∈ V . We will show that the probability over a random β ∈ V



SELF-TESTING WITHOUT THE GENERATOR BOTTLENECK 1637

that g(θ(α)) = hθ(α, g(α)) is positive. Since the equality is independent of β and
holds with nonzero probability, it must be true with probability 1. Now

Pr
β∈V

[
g(θ(α)) = g(θ(β + α− β))

= g(θ(β) + θ(α− β))

= g(θ(β)) + g(θ(α− β))

= hθ(β, g(β)) + hθ(α− β, g(α− β))

= hθ(β + α− β, g(β) + g(α− β))

= hθ(α, g(α))
]
≥ 1− 2ε > 0.

The first equality in the above is just rewriting. The second equality follows from
the linearity of θ. The third equality follows from the fact that g is linear. If the
random variable β is distributed uniformly in V , the random variables β and α − β
are distributed identically and uniformly in V . Therefore, by the assumption that g
satisfies condition (3), the fourth equality fails with probability at most 2ε. The fifth
equality uses the fact that hθ is linear, and the last equality uses the fact that g is
linear.

The foregoing theorem shows that if P (and g) satisfy certain conditions, then g,
which can be computed using P , is identically equal to the function f . The self-tester
comprises the following tests: Linearity Test, Basis Test, and Inductive Test.

Theorem 2.2. For any ρ < 1 and ε < 1/2, the above three tests compose a
2ε-self-tester for f . That is, if a program P computes f correctly on all inputs, then
the self-tester outputs PASS with probability 1, and if P computes f incorrectly on
more than 2ε fraction of the inputs, then the self-tester outputs FAIL with probability
at least 1− ρ.

Proof. In performing the three tests, the self-tester is essentially estimating the
probabilities listed in conditions (1), (2), and (3) of the hypothesis of Theorem 2.1.
Note that condition (2) does not involve any probability; rather, the self-tester uses
Psc to compute g(e1). By choosing O((1/ε) log(1/ρ)) samples in Linearity Test

and Inductive Test and by using the self-corrector with confidence parameter ρ/3
in Basis Test the self-tester ensures that its confidence in checking each condition
is at least 1− (ρ/3).

Clearly if P always computes f correctly, the tester always outputs PASS. Con-
versely, suppose the tester outputs PASS. Then with probability 1−ρ, the hypotheses
of Theorem 2.1 are true. By the conclusion of Theorem 2.1, it follows that a function
g that is identical to f exists, and that g equals P on at least 1 − 2ε fraction of the
inputs.

2.1. Applications. We present some applications of Theorem 2.2. We remind
the reader that a linear function f on a vector space V is efficiently self-testable with-
out the generator bottleneck if there is a (linear) function hθ that is easily computable
and that satisfies f(θ(α)) = hθ(α, f(α)) ∀ α ∈ V . In each of our applications f , we
show that a suitable function h = hθ,f exists that satisfies the above conditions. Recall
the example of the polynomial evaluation function Ec(q) = q(c), where the identity
Ec(xq) = cEc(q) holds; in the applications below, we will establish only similar rela-
tionships. Also, for the sake of simplicity, we do not give all the technical parameters
required; these can be computed by routine calculations following the proofs of the
theorems in the last section.
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Our applications concern linear functions of polynomials. We obtain self-testers
for polynomial evaluation, Fourier transforms, polynomial differentiation, polynomial
integration, and the mod function of polynomials. Moreover, the vector space set-
ting lets us state some of these results in terms of the matrices that compute linear
transforms of vector spaces.

Let Pn ⊆ K[x] denote the group of polynomials in x of degree ≤ n over a field
K. The group Pn forms a vector space under usual polynomial addition and scalar
multiplication by elements from K. The polynomials 1, x, x2, . . . , xn span Pn, and a
polynomial q(x) =

∑n
i=0 qix

i has the vector representation (qn, qn−1, . . . , q1, q0). The
basis rotation function θ in this case is just multiplication by x, thus θ(q) = xq. Note
that multiplying q by x results in a polynomial of degree n+1. To handle this minor
detail, we will assume that the program works over the domain Pn+1, and we conclude
correctness over Pn.

Polynomial evaluation. For any c ∈ K, let Ec(q) denote, as described before,
the function that returns the value q(c). This function is linear. Moreover, the
relation between Ec(xq) and Ec(q) is simple and linear: Ec(xq) = cEc(q). To self-test
a program P that claims to compute Ec, the Inductive Test is simply to choose
many random q’s, and verify that Psc(xq) = cPsc(q) holds.

Vandermonde operators and the discrete Fourier transform. If u1, u2, . . . , un+1

are n+ 1 distinct elements of K, then one may wish to evaluate a polynomial q ∈ Pn
simultaneously on all n + 1 points. The ideas for Ec extend easily to this case, for
Eu(xq) = uEu(q) for any u ∈ K, and these relations hold simultaneously.

Let ω be a principal (n+ 1)-st root of unity in K. The operation of converting a
polynomial from its coefficient representation to pointwise evaluation at the powers of
ω is known as the discrete Fourier transform (DFT). DFT has many fundamental ap-
plications that include fast multiplication of integers and polynomials. With our nota-
tion, the DFT of a polynomial q ∈ Pn is simply F (q) = (Eω0(q), Eω1(q), . . . , Eωn(q)).
The DFT F is linear, and F (xq) = (ω0Eω0(q), . . . , ωnEωn(q)). Notice that here the
function h is really n coordinate functions hωi for 0 ≤ i ≤ n. The self-tester will
simply choose q’s randomly, request the program to compute F (q) and F (xq), and
verify for each i, 0 ≤ i ≤ n, that (F (xq))[i] = ωi(F (q))[i] holds.

This suggests the following generalization (for the case of arbitrary vector spaces).
Simultaneous evaluation of a polynomial at d+ 1 points u1, . . . , un+1 corresponds to
multiplying the vector p by a Vandermonde matrix M , where Mij = uj−1

i . The ideas
used to test simultaneous evaluation of polynomials and the DFT extend to give a
self-tester for any linear transform that is represented by a Vandermonde matrix.

The matrix for the DFT can be written as a Vandermonde matrix F , where
Fij = ωij . The inverse of the DFT, that is, converting a polynomial from pointwise
representation to coefficient form, also has a Vandermonde matrix whose entries are
given by F̃ij = (1/detF )ω

−ij . It follows that the inverse Fourier transform can be
self-tested efficiently. Another point worth mentioning here is that in carrying out
the Inductive Test the self-tester does not have to compute detF . All it needs to
do is verify that for many randomly chosen q’s, the identity (F̃ (xq))[i] = ω−i(F̃ (q))[i]
holds.

Operators in elementary Jordan canonical form. A linear operator M is said to
be in elementary Jordan canonical form if all the diagonal entries ofM are c for some
c ∈ K, and all the elements to the left of the main diagonal (the first non principal
diagonal in the lower triangle of M) are 1’s. It is easy to verify that Mθ = θM +M ′,
where M ′ is a matrix that has a −1 in the top left corner and a 1 in the bottom right
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corner and zeroes elsewhere. Therefore, for every v = (vn, vn−1, . . . , v2, v1)
T in the

vector space, M(θ(v)) = θ(M(v)) + (−vn, 0, . . . , 0, v1)
T . This gives an easy way to

implement the Inductive Test in the self-tester.
An attempt to extend this to matrices in Jordan canonical form, or even to

diagonal matrices, seems not to work. If, however, a diagonal or shifted diagonal
matrix has a special structure, then we can obtain self-testers that avoid the generator
problem. For example, the matrix corresponding to the differentiation of polynomials
has a special structure: it contains the entries n, n − 1, . . . , 1 on the diagonal above
the main diagonal.

Differentiation and integration of polynomials. Differentiation of polynomials is a
linear function D : Pn → Pn−1. We have the explicit form for h: D(xq) = q+ xD(q).
Integration of polynomials is a linear function I : Pn → Pn+1. The explicit form for h
is I(xq) = xI(q)− I(I(q)). Even though this does not readily fit into our framework
(since it is not of the form I(xq) = h(q, I(q))), the proof of Theorem 2.1 can be
easily modified to handle this case using the linearity of I. For completeness, we spell
out the details for the robustness of the Inductive Test, which is the only change
required.

Lemma 2.3. If g : Pn → Pn+1 is a linear function that satisfies Prq∈Pn [g(xq) �=
xg(q)− g(g(q))] = ε < 1/2, then Prq∈Pn [g(xq) = xg(q)− g(g(q))] = 1.

Proof.

Pr
r∈Pn

[
g(xq) = g(x(r + q − r))

= g(xr + x(q − r))

= g(xr) + g(x(q − r))

= xg(r)− g(g(r)) + xg(q − r)− g(g(q − r))

= x(g(r) + g(q − r))− g(g(r) + g(q − r))

= xg(q)− g(g(q))
]
≥ 1− 2ε > 0.

Since the event g(xq) = xg(q) − g(g(q)) holds with positive probability and is
independent of r, it holds with probability one.

Thus we can avoid the generator bottleneck for these functions. This can be
considered as a special case of the previous application.

Higher order differentiation of polynomials. Let Dk denote the kth differential
operator. It is easy to write a recurrence-like identity for Dk in terms of Dj , j < k.
This gives us a self-tester only in the library setting described in [5, 21], where one
assumes that there are programs to compute all these differential operators. If we
wish to self-test a program that only computes Dk and have no library of lower-order
differentials, this assumption is not valid. To remedy this, we will use the following
lemma, which is proved in the appendix.

Lemma 2.4. If q is a polynomial in x of degree ≥ k, then

k∑
i=0

(
k

i

)
(−x)k−iDk(xiq) = k!q.

Using this identity, the self-tester can perform an Inductive Test. The robust-
ness of the Inductive Test can be established as in the proof of Theorem 2.1. For
completeness, we outline the key step here. Let ci denote the coefficient of the term
Dk(xiq) in the sum in Lemma 2.4. Thus ci =

(
k
i

)
(−x)k−i.
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Lemma 2.5. If g is a linear function that satisfies Prq∈Pn
[
∑
i cig(x

iq) �= k!q] =
ε < 1/2, then Prq∈Pn [

∑
i cig(x

iq) = k!q] = 1.
Proof.

Pr
r∈Pn

[∑
i

cig(x
iq) =

∑
i

cig(x
i(r + q − r))

=
∑
i

cig(x
ir) +

∑
i

cig(x
i(q − r))

= k!r + k!(q − r)

= k!q
]
≥ 1− 2ε > 0.

Here the first equality is rewriting; the second equality holds with probability 1−2ε
by the assumption that Prq[

∑
i cig(x

iq) �= k!q] = ε. Since the event
∑
i cig(x

iq) = k!q
holds with positive probability and is independent of r, it holds with probability
one.

Thus, testing if g satisfies this identity for most q suffices to ensure that g satisfies
this identity everywhere. If g does satisfy this identity, then we know the following:
if g(q) = Dk(q), g(xq) = Dk(xq), g(x2q) = Dk(x2q), . . . , g(xk−1q) = Dk(xk−1q), then
g(xkq) = Dk(xkq). To conclude that g ≡ Dk by induction, we need to modify Basis
Test to test k base cases: if g(1) = Dk(1), g(x) = Dk(x), g(x2) = Dk(x2), . . . , g(xk−1)
= Dk(xk−1), i.e., if g(1) = g(x) = g(x2) = · · · = g(xk−1) = 0.

Mod function. Let α ∈ K[x] be a monic irreducible polynomial. LetMα(q) denote
the mod function with respect to α, that is,Mα(q) = qmodα. This is a linear function
when the addition is interpreted as mod α addition. Since α is monic, the degree of
Mα(q) is always less than degα. If c ∈ K is the coefficient of the highest degree term
in Mα(q), we have

Mα(xq) =

{
xMα(q) if deg xMα(q) < degα,
xMα(q)− cα if deg xMα(q) = degα.

As before, in testing if a program P computes the function Mα, step (3) of the
self-tester is to choose many q’s at random, compute Psc(q) and Psc(xq), and verify
that one of the identities Psc(xq) = xPsc(q) or Psc(xq) = xPsc(q)−cq holds (depending
on the degree of q).

3. Multilinear functions. In this section we extend the ideas in section 2
to multilinear functions. A k-variate function f is called k-linear if it is linear in
each of its variables when the other variables are fixed, i.e., f(α1, . . . , αi−1, αi +
βi, αi+1, . . . , αk) = f(α1, . . . , αi−1, αi, αi+1, . . . , αk)+f(α1, . . . , αi−1, βi, αi+1, . . . , αk)
∀ i = 1, . . . , k.

Our main motivating example for a multilinear function is polynomial multipli-
cation f : Pn−1 × Pn−1 → P2n−1, which is bilinear. Note that the domain of f is
generated by n2 generators of the form (xi, xj) for 0 ≤ i, j ≤ n (i.e., pairs of generators
of Pn−1). Now, suppose we wish to test P that purports to compute f . The naive
approach would require doing the Generator Tests at these n2 generators. This
requires O(n2) calls to P , rendering the self-tester highly inefficient. Blum, Luby,

and Rubinfeld [5] give a more efficient bootstrap self-tester that makes O(logO(k) n)
calls to P . It can be seen that for general k-linear functions, their method can be
extended to yield a tester that makes O(logO(k) n) calls to P . (In our context, it is
allowable to think of k as a constant since changing k results in an entirely different
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function f .) We are interested in reducing the number of calls to P with respect to
the problem size n for a specific function f . The complexity of the tester we present
here is independent of n, and the self-tester is required to know the correct value of
f at only one point. As in the previous section, our result applies to many general
multilinear functions over large vector spaces.

As before, we define a set of properties depending on f , that, if satisfied by P ,
would necessarily imply that P must be the same as the particular multilinear function
f . For simplicity, we present the following theorem for f that is bilinear. This is an
analog of Theorem 2.1 for multilinear functions.

Theorem 3.1. Suppose f is a bilinear function from V 2 into a ring R, and
suppose P is a program for f .

(a) Let ε < 1/4, and suppose P satisfies the following condition:
(1) Prα1,α2,β1,β2∈V [P (α1 + β1, α2 + β2) �= P (α1, α2) + P (α1, β2) + P (β1, α2) +

P (β1, β2)] ≤ ε.
Then the function g defined by g(α1, α2) = majorityβ1,β2∈V {P (α1 − β1, α2 − β2) +
P (α1−β1, β2)+P (β1, α2−β2)+P (β1, β2)} is a bilinear function on V 2, and g agrees
with P on at least 1− 2ε fraction of the inputs.

(b) Furthermore, suppose g satisfies the following conditions:
(2) g(e1, e1) = f(e1, e1),
(3)

Pr
α1,α2∈V

[g(θ(α1), α2) �= h
(1)
θ (α1, g(α1, α2))] ≤ ε,

Pr
α1,α2∈V

[g(α1, θ(α2)) �= h
(2)
θ (α2, g(α1, α2))] ≤ ε.

Then g(α1, α2) = f(α1, α2) ∀ α1, α2 ∈ V .
Proof. A simple extension of the proof in [5] shows that g is bilinear. (Better

bounds on ε via a different test can be obtained by appealing to [2].) As in the
proof of Theorem 2.1, it suffices to show that given the three conditions, a stronger

version of condition (3) holds: g(θ(α1), α2) = h
(1)
θ (α1, g(α1, α2)) and g(α1, θ(α2)) =

h
(2)
θ (α2, g(α1, α2)) for every α1, α2 ∈ V . With the addition of this last property, it can
be shown that g ≡ f . Taking condition (2) that g(e1, e1) = f(e1, e1) as the base case
and inducting by obtaining (ei+1, ei) and (ei, ei+1) from (ei, ei) via an application of
θ to either generator ∀ 1 ≤ i < n, it can be shown that g(ei, ej) = f(ei, ej) for any
bases elements ei, ej of V . This, combined with the bilinearity property of g, implies
the correctness of g on every input.

Now we proceed to show the required intermediate result that given conditions
(1) and (2), g satisfies the stronger version of condition (3) that we require above:

Pr
β1,β2∈V 2

[
g(α1, θ(α2))

= g(β1 + α1 − β1, θ(β2 + α2 − β2))

= g(β1, θ(β2 + α2 − β2)) + g(α1 − β1, θ(β2 + α2 − β2))

= g(β1, θ(β2)) + g(β1, θ(α2 − β2)) + g(α1 − β1, θ(β2)) + g(α1 − β1, θ(α2 − β2))

= h
(2)
θ (β2, g(β1, β2)) + h

(2)
θ (α2 − β2, g(β1, α2 − β2))

+h
(2)
θ (β2, g(α1 − β1, β2)) + h

(2)
θ (α2 − β2, g(α1 − β1, α2 − β2))

= h
(2)
θ (α2, g(β1, α2)) + h

(2)
θ (α2, g(α1 − β1, α2))

= h
(2)
θ (α2, g(α1, α2))

]
≥ 1− 4ε > 0.
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The first equality is a rewriting of terms. Multilinearity of g implies the second

and third equalities. If the probability Pr[g(α1, θ(α2)) �= h
(2)
θ (α2, g(α1, α2))] < ε, then

the fourth equality fails with probability less than 4ε. The rest of the equality follows

from the multilinearity of h
(2)
θ and g. If ε < 1/4, this probability is nonzero. Since the

first and last terms are independent of β1, β2, and are equal with nonzero probability,

the result follows. A similar approach works for h
(1)
θ as well.

Multilinearity Test:

Repeat O( 1ε log
1
ρ ) times

Pick α1, α2, β1, β2 ∈R V
Verify P (α1 + β1, α2 + β2) = P (α1, α2) + P (β1, α2)+

P (α1, β2) + P (β1, β2)
Reject if the test fails

Basis Test:

Verify Psc(e1, e1) = f(e1, e1)

Inductive Test:

Repeat O( 1ε log
1
ρ ) times

Pick α1, α2 ∈R V

Verify Psc(θ(α1), α2) = h
(1)
θ (α1, Psc(α1, α2))

Verify Psc(α1, θ(α2)) = h
(2)
θ (α2, Psc(α1, α2))

Reject if the test fails

Note that in the latter two tests we use a self-corrected version Psc of P . The notion
of self-correctors for multilinear functions over vector spaces is implied by random
self-reducibility.

It is easy to see that Theorem 3.1 extends to an arbitrary k-linear function so
long as ε < 1/2k. Thus, we obtain the following theorem whose proof mirrors that of
Theorem 2.2.

Theorem 3.2. If f is a k-variate linear function, then for any ρ < 1 and
ε < 1/2k, the above three tests comprise a 2kε-self-tester for f that succeeds with
probability at least 1− ρ.

3.1. Applications. Let q1, q2 denote polynomials in x. The function M(q1, q2)
that multiplies two polynomials is symmetric and linear in each variable. Moreover,
since M(xq1, q2) = M(q1, xq2) = xM(q1, q2), polynomial multiplication has an effi-
cient self-tester.

An interesting application of polynomial multiplication, together with the mod
function described in section 2.1, is the following. It is well known that a degree n
(finite) extension K of a finite field F is isomorphic to the field F[x]/(α), where α is an
irreducible polynomial of degree n over F. Under this isomorphism, each element of
K is viewed as a polynomial of degree ≤ n over F; addition of two elements q1, q2 ∈ K

is just their sum q1 + q2 as polynomials; and multiplication of q1, q2 ∈ K is given
by q1q2modα. It follows that field arithmetic (addition and multiplication) in finite
extensions of a finite field can be self-tested without the generator bottleneck, that is,
the number of calls made to the program being tested is independent of the degree of
the field extension.
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3.2. Matrix multiplication. LetMn denote the algebra of n×n matrices over
Zp, and let f :Mn×Mn → Mn denote matrix multiplication. Matrix multiplication
is a bilinear function; however, since it is a matrix operation rather than a vector oper-
ation, it requires a slightly different treatment from the general multilinear functions.
Mn, viewed as an additive group, has n

2 generators; one possible set of generators is
{Ei,j | 1 ≤ i, j ≤ n}, where each generator Ei,j is a matrix that has a 1 in position
(i, j) and 0’s elsewhere. We note that any generator Ei,j can be converted into any
other generator Ek,� via a sequence of horizontal and vertical rotations obtained by
multiplications by the special permutation matrix Π:

Π =



0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . .

...
1 0 0 . . . 0


 ⇒ Ei,j = Π

k−i · Ek,� ·Π�−j .

The rotation operations correspond to the θ operator of the model for multilinear func-
tions. There are, however, two different kinds of rotations—horizontal and vertical—
due to the two-dimensional nature of the input, and the function h defining the be-
havior of the function with respect to these rotations is not always easily computable,
short of actually performing a matrix multiplication. We therefore exploit some addi-
tional properties of the problem to come up with a set of conditions that are sufficient
for P to be computing matrix multiplication f . LetM′

n denote the subgroup ofMn

that contains only matrices with columns 2, . . . , n all-zero.
Theorem 3.3. Let P be a program for f and ε < 1/8.
(a) Suppose P satisfies the following:
(1) PrX,Y,Z,W∈Mn

[P (X+Z, Y +W ) �= P (X,Y )+P (X,W )+P (Z, Y )+P (Z,W )]
≤ ε.
Then the function g defined by g(X,Y ) = majorityZ,W∈Mn

{P (X−Z, Y −W )+P (X−
Z,W )+P (Z, Y −W )+P (Z,W )} is a bilinear function on M2

n, and g agrees with P
on at least 1− 2ε fraction of the inputs.

(b) Furthermore, suppose g satisfies the following conditions:
(2) PrX∈M′

n,Y ∈Mn
[g(X,Y ) �= f(X,Y )] ≤ ε,

(3) PrX∈Mn [g(X,Π) �= f(X,Π)] ≤ ε and PrX∈Mn [g(Π, X) �= f(Π, X)] ≤ ε,
(4) PrX,Y,Z∈Mn [g(X, g(Y,Z)) �= g(g(X,Y ), Z)] ≤ ε.

Then g(X,Y ) = f(X,Y ) ∀ X,Y ∈ Mn.
To be able to prove this theorem, we first need to show that the conditions

recounted have stronger implications than their statements. Then we will show that
these strengthened versions of the conditions imply Theorem 3.3.

First, we show that condition (2) implies a stronger version of itself.
Lemma 3.4. If condition (2) in Theorem 3.3 holds, then g(Ei,1, Y ) = f(Ei,1, Y )

∀ Y ∈ Mn and 1 ≤ i ≤ n.
Proof. We in fact show something stronger. We show that g(X,Y ) = f(X,Y ) ∀X ∈

M′
n and Y ∈ Mn:

Pr
Z∈M′

n,W∈Mn

[
g(X,Y ) = g(Z, Y −W ) + g(X − Z, Y −W ) + g(Z,W ) + g(X − Z,W )

= f(Z, Y −W ) + f(X − Z, Y −W ) + f(Z,W ) + f(X − Z,W )

= f(X,Y )
]
> 1− 4ε > 0.

The second equality holds with probability ≥ 1 − 4ε by condition (2). All the rest
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hold from linearity of g and f . The result follows since ε < 1/4. The lemma follows
since Ei,1 ∈ M′

n.
An immediate adaptation of the proof of Lemma 3.4 can be used to extend con-

dition (3) to hold for all inputs.
Next, we show that the linearity of g makes it possible to conclude from hypothesis

(4) that g is associative.
Lemma 3.5. If condition (4) in Theorem 3.3 holds, then g is always associative.
Proof.

Pr
X1,Y1,Z1∈Mn

[
g(g(X,Y ), Z)

]
= g(g(X1, Y1), Z1) + g(g(X −X1, Y1), Z1) + g(g(X1, Y − Y1), Z1)

+g(g(X −X1, Y − Y1), Z1) + g(g(X1, Y1), Z − Z1) + g(g(X −X1, Y1), Z − Z1)

+g(g(X1, Y − Y1), Z − Z1) + g(g(X −X1, Y − Y1), Z − Z1)

= g(X1, g(Y1, Z1)) + g(X −X1, g(Y1, Z1)) + g(X1, g(Y − Y1, Z1))

+g(X −X1, g(Y − Y1, Z1)) + g(X1, g(Y1, Z − Z1)) + g(X −X1, g(Y1, Z − Z1))

+g(X1, g(Y − Y1, Z − Z1)) + g(X −X1, g(Y − Y1, Z − Z1))

= g(X, g(Y,Z))
]
≥ 1− 8ε > 0.

The first equality holds from the linearity of g after expanding X,Y, Z as X1 + (X −
X1), Y1 + (Y − Y1), Z1 + (Z − Z1), respectively. The second equality is true by the
condition (4) with probability ≥ 1− 8ε. The last equality is a recombination of terms
using linearity.

We now have the tools to prove Theorem 3.3.
Proof. The bilinearity of g follows from the proof of Theorem 3.1.
From Lemmas 3.4 and 3.5, we have that condition (2) can be extended such that

g(Ei,1, X) = f(Ei,1, X) ∀ 1 ≤ i ≤ n and X ∈ Mn, and conditions (3) and (4) on g
hold for all inputs.

To show that these properties are sufficient to identify g as matrix multiplication,
note that from the multilinearity of g, we can write

g(X,Y ) = g


 ∑

1≤i,j≤n
xi,j · Ei,j ,

∑
1≤k,�≤n

yk,� · Ek,�


 = ∑

1≤i,j,k,�≤n
xi,j · yk,� · g(Ei,j , Ek,�).

If g(Ei,j , Ek,�) = f(Ei,j , Ek,�) ∀ i, j, k, 1, then multilinearity implies that g is the same
as f . Now, using our assumptions, we proceed to show the former holds:

g(Ei,j , Ek,�) = g(f(Ei,1,Π
j−1), f(Πk−1, E1,�))

= g(g(Ei,1,Π
j−1), g(Πk−1, E1,�))

= g(Ei,1, g(Π
j+k−2), E1,�)

= g(Ei,1, Ek+j−2,�)
= f(Ei,1, Ek+j−2,�)
= f(Ei,j , Ek,�).

The first equality is just a rewriting of the two generators in terms of other generators.
The second one follows from the strengthening of condition (3) that g computes f
whenever one of its arguments is equal to a power of Π. The third one follows from the
associativity of g, and the fourth one holds because g is the same as f when the first
input is a power of Π and by rewriting Ek+j−2,�. The fifth equality is true because g
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computes f correctly when its first argument is Ei,1 (as the consequence of condition
(2), see Lemma 3.4). The last one is a rewriting of the previous equality, using the
associativity of multiplication. Therefore, g is the same function as f .

We now present the test for associativity:

Associativity Test:

Repeat O( 1ε log
1
ρ ) times

Pick X,Y, Z ∈R Mn

Verify Psc(X,Psc(Y,Z)) = Psc(Psc(X,Y ), Z)
Reject if the test fails

A self-tester can be built by testing conditions (1), (2), (3), and (4), which correspond
to the Property Test, the Basis Test, the Inductive Test, and the Associativity
Test, respectively. Note that testing conditions (2) and (3) involve knowing the value
of f at random inputs. These inputs, however, come from a restricted subspace which
makes it possible to compute f both easily and efficiently. The following theorem is
immediate.

Theorem 3.6. For any ρ < 1 and ε < 1/8, there is an ε-self-tester for matrix
multiplication that succeeds with probability at least 1− ρ.

4. Nonlinear functions. In this section, we consider nonlinear functions. Specif-
ically, we deal with exponentiation and constant degree polynomials in the ring of
polynomials over the finite fields Zp. It is obvious that exponentiation and constant
degree polynomials are clearly defined over this ring.

4.1. Constant degree exponentiation. We first consider the function f(q) =
qd for some d (that is, raising a polynomial to the dth power). Suppose a program
P claims to perform this exponentiation for all degree n polynomials q ∈ Pn ⊆ K[x].
Using the low-degree test of Rubinfeld and Sudan [20] (see also [14]) we can first test
if the function computed by P is close to some degree d polynomial g. As before,
using the self-corrected version Psc of P , we can also verify that g(e1) = f(e1).

The induction identity f(xq) = xdf(q) also applies, and one can test whether
P satisfies this property on most inputs. Now it remains to show that this implies
g(xq) = xdg(q) ∀ q ∈ Pn. We follow a strategy similar to the case of linear func-
tions, this time using the Lagrange interpolation formula as the robust property that
identifies a degree d polynomial. We note that this idea is similar to the use of the
interpolation formula by Gemmell et al. [14], which extends the [5] result from linear
functions to low-degree polynomials. Before proceeding with the proof, we state the
following fact concerning the Lagrange interpolation identity.

Fact 4.1. Let g be a degree d polynomial. For any q ∈ Pn, if q1, q2, . . . , qd+1 are
distinct elements of Pn,

g(q) =
d+1∑
i=1

g(qi)
∏
j 
=i

q − qj
qi − qj

and g(xq) =

d+1∑
i=1

g(xqi)
∏
j 
=i

q − qj
qi − qj

.

The self-tester for f(q) = qd comprises the following tests:
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Degree Test:

Verify P is close to a degree d polynomial g (low-degree test)

Reject if the test fails

Basis Test:

Verify Psc(e1) = f(e1)

Inductive Test:

Repeat O( 1ε log
1
ρ ) times

Pick α ∈R V
Verify Psc(θ(α)) = xdPsc(α)
Reject if the test fails

Let β denote the probability that the d+1 random choices from the domain produce
distinct elements. We will assume that the domain is large enough so that β is close
to 1.

Assume that P passes the Degree Test and Psc passes the Basis Test, that is,
P agrees with some degree-d polynomial g on most inputs. We note that the low-
degree of test of [20] makes O((1/ε) log(1/ρ)) calls to render a decision with confidence
1 − (ρ/3). Furthermore, Psc also requires only O((1/ε) log(1/ρ)) calls to compute g
correctly with probability 1− (ρ/3). Below we sketch the proof that if ε < β/(d+ 1)
and Psc passes the Inductive Test, then g satisfies g(xq) = xdg(q) everywhere. Note
that (1/ε) = Θ(d), so the time taken by the tester is only Θ(d) (when ρ is a constant).

Pr
q1,...,qd+1

[g(xq) =

d+1∑
i=1

aig(xqi)

=

d+1∑
i=1

aix
dg(qi)

= xd
d+1∑
i=1

aig(qi)

= xdg(q)] ≥ β − (d+ 1)ε > 0.

Here ai =
∏
j 
=i(q− qj)/(qi − qj). The first equality is Fact 4.1, and applies since

g has been verified to be a degree d polynomial. Since the qi’s are uniformly and
identically distributed, by Inductive Test the second equality fails with probability
< (d + 1)ε. The third equality is just rewriting, and the fourth equality is due to
Fact 4.1 (the interpolation identity), which can be applied so long as the qi’s are
distinct, an event that occurs with probability β. Since the equality g(xq) = xdg(q)
holds independent of qi’s, if ε < β/(d+ 1), it holds with probability 1.

Theorem 4.2. The function f(q) = qd (where q ∈ Pn) has an O(1/d)-self-tester
that makes O(d) queries.

4.2. Constant degree polynomials. Next we consider extending the result of
section 4.1 to arbitrary degree-d polynomials f : Pn → Pnd. Clearly the low-degree
test and the basis test work as before. The interpolation identity is also valid. The
missing ingredient is the availability of an identity like “f(xq) = xdf(q),” which, as
we have shown above, is a robust property that can be efficiently tested. We show how
to get around this difficulty; this idea is based on a suggestion by R. Rubinfeld [18].
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Suppose f : Pn → Pnd is a degree-d polynomial (e.g., f(q) = q2 + q + 1), and
suppose a program P purports to compute f . Our strategy is to design a self-corrector
R for P and to then estimate the fraction of inputs q such that P (q) �= R(q). The
difficulty in implementing this idea by directly using the random self-reducibility of
f is that the usefulness of the self-corrector (to compute f correctly on every input)
depends critically on our ability to certify that P is correct on most inputs. Since
checking whether P is correct on most inputs is precisely the task of self-testing, we
seem to be going in cycles.

To circumvent this problem, we will design an intermediate multiplication pro-
gram Q that uses P as an oracle. To design the program Q, we prove the following
technical lemma that helps us express d-ary multiplication in terms of f—that is, we
establish a reduction from the multilinear function

∏d
i=1 qi to the nonlinear function

f . This reduction is a generalization to degree d of the elementary polarization iden-
tity xy = ((x+ y)2 − (x− y)2)/4, but slightly stronger in that it works for arbitrary
polynomials of degree d, not just degree-d exponentiation.

Lemma 4.3. For x ∈ {0, 1}d, let xi denote the ith bit of x. For any polynomial
G(q) =

∑
i piq

i of degree d,

∑
x∈{0,1}d

(
d∏
i=1

(−1)xi
)
G

(
d∑
i=1

(−1)xiqi

)
= pd2

dd!

d∏
i=1

qi.

Using the reduction given by Lemma 4.3, we will show how to construct an ε-self-
tester T for f (for ε = Θ(2−d)), following the outline sketched.

(1) First we build a program Q that performs c-ary multiplication for any c ≤ d
(if c < d, we can simply multiply by extra 1’s). The program Q is then self-tested
efficiently (without the generator bottleneck) by using a (1/2d+1)-self-tester for the
d-variate multilinear multiplication function from section 3. The number of queries
made to P in this process is O(1), where the constant depends on d (the degree of
f) but not on n (the dimensionality of the domain of f). Thus, if Q passes this
self-testing step, then it computes multiplication correctly on all but 1/2d+1 fraction
of the inputs. If Q fails the self-testing process, the self-tester T rejects.

(2) Next we build a reliable program Qsc that self-corrects Q using the random
self-reducibility of the multilinear multiplication function. That is, Qsc can be used to
compute c-ary multiplication (for any c ≤ d) correctly for every input with probability
at least 1 − ρ for any constant ρ > 0. In particular, by making O(2d log d) calls to
Q (and, hence, O(22d log d) calls to P ), Qsc can be used to compute multiplication
correctly for every input with probability at least 1− (1/10d).

(3) Next, we use Qsc to build the program R that computes f(q) in a straight-
forward way by using Qsc to compute the d required multiplications. If Qsc computes
multiplication correctly with probability 1− (1/10d), then R computes f correctly for
any input with probability at least 0.9.

(4) Finally, T randomly picksN = O((1/ε) log(1/ρ)) many samples q and checks
if P (q) = R(q), and outputs PASS iff P (q) = R(q) for all the chosen values of q.

It is easy to see that if P computes f correctly on all inputs, the self-tester T will
output PASS with probability one. For the converse, suppose that δ =def Prq[P (q) �=
f(q)] > ε, and yet T outputs PASS. We will upper bound the probability of this event
by ρ.

Since Q passes the self-testing step (step (1)), it computes multiplication correctly
on all but 1/2d+1 fraction of the inputs, and therefore, the use of the self-corrector
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Qsc as described in step (2) is justified. This, in turn, implies the guarantee made of
R in step (3): for every input q, R(q) = f(q) with probability at least 0.9. In step
(4), the probability that P (q) �= R(q) for a single random q is at least (0.9)δ. The
probability that P (q) = R(q) for every random input q chosen in step (4) is therefore
at most (1 − (0.9)δ)N = (1 − (0.9)δ)O((1/ε) log(1/ρ)) < (1 − (0.9)δ)O((1/δ) log(1/ρ)) < ρ.
Thus the probability that T outputs PASS, given that Prq[P (q) �= f(q)] > ε, is at
most ρ. The following theorem is proven, modulo the proof of Lemma 4.3.

Theorem 4.4. The function f(q), where f is a polynomial in q ∈ Pn of degree
d, has an O(1/2d)-self-tester that makes O(2d) queries.

Even though our self-tester makes O(2d) queries to test degree-d exponentiation,
the number of queries is independent of n, the dimensionality of the domain. Thus,
our self-tester is attractive if n is large and d is small. In particular, in conjunction
with the testers for finite field arithmetic described in section 3.1, the self-testers
described here help us to efficiently self-test constant degree polynomials on finite
field extensions of large dimension.

It remains to prove Lemma 4.3. This lemma is a direct corollary of the following
lemma, which illustrates a method to express d-ary multiplication in terms of f . The
proof of the next lemma is given in the Appendix.

Lemma 4.5. Let p1, . . . , pd be distinct variables. For x ∈ {0, 1}d, let xi denote
the ith bit of x. Then

∑
x∈{0,1}d

(
d∏
i=1

(−1)xi
)(∑

i

(−1)xipi

)c
=

{
0 if c < d,

2dd!
∏d
i=1 pi if c = d.

Appendix. Proof of Lemmas 2.4 and 4.5.
Lemma 2.4. If q is a polynomial in x of degree ≥ k, then

k∑
i=0

(
k

i

)
(−x)k−iDk(xiq) = k!q.

Proof. The proof is by induction on k. The base case (k = 0) is obviously true.

Let k > 0. We have Sk =
∑k+1
i=0

(
k+1
i

)
(−x)k+1−iDk+1(xiq). Since Dk+1(xiq) =

Dk(ixi−1q + xiD(q)) and since differentiation is linear, we have

Sk =
[
k+1∑
i=0

(
k + 1

i

)
(−x)k+1−iDk(ixi−1q)

]
+

[
k+1∑
i=0

(
k + 1

i

)
(−x)k+1−iDk(xiD(q))

]
.

Since the first term (i = 0) in the first sum vanishes, and since i
(
k+1
i

)
= (k+1)

(
k
i−1

)
,

the first sum evaluates to (k + 1)
∑k+1
i=1

(
k
i−1

)
(−x)k+1−iDk(xi−1q), which equals

(k + 1)!q by the inductive hypothesis. Hence it suffices to show that the second sum

evaluates to 0. This summation can be written as
∑k
i=0

(
k+1
i

)
(−x)k+1−iDk(xiD(q))

+Dk(xk+1D(q)). By Pascal’s identity, this sum can be split into the terms∑k
i=0

(
k
i−1

)
(−x)k+1−iDk(xiD(q)),

∑k
i=0

(
k
i

)
(−x)k+1−iDk(xiD(q)), andDk(xk·xD(q)).

The second term can be seen to be (−x)k!D(q) using the induction hypothesis. The
first and third terms can be combined to obtain k!(xD(q)), again using the induction
hypothesis. Thus, the entire expression equals (−x)k!D(q) + k!(xD(q)) = 0.
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Lemma 4.5. Let p1, . . . , pd be distinct variables. For x ∈ {0, 1}d, let xi denote
the ith bit of x. Then

∑
x∈{0,1}d

(
d∏
i=1

(−1)xi
)(∑

i

(−1)xipi

)c
=

{
0 if c < d,

2dd!
∏d
i=1 pi if c = d.

Proof. The proof uses the Fourier transform on the Boolean cube {0, 1}d (using the
standard isomorphism between {0, 1}d and Z

d
2). Let F denote the space of functions

from Z
d
2 into C. F is a (finite) vector space of functions of dimension 2d. Define the

inner product between functions f, g ∈ F by 〈f, g〉 = 2−d
∑
x f(x)g(x). For α ∈ Z

d
2,

define the function χα : Z
d
2 → C by χα(x) =

∏d
i=1(−1)xiαi , where xi and αi denote

the ith bits, respectively, of x and α. It is easy to check that χα(x)χα(y) = χα(x+y),
whence every χα is a character of Z

d
2. Furthermore, it is easy to check that 〈χα, χβ〉

equals 0 if α �= β, and equals 1 if α = β. Therefore, the characters χα form an
orthonormal basis of F , and every function f : Z

d
2 → C has a unique expansion

in this basis as f =
∑
α f̂αχα. This is called the Fourier transform of f , and the

coefficients f̂α are called the Fourier coefficients of f ; by the orthonormality of the
basis, f̂α = 〈χα, f〉. An easy property of the Fourier transform is that for α �= 0d,∑
x χα(x) = 0 (in fact, this is true for any nontrivial character of any group).

For the proof of the lemma, we note that it suffices to prove the lemma for all
complex numbers pi. Fix a list of complex numbers p1, . . . , pd, and define the function
f : Z

d
2 → C by f(x) = (

∑
i(−1)xipi)

c
. Then the left-hand side of the statement of

the lemma is just 2df̂α, where α = 1
d. Thus,

∑
x∈Z

d
2

(
d∏
i=1

(−1)xi
)(∑

i

(−1)xipi

)c

= 2df̂α

=
∑
x

χα(x)f(x)

=
∑
x

χα(x)
∑

n1+···+nd=c

0≤n1,...,nd≤c

(
c

n1, . . . , nd

) d∏
i=1

(−1)xinipnii

=
∑

n1+···+nd=c

0≤n1,...,nd≤c

(
c

n1, . . . , nd

) d∏
i=1

pnii
∑
x

d∏
i=1

χα(x)χβ(x), where βi = ni mod 2

=
∑

n1+···+nd=c

0≤n1,...,nd≤c

(
c

n1, . . . , nd

) d∏
i=1

pnii
∑
x

d∏
i=1

χα+β(x).

The innermost sum is zero if α+β �= 0d, i.e., if α �= β, and equals 2d otherwise. Thus
βi = αi = 1 for every i, that is, ni ≡ 1(mod 2) for every i. If c < d, this is impossible,
since

∑
i ni = c. If c = d, then the only way this can happen is if ni = 1 ∀ i; otherwise,

for some i, ni > 1, and since
∑
i ni = d, some ni = 0. When ni = 1 ∀ i, it is easy to

see that we have 2df̂α = 2
dd!
∏d
i=1 pi.
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Abstract. We extend some of the classical characterization theorems of relational database
theory—particularly those related to query safety—to the context where database elements come with
fixed interpreted structure and where formulae over elements of that structure can be used in queries.
We show that the addition of common interpreted functions, such as real addition and multiplication,
to the relational calculus preserves important characterization theorems of the relational calculus
and also preserves certain combinatorial properties of queries. Our main result of the first kind is
that there is a syntactic characterization of the collection of safe queries over the relational calculus
supplemented by a wide class of interpreted functions—a class that includes addition, multiplication,
and exponentiation—and that this characterization gives us an interpreted analog of the concept of
range-restricted query from the uninterpreted setting. Furthermore, our range-restricted queries are
particularly intuitive for the relational calculus with real arithmetic and give a natural syntax for
safe queries in the presence of polynomial functions. We use these characterizations to show that
safety is decidable for Boolean combinations of conjunctive queries for a large class of interpreted
structures. We show a dichotomy theorem that sets a polynomial bound on the growth of the output
of a query that might refer to addition, multiplication, and exponentiation.

We apply the above results for finite databases to get results on constraint databases represent-
ing potentially infinite objects. We start by getting syntactic characterizations of the queries on
constraint databases that preserve geometric conditions in the constraint data model. We consider
classes of convex polytopes, polyhedra, and compact semilinear sets, the latter corresponding to
many spatial applications. We show how to give an effective syntax to safe queries and prove that
for conjunctive queries the preservation properties are decidable.

Key words. constraints, databases, first-order logic, query safety
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1. Introduction. The power of classical query languages is linked to the fact
that these queries express a restricted class of declarative programs. The class of
semantic objects expressible through queries in the relational calculus, for example, is
limited in a number of helpful ways: each such query is polynomial-time computable,
each is local, and each has well-defined asymptotics. Although relational calculus
queries may not return finite results, a natural subclass of the relational calculus
does, namely, the class of range-restricted queries. This class gives guarantees of
finite output and is complete in this respect: it captures all relational calculus queries
whose outputs are always finite, the safe queries [1, 21, 39].

The relational theory on which these results are based deals only with pure rela-
tional queries, that is, those containing no interpreted predicates. Practical query
languages, in contrast, contain interpreted functions such as + and ∗. The re-
sulting queries, then, make use of the domain semantics, rather than being inde-
pendent of them, as pure relational queries are. For example, if the underlying
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structure is the field of real numbers 〈R,+, ∗, 0, 1, <〉, the extension of relational
calculus is achieved by using polynomial (in)equalities. For example, the query
ϕ(x, y) ≡ ∃z.R(x, z) ∧ R(z, y) ∧ x2 + y2 = z defines a subset of the self-join with
the condition that in joinable tuples (x, z) and (z, y), z must be the sum of squares
of x and y. A natural question, then, is what sort of restrictions still apply to queries
given with interpreted structure.

Clearly, many standard results fail in the presence of interpreted structure; for
example, queries may no longer express only local properties of inputs. Complexity
bounds are often dependent on fragile properties of both the functions present and the
encodings of the structures in some computational model. In contrast, we show here
that certain kinds of structural properties of relational calculus queries remain when
a reasonable interpreted structure is present. These include the classical equivalence
of safe and range-restricted queries, decidability of safety for restricted classes of
queries, as well as combinatorial properties of the queries, for example, restrictions on
the growth rate of the result sets. A primary example of well-behaved combinatorics
of these structures is a growth dichotomy theorem, which says that the output of
a query is either polynomial in the database or infinite. We show that the well-
behavedness of a structure, together with the decidability of its first-order theory, has
algorithmic consequences; for example, the set of range-restricted formulae can be
effectively computed.

A problem related to safety is that of state-safety, studied in [3]: for a query
and a database, determine if the output is finite. Unlike the safety problem, which
is undecidable (cf. [1]), the state-safety problem is decidable for some domains, for
example, natural numbers with the order relation; see [3, 5]. However, there are inter-
preted structures (even having a decidable first-order theory) for which this problem
is undecidable [36]. Moreover, [36] established that for the same interpreted structure,
no recursive set of queries captures the class of safe queries; that is, it is impossible
to have an analog of the concept of range-restriction. In contrast, we show that for
many well-behaved structures, state-safety is decidable. Furthermore, safety over all
states is decidable for restricted classes of queries (namely, Boolean combinations of
conjunctive queries).

The above results are for the standard relational calculus with interpreted func-
tions on finite structures; we then apply these results to get structural restrictions on
the behavior of queries in other models, particularly the constraint database model
introduced by Kanellakis, Kuper, and Revesz [20]. This model is motivated by new
applications involving spatial and temporal data, which require storing and querying
infinite collections. The constraint model generalizes the relational model by means
of “generalized relations.” These are possibly infinite sets defined by quantifier-free
first-order formulae in the language of some underlying infinite structureM = 〈U ,Ω〉.
Here U is a set (assumed to be infinite), and Ω is a signature that consists of a number
of interpreted functions and predicates over U . For example, in spatial applications,
M is usually the real field 〈R,+, ∗, 0, 1, <〉, and generalized relations describe sets in
R
n.
A database given by a quantifier-free formula α(x1, . . . , xn) in the language of Ω

defines a (possibly infinite) subset of Un given by Dα = {�a ∈ Un | M |= α(�a)}. Such
databases are called finitely representable [16], as the formula α provides a finitary
means for representing an infinite set. For example, if α(x, y) ≡ (x2 + y2 ≤ 1), then
Dα is the circle of radius 1 with the center in (0, 0).

Relational calculus can be straightforwardly extended to this model by incor-
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porating atomic formulas which are Ω-constraints, that is, atomic Ω-formulae. For
example, ϕ(x, y) ≡ (D(x, y) ∧ y = x2) is a first-order query which, on Dα defined
above, returns the intersection of the circle with the graph of the function y = x2.

One of the reasons why the constraint model can be used in spatial applications
is that such queries admit a form of safety: the closed form evaluation over structures
〈R,+,−, 0, 1, <〉 (linear constraints) and 〈R,+, ∗, 0, 1, <〉 (polynomial constraints),
most often used to represent spatial data. This sort of closure is a reformulation of
the fact that the two structures above admit effective quantifier-elimination (QE).
To evaluate a query, one can replace each occurrence of a database symbol D by its
representation as a collection of constraints, apply the QE procedure to the resulting
formula, and obtain a quantifier-free formula giving a finite representation of the
output. There has been work in extending these closure properties to other classes of
constraint databases and other logics, and this work indicates that the existence of
closure properties is often problematic. For example, for integer gap-order constraints
x <n y (meaning x < y + n), restrictions guaranteeing safety were studied in [32] for
relational calculus and stratified datalog, and the inherent incompleteness of those
restrictions was later shown in [38]. However, in this paper we do obtain new positive
results on closure properties for constraint queries—albeit of a different nature than
[32] and [38]—and we do so in domains that are quite relevant to spatial applications.

For those domains, we consider the preservation of restricted geometric classes of
databases within powerful constraint query languages. In particular, we consider the
behavior of queries with polynomial functions over linear constraint databases. Linear
constraints are used to represent spatial data in many applications; see [13, 17, 29]
and references therein. Linear constraints have several advantages over polynomial
ones: the QE procedure is less costly, and numerous algorithms have been developed
to deal with figures represented by linear constraints; cf. [26]. At the same time, the
extension of relational calculus with linear constraints has severely limited power as
a query language; see [2, 29]. Thus, it appears to be natural to use a more powerful
language, such as relational calculus with polynomial constraints, to query databases
represented by linear constraints [43].

As soon as the class of constraints used in queries is more general than the class
used to define databases, we encounter the safety/closure property again: the output
of a query using polynomial constraints may fail to be definable with linear constraints
alone! More generally, if spatial databases are required to have certain geometric prop-
erties, then the safety problem is whether those geometric properties are preserved by
a given query language.

When the underlying query language is relational calculus with polynomial con-
straints, there is a recursively enumerable class of programs that express exactly those
queries that preserve the property of being definable with linear constraints; this fol-
lows from the decidability of the latter property, shown in [13]. Corresponding to our
results in the first part of the paper, we are interested in getting explicit and natural
complete languages for preserving linear constraints, and also natural effective syntax
for other geometric properties. We give a general schema for coming up with such
languages. As applications, we consider the properties of being a convex polytope, a
convex polyhedron, and a compact semilinear set. For those classes, we provide an
effective syntax for polynomial constraint queries preserving the properties. We also
show that for unions of conjunctive queries (CQs) with polynomial constraints, it is
decidable whether the properties of being a convex polytope or a compact semilinear
set are preserved. By applying the growth bounds for the relational calculus with
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interpreted functions, we find restrictions of the growth in the number of vertices of
polytopes and use them to show that certain kinds of triangulations cannot be done
even with very powerful constraints.

Organization. In section 2, we present the notation. Sections 3, 4, 5, and 6 all deal
primarily with the standard relational calculus with interpreted functions (although
generalizations to the “natural semantics” hold, and are given here, as well). Section
3 shows that the underlying interpreted structure one uses does matter: we define the
concept of a safe translation of queries and show that some structures admit it and
some don’t. It follows that for many common structures the state-safety problem is
decidable.

In section 4, we define the concept of range-restriction and show that the classes
of safe and range-restricted queries coincide over well-behaved structures. The gen-
eral concept of range-restriction is based on the notion of algebraic formulae in the
underlying model. We show that for polynomial functions, these range-restricted for-
mulae have a particularly nice characterization, namely, as queries that are bounded
by roots of polynomials with coefficients from the database. We then show that for
underlying structures admitting QE, it is possible to construct, effectively, a range-
restricted query that coincides with a given query Q on all databases for which Q is
safe.

In section 5 we show that over well-behaved structures, it is decidable whether a
Boolean combination of CQs is safe.

Section 6 establishes the dichotomy result: for every query Q over a well-behaved
structure, one can find a polynomial p such that the size of Q(D) is either infinite or
at most the value of p on the size of D. We also prove a stronger trichotomy theorem
for monotone queries.

Section 7 deals with finitely representable databases. We first introduce a general
schema for transferring results about query safety to the finitely representable setting.
We then apply this to show bounds on the growth of vertices of polytopes in safe con-
straint queries, and give effective syntax for queries preserving geometric properties,
such as the classes of convex polytopes, polyhedra, and compact semi-linear sets (the
latter only in the two-dimensional case). We also show that it is decidable whether
unions of CQs with polynomial constraints preserve the first and the third properties.
Concluding remarks are given in section 8.

An extended abstract of this paper appeared in [9].

2. Notation. The notation we use is fairly standard in the literature on con-
straint databases; cf. [6, 8, 7, 28, 29]. We study databases over infinite structures.
Let M = 〈U ,Ω〉 be an infinite structure, where U is an infinite set, called a carrier
(in the database literature it is often called a domain), and Ω is a set of interpreted
functions, constants, and predicates. For example, for the real field 〈R,+, ∗, 0, 1, <〉,
the carrier is R (the set of real numbers), and the signature consists of the functions
+ and ∗, constants 0 and 1, and predicate <.

A (relational) database schema SC is a nonempty collection of relation names
{S1, . . . , Sl} with associated arities p1, . . . , pl > 0. Given M, an instance of SC over
M is a family of finite sets, {R1, . . . , Rl}, where Ri ⊂ Upi . That is, each schema
symbol Si of arity pi is interpreted as a finite pi-ary relation over U . Given an
instance D, adom(D) denotes its active domain, that is, the set of all elements that
occur in the relations in D. We normally assume adom(D) �= ∅. Although often
convenient in simplifying notation, this restriction is by no means necessary, as all
results straightforwardly extend to empty databases.
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As our basic query language, we consider relational calculus, or first-order logic,
FO, over the underlying models and the database schema. In what follows, L(SC ,Ω)
stands for the language that contains all symbols of SC and Ω; by FO(SC ,Ω) we
mean the class of all first-order formulae built up from the atomic SC and Ω-formulae
by using Boolean connectives ∨,∧,¬ and quantifiers ∀,∃ and ∀x∈ adom,∃x∈ adom.
When Ω is (+,−, 0, 1, <) or (+, ∗, 0, 1, <) or (+, ∗, ex, 0, 1, <), we use the standard
abbreviations FO+Lin, FO+Poly, and FO+Exp, often omitting the schema when
it is understood. Regardless of whether we are in the “classical” setting, where these
queries are applied to finite databases, or in the constraint query setting discussed
later in the paper, we will refer to the syntactic query languages as relational calculus
with Ω constraints.

The semantics is as follows. For a structureM and an SC -instance D, the notion
of (M, D) |= ϕ is defined in a standard way for FO(SC ,Ω) formulae, where ∃x∈adom
is the active-domain quantification. That is, (M, D) |= ∃x ϕ(x, ·) if for some a ∈ U
we have (M, D) |= ϕ(a, ·), and (M, D) |= ∃x∈adom ϕ(x, ·) if for some a ∈ adom(D)
we have (M, D) |= ϕ(a, ·). If M is understood, we write D |= ϕ. The output of a
query ϕ(x1, . . . , xn) on D is {�a = (a1, . . . , an) ∈ Un | D |= ϕ(�a)}, and it is denoted
by ϕ[D]. For example, ϕ(x, y) ≡ (S(x, y) ∧ y = x ∗ x) is an FO + Poly query over
the schema that contains one binary relation S, and ϕ[D] is the set of pairs in (x, y)
in D where y = x2.

We now, following [21, 22], say that an FO(SC ,Ω) query ϕ(�x) is safe for an SC -
database D if it has finitely many satisfiers for D; that is, ϕ[D] is finite. A query is
safe if it is safe for all databases.

As we explained before, we need to distinguish a class of well-behaved models.
Following [6, 7, 8], we use o-minimality [30, 42] and QE [11] for this purpose. We say
thatM is o-minimal if every definable set is a finite union of points and open intervals
{x | a < x < b}, {x | x < a}, and {x | x > a} (we assume that < is in Ω). Definable
sets are those of the form {x | M |= ϕ(x)}, where ϕ is a first-order formula in the
language of M, possibly supplemented with symbols for constants from M. We say
that M admits QE if, for every formula ϕ(�x), there is an equivalent quantifier-free
formula ψ(�x) such that M |= ∀�x.ϕ(�x) ↔ ψ(�x). Below we list the most important
examples, which correspond to classes of interpreted structures and constraints often
used in applications.

Linear Constraints: 〈R,+,−, 0, 1, <〉 is o-minimal and has QE, and its first-order
theory is decidable; cf. [11].

Polynomial Constraints: The real field 〈R,+, ∗, 0, 1, <〉 is o-minimal and has QE,
and its first-order theory is decidable. This follows from Tarski’s theorem; cf. [11, 42].

Exponential Constraints: 〈R,+, ∗, ex, 0, 1, <〉 is o-minimal [48] but does not have
QE [41].

An example of a structure that is not o-minimal is 〈N,+, <〉, as the formula
∃y(x = y + y) defines the set of even numbers. Table 2.1 provides examples of some
often-encountered structures and their standing with respect to o-minimality and QE.

We will need the following result about o-minimal structures, which will be used
numerous times in proofs.

Fact 2.1 (uniform bounds; see [30]). If M is o-minimal and ϕ(x, �y) is a first-
order formula in the language of M, possibly supplemented with symbols for constants
from M, then there is an integer K such that, for each vector �a from M, the set
{x | M |= ϕ(x,�a)} is composed of fewer than K intervals.

If only quantifiers ∀x∈ adom and ∃x∈ adom are used in a query, it is called an



SAFE CONSTRAINT QUERIES 1657

Table 2.1
Examples of structures.

Structure o-minimal Has QE
〈R, <〉 Y Y

〈R,+,−, 0, 1, <〉 Y Y
〈R,+, ∗, 0, 1, <〉 Y Y
〈R,+, ∗, ex〉 Y N
〈Q, <〉 Y Y

〈Q,+, ∗, 0, 1, <〉 N N
〈N, <〉 Y N

〈N,+, 0, 1, {≡k}k>1, <〉 N Y
〈N,+, ∗, 0, 1, <〉 N N

active-semantics query. This is the usual semantics for databases, and it will be the
one used in most of the results in this paper. If quantification over the entire infinite
universe is allowed, we speak of a natural-semantics query. Active-semantics queries
admit the standard bottom-up evaluation, while for natural-semantics it is not clear
a priori if they can be evaluated at all. However, in many cases one can restrict one’s
attention to active-semantics queries. The following result was first shown for the
pure case (no interpreted structure) in [18] and for linear constraints [28], and then
for a large class of structures as follows.

Fact 2.2 (natural-active collapse; see [7, 8]). If M is o-minimal and has QE
and ϕ is an arbitrary FO(SC ,Ω) query, then there exists an equivalent FO(SC ,Ω)
active-semantics query ϕact. Moreover, if the first-order theory of M is decidable and
QE is effective, then the translation ϕ→ ϕact is effective.

We now define the classes of CQs, unions of conjunctive queries (UCQs), and
Boolean combinations of conjunctive queries (BCCQs) in the interpreted setting. CQs
are built up from atomic SC formulae and arbitrary Ω-formulae by using ∧ and
quantifiers ∃x and ∃x ∈ adom. Note that we can always assume that parameters
of each SC relation are variables, as Ω-terms can be eliminated by using existential
(active-domain) quantifiers. It is easy to see that each CQ can be represented in the
form

ϕ(�z) ≡ ∃�x∃�y∈adom S1(�u1) ∧ . . . ∧ Sk(�uk) ∧ γ(�x, �y, �z),

where Sis are schema relations (not necessarily distinct), �ui is a vector of variables
from �x, �y, �z of appropriate arity, and γ is an Ω-formula. If Ω = ∅ and �x = ∅, this is
the usual notion of CQs. If γ is quantifier-free, this is the notion of CQs used in [19].

We define UCQs to be built up from atomic SC formulae and arbitrary Ω-formulae
by using ∧, ∨, and quantifiers ∃x and ∃x∈adom. Again, it is easy to see that those
are precisely the queries of the form ϕ1 ∨ . . . ∨ ϕk, where each ϕi is a CQ. Finally,
BCCQs are arbitrary Boolean combinations of CQs.

Although we could define active-domain versions of CQs, the results we state here
(e.g., decidability of safety) for the more general classes above will automatically imply
the corresponding results for the more restricted class of active-domain conjunctive
queries.

For background on finitely representable databases, see the beginning of section 7.

3. Safe translations. The main goal of this section is to show that what kind
of interpreted structure one uses does matter when one studies query safety. As a by-
product, we show that the state-safety problem is decidable over certain structures.
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We study safe translations, that is, translations from arbitrary queries into safe ones
that do not change the result of a query if it is finite.

Definition 3.1. We say that there is a safe translation of (active-semantics)
first-order queries over M if there is a function ϕ → ϕsafe on (active-semantics)
formulae such that for every ϕ,

(1) ϕsafe is safe, and
(2) if ϕ is safe for D, then ϕ[D] = ϕsafe[D].

A translation is canonical if ϕsafe[D] = ∅ whenever ϕ is not safe on D. A translation
is recursive if the function ϕ→ ϕsafe is recursive.

It is known that there are domains over which safe translations do not exist; see
[36]. The result of [36] uses quantification over the entire universe in an essential
way. Here we restrict our attention to active-domain quantification. The following
generalizes our result from [8].

Proposition 3.2. Let M be o-minimal, be based on a dense order, admit ef-
fective QE, and have a decidable theory. Then there exists a recursive canonical safe
translation of active-semantics formulae over M.

Proof. Given an active-semantics formula ϕ, let α(x) be a formula defining the
active domain of the output of ϕ. Let Ψ be an active-semantics sentence equivalent
to

¬∃x1, x2 ((x1 < x2) ∧ (∀x x1 < x < x2 → α(x)))

(it exists by Fact 2.2). We then define ϕsafe as ϕ ∧ Ψ. The proposition then follows
from the following claim: D |= Ψ iff ϕ[D] is finite.

First, assume that D |= ¬Ψ; then clearly ϕ[D] is infinite because < is dense.
Suppose D |= Ψ. We then look at all occurrences of SC predicates in α and replace
each of them with a disjunction of tuples. This results in α′(x) in the language of Ω
and constants for elements of U ; further, D |= α(a) iffM |= α′(a). Let Ψ′ be obtained
from Ψ by substituting α′ for α. We then have M |= Ψ′. Since α′(M) = {a | M |=
α′(a)} is a finite union of points and intervals, and since M |= Ψ′, it follows that no
nondegenerate interval is in α′(M). Thus, from o-minimality, we get that α′(M) is
a finite union of points. Hence, {a | D |= α(a)} is finite, thus showing finiteness of
ϕ[D].

Examples of structures satisfying the conditions of Proposition 3.2 are 〈R,+,−, 0, 1,
<〉 and 〈R,+, ∗, 0, 1, <〉. An immediate corollary to the proposition above is the fol-
lowing.

Corollary 3.3. Let M be as in Proposition 3.2. Then the state-safety problem
over M is decidable. That is, given a first-order query ϕ, and a database D, it is
decidable whether ϕ[D] is finite.

Proof. We showed that the active-semantics sentence Ψ tests whether ϕ[D] is
finite.

We next show that safe translations (recursive or not!) need not exist even when
one restricts one’s attention to active-semantics queries and all predicates in the sig-
nature Ω are computable.

Proposition 3.4. There is a structure M = 〈N, P 〉, where P is a computable
predicate, such that there is no safe translation of active-semantics first-order queries
over M.

Proof. Let P be a ternary predicate defined as P (i, j, k) iff the ith Turing ma-
chine on the input j makes at least k moves (assuming some standard encoding
of machines and inputs). Consider the schema that consists of a single binary re-
lation U . Assume to the contrary that there is a safe translation over M. Let
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ϕ(k) ≡ ∃i, j ∈ adom U(i, j) ∧ P (i, j, k), and let ψ(k) be ϕsafe. Note that ψ is an
active-domain formula in the language of U and P . We now show how to use ψ to
decide the halting problem.

Suppose we are given the ith machine Mi and the input j. We assume without
loss of generality that Mi makes at least one move on j. Define D that consists of
a single pair (i, j). Since we know that ψ is safe, we then compute the minimum
number l such that D �|= ψ(l). It is computable since (a) it exists, and (b) for each k,
it is decidable whether D |= ψ(k).

Assume that D |= ϕ(l). Then Mi does not halt on j. Indeed, if Mi halts, then
ϕ[D] is finite, and hence ϕ[D] = ψ[D], but we have l ∈ ϕ[D] − ψ[D]. Assume that
D �|= ϕ(l). Then Mi makes k < l moves on j, and thus halts. Hence, D |= ϕ(l) iff Mi

halts on j. Since it is decidable whether D |= ϕ(l), we get a contradiction.
In the remainder of the paper, we concentrate on well-behaved structures, typically

o-minimal ones. For computability, we often impose QE and decidability of first-order
theory.

4. Range-restriction and safety. Let us informally describe the concept of
range-restriction for databases over interpreted structures. It can be seen as a gener-
alization to arbitrary structures of the idea of finiteness dependencies [31]. Consider
a query ϕ(x) over a database which is a finite set S of real numbers:

ϕ(x, y) ≡ ∃z [S(z) ∧ (x > y) ∧ (x > 0) ∧ (x ∗ x = z) ∧ (y + y = z)].

This query defines a set of pairs of reals. Clearly, it is safe, as the size of its output
is at most twice the size of the input. Moreover, and this is the key observation, from
the query ϕ and any database S, one can compute an upper bound on the output
ϕ[S]: indeed, every element in adom(ϕ[S]) is either

√
a or a

2 for some element a ∈ S.
Equivalently, in this upper bound every element is a solution to either x2 = a or
2x = a when a ranges over S. That is, in this example, an upper bound on the result
of a safe query can be found as the set of roots of polynomials with coefficients coming
from the active domain of the database and a finite set of constants.

This is essentially the idea of range-restriction: we find, for a safe query, a set
of formulae defining an upper bound on the output. A similar approach was used in
[14], although the focus of [14] is different: it does not consider how the underlying
structure affects safety, but instead gives a syntactically restricted class of queries
with interpreted functions that can be translated into algebra expressions, along the
lines of [46]. In contrast, we are interested in how the underlying structure interacts
with queries. For example, we show that not only does a set of range-restriction
formulae exist for any query over a well-behaved structure, but also, under additional
conditions, it can be found effectively. The result that we prove is actually a bit
stronger, as it shows that the upper bound works not only for safe queries, but for
arbitrary queries, provided they are safe on a given database.

The first difficulty we encounter is finding an analog of the set of roots of polyno-
mials, when we deal with arbitrary structures (e.g., 〈R,+, ∗, ex〉). The solution to this
is provided by the model-theoretic notion of algebraic formulae, reviewed in section
4.1. The range-restriction theorem is proved in section 4.2. Then, in section 4.3, we
give two examples: the pure case, where our main result trivially translates into a
classical relational theory result, and a much less trivial FO + Poly case, where we
confirm the original intuition that the upper bound is a set of roots of polynomials.
We finish the section by giving a couple of extensions of the main result.
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4.1. Algebraic formulae over o-minimal structures. In this subsection, we
study formulae over M, that is, first-order formulae in the language L(Ω). We shall
consider formulae ϕ(�x; �y) with distinguished parameter variables �y; we use “;” to
separate those variables. Assume that �x is of length n and �y is of length m. Such
a formula (in the language of Ω and constants for elements of U) is called algebraic

if for each �b in Um there are only finitely many satisfiers of ϕ(�x,�b); that is, the set

{�a ∈ Un | M |= ϕ(�a;�b)} is finite. A collection of formulae is algebraic if each of its
elements is algebraic.

For example, the formula ϕ(x; y) ≡ (x2 = y) is algebraic over 〈R,+, ∗, 0, 1, <〉.
It can easily be seen that if ϕ1(�x; �y) and ϕ2(�x; �y) are algebraic, then so are ϕ1 ∧ ϕ2,
ϕ1 ∨ ϕ2, and ∃xϕ1, where x is one of the variables in �x; however, algebraic formulae
are not closed under negation.

Let us list some simple properties of algebraic formulae over o-minimal structures.
Lemma 4.1. Let M = 〈U ,Ω〉 be o-minimal and based on a dense order, and let

γ(�x; �y) be algebraic. Then

• There exists a number K such that for any �b ∈ Um, the set {�a ∈ Un | M |=
γ(�a;�b)} has fewer than K elements.

• There is a recursively enumerable collection of algebraic formulae {χi(�x; �y)}
such that every algebraic formula γ(�x; �y) is equivalent to one of the χi.

1 If
M is decidable, then the collection of algebraic formulae is recursive.

Proof. For the first item, consider all formulae γi(xi; �y) ≡ ∃�x(i) γ(�x; �y), where
�x(i) contains all components of �x except xi. By Fact 2.1, there is an integer Ki such
that for each �b, {a | M |= γi(a;�b)} is composed of fewer than Ki intervals. Since

γ is algebraic and < is dense, it means that {a | M |= γi(a;�b)} has fewer than Ki

elements. Hence, there are at most K =
∏n
i=1Ki vectors �a such that M |= γ(�a;�b).

For the second item, for each γ(�x; �y), let χkγ(�x) be a first-order formula

∀�y¬∃�x1 . . .∃�xk.
k∧
i=1

γ(�xi; �y) ∧
∧
i �=j
(�xi �= �xj),

saying that there are fewer than k vectors �x that satisfy γ(�x; �y) for all �y. Consider
the recursively enumerable collection of formulae of the form γ(�x; �y) ∧ χkγ(�x), where
γ ranges over FO(Ω) and k ranges over N. It follows from the first item that it
enumerates all algebraic formulae. If M is decidable, it is also decidable whether
γ(�x; �y) is algebraic. Indeed, the latter happens iff γ∗(x; �y) =

∨
i γi(x; �y) is algebraic

(see the proof of the first item), which in turn happens iff there is no open interval

contained in {a | M |= γ∗(a;�b)} for any�b. The latter can be formulated as a first-order
sentence ∀�y¬∃u, v∀z.(u < z < v → γ∗(z; �y)).

While we do get an enumeration of algebraic formulae from Lemma 4.1, we need
one more representation for algebraic formulae as a tool in proofs. This representation
is provided below. We first treat the one-variable case, that is, formulae ϕ(x; �y).

Let Ξ = {ξ1(x; �y), . . . , ξk(x; �y)} be a collection of formulae. Let

sameΞ(x, x
′; �y) ≡

k∧
i=1

(ξi(x; �y)↔ ξi(x
′; �y)).

1Provided that Ω is a recursive set.
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Now define

βΞ(x; �y) ≡ ∀x′, x′′.x′ < x < x′′ → (∃z.x′ ≤ z ≤ x′′ ∧ ¬sameΞ(x, z; �y)).

This provides the desired syntactic characterization.
Proposition 4.2. Let M be an o-minimal structure based on a dense order.

Then a formula ϕ(x; �y) is algebraic (over M) iff there exists a collection of formulae
Ξ such that ϕ is equivalent to βΞ. A formula ϕ(�x; �y) is algebraic iff there exists
a collection of formulae Ξ in variables (x; �y) and a formula ψ(�x; �y) such that ϕ is
equivalent to βΞ(x1; �y) ∧ . . . ∧ βΞ(xn; �y) ∧ ψ(�x; �y).

Proof. Prove the one-variable case first.
Let Ξ be a collection of formulae and assume that βΞ is not algebraic. That is,

for some �b over U , βΞ(M;�b) = {a | M |= βΞ(a;�b)} is infinite. Since M is o-minimal,

βΞ(M;�b) is a finite union of points and intervals. Since < is dense, it means that

there exist a0 < b0 ∈ U such that [a0, b0] ⊆ βΞ(M;�b). We now consider the formulae

ξ′i(x) = ξi(x;
�b) for all ξi ∈ Ξ. Since both ξ′i(M) = ξi(M;�b) and ¬ξ′i(M) = ¬ξi(M;�b)

are finite unions of intervals and < is dense, for every nondegenerate interval J , it is
the case that either J ∩ ξ′i(M) or J ∩ ¬ξ′i(M) contains an infinite (closed) interval.
Using this, we construct a sequence of intervals as follows: I0 = [a0, b0], I1 ⊆ I0 is an
interval that is contained either in I0 ∩ ξ′1(M) or in I0 ∩ ¬ξ′1(M). At the jth step,
Ij ⊆ Ij−1 is an interval that is contained either in Ij−1 ∩ ξ′j(M) or in Ij−1 ∩¬ξ′j(M).

Let I = Ik. Then, for any c, d ∈ I, M |= ξi(c,�b)↔ ξi(d;�b).

Since I = [a′, b′] ⊆ [a0, b0] and M |= βΞ(c;�b) for all c ∈ I, we obtain that, for
every c ∈ (a′, b′), there exists d ∈ [a′, b′] such that M |= ¬sameΞ(c, d;�b). That is, for
some ξi ∈ Ξ, M |= ¬(ξi(c;�b) ↔ ξi(d;�b)), which is impossible by construction of I.
This proves that βΞ is algebraic.

For the converse, we let Ξ consist of just ϕ for any ϕ(x; �y). That is, βΞ(x; �y) is

∀x′, x′′.x′ < x < x′′ → (∃z.x′ ≤ z ≤ x′′ ∧ ¬(ϕ(x; �y)↔ ϕ(z; �y))).

We claim that ϕ and βΞ are equivalent if ϕ is algebraic. Fix any�b of the same length as
�y, and assume that ϕ(a;�b) holds. If βΞ(a;�b) does not hold, then there exist a

′ < a < a′′

such that for every c ∈ [a′, a′′], ϕ(c;�b)↔ ϕ(a;�b) holds; thus, ϕ(c;�b) holds for infinitely

many c, contradicting algebraicity of ϕ. Hence, βΞ(a;�b) holds. Conversely, assume

that βΞ(a;�b) holds. If ϕ(a;�b) does not hold, then there is an interval containing a

on which ϕ(·;�b) does not hold. Indeed, ¬ϕ(M;�b) is a finite union of intervals whose
complement is a finite set of points, so the above observation follows from the density.
We now pick a′ < a′′ such that ϕ(·;�b) does not hold on [a′, a′′]. Since βΞ(a;�b) holds,

we find c ∈ [a′, a′′] such that ¬(ϕ(a;�b) ↔ ϕ(c;�b)) holds; that is, ϕ(c;�b) holds for

c ∈ [a′, a′′], which is impossible. Thus, we conclude that ϕ(a;�b) holds, proving that
for any �b, ∀x. (ϕ(x;�b)↔ βΞ(x;�b)). This finishes the one-variable case.

For the multivariable case, we note that algebraicity of βΞ implies that ϕ
′(�x; �y) =

βΞ(x1; �y) ∧ . . . ∧ βΞ(xn; �y) ∧ ψ(�x; �y) is algebraic. Conversely, let ϕ(�x; �y) be algebraic.
Consider

ϕi(xi; �y) = ∃x1 . . .∃xi−1∃xi+1 . . .∃xn.ϕ(x1, . . . , xi, . . . , xn; �y).

Let χ(x; �y) be ϕ1(x; �y) ∨ . . . ∨ ϕn(x; �y). Obviously each ϕi is algebraic, and thus
χ(x; �y) is algebraic. Hence, χ(x; �y) is equivalent to βΞ(x; �y) for some finite collection
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Ξ of formulae in (x; �y). Note that if ϕ(�a;�b) holds and ai is the ith component of

�a, then χ(ai;�b) holds and thus βΞ(ai;�b) holds. This shows that ϕ is equivalent to
βΞ(x1; �y) ∧ . . . ∧ βΞ(xn; �y) ∧ ϕ(�x; �y), thus completing the proof.

Corollary 4.3. If M is an o-minimal structure based on a dense order, and
ϕ(�x; �y) is algebraic over M, then ϕ is algebraic over any M′ elementary equivalent
to M.

Proof. There exists a collection of formulae Ξ such that M |= ∀�x∀�y.ϕ(�x; �y) ↔
(ϕ(�x; �y) ∧

∧
i βΞ(xi; �y)). Hence the same sentence is true in M′. Since M′ is also

o-minimal and based on a dense order, we get from Proposition 4.2 that ϕ is algebraic
in M′, too.

4.2. Main theorem. We start with a few definitions. For an L(Ω)-formula
γ(�x; �y) and database D, let

γ(D) = {�a | ∃�b ∈ adom(D)m such that D |= γ(�a;�b)}.

If Γ is a collection of formulae in �x; �y, define

Γ(D) =
⋃
γ∈Γ

γ(D).

Note that if Γ is algebraic and finite, then Γ(D) is finite.
Definition 4.4 (range-restriction). Let M be an interpreted structure. A range-

restricted query over M and a database schema SC is a pair Q = (Γ, ϕ(�x)), where Γ
is a finite collection {γ1(�x; �y), . . . , γm(�x; �y)} of algebraic L(Ω)-formulae, and ϕ(�x) is
an L(SC ,Ω) query.

The semantics of Q is as follows:

Q[D] = {�a ∈ Γ(D) | D |= ϕ(�a)}.

That is, Γ provides an upper bound on the output of a query; within this bound,
a usual first-order query is evaluated. For example, let ϕ(x) be the FO+Poly query
S(x)∨ (x > 5). Clearly, it is not safe. Now let γ(x; y) ≡ (x∗x = y) and Q = ({γ}, ϕ).
Then, for any database S (which is a finite set of the reals), Q[S] is the set of those
elements a such that a2 ∈ S and either a ∈ S or a > 5. Clearly, this is a finite set.

Observation. Every range-restricted query is safe.
We call a range-restricted query (Γ, ϕ) active semantics if ϕ is an active-semantics

formula. Note that Γ does not mention the database. It turns out that range-restricted
active queries characterize all the safe active-semantics queries in the following sense.

Theorem 4.5. Let M be any o-minimal structure based on a dense linear order.
Then there is a function Make Safe that takes as input an active-domain formula
ϕ(�x) and outputs a range-restricted active query Q = (Γ, ψ) with the property that
Make Safe(ϕ) is equivalent to ϕ on all databases D for which ϕ is safe. Furthermore,
if M has effective QE, then Make Safe is recursive.

Proof. We deal with the one-variable case first. Let

ϕ(z) ≡ Q1w1 ∈ adom . . . Q1wl ∈ adom.α(z, �w),

where each Qi is ∃ or ∀ and α(z, �w) is quantifier-free, and all atomic subformulae
R(· · ·) contain only variables, excluding z. Any formula can be transformed into such
by adding existential quantifiers; cf. [6, 8]. Let Ξ = {ξi(z, �w) | i = 1, . . . , k} be the
collection of all Ω-atomic subformulae of α. We may assume without loss of generality
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that the length of �w is nonzero, and that Ξ is nonempty. (If this is not true for ϕ,
take ϕ ∧ ∀w∈adom(w = w) and transform it to the above form.)

Define sameΞ(a, b, �w), as before, to be
∧k
i=1(ξi(a, �w) ↔ ξi(b, �w)), and define

γ(x; �w) to be βΞ(x; �w); that is, γ(x, �w) ≡ ∀x′, x′′.x′ < x < x′′ → ∃y.(x′ ≤ y ≤
x′′ ∧ ¬sameΞ(x, y, �w)). Now Γ consists just of γ, with �w being distinguished parame-
ters. We let Make Safe(ϕ) output ({γ}, ϕ).

Since γ is algebraic by Proposition 4.2, we must show that {a | D |= ϕ(a)} =
{a ∈ Γ(D) | D |= ϕ(a)} for every nonempty database for which ϕ is safe.

Assume otherwise; that is, for some nonempty D for which ϕ is safe, we have
D |= ϕ(a) but a �∈ Γ(D). Let �c1, . . . ,�cM be an enumeration of all vectors of the
length of �w of elements of the active domain. Note that M > 0. Since a �∈ Γ(D),
we have that for each i = 1, . . . ,M , there exist a′i, a

′′
i such that a

′
i < a < a

′′
i and

M |= sameΞ(a, c,�ci) for all c ∈ [a′i, a′′i ].
Let b′ = max{a′i}, b′′ = max{a′′i }. We have b′ < a < b′′, and for each �c (of length

of �w) over the active domain, we have ξi(a;�c) ↔ ξi(c,�c) for every c ∈ [b′, b′′]. From
this, by a simple induction on the structure of the formula (using the fact that z does
not appear in any atomic formula R(· · ·)), we obtain that D |= α(a,�c) ↔ α(c,�c) for
every �c over adom(D) and every c ∈ [b′, b′′], and thus D |= ϕ(a)↔ ϕ(c), which implies
that ϕ is not safe for D. This contradiction proves correctness of Make Safe for the
one-variable case.

This completes the proof for the one-variable case. We handle the multivariable
case by reducing to the one-variable case.

Let M′ = 〈U ,Ω′〉 be a definable extension of M that has QE. Note that M′ is
o-minimal. Let ϕ(z1, . . . , zn) be given and define

ϕi(zi) ≡ ∃z1 . . .∃zi−1∃zi+1 . . .∃zn.ϕ(z1, . . . , zi−1, zi, zi+1, . . . , zn).

By [7, 8], there is an L(SC ,Ω′) active formula ψi(zi) such that D |= ∀z.ψi(z)↔ ϕi(z)
for all D. Let ({γi(zi, �wi)}, ψi(zi)) be the output of Make Safe on ψi. Since M′ is a
definable extension, we can assume without loss that γi is an Ω-formula.

We now define

γ(�z; �w1, . . . , �wn) ≡ γ1(z1; �w1) ∧ . . . ∧ γn(zn; �wn),

where each �wi is of the same length as the vector of distinguished parameters in the
formulae γi. Finally, Make Safe(ϕ) outputs ({γ}, ϕ). To see that it works, first notice
that algebraicity of all γi’s implies algebraicity of γ. Now assume that D |= ϕ(�a)
where �a = (a1, . . . , an). Then D |= ϕi(ai), and thus for some vector �ci of elements of
the active domain, we have that γi(ai,�ci) holds. Thus, if �c is the concatenation of all
�cis, then γ(�a,�c) holds, showing that �a ∈ Γ(D), where Γ = {γ}. This completes the
proof of the multivariable case.

We finally notice that Make Safe for one-variable formulae is recursive, no matter
what M is. For the multivariable case, to make it recursive, we need a procedure for
converting natural-quantification formulae into active-quantification formulae. Such
a procedure exists by Fact 2.2.

Corollary 4.6 (range-restricted = safe). For any o-minimal structure based on
a dense order, the class of safe active-semantics queries is the same as the class of
range-restricted queries.

Combining this with the natural-active collapse (Fact 2.2), we obtain the following
corollary.
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Corollary 4.7. Let M be any o-minimal structure based on a dense linear
order that admits QE. Then there is a function Make Safe (recursive if so is QE and
M is decidable) that takes as input a natural-semantics formula ϕ(�x), and outputs
a range-restricted active query Q = (Γ, ψ) with the property that Make Safe(ϕ) is
equivalent to ϕ on all databases D for which ϕ is safe. In particular, over M, the
classes of safe natural-semantics queries and range-restricted queries coincide.

Corollary 4.8. For any o-minimal structure based on a dense order (decidable
or not), the collection of safe queries is recursively enumerable.

We finish this section with a proposition that follows from the special form of
formulae in Γ, as established in the proof of Theorem 4.5.

Proposition 4.9. Let M be o-minimal and based on a dense order. Let ϕ(�x) be
a first-order query. Then there exists a set Γ of algebraic formulae γ(x; �y) (that can
be effectively constructed if M has effective QE and is decidable) such that, for any
database D, if ϕ[D] is finite, then adom(ϕ[D]) ⊆ Γ(D).

Proof. Assume ϕ is active-semantics. Then the proof follows the proof of Theorem
4.5, but at the end we replace γ(x1, . . . , xn; �y) by

γ′(x; �y) =
n∨
i=1

∃x1, . . . , xi−1, xi+1, . . . , xn γ(x1, . . . , xi−1, x, xi+1, . . . , xn; �y)

to get a bound on the active domain, and output ({γ′}, ϕ).
For an arbitrary ϕ, let M′ be a definitional expansion of M that has QE (such

an expansion always exists; cf. [11]). Since M and M′ are elementary equivalent,
M′ is o-minimal [30] and the order is dense. Thus, there exists an active-semantics
FO(M′,SC ) query ψ(�x) that is equivalent to ϕ (see Fact 2.2), and, by the above,
we have a formula γ0 in the language of M′ such that adom(ϕ[D]) = adom(ψ[D]) ⊆
γ0(D). Now obtain an L(Ω) formula γ from γ0 by replacing each new predicate symbol
fromM′ by its definition by an L(Ω) formula. Then γ(D) = γ0(D), which proves the
proposition.

4.3. Examples. Below we give two examples. We consider the pure case, where
Theorem 4.5 translates into a well-known result, and we also consider the case of
polynomial constraints and show a more explicit form of range-restriction.

The pure case. We assume that we have the pure relational calculus; that is, our
underlying structure is M∅ = 〈U , ∅〉. The reason we can apply Theorem 4.5 is that
we can extend M to M< = 〈U , <〉 by adding a dense order without endpoints on U ;
although it is never mentioned in queries,M< is o-minimal (and has QE), and hence
the results are applicable. Next, we need the following lemma.

Lemma 4.10. Let γ(x; �y) be algebraic over M<. If M< |= γ(a;�b), then a

coincides with one of �b’s components.
Proof. Assume not and fix a counterexample a,�b and let B be the set of compo-

nents of �b together with −∞,∞. Let b′, b′′ in B be such that b′ < a < b′′ and (b′, b′′)
contains no other member of B. SinceM< has QE, γ is equivalent to a quantifier-free
formula. For any a′ ∈ (b′, b′′), (a,�b) and (a′,�b) satisfy the same atomic <-formulae,
and hence M< |= γ(a,�b)↔ γ(a′,�b), which contradicts algebraicity.

This immediately implies that for an algebraic Γ and a database D, Γ(D) is either
empty (if Γ contains no formulae) or Γ(D) = adom(D). Thus, the classes of safe pure
relational calculus queries and relational calculus queries whose output is restricted
to the active domain coincide. Of course, this is a standard result in database theory,
proved here in a rather unusual way.
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The real field: FO+Poly. Can we find a more concrete representation of range-
restricted queries over the real field? Intuitively, it should be sufficient to look for
roots of polynomials p(x,�a), where �a ranges over tuples of elements of the active
domain, as was suggested by the example in the beginning of the section. However,
even quantifier-free algebraic formulae do not give us this representation directly.
Nevertheless, the following can be shown.

Let p(x, �y) be a multivariate polynomial over the real field. Define Root(p,�a)
as ∅ if p(x,�a) is identically zero, and the set of roots of p(x,�a) otherwise. Given a
collection P of polynomials {p1(x, �y), . . . , pm(x, �y)} and a database D, let

P (D) =
m⋃
i=1

⋃
�a⊆adom(D)

Root(pi,�a),

where �a ranges over tuples of elements of adom(D), of the same length as �y.
Definition 4.11. A query in polynomial range-restricted form is a pair (P,ϕ),

where P is a finite collection of multivariate polynomials and ϕ(x1, . . . , xn) is a FO+
Poly query. The semantics is defined as (P,ϕ)[D] = ϕ[D] ∩ P (D)n.

Proposition 4.12. The class of safe FO + Poly queries (arbitrary or active-
semantics) coincides with the class of queries in polynomial range-restricted form.
Moreover, for every FO+Poly query ϕ, a collection of polynomials P can be effectively
found such that ϕ and (P,ϕ) are equivalent on all databases on which ϕ is safe.

Proof. Given a query ϕ(�x), find effectively a collection of algebraic formulae
Γ = {γj(x; �y)} such that for any D for which ϕ is safe, adom(ϕ[D]) ⊆ Γ(D). For each
�a and each γ ∈ Γ, the set γ[�a] = {c | γ(c;�a)} is finite, and by o-minimality there is a
uniform bound M such that card(γ[�a]) < M for all �a and γ ∈ Γ.

Now let γij(x; �y), i < M , be defined as follows: M |= γij(c;�a) if either (1) γj [�a] has
at least i elements, and c is the ith element in the order <, or (2) γj [�a] is nonempty,
has fewer than i elements, and c is the largest element of γj [�a], or (3) γj [�a] is empty,
and c = 0. Note that γij(x; �y)’s are indeed L(+, ∗, 0, 1, <) formulae. It is easy to
see that each γij(x; �y) defines a function fij : R

m → R, where m is the length of �y,

by fij(�a) = c iff c is the unique element such that γ
i
j(c;�a) holds. Furthermore, this

function is semialgebraic and the following property holds: if ϕ is safe for D, then
adom(ϕ[D]) is contained in

⋃
i,j

⋃
�a fij(�a), where �a ranges over adom(D).

It follows from [23] that each fij(�y) is algebraic; that is, there exists a polynomial
pij(x, �y) such that pij(x, �y) = 0 iff x = fij(�y). It is easy to see that for P = {pij |
i < M, γj ∈ Γ}, Γ(D) ⊆ P (D) and P (D) is always finite. To complete the proof,
we must show effectiveness. We can effectively construct Γ, and thus find M (by
writing formulae saying that each γ(x; �y) has fewer than M satisfiers for each �y,
and checking if it is true by applying QE; since it is true for some M , the process
terminates). Hence, we can effectively construct γij ’s, and the procedure for finding
pij ’s is effective (although not stated in [23], it follows from the analysis of the proof
there).

4.4. Extensions. Suppose we are given two elementary equivalent structures
M and M′, for example, 〈R,+, <〉 and 〈Q,+, <〉. Assuming M is o-minimal based
on a dense order, so is M′, and thus the characterization of a safe query applies to
M′ as well. However, we would like to know more. Suppose ϕ is safe over M. Is the
same ϕ safe over M′? The positive answer is provided for o-minimal structures.

Proposition 4.13. If M is an o-minimal structure based on a dense order,
and ϕ is a safe active-semantics query, then ϕ is safe in any structure elementary
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equivalent to M.
Proof. Let ϕ(�z) be safe, and let ({γ(�z; �w)}, ϕ) be the output of Make Safe (we

just saw that it always can be made to have this form). Since ϕ is safe, we obtain
that for every database D overM and for every �a of the same length as �z of elements
of M, D |= ϕ(�a) → ∃�w∈adom.γ(�a; �w). Now putting ¬ϕ in prenex form, where only
quantified variables appear inside the schema predicates (which can always be done),
we have

D |= ∃�w∈adom.Q1y1 . . . Qnyn.(α(�a, �y) ∨ γ(�a; �w)),

where all quantification Qiyi is active and α is the quantifier-free part of ¬ϕ. We now
claim that the same is true in M′ for every D over M′ and every �a of elements of
M′, as long as M′ is elementary equivalent to M. Note that this would imply that
D |= ϕ(�a)→ ∃�w∈adom.γ(�a; �w) holds in M′ as well.

To prove this claim, assume to the contrary that this fails for some D and �a over
M′. Let {b1, . . . , bm} be adom(D). We now define a sequence of formulae as follows:

χn(�a,�b, �w, y1, . . . , yn−1) =
∨m
i=1 α(�a, y1, . . . , yn−1, bi)∨γ(�a; �w) if Qn is ∃; if Qn is ∀, we

change
∨
to
∧
. Similarly, χj(�a,�b, �w, y1, . . . , yj−1) =

∨m
i=1 χj+1(�a,�b, �w, y1, . . . , yj−1, bi)

if Qj is ∃; otherwise change
∨
to
∧
. Next, define χ′(�a,�b) as

∨
�w∈B χ1(�a,�b, �w),

where B is the collection of all vectors from {b1, . . . , bm} of the same length as
�w. Notice that the only occurrence of the schema predicates is of the form R(·),
where we list some bi’s as parameters. We finally replace those by true or false,
depending on whether a particular tuple is in the database D. This results in a for-
mula χ(�a,�b) that does not mention the schema predicates and has the property that

M′ |= χ(�a,�b) iff ∃�w∈adom.Q1y1 . . . Qnyn.(α(�a, �y)∨γ(�a; �w)) holds for �a and the given
D with the active domain {b1, . . . , bm}. Now the assumption gives us that M′ |=
∃�a∃�b.(¬χ(�a,�b) ∧

∧
i �=j ¬(bi = bj)), thereby showing that the same sentence is true in

M. Then, by picking �a and�b inM that witness the failure of χ and defining a database
D′ on �b in the same way as D was defined, we see, by an argument similar to the one
above, that D′ |= ¬χ′(�a,�b) and thus ∃�w∈adom.Q1y1 . . . Qnyn.(α(�a, �y)∨ γ(�a; �w)) fails
in D′, which is impossible. This finishes the proof of the claim.

Thus, D |= ϕ(�a) → ∃�w∈ adom.γ(�a; �w) holds in M′, and all we need to show to
prove safety of ϕ is that γ is algebraic in M′. From Proposition 4.2 we know that
∀�z∀�w.γ(�z; �w) ↔ (

∧
i βΞ(zi; �w) ∧ γ(�z; �w)) holds in M for an appropriately chosen Ξ,

and thus inM′. Since both o-minimality and density are preserved under elementary
equivalence, we get that βΞ is algebraic in M′, and hence γ is algebraic in M′,
too.

5. Deciding safety of conjunctive queries and relatives. Safety of arbi-
trary calculus queries is undecidable even in the pure case [47], and of course it remains
undecidable when interpreted functions are present. The main goal of this section is
to show that safety is decidable for Boolean combinations of conjunctive queries in
the presence of an interpreted structure such as 〈R,+, ∗, 0, 1, <〉. In particular, safety
of FO +Poly and FO + Lin conjunctive queries is decidable.

Recall that we are using CQ, UCQ, and BCCQ for conjunctive, unions of conjunc-
tive, and Boolean combinations of conjunctive queries (see section 2 for their definition
in the presence of an interpreted structure). CQs, having dominated early research in
relational theory because of their nice properties, resurfaced recently in a number of
new applications; cf. [24, 19, 40]. Our proof will be by reduction to the containment
problem, which is decidable for UCQs over certain structures. (Of course, without
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an interpreted structure, this is well known [35], as is the decidability of safety for
BCCQs; cf. [1].) Note that CQs and UCQs are monotone (that is, D ⊆ D′ implies
ϕ[D] ⊆ ϕ[D′]). Since there are nonmonotone BCCQs, the class of UCQs is strictly
contained in the class of BCCQs.

The main result is Theorem 5.1.
Theorem 5.1. Let M be o-minimal, based on a dense order, and decidable, and

let it admit effective QE. Then it is decidable if a given BCCQ ϕ(�x) over M is safe.
The proof is contained in the following two lemmas, which are of independent

interest, and will be used later in section 7. Recall that by containment ϕ ⊆ ψ we
mean ϕ[D] ⊆ ψ[D] for any D.

Lemma 5.2. Let M be o-minimal and based on a dense order, and ϕ(�x) be a
first-order query. Then there exists an active-semantics CQ ψ(�x) such that ϕ is safe
iff ϕ ⊆ ψ.

Proof. The proof follows from Proposition 4.9: take Γ = {γ1(x; �y), . . . , γk(x; �y)}
given by the proposition; let γ =

∨
i γi and let ψ(x1, . . . , xn) be

∃�y1∈adom . . .∃�yn∈adom γ(x1; �y1) ∧ . . . ∧ γ(xn; �yn).

If ϕ ⊆ ψ, then ϕ is safe since all γi’s are algebraic. If ϕ is safe, then adom(ϕ[D]) ⊆
Γ(D) for every D, which implies ϕ ⊆ ψ.

Lemma 5.3. Let M be as in Theorem 5.1. Then containment of a BCCQ in a
UCQ is decidable; that is, for a BCCQ ϕ(�x) and a UCQ ψ(�x) it is decidable if ϕ ⊆ ψ.
This continues to hold if both ϕ and ψ are active-semantics queries.

Proof. We start with the following claim.
Claim 5.4. Given ϕ and ψ, one can effectively find a number k such that ϕ ⊆ ψ

iff for every database D with at most k tuples, ϕ[D] ⊆ ψ[D].
This clearly implies the result, as the latter condition can be expressed as an L(Ω)

sentence. For example, if the schema contains one relational symbol S, this sentence
is ∀�x1 . . . �xk∀�x. ϕ(�x)[{�xi}/D]→ ψ(�x)[{�xi}/D], where ϕ(�x)[{�xi}/D] is obtained from
ϕ(�x) by replacing each occurrence of S(�z) by

∨
i(�z = �xi), and similarly for an arbitrary

schema. The decidability of M now implies the lemma.
The proof of the claim proceeds similarly to [19]. Note that every BCCQ α can

be represented as
∨n
i=1(χi(�x)∧¬ξi(�x)), where each χi is a CQ and each ξi is a UCQ;

this follows if one writes α as a disjunctive normal form (DNF). We take k to be the
maximum length of χi (measured as the sum of the number of atomic formulae and
the number of quantified variables).

Assume that ϕ[D] �⊆ ψ[D] for some D; that is, we have �a ∈ ϕ[D] �⊆ ψ[D]. Assume
that D |= χi(�a) ∧ ¬ξi(�a) and let χi(�x) = ∃�y∃�z ∈ adom

∧l
j=1 αj(�x, �y, �z). Then, for

some �b over U and �c over adom(D), we get D |=
∧l
j=1 αj(�a,

�b,�c). Consider those αj ’s
which are SC -formulae. For each such αj , which is of the form R(· · ·) where R ∈ SC ,
there is a tuple in D that satisfies it. Select one such tuple for each SC -atomic αj ,
and let D′ be D restricted to those tuples. Choose a set of at most length(�c) tuples
in D containing all the components of �c, and add it to D′. Let the resulting database
be D′′. Clearly, it has at most k tuples.

Note that D′′ |=
∧l
j=1 αj(�a,

�b,�c), and thus D′′ |= χi(�a) since �c ⊆ adom(D′′).
On the other hand, D′′ |= ¬ξi(�a) by monotonicity of ξi. Thus, we get that �a ∈
ϕ[D′′]−ψ[D′′], where D′′ has at most k tuples. This implies that each counterexample
to containment is witnessed by a ≤ k-element database, and finishes the proof Lemma
5.3.

To complete the proof of Theorem 5.1, note that under the assumption onM, the
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CQ ψ such that ϕ ⊆ ψ is equivalent to the safety of ϕ can be constructed effectively;
this follows from the procedure for constructing Γ given in Proposition 4.9. The
theorem now follows from Lemma 5.3.

Corollary 5.5. It is decidable whether any Boolean combination of FO + Lin
or FO+Poly conjunctive queries is safe.

Note, however, that safety of CQs is not decidable over every structure. For
example, for 〈N,+, ∗, 0, 1, <〉, decidability of CQ safety would imply decidability of
checking whether a Diophantine equation has finitely many solutions, which is known
to be undecidable [12].

6. Dichotomy theorem and outputs of queries. The main result of this
section is a simple but powerful combinatorial structure theorem, saying that over a
well-behaved structure, outputs of safe queries cannot grow arbitrarily large in terms
of the size of the input. In fact, we prove a dichotomy result: either a query ϕ is
not safe on D, or ϕ[D] is at most polynomial in the size of D, where the bounding
polynomial depends only on ϕ. This result shows tame behavior of relational calculus
queries over some important interpreted structures, in particular those giving rise
to linear, polynomial, and exponential constraints. It can be used to show negative
results, that is, new expressivity bounds, as well as positive results: the dichotomy
theorem is a key ingredient in the decidability results of the next section.

We use the notation size(D) for the size of a database, measured here as the
number of tuples. It can equivalently be measured as the cardinality of the active
domain, or the number of tuples multiplied by their arity, and all the results will
hold.

Theorem 6.1 (dichotomy theorem). Let M be o-minimal and based on a dense
order. Let ϕ(�x) be a first-order query. Then there exists a polynomial pϕ : R → R

such that, for any database D, either ϕ[D] is infinite or size(ϕ[D]) ≤ pϕ(size(D)).
Proof. Consider Γ given by Proposition 4.9. Since each γ ∈ Γ is algebraic, there

exists, by Lemma 4.1, a number cγ such that card({x | γ(x; �y)}) < cγ for every �y.
Thus, if adom(ϕ[D]) is finite, then its cardinality is at most∑

γ∈Γ

cγ · nmγ ,

where mγ is the number of �y variables in γ and n is the size of the active domain of D.
This is clearly bounded by card(Γ) ·CΓ ·nMΓ , where CΓ = max cγ andMΓ = maxmγ .

Now notice that for every schema SC , there exist constants c0, d0, c1 > 0 such
that c1 · card(adom(D)) ≤ size(D) ≤ c0 · card(adom(D))d0 for every D. Hence, for
appropriately chosen c0, d0 > 0, we obtain that if ϕ[D] is finite, then

size(ϕ[D]) ≤ c0 · card(adom(ϕ[D]))d0 ≤ c0 · (card(Γ) · CΓ · nMΓ)d0 ≤ cnd,

where n = card(adom(D)) and c, d are constants that depend only on ϕ. Hence, for
some c1 > 0 that depends on the schema only, we have size(ϕ[D]) ≤ c · ( nc1 )

d, which
proves the theorem.

Are the assumptions on a structure important for the dichotomy result? That is,
can we find structures over which it fails? The following is a simple counterexample to
the dichotomy theorem: LetM = 〈N, <〉. Let ϕ(x) be the following active-semantics
query: ∃y∈adom.x < y. Clearly, ϕ(x) is safe, but size(ϕ[D]) can be arbitrarily large
even for a database whose active domain consists of just one element.

The dichotomy theorem can also be stated in terms of a function measuring the
growth of the output size. Formally, given a query ϕ, define growthϕ : N → N ∪ {∞}
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as

growthϕ(n) = max{size(ϕ[D]) | size(D) = n}.

Corollary 6.2. Let ϕ(�x) be an FO+Lin, or FO+Poly, or FO+Exp query.
Then there exists a polynomial pϕ such that, for every n ∈ N, either growthϕ(n) =∞
or growthϕ(n) ≤ pϕ(n).

Note that for the query ϕ(x) over 〈N, <〉, which we used as a counterexample to
the dichotomy theorem, growthϕ(n) = ∞ for all n > 0. Thus, we have a question
whether Corollary 6.2 fails over some structures. The following proposition provides
an example.

Proposition 6.3. Let M = 〈N,+, <, 1〉. Then there exists an active-semantics
first-order query ϕ(x) over M such that growthϕ(n) = 2

n for every n > 0.
Proof. Let SC consist of one unary relation S. We show that there exists an

FO(M,SC ) sentence Ψ such that S |= Ψ iff S is of the form Sn = {2i | 1 ≤ i ≤ n}.
This is done by letting Ψ be

(∃x∈adom.x = 1 + 1 ∧ S(x))
∧ (∀x∈adom.x = 1 + 1 ∨ x > 1 + 1)
∧ (∀x∈adom.x = 1 + 1 ∨ ∃y∈adom.y + y = x)
∧ (∀x∈adom.(∀y∈adom.y < x ∨ y = x) ∨ (∃y∈adom.y = x+ x)).

Now define ϕ(x) as Ψ∧¬(x < 1)∧ (∃y∈adom.x < y ∨ x = y). Then, for S not of the
form Sn, we have ϕ[S] = ∅, and ϕ[Sn] = {1, 2, 3, . . . , 2n}. Since card(Sn) = n, this
implies growthϕ(n) = 2

n for n > 0.
The dichotomy theorem gives easy expressivity bounds based on the growth of

the output size, in fact, sometimes somewhat surprising ones: even if we use expo-
nentiation, we still cannot express any queries with superpolynomial growth. For
example, consider the following query Q: given a binary relation S containing n + 1
distinct points x0, x1, . . . , xn on a plane, return the vertices of the projection of
an n-dimensional cube [0, 1]n, where the edges along the axes are projected onto
�x0x1, . . . , �x0xn. It is easy to see that for each fixed n, this query is expressible in
FO+Poly. As a consequence of the dichotomy theorem, we conclude that Q cannot
be expressed uniformly for all n even as an FO +Exp query.

For monotone queries, we can do better. We prove a trichotomy theorem that
provides us with a lower bound as well. Recall that monotone queries are those for
which D1 ⊆ D2 implies ϕ[D1] ⊆ ϕ[D2]. For example, any union of CQs is monotone.

Theorem 6.4. Let M be o-minimal based on a dense order. Then, for each
monotone query ϕ(�x), there exist two polynomials p1ϕ and p2ϕ such that either growthϕ
is bounded by a constant or, for every n, either p1ϕ(n) ≤ growthϕ(n) ≤ p2ϕ(n) or
growthϕ(n) =∞.

Proof. In view of the previous theorem, it remains to show that if growthϕ is
not bounded by a constant, then it is bounded below by a polynomial. Assuming
growthϕ is not bounded by a constant, we get a family of databases {Di}i∈N such
that size(ϕ[Di]) > i for all i. Because of monotonicity, we can ensure, by adding
elements to Di, that size(Di) ≥ i.

In the proof of Lemma 5.3 we showed that there exists a constant k that depends
on ϕ only, such that �a ∈ ϕ[D] iff there is a D′ ⊆ D with at most k tuples such
that �a ∈ ϕ[D′]. Thus, there is a D′

i ⊆ Di with at most k(i + 1) tuples such that
size(ϕ[D′

i]) > i.
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Now, for a given n, let i be the maximal such that k(i+1) ≤ n. Consider D′
i and

extend it to contain exactly n tuples. For the resulting D′′
i , we have size(ϕ[D′

i]) > i
by monotonicity; hence growthϕ(n) > i. Since n ≤ k(i + 1), we get from this that
growthϕ(n) ≥ n

k − 1, which completes the proof.
It also follows from the proof that the lower polynomial bound does not require

o-minimality. This gives us some new expressivity bounds. It is possible to find
first-order queries with growthϕ = O(f(n)) for many nonpolynomial functions f . For
example, consider a schema consisting of one unary relation X and one binary relation
E, and a sentence Ψ saying that E codes the powerset of X; that is, the family of
sets Xa = {y | E(y, a)} is exactly the family of all nonempty subsets of X, when a
ranges over the second projection of E. Such a sentence Ψ can be defined in first-order
logic; cf. [1]. We now let ϕ(x) ≡ X(x) ∧ Ψ; it then follows that growthϕ = O(log n).
Similarly, one can find queries with growthϕ = O( k

√
n) for any constant k. The

trichotomy theorem says that such queries cannot be defined as monotone queries
(e.g., unions of CQs) over any interpreted structure.

7. Preserving geometric properties of constraint databases. In this sec-
tion, we switch from the finite world to the infinite; that is, we deal with constraint
databases that represent potentially infinite objects. The notion of safety over con-
straint databases is different: we are interested in identifying languages that guarantee
preservation of certain geometric properties.

To give a very simple example, assume that spatial objects stored in a database
are convex polytopes in R

n. A simple query, “return the convex hull of all the vertices
x with ‖ x ‖< 1” does always return a convex polytope. This query must be written in
a rather expressive language: it can be expressed in FO+Poly but not FO+Lin [43].
Now, our question is, Can we ensure in some way that a class of FO+Poly programs
preserves a given property, like being a convex polytope? That is, can we find an
effective syntax for the class of queries that preserve certain geometric properties?

For FO + Poly and the class of databases definable with linear constraints
(semilinear databases), [13] gave a solution, based on deciding semilinearity by an
FO + Poly query. The resulting language is not quite natural, and [13] posed a
problem of finding natural languages that capture queries with certain preservation
properties. Our first goal here is to present a general scheme, different from the decid-
ability approach, for enumerating such queries in FO(M). HereM is some structure
on the reals, not necessarily 〈R,+, ∗, 0, 1, <〉. The approach is based on reduction to
the finite case and using our results about finite query safety. A similar approach was
used in [37], where a coding was applied to reduce certain questions about ordered
constraint databases to ones about finite databases.

As it often happens, the general case is solved rather easily, and gives us a pleas-
ant characterization of queries preserving geometric properties, but working out the
details of important motivating examples is a painful process. We do so for three
properties: a convex polytope, a convex polyhedron, and a compact semilinear set in
R

2 (the latter are perhaps the most often-encountered class of constraint databases).
We then use our characterizations together with the dichotomy theorem of the

previous section to show a somewhat surprising result that for unions of conjunctive
FO+Poly queries, it is decidable whether they preserve convex polytopes or compact
semilinear sets in R

2.
To define a general framework for talking about queries that preserve geometric

properties, we recall some basic definitions on constraint (or finitely representable)
databases. As before, we have a language of some underlying structure M and
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a schema SC , but now m-relations in SC are given by quantifier-free formulae2

α(x1, . . . , xm) in L(Ω). If M is 〈R,+,−, 0, 1, <〉, then sets so defined are called
semi-linear ; for 〈R,+, ∗, 0, 1, <〉 they are called semialgebraic; cf. [42]. The query
languages for constraint databases are the same as those we considered for finite ones:
FO(SC ,Ω).

If M = 〈U ,Ω〉 is an infinite structure, let Obj(Ω) be the class of finitely rep-
resentable databases over M; that is, Obj(Ω) =

⋃
n<ω Objn(Ω) and Objn(Ω) is the

collection of subsets of Un of the form {(x1, . . . , xn) | M |= α(x1, . . . , xn)}, where α
is a quantifier-free first-order formula in L(Ω). We use SAlgn for semialgebraic sets.

Let S be anm-ary relational symbol, and let ψ(y1, . . . , yn) be a first-order formula
in the language of S and Ω. Then this query defines a map from Objm(Ω) to Objn(Ω) as
follows: for any X ∈ Objm(Ω), ψ[X] = {�y | (M, X) |= ψ(�y)}. Clearly ψ[X] ∈ Obj(Ω)
if M has QE.

Let C be a class of objects in Obj(Ω). We say that a first-order query ψ preserves
C if for any X ∈ C, ψ[X] ∈ C. For example, C can be the class of convex polytopes in
SAlg.

Thus, the safety question for constraint databases is the following. Is there an
effective syntax for the class of C-preserving queries? Below, we show an approach to
solution, based on the characterization theorems for the finite case.

Definition 7.1. The class C has a canonical representation in Obj(Ω) if there is
a recursive injective function g : N → N with computable inverse, and for each n, two
functions, coden : 2

Un → 2U
m

and decoden : 2
Um → 2U

n

, where m = g(n), such that
(1) decoden ◦ coden(x) = x if x ∈ Objn(Ω);
(2) |coden(x) |< ω if x ∈ C; decoden(x) ∈ C if x is finite;
(3) coden is FO(Ω)-definable on Objn(Ω);
(4) decoden is FO(Ω)-definable on finite sets.
Intuitively, the canonical representation is a finite representation of C within

Obj(Ω) that can be defined in first-order logic over M. For example, an approach
to obtaining a canonical representation of convex polytopes would be to compute
their vertices. This suffices to reconstruct the polytope, and the vertices can be de-
fined by a first-order formula. The actual representation (Proposition 7.3) is indeed
based on computing the vertices.

Next, we show that canonical representations solve the safety problem. We always
assume that the set Ω is recursive.

Theorem 7.2. Let M = 〈U ,Ω〉 be o-minimal, based on a dense order, and
decidable, and let it have effective QE. Suppose C is a class that has a canonical
representation in Obj(Ω). Then there is an effective syntax for C-preserving FO(Ω)
queries; that is, there exists a recursively enumerable set of C-preserving FO(Ω) queries
such that every C-preserving FO(Ω) query is equivalent to a query in this set.

Proof. Consider an enumeration of all safe FO(Ω) queries 〈ϕi〉 (from Corollary
4.8, we know that it exists). Let ϕ use the extra relation symbol of arity m and
assume that n is such that g(n) = m; given the assumptions, we can compute that.
Let ϕi have l parameters, and again let k be such that g(k) = l. If n and k are found
for a given ϕi, we let ψ be

decodek ◦ ϕi ◦ coden.

This produces the required enumeration. So we have to check that every query above

2Without loss of generality, we do not assume relational attributes, as in [13, 27] and some other
papers. They do not affect our results but would make notation heavier.
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preserves C, and for every C preserving ψ, we can get ϕ such that decode ◦ ϕ ◦ code
coincides with ψ. The first one is clear: if we have X ∈ C, then coden(X) is finite,
hence ϕi[coden(X)] is finite too, and applying decodek, we get an object in C.

For the converse, suppose we have a C-preserving query ψ : Objn(Ω)→ Objk(Ω).
Define α as follows: α = codek◦ψ◦decoden. That is, α is a query Objm(Ω)→ Objl(Ω).
Given this, notice that

decodek ◦ α ◦ coden = decodek ◦ codek ◦ ψ ◦ decoden ◦ coden = ψ

on Objn(Ω). Thus, it remains to show that α is safe, i.e., preserves finiteness. Let
X be a finite set in Um. Then decoden(X) ∈ C, decoden(X) ⊂ Un. Since ψ is C-
preserving, we get that Y = ψ[decoden(X)] ∈ Objk(Ω) is in C, too, and thus codek(Y )
is finite. This proves finiteness of α and concludes the proof of the theorem.

We now turn to examples in the case when Ω = (+, ∗, 0, 1, <); that is, we are
looking for canonical representations in SAlg. Let CPH be the class of convex poly-
hedra (intersections of a finite number of closed halfspaces) and CPT be the class of
convex polytopes (bounded polyhedra). For the basic facts on convex sets that will
be used in the proofs of the propositions below, see [33].

Proposition 7.3. The class CPT has canonical representation in SAlg.
Proof. Given a convex polytope X in R

n, its vertices can be found as V (X) =
{�x ∈ R

n | �x ∈ X,�x �∈ conv(X − �x)}. Thus, vertices of convex polytopes are definable
in FO(+, ∗, 0, 1, <), because the convex hull of a finite set of points is definable, and,
in view of Carathéodory’s theorem, we have

V (X) = {�x ∈ R
n | �x ∈ X, ∀�x1, . . . , �xn+1 ∈ X − �x. �x �∈ conv({�x1, . . . , �xn+1})}.

We now define coden. To simplify the notation, we let it produce a pair of n-ary
relations, but it can be straightforwardly coded by one relation. If X = conv(V (X)),
then coden(X) = (V (X), ∅); otherwise, coden(X) = (R

n, X). The function decoden :
2R

n × 2R
n → 2R

n

is defined as follows:

decoden(Y,Z) =

{ ⋃
(�y1,...,�yn+1)∈Y conv({�y1, . . . , �yn+1}) if Y �= R

n,

Z otherwise.

Clearly, decoden ◦ coden is the identity function for any (semialgebraic) set; these
functions are also first-order definable. If X is a polytope, V (X) is finite, and by
Carathéodory’s theorem each point of X is contained in the convex hull of at most
n + 1 vertices of X. Hence, card(coden(X)) ≤ card(V (X))n+1 < ω. If (Y,Z) is
finite, then decoden(Y ) is conv(Y ) and thus a convex polytope. This proves the
proposition.

Proposition 7.4. The class CPH has canonical representation in SAlg.
Proof. We first give a brief sketch of the coding scheme. We start by recalling a

few basic facts about convex polyhedra (see [15, 33]). Let X be a convex polyhedron
in R

n. Then X = L + (X ∩ L⊥), where L is its lineality space, defined as {�y | �y =
�0 or ∀�x ∈ X∀λ. �y + λ · �x ∈ X} (it is a subspace of R

n) and L⊥ is the orthogonal
subspace {�y | ∀�x ∈ L. 〈�x, �y〉 = 0}. We shall use X0 for X ∩ L⊥ in this proof. It is
known that X0 is a convex polyhedron of lineality zero; that is, it contains no line.
By A+B we mean {�a+�b | �a ∈ A,�b ∈ B}. Note the difference between the translate
X−�x = {�y−�x | �y ∈ X} and the set-theoretic difference X−x; we use �x to distinguish
between them.

For X0, define its vertices as x ∈ X0 such that x �∈ conv(X0 − x). A direction
is given by a vector �y and corresponds to the equivalence class of rays which are
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translates of each other. Note that each direction can be canonically represented by
�y such that ‖ �y ‖= 1. A direction �y is an extreme direction of X0 if for some vertex
�x, the ray through �x in the direction of �y, l(�x, �y) = {�x + λ · �y | λ ≥ 0}, is a face of
X0. Since X0 is polyhedral of lineality zero, the set of vertices and extreme directions
is finite. By (generalized) Carathéodory’s theorem [15, 33], every point �z of X0 is a
combination of at most n+ 1 vertices and extreme directions,

λ1�x1 + · · ·+ λk�xk + µ1�y1 + · · ·+ µm�ym,

where λi, µj ≥ 0, λ1 + · · ·+ λk = 1, k +m ≤ n+ 1.
This suggests the following coding scheme. As before, for simplicity of exposition,

we assume several coding relations, but they can be combined into one easily. We also
do not spell out every first-order formula, but the reader should be convinced from
the mathematical definitions that all the concepts we use are first-order definable over
the real field. We use relations LINEALk; each such relation contains a canonical
representation (roughly, an orthogonal basis) of the lineality space of X, provided
its dimension is k. That is, at most one of these relations actually contains some
information. We then have the relations Vert and ExtDir for storing vertices and
extreme directions of X0. Finally, we have a relation Points that contains points that
do not belong to L+X0 (recall that the coding scheme applies to any semialgebraic
set, so there could be such points, and we need to record them for the decode function).

Thus, to code (an arbitrary semialgebraic) set X, we first note that its lineality
space L(X) = {�y | ∀�x ∈ X. �x + �y ∈ X} and its orthogonal L(X)⊥ = {�y | ∀�x ∈
L(X). 〈�x, �y〉 = 0} are definable in FO + Poly (note that one can define the inner
product in FO + Poly). Furthermore, for each k ≤ n, there exists an FO + Poly
sentence dimk expressing the fact that L(X) is a subspace of R

n and its dimension is
k. This is true because in FO + Poly we can test linear independence; thus, we can
check if there exists a system of k linearly independent vectors in L such that every
vector in L is a linear combination of them.

Next, we show how to compute LINEALk and VertDir. We first sketch the coding
scheme for LINEALk. The set L(X) is (FO + Poly)-definable. Assume that it is a
k-dimensional linear space (which is tested by dimk). Let ∆n be some canonically
chosen n-dimensional simplex of diameter 1 such that the origin has barycentric co-
ordinates ( 1

n , . . . ,
1
n ). Consider the intersection of L(X) with one-dimensional faces

of ∆n (unless L(X) is a line, in which case we consider its intersection with two-
dimensional faces of ∆n). If the intersection is a point, we record that point; if it
contains the whole face, we record both endpoints of the face. From the selected
points, find a linearly independent subsystem (note that it can be done canonically,
for example, by listing the vertices and one-dimensional faces of ∆n in some order).
It then serves as a basis of L(X), which we use to code L(X). Note that L(X) can
be reconstructed in FO +Poly from its basis.

Now that we have a representation for the lineal space of X, and a first-order
formula defining L⊥, we have an FO + Poly formula defining X0. Using it, we can
compute vertices

V (X0) = {x ∈ X0 | ¬∃x1, . . . , xn+1 ∈ X0 − x. x ∈ conv({x1, . . . , xn+1})}.

Clearly, this is a first-order definition. Next, we find the set

E(X0) = {�y | 〈�y, �y〉 = 1 and ∃�x ∈ V (X0). l(�x, �y) is a face}.
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A subset Y of X0 is a face if every closed line segment in X0 with a relative interior
point in Y has both endpoints in Y . Clearly, this is first-order definable, and thus
E(X0), the set of extreme directions of X0, is first-order definable.

Given two sets V and E in R
n, by conv(V,E) we denote their convex hull, that

is, the set of elements of R
n definable as

∑k
i=1 λi · �xi +

∑m
j=1 µj · �yj , where �xi ∈ V ,

�yj ∈ E,
∑k

i=1 λi = 1, λi, µj ≥ 0, and k + m ≤ n + 1. Again, this can be done in
FO +Poly.

We now describe coden. For a semialgebraic set X, it produces a tuple of relations

(LINEAL0, . . . ,LINEALn,Vert ,ExtDir ,Point)

as follows. It first determines, by computing L(X), L(X)⊥, V (X0), and E(X0) if it
is the case that L(X) is a linear subspace of R

n and

X = L(X) + conv(V (X0), E(X0)).

If this is the case, then LINEALk, Vert, and ExtDir are produced as before, and Point
is empty. Otherwise, Point coincides withX, and all other sets in the coding are taken
to be R

n. From the description above it follows that coden is (FO+Poly)-definable.
To compute decoden, we first check if the first n+2 relations in the code coincide

with R
n, and, if this is the case, output the last relation in the code. Otherwise, we use

the nonempty LINEALk with least k to compute a linear subspace L of R
n generated

by the vectors in LINEALk (if all LINEALk are empty, we let this subspace be {�0}).
Next, compute Y = conv(Vert ,ExtDir). Note that both are (FO + Poly)-definable.
Finally, return L+ Y ∩ L⊥; this is (FO +Poly)-definable also.

We now sketch the proof that this coding scheme satisfies the conditions of the def-
inition of canonical representation. Both code and decode are (FO+Poly)-definable.
If X ∈ CPH, then L(X) is a linear space, X0 has finitely many vertices and extreme
directions, and X = L + X0 implies that Point is empty, thus showing that code
produces a finite set. Assume that decode is given a finite input Y . Then none of
the first n + 2 relations is R

n, and thus the output of decode is the sum of a vector
space and a convex hull of a finite set of vertices and directions, and thus a convex
polyhedron. To show that decode ◦ code(X) = X for any semialgebraic X, consider
two cases. If X = L(X) + conv(V (X0), E(X0)), then Point is empty, and Vert and
ExtDir record all vertices and extreme directions of X0, and one of LINEALk codes
the lineality space. Thus, decode applied to code(X) will return L + X0 = X. If
X �= L(X)+ conv(V (X0), E(X0)), then all relations but Point coincide with R

n, and
Point contains X, and thus decode returns X. This completes the proof.

Let SLinComp be the class of compact (closed and bounded) semi-linear sets. We
resolve this case for dimension 2.

Proposition 7.5. The class SLinComp2 has canonical representation in SAlg2.
Proof (sketch). An object in SLinComp2 is a finite union of convex polytopes

in R
2—this easily follows from cell decomposition. Any such object X admits a

triangulation that does not introduce new vertices [26]. Thus, the idea of the coding
is to find the set V (X) of vertices and use as the code triples of vertices (not necessarily
distinct) (�x, �y, �z) with conv({�x, �y, �z}) ⊆ X. More precisely, a triple (�x, �y, �z) belongs
to code(X) if either �x, �y, �z ∈ V (X) and conv({�x, �y, �z}) ⊆ X, or �x = �y = �z and there
is no triple of elements of V (X) whose convex hull is contained in X and contains �x.
Thus, code(X) ⊆ R

6. For decode, we use

decode(Y ) =
⋃

(�x,�y,�z)∈Y
conv({�x, �y, �z}).
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Clearly, decode ◦ code is the identity, decode is first-order definable, and decode(Y ) is
compact and semilinear when Y is finite. Thus, it remains to show that V (X) is finite
and (FO + Poly)-definable. The former is well known (see [25]). For the first-order
definition of V (X) we use the following result from [25, 10]. Let X be a finite union
of polyhedra (in R

n) and let Bε(�x) be the ball of radius ε around �x. Then for each �x,
there exists δ > 0 such that for any 0 < ε1, ε2 < δ, we have

�x+
⋃
λ>0

λ · [(X ∩Bε1(�x))− �x] = �x+
⋃
λ>0

λ · [(X ∩Bε2(�x))− �x].

We denote this set by X(�x). Define the equivalence relation ≡X by �y ≡X �z if X(�y) =
X(�z). Then the vertices of X are precisely the one-element equivalence classes of ≡X .
It is routine to verify that the above can be translated into an (FO+Poly) definition
of vertices. This completes the proof.

Note that the coding scheme used in the proof of Proposition 7.5 cannot be used
in higher dimensions. We used the fact there is a triangulation of a two-dimensional
polygon that does not introduce new vertices. However, in the three-dimensional case,
there exist (nonconvex) polygons for which such a triangulation is impossible; cf. [34].
In fact, [34] shows that the problem of deciding if a three-dimensional polygon admits
such a triangulation is NP-complete.

Summing up, we have the following theorem.
Theorem 7.6. There exists a recursively enumerable class of FO+Poly queries

that captures the class of CPT - (CPH- and SLinComp2-, respectively) preserving
queries.

The coding technique given here gives more information, however, as shown in
the next section.

7.1. Decidability results and geometric bounds. While the classes of FO+
Poly queries preserving certain properties have been shown to be recursively enu-
merable, in general, testing nontrivial preservation properties for arbitrary first-order
queries is undecidable. For example, it is shown in [44] that it is undecidable whether
an FO+Poly-query preserves semilinearity. Here, we show that for a restricted class
of FO+Poly queries, unions of CQs, preserving two of the properties considered here
is decidable. The proofs are based on the representation theorems of this section and
the dichotomy theorem of the previous section. We first give the following bound on
the behavior of conjunctive queries on convex polytopes.

Lemma 7.7. Let ϕ(x1, . . . , xn) be a union of FO + Poly CQs that mentions
one m-ary relational symbol S. Then one can effectively find two numbers, k and l,
such that ϕ is CPT -preserving iff for every convex polytope D in R

m with at most k
vertices, the output ϕ[D] is a convex polytope with at most l vertices in R

n.
Proof. We can assume without loss of generality that ϕ(�x) is of the form

∨
j

∃�z
∧
i

αij(�x, �z),

where each αij is either S(· · ·) or an L(+, ∗, 0, 1, <) formula. Let k0 be the maximal
number of S-atomic formulae in a disjunct of ϕ. Then the argument made in the
proof of Lemma 5.3 shows that for each �a ∈ ϕ[D], there exists a subset of D′ ⊆ D
with at most k0 points such that �a ∈ ϕ[D′].

Now assume that D is a convex polytope in R
m and V (D) is the set of its vertices.

Then each element of D belongs to conv(V ′), where V ′ is a subset of V of cardinality
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at most m + 1. Now let k′ = k0(m + 1). Then it follows from monotonicity that for
every �a ∈ ϕ[D], there is a subset of V ′ ⊆ V (D) of cardinality at most k such that
a ∈ ϕ[conv(V ′)]; in particular,

ϕ[D] =
⋃

V ′⊆V (D),card(V ′)≤k′

ϕ[conv(V ′)].

We now set k = 2k′.
Next, consider the following FO+Poly query ϕ′, which uses one m-ary relational

symbol R. First, ϕ′ constructs the convex hull of points in R
m which are in R. Then

it applies ϕ to the result, to get a set Y . Finally, it returns V (Y ), that is, the
set {y ∈ Y | y �∈ conv(Y − y)}. Clearly, ϕ′ is expressible in FO + Poly. From the
dichotomy theorem, we know that there is a polynomial p with the following property:
if R is finite and contains i points, then either ϕ′[R] is infinite or it contains at most
p(i) points. We now let l = max{p(i) | i = 1, . . . , k}. Note that both k and l can be
effectively calculated for a given ϕ.

It remains to show that if ϕ has the property that it sends a convex polytope
with ≤ k vertices in R

m into a convex polytope with ≤ l vertices in R
n, then it is

CPT -preserving. First, assume that D is a convex polytope with ≤ k vertices in R
m.

Assume ϕ[D] is a convex polytope. If we apply ϕ′ to a relation storing vertices of D,
then the result is a finite set of vertices of ϕ[D]. Hence, by the dichotomy theorem,
it has at most l vertices. That is, it now suffices to show that if ϕ has the property
that it sends a convex polytope with ≤ k vertices in R

m into a convex polytope, then
it is CPT -preserving.

Let D be a convex polytope. We know that ϕ[D] =
⋃
V ′ ϕ[conv(V ′)], where

V ′ ranges over subsets of V (D) that have at most k′ ≤ k elements. Thus, each
ϕ[conv(V ′)] is a convex polytope. Assume that ϕ[D] is not convex. Then we can
find two sets of vertices V1, V2, having at most k

′ elements each, and two points
�a ∈ ϕ[conv(V1)], �b ∈ ϕ[conv(V2)], and �c between �a and �b such that �c �∈ ϕ[D]. Let
V0 = V1 ∪ V2. Then, by monotonicity of ϕ, �a,�b ∈ ϕ[conv(V0)]. By the assumption,
ϕ[conv(V0)] is convex (since card(V0) ≤ k) and thus �c ∈ ϕ[D]. Hence, we showed
that ϕ[D] is convex. Since it is convex and a finite union of convex polytopes, it is a
convex polytope itself. This completes the proof of Lemma 7.7.

We now prove a similar bound for compact semilinear sets in R
2. When we speak

of a triangle, we mean convex hulls of three points in R
2. In particular, a degenerate

triangle can be a segment or a point. We now prove the following.
Lemma 7.8. Let ϕ(x, y) be a union of conjunctive FO+Poly queries that men-

tions one binary relational symbol S. Then one can effectively find two numbers, k
and l, such that ϕ is SLinComp2-preserving iff for every set D ⊆ R

2 which is a union
of at most k triangles in R

2, it is the case that ϕ[D] is a union of at most l triangles
in R

2.
Proof. Assume, as in the proof of Lemma 7.7, that ϕ(�x) is of the form

∨
j

∃�z
∧
i

αij(�x, �z),

where each αij is either S(· · ·) or a L(+, ∗, 0, 1, <) formula, and let k be the maximal
number of S-atomic formulae in a disjunct of ϕ. Then, by the same argument as in the
proof of Lemma 7.7, we obtain that if �x ∈ ϕ[D], then there exist k points �z1, . . . , �zk
in D such that �x ∈ ϕ[{�z1, . . . , �zk}]. Assume that D is compact and semilinear; since
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D ⊆ R
2, it can be triangulated using only vertices of D. Let V (D) be the set of

vertices of D, which can be computed by an FO+Poly query, as shown in the proof
of Proposition 7.5. Since every point of D is in the convex hull of a triangle whose
vertices come from V (D), we obtain, by monotonicity of ϕ, that if �x ∈ ϕ[D], then
there exists a set V ′ of triples of elements from V (D) such that card(V ′) ≤ k and

�x ∈ ϕ


 ⋃

(�u,�v,�w)∈V ′

conv({�u,�v, �w})


 .

Next, consider the following FO+Poly query ψ on finite databases. It uses one
6-ary schema relation R, which can be thought of as storing triples (�u,�v, �w) of points
in R

2. First, ψ computes

P (R) =
⋃

(�u,�v,�w)∈R
conv({�u,�v, �w}),

which is a compact semilinear set, and then it computes the set V (P (R)) of vertices
of P (R), using the technique of [25], that we exploited in the proof of Proposition 7.5:
for each �x, the set P (R)(�x) = �x+[(P (R)∩Bε(�x))−�x] does not depend on a particular
value ε below some threshold δ. We then define vertices as those �x for which there
is no �x0 �= �x with P (R)(�x) = P (R)(�x0). Thus, the query computing V (P (R)) is
definable in FO+Poly, and by the dichotomy theorem, there is a polynomial p such
that, for each R, either V (P (R)) is infinite or it has at most p(n) vertices, where n is
the number of tuples in R. We now let l be max{p(i) | i = 1, . . . , k}.

To show that these k and l witness the conclusion of the lemma, assume that ϕ
is SLinComp2-preserving. Then the output of every ϕ on every union of k triangles
is a compact semilinear set. From the construction above, it follows that such an
output can have no more than l vertices. Conversely, assume that the output of every
union of k or fewer triangles is a union of l or fewer triangles. Since ϕ[D] is the
union of ϕ[

⋃
(�u,�v,�w)∈V conv({�u,�v, �w})], where V ranges over k-element sets of triples

of vertices of D, we obtain that ϕ[D] is a union of a finite number of triangles, and
thus compact and semilinear. This concludes the proof of the lemma.

The promised decidability results now follow from the bounds established in the
lemmas above.

Theorem 7.9. The following two properties of unions of conjunctive FO+Poly
queries are decidable:

(1) being CPT -preserving;
(2) being SLinComp2-preserving.
Proof of (1). Note that for each i, there is an FO + Poly query ψi for each i

that tests if a set D is a convex polytope with at most i vertices: it checks that the
set of vertices V (D) = {x ∈ D | x �∈ conv(D − x)} has at most i elements, and that
D = conv(V (D)). In order to check if a UCQ ϕ in FO+Poly is CPT -preserving, one
applies Lemma 7.7 to compute the numbers k and l, and then writes a sentence saying
that for every ≤ k-element set V in R

m, applying ϕ to conv(V ) yields a polytope with
at most l vertices. Since conv and ψl are definable, this property can be expressed as
an FO(+, ∗, 0, 1, <) sentence and thus it is decidable if it is true. Hence, the property
of being CPT -preserving is decidable.

Proof of (2). As in the proof of (1), we notice that the condition of Lemma 7.8
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can be written as a first-order L(+, ∗, 0, 1, <) sentence equivalent to

∀{�xji}
j=1,2,3
i=1,...,k ∃{�yps}

p=1,2,3
s=1,...,l ∀�x.

(
�x ∈

l⋃
s=1

conv({�yps | p = 1, 2, 3})
)

↔ ϕ′(�x),

where ϕ′ is obtained from ϕ by replacing each occurrence of S(u, v) with a formula

expressing the fact that (u, v) ∈
⋃k
i=1 conv({�x

j
i | j = 1, 2, 3}). Since the convex hull

of a finite number of points is (FO + Poly)-definable, the condition of the lemma
is indeed definable by an L(+, ∗, 0, 1, <) sentence, and thus its validity is decidable.
Hence, it is decidable if a union of conjunctive FO + Poly queries is SLinComp2-
preserving.

7.2. New expressivity bounds. We can also obtain new expressivity bounds
by combining the dichotomy theorem with the idea of canonical representation. First,
as an immediate consequence of the technique of Proposition 7.3, Lemma 7.7, and the
dichotomy theorem, we obtain the following.

Corollary 7.10. Let ϕ(�x) be an FO + Poly or FO + Exp CPT -preserving
query. Then there exists a polynomial pϕ such that, whenever D is a convex polytope
with n vertices, ϕ[D] has at most pϕ(n) vertices.

From the proof of Lemma 7.8, one can extract the following, by applying the
dichotomy theorem to a query that works on representations of compact semilinear
sets in R

2 as finite unions of triangles.
Corollary 7.11. Let ϕ(x, y) be an FO + Poly query that is SLinComp2-

preserving. Then there exists a polynomial pϕ such that, whenever D is a compact
semilinear set with n vertices, ϕ[D] has at most pϕ(n) vertices.

Consider the following problem: given a polyhedron P and ε > 0, find a triangu-
lation of P of mesh < ε, that is, a triangulation such that the diameter of each simplex
(triangle in dimension 2) is less than ε. It is a well-known result that each polyhedron
admits such a triangulation [4]. The output of such a query can be structured in
several ways, for example, by storing the information about the face structure of the
triangulation. We impose only one requirement: that the vertices of the triangulation
be computable.

Proposition 7.12. There is no FO + Exp query that finds a triangulation of
a given polygon with a given mesh. This continues to hold if we restrict to convex
polytopes on a plane.

Proof. Suppose such a query exists; now consider a new query that does the
following. Its input is one binary relation containing a set X of points �x1, . . . , �xn
on the real plane, and one unary relation containing a single real number ε > 0.
First, in FO + Poly, construct conv(X), and then find vertices of a triangulation
with mesh < ε. This is clearly a safe query, so by the dichotomy theorem, there
exists a polynomial p such that the number of vertices of the triangulation is at most
m = p(n+ 1) (n+ 1 is the size of the input). Let d be the maximal distance between
the points �xi, �xj (and thus the diameter of conv(X)). Since the segment [�xi, �xj ] with
d(�xi, �xj) = d must be covered by the simplexes of the triangulation, it is possible
to find a number ε such that it cannot be covered by fewer than m + 1 triangles
of diameter ε, and hence the number of points in the triangulation is > m. This
contradiction proves the proposition.

8. Conclusion and future work. Let us summarize the main themes of the
paper.
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• The relational calculus with interpreted functions is a nontrivial and inter-
esting extension of the relational calculus. Many useful properties of the
relational calculus remain in place in the presence of built-in functions, but
many don’t. Identifying the analogs to classical results in the interpreted
setting can be tricky; proving them is not necessarily a piece of cake either.

• What sort of interpreted structure one adds matters.
• By combining results on the relational calculus with interpreted functions
with some simple canonical representations of constraint databases, one can
get interesting bounds on the behavior of constraint queries.

We now discuss extensions of each of these themes to other settings. In the first
part of the paper, we identified some helpful properties of the relational calculus that
remain in the presence of well-behaved built-in functions, with the real arithmetic
functions being our prototypical example. Looking at structures such as real arith-
metic or rational addition was quite helpful in discovering these results, but these
characterization theorems are by no means limited to functions on real or even ra-
tional domains. Results in this paper and in [8] indicate that the safety and bound
results fail badly for full integer arithmetic. However, we are currently working on
extensions of these results to well-behaved structures over the integers, such as linear
integer constraints. Although the growth dichotomy and range-restriction theorems
as stated here fail for integer linear constraints, modifications of the characterization
results still hold. In addition, several of their algorithmic consequences, such as the
decidability results for conjunctive queries, are still valid in the integer case.

In this paper we focused mainly on the relational calculus. Many of the proofs
here, such as the results on range-restriction and safety, generalize straightforwardly to
higher order logics (fixpoint, second-order). Still, the safety question for many higher
order logics, particularly fixpoint logic in its many variations, is quite intricate, and
we lack a full picture of what interpreted structures and recursion constructs permit
a well-behaved theory of query safety.

Our emphasis here was showing that a wide class of interpreted functions satis-
fying some weak structural assumptions all exhibit certain kinds of tame behavior.
In contrast, papers such as [19] give more detailed algorithmic analyses for specific
structures. It still remains to give a complexity-theoretic analysis of both the safe
translation problem and the query safety problem for conjunctive queries in the case
of polynomial and linear constraints. A related interesting question is the complexity
of deciding preservation properties for conjunctive queries over finitely representable
databases.

We are working on several kinds of extensions of the growth bound theorems of
section 6. Some of our current work is on broadening the class of models these results
apply to, and some of it concerns getting more precise bounds on the behavior of the
growth function. It is fairly clear why these bounds have never been stated for the
pure case: they are completely obvious for any pure query language. However, the
pure case does put some strong limits on what sort of more precise information one can
obtain on the behavior of the growth function. For example, results in the pure first-
order case show that the function f(n) giving the minimum nonzero size of output over
models of size n can be sublogarithmic. Well-known results on the spectrum problem
give restrictions on the structure of the set {n : growthϕ(n) = k} for k equal to any
constant or ∞. One can, however, give theorems relating the behavior of the growth
function of a polynomial constraint query to that of a pure first-order query. We are
also working on characterizations of the classes of interpreted structures for which the
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growth bound dichotomy theorem holds, and on characterizations of structures for
which the growth function is bounded not by a polynomial, but by other definable
functions of the input size (e.g., exponential).

The second part of the paper deals with applying our results on finite databases to
finitely representable ones, with the main technique coming via canonical codes. The
main point of our codings was to facilitate this transfer of results. We are working on
refining the results here to get natural canonical codings for larger geometric classes,
and on studying these codes in themselves. The codings given here often capture a
significant model-theoretic observation about the geometric class (e.g., the codings
based on Carathéodory’s theorem and its generalizations show that membership is
determined by a bounded number of elements, and that these elements are definable
from the database); they also give quite a bit of intuition on how queries that preserve
these classes behave. We think this approach is quite a promising one for arriving at
useful languages for queries that preserve geometric structure. In fact, very recently,
a syntactically defined subquery language of FO+Poly for manipulating semilinear
databases was given in [45]. Their approach was to combine Theorems 4.5 and 7.2 with
the coding technique of [13] to find a canonical coding for semi-linear sets. Further
study of canonical codes may also shed light on decidability of preservation properties
for special classes of queries.
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Abstract. Broadcast disks are an emerging paradigm for massive data dissemination. In a
broadcast disk, data is divided into n equal-sized pages, and pages are broadcast in a round-robin
fashion by a server. Broadcast disks are effective because many clients can simultaneously retrieve
any transmitted data. Paging is used by the clients to improve performance, much as in virtual
memory systems. However, paging on broadcast disks differs from virtual memory paging in at least
two fundamental aspects:

• A page fault in the broadcast disk model has a variable cost that depends on the requested
page as well as the current state of the broadcast.

• Prefetching is both natural and a provably essential mechanism for achieving significantly
better competitive ratios in broadcast disk paging.

In this paper, we design a deterministic algorithm that uses prefetching to achieve an O(n log k)
competitive ratio for the broadcast disk paging problem, where k denotes the size of the client’s
cache. We also show a matching lower bound of Ω(n log k) that applies even when the adversary is not
allowed to use prefetching. In contrast, we show that when prefetching is not allowed, no deterministic
online algorithm can achieve a competitive ratio better than Ω(nk). Moreover, we show a lower bound
of Ω(n log k) on the competitive ratio achievable by any nonprefetching randomized algorithm against
an oblivious adversary. These lower bounds are trivially matched from above by known results about
deterministic and randomized marking algorithms for paging. An interpretation of our results is that
in the broadcast disk paging, prefetching is a perfect substitute for randomization.

Key words. design of algorithms, online algorithms, competitive analysis, paging, distributed
systems, client-server architecture, broadcast disks
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1. Introduction. In traditional client-server architectures, such as the World
Wide Web, data transfers are initiated by clients that request information from
servers. Such an architecture is said to be a “pull” system because clients pull data
from the servers. An emerging alternative to pull systems is the “push” technology.
In a push system, the server repeatedly broadcasts data to clients; thus the server
now “pushes” information toward the clients.

Broadcast disks are a widely used type of push technology. In broadcast disks,
data are divided into pages of equal sizes, and pages are broadcast in a round-robin
fashion. The name “broadcast disk” derives from the broadcast program being a
circular repetition of pages.

1.1. A widespread application. Broadcast disks have been deployed since the
early 80’s by most national television companies in western Europe. Broadcast disk
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technology has since attained nationwide diffusion and reaches most households. It
provides a continuous information source and has deeply influenced the lifestyle of
the countries where it is operational [10, 17]. Broadcast disks have been used in high
throughput multiprocessor database systems over high bandwidth networks [6] and
wireless communication [11]. An interested reader is referred to the survey lecture
by Franklin and Zdonik [9] that reports results and research directions in the field
of broadcast disks. The client storage resources have been recently integrated in the
broadcast disk approach [1, 2]. The client decides which pages to keep in its local
cache and which pages to evict. If the client finds a requested page in its local cache,
then the page request can be satisfied at no cost. However, if the client does not
have the requested page, it will have to wait for that page to be broadcast again
by the server. The client’s objective is to minimize the completion time needed to
satisfy a sequence of page requests. The resulting paging system has some affinity to
the traditional virtual memory systems [4]. We refer to it as broadcast disk paging
(BDP). The objective of this paper is to study paging algorithms for BDP in the
framework of competitive analysis (see [5, 12, 18], for instance).

1.2. Theoretical significance. BDP is not reducible to traditional online pag-
ing and poses several unexplored theoretical problems. It differs from traditional
paging in at least two main ways:

• The cost of faulting on any page changes dynamically with time in the case
of BDP.

• Prefetching dramatically improves the competitive ratio of online algorithms
for BDP and brings in the same advantage as randomization.

We elaborate these two points next. In traditional paging models, either the cost
of a page fault is uniform [4] or depends only on the faulting page [15]. In contrast,
the cost of a fault in BDP is the time spent waiting for the requested page to be
transmitted. It depends on the time step reached during the transmission schedule
and could range from 1 (the desired page is currently being broadcast) to n (the
desired page was broadcast just before), where n is the total number of pages in the
server broadcast. As a result, the design and analysis of BDP algorithms involve
techniques and ideas that are often significantly different from those for traditional
paging. Moreover, the final behavior of the BDP problem is very different from virtual
memory paging as illustrated by the following elementary example. Suppose that the
server broadcasts n pages and that the client has a local cache of size k. We show
that, when n = k + 1, there is a 1-competitive deterministic BDP online algorithm.
Briefly, the 1-competitive algorithm keeps in the cache all pages except the one that is
about to be broadcast. Such an algorithm pays a constant cost per fault, and after at
most n faults it will have in the cache exactly the same pages as the adversary. Hence,
the algorithm cost is only an additive factor away from the optimum. This is to be
contrasted with virtual memory paging where the adversary can force a worst-case
competitive ratio of k.

BDP also differs from the traditional paging in the role played by prefetching .
Prefetching is essentially ruled out from traditional paging without loss of generality
[15]. In this paper, we will show that in BDP prefetching is critical to dramatically
improve the competitive ratio of online algorithms. In fact, we will show that prefetch-
ing is an exact substitute for randomization in BDP. The importance of prefetching
can be intuitively explained as follows. Prefetching makes it possible for a client to
reload a page recently evicted and, in some sense, allows the client to dynamically
revise its eviction decisions.
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1.3. New results. In the absence of any prefetching, the conventional caching
analysis can be extended to show that any marking algorithm is O(nk)-competitive.
But things are far from clear when either the adversary or the online algorithm is
allowed to prefetch arbitrary subsets of pages. Our main result is that there exists
a deterministic online algorithm that uses prefetching and is O(n log k)-competitive.
Our algorithm uses the history of the request sequence and prefetching to develop
a strategy that dynamically rectifies any potential eviction mistake. We also show
that no deterministic online algorithm can achieve a competitive ratio better than
Ω(n log k). Therefore, our algorithm is optimal up to a constant factor. In contrast,
we prove that in the absence of prefetching, no deterministic algorithm can achieve
a competitive ratio better than Ω(nk), and that even with the use of randomization,
there is a lower bound of Ω(n log k) against oblivious adversaries. The corresponding
randomized upper bound is O(n log k).

Finally, we extend all our results to a more general model, called the delay model,
where at any step, the adversary generates either a page request or a delay request.
The delay requests capture the fact that a client may use the pages in its cache for
variable amounts of time, before ever requesting an outside page. The difficulty is
that the adversary may introduce delays to disrupt the current state of the online
algorithm. But we show that all of our results hold unchanged in the general model.

1.4. Paging and scheduling. In traditional paging, the cost of a page fault
depends on the cache configuration. In BDP, the cost depends on a dynamic state that
is not confined only to the contents of the local cache but reflects the configuration of
other areas of the system. Specifically, the BDP cost is affected by the time reached
along the broadcast schedule. In fact, BDP is only one of many problems where
there is a strong interaction between caching and schedules. For example, paging
can be integrated with prefetching strategies and yields a problem where performance
depends on cache contents as well as on the current disk state [7]. We suspect that
the results in this paper might shed light also on other online problems where caching
is interrelated with scheduling problems.

1.5. Organization. In section 2, we formalize our problem, define our notation,
and establish some basic properties of BDP that are useful to our study. In section
3, we study a simple special case of BDP that highlights an important difference
between BDP and virtual memory paging. We next study deterministic as well as
randomized BDP algorithms that do not use prefetching in section 4. In section 5, we
establish our main results, namely, an O(n log k)-competitive deterministic algorithm
and an Ω(n log k) lower bound on the deterministic competitive ratio for BDP with
prefetching. In section 6, we examine the general delay model. We conclude the paper
in section 7.

2. Preliminaries. In this section, we formally describe various aspects of BDP
and establish our notation. In a broadcast disk, a server broadcasts a set P =
{0, 1, . . . , n − 1} of pages over a network in a round-robin fashion. The pages are
received by the clients in the same order as they are transmitted by the server. Each
client operates in perfect isolation from other clients and thus the performance of a
client is independent of the behavior of other clients. A client can cache at most k
pages. We will typically assume that a ≤ k ≤ bn for some positive integer a and a
positive real constant b < 1. The assumption reflects the fact that paging is usually
done only if there is enough space in the local cache for at least a small number of
pages and that the local cache size is typically much smaller than n. Applications
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Fig. 2.1. Examples of client configurations. Black circles represent cached pages and the outer
arrow the algorithm position.

running on the clients generate a sequence σ of page requests. We next define the
notion of configuration of a paging algorithm and describe the sequence of actions
taken by a client to service a sequence σ of page requests.

2.1. Configuration of an algorithm. The configuration of a BDP algorithm
G is the contents of its cache along with the step reached along the transmission
schedule. Formally, a configuration is a pair (M, i) ∈ 2P × P , where

• M is a subset of P of size at most k that is present in G’s local cache,
• the index i is the last page that was broadcast and received by the client.

If G’s configuration is (M, i), we will say that G is positioned over page i or that G’s
position is i. If M = {p1, p2, . . . , ph}, then we will denote the memory configuration
(M,ph) as {p1, p2, . . . , �(ph)}.

Example. Figure 2.1(a) represents a broadcast cycle and a configuration (M, i)
with M = {1, 3, 5} and i = 3. The inner arrow represents the order in which pages
are broadcast. The outer arrow gives the position of G, that is, the last page that
was received by the client. Black circles represent pages inM (contents of G’s cache),
and white circles represent pages that are not in M .

Let (M, i) be G’s configuration. Then, the next page that G will receive is page
i′ = (i + 1) mod n. As soon as G has received i′, it has the option of loading it into
the cache. Thus G’s new configuration is of the form (M ′, i′), where M ′ ⊆M ∪ {i′}.
Notice that if the cache was full (|M | = k) and i′ ∈ M ′ −M , then there must be a
page p ∈M −M ′ that is evicted from the cache to make room for i′.

2.2. Page requests. The sequence of page requests generated by a client is
denoted by σ = 〈σ1, σ2, . . . , σm〉 ∈ Pm. For notational convenience, let σ0 = k − 1.
The client services a request σj ∈ σ in an online fashion by repeatedly performing the
following sequence of actions: the client receives the next page i from the broadcast
and decides whether to cache it or not. This procedure terminates only when the
requested page σj is in the cache.

Remark. Notice that the client can stop the loop iteration when σj is in the
cache, but it does not have to stop the loop the first time σj is in the cache. If the
client finds it advantageous to keep listening to the broadcast after σj is received, it
can do so. On the other hand, if σj is already in the cache immediately before the
jth request is issued, then the client does not have to execute any loop iteration at
all. We will prove in Proposition 2.7 that, without loss of generality, clients will stop
as soon as σj is in the cache.
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The cost of a client is the total number of pages it has received from the broadcast,
or equivalently, the number of broadcast slots to which the client has listened.

Example. Assume the same set-up as in Figure 2.1(a) and suppose that a request
for page 6 is issued. Since page 6 is not in the client’s cache, the client listens to the
broadcast. Since the client is positioned over page 3, the next page on the broadcast
is page 4. The client receives it and decides whether to cache it or not. If it does,
it will have to choose a page in {1, 3, 5} to evict. In either case, page 6 is not in
the cache, so the client keeps listening to the broadcast. Then, page 5 is broadcast.
Again, the client can choose whether to cache page 5 or not and continues listening
to the broadcast again. Finally, page 6 is broadcast. The client can choose to cache
page 6. If it does, it can also choose whether it will keep listening to the broadcast for
page 7 or whether it will remain positioned over page 6 and process the next request
in σ. Figure 2.1(b) gives an example when pages 4, 5, and 6 have all been cached and
the client has stopped immediately after loading page 6. The total cost incurred is
three.

Remark. We remark that, according to the previous definition, only the number
of received pages contributes to the cost. The definition above entails that when a
requested page is in the cache and the client chooses not to move, the cost for that
request is zero. In section 6, we will consider a more complex cost model where local
computation could cause delays and force the client to skip items in the broadcast.
However, for the time being, we will not charge for page requests directly satisfied in
the cache.

Paging over a broadcast disk extends the virtual memory, except that now paging
is from the network rather than from a physical disk. Clearly, as in virtual memory
paging, a page replacement algorithm affects the performance of the system. Virtual
memory paging and BDP differ on the following essential point: paging replacement
algorithms aim at minimizing the number of page faults (since each fault costs the
same), whereas BDP replacement algorithms aim at minimizing the total time spent
waiting for pages to arrive from the network.

In what follows, we assume that G is a broadcast disk page replacement algorithm.
We will say that G prefetches a page p if G loads p even though p is not the currently
requested page. In BDP, some pages can be prefetched at no additional cost.

Example. In the example above, page 6 was requested, and page 4 and page 5
were loaded even though they were not requested. Hence page 4 and page 5 were
prefetched. Moreover, the client cost is three, independent of whether pages 4 and 5
are prefetched.

We introduce the following notation. The memory configuration reached by G
before the jth request will be denoted as M(G, j) or simply as M(G) when the time
index is clear from the context. Note that the index i in (M, i), and the index j in
M(G, j) = (M, i), denote different quantities. We will assume without loss of general-
ity that the initial configuration of any algorithm G isM(G, 1) = {0, 1, . . . , �(k−1)}.
If M(G) = (M,p), then we will write q ∈ M(G) if and only if q ∈ M . If the
jth request σj /∈ M(G, j), then we will say that G misses or faults on page σj . If
M(G, j) �=M(G, j +1), we will say that G moves at step j. The algorithm G moves
either when it changes cache contents or when it changes position. The cost of G on
σ will be denoted as c(G, σ) or simply as c(G).

Example. In the example above, G misses and moves from page 3 to page 6.
Eventually, G is positioned over page 6.

If p ∈ P is a page and i a nonnegative integer, then we will write p+ i instead of
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(p + i) mod n when no confusion can arise. If p, r ∈ P are pages then we will write
p − r instead of (p − r) mod n when no confusion can arise. Such notation is useful
for calculating costs and movements: if G moves from p to q, then its cost is q − p,
and it is positioned over q = p+ (q − p).

2.3. Rotations, transit, and ubiquity. We next define two concepts that we
use frequently in our analysis.

Definition 2.1. The algorithm G executes at least i rotations during σ if
c(G, σ) ≥ i · n.

Definition 2.2. The algorithm G is said to transit over page p at step j if it
moves from a page p− h to a page p+ l (h > 0, l ≥ 0) at step j.

Another notion is that of ubiquitous adversary. An adversary is said to be ubiqui-
tous if it pays only a unit cost per fault. Since a fault forces any algorithm to receive
at least one page, the ubiquitous adversary is at least as strong as an ordinary adver-
sary. We will use the ubiquitous adversary to extend competitiveness results to the
delay model. Henceforth, we will assume that the adversary is not ubiquitous unless
stated otherwise. A property of the ubiquitous adversary is that it will never prefetch
a page [15]. Actually, we could assume without loss of generality that the ubiquitous
adversary serves a request sequence in accordance with Belady’s algorithm [4], but
we will not use this fact.

2.4. Lazy algorithms and hard sequences. We will now define the notions
of lazy algorithms and hard sequences for BDP, compare our definitions with the
analogous ones that are given in the context of virtual memory paging, and show that
we can assume without loss of generality that algorithms are lazy and sequences hard.
First, we define lazy algorithms.

Definition 2.3. A paging algorithm G is lazy for virtual memory paging if G
never prefetches a page.

It can be shown that any algorithm for virtual memory paging can be transformed
into a lazy algorithm without any degradation in performance [15]. The definition of
lazy algorithms in BDP is as follows.

Definition 2.4. A paging algorithm G is lazy for BDP (or simply lazy) if, when
G is positioned on page r and faults on page p, its cost is exactly p− r.

In other words, a lazy algorithm stops listening to the broadcast as soon as it
receives the faulting page. According to Definition 2.4, a lazy algorithm can prefetch
pages as long as those pages are loaded while waiting for the faulting page to be
broadcast. Then, a lazy algorithm is not necessarily lazy for virtual memory paging,
but a lazy algorithm for virtual memory paging is also lazy for BDP.

Definition 2.5. A request sequence σ is hard for G if G faults on every request
in σ.

The definition above coincides with the one used in virtual memory paging and
in BDP. We now claim in the spirit of [15] that it is enough to compare lazy online
algorithms to adversaries running lazy algorithms on hard sequences.

Lemma 2.6. For any (online) algorithm G, there is an (online) algorithm G′ that
satisfies c(G′) = c(G) and that has the property that, when G′ faults on page σj, it
always loads σj the first time G

′ transits over σj.
Proof. The proof is by induction on the length of σ. Suppose that G satisfies the

property before request σj , but it violates it on σj . The first time G transits over σj ,
it does not load it. Therefore, G will transit over σj a second time. Hence, G transits
over every page in P after it has transited over σj for the first time. The algorithm
G′ will exactly follow G until page σj is received for the first time. Then, G

′ loads
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σj and evicts a page p. Afterwards, G
′ emulates G until either G evicts p, in which

case G′ evicts σj , or G receives p. Notice that G receives p before it receives σj for
the second time. At that point, G′ evicts σj and reloads p. Now, the configurations
of the two algorithms are identical, and the cost of G′ is exactly equal to the cost of
G. Finally, we notice that G′ does not require any knowledge of the future beyond
G’s.

Proposition 2.7. For any (online) algorithm G, there is an (online) algorithm
G′ that is lazy and that satisfies c(G′) ≤ c(G).

Proof. The proof is by induction on the length of σ. Suppose that G is lazy before
request σj , but it violates that condition on request σj . We can assume without loss of
generality that G loads σj the first time it transits over it. Afterwards, G will receive
an additional set Q of pages. The algorithm G′ stops immediately after receiving σj .
If j = m, then G′ will not perform any further action and c(G′) < c(G). Otherwise,
G′ services σj+1 by first receiving all pages in Q and then by emulating G on σj+1.
Therefore, M(G, j + 2) =M(G′, j + 2) and c(G′) ≤ c(G). Finally, we notice that G′

does not require any knowledge of the future beyond G’s.
Proposition 2.8. If G is an algorithm that does not move for requests that do

not cause a fault, that does not base its eviction decision on nonfaulting requests, and
that is c-competitive on all of its hard sequences, then G is c-competitive.

Proof . Let σ be a sequence of request. Define σ′ to be the associated hard
sequence, that is, the subsequence of σ consisting of all requests where G faults. Then,
c(G, σ) = c(G, σ′). Let H be the optimum algorithm. Then, c(H,σ′) ≤ c(H,σ). It
follows that, for some constant b,

c(G, σ) = c(G, σ′) ≤ c · c(H,σ′) + b ≤ c · c(H,σ) + b.

If G is a lazy algorithm and σ is hard, then G is positioned on σj−1 before the
jth request.

3. BDP and virtual memory paging: The case n = k+1. In this section,
we will analyze the simple case n = k + 1 to highlight a fundamental difference
between traditional paging and BDP. In traditional paging, the adversary can force a
worst-case sequence when n = k + 1. In contrast, we show the following result.

Proposition 3.1. There is a 1-competitive deterministic online algorithm for
BDP when n = k + 1.

Proof. Let G be the algorithm that on a faulting request σj maintains M(G, j +
1) = {�(σj)} ∪ {i ∈ P : i �= σj + 1}. In other words, σj + 1 is the only page missing
from G’s fast memory. When G faults on σj , it evicts σj+1 and loads σj . So, G pays
a unit cost whenever it faults. Suppose without loss of generality that σ is hard for
G, and thus c(G, σ) = m. In fact, σj = k + j by induction on j.

Assume without loss of generality that the adversary follows a lazy algorithm H.
Suppose that H faults on σj1 , σj2 , . . . , σjh . The cost of H on σ is then

c(H,σ) =

h∑
l=1

(σjl − σjl−1
) =

h∑
l=1

(k + jl − k − jl−1) =

h∑
l=1

(jl − jl−1) = jh − 1.

Notice that any subsequence of at most n consecutive requests in σ consists of distinct
pages. Also, H does not fault on σj when j > jh, and so |{σjh+1, . . . , σm}| ≤ k−1 < n,
which implies that σjh+1, . . . , σm are all distinct and m − jh ≤ k − 1. Therefore,
c(G, σ)− c(H,σ) = m− (jh − 1) ≤ k, and the claim is proven.
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The case n = k + 1 sets up the general framework for finding lower bounds on
the competitive ratio of traditional paging algorithms. Clearly, the general paradigm
does not work for BDP. Instead, we will show that all lower bounds can be ultimately
traced back to the notion of algorithm in transit, as defined in the previous section.

4. BDP algorithms without prefetching. In this section, we will examine
the competitive ratio of online algorithms that do not allow prefetching. In terms of
Definition 2.3, such algorithms are lazy for virtual memory paging.

If G is a lazy algorithm for virtual memory paging, it induces an algorithm for
BDP that is lazy and whose memory contents after σj are exactly the same as G’s.
For simplicity, we will denote both the virtual memory paging algorithm and its
BDP counterpart with the same symbol. A strongly competitive deterministic paging
algorithm never incurs more than k times the optimum number of page faults. Since
its BDP counterpart is lazy, it follows that a page fault costs at most n− 1; the last
page that was broadcasted and received must be in the algorithm’s cache. Thus, any
strongly competitive paging algorithm, e.g., the marking algorithm [13], is trivially
(k(n− 1))-competitive for broadcast disk paging even against a ubiquitous adversary.
In fact, we can show a slightly better competitive ratio.

Theorem 4.1. Let G be a lazy α-competitive deterministic algorithm for paging.
Then, the competitive ratio of G for BDP is (α− 1)n+ 1.

Proof. We will assume without loss of generality that the sequence σ is hard for
G and that the adversary uses a lazy algorithm H. First, we notice that the cost of
H is at least equal to the number of page faults. Indeed, every time H brings a new
page into fast memory, H has to transit over that page, paying a unit cost.

Let rj be the page where the adversary is positioned before the jth request, and
define the potential function as Φ(j) = rj−σj−1. Let aj = (σj−σj−1)+Φ(j+1)−Φ(j)
be the amortized cost of G to serve request σj . Notice that if rj+1 = rj , then
aj = (σj−σj−1)+(rj−σj)− (rj−σj−1) ≤ n. If σj /∈ M(H, j), then Φ(j+1) = 0 and
aj = σj−σj−1+Φ(j+1)−Φ(j) = (σj−rj)+(rj−σj−1)−(rj−σj−1), which is the real
cost of the optimum on that request. Let l be the number of times that the optimum
algorithm faults. Then |σ| ≤ αl + b for some constant b. Moreover, l ≤ c(H,σ). The
resulting cost of G is c(G, σ) = (|σ| − l)n + c(H,σ) ≤ ((α − 1)l + b)n + c(H,σ) ≤
(n(α− 1) + 1)c(H,σ) + bn, which proves the theorem.

Corollary 4.2. The marking algorithm is ((k − 1)n+ 1)-competitive.
We next establish an essentially matching lower bound.
Theorem 4.3. No deterministic online algorithm without prefetching can have

a competitive ratio better than Ω(nk) for 2 ≤ k ≤ n − 2 and any fixed b < 1, even if
the adversary is not allowed to do prefetching.

Proof. Let G be an online algorithm without prefetching and H be the algorithm
used by the adversary. The adversary proceeds in phases. We will maintain that,
at the beginning of a phase, M(G) contains the same pages as M(H), and that
H is positioned on a page q such that q + 1, q + 2 /∈ M(H). Define the set W =
M(H) ∪ {q + 1, q + 2} and call W the working set of the current phase. The gist of
the proof is as follows. Notice that |W | = k + 2, and so there are always two pages
in the working set W that are not in G’s fast memory. The adversary will request
those pages, and consequently G will fault at every step. Furthermore, we will use
the notion of transit to show that G pays Ω(n) on every two faults. The adversary
will generate Ω(k) requests in the phase and itself serves them at a cost of two. We
now detail the argument.

The adversary starts the phase by requesting page q + 1 followed by page q + 2.
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Thus, both G and H are now positioned at q + 2. The rest of the phase is divided
into segments. We will let r be the page where G is positioned at the beginning of a
current segment. For example, in the first segment, r = q+2. Let α and β be the two
pages that are in the working set W but not in G’s fast memory at the beginning of a
segment. Assume without loss of generality that β − r > α− r. Then, the adversary
requests β followed by α, and the segment is over. The algorithm G faults on the
request for β and transits over α while waiting for β to be transmitted; but it does not
load α because it is not allowed to prefetch. Therefore, G faults also on the request
for α. On the whole, G transits over α at least twice during the segment, and so it
executes at least one rotation per segment. We will now describe how many segments
are generated. The adversary counts the number of distinct pages that made G fault
during all the segments generated so far. The adversary generates segments until G
has faulted on a set F of at least k−2 distinct pages. Notice that F is contained in the
working set. Moreover, during each segment, G faults on at most two new pages, so
that |F | ∈ {k− 2, k− 1}. Hence, at least �(k− 2)/2� segments are generated. We will
now specify how H serves the requests in the phase. The algorithm H faults on q+1
and q + 2. At this point, its fast memory contains all the pages of F ∪ {q + 2}, plus
another arbitrary page from W if |F ∪ {q+ 2}| < k. Notice that H does not prefetch
any page and that H does not fault during any segment. If G and H’s fast memory
configurations still differ after all segments have been generated, the adversary keeps
requesting pages in H’s memory that are missing from G’s memory, until the two
memories coincide in their contents. Notice that if the two memories never coincide,
then this step will continue indefinitely, and G is not competitive. Henceforth, assume
that G’s and H’s memory contents will eventually be the same. At this point, the
phase is over. The cost of G in the phase is at least the cost in the segment, and so
hence at least n(k − 2)/2. The cost of H in the entire phase is 2—due only to the
initial faults on q + 1 and q + 2.

The adversary issues (n− k)/2 request phases paying only a cost of 2 per phase.
Then the adversary pays a cost of k and returns to the starting configuration
{0, 1, . . . , �(k−1)}. It then keeps requesting pages 0, 1, . . . , k−1 until the fast memory
configurations of G and H coincide. Therefore, the cost of the adversary on (n−k)/2
phases is n, while the cost of G is at least ((n − k)/2)(n(k − 2)/2), and the result
follows.

The construction above extends to a lower bound for randomized algorithms
against an adaptive online adversary.

Theorem 4.4. No randomized online algorithm without prefetching can have a
competitive ratio better than Ω(nk) against an adaptive online adversary for 3 ≤ k ≤
bn and any fixed b < 1, even if the adversary is not allowed to do prefetching.

Proof. The initial setup of the proof is the same as that of Theorem 4.3. The
main difference between the proofs of Theorem 4.3 and Theorem 4.4 is that, at the
beginning of a phase, the adversary does not know the set F of pages that make G
fault. We overcome the difficulty by letting the adversary guess F and showing that
the expected number of segments is Ω(k).

The adversary proceeds in phases. Assume that j is the step of the first phase
request, so that M(H, j) and M(G, j) denote the configurations of H and G im-
mediately before the current phase begins. We will maintain that M(G, j) con-
tains the same pages as M(H, j), and that H is positioned on a page q such that
q + 1, q + 2 /∈ M(H). Define the set W = M(H, j) ∪ {q + 1, q + 2} and call W the
working set of the current phase. The adversary starts the phase by requesting q + 1
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followed by q+2. Thus, both G and H are now positioned on q+2. The algorithm H
makes room for q+1 and q+2 by evicting two random pages r1 and r2 fromM(H, j),
so that now H’s configuration isM(H) = (M(H)−{r1, r2})∪{q+1, �(q+2)}. Notice
that r1, r2 ∈ M(H, j) implies {r1, r2}∩ {q+1, q+2} = ∅, a fact that we use later on.

The rest of the phase is divided into segments. A segment is defined exactly as in
the proof of Theorem 4.3 and consists of two page requests that force G to execute one
rotation. Both segment requests cause a fault for G but no fault for H. Therefore, the
adversary generates segments while |M(H)−M(G)| ≥ 2. Notice that the adversary
is adaptive, and so it can determine if |M(H)−M(G)| ≥ 2, which pages to request
in each segment, and in which order. However, the adversary cannot determine at
the beginning of a phase the set F of pages that will make G fault. It remains to
estimate the expected number of segments. At all steps, G keeps all the pages in the
working set W except two. Let α and β be the two pages that are in the working
set but not in G’s fast memory immediately after the ith segment has been serviced.
Notice that the adversary generates an (i+1)st segment only if |M(H)−M(G)| ≥ 2,
or, equivalently, only if {α, β} ∩ {r1, r2} = ∅. Therefore, G should choose α and β so
that {α, β} ∩ {r1, r2} �= ∅. In other words, G should choose the missing pages α and
β in order to guess H’s missing pages r1 and r2. Since {r1, r2}∩{q+1, q+2} = ∅, we
assume without loss of generality that G always keeps q+1 and q+2 in fast memory,
and so {α, β} ∩ {q + 1, q + 2} = ∅. We will now estimate the expected number of
segments by means of the following simple random experiment. We will have a bin
that contains k balls—a white ball for each page in M(H, j) − {r1, r2} and a black
ball each for r1 and r2. In each segment, G extracts two balls α and β from the bin. If
both α and β are white, then G gets another round; otherwise, either α or β are black
and the experiment stops. The number of segments � is exactly the number of rounds
needed to extract a black ball. Clearly, � is minimum if no ball is ever replaced in the
bin. Elementary combinatorics now yields E[�] = Θ(k). As an aside, we observe that
the case when balls are not replaced in the bin corresponds to the case when G keeps
in fast memory a different subset of the working set in different segments.

After the last segment, |M(H)−M(G)| ≤ 1. If |M(H)−M(G)| = 0, thenM(G)
contains the same pages asM(H), and another phase starts. If |M(H)−M(G)| = 1,
then the adversary keeps requesting pages inM(H)−M(G) untilM(G) contains the
same pages asM(H). Again, the adversary is adaptive and knows ifM(G) coincides
with M(H). There are two cases, depending on whether this step ends or not. The
expected cost of G conditioned to the event that M(G) never coincides with M(H)
is infinite, and so G is not competitive. The expected cost of G conditioned to the
event that M(G) eventually coincides with M(H) is nonnegative. We will assume
from now on that indeed G’s memory will eventually coincide with H’s. After M(G)
and M(H) contain the same pages, a new phase starts. The expected cost of G in
a phase is at least equal to the expected cost in the segments, and so it is at least
nE[�] = Ω(nk). Meanwhile, the cost of H in the entire phase is due only to the initial
faults on q+1 and q+2, and so it is 2. The adversary issues (n−k)/2 request phases
paying only a cost of two per phase. Then the adversary pays a cost of k and returns
to the starting configuration {0, 1, . . . , �(k − 1)}. It will then keep requesting pages
0, 1, . . . , k − 1 until the fast memory configurations of G and H coincide. Therefore,
the cost of the adversary on (n − k)/2 phases is n, while the expected cost of G is
Ω(nk(n− k)), and the result follows.

We next establish an Ω(n log k) lower bound on the competitive ratio of random-
ized online algorithms without prefetching against an oblivious adversary. We start
with the following simple proposition.
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Lemma 4.5. Let G be a deterministic lazy algorithm, σ = (〈σ1, σ2, . . . σl〉)h
for some l ≤ k. If {σ1, σ2, . . . , σl} − M(G, lh) �= ∅, then c(G, σ) ≥ h − 1 for all
configurations M(G, 1).

Proof. The proof is by induction on c. The claim clearly is true for c = 1.
Let Σ = {σ1, σ2, . . . , σl} and σ′ = 〈σ1, σ2, . . . , σl〉. Suppose that Σ − M(G, l(h)) �=
∅. Since G is lazy, M(G) will remain unchanged as soon as Σ ⊆ M(G). Then,
Σ−M(G, l(h−1)) �= ∅, and by induction hypothesis c(G, (σ′)h−1) ≥ h−2. Moreover,
G faults at least once during the last repetition of σ′, and the lemma follows.

Theorem 4.6. No randomized online algorithm without prefetching can have a
competitive ratio better than Ω(n log k) for 3 ≤ k ≤ bn and any fixed b < 1, even if
the adversary is not allowed to do prefetching.

By the minimax theorem [5], it will be enough to show that there is a probability
distribution P over sequences of page requests such that for any lazy deterministic
algorithm G, EP{c(G, σ)} ≥ c · c(H,σ) where c = Ω(n log k) and H is an optimal
offline strategy.

Proof. The main difference between the proofs of Theorem 4.4 and Theorem 4.6 is
that the adversary cannot foresee what pages α and β are in the working set but not
in G’s fast memory. We sidestep the difficulty by showing that with some probability
the adversary is still able to force G to execute one rotation.

The request sequence. The page request sequence σ is of the form σ =
(Γ1 . . .Γ(n−k)/2Γ0)

l, where l is a positive integer, Γ0 = 〈0, 1, . . . , k − 1〉, and Γi
(1 ≤ i ≤ (n− k)/2) will be defined later. Roughly speaking, the subsequences Γi for
i ≥ 1 are the analogues of phases in the previous proofs, and Γ0 corresponds to the
final coordination step that brings about the initial configuration {0, 1, . . . , �(k− 1)}.
We will now describe the phase Γi, a few quantities determined by the Γi’s, and the
value of these quantities at the beginning of Γi. A phase Γi depends on the set Si−1,
which is defined recursively: let S0 = {0, 1, . . . , k − 1}, and Si contains all the pages
requested during the phase Γi. Throughout we will maintain the following properties:

• |Si| = k for 1 ≤ i ≤ (n− k)/2.
• H holds Si−1 in fast memory immediately before the start of phase Γi.
• The pages qi + 1, qi + 2 /∈ Si−1, where qi = k − 1 + 2i. In other words,
we maintain that qi + 1 and qi + 2 are not in H’s fast memory immediately
before phase Γi starts. For example, k and k+ 1 are not in H’s fast memory
immediately before Γ1.

Define the working set in phase Γi to be the set Wi = Si−1 ∪ {qi + 1, qi + 2}.
Let γ1, γ2, . . . , γk be a random k-permutation of the working set Wi; define Si =
{γ1, γ2, . . . , γk}. The basic plan of the adversary is to request the pages in Si in
the given order γ1, γ2, . . . , γk. However, the adversary will also request a sequence
of other pages between the first request for a page γj and the first request for page
γj+1, 1 ≤ j ≤ (k − 1), in order to force G’s memory configuration. Specifically,
Γi = ρ0〈γ1〉ρ1〈γ2〉ρ2 . . . 〈γk〉, where

• ρ0 is a repetition for c+ 1 times of Si−1, and
• ρj = (〈γ1, γ2, . . . , γj〉)c+1, where 1 ≤ j ≤ k.

We will now turn to estimate the expected cost of G during Γi conditioned to the
event that either (i) a page in Si−1 is not in G’s cache immediately before the first
request to γ1, or (ii) one of the γ1, . . . , γj−1 is not in G’s cache immediately before
the first request to γj (2 ≤ j ≤ k). Suppose that there is a page in Si−1 missing
from G’s cache immediately before the request to γ1. By the previous lemma, G pays
at least c = Ω(n log k) on ρ0. Analogously, suppose that there is one of γ1, . . . , γj−1
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Fig. 4.1. Lower bound for randomized algorithms without prefetching.

missing from G’s cache immediately before the request to γj (1 ≤ j ≤ k). By the
previous lemma, G pays at least c = Ω(n log k) on ρj−1. Therefore, Ω(n log k) bounds
G’s expected cost conditioned to the event that either (i) or (ii) occurred. It remains
to show that G’s expected cost is Ω(n log k) even when neither (i) nor (ii) occurred.
We will condition the rest of the analysis to such event, and so we will assume that
G has γ1, . . . , γj−1 in fast memory before the request for γj where j = 2, . . . , k, and
G has all the elements in Si−1 before γ1.

Costs of G and H. The adversary’s algorithmH keeps Si in fast memory through-
out Γi. Therefore, H pays a cost of at most n on the sequence Γ1 . . .Γ(n−k)/2Γ0,
exactly as in the previous proofs. We will now show that the expected cost of G on
Γi (1 ≤ i ≤ (n− k)/2) is Ω(n log k). Let

tj =

{
1 if G transits over page 0 while serving γj ,
0 otherwise.

The quantity tj will be referred to as the transit cost of G for γj . Define t =
∑k
j=1 tj

to be the transit cost of G in the phase Γi. Observe that G executes at least t − 1
rotations during Γi, and so G’s cost during Γi is at least n(t− 1). Hence, it is enough
to show that t = Ω(log k).

Before estimating t, we will make some definitions and observations. Let Yij be
the set of pages in Wi that have not been requested prior to the first request for γj ,
that is, Yij = Wi − {γ1, . . . , γj−1}, j = 1, . . . , k. Then by assumptions (i) and (ii)
above, there are at least two pages in Yij that are missing from G’s fast memory
before γj is requested. Let αj , βj ∈ Yij be two such pages and assume without loss
of generality that αj < βj , as depicted in Figure 4.1. Notice that if G does not fault
on γj , then G does not move and αj+1 = αj and βj+1 = βj . Let rj be the position
taken by G before the request for γj . It can be seen that rj ∈ Wi by induction on j.
Moreover, G is lazy and so rj �= αj , βj . As depicted in Figure 4.1, let

• Aj = {p ∈Wi : p < αj},
• Bj = {p ∈Wi : αj < p < βj}, and
• Cj = {p ∈Wi : βj < p}.

Notice that rj ∈ Aj ∪Bj ∪ Cj .
We now turn to estimate the transit cost tj . Define the potential of G immediately

before γj as
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Φ(j) =

{
1
2 if rj ∈ Bj ∪ Cj ,
0 otherwise

and the amortized transit cost of G as tj + Φ(j + 1) − Φ(j). We will show that the
expected amortized transit cost of G during Γi is Ω(log k). Since the real transit cost
of G is equal to the amortized transit cost minus O(1), we obtain that the real transit
cost of G during Γi is t = Ω(log k). Putting together, it will then follow that the
actual cost of G during Γi is Ω(n log k).

If rj ∈ Aj and βj = γj , then the potential increases by 1/2. Moreover, βj = γj
with probability 1/|Yij | = 1/(k + 3− j), so that G’s expected amortized transit cost
when rj ∈ Aj is at least (1/2)/(k + 3 − j). If rj ∈ Bj ∪ Cj and αj = γj , then G
pays a real transit cost at least equal to 1, and the potential drops by no more than
1/2. Moreover, αj = γj with probability 1/|Yij | = 1/(k+3− j), so that G’s expected
amortized transit cost when rj ∈ Bj ∪Cj is at least (1/2)/(k + 3− j). The expected
amortized transit cost of G during Γi is at least

k∑
j=1

(
1

2

1

k + 3− j

)
=
1

2

k+2∑
j=3

1

j
= Ω(log k).

Consequently, t = Ω(log k), and the actual cost of G during Γi is Ω(n log k).
Finally, we recall that on Γ1Γ2 . . .Γ(n−k)/2Γ0, the cost of H is n, and the cost of

G is Ω(n2 log k), which proves the theorem.
Conversely, the competitive randomized algorithms in [3, 8, 16] immediately imply

an O(n log k)-competitive randomized algorithm for BDP even against a ubiquitous
adversary.

5. BDP algorithms with prefetching. In this section, we will establish our
main theorems. We will first show a lower bound of Ω(n log k) on the competitive ratio
of any deterministic online algorithm that uses prefetching, even when compared to an
adversary that does not do any prefetching. We will then present a deterministic online
algorithm that achieves a competitive ratio of O(n log k) and therefore is optimal up
to a constant factor.

5.1. A lower bound. We first prove the lower bound.
Theorem 5.1. No deterministic algorithm for BDP can achieve a competitive

ratio better than Ω(n log k) when 3 ≤ k ≤ bn for any fixed b < 1 even if the adversary
is not allowed to do prefetching.

Proof. The main difference between the present proof and that of Theorem 4.3
is that G might reload α when it faults on β, and so the online algorithm cannot
be made to execute one rotation every other request. In fact, we will typically need
several requests to have the online algorithm complete a rotation. The basic plan
of the adversary is as follows: repeatedly request a page that is not in the online
algorithm G’s fast memory and is farthest from the page where G is positioned. We
will assume without loss of generality that G is lazy. Let H be the algorithm that the
adversary uses to satisfy the request sequence.

The request sequence. The adversary proceeds in phases. We will maintain that,
at the beginning of a phase, G and H hold the same set of pages W in fast memory
and that H is positioned on a page q such that q + 1, q + 2 /∈ W . In this proof, the
set W will take the function that the working set had in the previous proofs, namely,
we will extract requests from W in order to make G fault. The adversary starts the
phase by requesting page q+1 followed by page q+2. We will maintain that there are
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always at least two pages in W that G does not have. The adversary will request one
of those pages, and if r is the page where G is currently positioned, the adversary will
issue a request for the missing page α that maximizes the quantity α−r. However, the
adversary will also insert other page requests to force G’s fast memory configuration.
On the whole, the phase has the form 〈q+1, q+2〉ρ1〈γ1〉ρ2〈γ2〉 . . . ρk−2〈γk−2〉, where

• γj is the page in W that is not in G’s fast memory, and that is farthest from
the current position r of G, 1 ≤ j ≤ k − 2,

• ρj denotes the sequence of requests ρj = (〈q+1, q+2, γ1, . . . , γj−1〉)c+1, where
c = Ω(n log k) and 1 ≤ j ≤ k − 2.

Suppose that G and H do not have the same set of pages in fast memory after
the request for γk−2. In that case, the adversary keeps requesting a page that H has,
but G does not. Eventually, G and H will have the same set of pages in fast memory,
or else G is not competitive, and another phase starts.

Costs of G and H in each phase. Let Rj = {q+1, q+2, γ1, . . . , γj−1} denote the
set of pages requested in the sequence ρj . Notice that Rj is precisely the set of pages
requested since the beginning of the phase until the request γj , and that Rj ⊂ Rj+1.
The algorithm H keeps Rk−1 throughout the phase and pays a cost of two. We can
assume the following about the behavior of the algorithm G by Lemma 4.5: (i) G has
Rj in its fast memory before the request for γj , and (ii) G does not move at all during
the ρj ’s, but that it moves only to service the requests for the γj ’s. Thus from here
on we can simply assume that a phase merely consists of the sequence of requests
〈q + 1, q + 2, γ1, γ2, . . . , γk−2〉. By this assumption, γj+1 is the page in W that is not
in G’s fast memory and that maximizes γj+1 − γj .

We will now show that the cost of G is Ω(n log k) on the sequence Γ = 〈q+1, q+
2, γ1, γ2, . . . , γk−2〉. To estimate G’s cost, we will divide a phase into subphases with
the property that G executes one rotation per subphase. Then, it will be enough to
count the number of subphases. Specifically, we define subsequences Z1, Z2, . . . , Zt
such that

• Z1Z2 . . . Zt = Γ, and
• Z1Z2 . . . Zi is the smallest prefix of Γ on which G completes i rotations (1 ≤
i < t).

Since G executes at least t− 1 rotations in the phase, it suffices to show that t =
Ω(log k). The idea is to show that |Zi| decreases as i increases, and then it will follow
that t is large. Let xi denote the number of pages in W that have not been requested
prior to the start of the subsequence Zi. Then we claim that |Zi| ≤ �(xi+1)/2�. This
easily follows from the observations that at each step G has at least 2 pages missing
from the setW and we always request the missing page that is farthest. Thus G must
complete a rotation after �(xi + 1)/2� requests.

Observe that x1 = k and that upon termination, xt+1 = 2, and so 2 ≤ xi ≤ k for
all i = 1, 2, . . . , t + 1. Furthermore, xi+1 = xi − |Zi| ≥ �(xi − 1)/2� ≥ (xi/2) − 1. It
is then straightforward to see that t = Ω(log k). The cost of G during a phase is thus
at least nt = Ω(n log k).

Putting it all together. Observe that the adversary can issue (n−k)/2 consecutive
phases. Then, it will reload {0, 1, . . . , �(k − 1)} and another sequence of (n − k)/2
phases starts. The total cost of the adversary in such a sequence of phases is n while
the total cost of G is Ω(n2 log k), and the result follows.

5.2. An upper bound: The gray algorithm. We will now design a paging
algorithm G, referred to as the gray algorithm, that is O(n log k)-competitive. The
gray algorithm uses a set of three marks {black, gray, white} and maintains a mark
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for each page in P . Notice that G’s marking policy is somewhat different from that
of the marking algorithm [13] that uses only two marks and marks only the pages in
fast memory. We define bj to be the number of black pages immediately before the
jth request. The gray algorithm G works as follows:

• Initially, G marks the pages {0, 1, . . . , k− 1} black and all other pages white.
• G ignores all requests that do not cause a fault. Henceforth, assume that σ
is hard for G.

• G works in phases:
– A new phase is started when bj = k.
– At the beginning of a phase, G marks all gray pages white and all black
pages gray.

• When G faults on σj , G loads σj and marks it black.
• Before the jth request, G keeps in its fast memory

– the bj black pages, plus
– the set of qj = k− bj gray pages γ1, γ2, . . . , γqj that have the qj smallest
values of σj−1 − γi (i = 1, 2, . . . , qj). In other words, the gray pages
γ1, γ2, . . . , γqj are the qj gray pages that are most expensive to reload
from σj−1.

We have stated the gray algorithm by assuming that a mark is associated with
all n pages. In fact, G needs only to keep track of the black and gray pages, and
a straightforward induction shows that, at any step, there are at most 2k gray and
black pages.

It is not obvious that the gray algorithm could be implemented to maintain the
prescribed set of gray pages without paying a large overhead. The following lemma
shows that G is lazy.

Lemma 5.2. The gray algorithm G is lazy.
Proof. Let σ be a hard sequence for G. Suppose that p ∈ M(G, j+1)−M(G, j) and

p �= σj+1. First, we show that p is gray at both step j and j + 1. Since p /∈ M(G, j),
p is not black at step j, and since p �= σj+1, p is not black at step j + 1. Since
p ∈ M(G, j + 1), p is not white at step j + 1, and so it is not white at step j. It
follows that p is gray at both steps. If p is in the interval from σj to σj+1, then
it can be prefetched at no cost while G moves from σj to σj+1. We now show that
no page that lies in the interval from σj+1 to σj is prefetched by G. Suppose, by
contradiction, that such a page p is prefetched. First, we observe that σj+1 does not
start a new phase. Indeed, if σj+1 started a new phase, then M(G, j) is exactly the
set of gray pages immediately before step j + 1. However, p is gray and p /∈ M(G, j).
We conclude that σj+1 did not start a new phase. Therefore, bj+1 = bj + 1 and so
qj+1 = qj − 1. Let ζj be the number of gray pages remaining after the jth request
and notice that ζj+1 ≥ ζj − 1. Since p ∈ M(G, j + 1), p has one of the qj+1 largest
values of p− σj+1 among all ζj+1 pages that are gray at step j + 1. Therefore, there
are at least ζj+1 − qj+1 ≥ ζj − qj gray pages between σj+1 and p. Since p /∈ M(G, j),
p does not have one of the qj largest values of p− σj among all ζj gray pages at step
j. Therefore, there are at most ζ = ζj − qj − 1 gray pages between σj and p at step
j. Since the number of gray pages never increases during a phase, there are at most
ζ gray pages between σj and p at step j +1. However, p− σj+1 < p− σj , which is to
say that the interval from σj+1 to p is contained in the interval from σj to p. Hence,
there are at most ζ < ζj+1 − qj+1 gray pages between σj+1 and p. Thus, we reach a
contradiction and the lemma is proven.

Remark. The gray algorithm is similar to a marking algorithm once we identify
black pages with the marked pages and white pages with the unmarked pages. How-
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ever, the gray algorithm differs from the marking algorithm in one important respect:
an evicted page might be prefetched and reloaded later on in the phase, without being
requested again. By Lemma 5.2, the prefetch operation is executed at no cost. Thus,
the gray algorithm adjusts the eviction pattern dynamically according to the requests
in a phase. We would like to point out here that an analysis of the standard marking
algorithm explicitly uses three marks and marks all n pages [3].

Theorem 5.3. The gray algorithm G is O(n log k)-competitive even against a
ubiquitous adversary.

In the rest of the section, we will prove Theorem 5.3. Let H be the adversary’s
algorithm and assume without loss of generality that H is lazy. We will assume
without loss of generality that the request sequence σ is hard for G. No page is
requested more than once in a phase and there are exactly k requests in a phase.
Since all black pages are in G’s fast memory, all requests are for gray and white pages.
Correspondingly, we will say that a request is gray (white) if the requested page is
gray (white) immediately before it is requested. The first request of a phase is white
because all gray pages are in G’s fast memory at the beginning of the phase.

The proof is structured as follows.
• We begin by defining the notion of a segment ; segments allow us to give a
lower bound on the cost of H.

• We proceed to examine G’s cost on gray requests in a given segment, and
show that it is at most O(wn log k), where w is the total number of white
requests in the segment.

• Finally, we use a potential function argument to show that the amortized cost
of G is no more than O(n log k) times the cost of H.

5.3. Segments. We now define the notion of segments. Segments start from the
second request of a phase and end with the first request of the next phase.

Definition 5.4. A segment is a subsequence of the form

〈σik+2, σik+3, . . . , σ(i+1)k+1〉

for some i ≥ 0.
The notion of segment will be central to the rest of the proof because segments

allow us to compute algorithm cost. We will estimate the cost of G and H on each
segment and prove that the cost of G in a segment is no more than O(n log k) the cost
of H in the same segment.

From now on, we will fix our attention on the first segment for simplicity of
notation and without loss of generality. The first segment consists of the request
sequence 〈σ2, σ3, . . . , σk+1〉. Recall that σk+1 is a white request.

5.4. Cost of H. We turn now to examine the cost of H in a segment. Define
wN to be the number of white pages that are requested in the segment and that cause
H to fault. Clearly, the cost of H is at least wN . Suppose that on a white request for
a page p, H already has p in its fast memory. Then the ratio of the actual costs of G
and H for the request to p is infinity. This scenario thus requires a careful analysis
as we describe below.

Definition 5.5. A page p is hidden at step j if p is white before the jth request
and p ∈ M(H, j).

Broadly speaking, our objective is to show that H also implicitly pays a cost on
the hidden white pages. We will prove that the cost of H on the segment is at least
D, where D is the number of hidden pages at step k + 1.
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Lemma 5.6. If a page p is hidden at step k+ 1, then p has not been requested in
the segment.

Proof . If p ∈ {σ2, . . . , σk}, then p is black after step k and becomes gray before
step k + 1. Therefore, p is not white at step k + 1 and so p is not hidden at step
k + 1.

Let p be a hidden page at step k + 1. Notice that p ∈ M(H, k + 1), p was not
requested in the segment, and H has not prefetched p. We conclude that p has been
in M(H) throughout the segment.

Lemma 5.7. The cost of H in a segment is at least D.
Proof. The proof is reminiscent of those in [12, 13, 18]. Clearly, σ1 ∈ M(H, 2).

Moreover, the previous lemma implies that all D pages hidden at step k + 1 are in
M(H, 2). Within a segment, the requests σ2, . . . , σk are for pages that are not hidden
at step k + 1 and that are not σ1. At most k − D − 1 of those k − 1 pages are in
M(H, 2), and so the cost of H is at least k − 1− (k −D − 1) = D.

On the whole, the cost of H in the segment is at least max{wN , D} ≥ (wN+D)/2.

5.5. Potential function. Let us turn now to evaluate the cost of G in the same
segment. Let γ = 3(n−1)+n ln k. We will denote by Dj the number of hidden pages
at step j, and so D = Dk+1. Define the potential function at step j to be

Φ(j) = (3(n− 1) + n ln k)Dj = γDj .

Clearly, Φ(j) ≥ 0 for all j’s. We will analyze the amortized cost of G by considering
the following cases:

• In the first case, G does not pay any real cost, but the potential might increase
as a consequence of an increase of the number Dj of hidden pages.

• In the next two cases, G indeed pays a real cost.
– We will examine the cost of G on gray requests, and finally
– we will examine the cost of G on white requests.

5.6. Potential increase. First, we show that the potential increases only at the
end of a phase. We will need the following lemma.

Lemma 5.8. If a page p is hidden at step j (2 ≤ j ≤ k), then p was hidden at
step 2.

Proof. It is enough to show that if a page p is hidden at step j (2 < j ≤ k + 1),
then p was hidden at step j − 1. Suppose to the contrary that p is hidden at step j,
but not at step j − 1. Then, either p is not white at step j − 1 or p /∈ M(H, j − 1).
However, j ≤ k, so that no gray page has turned white. Hence, it must be the case
that p /∈ M(H, j − 1). Since H does not prefetch, p = σj−1, and so p is black at step
j, which is a contradiction, and the lemma is proven.

Lemma 5.8 implies that Dj−1 ≥ Dj for j = 2, . . . , k. It follows that the potential
increase increases only at the end of a phase when some gray pages become hidden
white pages. The potential increase is γD.

5.7. Gray requests. We now evaluate G’s cost on the gray requests. Define a
gray block as a maximal sequence of gray requests followed by a white request. The
segment can be partitioned into a sequence of gray blocks that alternate with white
requests. Notice that there are at most w gray blocks in a phase, where w was defined
as the number of white requests in the segment. Actually, the first phase request and
the last segment request are both white, so that w is also the number of white requests
in the phase. We will argue that the cost incurred by G during the gray blocks does
not exceed w(2(n− 1) + n ln k).
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Consider a gray block Bi = 〈σj , σj+1, . . . , σj+q〉. Since σk+1 is a white request,
j + q ≤ k. G’s cost for σj is at most n − 1. We now estimate G’s cost in the rest of
the block. In what follows, we denote

• by αl, the number of gray pages that are missing from G’s fast memory before
the lth request (j ≤ l ≤ j + q),

• by βl, the number of pages that are gray at the lth request (j ≤ l ≤ j + q),
• by gl, the number of gray pages requested from the beginning of the phase
up to step l − 1 inclusive,

• by wl, the number of white pages requested from the beginning of the phase
up to step l − 1 inclusive, and

• by bl = wl + gl, the number of black pages before the lth request.
The notation βl is related to that in Lemma 5.2 by βl = ζl−1. Notice that βl = k− gl
and that αl = βl − ql = k − gl − (k − bl) = gl + wl − gl = wl = wj is a constant
throughout the current gray block. Moreover, αl ≤ wk+1. Observe that wk+1 is the
number of white requests in 〈σ1, σ2, . . . , σk〉, w is the number of white requests in
〈σ2, . . . , σk, σk+1〉, and both σ1 and σk+1 are white requests. Therefore, wk+1 = w
and αl ≤ w.

M(G, l) contains all but at most w gray pages, and the missing gray pages are
the closest to its current position σl−1. Thus, once G is positioned at σl−1, no more
than w gray pages lie in the closed interval between σl−1 and σl (l = j+1, . . . , j+ q).
Hence, if G starts from σj and moves for more than n units, then there are at most

βj −
⌈
βj+1
w

⌉
≤ βj

(
1− 1

w

)
pages that are still gray. Hence, if during the block Bi, G

pays rin+ a, for some a < n, then βj+q+1 ≤ (1− 1/w)riβj . On the other hand, since
β2 = k, if

∑
ri > w ln k, no gray pages could be remaining since

(
1− 1

w

)∑ ri

k <

(
1

e

)ln k

k = 1.

We conclude that
∑
ri ≤ w ln k. Notice that the quantity a contributes for at most

n − 1 per gray block to the cost on gray requests. Recall that σj contributed for
another n − 1 term per gray block. Since there are at most w gray blocks, the cost
paid during all gray blocks is at most 2w(n− 1) + n

∑
ri ≤ w(2(n− 1) + n ln k).

5.8. White requests. Henceforth, we will assume that G processes gray re-
quests for free, but each white request is charged 2(n − 1) + n ln k. Such a charge is
in addition to the cost required to process the white request itself. Notice that on
any white request, G pays a real cost of at most n − 1, is charged 2(n − 1) + n ln k
for gray requests, and so G’s amortized cost is 3(n− 1) + n ln k = γ plus any increase
of the potential function. Suppose that σj is a white request that causes H to fault.
The potential does not increase, and G’s amortized cost is γ. Suppose now that σj
is a white request that does not cause H to fault. Then, p is hidden, the potential
decreases by γ, and G’s amortized cost is naught. Finally, G pays a cost of γD at the
end of the phase. On the whole, G’s cost in the segment is wNγ + Dγ, which is no
more than 2γ = O(n log k) times the actual cost of H in the segment, and the proof
is complete.

6. Delay model. We will now describe the delay model for BDP. In the delay
model, the adversary has the power of issuing requests of two types: page requests,
like in the ordinary BDP, and delays, where one delay request forces any algorithm to
listen to one more page. Hence, if the algorithm G is positioned over page i before a
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delay request, G will be positioned over i+ 1 after the delay request. The algorithm
G is free to decide whether page i+1 should be cached or not. Let G be an algorithm
for BDP. The algorithm G can be turned into a BDP algorithm GD in the delay
model as follows. On a page request, GD behaves exactly as the algorithm G would
on that request. However, when GD receives a delay request, it executes at most one
full rotation after serving the delay request and returns to the configuration that it
had before the delay.

Proposition 6.1. If G is c-competitive for BDP against a ubiquitous adversary
for some c = Ω(n), then GD is O(c)-competitive in the delay model.

Proof. Let σD be a request sequence consisting of page requests and delays, σ
the request sequence where all delays have been removed, and d the number of delay
requests in σD. Let f be the minimum number of faults on σ and H be the adversary
algorithm. Observe that c(H,σD) ≥ f + d. Then, c(GD, σD) = c(G, σ) + nd ≤
cf + nd + b ≤ O(c)(f + d) + b ≤ O(c)c(H,σD) + b for some constant b. It is then
proved that G is O(c)-competitive.

An immediate corollary of the above proposition is as follows.

Corollary 6.2. There is an O(n log k)-competitive randomized algorithm for
the delay model with no prefetching and an O(n log k) deterministic algorithm for the
delay model with prefetching.

Proof . The first result follows from the O(log k)-competitive lazy randomized
algorithm for virtual memory paging [3, 8, 16], whereas the second result follows
from the fact that the gray algorithm is O(n log k)-competitive against an ubiquitous
adversary.

7. Concluding remarks. We studied deterministic as well as randomized al-
gorithms for broadcast disk paging. An interesting question not resolved by our work
is that of the competitive ratio of randomized prefetching algorithms. A lower bound
of Ω(n) is easy to show. It is conceivable that a simultaneous use of randomization
and prefetching yields an algorithm that is o(n log k)-competitive.

Recently, the second author performed an empirical evaluation of the gray algo-
rithm on both synthetic and Web traces and found that the gray algorithm always
and consistently outperformed the least recently used (LRU) algorithm [14].
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Abstract. In this paper we study the problem of simulating shared memory on the distributed
memory machine (DMM). Our approach uses multiple copies of shared memory cells, distributed
among the memory modules of the DMM via universal hashing. The main aim is to design strategies
that resolve contention at the memory modules. Extending results and methods from random graphs
and very fast randomized algorithms, we present new simulation techniques that enable us to improve
the previously best results exponentially. In particular, we show that an n-processor CRCW PRAM
can be simulated by an n-processor DMM with delay O(log log log n log∗ n), with high probability.

Next we describe a general technique that can be used to turn these simulations into time-
processor optimal ones, in the case of EREW PRAMs to be simulated. We obtain a time-processor
optimal simulation of an (n log log log n log∗ n)-processor EREW PRAM on an n-processor DMM
with delay O(log log log n log∗ n), with high probability. When an (n log log log n log∗ n)-processor
CRCW PRAM is simulated, the delay is only by a log∗ n factor larger.

We further demonstrate that the simulations presented can not be significantly improved using
our techniques. We show an Ω(log log log n/ log log log log n) lower bound on the expected delay
for a class of PRAM simulations, called topological simulations, that covers all previously known
simulations as well as the simulations presented in the paper.

Key words. PRAM, distributed memory machine, randomized shared memory simulations,
hashing
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1. Introduction. Parallel machines that communicate via a shared memory
(parallel random access machines, PRAMs) are the most commonly used theoretical
machine model for describing parallel algorithms (see, e.g., [16, 18, 28]). A PRAM
consists of p processors P0, . . . , Pp−1, each having local memory, and a shared memory
with cells U = {0, . . . ,m− 1}. The processors work synchronously and have random
access to the shared memory cells, each of which can store an integer. In this paper
we deal only with exclusive read exclusive write (EREW) PRAMs and (Arbitrary)
concurrent read concurrent write (CRCW) PRAMs. On the EREW PRAM no pair
of processors can simultaneously write to or read from the same memory location.
On the (Arbitrary) CRCW PRAM concurrent reading is allowed and, if several
processors want to write to the same memory cell simultaneously, an arbitrary one
of them succeeds. The PRAM is relatively comfortable to program, because the
programmer does not have to allocate storage within a distributed memory or specify
interprocessor communication. On the other hand, shared memory machines are very
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unrealistic from the technological point of view, because on large machines a parallel
shared memory access can only be realized at the cost of a significant time delay.

A more realistic theoretical model is the distributed memory machine (DMM), in
which the memory is divided into a limited number of memory modules, one module
per processor. A DMM has n processors Q0, . . . , Qn−1 which are connected by an
interconnection network with a distributed memory consisting of n memory modules
M0, . . . ,Mn−1. In this paper we study DMMs with the complete interconnection net-
work between processors and modules (cf. [7]). The computation of our DMM is
synchronized. In a step each processor either performs a local computation or issues
a read or write request for a memory cell x to the module holding x. Each module
answers incoming requests. In this paper we shall focus on the DMM in which the
modules obey the Arbitrary conflict resolution rule: If more than one request is
directed to a module, it serves an arbitrary one of them and ignores the others. How-
ever, the answer to the successful request is available to all processors accessing the
module. It is easy to observe that an n-processor DMM can be simulated with con-
stant delay on an n-processor Arbitrary CRCW PRAM with Θ(n) shared memory
cells and vice versa. Motivated by optical crossbar technology, there is another con-
flict resolution rule considered in the literature, the c-Collision rule. In this model
a module can only answer if it gets at most c requests; otherwise a collision symbol
is sent to all processors that wanted to access the module.

No matter which conflict resolution rule is used for a DMM, a module can re-
spond to at most a constant number of accesses at a time. Thus DMMs exhibit the
phenomenon of memory contention, in which an access request is delayed because of
concurrent requests to the same module.

In an effort to understand the effects of memory contention on the performance of
parallel computers, several authors have investigated the simulation of shared memory
machines on DMMs. Often the authors assumed that processors and modules are
connected by a bounded degree network (e.g., by a mesh, a butterfly, or an expander),
and packet routing is used to access the modules [17, 20, 21, 27, 31]. In this paper
we consider DMMs with a complete interconnection between processors and modules,
i.e., we focus on the issue of resolving memory contention.

All of our algorithms are randomized, and the time bounds hold with high prob-
ability (w.h.p.), i.e., with probability at least 1 − n−α for arbitrary constant α > 1;
the choice of α will affect the respective running times by at most a constant factor.
We focus on simulations that minimize the delay, i.e., the time needed to simulate
a parallel memory access of a PRAM on a DMM. Furthermore, we are interested in
optimal simulations. We say a simulation of a p-processor PRAM on an n-processor
DMM is time-processor optimal if the delay is O(�p/n�).

The most efficient simulations of shared memory are based on the idea of hashing,
i.e., of distributing the shared memory cells of the PRAM (almost) randomly among
the memory modules of the DMM. Mehlhorn and Vishkin [24] design a simple simu-
lation of an n-processor EREW PRAM by an n-processor DMM with expected delay
O(log n/ log log n), by storing each cell of the PRAM in a module that is determined
by a single hash function. One can easily show that this result cannot be improved
when each cell of the PRAM is represented only by one copy. Dietzfelbinger and
Meyer auf der Heide [7] extend this result to the CRCW PRAM model and show that
one step of an n-processor CRCW PRAM can be simulated by an n-processor DMM
with expected delay O(log n/ log log n). Karp, Luby, and Meyer auf der Heide [19]
break the logn/ log log n bound by applying the idea of redundant storage represen-
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tation, that is, by storing in the DMM more than one copy of each memory cell of the
PRAM. In order to distribute some number of copies of each memory cell, randomly
and independently chosen hash functions are used. Karp, Luby, and Meyer auf der
Heide obtain a simulation of an n-processor CRCW PRAM on an n-processor DMM
with delay O(log log n). They present how to get time-processor optimal simulations.
These authors show that any simulation of one step of an n-processor EREW PRAM
on an n-processor DMM with delay τ that uses only a constant number of hash func-
tions can be turned into a time-processor optimal simulation with delay O(τ log∗ n).
In the case of CRCW PRAMs, the simulation is close to optimal: One step of an
(τ ·n)-processor CRCW PRAM can be simulated on an n-processor DMM with delay
O(τ log∗ n). Using the majority technique due to Upfal and Wigderson [32], Dietzfel-
binger and Meyer auf der Heide [8] extend the O(log log n)-delay simulation of Karp,
Luby, and Meyer auf der Heide [19] to a much simpler schedule for an O(log log n)-
time simulation on the weaker c-collision DMM, for some constant c > 2. Goldberg,
Matias, and Rao [12] show that one can perform a time-processor optimal simulation
with delay O(log log n), even on a 1-collision model (called also optical communication
parallel computer, OCPC). Meyer auf der Heide, Scheideler, and Stemann [25] extend
the algorithm from [8] and present a simulation on a DMM (with the Arbitrary
write conflict resolution rule) achieving delay O(log log n/log log log n). This is the
first simulation that beats the log logn bound, however, it can not be turned into a
time-processor optimal one because it uses nonconstant storage redundancy, that is,
each memory cell of the PRAM has a nonconstant number of copies in the memory
modules of the DMM. The techniques used in these papers do not seem to yield sim-
ulations with smaller delay. In particular, MacKenzie, Plaxton, and Rajaraman [22]
and, independently, Meyer auf der Heide, Scheideler, and Stemann [25] show lower
bounds for classes of algorithms that capture all these algorithms.

In this paper we design new shared memory simulations that improve all previ-
ously known results by an exponential decrease of the delay. The core of our simu-
lations is a new analysis of a special sparse almost random graph, the access graph,
which represents requests of the PRAM processors and an efficient use of log-star-time
randomized algorithms, which leads to fast techniques for exploring neighborhoods of
nodes in such sparse random graphs. The key steps of our simulations are partitioning
techniques that make it possible to decompose every connected component of a ran-
dom sparse graph into small pieces. Using different, more and more sophisticated par-
titioning techniques, we design simulations of one step of n-processor EREW PRAMs
on n-processor DMMs with delay O(log log n/ log log log n), O(

√
log log n log∗ n), and

finally O(log log logn log∗ n), refining the simulation techniques step by step. Finally
we transform all these bounds into simulations of one step of n-processor CRCW
PRAMs on n-processor DMMs without asymptotic time loss.

Next we present a general technique that can be used to transform any simulation
of an n-processor EREW PRAM on an n-processor DMM with delay τ ≥ log∗ n that
uses a constant number of hash functions into a time-processor optimal simulation.
Our transformation relies on a new routing problem, called all-but-linear routing,
which is a relaxed version of the k − k relation routing problem. Using the ideas
for k − k relation routing developed for the OCPC model [1, 11], we show how to
solve all-but-linear routing with random or almost random requests optimally for any
k = Ω(log∗ n).

Finally we pinpoint the limit of our techniques. We analyze a topological game
in graphs that is the essential part of the most efficient previously known simulations
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[8, 12, 19, 22, 25], as well as the simulations presented in this paper. We show that a
randomized topological game requires Ω(log log logn/ log log log logn) expected delay.
This indicates that the techniques presented in the paper cannot lead to significantly
better simulations than the ones presented in this paper.

Organization of the paper. We begin in section 2 with outlining techniques
used by our simulations. Section 3 provides some basic tools. In section 4 we define
the access graph and the access game and prove some properties about the distribution
of sizes of connected components in a random graph that are essential for our proofs
of the running time of the simulations. Section 5 contains the first simulation of
an EREW PRAM, which has delay O(log log n/log log log n), w.h.p. In section 6 we
present two simulations of an EREW PRAM, one with delay O(

√
log log n log∗ n) and

another with delay O(log log logn log∗ n), w.h.p. Section 7 describes a transformation
that turns EREW PRAM simulations into CRCW PRAM simulations. Section 8
analyzes the all-but-linear routing problem which is used in section 9 to get time-
processor optimal simulations. In section 10 we present the lower bound for the
topological game.

2. Outline of techniques. We start with the simulation of an n-processor
EREW PRAM on an n-processor DMM. Our shared memory simulations are based
on redundant storage representation; that is, we assume that the shared memory cells
of the PRAM are distributed among the modules of the DMM using some number a of
hash functions h1, . . . , ha : U → {0, . . . , n− 1}, so that copies of cell u ∈ U are stored
in the modules Mh1(u), . . . ,Mha(u). All such simulations assume that h1, . . . , ha are
randomly chosen from a high performance universal class of hash functions as pre-
sented, e.g., by Siegel [29] or Karp, Luby, and Meyer auf der Heide [19]. A function
randomly chosen from such a class of hash functions behaves almost like a random
function but can be stored using little (O(

√
n)) space and can be evaluated in con-

stant time. Actually, any (2, log2 n)-universal class of hash functions (cf. [6]) would
be sufficient for our purposes. Upfal and Wigderson [32] observe how to use redun-
dant storage representation in order to speed up shared memory simulations. They
introduce the majority technique which utilizes the observation that accessing more
than half of the a copies of a requested shared memory cell is sufficient for reading as
well as for writing: If processor P wants to write to cell u, it updates more than half
of the copies of u and adds a time-stamp indicating the PRAM time. If processor P
wants to read cell u it reads at least half of the copies of u and takes the copy with
the latest time-stamp.

Let us refer to the task of accessing b out of the a copies of each of the n requested
shared memory cells as the “b out of a” task. A method for performing a “b out of a”
task is called a protocol. For the analysis it is more convenient to consider a “1 out
of c” task. It is possible to reduce a “b out of a” task to

(
a

b−1

)
“1 out of a − b + 1”

tasks, each with a different subset of a − b + 1 hash functions. For constant a this
yields only a constant factor in the delay. In this paper we present shared memory
simulations based on executing the “2 out of 3” task. In fact, because of the reasons
mentioned above, we only analyze protocols for the “1 out of 2” task. From now on
we will assume that each memory cell u of the PRAM is stored in the modulesMh1(u)

and Mh2(u).
Our protocols for the “1 out of 2” task are based on the model introduced by

Karp, Luby, and Meyer auf der Heide [19]. Let ε be a constant, 0 < ε < 1, that
will be specified later. Consider a batch of εn requests, for which the “1 out of 2”
task has to be executed. For such a batch, we define the labeled access graph H as
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follows. Its nodes correspond to the n modules of the DMM, and for each key u from
the batch, H contains an edge labeled u between Mh1(u) and Mh2(u). Now a protocol
for the “1 out of 2” task can be viewed as an access game on H. The access game
is performed in rounds, and in each round each node of H (i.e., each module in the
DMM) can remove one of its incident edges (i.e., one of the access requests directed
to the module is processed). The access game is finished when all the edges have been
removed from the graph.

2.1. Fast protocols for the “1 out of 2” task. The simple protocol for the
“1 out of 2” task, as in [8, 12, 19, 25], corresponds to the access game in which, in each
round, each node of H removes an arbitrary incident edge, i.e., processes one arbitrary
request directed to it. MacKenzie, Plaxton, and Rajaraman [22] and Meyer auf der
Heide, Scheideler, and Stemann [25] prove the tight lower bound of Ω(log logn) for
the time needed by this protocol.

For the analysis of the access game or the protocol for the “1 out of 2” task,
respectively, we also follow the idea of Karp, Luby, and Meyer auf der Heide [19],
who analyze the structure of the access graph H. As h1 and h2 are almost random
(i.e. randomly chosen from a high performance universal class), H is almost a random
graph with n nodes and εn edges. In analogy to results on truly random graphs, these
authors [19] show that H consists of connected components of size O(log n), w.h.p.,
each of which is a tree with a constant number of additional edges, w.h.p. One can
show (compare also [19]) that this property of H implies the existence of a schedule
that works in constant time. The previously best algorithm to find this schedule
takes O(log log n) time and yields the simulation from [8]. In contrast to formerly
analyzed protocols for the access game, the heart of our simulations lies in finding
fast protocols to execute the access game on H. In order to make the description of
our protocols more intuitive, we assume that also the module may take part in the
computation. Clearly this assumption is not critical, because we could let this work
be carried out by the corresponding processor. Thus we assign the processors of the
DMM both to the nodes and to the edges of H and allow the nodes (the modules)
to decide which edges (if any) are to be removed. However, the knowledge about H
is distributed among the processors at the beginning of the simulation, so that each
processor knows just one edge. The only way the nodes may decide which edge to
remove is to analyze their neighborhoods in H. There are two issues we have to deal
with. First, each node has to explore its neighborhood quickly, and second, we have
to find a rule to guide the nodes in their decision on which edge to remove on the
basis of the structure of their neighborhood.

Exploring the neighborhood seems to be a complicated task. Even computing the
degree of a node of H is complicated, because the edges in H are given in an arbitrary
order and we do not have the adjacency list at hand. We show how each node v may
explore certain properties of its k-neighborhood, i.e., the subgraph of H induced by
the nodes at distance at most k from v, in time close to O(log k). To succeed in
this, we present a new precise analysis of the structure of H and apply extremely fast
algorithms. We use probabilistic tools like the method of bounded differences [23] and
a generalization of the Markov inequality to show that, w.h.p., for all i, the number of
connected components of H of size at least i is bounded by n/2bi for some constant b.

Based on log-star techniques as developed in [3, 10, 14], we show how to use the
structural properties of H mentioned above to compute certain properties of the k-
neighborhood of all nodes of H in time O(log k log∗ n). We then present a sequence
of more and more involved protocols that use such information to design fast access
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protocols.

We can extend all our results to the simulation of the CRCW PRAM. It is well
known that by applying integer sorting to the memory requests issued in one step of
the CRCW PRAM, one can reduce the simulation of one step of the CRCW PRAM
to that of one step of the EREW PRAM. We observe that instead of integer sorting
one can use an algorithm for strong semisorting [3], which can be solved on the DMM
much faster than sorting. This allows us to turn any simulation of one step of an
n-processor EREW PRAM by an n-processor DMM with delay τ ≥ log∗ n into a
simulation of one step of an n-processor CRCW PRAM on an n-processor DMM with
delay O(τ).

2.2. Time-processor optimal simulations. We present a general method for
making simulations based on hashing multiple copies of the PRAMmemory cells time-
processor optimal. Consider a simulation of one step of an n-processor EREW PRAM
on an n-processor DMM with delay not exceeding τ , w.h.p., that works by solving
the “b out of a” task with b > a/2 (cf. the discussion in section 2). Further, suppose
that it solves the “b out of a” task by running

(
a

b−1

)
“1 out of a − b + 1” tasks. We

show that if a and b are constants, then the simulation can be made time-processor
optimal with delay O(τ) for τ ≥ log∗ n. This improves upon the O(τ log∗ n) delay
achieved in [19].

If we want to simulate one step of an (n · τ)-processor EREW PRAM on an n-
processor DMM, each processor of the DMM simulates τ processors of the EREW
PRAM. Hence, each processor of the DMM has a list of τ memory requests. We use
a + 2 hash functions and perform the simulation by solving the “b + 1 out of a + 2”
task. By our discussion in section 2, one can solve the task by performing a “1 out of
a− b+2” task for each subset of size a− b+2 of the a+2 hash functions. Therefore
we focus on solving the “1 out of a − b + 2” task. Thus let us suppose that we have
a − b + 2 hash functions. Our protocol consists of two phases. In the first phase, all
but O(n) requests are satisfied in time O(τ), using only one of the hash functions. We
achieve this goal by analyzing a new routing problem, called all-but-linear routing. In
the second phase we first evenly redistribute the remaining requests among the DMM
processors such that each processor only gets a constant number of requests. Then
we use the other a − b + 1 hash functions and perform a protocol for the “1 out of
a− b+1” task to satisfy the remaining requests. Since each processor has a constant
number of requests to be sent, we may use the solution for the “1 out of a − b + 1”
task to perform this step in time O(τ), w.h.p.

2.3. Lower bound for topological simulations. Our solutions for the access
game, as well as all previously known solutions to the “1 out of 2” task, are special
cases of a topological game on the access graph. In this game, in order to remove all the
edges from the graph, each node first analyzes its neighborhood and then removes its
incident edges in a way depending on the topology of the neighborhood. We prove an
Ω(log log log n/ log log log logn) lower bound for the topological game, which indicates
that our O(log log logn log∗ n)-delay PRAM simulation is almost optimal in the class
of algorithms based on the topological game.

3. Preliminaries. This section describes basic techniques used in the paper.
All our simulations are based on universal hashing, i.e., the shared memory cells are
distributed among the memory modules using three or more hash functions, randomly
drawn from a universal class of hash functions. The analysis of the simulations requires
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high performance universal classes; i.e., if a function is chosen at random from the

class, then its behavior will be close to that obtained by choosing a function at random
from the class of all functions.

Since our simulations have o(log log n) delay, we cannot afford to use deterministic
and exact solutions for fundamental parallel problems, like sorting or prefix sums
computation. Therefore, we use instead relaxed counterparts of these problems that
can be solved by O(log∗ n)-time randomized algorithms.

Section 3.1 briefly introduces the concept of hashing and universal hashing, sec-
tion 3.2 states two tail estimates for dependent random variables, and section 3.3
presents results about fast randomized algorithms used in the paper.

3.1. Universal hashing. Our simulations require that the shared memory U
of the PRAM is distributed among the memory modules of the DMM. For this we
use hash functions that have properties similar to random functions. We use notation
from Dietzfelbinger et al. [6], generalizing notions from Carter and Wegman [5].

For an integer k, define [k] = {0, . . . , k − 1}. Let U = [m], where m > n.
Definition 1 (see [6]). A family Hm,n of hash functions mapping U into [n] is

(µ, k)-universal, if for each u1 < · · · < uk ∈ U , l1, . . . , lk ∈ [n], and the hash function
h drawn with uniform probability from Hm,n, we have

Pr(h(u1) = l1, . . . , h(uk) = lk) ≤
µ

nk
.

Such classes have been called sometimes µ strongly k universal or ((k)µ)-independent.
Notice that if Hm,n is (µ, k)-universal, then it is also (ν, j)-universal for all ν ≥ µ and
j ≤ k.

For our purposes we require a (2, log2 n)-universal class of hash functions Hm,n,
such that a random h ∈ Hm,n can be constructed quickly, stored using little space
(O(

√
n) suffices), and evaluated in constant time. For example, we can use an (1, nε)-

universal class of hash functions (where ε is a small positive constant) described
by Siegel [29] for the case n = m, with the extension to (2, nε)-universal class for
arbitrarily large m > n from [19]. For a detailed description of this class see [19].

3.2. Tail estimates. In this paper we mainly deal with dependent random vari-
ables. To bound the deviation of the sum of dependent random variables from the
expected value, we use two different tail estimates. The first one is also called the
method of bounded differences, given in this form by McDiarmid [23].

Lemma 3.1 (the method of bounded differences). Let x1, . . . , xn be independent
random variables, where xi takes values from a finite set Ai, for i = 1, . . . , n. Suppose
that the function f : Πn

i=1Ai → R satisfies |f(x̄)− f(x̄′)| ≤ ci whenever the vectors x̄
and x̄′ differ only in the ith coordinate. Let Y be the random variable f(x1, . . . , xn).
Then, for any t > 0,

Pr(Y ≥ E(Y ) + t) ≤ exp
(

−2t2∑n
i=1 c

2
i

)
.

Another tail estimate is a well-known generalization of the Markov inequality.
Lemma 3.2 (the kth moment inequality). Let Y be a random variable and s > 0.

Then, for each α > 0,

Pr(|Y | ≥ α) ≤ E(|Y |s)
αs

.
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3.3. Log-star algorithms. In this section we outline main algorithmic tools
used by our algorithms. Some of them are subsumed by others. Nevertheless, we
state all of them to make it easier to refer to specific tasks. If an array of size 2 · n
contains at least n objects, we will call the array padded-consecutive.

Definition 2. The strong semisorting problem is the following: Given n inte-
gers x1, x2, . . . , xn, xi ∈ [n], store them in a padded-consecutive array, such that all
variables with the same value occur in a padded-consecutive subarray.

Definition 3. The all nearest one problem is the following: Given n bits
x1, x2, . . . , xn, find for each bit xi the nearest 1’s both to its left and to its right.

Definition 4. The approximate prefix sums problem is the following: Given a
sequence of nonnegative integers, x1, . . . , xn, find a sequence y0 = 0, y1, . . . , yn, such
that for i ∈ [n], yi − yi−1 ≥ xi, and

1

2

i∑
j=1

xj ≤ yi ≤ 2
i∑

j=1

xj .

The following lemma is a combination of several results.

Lemma 3.3. The following problems can be solved on the n-processor DMM in
O(log∗ n)-time with exponentially high probability, i.e., with probability 1 − 2−nε

for
a constant ε > 0:

(1) strong semisorting,

(2) all nearest one, and

(3) approximate prefix sums.

Proof. First, since an n-processor DMM can be simulated with a constant delay
on an n-processor CRCW PRAM with Θ(n) shared memory, it is enough to prove
the lemma for the n-processor CRCW PRAM that uses only O(n) space.

(1) Bast and Hagerup [3] show how to solve strong semisorting in O(log∗ n)-
time with the desired probability on a CRCW PRAM, provided the input is from [n].
For a general input, O(log∗ n)-time perfect hashing [2, 10] reduces the problem to the
solution of Bast and Hagerup. (See also [14, p. 275].)

(2) The all nearest one problem can be solved in O(α(n)) = O(log∗ n) time
deterministically on a CRCW PRAM by an algorithm due to Ragde [26], and Berkman
and Vishkin [4].

(3) Approximate prefix sums can be solved within the desired bound using an
algorithm of Goodrich, Matias, and Vishkin [13].

4. The access graph. In this section we show how PRAM simulation can be
modeled as the access game on the access graph. We also discuss basic properties of
the access graph.

4.1. Definition and properties of the access graph. We start with the
simulation of an EREW PRAM. The memory of the PRAM is hashed using three hash
functions h1, h2, and h3. That means each memory cell u ∈ U of the PRAM is stored
in the modules Mh1(u),Mh2(u), and Mh3(u) of the DMM. We call the representations
of u in the Mhi(u)’s the copies of u. We assume that all the hash functions used are

drawn uniformly at random from a (2, log2 n)-universal class of hash functions Hm,n

(see section 3.1). As mentioned in section 2, it is enough to analyze only protocols
for the “1 out of 2” task, and therefore in our description we will use only two hash
functions h1 and h2.
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For technical reasons, we do not perform all n accesses to the shared memory
simultaneously but split the requests into batches of size n/22c+6 for some constant
c ≥ 1 to be specified later. Since we only have a constant number of batches, this will
slow down our algorithm only by a constant factor.

Let S denote such a batch. Let G = ([n], E) be the labeled directed graph defined
by two hash functions h1, h2 from Hm,n and the set of requests S. G has an edge
(h1(u), h2(u)) labeled u for each u ∈ S. Note that parallel edges and self-loops are
allowed in G, however all labels are distinct.

Definition 5. The access graph H is the labeled graph obtained from G by
removing all directions from the edges. It consists of n nodes and n/22c+6 edges for
some constant c ≥ 1.

The algorithms we present rely on the properties of the access graph. The follow-
ing lemma is an extension of a result of Karp, Luby, and Meyer auf der Heide [19].
Define the size of a connected component C, denoted by |C|, to be the number of
nodes it contains.

Lemma 4.1. For arbitrary positive constants l and c and for sufficiently large n
(a) Pr(H has a connected component of size at least l

c log n) ≤ n−l, and
(b) there is a constant w ≥ 1 such that

Pr(H has a connected component C with at least |C|+ w − 1 edges) ≤ n−l.

Proof. For the proof of the lemma it suffices that h1 and h2 are chosen uniformly
at random from any (2, log2 n)-universal class of hash functions. The proof of the
lemma relies on the following claim.

Claim 4.2. Let k ≥ 2, w ≥ 0, k + w − 1 ≤ log2 n. The probability that there is
a connected subgraph G′ ⊆ G such that G′ contains k vertices and at least k + w − 1
edges is at most

n−w+1kw−22−2c(k+w−1) .

Proof. Let Gk,w be the set of all directed connected graphs on node set [n] with k
vertices and k+w− 1 edges labeled by elements of S. Since any connected subgraph
G′ ⊆ G with k vertices and at least k + w − 1 edges must contain a subgraph from
Gk,w, it is sufficient to show that G contains a subgraph from Gk,w with probability
at most n−w+1kw−22−2c(k+w−1).

An element of Gk,w can be generated by first choosing k vertices, then taking an
undirected tree on these vertices and orienting the tree edges, then adding further w
directed edges on the vertices of the tree, and finally assigning the labels to the chosen
k + w − 1 edges. Therefore,1

|Gk,w| ≤
(
n

k

)
kk−22k−1k2w2w

( n

22c+6

)k+w−1

≤ n2k+w−1k2w−2

(
e2

22c+6

)k+w−1

.

For fixed G′ ∈ Gk,w and randomly chosen h1 and h2, G
′ is a subgraph of G only

if the directions and labels with respect to h1 and h2 coincide with G′. Since k +

1Throughout the paper the inequalities kk/k! < ek and (k/l)l ≤
(
k
l

)
≤ (ek/l)l will be used

without further comment.
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w − 1 ≤ log2 n and h1, h2 are independently chosen from a (2, log2 n)-universal class,

the probability that G′ is a subgraph of G is at most
(
2/nk+w−1

)2
. Therefore, the

probability that there is some G′ ∈ Gk,w that appears as a subgraph of G is at most

n−w+1k2w−2

(
4e2

22c+6

)k+w−1

≤ n−w+1k2w−22−2c(k+w−1) .

To prove part (a) of the lemma we use Claim 4.2 with w = 0 and k = l
c log n. This

yields an upper bound on the probability of the existence of a connected component
of size at least k = l

c log n.
To prove part (b) notice first that from part (a) we obtain that H has a connected

component of size at least l
2c log n with probability at most n

−l/2. Observe also that
for any constant s, H contains a vertex with at least s self-loops with probability at
most n1−s. Hence we may use Claim 4.2 to obtain the upper bound for the probability
that H has a connected component C with at least |C|+ w − 1 edges:

n−l/2 + n1−w +

l
2c logn∑
k=2

n−w+1kw−22−2c(k+w−1) ≤ n−l/2 + n1−w +

l
2c logn∑
k=2

(k/n)w−1

≤ n−l/2 + n1−w + n2−w .

Thus if we set w = �2 + l/2�, then the probability is at most n−l.
Lemma 4.3. Let l, b, and c be any positive constants with c− 1 ≥ b > 2, l > 2,

and let 1 < k ≤ 1
2b log n. Then, for n large enough,

Pr
(
H has at least

n

2bk
connected components of size at least k

)
≤ n−(l−1) .

Proof. We first consider connected components of H of size exactly k, and then
we extend our analysis to connected components of size at least k.

LetWk be the set of all subsets of size k of the set of n nodes. With eachW ∈ Wk

we associate a binary random variable IW , such that IW = 1 if the nodes from the
set W form a connected component in H. Otherwise IW = 0.

We want to bound the random variable

X(k) =
∑

W∈Wk

IW ,

which is the number of connected components of size k. As the random variables IW1

and IW2
are not independent for W1,W2 ∈ Wk, we use Lemma 3.2 to bound X(k).

We compute the sth moment of X(k) with the following formula:

E(Xs
(k)) = E

[( ∑
W∈Wk

IW

)s]
=

∑
(W1,...,Ws)∈(Wk)s

E(IW1
IW2

· · · IWs
) .

Consider a fixed tuple (W1, . . . ,Ws). If there exists a pair of sets Wi,Wj ∈
{W1, . . . ,Ws} that are not disjoint and not equal, i.e., Wi �= Wj and Wi ∩ Wj �= ∅,
then E(IW1IW2 · · · IWs) = 0. This follows from the definition of the binary random
variables because the two sets cannot both form a connected component of size exactly
k. Hence, we only have to deal with the case that z sets, 1 ≤ z ≤ s, are disjoint and
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the other s− z sets are equal to one of them. If we fix z, there are
(
s
z

)
ways to choose

the z sets that are disjoint and at most zs−z ways to assign the remaining sets to one
of them. Hence we can bound the sth moment in the following way:

E(Xs
(k)) ≤

s∑
z=1

(
s

z

)
zs−z

∑
(W1,...,Wz)∈(Wk)z

W1,...,Wz disjoint

E(IW1
IW2

· · · IWz
) .

Fix z disjoint sets W1, . . . ,Wz and assume that s(k − 1) ≤ log2 n. For every i,
1 ≤ i ≤ z, let Ti be the set of all directed spanning trees on nodes of Wi with edges
labeled by the elements of S. Notice that

E(IW1IW2 · · · IWz ) ≤
∑

T1∈T1,...,Tz∈Tz

Pr(each of T1, . . . , Tz is a subgraph of H) .

Using arguments similar to those used in the proof of Claim 4.2, and by observing that
the endpoints of the edges are chosen by hash functions from a (2, log2 n)-universal
class, we obtain

E(IW1IW2 · · · IWz ) ≤
(
kk−2 · 2k−1 ·

( n

22c+6

)k−1
)z

·
(

2

nk−1

)2z

.

Now we can bound E(Xs
(k)):

E(Xs
(k)) ≤

s∑
z=1

(
s

z

)
zs−z

(
n

k, k, . . . , k, (n− zk)

)
kz(k−2)

( n

22c+5

)z(k−1)
(
4

n2

)z(k−1)

≤
s∑

z=1

(se
z

)z
zs−z

(ne
k

)zk
kz(k−2)

(
1

n22c+3

)z(k−1)

≤
s∑

z=1

(s
z

)z
zs−znz

(
e

k2
· ek

2(2c+3)(k−1)

)z

≤
s∑

z=1

( sn

z22ck

)z
zs .

Finally, Lemma 3.2 implies

Pr
(
X(k) ≥

n

2bk+1

)
≤

E(Xs
(k))(

n
2bk+1

)s

≤
s∑

z=1

( sn

z22ck

)z
·
(
z2bk+1

n

)s

= 2s ·
s∑

z=1

( s

z2(c−b)k

)z
·
(
z2bk

n

)s−z

≤ 2s ·
s∑

z=1

( s

z2k

)z
·
(

z√
n

)s−z

= 2s ·
s∑

z=1

(
s
√
n

z22k

)z

·
(

z√
n

)s

≤ 2s · s ·
(
1

2

)ks

.
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In the fourth inequality we need c ≥ b + 1 and k ≤ 1
2b log n. By setting s = (l +

2) log n/(k − 1) we obtain

Pr
(
X(k) ≥

n

2bk+1

)
≤ n−(l+1) .

Now we extend our analysis to connected components of size at least k. For this we
have only to observe

Pr


∑

t≥k

X(t) ≥
n

2bk


 ≤ Pr


∑

t≥k

X(t) ≥
n∑

t=k

n

2bt+1




≤
∑
t≥k

Pr
(
X(t) ≥

n

2bt+1

)
≤ n−l .

Lemma 4.1 and Lemma 4.3 are the basis of the proof of the following lemma
which is essential for the analysis of our simulations.

Lemma 4.4. Let H be the access graph with n nodes and n
22c+6 edges for some

constant c ≥ 1 defined as in Lemma 4.3. For all constants β and l such that c ≥
2l(β + 2), with probability at least 1− 2( 1n )l−1,

∑
connected components C

|C|>1

|C| · 2|C| β ≤ n .

Proof. Let b = β + 2. We split the sum into two parts:
∑

1<|C|≤ 1
2b logn

|C| · 2|C| β +
∑

1
2b logn<|C|

|C| · 2|C| β .

Observe that because c ≥ 2bl, we get 1
2b log n ≥ l

c log n. Therefore, the right-hand
part is zero w.h.p. by part (a) of Lemma 4.1. Hence, by Lemma 4.3, with probability

at least 1− 2
(

1
n

)l−1
, the above sum is bounded by

1
2b logn∑
k=2

n

2bk
k2βk ≤ n

1
2b logn∑
k=2

(
1

2b−β−1

)k

≤ n .

The last inequality holds as b = β + 2.

4.2. The access game. In the following we view a PRAM simulation, or more
precisely a protocol for the “1 out of 2” task, as the following process on the access
graph H, which we call the access game on H. Each processor that wants to access a
shared memory cell u ∈ U asks in each step either Mh1(u) or Mh2(u). Consequently, if
a module Mj answers the request for cell u, then the edge labeled u is removed from
H. That is, every node in H removes one incident edge (if any). The simulation ends
when all the edges from H are removed.

Note that initially all the processors are assigned to the edges in H and that the
nodes in H do not know the adjacent edges. We want to view the simulation from the
point of view of the nodes; i.e., a node removes an incident edge. For this we assign
to each node a processor that computes which of the incoming edges will be removed.
Then it sends a message to the processor assigned to this edge to send a request to
the respective module.
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Remark 1. Lemma 4.1 immediately implies the O(log log n) implementation of
the “1 out of 2” task due to Karp, Luby, and Meyer auf de Heide [19]. In each
round, each module removes an arbitrary incident edge. Lemma 4.1 ensures that the
connected components have at most O(log n) edges. Thus, because in each round the
number of edges in each connected component is at least halved, O(log log n) rounds
suffice to remove all edges.

5. A simulation with delay O(log logn/ log log logn). Throughout this
section, H will denote the access graph, which is assumed to satisfy the conditions
of Lemma 4.4. After the comments in section 4.2, the main challenge is how to
remove the edges from the access graph. The first result is a randomized simulation
of one step of an EREW PRAM with delay O(log log n/log log log n), w.h.p. Its basic
routine works with two hash functions and solves the “1 out of 2” task. The high level
description of the protocol in terms of the processors and the modules is as follows.
In each step, each module chooses among its incoming requests the one with the
highest contention, i.e., for which the memory module storing the other copy gets most
requests. For implementing the access protocol we use log-star techniques described
in section 3.3 to get an O(log∗ n)-time preprocessing algorithm for computing the
number of requests directed to each module.

5.1. The neighbor-data-structure. We introduce a data structure called
neighbor-data-structure. The neighbor-data-structure supports the following two oper-
ations on the access graph: (i) remove a set of edges and (ii) assign to each nonisolated
node its neighbor with the maximum degree.

The preprocessing phase generates an array A of length 4n. It contains, for each
node v, a subarray Av of length d̃(v), d(v) ≤ d̃(v) ≤ 2d(v). Av contains the d(v)
edges incident to v and gaps in the remaining positions. Further, an array B of
length n contains a pointer to the leftmost cell of Av for each node v. In addition,

the preprocessing phase assigns d̃(v)2d̃(v) processors to each nonisolated node v. By
Lemma 4.4, at most n processors are needed for this assignment.

For a subgraph H ′ of H, the neighbor-data-structure is derived from the one for
H by simply removing the missing edges from the subarrays Av. The assignment of
processors and the lengths of the Av’s remain unchanged.

NDS Preprocessing.

• Represent each (undirected) edge (i, j) by two ordered pairs [i, j] and [j, i].
• Perform strong semisorting with respect to the first coordinate.
• Compute for each node v the size d̃(v) of the subarray Av containing all edges

adjacent to v.

• Allocate d̃(v) 2d̃(v) processors to each node v.

After strong semisorting, the second step of the preprocessing, all edges (the
corresponding ordered pairs) adjacent to a node v of degree d(v) appear in a subarray
Av of size d̃(v) = O(d(v)). The algorithm for the all nearest one problem can be
used to find the first and the last edge of each node and therefore to compute the
size d̃(v) of the subarray Av. The following lemma bounds the time needed for the
preprocessing.

Lemma 5.1. NDS Preprocessing builds up the neighbor-data-structure and
can be performed in O(log∗ n) time on an n-processor DMM, w.h.p.

Proof. The time bound follows from Lemma 3.3. Note that d(v) ≤ d̃(v) ≤ 2d(v).
Hence, by Lemma 4.4, the total size of the neighbor-data-structure is n. In addition,
since the degree of v is bounded by the size of its connected component, w.h.p.,
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the total number of allocated processors to each connected component is at most
2 |C|2 22 |C|. Therefore, Lemma 4.4 ensures that we allocate only a linear number of
processors, w.h.p.

The following lemma shows how to dynamically manipulate the neighbor-data-
structure.

Lemma 5.2. Once the neighbor-data-structure is built, one can update the neighbor-
data-structure after deletion of any set of edges in constant time on an n-processor
DMM.

Proof. Since each edge e knows its positions in the arrays Av, one can remove
any edge by changing the corresponding positions into gaps.

The next lemma describes the functionality of the neighbor-data-structure.

Lemma 5.3. Given the neighbor-data-structure for some subgraph of H, on an
n-processor DMM, it is possible in constant time to assign to each nonisolated node
a neighbor of maximum degree.

Proof. Let us look at the array Av as an array containing marked objects (cor-
responding to edges adjacent to v) and unmarked objects (corresponding to gaps).
To compute the degree of v it is sufficient to compute the number of marked objects

in Av. Since there are only 2
d̃(v) combinations of marked and unmarked objects in

Av, one can compute this number in constant time, using d̃(v) processors for each
combination. Note that this amount of processors is available for each node because
we allocated an exponential number of processors to each node. Now each node v
can get the degrees of all its neighbors in constant time with d̃(v) processors. To
find a node with the maximum degree one can use the standard maximum finding
algorithm that runs (deterministically) in constant time with (d̃(v))2 processors [16,
p. 72].

5.2. Schedule and analysis of the simulation. In section 4 we have shown
that if every node always removes an arbitrary adjacent edge, then a simulation with
delay Θ(log logn) results. We want to describe a more efficient protocol, Simula-
tion 1, using the neighbor-data-structure.

Simulation 1.

• NDS Preprocessing: Build up the neighbor-data-structure.
• Repeat until no more edges are left:

– In parallel, each node removes the edge
pointing to a neighbor with highest degree.

– Update the neighbor-data-structure.

We bound the number of iterations of the algorithm.

Lemma 5.4. Simulation 1 is finished after O( log log n
log log log n ) iterations, w.h.p.

Proof. We say an access graphH survives k iterations of Simulation 1, if at least
one edge is left after performing k iterations. We want to construct structures that
are embeddable in the access graph H, if it survives k iterations of Simulation 1.
Let k ≥ 1. A k-fork consists of k different nodes (called leaves) connected to one node
(called the center) that is connected to another node called the parent node of the
k-fork. A k-witness is defined recursively as follows. A 1-witness is a path of length 5
(i.e., with 6 nodes); the two nodes of degree one are the leaves. For k > 1, a k-witness
is a (k− 1)-witness each leaf of which is a parent node of a different k-fork. All leaves
of the k-forks are called the leaves of the k-witness. Note that a k-witness has 2k!
leaves. An example of a 4-witness is given in Figure 1. The proof of the lemma is
based on the following claim.



CONTENTION RESOLUTION IN SHARED MEMORY SIMULATIONS 1717

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Fig. 1. A 4-witness.

Claim 5.5. If H survives k iterations of Simulation 1, then there is an embed-
ding of a k-witness W in H that maps edges that have a node in common to different
edges of H.

Proof. The proof of the claim is by induction on k. If H survives one iteration,
then a path of length 5 must be embeddable in H. Assume now that the claim holds
for k and let H survive k + 1 iterations.

Perform the first iteration on the graph H. A subgraph H̃ ⊆ H which survives
k iterations will be left. From the induction hypothesis, we know that a k-witness W̃
can be embedded in H̃ in the way described in the claim. For this structure to survive
the last iteration we extend it to a witness-structure W that must be embeddable in
H. Since in the first iteration no edge from H̃ has been removed, each node from H̃
must have removed an incident edge in H − H̃. As W̃ is a k-witness, it consists of a
(k− 1)-witness each leaf of which is a parent node of a k-fork. Because each center of
a k-fork removes an edge from H − H̃ that points to a neighbor with the maximum
degree, its degree in H is at least k+2. Thus every leaf v in W̃ must have a neighbor
u (different than the center) of degree at least k + 2. Hence v must be the parent
node of a (k+ 1)-fork that consists of v, u and k+ 1 neighbors of u other than v and
the center of the k-fork. This defines the required embedding of W in H.

Assume that Simulation 1 needs more than k iterations on the graph H. Then
by Claim 5.5 a k-witness W is embedded in a connected component C of H.

By Lemma 4.1, |C| = O(log n), and C consists of a tree and a constant number
ζ of additional edges, w.h.p. In the worst case, at each node of C, at most ζ edges
from W can be embedded into these ζ edges of C. Therefore, there must exist a
(k− ζ)-witness W̃ that can be embedded one-to-one in C. As |W̃ | ≥ 2(k− ζ)!, by the
definition of a (k − ζ)-witness, the embedding of W in C as described in Claim 5.5
uses Ω((k− ζ)!) nodes of C. Since |C| = O(log n), we can embed only a k-witness W
for k = O( log log n

log log log n ).
This lemma together with Lemmas 5.1, 5.2, and 5.3 implies the following theorem.
Theorem 5.6. One can simulate one step of an n-processor EREW PRAM on

an n-processor DMM with delay O(log log n/log log log n), w.h.p.

6. Faster simulations. In this section we extend the ideas from the previous
section. We present an algorithm that not only computes information on the 2-
neighborhood (degrees of neighbors) but explores a larger neighborhood of each node.
Then, a second algorithm is presented that removes all edges from the access graph
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in constant time, assuming each node knows its whole connected component. As a
first consequence we give a simple protocol that significantly improves the delay of
the simulations presented before. Finally, we present the O(log log logn log∗ n) delay
simulation.

6.1. The path-access-structure. In this subsection we develop some algo-
rithmic utilities for almost random graphs, especially methods for exploring a large
neighborhood of a node, which is essential for our algorithms. Throughout this sec-
tion, H will denote the access graph which fulfills the conditions of Lemma 4.4. The
k-neighborhood of a node v is the subgraph of H containing the nodes and the edges
that are reachable from v by a path of length at most k.

Our simulations use a data structure, called path-access-structure (PAS), that
allows fast access to all simple paths of length at most k in H. We prove a simple
lemma to bound the total length of all simple paths in H.

Lemma 6.1. Let C be a connected component that is a tree with a constant
number ζ of additional edges and v be a node in C. Then the total number of simple
paths starting at v is O(|C|).

Proof. The total number of simple paths that do not use the additional edges
is |C|. The other simple paths can use each additional edge only once. Therefore,
the number of simple paths using additional edges can be bounded by ζ!2ζ+1|C| =
O(|C|).

Note that, by Lemma 4.1, each connected component C of H has the properties
stated in Lemma 6.1, w.h.p. As each simple path in C has length at most |C|, we
can bound the total length of all simple paths in C by O(|C|3), w.h.p. Hence, by the
statement made in Lemma 4.4 about the distribution of the sizes of these components,
the total length of all the simple paths is O(n), w.h.p.

The path-access-structure for (simple paths of length at most) k is a data structure
that supports the following operations on H: (i) remove a set of edges, (ii) assign to
each nonisolated node v the node with minimum identifier in the k-neighborhood of
v, (iii) assign to each nonisolated node in H an incident edge that begins a simple
path of length at least k (if there exists such an edge), and (iv) for all edges e and
indices r, 1 ≤ r ≤ k, give the number of simple paths of length exactly r that start
with edge e.

Now we describe the implementation details of the path-access-structure for k.
We store the simple paths of length at most k in an array S of length O(n), which
consists of padded-consecutive subarrays Sv, one for each node v of H. Each Sv

contains a representation of all paths starting in v, each one in consecutive cells. In
order to access the paths we build up an array P which consists of padded-consecutive
subarrays Pv, one for each node v of H. Pv contains a pointer to the header of each
path starting at node v together with the length of this path.

We first give a high level description of how to apply the doubling technique to
build up the path-access-structure for simple paths of length at most k.

PAS Preprocessing.
All nodes are active.
Initialize all the Pv and Sv as empty.
For r = 0 to log k perform the following iteration for all active nodes v in parallel:

• Using Pv, compute an approximate (within a factor of 2) number δ̃r(v) of
simple paths of length at most 2r starting at v.

• Using Sv, compute an approximate (within a factor of 2) total length γ̃r(v)
of all simple paths starting at v.
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• Update the sizes of Sv and Pv using δ̃r and γ̃r.
• Using the doubling technique, find all simple paths of length l, 2r < l ≤ 2r+1,

starting at v and store them in Sv and Pv.
• Inactivate all nodes that are not beginnings of a simple path of length 2r+1.

Lemma 6.2. In time O(log k log∗ n), with linear total work, the path-access-
structure for all simple paths in H of length at most k can be built on an n-processor
DMM, w.h.p., using the procedure PAS Preprocessing.

Proof. The algorithm is based on the standard doubling technique (see, e.g., [16]).
We perform log k + 1 iterations and ensure the following invariant after r iterations,
0 ≤ r ≤ log k: Each node v has already found all simple paths of length at most
2r that start at v, stored them in a padded-consecutive subarray Sv and stored the
pointers to each path together with its length in a padded-consecutive subarray Pv.
If a given node has already found all its simple paths, then it is inactive. Otherwise it
is active. Note that in each iteration of the algorithm only active nodes participate.

When r = 0, then all the paths of length 1 are exactly the edges incident to v.
Thus, this 0th iteration of PAS Preprocessing is covered by the construction of the
neighbor-data-structure. The NDS Preprocessing and Lemma 5.1 can be used to
build up the neighbor-data-structure. Within O(log∗ n) time and linear work, one can
move all the edges incident to v to a padded-consecutive subarray at the beginning of
Av, w.h.p. (compare section 3.3). This creates the adjacency list of v. Thus, we can
create the arrays Sv and Pv. Additionally, we inactivate all isolated nodes.

We perform the (r + 1)st iteration, for r ≥ 0, using the doubling technique. Let
v be any active node and Cv be its connected component. Note that since v is active,
we have |Cv| ≥ 2r. First, v computes how many simple paths of length at most 2r

start at v. Because it is hard to compute this value exactly, each node v computes
a value δ̃r(v) which is not smaller and at most 2 times larger than the number of
paths that start at v. Since the subarray Pv containing the pointers to all simple
paths starting at v is padded-consecutive, simply finding the first and the last such
paths makes it possible to compute δ̃r(v) after performing the algorithm for the all
nearest one problem. Now we compute an approximation γ̃r(v) of the total length of
all simple paths stored at Sv. Since the lengths of all such paths are stored at Pv, we
compute γ̃r(v) using the approximate prefix sums algorithm for all v. The difference
between the last cumulative path-lengths in two consecutive subarrays Pv and Pv′

gives us γ̃r(v).

Let (x, y) be the last edge of any simple path p of length 2r which starts at v.
To find all paths of length l, 2r < l ≤ 2r+1, starting with p, we must combine p with
all paths of length at most 2r starting at y. Then we remove the anomalies, i.e., the
paths that create cycles.

Observe that, using the values δ̃r(y) and γ̃r(y), we know how big the new arrays
Pv and Sv have to be (for each path p, Pv has to be extended by δ̃r(y) and Sv by
2r · δ̃r(y) + γ̃r(y)). This space allocation can be done using global approximate prefix
sums. Observe that δ̃r(v) = O(|Cv|) and γ̃r(v) = O(|Cv| · 2r) = O(|Cv|2), w.h.p.,
using Lemma 6.1. Hence the size of the new Pv is O(|Cv|2), and the size of the new
Sv is O(|Cv|3), w.h.p.

It is easy to compute the length of each newly created path to maintain Pv. To
update Sv we have only to copy the old paths from Sv and concatenate the paths
from v to y with simple paths from y. Hence these operations can be performed in
constant time with total work proportional to the sizes of the new Pv and Sv. This
means that the total work for all nodes is

∑
|C|≥2r O(|C|4), and the total running
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time in each iteration is O(log∗ n), since it is dominated by the cost of computing
γ̃r(v), δ̃r(y) and of allocating the subarrays Pv and Sv.

Finally, we have to remove those obtained paths that are not simple. We identify
each path in Sv with the position of the first node. Then we perform strong semisorting
within all arrays Sv with respect to the pairs [path, a node on the path]. Now, if
there is more than one pair [p, y], which can be verified by applying the all nearest
one algorithm, then the path p is not simple and we eliminate it. Strong semisorting
within all arrays Pv can be used to remove nonsimple paths from these arrays. Using
the lengths of the paths in the Pv’s, approximate prefix sums makes it possible to
remove all nonsimple paths in the arrays Sv. Hence we can maintain the Pv’s and
Sv’s to be padded-consecutive. Now we inactivate a node v if the new Pv contains no
path of length 2r+1.

The running time of iteration r is O(log∗ n) with O(
∑

|C|≥2r |C|4) total work.
Therefore, the total work of the algorithm is

O


log k∑

r=0

∑
|C|≥2r

|C|4

 = O

(∑
C

|C|4 log |C|
)
,

and by Lemma 4.4, this is O(n).
Now we show how to maintain the path-access-structure dynamically, that is,

when we allow removing edges from the graph. The proof of the following lemma is
in the spirit of the proof of Lemma 6.2.

Lemma 6.3. Assume that the path-access-structure has already been built. Then,
after removing some edges from the graph, it can be updated in time O(log∗ n) on an
n-processor DMM, w.h.p.

Proof. First we perform the preprocessing step and run strong semisorting on all
arrays Sv with respect to the names of the edges. (Of course, it causes no problem to
find and look at the edges instead of the nodes.) The result is an arrayR of linear size,
such that for each edge e in a padded-consecutive subarray of R all the occurrences
on all simple paths together with the pointers to these paths in Pv’s are stored.

Now, when an edge e is removed, we can easily remove from the arrays Pv and
Sv all simple paths on which e occurs. To remove all the edges, one needs constant
time and work proportional to the size of R. If one requires that all the subarrays
Pv and Sv still have to be padded-consecutive, then additional O(log∗ n) time is
needed.

Lemma 6.4. Assume that the path-access-structure for k has been built. Then,
to each nonisolated node one can assign the node with the minimum identifier in its
k-neighborhood in O(log∗ n) time on an n-processor DMM.

Proof. All simple paths that start at v and are of length at most k are stored in a
padded-consecutive subarray Sv. Thus, this subarray contains exactly the nodes from
the k-neighborhood of v. Now each node v can find the node w with the minimal
identifier in its k-neighborhood in O(log∗ n) time. Each node v has |Sv| = O(|Cv|2)
candidates, where Cv denotes the connected component v belongs to, and using
|Sv|2 = O(|Cv|4) processors it can find the node with minimum identifier in con-
stant time [16, p. 72]. O(log∗ n) time is needed for assigning processors to the nodes
by using approximate prefix sums.

Lemma 6.5. Assume that the path-access-structure for k is given. One can assign
to each node its incident edge that begins a simple path of length at least k in constant
time on an n-processor DMM.
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Proof. For each node v the array Pv immediately gives such an edge.
The next lemma shows how to use the path-access-structure for k to count the

number of all simple paths of length at most k.
Lemma 6.6. Suppose that the path-access-structure for k is given. Then, for all

edges e and integers r, 1 ≤ r ≤ k, the number of simple paths of length exactly r that
start with edge e can be computed in O(log∗ n) on an n-processor DMM, w.h.p.

Proof. For each simple path in all Sv’s we consider the pairs [starting edge of the
path, length of the path]. We perform strong semisorting with respect to these keys.
In this way, all the simple paths (in fact their representatives) that start with the same
edge e and are of the same length r are stored in a padded-consecutive subarray, which
we call Xe,r. If ye,r denotes the number of such paths, then ye,r ≤ |Xe,r| ≤ 2ye,r. We
allocate |Xe,r| · 2|Xe,r| processors to the pair [e, r] and compute ye,r in the same way
as in the proof of Lemma 5.1 in constant time. Now we have to show that we use
only n processors. Let Ce be the connected component e belongs to. By Lemma 4.1,
ye,r = α|Cv| and each connected component C has at most β|C| edges, for some
constants α and β. Hence

∑
e∈E

k∑
r=0

|Xe,r|·2|Xe,r| ≤
∑
C

∑
e∈C

|C|·(2ye,r)22ye,r ≤
∑
|C|>1

2αβ|C|322α|C| ≤
∑
|C|>1

|C|2b|C|

for some constant b. Lemma 4.4 ensures that this is bounded by n.
A k-branch of a node v in the access graph H is the set of all different simple

paths of length at most k that start with the same edge incident to v. Clearly, for
every node v the number of its k-branches equals its degree. Define level(r) of a
k-branch of a node v to be the set of all simple paths of length r, 0 < r ≤ k, of this
k-branch. The weight of a k-branch of a node v is the bit-vector w = (w1, . . . , wk),
where wr is 1 if and only if the number of simple paths in level(r) of the branch
is at least 2r−1. We order the weights with respect to the lexicographical ordering.
Informally, a k-branch is lexicographically larger than another k-branch, if it is more
similar to a complete binary tree with respect to the number of nodes in each level.

Lemma 6.7. Suppose that the path-access-structure for k is given. Then one
can assign to each node in H an incident edge that begins a k-branch with maximum
weight in O(log∗ n) time on an n-processor DMM.

Proof. Using Lemma 6.6, each node can get the weights of all incident k-branches
in O(log∗ n) time. Let Cv denote the connected component containing node v. Each
node has O(|Cv|) k-branches, each of depth O(|Cv|). Hence it can find a k-branch
with the maximum weight in constant time using |Cv|4 processors using the standard
algorithm (see, e.g., [16, p. 72]). Hence all nodes together can find the required k-
branches in constant time on a p-processor DMM with p =

∑
v |Cv|4 =

∑
|C|>1 |C|5.

By Lemma 4.4, p ≤ n.

6.2. Cleaning up connected components. TheO(log log n/log log log n)-time
simulation from section 5 is based on very local information. Each node looks only
at its neighbors in the access graph and, based on their degrees, chooses one incident
edge. The main idea leading to improvements of that result is to analyze the access
graph in a nonlocal way and to try to use information on as many nodes and edges
as possible.

The notion of the k-neighborhood plays the crucial role. Instead of looking only
at the neighbors, now each node v will base the decision which incident edge to remove
on the structure of its k-neighborhood. We will explore the k-neighborhood of each
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node in H. As we have seen in Lemma 6.2, essentially all information on the k-
neighborhood can be computed in time O(log k log∗ n). In this subsection we will
describe a process that removes all edges from a connected component with diameter
δ in time O(log δ log∗ n).

Cleaning up Connected Components.

• PAS Preprocessing: Build up the path-access-structure.
• Perform for each node in parallel:

– Each node v obtains the node w with the minimal identifier in its com-
ponent.

– If v �= w, then v finds all nodes u1, u2, . . . , ur, such that (v, ui) is the
first edge of a simple path from v to w.

– v removes the edges (v, ui), 1 ≤ i ≤ r.

The access protocols described in previous papers (e.g., in [19], see also Remark 1
in section 4.2) show how to remove all edges of a connected component C of H in time
O(log(|C|)). The following lemma proves that Cleaning up Connected Compo-
nents achieves time O(log(diameter of C)). Note that this does not give fast simula-
tions on its own, becauseH has a connected component of diameter Ω(log n/ log log n),
with constant probability (see Lemma 10.2).

Lemma 6.8. Let δ be the maximum diameter of the connected components of
H. Then Cleaning up Connected Components removes all edges in H in time
O(log δ log∗ n), w.h.p.

Proof. As it is shown in Lemma 6.2, one can build up the path-access-structure
for δ in time O(log δ log∗ n) on an n-processor DMM. Because for each node its δ-
neighborhood is equal to its connected component, Lemma 6.4 allows us to find the
nodes w in Cleaning up Connected Components in O(log∗ n) time.

By Lemma 4.1 we have r = O(1), w.h.p. Now we may use the array S from the
path-access-structure to find for each node v the nodes u1, . . . , ur in O(1) time. Notice
also that each edge e of H must be of the form (v, ui) for some v and i. Therefore, at
the end of the algorithm all the edges are removed. Since r = O(1) w.h.p., the last
step of the algorithm takes O(1) time, w.h.p.

6.3. An O(
√
log logn log∗ n)-delay simulation. TheO(

√
log log n log∗ n) sim-

ulation consists of three phases and may be described on a high level in the following

way. Let k = 2
√

log log n.

Simulation 2.

• PAS Preprocessing: Build up the path-access-structure for k.
• Repeat 2 · log log n/log k times:

– Each node removes an incident edge which is the beginning of a simple
path of length at least k, if there exists such an edge.

– Update the path-access-structure.
• Cleaning up connected components.

Since the clean-up phase removes all edges from H, the correctness of the al-
gorithm is obvious. We show that after performing the loop in the second phase
of Simulation 2, we have partitioned H so that the diameter of each connected
component is at most 2k. Therefore, the clean-up phase can be performed in time
O(log k log∗ n) on an n-processor DMM, w.h.p., as shown in Lemma 6.8.

We say that a connected component C of H survives t iterations of Simulation 2
if at least one edge of C is not removed at the end of the tth iteration in the second
phase. The idea of the proof is to bound the size of C.



CONTENTION RESOLUTION IN SHARED MEMORY SIMULATIONS 1723

Lemma 6.9. After the second phase of Simulation 2, the diameter of each
connected component is at most 2k, w.h.p.

Proof. Consider a connected component C of H that survives t iterations and any
maximal connected subgraph Ct of C of size larger than 1 that is left after t iterations.
Define inductively a sequence Ct, Ct−1, . . . , C0 such that for every i, 0 ≤ i < t, Ci is a
maximal connected subgraph of C that survives the ith iteration and contains Ci+1.

If the diameter of Ct is greater than 2k, then every node v on Ct is the beginning
of a simple path of length k. Hence, according to the elimination rule of the first
phase of Simulation 2, every node has removed in this iteration an incident edge
not belonging to Ct which was the beginning of a simple path of length at least k.
(Note that if the diameter of Ct is greater than 2k, then this also holds for Ct−i,
1 ≤ i ≤ t.)

The |Ct| · k edges of these paths are edges of the access graph H. Since each
path is simple, edges of one path are embedded injectively. From Lemma 4.1 we know
that each connected component C consists of |C|+O(1) edges. Hence, it has only a
constant number ζ of cycles. If we embed edges of two of these paths to the same edge
in H, then the sum of the two paths contains a cycle in H. Therefore, at least |Ct|−ζ
of these simple paths of length k are disjoint from each other in the embedding, that
is, Ct−1 has k · (|Ct| − ζ) ≥ k

2 · |Ct| edges.
This recursion shows: if a connected component C survives t iterations in the

second phase of Simulation 2, and if a connected part of C left at the end of the tth
iteration has diameter greater than 2k, then C must be of size Ω(kt/2t). Now assume
that this is the case for t = 2 · log log n/log k. Then C must be of size Ω(log2 n), which
contradicts Lemma 4.1.

From Lemmas 6.2, 6.3, and 6.5, it follows that it is possible for each node to
analyze in the first phase its k-neighborhood in time O(log k log∗ n) and each iteration
in the second phase can be executed in time O(log∗ n), w.h.p. Therefore, if we set
k = 2

√
log log n and apply the majority technique we obtain the following theorem.

Theorem 6.10. One can simulate one step of an n-processor EREW PRAM on
an n-processor DMM with O(

√
log log n log∗ n) delay, w.h.p.

6.4. An O(log log logn log∗ n)-delay simulation. In this subsection we de-
scribe a simulation of an n-processor EREW-PRAM on an n-processor DMM that
improves all previously known simulations exponentially. Essentially, we show how to
partition each connected component using information about the (log logn)-neighbor-
hood so that the diameter of the largest connected component is O((log log n)2). Then
we can apply the Cleaning up Connected Components procedure to remove the
remaining edges in H. To achieve an improvement compared to Simulation 2, we
use the knowledge about the k-neighborhood in a more efficient way.

Simulation 3.
• PAS Preprocessing: Build up the path-access-structure.
• Each node v removes the incident edge which is the beginning of a k-branch

with maximal weight.
• Cleaning up connected components.

Lemmas 6.2 and 6.7 make sure that the first two phases of Simulation 3 can be
performed in time O(log k log∗ n), w.h.p. Now we prove that at the beginning of the
clean-up phase the maximum diameter of each connected component in H is at most
O(k2), w.h.p., for k ≥ log log n.

Lemma 6.11. Let k ≥ log log n, and ζ denote the number of cycles in the access
graph H. After the second phase of Simulation 3, w.h.p., H does not contain any
simple path of length more than (ζ + 1) · (2k + 1)2.
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(a) (b) (c)

Fig. 2. (a) the path p̃ with the edges that are removed by the nodes of p̃; (b) the path p̃ with
the edges required by the elimination rule on level(2); (c) the path p̃ with the edges required by the
elimination rule on level(3).

Proof. Assume, to the contrary, that at the beginning of the clean-up phase a
simple path p of length (ζ+1) ·(2k+1)2 survives. Let us call a branch that starts with
an edge from p the path-branch, and let us call any k-branch chosen in the second
phase of Simulation 3 by a node from p the side-branch of this node. Since no edge
of the path p has been removed in the first step, for each node of p, the side-branch
differs from the path-branch. Lemma 4.1 ensures that ζ = O(1). Hence there exists a
subpath p̃ = (v0, v1, . . . , v2k) of p, such that all vertices of the side-branches of nodes
from p̃ are not contained in any cycle of length smaller than 2k.

If the weight of a k-branch satisfies w1 = w2 = · · · = wr = 1, then we call it r-
complete. We show that for each node from p̃ the side-branch must be r-complete; for
all nodes vi, 0 ≤ i ≤ 2k − r, the right path-branch (starting from the edge (vi, vi+1))
is r-complete; and for all nodes vi, r ≤ i ≤ 2k, the left path-branch (starting from
the edge (vi, vi−1)) is also r-complete.

We prove the desired properties by induction on the levels (defined in section 6.1).
For an example see Figure 2.

level(1). Because no edge of a simple path p̃ of length 2k was removed in the
first step of the algorithm, each node from p̃ had to remove an incident edge
not belonging to p̃. Therefore for each node from p̃ the side-branch is 1-
complete. Similarly, since for each node from p̃ each path-branch has w1 = 1,
for each node vi, 0 ≤ i ≤ 2k− 1, the right path-branch is 1-complete, and for
each node vi, 1 ≤ i ≤ 2k, the left path-branch is 1-complete.

level(r). Now assume that r > 1 and for each node of p̃ the side-branch and
the respective path-branches are (r − 1)-complete. Consider a node vi, 0 ≤
i ≤ 2k− r, and the edge (vi, vi+1). Since the side-branch and the right path-
branch of vi+1 are both (r − 1)-complete and disjoint and have no cycle of
length smaller than or equal to k, the right path-branch of vi also must be
r-complete. The nodes vi, r ≤ i ≤ 2k, can be treated in a similar way.

This implies that we need a connected structure containing at least 2k ·2k−1 nodes
in H for a simple path of length (ζ + 1) · (2k + 1)2 to survive the second phase of
Simulation 3. For k ≥ log log n this contradicts Lemma 4.1.

This yields the following result.
Theorem 6.12. One can simulate one step of an n-processor EREW PRAM on

an n-processor DMM in O(log log logn log∗ n) time, w.h.p.

7. Reduction from CRCW PRAM to EREW PRAM. In this section
we show how to reduce the problem of simulating a CRCW PRAM on a DMM to
the simulation of an EREW PRAM. It is standard to build simulations of CRCW
PRAMs by combining sorting with simulations for EREW PRAMs. However, since
we are interested in very fast simulations for which sorting is too slow, our reduction is
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based on strong semisorting. Suppose that processor Pi of the CRCW PRAM wants
to access memory cell ui ∈ U , for 1 ≤ i ≤ n. In order to reduce the problem to
the EREW PRAM we have to show how to deal with duplicate requests to the same
memory cell. We consider only reading accesses; writing accesses can be performed
similarly.

We first perform strong semisorting on pairs (u1, 1), . . . , (un, n) with respect to
the first coordinate. This results in the addresses with the same value being stored
in a padded-consecutive subsequence of the output sequence. Using the algorithm
for the all nearest one problem each ui can test whether it is the first element in the
padded-consecutive subsequence or not. If so, we call ui a leader. Notice that if ui
is not a leader, then the solution to the all nearest one problem provides the pointer
to its leader. Now we perform an EREW simulation on the DMM with requests only
from leaders. Afterwards all leaders have accessed their cell ui and can broadcast the
value to the duplicates in constant time.

Lemma 7.1. If one step of an n-processor EREW PRAM can be simulated on
an n-processor DMM with delay t, w.h.p., then one step of an n-processor CRCW
PRAM can be simulated on an n-processor DMM with delay O(t+ log∗ n), w.h.p.

Coupled with Theorem 6.12, this yields the following theorem.

Theorem 7.2. One step of an n-processor CRCW PRAM can be simulated on
an n-processor DMM with O(log∗ n log log log n) delay, w.h.p.

8. All-but-linear routing. In this section we analyze a relaxed version of the
routing problem, the all-but-linear routing problem. Unlike in the general routing
problem, we do not require that all messages are delivered to their destinations, but
we have to route a large fraction of the messages. The motivation for our study is the
problem of transforming simulations of n-processor PRAMs by n-processor DMMs
into time-processor optimal simulations. As we will show in section 9, a fast solution
for all-but-linear routing can be directly applied to obtain efficient time-processor
optimal PRAM simulations.

Definition 6. In the all-but-linear routing problem on an n-processor DMM
each processor Qi has k keys ui,1, ui,2, . . . , ui,k, each to be sent to a destination from
M0, . . . ,Mn−1. The task is to deliver all but O(n) of the n · k keys.

In our application we will need the destinations of the keys to be chosen almost
randomly. The actual input for the PRAM simulation consists of kn distinct integers
x1,1, . . . , xn,k from [m], and we let ui,j = h(xi,j), for i ∈ [n], j ∈ [k], where h is chosen
uniformly at random from a (2, log2 n)-universal class Hm,n of hash functions (see
section 3.1). We call such an instance of all-but-linear routing quasi-random. In fact,
we could give a simpler solution if h were a truly random function (see [30]).

Our main result in this section is the following theorem.

Theorem 8.1. The quasi-random all-but-linear routing problem can be solved in
time O(k + log∗ n), w.h.p., for k ≤ 4

√
log n.

Our solution for quasi-random all-but-linear routing is based on an algorithm for
the k − k relation routing problem by Goldberg et al. [11].

Definition 7. In the k − k relation routing problem, each processor wants to
send at most k messages to other processors which are assumed to be distinct. The
destinations can be arbitrary except that each processor is the destination of at most
k messages.

8.1. Reduction to k− k relation routing. We will reduce quasi-random all-
but-linear routing to k−k relation routing by achieving the following two goals. First,
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we will ensure that each processor has only keys with distinct destinations. Second,
we will restrict the problem to processors that are destinations of O(k) messages.

The first problem can be solved using an element distinctness algorithm for each
processor. That is, each processor Qi sequentially runs through its keys ui,1, . . . , ui,k
and finds all duplicate destinations. This can be done by using, for example, bucket
sorting, in O(k) time and with O(n) space for each processor. Let us call a processor
bad if it has keys that have the same destination.

Lemma 8.2. If k = O( 4
√
log n), then O(log2 n) processors are bad, w.h.p.

Proof. Let Xi, i = 1, . . . , n, denote the binary random variable indicating if

processor Pi is bad or not. Processor Pi is bad with probability at most
(
k
2

)
2
n ≤ k2

n ,
that is, P (Xi = 1) ≤ k2/n. Let X =

∑
Xi. Since the keys have destinations chosen

by a function h taken at random from a (2, log2 n)-universal class of hash functions,
the choices of any ek2 log n processors are almost independent (cf. Definition 1). In
particular, we can give the following bound for X =

∑n
i=1 Xi:

Pr(X ≥ ek2 log n) ≤
(

n

ek2 log n

)
2

(
k2

n

)ek2 logn

≤ 2
(

1

log n

)ek2 logn

≤ 1

nlog log n
.

Hence, for all-but-linear routing, we can leave all keys of bad processors un-
processed, subsuming them in the O(n) remaining keys. To reduce the remaining
all-but-linear routing to k − k relation routing, we need the following lemma that
bounds the number of keys that have their destination at modules with load at least
Ω(k).

Lemma 8.3. Let h be chosen uniformly at random from a (2, log2 n)-universal
class of hash functions with range [n], and 1 ≤ k ≤ logn

log log n . If n·k keys are distributed
among n locations using h, then at most n

2k keys are in locations with load at least
8k, w.h.p.

Proof. Denote the nk keys by b0, . . . , bnk−1. A location is heavy if its load is at
least 8k. We associate with each key bi a binary random variable Ei with Ei = 1 if bi
is in a heavy location; otherwise Ei = 0.

We want to bound the random variable X =
∑kn−1

i=0 Ei. Again we use the kth
moment inequality (Lemma 3.2) and therefore compute E(Xs) for s = Θ(logn).

E(Xs) =
∑

(j1,...,js)∈[kn]s

E(Ej1 · · · Ejs) =
s∑

z=1

∑
(j1,...,js)∈[kn]s

z of the ji are different

E(Ej1 · · · Ejs) .

First we bound each term E(Ej1 · · · Ejs). Fix keys (j1, . . . , js) ∈ [kn]s such that
z of the ji are different. E(Ej1 · · · Ejs) is equal to the probability that each of the
z keys has its destination in a heavy location. This probability is bounded by the
sum over all possible locations of the z keys of the probabilities that the z keys have
destinations in given locations and that the locations are heavy. Since h is chosen
from a (2, log2 n)-universal class of hash functions and z < log2 n, the probability that
the z keys have destinations in given r locations, 1 ≤ r ≤ z, is bounded by rz · 2/nz.
For r ≤ z/8k, we trivially estimate the probability that r locations are heavy by 1.
If z/8k < r ≤ z, then we observe that in order to r locations be heavy there must
be other 8kr − z keys with destinations in the r locations. Therefore in that case
we bound the probability that the r locations are heavy by

(
nk

8kr−z

)
· 2 · (r/n)8kr−z.
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Hence, we obtain

E(Ej1 · · · Ejs) ≤
∑

1≤r≤ z
8k

(
n

r

)
2
( r
n

)z
+

∑
z
8k<r≤z

(
n

r

)
2
( r
n

)z ( nk

8kr − z

)
2
( r
n

)8kr−z

≤ 2
∑
r≤ z

8k

(ne
r

)r ( r
n

)z
+ 4

∑
z
8k<r≤z

(ne
r

)r ( r
n

)z ( nker

(8kr − z)n

)8kr−z

≤ 4
(
8ekn

z

) z
8k ( z

8kn

)z
+ 8

(en
z

)z ( z
n

)z ( kez

(8k − 1)z

)(8k−1)z

≤ 4
(

z√
n

)z

+

(
1

2

)8(k−1)z

≤ 5
(
1

2

)8(k−1)z

.

The third inequality holds for k = O(log n/ log log n) and z = o(n), which holds
as z ≤ s = Θ(logn). In this case it is easily seen that the terms in each sum at least
double when r increases. Hence we can bound each sum by two times the largest
term. Now we can bound E(Xs):

E(Xs) ≤
s∑

z=1

∑
(j1,...,js)∈[kn]s

z of the ji are different

5

(
1

2

)8(k−1)z

≤
s∑

z=1

(
s

z

)
(kn)zzs−z5

(
1

2

)8(k−1)z

≤ 5
s∑

z=1

zs
(

sekn

z228(k−1)

)z

≤ 10ss
(

ekn

s28(k−1)

)s

≤
( n

22k

)s
.

Again, each term of the sum in the third line at least doubles for large enough n
if z increases. Hence, we have bounded the sum by two times the largest term.

As the Ei and therefore also X are nonnegative random variables, we finally get

Pr(X ≥ α) ≤ E(Xs)

αs
≤
( n

22kα

)s
.

For α = n
2k we get

Pr
(
X ≥ n

2k

)
≤
(
1

2k

)s

.

For any positive l, if s ≥ l log n, then this probability is bounded by n−l.

8.2. k−k relation routing. It remains to show that we can perform the k−k
relation routing in time O(k). As was observed by Anderson and Miller [1], one can
solve the off-line version of the problem in k steps. However, we are interested in this
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problem when each processor has only the information about the messages it has to
send, and it can learn about the messages of the other processors only by sending and
receiving messages.

It is easy to see that any k − k relation routing can be performed in time k2

on a DMM, but our aim is to do this faster. Anderson and Miller [1] considered
the k − k relation routing problem on a model equivalent to a 1-collision DMM and
showed how to solve log n− log n relation routing in O(log n) expected time. Valiant
[33] considered the more general problem. He described a Θ(logn+ k) expected time
algorithm on the same model. This result was improved by Goldberg et al. [11], to
an algorithm for the k− k relation routing problem running in O(log log n+ k) time,
w.h.p. We describe a faster algorithm on an DMM.

Theorem 8.4. The k−k relation routing problem can be solved on an n-processor
DMM in O(min{log∗ n+ k, k2}) communication steps for any k ≤ n1/11.

The proof of this theorem uses known methods and techniques from [1, 11]. In
fact it is very similar in spirit to the results presented there. Nevertheless we present
the full proof in order to make our description of the all-but-linear routing algorithm
self-contained.

To prove the theorem we first describe the randomized routing protocol. It con-
sists of O(log k) rounds. In round i the problem of a k/2i−1 − k/2i−1 relation routing
will be reduced to a k/2i − k/2i relation routing problem. After the last round all
but n/k of the n · k keys will be delivered. Then we redistribute the remaining keys
among the processors and deliver them in O(k) steps, w.h.p.

Before presenting more details we introduce some notation. We call a processor
overloaded at the beginning of round i if the number of keys it has not already delivered
is greater than k/2i−1. Similarly we call a module overloaded at the beginning of phase
i if the number of keys that it still has to receive is greater than k/2i−1. A module
or a processor, respectively, becomes overloaded in round i if it was not overloaded
at the beginning of round i but it is at the beginning of round i+ 1. The idea of the
algorithm is that in each round only nonoverloaded processors participate, i.e., only
those keys participate that are not sent by an overloaded processor. Additionally we
consider only keys sent to a nonoverloaded module. The main problem is to bound
the number of overloaded processors and modules and hence the number of keys that
are left after the log k rounds. Let c be a positive constant, c ≥ 80.

k − k Relation Routing.

(1) For 1 ≤ i ≤ log( k
5 log k ) + 1, perform the following round i:

Only processors that have fewer than k/2i−1 keys left to send participate.
• Repeat c · k/2i times:

Each participating processor chooses a random number r from [ k
2i−1 ] and

tries to send the rth undelivered message, if it exists.
(2) All processors that have fewer than 5 log k/2 nondelivered keys send the keys

one by one, each key 5 log k/2 times.
(3) Redistribute evenly the remaining keys using approximate parallel prefix sums

applied to the numbers of nondelivered keys belonging to each processor.
(4) Deliver the remaining keys.

The proof of the theorem is based on the following lemma which bounds the
number of keys not participating.

Lemma 8.5. Let k ≤ n1/11, and let i be an arbitrary round in the first step of
the k − k relation routing algorithm above. Then at most n/k4 modules and at most
n/k4 processors become overloaded in round i, w.h.p.
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Proof. Consider an arbitrary round i of the algorithm, 1 ≤ i ≤ ( k
5 log k ) + 1. Let

xj denote the sequence of integers randomly chosen by processor Pj during round i.
We first prove that the number of overloaded modules at the beginning of round

i+1 can be bounded by n/k4, w.h.p. Let YM be the number of modules that become
overloaded during round i. LetM be a module that is not overloaded at the beginning
of round i, and let mj denote the number of participating keys that are destined for
M at the jth step of round i. Notice that M cannot become overloaded in round i if
mj is less than k/2i. Therefore, in that case, the probability that M does not receive
a message in the jth step is

(
1− 1

k/2i−1

)mj

≤
(
1− 1

k/2i−1

)k/2i

≤ e−1/2 .

Observe now that if M is overloaded at the end of round i, then in at least
ck/2i − k/2i steps of this round no message is received by M . Therefore, we can
bound the probability that M is overloaded at the end of round i by

(
c · k/2i
k/2i

)
· (e−1/2)c·k/2

i−k/2i ≤ (ec)k/2i · (e−1/2)(c−1)·k/2i

=
(
c · e3/2−c/2

)k/2i

.

Since we have assumed that i ≤ log( k
5 log k ) + 1 and c ≥ 80, we may bound the

probability by 1/2k4. This immediately implies that E(YM ), the expected number
of modules that become overloaded in round i, is at most n/2k4. Now we apply the
method of bounded differences (Lemma 3.1) to bound the probability that YM ≥ n/k4.
For this we view YM as the image of a function fM :

YM = fM ({xj |Pj is participating at the beginning of round i}) .

Observe that any change of the choice of Pj in a single step from key α to β may
change only the load of the two modules being destinations of α and β. Since all
choices of Pj are independent, a change of the value of xj for any j may change the
number of modules overloaded in round i by at most 2ck/2i ≤ ck. Hence we apply
Lemma 3.1 to get

Pr(YM ≥ n/k4) ≤ Pr(YM ≥ n/2k4 + E(YM )) ≤ exp
(
−2(n/k

4)

n(ck)2

)
= exp

(
− 2n

c2k10

)
.

This probability is exponentially small for k ≤ n1/11.
Now we want to show that, w.h.p., at most n/k4 processors become overloaded

during round i. Let YP be the number of processors that become overloaded during
round i. Let P be any participating processor in round i and let pj denote the number
of keys that P still has to send in the jth step of round i.

Let dl,j denote the number of participating keys in the jth step that have the
same destination as the lth key that P has to send. We consider only those P that do
not send to overloaded modules. Therefore each dl,j is less than or equal to k/2i−1.
Note that P cannot become overloaded in round i if pj is ever less than k/2i. Thus
we consider only the case pj ≥ k/2i for all j. In that case the probability that P
sends a key successfully in the jth step is at least

pj∑
l=1

2i−1/k ·
(
1− 2i−1/k

)dl,j−1 ≥
pj∑
l=1

2i−1/k ·
(
1− 2i−1/k

)k/2i−1

≥ 1/2e2 .



1730 A. CZUMAJ, F. MEYER AUF DER HEIDE, AND V. STEMANN

Therefore, using arguments similar to those above, we obtain that the probability
that P stops participating in round i is at most

(
ck/2i

k/2i

)
· (1− 1/2e2)(c−1)k/2i ≤

(
e · c · (1− 1/2e2)c−1

)k/2i

.

Since i ≤ log( k
5 log k ) + 1 and we set c ≥ 80, this probability is bounded by 1/2k4. As

in the proof of the first part, we can conclude that the expected number of processors
that become overloaded during round i is at most n

2k4 . One can verify that if the value
of xj changes for any j, then YP changes by at most ck. Therefore, by the method of
bounded differences (Lemma 3.1), the probability that YP is greater than n/k4 is at
most

Pr
(
YP ≥ n

k4

)
≤ Pr

(
YP ≥ n

2k4
+ E(YP )

)
≤ exp

(
−2(n/k

4)2

n · (ck)2

)
= exp

(
− 2n

c2k10

)
.

This probability is exponentially small for k ≤ n1/11.
Now we proceed with the proof of Theorem 8.4.
Proof of Theorem 8.4. After the first step of k − k Relation Routing a key

may be left if either its processor has fewer than 5 log k/2 nondelivered keys, or its
processor is overloaded in some round and stops participating, or the module where
the key should be sent is overloaded in some round. If the key is in the processor
with fewer than 5 log k/2 nondelivered keys, then after sending it 5 log k/2 times in
the second step either it will be delivered to the destination, or there are more than
5 log k/2 keys sending to the destination module. The latter means that the module
is overloaded at some round in the first step. Therefore, after the second step, we
are left only with such keys for which either the processor to which they belong or
the corresponding destination module is overloaded at some round in the first step.
Because an overloaded processor affects at most k keys and an overloaded module
affects at most k2 keys, the number of keys that are left at the end of the log k rounds
can be bounded using Lemma 8.5 by

log k
(
k2 n

k4
+ k

n

k4

)
≤ n

k
.

Using approximate parallel prefix computation (Lemma 3.3) applied to the number of
nondelivered keys belonging to each processor, we can redistribute the n/k remaining
keys among the modules in O(log∗ n) time, such that each processor gets at most
a constant number, w.h.p. Finally, each processor can now deliver its keys in O(k)
steps.

Hence, altogether we need O(log2 k + k + log∗ n) time.
At the beginning of k− k relation routing a module is called overloaded if it gets

ω(k) requests.
Lemma 8.3 bounds the number of keys affected by the modules getting ω(k)

requests by kn/2k. These keys and the keys from the bad processors have to be
added to the other keys that will not be processed during the O(log k) rounds of
k − k relation routing. Therefore, the total number of keys not processed during the
O(log k) rounds of k− k relation routing remains linear. This finishes the description
of quasi-random all-but-linear routing and completes the proof of Theorem 8.1.

9. Time-processor optimal EREW PRAM simulations. In this section
we want to present time-processor optimal simulations of EREW PRAMs on DMMs,
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that is, simulations of (n · t)-processor EREW PRAMs on n-processor DMMs with
delay not exceeding O(t), w.h.p. For this we first consider the problem of accessing 1
out of c copies of the (n · t) requested distinct memory cells on an n-processor DMM.
The copies are distributed using c independently and randomly chosen functions from
a (2, log2 n)-universal class of hash functions. We show that such a problem can be
reduced in time O(t + log∗ n), w.h.p., to a constant number of independent “1 out
of c − 1” tasks, provided that t ≤ 4

√
log n. Next we apply this reduction to obtain

our time-processor optimal simulations of an (n · t)-processor EREW PRAM on an
n-processor DMM.

Let us consider the problem of accessing 1 out of the c copies of the (n · t)
requested distinct memory cells, where the copies are distributed using independent
hash functions h1, . . . , hc. We assume that each processor of the DMM has a list of t
keys (memory requests). We consider only the situation where t ≤ 4

√
log n. We first

use all-but-linear routing to satisfy all but O(n) of the access requests, by accessing
the copies of the keys stored in memory modules given by h1. Theorem 8.1 ensures
that this phase can be performed in time O(t + log∗ n), w.h.p. Next, the remaining
O(n) access requests are redistributed evenly among the processors of the DMM such
that each processor gets O(1) of them. For that we use approximate prefix sums with
respect to the number of nondelivered keys of each processor and then accordingly
redistribute the keys. By Lemma 3.3, approximate prefix sums require O(log∗ n)
time, w.h.p. Given computed approximate prefix sums, the distribution phase can
be done in time O(t). Let us observe that, since the hash functions h2, h3, . . . , hc
are independent of h1, the remaining O(n) requests are independent of h2, h3, . . . , hc.
Therefore, we can use them as the input for a constant number of “1 out of c − 1”
tasks on the basis of hash functions h2, h3, . . . , hc. Thus the above algorithm reduces
the initial problem to a constant number of “1 out of c−1” tasks in time O(t+log∗ n),
w.h.p.

By our discussion in section 2, a simulation of one step of an (n · t)-processor
EREW PRAM on an n-processor DMM can be reduced to solving independently(

a
b−1

)
times (for b > a/2) the problem of accessing 1 out of the a− b+1 copies of the

(n · t) requested distinct memory cells. Therefore, the algorithm above implies the
following theorem.

Theorem 9.1. If one can execute a “1 out of a − b” task (b > a/2) in time
bounded by t ≤ 4

√
log n, w.h.p., then one step of an (n · t)-processor EREW PRAM

can be simulated on an n-processor DMM with delay O(
(

a
b−1

)
· (t+ log∗ n)), w.h.p.

Hence we can combine Theorem 9.1 with the algorithm for the “1 out of 2” task
described in section 6.4 to obtain the following theorem.

Theorem 9.2. One step of an (n log log log n log∗ n)-processor EREW PRAM
can be simulated on an n-processor DMM with delay O(log log logn log∗ n), w.h.p.

We finally note that Karp, Luby, and Meyer auf de Heide [19] gave a slightly
weaker theorem than Theorem 9.1 for CRCW PRAM simulations. We may apply it
to get the following.

Theorem 9.3. One step of an (n log log log n log∗ n)-processor CRCW PRAM
can be simulated on an n-processor DMM with delay O(log log logn(log∗ n)2), w.h.p.

10. A lower bound for the topological game. In this section we pinpoint
the limits of our approach based on the “1 out of 2” task. We show that all previously
known solutions based on the “1 out of 2” task as well as our algorithms are special
cases of a game on the access graph, called the topological game. Then we prove a
lower bound for the topological game.
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All simulations based on the “1 out of 2” task, or equivalently on the analysis
of the access game, have the following common scheme. In each step i each node
v of H either analyzes its kv,i-neighborhood or, on the basis of the structure of its
kv,i-neighborhood, decides which edge to remove, where kv,i is some integer. We can
describe this scheme in a slightly more general way. Let k be the maximum of kv,i
taken over all nodes v of H and all steps i of the algorithm. In the first superstep each
node finds and analyzes its k-neighborhood. Then, in the remaining rounds it decides
which edge to remove on the basis of the current k-neighborhood. Here we assume
that each node will get the information on all removed edges in its k-neighborhood
for free. It is easy to see that this extension makes the algorithm at least as powerful
as the original one.

Let H be the access graph as defined in section 4 with n nodes and n/c edges,
for c < log log n. Further assume that H is composed using two independent random
hash functions. We define the topological game on the access graph H as follows. k
is a parameter for the game.

Topological Game.

(1) Each node of H finds and analyzes its k-neighborhood; we charge for this
log k steps.

(2) Repeat the following round until all the edges are removed:
(a) Each node of degree one removes all edges in its k-neighborhood.
(b) Each other node removes one incident edge. The choice of this edge solely

depends on the topology of the current topology of its k-neighborhood.

We stress here the following features of this scheme.

Explanation and discussion of step 10. Let us observe that in all previous simu-
lations [8, 12, 19, 22, 25] only a 1-neighborhood was analyzed. On the other hand, we
notice that the time needed for computing any information about the k-neighborhood
of a node v that involves the knowledge on any node that is in distance k from v
seems to require Ω(log k) steps. We remark that our data structures presented in
section 6 allow each processor to obtain useful information about its k-neighborhood
in O(log k · log∗ n) time, w.h.p.

Explanation and discussion of step 0a. This step is motivated by the fact that us-
ing a slight modification of the algorithm Cleaning Up Connected Components,
each node that is close to the border of its connected component (that is, a node
whose k-neighborhood contains a simple path of length less than k that cannot be
extended by any edge to a simple path) can be removed in constant time using only
the information about the k-neighborhood.

Explanation and discussion of step 0b. Here we make a key assumption concern-
ing the topological game. A node bases its decision of which edge to choose on the
topologies of the (k − 1)-neighborhoods of its (direct) neighbors. The names of the
nodes and the labels of the edges are not allowed to be used. In particular, in the
case of all (k − 1)-neighborhoods being disjoint and isomorphic, the node can only
choose a random incident edge to remove. We further assume that removing further
edges during the game does not increase the number of rounds required. All strategies
known so far fit into this model. Especially, no simulation strategy is known that takes
advantage of using the labels of nodes and edges to break ties, i.e., to choose among
neighbors with disjoint isomorphic (k − 1)-neighborhoods. On the other hand, it is
challenging to find simulations that take advantage of using the labels, or to extend
our lower bound.

The main idea of the lower bound for the topological game is to focus only on fully
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symmetric structures inH. We show that there exists a node that has a (topologically)
symmetric k-neighborhood, possibly after removing some edges, and does not contain
nodes of degree one in its k-neighborhood. Then we assume that it randomly makes
the decision which outgoing edge to remove. We show that, after performing these
random decisions, a smaller symmetric subgraph will be left in the next round, with
sufficiently high probability. The bound for decreasing the size of the symmetric
subgraph will yield the lower bound.

For 0 ≤ i < log log log n
8 log log log log n , define the values of δi and di as follows:

δi =
log log n

(log log logn)4(i+1)
and di =

log log n

(log log logn)4(i+1)−2
.

We will use the following inequalities for values δi and di.
Lemma 10.1. For every 1 ≤ k ≤

√
log log n, 0 ≤ i < log log log n

8 log log log log n − 1, and
sufficiently large n the following inequalities hold:

(i) 2e
−

2·δdi
i

2
2(δi−δi+1) ≤ 1

logn and

(ii)
3·δdi

i

2δi−δi+1−1 ≤ δ
di−di+1−2k
i .

Proof.
(i) It is enough to show that

di log δi − 2δi + 2δi+1 ≥ log ln(2 logn).

If we substitute the terms that define δi and di on the left-hand side and use the
assumption about the range of i, we get the following inequality:

log log n

(log log logn)4(i+1)−2
(log log logn− 4(i+ 1) log log log logn)

−2
(

log log n

(log log logn)4(i+1)
+

log log n

(log log logn)4(i+2)

)

≥ log log n

(log log logn)4(i+1)−2

≥
√
log log n (log log logn)

2

≥ log ln(2 logn).

(ii) It is enough to show that

δi − δi+1 − 3− di+1 log δi − 2k log δi ≥ 0.

It is easily checked that 2k ≤ di+1 for all i in the indicated range. This yields the
following inequalities if we substitute the terms that define δi and di on the left-hand
side and use the assumption about the range of i and k:

δi − δi+1 − 3− di+1 log δi − 2k log δi
≥ δi − δi+1 − 3− 2di+1 log δi

=
log log n

(log log logn)4(i+1)
− log log n

(log log logn)4(i+2)
− 3

−2 log log n

(log log logn)4(i+2)−2
log

(
log log n

(log log logn)4(i+1)

)
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≥ log log n

2(log log logn)4(i+1)
− 3− 2 log log n

(log log logn)4(i+2)−3

≥ log log n

4(log log logn)4(i+1)
≥ 0 .

Definition 8. A (δi, di)-tree is an undirected, unlabeled, and acyclic connected
graph that contains a vertex r of degree δi such that all vertices in distance (exactly)
di from r are of degree 1 and all other vertices are of degree δi.

Fix an algorithm A that performs the topological game. We say a labeled directed
graph A contains a copy of an unlabeled undirected graph B if, after removal of
the labels and the edge orientation in A, the obtained graph contains a subgraph
isomorphic to B. We want to maintain the condition that the access graph remaining
after performing i rounds of the algorithm contains a copy of a (δi, di)-tree with
sufficiently high probability. The proof of this invariant is done by induction, which
is based on the following two lemmas.

Lemma 10.2. Let G be the directed access graph with n labeled nodes and n/c
labeled edges (cf. section 4.1). Let c < log log n, and let Tq be a fixed unlabeled and

undirected tree with q nodes. For q ≤ logn
10 log log n and sufficiently large n, the probability

that G contains a copy of Tq is at least 1/2.
The proof of the lemma is in the spirit of the proof of a similar lemma for balanced

graphs due to Erdős and Rényi [9].

Proof. Since the lemma trivially holds for q = 1, we assume that q ≥ 2. Let T (n)
q

be the set of all subgraphs of the complete directed graph on n nodes and n/c edges
labeled by the elements of S (cf. section 4.1) that, after removal of the labels and the

edge orientations, are isomorphic to Tq. With each T ∈ T (n)
q we associate a binary

random variable E(T ), such that E(T ) = 1 or E(T ) = 0 according to whether T is a
subgraph of G or not. Our aim is to bound the probability that

∑
T∈T (n)

q
E(T ) = 0.

We estimate that probability by using Chebyshev’s inequality. For that purpose we
now provide bounds for the expectation and the variance of the random variable∑

T∈T (n)
q

E(T ).
First consider the expected value E(

∑
E(T )). The probability that a fixed tree

with q − 1 edges is a subgraph of G is (1/n2)q−1. In order to obtain a lower bound

on the number of trees in T (n)
q we observe that we may obtain a subset of T (n)

q by
selecting trees with given q nodes and given labels assigned to the edges of the tree.
Hence we obtain the following formula:

E


 ∑

T∈T (n)
q

E(T )


 =

∑
T∈T (n)

q

E(E(T ))

= |T (n)
q | ·

(
1

n2

)q−1

(1)

≥
(
n

q

) (
n
c

)
!(

n
c − (q − 1)

)
!

(
1

n2

)q−1

≥
(
n

q

)q ( n

2c

)q−1

n−2(q−1)

≥ n

(2cq)q
.(2)
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Let T1 and T2 be two elements from T (n)
q . If T1 and T2 have no edges in common,

then

E(E(T1)E(T2)) =

(
1

n2

)2(q−1)

.

Therefore

E




∑
T1,T2∈T (n)

q
T1,T2

edge-disjoint

E(T1)E(T2)



= |{T1, T2 ∈ T (n)

q : T1, T2 edge disjoint}| ·
(
1

n2

)2(q−1)

≤ (|T (n)
q |)2 ·

(
1

n2

)2(q−1)

(1)

≤


E


 ∑

T∈T (n)
q

E(T )






2

.(3)

If T1 and T2 have exactly r edges in common (1 ≤ r ≤ q − 1), then we get

E(E(T1)E(T2)) =

(
1

n2

)2(q−1)−r

.

Because T1 and T2 are trees, they have at least r + 1 nodes in common. Hence, we
can give an upper bound for the number of such pairs T1, T2 of subgraphs:

(2q · qq−2)2
q∑

j=r+1

(
n

q

)(
q

j

)(
n− q

q − j

)(n
c

)2(q−1)−r

≤ q4q−4

q∑
j=r+1

n!

q!(n− q)!

q!

j!(q − j)!

(n− q)!

(q − j)!(n− 2q + j)!

(n
c

)2(q−1)−r

≤ q4q−4

q∑
j=r+1

n2q−j+2(q−1)−r

j!((q − j)!)2c2(q−1)−r

≤ q4q−4qn4q−2r−3 .

Hence we obtain

E




∑
T1,T2∈T (n)

q
T1,T2

not edge-disjoint

E(T1)E(T2)




≤
q−1∑
r=1

q4q−3n4q−2r−3

(
1

n2

)2(q−1)−r

≤ nq4q−2 .(4)

Now we may bound E((
∑

T∈T (n)
q

E(T ))2):

E




 ∑

T∈T (n)
q

E(T )




2
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= E


 ∑

T∈T (n)
q

E(T )


+ E




∑
T1,T2∈T (n)

q
T1,T2

edge-disjoint

E(T1)E(T2)




+ E




∑
T1,T2∈T (n)

q
T1,T2

not edge-disjoint

E(T1)E(T2)




(3)(4)

≤ E


 ∑

T∈T (n)
q

E(T )


+


E


 ∑

T∈T (n)
q

E(T )






2

+ nq4q−2 .(5)

Finally we provide an upper bound for the variance:

Var


 ∑

T∈T (n)
q

E(T )


 = E




 ∑

T∈T (n)
q

E(T )




2
−


E


 ∑

T∈T (n)
q

E(T )






2

(5)

≤ E


 ∑

T∈T (n)
q

E(T )


+ nq4q−2 .(6)

Using the Chebyshev inequality we can bound the probability that no T ∈ T (n)
q

is a subgraph of G:

Pr


 ∑

T∈T (n)
q

E(T ) = 0


 ≤ Var (

∑
E(T ))

(E (
∑

E(T )))2

(6)

≤
∑

E(E(T )) + nq4q−2

(E (
∑

E(T )))2
(2)

≤ (2cq)q

n
+

nq4q−2(2cq)2q

n2

=
(2cq)q + (2c)2qq6q−2

n

≤ q10q

n
for c ≤ q

≤ 1

2
for q ≤ log n

10 log log n
.

Therefore, the probability that G contains a copy of Tq is at least 1/2 for q ≤
logn

10 log log n .

Lemma 10.3. Consider a (δi, di)-tree for 0 ≤ i < log log log n
8 log log log log n , and let k ≤√

log log n. If every node randomly removes an incident edge, then, with probability

at least 1− 1/ log n, at most δ
di−di+1−2k
i of the nodes have degree smaller than δi+1.
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Proof. Consider a fixed node v with degree δi. Each edge incident to v will be
removed by an incident node with the same probability 1/δi. Define for 1 ≤ j ≤ δi the
binary random variable Xj which is one if and only if the jth incident edge of v will
be removed by an incident node. We know that Pr(Xj = 1) = 1/δi. Let X =

∑
Xj .

Note that E(X) = 1. We want to bound the deviation from the expected value.
Because the decisions of the adjacent nodes are independent, we can use the Chernoff
bound [15]:

Pr(X ≥ α) = Pr(X ≥ αE(X)) ≤ 1

2α
for α ≥ 5 .

In particular, this implies that

Pr(a node has degree smaller than δi+1) ≤
(
1

2

)δi−δi+1−1

.

Let xl, 1 ≤ l ≤ δ
di+1

i
−1

di−1 , be the sequence of independent random decisions made by

the
δ
di+1

i
−1

di−1 nodes of the (δi, di)-tree. The random variable

Y = f

({
xl : 1 ≤ l ≤ δdi+1

i − 1
di − 1

})

denotes the number of nodes that have degree smaller than δi+1. If we change the
value of one xl, Y can be changed by at most two. The expected number of nodes
having degree less than δi+1 can be bounded by

δ
di+1

i
−1

di−1

2δi−δi+1−1
≤ 2 δdi

i

2δi−δi+1−1
.

Using the method of bounded differences (Lemma 3.1), we get

Pr

(
Y ≥ 3 δdi

i

2δi−δi+1−1

)
≤ Pr

(
Y ≥ E(Y ) +

δdi
i

2δi−δi+1−1

)

≤ 2e
−2

(
δ
di
i

)2
2
2(δi−δi+1−1)

· di−1

4

(
δ
di+1

i
−1

)

≤ 2e−
δ
di
i

2
2(δi−δi+1) .

Substituting the values of δi and di into this formula and using Lemma 10.1 we get
that for k ≤

√
log log n the number of nodes with small degree can be bounded by

δ
di−di+1−2k
i with probability at least 1− 1/ log n.
Using these two lemmas we can show the following.
Lemma 10.4. After performing i rounds of the algorithm A, a (δi, di)-tree is

a subgraph of the remaining access graph with probability at least (1 − 1/ log n)i for
1 ≤ i < log log log n

8 log log log log n and k ≤
√
log log n.

Proof. The proof is done by induction on i. For i = 0 we use Lemma 10.2.
Assume that the lemma holds for some i, where i < log log log n

8 log log log log n . From the induc-

tion hypothesis we know that a (δi, di)-tree is a subgraph of the access graph at the



1738 A. CZUMAJ, F. MEYER AUF DER HEIDE, AND V. STEMANN

beginning of round i + 1. We consider only the edges from this tree and remove all
other edges. Because of the definition of the topological game, we remove all nodes
that are within distance at most k from a leaf of the tree. Each decision based on
the topology of the k-neighborhood made by the remaining nodes is random and is
independent of decisions of other nodes.

Hence, using Lemma 10.3, at most δ
di−di+1−2k
i nodes have degree smaller than

δi+1, and a (δi, di)-tree is a subgraph of the remaining graph.
The invariant of Lemma 10.4 holds for k small enough in every round i, 1 ≤ i <

log log log n
8 log log log log n , even if we start only with

n
log log log n edges. This implies the following

theorem.
Theorem 10.5. The expected number of rounds in any topological game until all

edges of the access graph H will be removed is Ω( log log log n
log log log log n ).

Proof. After log log log n
8 log log log log n rounds it is only possible to pick a k-neighborhood

for

k ≤ 2
log log log n

8 log log log log n ≤
√
log log n .

Therefore, when we use Lemma 10.4, after i ≤ log log log n
8 log log log log n rounds some edges will

be left. The probability for this event can be bounded by

(
1− 1

log n

) log log log n
8 log log log log n

≥ 1/e .
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Abstract. Let G = (V,E) be an unweighted undirected graph on n vertices. A simple argument
shows that computing all distances in G with an additive one-sided error of at most 1 is as hard
as Boolean matrix multiplication. Building on recent work of Aingworth et al. [SIAM J. Comput.,
28 (1999), pp. 1167–1181], we describe an Õ(min{n3/2m1/2, n7/3})-time algorithm APASP2 for
computing all distances in G with an additive one-sided error of at most 2. Algorithm APASP2

is simple, easy to implement, and faster than the fastest known matrix-multiplication algorithm.
Furthermore, for every even k > 2, we describe an Õ(min{n2−2/(k+2)m2/(k+2), n2+2/(3k−2)})-time
algorithm APASPk for computing all distances in G with an additive one-sided error of at most k.
We also give an Õ(n2)-time algorithm APASP∞ for producing stretch 3 estimated distances in an
unweighted and undirected graph on n vertices. No constant stretch factor was previously achieved
in Õ(n2) time.

We say that a weighted graph F = (V,E′) k-emulates an unweighted graph G = (V,E) if for
every u, v ∈ V we have δG(u, v) ≤ δF (u, v) ≤ δG(u, v) + k. We show that every unweighted graph
on n vertices has a 2-emulator with Õ(n3/2) edges and a 4-emulator with Õ(n4/3) edges. These
results are asymptotically tight.

Finally, we show that any weighted undirected graph on n vertices has a 3-spanner with Õ(n3/2)
edges and that such a 3-spanner can be built in Õ(mn1/2) time. We also describe an Õ(n(m2/3+n))-
time algorithm for estimating all distances in a weighted undirected graph on n vertices with a stretch
factor of at most 3.

Key words. graph algorithms, shortest paths, approximation algorithms, spanners, emulators

AMS subject classifications. 05C85, 68Q25, 68R10, 05C38

PII. S0097539797327908

1. Introduction. The all-pairs shortest paths (APSP) problem is one of the
most fundamental algorithmic graph problems. The complexity of the fastest known
algorithm for solving the problem for weighted directed graphs is O(mn + n2 log n),
where n and m are the number of vertices and edges in the graph (Johnson [22]; see
also [14]). Algorithms for the APSP problem which work on directed graphs with
nonnegative edge weights and whose running times are O(m∗n + n2 log n), where
m∗ is the number of edges participating in shortest paths, were obtained by Karger,
Koller, and Phillips [23] and by McGeoch [26]. Karger, Koller, and Phillips [23]
also obtain an Ω(mn) lower bound on any path comparison-based algorithm for the
APSP problem. Takaoka [29], slightly improving a result of Fredman [17], obtained an
algorithm for the APSP problem whose running time is O(n3((log log n)/ log n)1/2).
These algorithms work again on directed graphs with nonnegative edge weights.

The special case of the APSP problem in which the input graph is unweighted is
closely related to matrix multiplication. It is fairly easy to see that solving the APSP
problem exactly, even on unweighted graphs, is at least as hard as Boolean matrix
multiplication. Recent work by Alon, Galil, and Margalit [3], Alon and Naor [4], Galil
and Margalit [19], [20], [21], and Seidel [28] have shown that if matrix multiplication
can be performed in O(M(n)) time, then the APSP problem for unweighted directed
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graphs can be solved in Õ(
√

n3M(n)) time and the APSP problem for unweighted

undirected graphs can be solved in Õ(M(n)) time (Õ(f) means O(f polylogn)). The
Õ(
√

n3M(n)) bound for directed graphs was very recently improved by Zwick [33].
The current best upper bound on matrix multiplication is M(n) = O(n2.376) (Cop-
persmith and Winograd [13]).

While the above results are extremely interesting from the theoretical point of
view, they are of little use in practice because the fast matrix multiplication algorithms
are better than the naive O(n3)-time algorithm only for very large values of n. There
is interest therefore in obtaining fast algorithms for the APSP problem that do not
use fast matrix multiplication. The current best combinatorial algorithm for the
unweighted APSP problem is an O(n3/ log n)-time algorithm obtained by Feder and
Motwani [16] (see also [8]). This offers only a marginal improvement over the naive
O(n3)-time algorithm.

Because an algorithm for the APSP problem would yield an algorithm with a simi-
lar time bound for Boolean matrix multiplication, obtaining a combinatorial O(n3−ε)-
time algorithm for the APSP problem would be a major breakthrough. Here we ob-
tain such combinatorial algorithms for the all-pairs almost shortest paths (APASP)
problem.

Awerbuch et al. [7] and Cohen [11] considered the problem of finding stretch t
all-pairs paths, where t is some fixed constant and a path is of stretch t if its length
is at most t times the distance between its endpoints. Cohen [11], improving the
results of Awerbuch et al. [7], obtains, for example, an Õ(n5/2)-time algorithm for
finding stretch 4 + ε paths and distances in weighted undirected graphs for any ε > 0
(all weights from now on are assumed to be positive). She also exhibits a trade-off
between the running time of the algorithm and the obtained stretch factor. For any
even t, stretch t + ε paths between all pairs of vertices can be found in Õ(n2+2/t)
time. The works of Awerbuch et al. [7] and Cohen [11] are based on the construction
of sparse spanners (Awerbuch [6], Peleg and Schäffer [27]). A t-spanner of a graph
G = (V,E) is a subgraph G′ = (V,E′) of G such that for every u, v ∈ V we have
δG′(u, v) ≤ t·δG(u, v), where δG(u, v) is the distance between the vertices u and v in
the (possibly weighted) graph G.

A different approach altogether was employed recently by Aingworth et al. [2].
They describe a simple and elegant Õ(n5/2)-time algorithm for finding all distances
in unweighted and undirected graphs with an additive one-sided error of at most 2.
They also make the very important observation that the small distances, and not
the long distances, are the hardest to approximate. Based on the ideas of Aingworth
et al. [2], James B. Orlin (unpublished) obtained an Õ(n7/3)-time algorithm for finding
all distances with an additive one-sided error of at most 4.

In this work we improve and extend the result of Aingworth et al. [2], and of
Orlin, and obtain an Õ(min{n3/2m1/2, n7/3})-time algorithm, called APASP2, for
finding all distances in unweighted and undirected graphs with an additive one-sided
error of at most 2. Algorithm APASP2 is just the first in a sequence of algorithms
APASPk for even k ≥ 2 that exhibit a trade-off between running time and accuracy.
For any even k > 2, algorithm APASPk runs in Õ(min{n2− 2

k+2 m
2

k+2 , n2+ 2
3k−2 }) time

and has a one-sided error of at most k. Algorithm APASP4, for example, runs in
Õ(n5/3m1/3, n11/5) time. All algorithms described in this paper can be easily adapted
to find almost shortest paths whose lengths are equal to the estimated distances.

In addition, we show that for any k ≥ 2, the stretch of the estimates produced
by algorithm APASPk is at most 3. As k increases, the running time of algorithm
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APASPk decreases. For k = Θ(logn), the running time becomes Õ(n2). We let
APASP∞ be the algorithm APASPk with k = 2�log n�. Algorithm APASP∞
produces stretch 3 distances in unweighted undirected graphs in Õ(n2) time. As
mentioned, no fixed stretch factor was previously achieved in Õ(n2) time.

The errors in the estimated distances produced by APASPk are one sided . If
δ(u, v) denotes the distance between two vertices u and v in G = (V,E) and δ̂(u, v)
denotes the estimated distance between u and v produced by the algorithm, then for
every u, v ∈ V we have δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + k. The fact that δ(u, v) ≤ δ̂(u, v)

follows immediately from the fact that each estimated distance δ̂(u, v) is the length
of a path from u to v in the graph. Note that by subtracting �k/2� from all the
estimated distances produced by APASPk we can obtain estimates δ̃(u, v) satisfying
|δ(u, v)− δ̃(u, v)| ≤ �k/2� for every u, v ∈ V .

We next introduce the notion of emulators. We say that a weighted graph F =
(V,E′) k-emulates an unweighted graph G = (V,E) if for every u, v ∈ V we have
δG(u, v) ≤ δF (u, v) ≤ δG(u, v)+k. Emulators may be seen as the additive counterparts
of spanners. We show that any graph on n vertices has a 2-emulator with Õ(n3/2)
edges and a 4-emulator with Õ(n4/3) edges. These can be constructed in Õ(n5/2) and
in Õ(n7/3) time, respectively. We are not able to obtain sparser emulators. We are
able, however, to construct 6-emulators of size Õ(n4/3) in Õ(n2) time. The bounds
on the number of edges in 2-emulators and 4-emulators are asymptotically tight. For
any ε > 0, there are graphs on n vertices that cannot be 2-emulated by graphs with
n3/2−ε edges, and there are graphs on n vertices that cannot be 4-emulated by graphs
with n4/3−ε edges.

We are also able to obtain some results for weighted undirected graphs. We
show that any weighted graph on n vertices has a 3-spanner with Õ(n3/2) edges
and that such a 3-spanner can be found in Õ(mn1/2) time. Finally, we describe an
Õ(n(m2/3+n))-time algorithm for finding stretch 3 distances in a weighted undirected
graph on n vertices. Extended and improved results for weighted graphs, including
an Õ(n2)-time algorithm for finding stretch 3 distances and an Õ(n3/2m1/2)-time
algorithm for finding stretch 2 distances, appear in Cohen and Zwick [12].

2. Preliminaries. The work of Aingworth et al. [2] is based on the following
simple observation: there is a small set of vertices that dominates all the high-degree
vertices of a graph. A set of vertices D is said to dominate a set U if every vertex
in U has a neighbor in D. This observation is also central to our work.

Aingworth et al. [2] show that there is always a set of size O(n log n/s) that
dominates all the vertices of degree at least s in a graph on n vertices and that such
a set can be found deterministically in O(m + ns) time, where m is the number of
edges in the graph. Here, we show that such a set can be found deterministically in
O(m+ n) time.

Lemma 2.1. Let G = (V,E) be an undirected graph with n vertices and m edges.
Let 1 ≤ s ≤ n. A set D of size O((n log n)/s) that dominates all the vertices of degree
at least s in the graph can be found deterministically in O(m+ n) time.

Proof. Before describing a deterministic algorithm we note that picking each ver-
tex of V independently at random with probability (c log n)/s, for some large enough
c > 0, yields a desired dominating set of size O((n log n)/s) with high probability.

The deterministic algorithm uses the greedy heuristic. Start with an empty set D.
At each stage, add to D a vertex of V that dominates the largest number of vertices
of degree at least s that are not already dominated by vertices of D. Lovász [25]
and Chvátal [9] show that the greedy heuristic produces a dominating set whose size
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Algorithm decompose(G, 〈s1, s2, . . . , sk−1〉):

input: (i) An undirected graph G = (V,E).
(ii) A decreasing sequence s1, s2, . . . , sk−1 of degree thresholds.

output: (i) A sequence E1, E2, . . . , Ek, E
∗ of edge sets.

(ii) A sequence D1, D2, . . . , Dk of vertex sets.

For i ← 2 to k do Ei ← {e = (u, v) ∈ E | deg(u) ≤ si−1 or deg(v) ≤ si−1}
For i ← 1 to k − 1 do (Di, E

∗
i )← dominate(G, si)

E1 ← E ; Dk ← V ; E∗ ←
⋃

1≤i<k E∗
i

Fig. 1. A decomposition algorithm.

is at most lnn times the size of the smallest fractional dominating set. A fractional
dominating set of size n/s is easily obtained by giving each vertex of the graph a
weight of 1/s. The size of the dominating set produced by the greedy heuristic is
therefore at most (n lnn)/s, as required.

It is easy to see that the greedy heuristic can be implemented in O(m+ n) time.
For each vertex v of G we maintain a linked list of the edges that connect v to vertices
of G of degree at least s (in the original graph) that are not yet dominated by the
vertices of D. We use a simple array of length n to implement a priority queue that
holds the vertices of G. The key of each vertex is the length of its linked list. When
a vertex is added to D, we have to update the lists and the keys of some of the
vertices in the graph. If a vertex u now becomes dominated, then we have to update
the lists and the keys of all its neighbors in G. This takes, however, only O(deg(u))
time, where deg(u) is the degree of u in G. The total running time is therefore
O(m+ n).

In what follows we use an algorithm, called dominate(G, s), that receives an
undirected graph G = (V,E) and a degree threshold s. The algorithm outputs a pair
(D,E∗), where D is a set of size O((n log n)/s) that dominates the set of vertices of
degree at least s in G. The set E∗ ⊆ E is a set of edges of G of size O(n) such that
for every vertex u ∈ V with degree at least s, there is an edge (u,w) ∈ E∗ such that
w ∈ D. Once a dominating set D is obtained, the set E∗ can be easily obtained by
including in it a single edge for each vertex of the graph of degree at least s.

Almost all the algorithms presented in this paper use the decomposition algorithm
given in Figure 1. The input to the algorithm is an undirected graph G = (V,E) and
a decreasing sequence s1 > s2 > · · · > sk−1 of degree thresholds.

Algorithm decompose produces a decreasing sequence of edge sets E1 ⊇ E2 ⊇
· · · ⊇ Ek, where E1 = E and Ei for 1 < i ≤ k includes the edges that touch vertices
of degree at most si−1. As the number of vertices of degree at most si−1 is at most
n, and as each such vertex contributes at most si−1 edges to Ei, the number of edges
in Ei for 1 < i ≤ k is at most nsi−1. Throughout the paper, we let deg(v) denote the
degree of a vertex v.

Algorithm decompose also produces a set of dominating sets D1, D2, . . . , Dk

and an edge set E∗. The set Di for 1 ≤ i < k dominates all the vertices in G of
degree greater than si. In what follows we denote the set of vertices of degree greater
than si by Vi. The set Dk is simply V , the set of all vertices of the graph. The set
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E∗ ⊆ E is a set of edges of the graph such that if u ∈ Vi, i.e., if deg(u) > si, then
there exists a vertex w ∈ Di such that (u,w) ∈ E∗. The size of E∗ is at most kn.
As the running time of dominate is O(m + n), the running time of decompose is
clearly O(k(m+ n)).

Another ingredient used by our algorithm is the classical Dijkstra’s algorithm.
Lemma 2.2 (Dijkstra’s algorithm). Let G = (V,E) be a weighted directed graph

with n vertices and m edges. Let s ∈ V . Dijkstra’s algorithm runs in O(m+ n log n)
time and finds distances and a tree of shortest paths from s to all the vertices of V .
Furthermore, if the weights of the edges are nonnegative integers, then the distances
from s to all the vertices that are at distance at most m from s can be found in
O(m+ n) time.

Dijkstra’s algorithm appeared originally in [15], though the running time of the
version described there is O(n2). For a more modern description of Dijkstra’s algo-
rithm see [14]. The running time of O(m + n log n) is obtained by using Fibonacci
heaps [18]. If all the weights in the graph G are nonnegative integers and only the
distances that are most m are to be computed, then a simple array of length m can be
used as a priority queue, resulting in an O(m+n) running time. Thorup [30] showed
recently, using more sophisticated techniques, that Dijkstra’s algorithm can be imple-
mented to run in O(m + n) time even if the distances of the vertices from s are not
bounded, provided that bit operations on the weights are allowed. Our algorithms do
not rely on his results.

In all the algorithms described in this paper, except those of section 7, we start
with an unweighted undirected graph G = (V,E). We then build many auxiliary
weighted graphs and run Dijkstra’s algorithm on each one of them. The weights of
the edges in these auxiliary graphs will always be integers in the range {1, 2, . . . , n−1}.
As we will only be interested in distances that are at most n − 1 we can, if we want
to, use the simple O(m+ n)-time implementation of Dijkstra’s algorithm. Using the
O(m + n log n)-time implementation of Dijkstra’s algorithm will not result in a loss
of efficiency, however, as all our algorithms are faster than the exact O(mn)-time
algorithm that simply runs breadth-first search (BFS) from each vertex only when
m ≥ n log n.

As mentioned above, we can easily solve the APSP problem in unweighted graphs
in O(mn) time. Our goal in this paper is to reduce the running time of APSP
algorithms to as close to Õ(n2) as possible. To achieve this goal we are willing to
settle for almost shortest paths instead of genuine shortest paths.

Our algorithms involve many runs of Dijkstra’s algorithm. Most of these runs
are performed, however, on graphs with substantially fewer edges than in the original
input graph. It is interesting to note that we use Dijkstra’s algorithm, which works on
weighted graphs, even though the problem that we are trying to solve is unweighted.
A typical step in our algorithms is to choose a vertex u ∈ V , choose a set of edges F ,
and then run Dijkstra’s algorithm from u on the graph H = (V, F ). The set of edges F
is not necessarily a subset of the edge set E of the input graph. Furthermore, the
set F varies from step to step. The weight of an edge (u, v) ∈ F is taken to be the
current best upper bound on the distance between u and v in the input graph G.
Bounds obtained in a run of Dijkstra’s algorithm are used, therefore, in some of the
subsequent runs.

In our algorithms, we use a symmetric n×n matrix, denoted {δ̂(u, v)}u,v, to hold
the current best upper bounds on distances between all pairs of vertices in the input
graph G = (V,E). Initially δ̂(u, v) = 1 if (u, v) ∈ E and δ̂(u, v) = +∞ otherwise. (If
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we assume that the input graph G is connected, we can replace each +∞ by n − 1.)
By dijkstra((V, F ), δ̂, u) we denote an invocation of Dijkstra’s algorithm from the
vertex u on the graph (V, F ), where the weight of an edge (u, v) ∈ F is taken to be

δ̂(u, v). As we are interested only in distances that are at most n−1, the running time
of such a call to Dijkstra’s algorithm is O(|F | + n). The edges of F are considered
to be undirected . As mentioned, an edge of F is not necessarily an edge of E. If
(u, v) ∈ F is an edge of the original graph, then its weight is 1, otherwise, its weight

is greater than 1. A call to dijkstra((V, F ), δ̂, u) updates the row and the column

belonging to u in the matrix δ̂ with the distances found during this run if they are
smaller than the previous estimates. Note that the matrix {δ̂(u, v)}u,v serves as both
input and output of dijkstra.

If the graph (V, F ) is a subgraph of the input graph G = (V,E), then a call to

dijkstra((V, F ), δ̂, u) amounts to running a BFS on (V, F ) from u. When we want to

stress this fact, we denote such a call by bfs((V, F ), δ̂, u). In such a call, the matrix

{δ̂(u, v)}u,v is only used for output because the weight of each edge in the input graph
is assumed to be 1.

It should be clear from the above discussion that at any time during the run of
our algorithms and for any u, v ∈ V we have δ(u, v) ≤ δ̂(u, v), where δ(u, v) is the
distance between u and v in the input graph G.

In the next section we describe a sequence of algorithms apaspk for k ≥ 2.
Algorithm apaspk runs in Õ(n2−1/km1/k) time and produces estimates with sur-
plus 2(k − 1). In section 4 we describe a sequence of algorithms apaspk for k ≥
2. Algorithm apaspk runs in Õ(n2+1/k) time and produces estimates with surplus
2(�k/3�+1). AlgorithmAPASPk, mentioned in the abstract and in the introduction,
is a combination of a suitable algorithm from the sequence apaspk with a suitable
algorithm from the sequence apaspk, as explained after the proof of Theorem 4.2 in
section 4.

3. Algorithm apaspk. Aingworth et al. [2] obtained an Õ(n5/2)-time algorithm
for approximating all distances in an undirected and unweighted graph with a one-
sided additive error of at most 2. We describe a family of algorithms apaspk, where
k ≥ 2 is an integer. Algorithm apaspk runs in Õ(n2−1/km1/k) time and produces
estimated distances with an additive error of at most 2(k − 1). Note that for k = 2,
we get a running time of Õ(n3/2m1/2) and an additive error of at most 2. At the
other extreme, if we take k = �log n�, we get a running time of Õ(n2) and an additive
error of O(log n).

A description of the algorithm apaspk is given in Figure 2. The algorithm
is extremely simple. It starts by decomposing the graph G by invoking algorithm
decompose of section 2 with the thresholds si = (m/n)1−i/k(log n)i/k for 1 ≤ i <
k. As a result of this decomposition, we get a decreasing sequence of edge sets
E = E1 ⊇ E2 ⊇ · · · ⊇ Ek, a sequence of dominating sets D1, D2, . . . , Dk−1, and
Dk = V , and an edge set E∗. We will also refer to a decreasing sequence of vertex
sets V = V1 ⊇ V2 ⊇ · · · ⊇ Vk, where Vi for 1 ≤ i < k is the set of all vertices of G
of degree greater than si and Vk = V . The set Ei for 1 ≤ i ≤ k is then the set of
edges that touch a vertex that does not belong to Vi−1, and the set Di is a set that
dominates Vi through edges of E

∗.
Next, algorithm apaspk initializes a matrix {δ̂(u, v)} of upper bounds on the

distances of the graph by letting δ̂(u, v) = 1 if (u, v) ∈ E and δ̂(u, v) = +∞ otherwise.

Throughout the operation of the algorithm we have δ(u, v) ≤ δ̂(u, v) for every u, v ∈ V ,
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Algorithm apaspk:

input: An unweighted undirected graph G = (V,E).

output: A matrix {δ̂(u, v)}u,v of estimated distances.

For i ← 1 to k − 1 let si ← (m/n)1−i/k(log n)i/k

(〈E1, E2, . . . , Ek, E
∗〉, 〈D1, D2, . . . , Dk〉)← decompose(G, 〈s1, s2, . . . , sk−1〉)

For every u, v ∈ V do
if (u, v) ∈ E then δ̂(u, v)← 1 else δ̂(u, v)← +∞

For i ← 1 to k do
For every u ∈ Di run dijkstra( (V,Ei ∪ E∗ ∪ ({u} × V )) , δ̂, u)

Fig. 2. An Õ(n2−1/km1/k)-time algorithm for computing surplus 2(k − 1) distances.

where δ(u, v) denotes the distance from u to v in the graph G.
Finally, the main part of apaspk is composed of successive calls to Dijkstra’s

algorithm. At first, Dijkstra’s algorithm is run from every vertex of the dominating
set D1, then it is run from every vertex of the dominating set D2, and so on. Most of
these runs are performed, however, on graphs that are much sparser than the original
input graph G. The run of Dijkstra’s algorithm from a vertex u ∈ Di is performed on
a graph Gi(u) = (V,Ei(u)), where Ei(u) = Ei∪E∗∪ ({u}×V ). The edges of Ei∪E∗

are original edges of the graph and they are attached a weight of 1. The edges of
{u}×V are not necessarily edges of the input graph. The weight attached to such an

edge (u, v) is δ̂(u, v), the best upper bound available at the time on the distance from
u to v in the graph. Note that a slightly different graph is used in each invocation of
Dijkstra’s algorithm, even from vertices that belong to the same dominating set.

Theorem 3.1. For every k ≥ 2, the running time of algorithm apaspk is
O(kn2−1/km1/k(log n)1−1/k), where n is the number of vertices and m is the number
of edges in the input graph G = (V,E), and for every u, v ∈ V we have δ(u, v) ≤
δ̂(u, v) ≤ δ(u, v) + 2(k − 1).

Proof. We start with the complexity analysis of the algorithm. The call to
decompose takes O(kn2) time. The initialization of δ̂(u, v) takes O(n2) time. Most
of the running time of the algorithm is spent in the calls to Dijkstra’s algorithm. It
is not difficult to see that the total running time of these calls is

O

(
k∑
i=1

|Di| · (|Ei|+ n)

)
= O

(
n log n

s1
·m+

k−2∑
i=2

n log n

si
· nsi−1 + n · nsk−1

)
.

This follows from the fact that |Di| = O(n log n/si) for 1 ≤ i < k, |Dk| = |V | = n,
and from the fact that |E1| = |E| = m and |Ei| ≤ nsi−1 for 2 ≤ i ≤ k. With
the choice si = (m/n)1−i/k(log n)i/k, each one of the k terms in this expression
is equal to n2−1/km1/k(log n)1−1/k and the total running time of the algorithm is
O(kn2−1/km1/k(log n)1−1/k), as promised. The running time of the algorithm can
also be expressed as O(kn2 log n · ((m log n)/n)1/k).

We now examine the accuracy of the algorithm. For every 1 ≤ i ≤ k and u, v ∈ V ,
let δi(u, v) be the value of δ̂(u, v) after running dijkstra from all the vertices of
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u v

w′ ∈ D1

w ∈ V1
u v

w′ ∈ Di−1

w ∈ Vi−1

(a) (b)

Fig. 3. (a) Case 2 in the proof of Theorem 3.1. (b) Case 1 in the proof of Theorem 4.1.

Di. We now prove by induction on i that if u ∈ Di and v ∈ V , then δ(u, v) ≤
δi(u, v) ≤ δ(u, v) + 2(i − 1). Recall that Dk = V . For every u, v ∈ V , we get that

δ̂(u, v) = δk(u, v) ≤ δ(u, v) + 2(k − 1), as required.
Let Gi(u) = (V,Ei(u)) be the graph on which Dijkstra’s algorithm is run from

u ∈ Di. For i = 1, the claim is clear, because for every u ∈ D1 we have G1(u) = G,
and therefore δ1(u, v) = δ(u, v) for every u ∈ D1 and v ∈ V . Suppose therefore that
i > 1 and that the claim holds for i − 1. Let u ∈ Di and let v ∈ V . Consider a
shortest path p from u to v. We consider two cases.

Case 1. All the edges of p belong to Ei.
Because all the edges of p belong to Ei, they also belong to the graph Gi(u) on

which Dijkstra’s algorithm is run from u. We get, therefore, that δi(u, v) = δ(u, v)
and we are done.

Case 2. Not all the edges of p belong to Ei.
Because the edges of Ei are edges that touch vertices that are not in Vi−1, there

must be a vertex from Vi−1 on the path p. (There must, in fact, be two consecutive
vertices from Vi−1 on the path p but we do not use this fact here.) Let w be the last
vertex from Vi−1 on the path p. Let p′ be the subpath of p that connects w and v.
Because all the vertices on p′, except w, do not belong to Vi−1, all the edges of p′

belong to Ei. Let w′ ∈ Di−1 be such that (w,w′) ∈ E∗. The graph Gi(u) contains
the edge (w,w′) and a weighted edge (u,w′) whose weight is δi−1(u,w

′) = δi−1(w
′, u)

(see Figure 3(a)). By the induction hypothesis, δi−1(w
′, u) ≤ δ(w′, u) + 2(i − 2) ≤

δ(u,w) + (2i− 3). As a consequence, we get that

δi(u, v) ≤ δi−1(u,w
′) + δ(w′, w) + δ(w, v)

≤ (δ(u,w) + (2i− 3)) + 1 + δ(w, v)

≤ δ(u, v) + 2(i− 1) .

This completes the proof of the theorem.
Although the additive error of the estimated distances produced by apaspk in-

creases as k increases, we can show that the stretch of the estimated distances pro-
duced is always at most 3.

Theorem 3.2. For every 2 ≤ k = O(log n), the running time of algorithm
apaspk is O(kn2−1/km1/k(log n)1−1/k), and for every u, v ∈ V we have δ(u, v) ≤
δ̂(u, v) ≤ min{ δ(u, v) + 2(k − 1) , 3δ(u, v)− 2 }.

Proof. We only have to show that for every u, v ∈ V we have δ̂(u, v) ≤ 3δ(u, v)−2.
All the rest follows from Theorem 3.1. We start with the following lemma.

Lemma 3.3. Let p be a path of length � between u and v, where u ∈ Di. If
δi(u, v) > �+ 2r, then there are at least r + 1 edges on the path p that do not belong
to Ei ∪ E∗.
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We prove this Lemma by induction on i. If i = 1, then δ1(u, v) = δ(u, v) ≤ � and
there is nothing to prove.

Suppose that the lemma is true for every j < i. Let p be a path of length �
between u ∈ Di and v, and suppose that δi(u, v) > � + 2r. It follows that not all
the edges of p belong to Ei(u). This completes the proof if r = 0. Suppose therefore
that r > 0. Let e = (w1, w2) be the last edge on p that does not belong to Ei(u).
Let 1 ≤ j < i be such that w2 ∈ Vj \ Vj−1 (where V0 = φ). Since w2 �∈ Vj−1, we get
that e ∈ Ej . Let w′

2 ∈ Dj such that (w2, w
′
2) ∈ E∗. Let �1 and �2 be the distances

from u to w2 and from w2 to v on p. Because δi(u, v) > �+ 2r on the one hand, and
δi(u, v) ≤ δj(w

′
2, u) + 1 + �2 on the other, we get that δj(w

′
2, u) > (�1 + 1) + 2(r − 1).

Let p′ be the path from w′
2 to u composed of the edge (w′

2, w2) and the portion of p
from w2 to u. According to the induction hypothesis, there must be at least r edges
on p′ that do not belong to Ej ∪ E∗. Since (w′

2, w2) ∈ E∗, we get that all these r
edges must be edges of p. Because e ∈ Ej , we get that e is not one of these edges.
Since e �∈ Ei ∪ E∗, we get that there must be at least r + 1 edges on p that do not
belong to Ei ∪ E∗, as required. This completes the proof of the lemma.

Proof of Theorem 3.2. A path p of length � may contain at most � edges that do
not belong to Ek ∪E∗. Thus, if p is a path of length � connecting u ∈ Dk and v, then
it follows from Lemma 3.3 that δ̂(u, v) ≤ 3�. Note that Dk = V . This is almost what
we wanted to show, but not quite.

Consider again a path p of length � between two vertices u and v. If at least one
of the edges of p belongs to Ek ∪E∗, then Lemma 3.3 implies that δ̂(u, v) ≤ 3�− 2. If
the path p is of length one, i.e., � = 1, then δ̂(u, v) = δ(u, v) = 1 = 3�− 2. Otherwise,
we know that e1 = (u, u

′) and e2 = (v
′, v), the first and last edges on the path p, do

not belong to Ek ∪ E∗. As a consequence, we get that u, v ∈ Vk−1. Let 1 ≤ j1 < k
and 1 ≤ j2 < k be such that u ∈ Vj1 \Vj1−1 and v ∈ Vj2 \Vj2−1 (where again V0 = φ).
Assume, without loss of generality, that j2 ≤ j1. For brevity, let j = j2. Because
u, v �∈ Vj−1, we get that e1, e2 ∈ Ej . Let w ∈ Dj such that (v, w) ∈ E∗. Let p′ be
the path from w to u composed of the edge (w, v) and the path p in reversed order.
Since the number of edges on the path p′ that do not belong to Ej ∪ E∗ is at most
� − 2, we get, by Lemma 3.3, that δj(w, u) ≤ (� + 1) + 2(� − 2) = 3� − 3. Thus,
δk(u, v) ≤ δj(w, u) + 1 ≤ 3�− 2, as required.

As an immediate corollary, we get that the estimated distances produced by
apaspk satisfy δ(u, v) ≤ δ̂(u, v) ≤ (3 − 2

k )δ(u, v) for every u, v ∈ V . For k = 2, the
distances are stretched by a factor of at most 2. For k = 3, the distances are stretched
by a factor of at most 7/3. For any k, the distances are stretched by a factor of at
most 3.

By taking k = Θ(logn), we get an Õ(n2)-time algorithm for finding stretch 3 ap-
proximate distances. An extension of this algorithm for weighted graphs is presented
in [12].

4. Algorithm apaspk. In this section we present another family of algorithms,
called apaspk, for estimating all the distances in an unweighted and undirected graph
with a small additive error. Algorithms from the family apaspk perform better than
algorithms from the family apaspk when the input graphs are sufficiently dense.
For example, algorithms apasp2 and apasp3 both produce estimated distances with
an additive error of at most 2. Algorithm apasp2 runs in time Õ(n3/2m1/2) while
algorithm apasp3 runs in time Õ(n7/3). Algorithm apasp3 is therefore faster when
m ≥ n5/3. We will show later that algorithm apaspk for k > 3 runs in Õ(n2+1/k) time
and produces estimates with an additive error of at most 2(�k/3�+1). Thus, algorithm
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Algorithm apaspk:

input: An unweighted undirected graph G = (V,E).

output: A matrix {δ̂(u, v)}u,v of estimated distances.

For i ← 1 to k − 1 let si ← n1−i/k(log n)i/k

(〈E1, E2, . . . , Ek, E
∗〉, 〈D1, D2, . . . , Dk〉)← decompose(G, 〈s1, s2, . . . , sk−1〉)

For every u, v ∈ V do
if (u, v) ∈ E then δ̂(u, v)← 1 else δ̂(u, v)← +∞

For i ← 1 to k do
For every u ∈ Di do
run dijkstra( (V,Ei ∪ E∗ ∪ ({u} × V ) ∪ (∪i+j1+j2≤2k+1Dj1 ×Dj2)) , δ̂, u)

Fig. 4. An Õ(n2+1/k)-time algorithm for computing surplus O(k) distances.

apasp5, for example, runs in Õ(n11/5) time and provides estimated distances with a
surplus of at most 4.

Algorithm apaspk, given in Figure 4, is similar to algorithm apaspk. There are
two main differences, however. The first is that the sequence of degree thresholds is
this time si = n1−i/k(log n)i/k instead of si = (m/n)1−i/k(log n)i/k. The second and
more important one is that the edge set Ei(u) of the graph Gi(u) = (V,Ei(u)) on
which Dijkstra’s algorithm is run from u during the ith iteration of the algorithm is
now “reacher” than the corresponding set Ei(u) used in apaspk. The set Ei(u) is
now composed of the following components:

Ei(u) = Ei ∪ E∗ ∪ ({u} × V ) ∪


 ⋃
i+j1+j2≤2k+1

Dj1 ×Dj2


 .

Thus, in addition to edges used by apaspk, apaspk also uses edges from the set
Dj1 ×Dj2 for every 1 ≤ j1, j2 ≤ k such that i+ j1 + j2 ≤ 2k+ 1. Note, in particular,
that for every 1 ≤ i ≤ k and every u ∈ Di, we have

(V ×D1) ∪ (D1 × V ) ⊆ Ei(u) .

(Recall that Dk = V .) As a further example, note that in apasp3 we have

E3(u) = Ei ∪ E∗ ∪ ({u} × V ) ∪ (D1 ×D3) ∪ (D2 ×D2) ∪ (D3 ×D1) .

We begin with the relatively simple analysis of apasp3. The more complicated anal-
ysis of apaspk for k > 3 will then follow.

Theorem 4.1. Algorithm apasp3 runs in O(n7/3 log2/3 n) time, where n is the
number of vertices in the input graph G = (V,E), and for every u, v ∈ V we have

δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + 2.

Proof. The fact that algorithm apasp3 runs in O(n7/3 log2/3 n) time will follow

from the analysis in the proof of Theorem 4.2. We show here that δ(u, v) ≤ δ̂(u, v) ≤
δ(u, v) + 2 for every u, v ∈ V .
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It is again clear that δ(u, v) ≤ δ̂(u, v) for every u, v ∈ V . It remains to show

therefore that δ̂(u, v) ≤ δ(u, v) + 2 for every u, v ∈ V . Let u and v be two vertices
in G. Let p be a shortest path from u to v in G. We consider the following three
cases.

Case 1. The shortest path p contains a vertex w from V1.
Let w′ ∈ D1 such that (w,w′) ∈ E (see Figure 3(b)). (Note that we do not

require (w,w′) ∈ E∗, although we could.) Since (V × D1) ∪ (D1 × V ) ⊆ E3(u), the
edges (u,w′) and (w′, v) belong to the graph on which Dijkstra’s algorithm is run
from u. The weights of these edges are δ(u,w′) and δ(w′, v), the distances found
by running Dijkstra’s algorithm on the original graph G from w′ ∈ D1. Note that
δ(u,w′) ≤ δ(u,w) + 1 and δ(w′, v) ≤ 1 + δ(w, v). By running Dijkstra’s algorithm
from u, we find therefore that

δ̂(u, v) ≤ δ(u,w′) + δ(w′, v) ≤ δ(u, v) + 2.

Case 2. The shortest path p contains vertices from V2 but not from V1.
This case is very similar to Case 1 in the proof of Theorem 3.1. Let w be the

last vertex on the path that belongs to V2. All the edges on the path from w to v
touch vertices that do not belong to V2 and therefore belong to the set E3 and to
the graph G3(u) on which Dijkstra’s algorithm is run from u. Let w′ ∈ D2 be such
that (w,w′) ∈ E∗. The graph G3(u) contains weighted edges connecting u to all the
vertices of V . It contains in particular a weighted edge (u,w′). The weight of this
edge is the distance δ2(u,w

′) between u and w′ in the graph G2(w
′) = (V,E2(w

′)),
found by running Dijkstra’s algorithm from w′ ∈ D2 on G2(w

′). Because all the
edges on the path from u to w as well as (w,w′) belong to E2(w

′), we get that
δ2(u,w

′) ≤ δ(u,w)+1. By running Dijkstra’s algorithm from u we find therefore that

δ̂(u, v) ≤ δ2(u,w
′) + δ(w′, w) + δ(w, v) ≤ δ(u, v) + 2.

Case 3. The shortest path p does not contain any vertex from V2.
This shortest path is then contained in (V,E3), and therefore δ̂(u, v) =

δ(u, v).
As mentioned above, the edge set E3(u) for every u ∈ V contains the edge set

D2 × D2. A closer look at the proof of Theorem 4.1 reveals that we have not used
this fact in the proof. The set D2 ×D2 plays, however, a central role in the proof of
Theorem 6.3.

We now turn to the more complicated analysis of algorithm apaspk for k ≥ 3.
(The analysis below applies also for k = 2, but for k = 2, the bound in Theorem 4.1
is tighter.)

Theorem 4.2. For every k ≥ 2, the running time of algorithm apaspk is
O(k2n2+1/k(log n)1−1/k), where n is the number of vertices in the input graph G =

(V,E), and for every u, v ∈ V we have δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + 2(�k/3�+ 1).
Proof. We start with the complexity analysis. It is easy to see that all the

preparatory steps of the algorithm take Õ(n2) time. For every 1 ≤ i ≤ k and for every
u ∈ Di, we then run Dijkstra’s algorithm from u on the graph Gi(u) = (V,Ei(u)).
It is easy to verify that |E1| = O(n2), |Ei(u)| = O(knsi−1) for 2 ≤ i ≤ k, and that
|Di| = O(n log n/si) for 1 ≤ i < k, and |Dk| = n. A simple calculation, similar to the
one in the beginning of the proof of Theorem 3.1, shows that the total running time
of apaspk is O(k

2n2+1/k(log n)1−1/k). The running time of the algorithm can also be
expressed as O((kn)2 log n · (n/ log n)1/k).
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We now study the accuracy of the distance estimates produced by apaspk. For

every 1 ≤ i ≤ k, we let δi(u, v) be the value of δ̂(u, v) after running dijkstra from all
the vertices of Di. We now define recursively the sequence

ei1,j,i2 =




0 if i1 ≤ j
2 if i1 + j + i2 ≤ 2k + 1

ei1−1,j,i1 + 2 otherwise




and prove by induction the following claim.
Claim. If u ∈ Di1 and v ∈ Di2 are connected by a path p of length � in which the

vertex of highest degree belongs to Vj , then δi1(u, v) ≤ �+ ei1,j,i2 .
To prove the claim we use essentially the same arguments used in the proofs of

Theorems 3.1 and 4.1.
If i1 ≤ j, then all the edges on the path p are contained in Ei1(u) and therefore

δi1(u, v) ≤ �, as required.
Suppose now that i1 + j + i2 ≤ 2k + 1 and that j < i1. This means that

Dj ×Di2 ⊆ Ei1(u). Let w be a vertex on p that belongs to Vj . Let �1 be the distance
from u to w on the path p. Let �2 be the distance from w to v on the path p. Clearly
� = �1+�2. Let w

′ ∈ Dj such that (w,w′) ∈ E∗. It is easy to see that δj(u,w
′) ≤ �1+1

and δj(w
′, v) ≤ �2 +1. Because (u,w

′), (w′, v) ∈ Ei1(u), we get that δi1(u, v) ≤ �+2,
as required.

Finally, suppose that i1+j+i2 > 2k+1 and that j < i1. Since j < i1, we get that
Vj ⊆ Vi1−1. Let w be the last vertex on p that belongs to Vi1−1. Let w

′ ∈ Di1−1 such
that (w,w′) ∈ E∗. Let �1 and �2 be, as before, the distances from u to w and from w
to v on p. Consider the path p′ composed of the edge (w′, w) and the portion of the
path p from w to u. The path p′ starts at w′ ∈ Di1−1 and ends at u ∈ Di1 , and the
vertex of highest degree on it belongs to Vj . The length of p

′ is �1 + 1. By applying
the claim inductively to p′, we get that δi1−1(w

′, u) ≤ �1+1+ ei1−1,j,i1 . Because w is
the last vertex from vi1−1 on p, all the edges on the portion of p from w to v belong to
Ei1(u). The set Ei1(u) also contains the edge (w

′, w) ∈ E∗ and a weighted edge (u,w′)
of weight δi1−1(w

′, u) = δi1−1(u,w
′). After running dijkstra from u on (V,Ei(u)),

we get δi1(u, v) ≤ (�1 + 1 + ei1−1,j,i1) + (1 + �2) = �+ (ei1−1,j,i1 + 2) = �+ ei1,j,i2 , as
required. This completes the proof of the claim.

Now let ei,j = ei,j,i+1. It is easy to verify that

ei,j =




0 if i ≤ j
2 if 2i+ j ≤ 2k

ei−1,j + 2 otherwise


 .

It is not difficult to unwind this recursion and get that

ei,j =




0 if i ≤ j
2 if 2i+ j ≤ 2k

min{ 2(i− j) , 2(i− k + � j2�+ 1) } otherwise


 .

Finally, we get

ek,j,k =




0 if j = k
2 if j = 1

ek−1,j + 2 otherwise


 =




0 if j = k
2 if j = 1

min{ 2(k − j) , 2� j2�+ 2 } otherwise


 .

It is now not difficult to verify that for every 1 ≤ j ≤ k, we have ek,j,k ≤ 2(�k/3�+1).
Because Dk = V , this completes the proof of the theorem.
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To get an additive error of at most k, where k > 2 is even, we can use either
algorithm apasp k/2+1, whose running time is Õ(n2−2/(k+2)m2/(k+2)), or algorithm

apasp (3k−2)/2, whose running time is Õ(n2+2/(3k−2)). The combination of these two
algorithms is the algorithm APASPk mentioned in the abstract.

We can easily get a randomized version of algorithm apasp3 which has the prop-
erty that all reported distances greater than n2/3 are, with high probability, correct.
Similarly, we can get a randomized version of apasp2 for which all reported distances
greater than n3/2/m1/2 are, with high probability, correct. We use the following
simple observation (a similar idea is used by Ullman and Yannakakis [31]).

Theorem 4.3. Let G = (V,E) be a weighted directed graph with n vertices and m
edges. Let 1 ≤ s ≤ n. There is an O(n3 log n/s)-time randomized algorithm that finds,
with high probability, the exact distance between any pair of vertices connected by a
shortest path that uses at least s edges.

Proof. Let D be a random set of vertices obtained by picking each vertex inde-
pendently with probability (c log n)/s for some large enough c > 0. The expected size
of D is O(n log n/s). Run Dijkstra’s algorithm from each vertex of D in both G and
the graph obtained from G by reversing the edges. The complexity of this step is
O(nm log n/s). For every u ∈ D and v ∈ V , we now know δ(u, v) and δ(v, u) exactly.

For every pair of vertices u, v ∈ V , let δ̂(u, v) = minw∈D{δ(u,w) + δ(w, v)}. The
complexity of this step is O(n3 log n/s). It is easy to see that δ̂(u, v) = δ(u, v) if and
only if there is a shortest path between u and v that passes through a vertex of D.
If there is a shortest path between u and v of length s, then with high probability,
at least one of the vertices on the path will belong to D. Since there are O(n2) pairs
of vertices connected by shortest paths that use at most s edges, and since we can
focus on one such path for each pair, we get that, with high probability, each one of
these O(n2) paths will pass through a vertex of D, and the exact distances between
all these pairs will be found.

It follows that if the set D1 in algorithm apasp3 is chosen at random by picking
each element with probability cn−2/3 log n, then, with high probability, if δ(u, v) ≥
n2/3, then δ̂(u, v) is the exact distance between u and v. Long distances are therefore
easier to compute.

5. Boolean matrix multiplication. Let A and B be two Boolean n × n ma-
trices. Construct a graph GA,B = (V,E) with

V = {u1, . . . , un} ∪ {v1, . . . , vn} ∪ {w1, . . . , wn} ,

E = {(ui, vk) | aik = 1} ∪ {(vk, wj) | bkj = 1} .

The graph corresponding to two 3×3 matrices is depicted in Figure 5. Let C = A×B
(Boolean matrix multiplication). Clearly, cij = 1 if and only if δG(ui, wj) = 2.
Furthermore, because the graph GA,B is bipartite, cij = 1 if and only if δG(ui, wj) ≤ 3.
As a consequence we get the following result.

Theorem 5.1. If all the distances in an undirected n-vertex graph can be approx-
imated with a one-sided additive error of at most 1 in O(A(n)) time, then Boolean
matrix multiplication can also be performed in O(A(n)) time.

By adding a disjoint path of length k − 2 ending at each ui, we get that, for any
fixed k ≥ 2, distinguishing between distance k and k + 2 in graphs with n vertices,
i.e., deciding for each pair of vertices u, v whether δ(u, v) ≤ k or δ(u, v) ≥ k + 2
(if δ(u, v) = k + 1, then either decision is fine), is at least as hard as multiplying
two Boolean matrices of size n × n. Note, in contrast, that if k ≥ n2/3, then by



ALL-PAIRS ALMOST SHORTEST PATHS 1753


 1 0 1
1 1 0
0 1 1


×


 0 1 1
0 1 0
1 0 0




Fig. 5. Boolean matrix multiplication.

Theorem 4.3 we can distinguish, with high probability, between distances k and k+2
in graphs with n vertices in Õ(n7/3) time, i.e., faster than the fastest known matrix
multiplication algorithm.

Similarly, because any approximation algorithm that finds approximated dis-
tances of stretch strictly less than 2 can distinguish between distance 2 and distance 4,
getting approximate distances of stretch less than 2 between all pairs of vertices is
also as hard as Boolean matrix multiplication.

By turning the graph GA,B into a directed graph, where edges are directed to the
right, we get that cij = 1 if and only if δG(ui, wj) < ∞. Approximating distances
in directed graphs to within any multiplicative factor, not necessarily bounded, is
therefore as hard as Boolean matrix multiplication. Note that such an approximation
is equivalent to the computation of the transitive closure of the graph. It is proved
in [1] (see Theorems 5.6 and 5.7) that the computation of the transitive closure of a
directed graph is equivalent to Boolean matrix multiplication. We end this section
with another simple observation.

Theorem 5.2. If two n × n Boolean matrices could be multiplied in O(M(n))
time, then for any fixed ε > 0, all the distances in an unweighted directed graph on n
vertices can be estimated with stretch 1 + ε in Õ(M(n)) time.

Proof. Let G = (V,E) be an unweighted directed graph on n vertices. Let A be
the adjacency matrix of the graph with self-loops added to all the vertices. Note that
δG(u, v) ≤ d if and only if (Ad)u,v = 1. Let ri = �(1 + ε)i� for 1 ≤ i ≤ k = �log1+ε n�.
We compute Ari for 1 ≤ i ≤ k. We let δ̂(u, v) = ri+1 if and only if (A

ri)u,v = 0 but

(Ari+1)u,v = 1. It is easy to verify that for every u, v ∈ V we have δ(u, v) ≤ δ̂(u, v) ≤
(1 + ε) · δ(u, v), and that the running time of this algorithm is Õ(M(n)).

6. Distance emulators. Closely related to the algorithms of sections 3 and 4
is the notion of emulators.

Definition 6.1 (emulators). Let G = (V,E) be an unweighted undirected graph.
A weighted graph H = (V, F ) is said to be a k-emulator of G if and only if for every
u, v ∈ V we have δG(u, v) ≤ δH(u, v) ≤ δG(u, v) + k.

There is a fundamental difference, however, between emulators and the auxiliary
graphs used in the algorithms of sections 3 and 4. There, we constructed for each
vertex u an auxiliary graph Gk(u) that supplied good approximations to the distances
from u to all the vertices of the graph. Here we want a single graph that will supply
good approximations of all distances. Constructing a sparse k-emulator is therefore
harder than computing surplus k distances.

The definition of k-emulators is related to the definition of k-spanners (Awerbuch
[6], Peleg and Schäffer [27]). Let G = (V,E) be a weighted undirected graph. A
subgraph G′ = (V,E′) of G is said to be a k-spanner of G if and only if for every
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u, v ∈ V we have δG′(u, v) ≤ k ·δG(u, v). Since G′ is a subgraph of G, we always
have δG(u, v) ≤ δG′(u, v). This definition differs from the definition of emulators in
three respects. We require additive error, not multiplicative error. We do not insist
on getting a subgraph of the original graph and we allow weighted edges. Althöfer et
al. [5] also consider Steiner spanners in which vertices and edges may be added to the
graph. Steiner spanners are more closely related to emulators. Liestman and Shermer
[24] consider additive spanners. They are able, however, to obtain sparse additive
spanners only for specific graphs such as pyramids, grids, and hypercubes. Additive
spanners, unlike emulators, must be subgraphs of the original graph. Emulators may
be described as weighted additive Steiner spanners. The definition of k-emulators is
also related to the definition of hop sets (Cohen [10]).

Implicit in the work of Aingworth et al. [2] is an Õ(n5/2)-time algorithm for con-
structing 2-emulators with Õ(n3/2) edges. We can get the following slightly stronger
result.

Theorem 6.2. Every unweighted undirected graph G = (V,E) on n vertices
can be 2-emulated by a subgraph G′ = (V, F ) with O(n3/2(log n)1/2) edges. Such a
subgraph can be constructed in O(n2 log2 n) time.

Proof. We start by proving the existence of such an emulator. Split the vertices
of G into two classes: V1 = {v ∈ V | deg(v) ≥ (n log n)1/2} and V2 = {v ∈ V |
deg(v) < (n log n)1/2}. Find a set D of size O((n log n)1/2) that dominates V1 and
a set E∗ of at most n edges such that for every u ∈ V1 there exists v ∈ D such
that (u, v) ∈ E∗. From every v ∈ D perform a BFS and find its distances to all the
vertices of the graph. A 2-emulator of G of size O(n3/2(log n)1/2) is then obtained
by taking all edges that touch vertices of V2 and weighted edges between any vertex
of D and any vertex of V . Instead of adding these weighted edges, we can simply
take a tree of shortest paths rooted at each vertex of D. The total number of edges is
still O(n3/2(log n)1/2). It is easy to check that the resulting subgraph is a 2-emulator.
The proof is similar to the proofs of Theorems 3.1 and 4.1.

The above construction can be carried out in O(n5/2(log n)1/2) time. The most
time-consuming task is running BFS from all the vertices of D. To reduce the running
time to Õ(n2), we split the vertices into O(log n) classes instead of just two. (A similar
idea is used in [2].) The resulting algorithm emul2 is given in Figure 6. Note that
sk−1, the last degree threshold in emul 2, is about (n log n)

1/2.

It is easy to see that the running time of emul 2 isO(
∑k−1
i=1 |Di|·|Ei|) = O(n2 log n·∑k−1

i=1 si−1/si) = O(n2 log2 n), and that the number of edges in the set F produced

by emul 2 is O(|Ek|+ n ·
∑k
i=1 |Di|) = O(n3/2(log n)1/2).

All that remains is to show thatG′ = (V, F ) is indeed a 2-emulator ofG. Note that
G′ = (V, F ) is a subgraph of G = (V,E). This immediately implies that δG(u, v) ≤
δG′(u, v) for every u, v ∈ V . We have to show that δG(u, v) ≤ δG′(u, v) ≤ δG(u, v)+ 2
for every u, v ∈ V . As usual, we consider two different cases.

Case 1. There is a shortest path between u and v in G all of whose edges are
contained in Ek.

In this case, δG′(u, v) = δG(u, v).
Case 2. Every shortest path between u and v in G contains edges that are not

contained in Ek.
Consider a shortest path p between u and v in G. Let w be a vertex of highest

degree on p. Let 1 ≤ i < k be such that w ∈ Vi \ Vi−1 (where V0 = φ). Let w′ ∈ Di

be such that (w,w′) ∈ E. Because all the vertices on p do not belong to Vi−1, we
get that all the edges on p as well as the edge (w,w′) belong to Ei. The shortest
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Algorithm emul 2:

input: An unweighted undirected graph G = (V,E).
output: A subgraph 2-emulator (V, F ) of G.

Let k ← � 1
2 log2(n/ log2 n)�

For i ← 0 to k − 1 let si ← n/2i

(〈E1, E2, . . . , Ek, E
∗〉, 〈D1, D2, . . . , Dk〉)← decompose(G, 〈s1, s2, . . . , sk−1〉)

For i ← 1 to k − 1 do
For every u ∈ Di run bfs( (V,Ei) , δ̂, u)

The edge set F is composed of Ek and the edges
of all the shortest paths trees found in all the BFS runs.

Fig. 6. An Õ(n2)-time algorithm for generating a subgraph 2-emulator.

paths tree constructed by running BFS on (V,Ei) from w′ contains therefore a path
from w′ to u of length at most δG(u,w) + 1 and a path from w′ to v of length at
most δG(w, v) + 1. It follows that this shortest paths tree, and therefore G′ = (V, F ),
contains a path from u to v of length at most δG(u, v) + 2.

This completes the proof of the theorem.
A subgraph 2-emulator is also an additive 2-spanner and a multiplicative 3-

spanner. In section 7 (Theorem 7.3) we show that weighted graphs also have 3-
spanners of size Õ(n3/2). We present there an algorithm whose running time is
Õ(mn1/2) for finding such 3-spanners. Because there are bipartite graphs with Ω(n3/2)
edges that do not contain cycles of length four [32], this result is tight up to polylog-
arithmic factors. We can also show the following result.

Theorem 6.3. Every unweighted undirected graph G = (V,E) on n vertices has
a 4-emulator with Õ(n4/3) edges. Such a graph can be constructed in Õ(n7/3) time.

Proof. It is not difficult to check that the graph G3 = (V,E3 ∪ E∗ ∪ (D1×V ) ∪
(D2×D2) ∪ (V×D1)), in the notations of algorithm apasp3, is a 4-emulator of G =
(V,E).

It is tempting to claim that k-emulators for k > 4 can be similarly obtained by
running apaspk with k > 4. Unfortunately, this is not true. The fact that all the
edges that touch a vertex u are added to the graph on which distances are found
from u seems to be crucial there. We cannot do the same with emulators because we
are supposed to use the same graph for all sources.

Let ek be the infimum of all numbers for which each graph on n vertices has a
k-emulator with Õ(n1+ek) edges. We have shown that e2 ≤ 1/2 and e4 ≤ 1/3. Does
ek → 0 as k → ∞? This remains an intriguing open problem.

We are not able to construct emulators with o(n4/3) edges. We can, however,
construct 6-emulators with Õ(n4/3) edges in Õ(n2) time.

Theorem 6.4. Let G = (V,E) be an unweighted undirected graph of n vertices.
A 6-emulator of G with O(n4/3(log n)2/3) edges can be constructed in O(n2 log2 n)
time.

Proof. The required 6-emulator is generated by algorithm emul 6 given in Fig-
ure 7. Algorithm emul 6 is similar to algorithm emul 2. Note that sk, the last degree
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Algorithm emul 6:

input: An unweighted undirected graph G = (V,E).
output: A 6-emulator (V, F ) of G.

Let k ← � 2
3 log2(n/ log2 n)�

For i ← 0 to k − 1 let si ← n/2i

(〈E1, E2, . . . , Ek, E
∗〉, 〈D1, D2, . . . , Dk〉)← decompose(G, 〈s1, s2, . . . , sk−1〉)

For every u, v ∈ V do
if (u, v) ∈ E then δ̂(u, v)← 1 else δ̂(u, v)← +∞

For i ← 1 to k − 1 do
For every u ∈ Di run bfs( (V,Ei ∪ E∗) δ̂, u)

Let F ← Ek ∪ E∗ ∪k−1
i=1 Di ×Dk−1

The weight of an edge (u, v) ∈ F is δ̂(u, v)

Fig. 7. An Õ(n2)-time algorithm for generating a 6-emulator.

threshold in emul 6, is about n1/3(log n)2/3.
It is straightforward to verify that emul 6 runs in O(n2 log2 n) time and that the

edge set F is of size O(n4/3(log n)2/3). All that remains is to show that H = (V, F )
is a 6-emulator of G. We have to show that for every u, v ∈ V we have δG(u, v) ≤
δH(u, v) ≤ δG(u, v) + 6. Let u, v ∈ V . The fact that δG(u, v) ≤ δH(u, v) is obvious.
Let p be a shortest path from u to v in G. We again consider two cases.

Case 1. All the edges of p are contained in Ek.
In this case, δH(u, v) = δG(u, v).
Case 2. The path p contains edges that do not belong to Ek.
The path p must pass through at least two vertices from Vk−1. Let w1 and w3

be the first and last such vertices on the path (the vertex w1 may be u and the
vertex w3 may be v). Let w2 be a vertex with the maximum degree on the path (the
vertex w2 may be one of w1 and w3). Let 1 ≤ i < k be such that w2 ∈ Vi \ Vi−1.
Let w′

1, w
′
3 ∈ Dk−1 be neighbors of w1 and w3 such that (w1, w

′
1) ∈ E∗ and (w3, w

′
3) ∈

E∗. Let w′
2 ∈ Di be a neighbor of w2 such that (w2, w

′
2) ∈ E∗.

Because w1 and w3 are the first and last vertices from Vk−1 on the path, and be-
cause (w1, w

′
1), (w3, w

′
3) ∈ E∗, we get that δH(u,w

′
1) ≤ δG(u,w1)+ 1 and δH(w

′
3, v) ≤

δG(w3, v)+1. Since w2 is a vertex with maximum degree on the shortest path from u
to v, the shortest path p and the edges (w1, w

′
1), (w2, w

′
2), (w3, w

′
3) are contained in

the graph Gi = (V,Ei ∪ E∗). We get, therefore, that δG(w1, w2) = δGi(w1, w2) and
δG(w2, w3) = δGi(w2, w3) and thus δGi(w

′
1, w

′
2) ≤ δG(w1, w2) + 2 and δGi(w

′
2, w

′
3) ≤

δG(w2, w3) + 2. For every x ∈ Di and y ∈ Dk, we have added to F an edge (x, y)
whose weight is at most δGi

(x, y). We get therefore that δH(w
′
1, w

′
2) ≤ δG(w1, w2)+2

and δH(w
′
2, w

′
3) ≤ δG(w2, w3) + 2. Combining these bounds we get

δH(u, v) ≤ δH(u,w
′
1) + δH(w

′
1, w

′
2) + δH(w

′
2, w

′
3) + δH(w

′
3, v)

≤ (δG(u,w1) + 1) + (δG(w1, w2) + 2) + (δG(w2, w3) + 2) + (δG(w3, v) + 1)

= δG(u, v) + 6.
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This completes the proof of the theorem.
It is easy to see that k-emulators are Steiner (k+1)-spanners. It follows easily from

the arguments of Althöfer et al. [5] and the constructions of Wenger [32] that there
are unweighted undirected graphs on n vertices for which every Steiner 3-spanner,
and therefore any 2-emulator, must have Ω̃(n3/2) edges, and there are graphs for
which every Steiner 5-spanner, and therefore any 4-emulator, must have Ω̃(n4/3) edges
(where Ω̃(f) = Ω(f /polylogn)).

7. Stretched paths and distances. In this section we describe algorithms for
finding stretched paths in weighted graphs. We use the following result which is part
of the folklore.

Lemma 7.1 (truncated Dijkstra). Let G = (V,E) be a weighted graph on n
vertices. Suppose that the adjacency lists of the vertices of G are sorted according to
weight. Let v ∈ V be a vertex of G and let 1 ≤ s ≤ n. Shortest paths from v to s
vertices closest to v can be found in O(s(s+ log n)) time.

The set of s vertices returned by the truncated Dijkstra algorithm running from v
is not uniquely defined, since there may be many vertices at the same distance from v.
All that we require is that if S is the set of vertices returned by the algorithm then
for every u ∈ S and w ∈ V \ S we have δ(v, u) ≤ δ(v, w).

Theorem 7.2. Let G = (V,E) be a weighted undirected graph with n vertices and
m edges. We can preprocess the graph in O((m log n)2/3n) time so that given any two

vertices u, v ∈ V , we can in O(1) time output an estimated distance δ̂(u, v) satisfying

δ(u, v) ≤ δ̂(u, v) ≤ 3·δ(u, v).
Proof. Let s ≥ log n be a parameter to be chosen later. We run the truncated

Dijkstra algorithm from every vertex v ∈ V and find a set N(v) of s vertices closest
to v. The time required for finding these sets is O(ns2). Next, we find a set D of size
d = O(n log n/s) so that for every v ∈ V there is u ∈ D such that u ∈ N(v). Such a
set can be found in O(ns) time. For every vertex v ∈ V , we keep a pointer to a vertex
u = P (v) such that u ∈ D ∩ N(v). We now run the full Dijkstra algorithm from all
the vertices of D. The time required is O(nm log n/s). We keep a d× n matrix with
the distances from the vertices of D to all the other vertices of the graph. The time
used so far is O(ns2+nm log n/s). This is minimized by taking s = (m log n)1/3. The
total time is then O((m log n)2/3n).

Given a pair of vertices u and v, we first check whether v ∈ N(u). If so, we
output the exact distance δ(u, v) computed during the truncated Dijkstra from u.
Otherwise, we let w = P (u) ∈ D ∩ N(u) and we output the estimated distance

δ̂(u, v) = δ(u,w) + δ(w, v). The distance δ(u,w) was found during the truncated
Dijkstra from u. The distance δ(w, v) was found during the full Dijkstra from w.

Clearly δ(u, v) ≤ δ̂(u, v). If v ∈ N(u), then δ̂(u, v) = δ(u, v). If v �∈ N(u), then

δ(u,w) ≤ δ(u, v) and the estimate δ̂(u, v) satisfies

δ̂(u, v) = δ(u,w) + δ(w, v)

≤ δ(u,w) + (δ(w, u) + δ(u, v))

≤ 2δ(u,w) + δ(u, v) ≤ 3δ(u, v),

as required.
Using essentially the same algorithm we can get the following result.
Theorem 7.3. Every weighted undirected graph G = (V,E) on n vertices has

a 3-spanner with O(n3/2(log n)1/2) edges. Such a 3-spanner can be constructed in
Õ(m(n log n)1/2) time.
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Proof. Let s be a parameter to be chosen later. Run the truncated Dijkstra
algorithm from every vertex and find for every vertex v ∈ V a set N(v) of s vertices
closest to v. Find a set D of size O(n log n/s) such that for every v ∈ V , there
is a u ∈ D ∩ N(v). We then run a full Dijkstra from every vertex of D. The 3-
spanner will be composed of the shortest paths trees found in all the truncated and
full runs of Dijkstra’s algorithm. The total number of edges will therefore be O(ns+
n2 log n/s). We choose s = (n log n)1/2. The number of edges in the 3-spanner is then
O(n3/2(log n)1/2) and the total running time is O(ns2 + nm log n/s) = O(n2 log n +
m(n log n)1/2). Note that if m(n log n)1/2 ≤ n2 log n, then m ≤ n3/2(log n)1/2 and the
original graph is the required 3-spanner.

Cohen and Zwick [12] extend the techniques presented here and obtain, among
other things, an Õ(n2)-time algorithm for finding stretch 3 distances, and an algo-
rithm whose running time is Õ(n3/2m1/2) for finding stretch 2 distances in weighted
undirected graphs with n vertices and m edges.

8. Concluding remarks and open problems. We have shown that surplus 2
estimates of all distances in an unweighted undirected graph on n vertices can be
computed in Õ(n7/3) time, i.e., faster than the fastest known matrix multiplication
algorithm. Many open problems still remain. We end by mentioning some of them:

1. Is it possible to find surplus 2 estimated distances between all pairs of vertices
in a graph on n vertices in O(n7/3−ε) time for some ε > 0?

2. Is it possible to find surplus k estimated distances between all pairs of vertices
in a graph on n vertices, for some fixed constant k ≥ 2, in Õ(n2) time?

3. Do there exist fixed constants k ≥ 2 and ε > 0 such that every graph on n
vertices has a k-emulator with O(n4/3−ε) edges?

4. Is it possible to find the exact distances between all pairs of vertices in an
unweighted directed graph on n vertices in Õ(M(n)) time, whereM(n) is the
time needed to multiply two n× n matrices?
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Abstract. We present fully dynamic algorithms for maintaining the biconnected components
in general and plane graphs.

A fully dynamic algorithm maintains a graph during a sequence of insertions and deletions of
edges or isolated vertices. Let m be the number of edges and n be the number of vertices in a graph.
The time per operation of the best deterministic algorithms is O(

√
n) in general graphs and O(logn)

in plane graphs for fully dynamic connectivity and O(min{m2/3, n}) in general graphs and O(
√
n) in

plane graphs for fully dynamic biconnectivity. We improve the later running times to O(
√

m logn)

in general graphs and O(log2 n) in plane graphs. Our algorithm for general graphs can also find the
biconnected components of all vertices in time O(n).

Key words. dynamic graph algorithms, biconnectivity, data structures

AMS subject classifications. 68P05, 68Q25
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1. Introduction. Many computing activities require the recomputation of a
solution after a small modification of the input data. Thus algorithms are needed that
update an old solution in response to a change in the problem instance. Dynamic graph
algorithms are data structures that, given an input graph G, maintain the solution
of a graph problem in G while G is modified by insertions and deletions of edges.1

In this paper we study the problem of maintaining the biconnected components (see
below) of a graph.

We say that a vertex x is an articulation point separating vertex u and vertex v
(or that x separates u and v) if the removal of x disconnects u and v. Two vertices
are biconnected if there is no articulation point separating them. In the same way, an
edge e is a bridge separating vertex u and vertex v if the removal of e disconnects
u and v. Two vertices are 2-edge connected if there is no bridge separating them.
A biconnected component or block (resp., 2-edge connected component) of a graph is
a maximal set of vertices that are biconnected (resp., 2-edge connected). Note that
biconnectivity implies 2-edge connectivity but not vice versa.

Given a graph G = (V,E), a dynamic biconnectivity algorithm is a data structure
that executes an arbitrary sequence of the following operations:

insert(u, v): Insert an edge between node u and node v.
delete(u, v): Delete the edge between node u and node v if it exists.
query(u, v): Returns yes if u and v are biconnected, and no otherwise.
complete-block-query: Return for all nodes all the blocks they belong to.
Operations insert and delete are called updates. To compare the asymptotic per-

formance of dynamic graph algorithms, the time per update, called update time, and
the time per query, called query time, are compared. Let m be the number of edges

∗Received by the editors March 2, 1994; accepted for publication (in revised form) July 21, 1999;
published electronically April 4, 2000.
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1Insertions or deletions of isolated vertices are usually trivial.
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and n be the number of vertices in the graph. Prior to this work, the best update
time was O(min(m2/3, n)) [11, 2] with a constant query time. This paper presents
an algorithm with O(

√
m log n) update time and constant query time. Subsequently,

the sparsification technique was applied to the algorithm in this paper and its run-
ning time was improved to O(

√
n log n log(m/n)) [13]. Recently, a data structure

that requires only polylogarithmic amortized time per operation was presented [15].
The data structure presented in this paper can answer complete-block-queries in time
O(n). This was not mentioned explicitly but can also be done with the data structure
in [11, 2].

Additionally, we give an algorithm with O(log2 n) update time and O(log n) query
time for planar embedded graphs, under the condition that each insertion maintains
the planarity of the embedding. The best previous algorithm took time O(

√
n) per

update and O(log n) per query.

Related work. Frederickson [5] gave the first dynamic graph algorithm for
maintaining a minimum spanning tree and the connected components. His algorithm
takes time O(

√
m) per update and O(1) per query operation. The first dynamic 2-edge

connectivity algorithm by Galil and Italiano [8] took time O(m2/3) per update and
query operation. It was consequently improved to O(

√
m) per update and O(log n) per

query operation [6]. The sparsification technique of Eppstein et al. [3] and Eppstein,
Galil, and Nissenzweig [2] improves the running time of an update operation toO(

√
n).

Subsequently, a dynamic connectivity algorithm was given with O(n1/3 log n) update
time and O(1) query time [12]. It can also output all nodes connected to a given
node in time linear in their number. Very recently, an algorithm with polylogarithmic
amortized time per operation was presented [15]. Note that there is a lower bound on
the amortized time per operation of Ω(logn/ log log n) for all these problems [7, 16].

The best known dynamic algorithms in plane graphs take time O(log n) per op-
eration for maintaining connected components by Eppstein et al. [1], O(log2 n) for
maintaining 2-edge connected components by Hershberger, Rauch, and Suri [14] and
Eppstein et al. [4], and O(

√
n) for maintaining biconnected components by Eppstein

et al. [4].

Outline of the paper. First (section 2), we study the dynamic biconnectivity
problem for general graphs. Our basic approach is to partition the graph G into
small connected subgraphs called clusters (see [5] for a first use of this technique
in dynamic graph algorithms). Each biconnectivity query between a vertex u and a
vertex v can be decomposed into a query in the cluster of u, a query in the cluster v,
and a query between clusters. To test biconnectivity between clusters we use the 2-
dimensional topology tree data structure [5] in a novel way and extend the ambivalent
data structure [6]. These data structures were used before to test connectivity and
2-edge connectivity.

To test biconnectivity within a cluster we need to know how the vertices outside
the cluster are connected with each other. Thus, we build two graphs, called internal
and shared graphs. Each graph contains all vertices and edges inside the cluster C
and a compressed certificate of G \ C. A compressed certificate is a graph that has
the same connectivity properties as G \ C, but is not necessarily a minor of G \ C.
This approach is similar to the concept of strong certificates in the sparsification
technique: a strong certificate is not necessarily a subgraph of the given graph. The
crux in the analysis of the algorithm is that we can show that only an amortized
constant number of compressed certificates need “major” updates after an update in
G (see Lemma 2.44).
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Second (section 3), we study the dynamic biconnectivity problem for plane graphs.
We use a topology tree approach based on [5].

An earlier version of this paper appeared in [17].

2. General graphs. Let G be an undirected graph with n vertices and m edges.
The size |G| of a graph is the total number of its nodes and edges. We assume in the
paper that G is connected, which impliesm ≥ n−1. If G is not connected, we build the
data structure described below for each connected component and during an update
combine two data structures or split a data structure in time O(

√
m log n).

Let m/ log2 n ≥ k ≥
√
m be a parameter to be determined later. Note that

m/k ≤ k. We build a data structure for G that we rebuild from scratch every m/k
update operations. The operations between two rebuilds form a phase. This allows us
to limit the necessary maintenance of the data structure within a phase, i.e., the data
structure slowly “deteriorates” within a phase.

The data structure consists of the following parts: We map G to a graph G′ of
degree at most 3 and partition G′ into O(m/k) many subgraphs of size O(k), called
clusters. We keep data structures for (1) the graph of clusters, (2) each cluster (called
cluster graph), and (3) for special shared nodes (called shared graphs). We will show
how to rebuild these data structures in time O(m log n) and update them in time
O(

√
m log n) after an edge insertion or deletion in G.

2.1. The graph G′and the relaxed partition of order k. We want to par-
tition G into about equally sized subgraphs (see the relaxed partition below). For this
purpose, we map G to a graph G′ of degree at most 3 as in [5]. At each rebuild, G′

is created by expanding a vertex u of degree d ≥ 4 by d − 2 new degree-3 vertices
u′

1, . . . , u
′
d−2 and connecting u′

i and u′
i+1 by a dashed edge, for 1 ≤ i ≤ d − 3. Every

node u of degree at most 3 is represented by one node u′
1 in G′. Every edge (u, v) is

replaced by a solid edge (u′
i, v

′
j), where i and j are the appropriate indices of the edge

in the adjacency lists for u and v. We say that the edge (u′
i, u

′
i+1) belongs to u and that

every u′
i is a representative of u. The vertex u of G is called the origin of the vertex

u′
i in G′, for 1 ≤ i ≤ d− 2. We denote vertices of G′ by variables with prime, like u′

or u′
i, and their origin by variables without prime, like u. Thus, at the beginning of

a phase the graph G′ contains at most 2m vertices and at most 3m edges. We use
deg(u) to denote the degree of a vertex u in G and num(u) to denote the number of
representatives of u in G′.

The graph G′ is maintained during insertions and deletions of edges as follows:
Consider how the representatives of u are updated when an edge (u, v) is inserted. If
num(u) is 1 and deg(u) was 3 before the insertion, then add a new vertex u′

2, connect
u′

1 and u′
2 by a dashed edge, and make u′

1 and u′
2 each incident to 2 edges incident

to u. If num(u) is greater than 1, then one new vertex u′
num(u)+1 is created and

connected by a dashed edge to u′
num(u). Thus an edge insertion increases the number

of vertices in G′ by up to 2 and the number of edges by up to 3. If an edge is deleted,
the corresponding edge is removed from G′, but no vertices are deleted from G′. Thus,
within a phase there are at most 2m+ 2m/k vertices and 3m+ 3m/k edges in G′.

Data structure: The algorithm keeps the following mapping from G to G′ and
vice versa:

(G1) Each vertex of G stores a list of its representatives, ordered by index, and
pointers to the beginning and the end of this list. Each vertex of G′ keeps a pointer
to its position in this list, to its origin, and a list of incident edges.

(G2) Each dashed edge of G′ stores a pointer to the vertex of G that it belongs
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to; each solid edge of G′ stores a pointer to the edge of G that it represents.

Note that there exists a spanning tree of G′ that contains every dashed edge. The
algorithm maintains such a spanning tree, denoted by T ′. Let T be the corresponding
spanning tree in G. We denote by πT ′(u′, v′) the path from u′ to v′ in T ′. If the
spanning tree is understood, we use π(u′, v′). Let u′

v denote the representative of u
with the shortest tree path to a representative of v. Note that every articulation point
separating u and v must have a representative that lies on πT ′(u′

v, v
′
u).

Data structure:

(G3) Both T and T ′ are stored in a degree-k ET-tree data structure [12] and in a
dynamic tree data structure [18]. The ET-tree has constant depth.

We build a “balanced” decomposition of G′ into subgraphs of size O(k) and
maintain data structures based on this decomposition. At the beginning of each phase,
the decomposition and data structures are rebuilt from scratch in time O(m log n),
adding an amortized cost of O(k log n) to each update. The rebuilds significantly
simplify the “rebalancing” operations needed to maintain the decomposition balanced
during updates.

We next describe the balanced decomposition of G′ into clusters. A cluster is a
set of vertices of G′ that induces a connected subgraph of T ′. If the representatives
of a vertex u of G belong to different clusters, u is called a shared vertex. An edge is
incident to a cluster if exactly one of its endpoints is in the cluster. An edge is internal
if both endpoints are in the cluster. Let (x, y) be a tree edge incident to a cluster C
and let x ∈ C. Then x is called a boundary node of C. The tree degree of a cluster is
the number of tree edges incident to the cluster. Let |C| denote the number of nodes
in a cluster.

A relaxed partition of order k with respect to T ′ is a partition of the vertices into
clusters so that

(C1) each cluster contains at most k + 2m/k vertices of G′;
(C2) each cluster has tree degree at most 3;
(C3) each cluster with tree degree 3 has cardinality 1;
(C4) if a cluster contains a shared vertex, then all boundary nodes are representa-

tives of this shared vertex;
(C5) there are O(m/k) many clusters; and
(C6) at the beginning of the phase if a cluster contains a shared vertex s, then every

non-tree edge incident to the cluster either is adjacent to a representative of
the shared vertex or is incident to another cluster sharing s.

This definition is an extension of [6]. We denote the cluster containing a node u′

of G′ by Cu′ .

If all representatives of a vertex u of G belong to the same cluster C, we denote
C by Cu and say that C contains u and u belongs to C. For a cluster C, let V (C)
denote the set of origins in G of the nodes of G′ that (1) either belong to C or (2) are
connected to a node in C by a solid tree edge.2

Each cluster containing a representative of a shared vertex u is called a cluster
sharing u or u-cluster. Condition (C4) implies that each cluster shares at most one
vertex. Together with condition (C5), it follows that there are O(m/k) shared ver-
tices.

2The origin of a node s′ that is connected by a dashed edge to a node t′ in C belongs to V (C)
since the origin of s′ equals the origin of t′, which belongs to V (C) according to (1). Thus set CT of
[11] equals V (C).
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Data structure:
(G4) Each cluster keeps (a) a doubly linked list of all its vertices, (b) a doubly

linked list of all its incident tree edges, and (c) a pointer to its shared vertex
(if it exists).

(G5) Each nonshared vertex of G′ keeps a pointer to the cluster it belongs to.
Each shared vertex keeps a doubly linked list of all the clusters that share
the vertex.

We repeatedly make use of the following fact.
Fact 2.1. Let G be an n-node graph and let u1, . . . , ua be a set of articulation

points that lie on a (simple) path in G. Then
∑
i deg(ui) ≤ 2n.

To guarantee that conditions (C1)–(C4) are maintained within a phase any cluster
violating the conditions is split into two clusters (see section 2.2). We show below
that all these splits create only O(m/k) new clusters, i.e., condition (C5) is always
fulfilled.

2.2. Maintaining a relaxed partition of order k. To maintain a relaxed
partition during updates, we create a more restricted partition at each rebuild, i.e.,
at the beginning of each phase, and let it gradually “deteriorate” during updates.
Specifically, a cluster might be split but two clusters will never be merged. This
implies that if a vertex becomes shared at some point in a phase it stays shared until
the end of the phase.

A restricted partition of order k with respect to T ′ is a partition of the vertices
into clusters so that
(C1′) each cluster has cardinality at most k;
(C2′) each cluster has tree degree ≤ 3;
(C3′) each cluster with tree degree 3 has cardinality 1;
(C4′) if a cluster contains a shared vertex, then all boundary nodes are representa-

tives of this shared vertex;
(C5′) there are O(m/k) clusters; and
(C6′) if a cluster contains a shared vertex s, then every non-tree edge incident to

the cluster is either adjacent to the representative of the shared vertex or is
incident to another cluster sharing s.

Lemma 2.2. A partition fulfilling (C1′)–(C5′) can be found in linear time.
Proof. The algorithm in [6] shows how to find a partition fulfilling (C1′)–(C3′)

and (C5′) in time O(m+ n).
Enforcing (C4′) for a cluster in time linear in its size: Each cluster that does not

fulfill (C4′) has tree degree 2. Let x′ and y′ be the two boundary nodes in the cluster.
Since x′ and y′ represent different shared vertices, the tree path between x′ and y′

contains at least one solid edge. Splitting the cluster at the solid edge on π(x′, y′)
closest to x′ and at the solid edge on π(x′, y′) closest to y′ creates at most three
clusters that fulfill conditions (C1′)–(C4′). Each split takes time linear in the size of
the cluster. The lemma follows.

Lemma 2.3. By modifying the spanning tree T ′ a partition fulfilling (C1′)–(C5′)
can be modified in time O(m log n) to additionally fulfill (C6′).

Proof. We need to enforce that if a cluster contains a shared vertex s, then every
non-tree edge incident to the cluster is either adjacent to a representative of the shared
vertex or is incident to another cluster sharing s. The main idea of our approach is
to make every edge that violates this condition a tree edge, i.e., to remove a subtree
of T ′ connected to the violating edge from the cluster sharing s.

To be precise, mark all vertices in clusters sharing s and test every edge incident
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to such a vertex whether it is adjacent either to a shared vertex or to a marked
vertex. If x′ is in an s-cluster and the edge (x′, y′) does not fulfill the above condition,
then determine the representative s′ of s that is closest to x′ in T ′ and the tree edge
e incident to s′ on π(s′, x′). Make e a non-tree edge and make (x′, y′) a tree edge.
Remove the subtree T̃ of T ′ \ e containing x′ from the s-cluster and add it to the
cluster of y′ if the resulting cluster Cy′ does not violate (C1′). Otherwise, create a

cluster containing T̃ . This increases the tree degree of Cy′ by 1. Since Cy′ contains y
′,

a vertex which had an adjacent non-tree edge, it follows from (C3′) that Cy′ has now
tree degree at most 3. If it has degree 3 and consists of more than one vertex, Cy′ is
split as follows.

Let v′, y′, and z′ be the three (not necessarily distinct) boundary nodes of Cy′ .
There exists a tree degree-3 node w′ that belongs to π(v′, y′), π(v′, z′), and π(y′, z′).
The algorithm splits Cy′ at w

′ by creating a tree degree-3 cluster for w′ alone and up
to three additional tree degree-2 clusters, namely, if v′ �= w′, a cluster containing v′,
if y′ �= w′, a cluster containing y′, and if z′ �= w′, a cluster containing z′. The new
clusters fulfill (C1′)–(C3′). It is possible that (a) w′ was not a shared vertex before the
split, but is a shared vertex after the split, and that (b) Cy′ shared a vertex u′ different
from w′ before the split. If (a) and (b) hold, then one of the new tree degree-2 clusters
might violate condition (C4′). Split these clusters in the same way as described in
the proof of Lemma 2.2, namely, at the solid edge on π(w′, u′) closest to w′ and at
the solid edge on π(w′, u′) closest to u′. This creates at most three clusters that fulfill
conditions (C1′)–(C4′).

Note that a constant number of clusters was formed from the vertices in Cy′ and

the vertices in T̃ and that there are more than k vertices in Cy′ and T̃ combined.
Thus the total number of clusters when (C6′) holds for all clusters is still O(m/k),
i.e., (C5′) continues to hold.

To implement the above algorithm in time O(m log n) we use the following data
structure to represent T ′, G′, and the current cluster partitioning.

(1) We store a list of clusters and for each cluster we store its boundary vertices,
its incident tree edges, and its shared vertex if it exists. For each shared vertex s we
keep a list of all s-clusters.

(2) Each vertex of G′ stores a doubly linked list of all incident edges, separated
by tree and non-tree edges. Each edge points to its two positions in these lists.

(3) We also assume data structure (G1) exists already. This data structure will
not be modified by this algorithm.

(4) Each vertex of G stores a bit indicating whether it is shared or not.
(5) We build in linear time a degree-k ET-tree data structure [12]. By removing

the tree edges incident to a cluster, determining the size of the resulting spanning
tree inside the cluster, and adding the tree edges again this data structure allows us
to determine the number of vertices of a cluster in time O(log n).

(6) We build two dynamic tree data structures [18]. We mark in linear time each
edge of T ′ in one of the dynamic tree data structures (G3) by a weight which is 1
for solid edges and 0 for dashed edges. These data structures are updated in time
O(log n) after each edge insertion or deletion in T ′. We use the second dynamic tree
data structure to mark or unmark in time O(log n) all the vertices on an arbitrary
path and to determine in time O(log n) the marked vertex on a (second) path closest
to one of the endpoints of the path.

This data structure can be built in time O(m).

The algorithm checks each cluster on the list of clusters to determine whether it
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has a shared vertex s and, if so, it traverses and marks all vertices in the s-clusters
starting at a boundary vertex. This takes time linear in the number of these vertices.
Afterward it traverses them a second time and tests in constant time each adjacent
non-tree edge whether it is incident to a marked vertex or a representative of a shared
vertex. To test whether a vertex u′ is the representative of a shared vertex u of G
we determine the vertex u of G which u′ represents and test the bit at u. This takes
constant time.

We next show how to deal efficiently with an edge that violates the condition.
Making a tree edge a non-tree edge or vice versa takes time O(log n). Determining
the size of a cluster takes time O(log n) as discussed above. We still need to show
how to determine s′, e, w′ and the solid tree edges closest to w′ and closest to u′ on
π(w′, u′) in time O(log n).

Determining s′ and e: Mark in the second dynamic tree data structure all the
representatives of s using (G1). Root the dynamic tree data structure at a vertex
not in an s-cluster, for example, at y′, and determine the marked vertex on π(x′, y′)
closest to x′. This vertex is s′. Then root the dynamic tree at x′ and determine the
edge from s′ to its parent. This is the edge e. Finally unmark the marked vertices.

Determining w′: Mark in the second dynamic tree data structure all the vertices
on π(v′, z′). Root the (updated) dynamic tree data structure at v′ and determine
the marked vertex on π(y′, v′) closest to y′. This vertex is w′. Unmark the marked
vertices.

Determining the solid tree edges closest to w′ (resp., u′) on π(w′, u′): Root the
first dynamic tree data structure at u′ (resp., w′) and determine the edge with weight
1 closest to w′ (resp., u′). This is the desired edge.

Thus, for each non-tree edge that violates the condition we spend time O(log n)
to make it a tree edge and to restore conditions (C1)–(C4). Note that if a tree edge
becomes a non-tree edge, it stays a non-tree edge since it is adjacent to a shared vertex.
Thus the cost of O(log n) is incurred O(m) times, for a total time of O(m log n).

We discuss next how to maintain a relaxed partition during updates. We show
that an update does not violate condition (C1), (C4), or (C5). Obviously condition
(C6) can never be violated since it only has to hold at the beginning of a phase.
Condition (C2) or (C3) might be violated but can be restored by splitting a constant
number of clusters. Restoring (C3) might lead to a violation of (C4), which can also
be restored with an additional constant number of cluster splits.

We use the following update algorithm for the relaxed partition: If an insert(u, v)
operation replaces u by two nodes, add both to Cu. If only one new representative
unum(u)+1 is created, add it to the cluster of unum(u) and increment num(u) afterward.
A deletion does not remove any vertices.

Lemma 2.4. The update algorithm for the relaxed partition does not violate con-
dition (C1), (C4), or (C5). Conditions (C2) and (C3) might be violated for the clusters
containing the endpoints of the newly inserted edge (in the case of an insertion) or
the endpoints of the new tree edge (in the case of a deletion).

Proof. Condition (C1): An update increases the number of nodes in a cluster
by at most two, implying that at the end of the phase each cluster contains at most
k + 2m/k nodes. It follows that condition (C1) is never violated.

Condition (C4): Every newly added dashed edge has both endpoints in the same
cluster, i.e., it is not incident to a cluster. Thus, condition (C4) is not violated.

Condition (C5): A delete(u,v) operation might disconnect the connected compo-
nent of Cu if Cu = Cv, leading to one additional cluster. Since there are m/k updates
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in a phase, there exist O(m/k) clusters during a phase, i.e., condition (C5) is not
violated by the update algorithm.

Conditions (C2) and (C3): Deletions: Note first that the deletion of a non-tree
edge does not invalidate condition (C2) or (C3) and, thus, does not require any
cluster splits. A deletion of a tree edge might make a (solid) non-tree edge into a tree
edge, and, if this edge is an intercluster edge, add one new incident tree edge to its
endpoint clusters. This might lead to a violation of condition (C2) or (C3) for the
clusters incident to the new tree edge. Insertions: In the case that G is disconnected,
a newly inserted edge might become a tree edge, adding one new (solid) tree edge to
at most two clusters. As before, this might lead to a violation of conditions (C2) and
(C3) for the clusters incident to the new tree edge. Additionally, an insertion might
increase the number of nodes in a tree degree-3 cluster to two, violating condition
(C3).

In conclusion, an update violates conditions (C2) and/or (C3) for at most two
clusters, namely, the clusters containing the endpoints of the newly inserted edge or
of the new tree edge.

The algorithm first restores condition (C2) and then condition (C3). However,
restoring (C3) might lead to the violation of condition (C4). If this happens, condition
(C4) is restored after condition (C3).

Restoring condition (C2): If a cluster violates (C2), it has tree degree 4 and
consists of exactly two tree degree-3 nodes. Splitting it into two clusters creates two
connected 1-node clusters of degree 3, fulfilling conditions (C1)–(C4).

Restoring condition (C3): If a cluster C violates condition (C3), let x′, y′, and
z′ be the three (not necessarily distinct) boundary nodes of C. There exists a tree
degree-3 node w′ that belongs to π(x′, y′), π(x′, z′), and π(y′, z′). The algorithm splits
C at w′ by creating a tree degree-3 cluster for w′ alone and up to three additional
tree degree-2 clusters, namely, if x′ �= w′, a cluster containing x′, if y′ �= w′, a cluster
containing y′, and if z′ �= w′, a cluster containing z′. It is possible that (a) w′ was
not a shared vertex before the split, but is a shared vertex after the split, and that
(b) C was incident to up to two dashed edges before the update, i.e., shared a vertex
different from w′. If (a) and (b) hold, then one of the new tree degree-2 clusters
might violate condition (C4). Splitting these clusters in the same way as in the proof
of Lemma 2.2 creates at most three additional tree degree-2 clusters, each fulfilling
conditions (C1)–(C4).

Thus, restoring conditions (C1)–(C4) requires creating a constant number of ad-
ditional clusters after an update operation. Since there are m/k updates in a phase,
condition (C5) is fulfilled at any point in a phase.

We summarize this discussion in the following lemma.

Lemma 2.5.

(1) An insertion does not split any cluster, but restoring the relaxed partition
after an insertion might require a constant number of cluster splits, namely, of the
clusters that contain the endpoints of the inserted edge.

(2) A deletion of a non-tree edge does not require any cluster splits.
(3) A deletion of a tree edge might split the cluster containing the endpoints of

the deleted edge. Additionally, restoring the relaxed partition after a deletion might
require a constant number of cluster splits, namely, of the clusters that contain the
endpoints of the new tree edge.

Testing whether a cluster violates (C2) or (C3) takes constant time; splitting a
cluster takes time linear in its size. Thus, it takes time O(k) to update the relaxed
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partition of order k after each update.

2.3. Queries. Mapping G to G′ causes correctness problems: If two nodes u and
v are biconnected in G, they are also biconnected in G′, but the reverse statement
does not always hold (see [11] for an example).

The following lemma (an extension of Lemma 2.2 of [11]) relates the biconnectivity
properties of G and of G′. To contract an edge (u, v) identify u and v and remove
(u, v). To contract a vertex of G contract all dashed edges in G′ belonging to the
vertex.

Lemma 2.6. Let u and v be two vertices of G.
(1) Let G1 be the graph that results from G′ by contracting every vertex on

πT (u, v) (excluding u and v). The vertices u and v are biconnected in G iff u′
v and v′u

are biconnected in G1.
(2) Let y be a node on πT (u, v) that does not separate u and v in G. Let G2 be

the graph that results from G′ by contracting every vertex on πT (u, v), excluding y, u,
and v. The vertices u and v are biconnected in G iff u′

v and v′u are biconnected in G2.
Proof. The graphs G1, resp., G2, can be created from G by expanding appropriate

vertices. Thus, if u and v are biconnected in G, then u′
v and v′u are biconnected in

G1, resp., G2.
For the other direction, assume that u and v are separated by an articulation point

x in G. Then x belongs to πT (u, v). It follows that x is represented by one node in G1,
resp., G2. Assume by contradiction that u′

v and v′u are biconnected in G1, resp., G2,
i.e., there exists a path P ′ between them not containing x. The corresponding path P
in G connects u and v and does not contain x, which leads to a contradiction.

Note that the lemma also holds if additional vertices of G1, resp., G2, are con-
tracted.

To test the biconnectivity of u and v in G we decompose the problem into sub-
problems, such that each subproblem is either (a) a biconnectivity query in a graph
of size O(k + m/k) or (b) a connectivity query in a graph of size O(m). Subprob-
lems of type (a) can be solved efficiently since k +m/k is chosen to be “small.” For
subproblems of type (b) we use the existing efficient data structures for maintaining
connectivity dynamically. Since no data structure is known that solves both subprob-
lems efficiently, we maintain two different data structures, called cluster graphs and
shared graphs.

To be precise, for each shared vertex s, a shared graph is maintained. Given a
shared vertex s and two of its tree neighbors x and y, the shared graph of s is used
to test in constant time whether s is an articulation point separating x and y. This is
equivalent to testing if x and y are disconnected in G \ s. Thus, we use the dynamic
connectivity data structure [12] to maintain the shared graphs.

Recall that V (C) for a cluster C denotes the set of origins in G of the nodes of
G′ that either (1) belong to C or (2) are connected to a node in C by a solid tree
edge. We maintain for C a cluster graph which is built to test (in constant time) if
any two nodes of V (C) that are not separated by sC are biconnected in G, where sC
is the shared vertex of C. In particular, the cluster graph can be used to test whether
sC is biconnected with another node in C. To maintain the cluster graphs we use the
data structure of [11]. To test if two nodes x and y are biconnected in G, the data
structure contracts in G′ all vertices on πT (x, y) (and potentially additional vertices).

We describe next how we use these two data structures to answer a biconnectivity
query. We use the following lemma.

Lemma 2.7. Let u and v be nodes of G and let (x(i)′ , y(i)′), for 1 ≤ i ≤ p, denote
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the solid intercluster tree edges on πT ′(u′
v, v

′
u), in the order of their occurrence. Then

u and v are biconnected in G iff
(Q1) u and y(1) are biconnected in G,
(Q2) x(i) and y(i+1) are biconnected in G, for 1 ≤ i < p, and
(Q3) x(p) and v are biconnected in G.

Proof. If u and v are biconnected, then all nodes on π(u, v) are pairwise bicon-
nected, and thus (Q1)–(Q3) hold. If u and v are not biconnected, then u and v are
separated by an articulation point z. Since z belongs to πT (u, v), either (Q1), (Q2),
or (Q3) is violated. This is a contradiction.

For a query(u, v), let C be the cluster of u′
v. If C shares a vertex, call it s. We test

the conditions of the lemma using only a cluster graph if this is possible and using a
cluster graph and a suitable shared graph otherwise.

Testing condition (Q1): Condition (Q1) of Lemma 2.7 can be tested using two
cluster graphs and the shared graph of s: if s does not lie on π(u, y(1)), then s does
not separate u and y(1), and y(1) belongs to V (C). Thus, we use the cluster graph of
C to test whether u and y(1) are biconnected.

If s lies on π(u, y(1)), then let xu and yu be the nodes incident to s on π(u, y(1)).
Let s′ be the node representing s closest to y(1) on π(u, y(1)). Note that s belongs to
V (C) and that y(1) belongs to V (Cs′). Test in the cluster graph of C if u and s are
biconnected, test in the cluster graph of Cs′ if s and y(1) are biconnected, and test in
the shared graph of s if xu and yu are biconnected. If all tests are successful, u and
y(1) are biconnected in G, since the last test guarantees that s does not separate u
and y(1) and the first two tests guarantee that no other node of π(u, y(1)) separates u
and y(1).

Testing condition (Q2): If y(i)′ and x(i+1)′ belong to the same cluster Ci and
Ci does not share a vertex, then both, x(i) and y(i+1), belong to V (Ci) and are not
separated by a shared vertex of Ci. Thus, condition (Q2) can be tested using the
cluster graph of Ci.

We show that otherwise x(i) and y(i+1) are tree neighbors of a shared vertex si
and the shared graph of si can be used to test condition (Q2): either (a) y(i)′ and
x(i+1)′ belong to the same cluster Ci that shares a vertex si, or (b) y(i)′ and x(i+1)′

belong to different clusters. In case (a), Ci is incident to two solid tree edges and
one dashed tree edge, i.e., Ci has tree degree 3. By condition (C3) it follows that
Ci contains only one node, i.e., y(i)′ = x(i+1)′ , and both are representatives of si. It
follows that x(i) and y(i+1) are both tree neighbors of si. In case (b), all intercluster
edges between the cluster of y(i)′ and the cluster of x(i+1)′ are dashed. By condition
(C4) of a relaxed partition, all these dashed edges and also y(i)′ and x(i+1)′ belong to
the same shared vertex si. Thus, also in this case x(i) and y(i+1) are tree neighbors of
si. It follows that the shared graph of si can be used to test whether x(i) and y(i+1)

are biconnected in G.
Testing condition (Q3): Condition (Q3) is tested analogously to condition (Q1).
Since each test takes constant time, this leads to a query algorithm whose running

time is linear in the number of solid intercluster edges on πT ′(u′
v, v

′
u), which is O(m/k).

However, we will give in section 2.11 a data structure that allows all these tests to be
executed in constant time.

Our next goal is to describe cluster graphs and shared graphs in detail. Maintaining
them requires a third data structure, called high-level graphs, which we describe first.

2.4. Overview of high-level graphs. There are two high-level graphs, H1 and
H2. Basically, H1 is a graph where each cluster is contracted to one node, and H2 is
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a copy of H1 with intercluster dashed edges contracted as well.
To be precise, the graph H1 contains a node for each cluster of G′. Two nodes C

and C ′ of H1 are connected by an edge in H1 iff there is an edge between a vertex
of C and a vertex of C ′. If there exists an edge between C and C ′, we call C ′ the
neighbor of C. The edge between C and C ′ in H1 is a dashed edge iff there is a dashed
edge between a vertex of C and a vertex of C ′. Otherwise the edge in H1 is solid.

The graph H2 is the graph H1 with all dashed edges of H1 contracted.
We call vertices of H1 or H2 nodes and refer to vertices of G of G′ as vertices.
Since each node of H1 represents exactly one cluster, we will use the terms node

of H1 and cluster interchangeably. Each node of H2 represents at least one cluster
and it also represents the vertices of G with a representative in these clusters. Note
that each vertex of G is represented by a unique node of H2, while this does not hold
for H1: a shared vertex is represented by more than one node of H1.

The spanning tree T ′ of G′ induces a spanning tree T1 on H1 and T2 on H2. We
say C ′ is a tree neighbor of C if there is a tree edge between C ′ and C in H1. Otherwise
C ′ is a non-tree neighbor.

We need the high-level graphs to define and maintain the cluster graphs and the
shared graphs. Roughly speaking, a cluster graph tests (under certain conditions)
whether two vertices represented by the same node of H1 are biconnected in G, and
a shared graph tests whether two vertices represented by the same node of H2 are
biconnected in G.

When maintaining cluster and shared graphs we make use of the following data
structures. Details of some of these data structures are delayed until section 2.7. Let
i = 1, 2.

(HL1) We store for each node of Hi all the vertices of G
′ belonging to the node,3

and we store at each vertex of G′ the node of Hi to which the vertex belongs.
(HL2) We keep the following adjacency list representation forHi (of size O((m/k)2)

= O(m)): For each node of Hi we keep the list of all incident neighbors and
a list of pointers to all of its positions in the lists of its neighbors. Thus, in
constant time an edge between two nodes can be removed from this repre-
sentation.

(HL3) We maintain a data structure that given two nodes C and C ′ returns the
tree neighbor C ′′ of C such that C ′′ lies on πTi

(C,C ′). For H1 this takes
constant time; for H2 it takes time O(log n).

(HL4) We store a data structure that implements the following query operations
in Hi:
biconnected?(C,C ′,C ′′): Given that nodes C ′ and C ′′ are both tree neighbors

of a node C, test whether C ′ and C ′′ are biconnected in Hi.
blockid?(C,C ′): Given that C and C ′ are tree neighbors in Ti, output the

name of the biconnected component of Hi that contains both C and C ′.
components?(C): Output the tree neighbors of C in Hi grouped into bicon-

nected components.
Operations biconnected? and blockid? take constant time, and components?
takes time linear in the size of the output.

(HL5) We keep a mapping h from H1 to H2 and a mapping h−1 from H2 to H1.
For each node of H2 we keep a list of pointers to all the nodes of H1 whose
contraction formed H1, and for each node of H1 we keep a pointer back to
the corresponding node of H2.

3For H1 this is already part of (G4) and, of course, does not need to be stored twice.
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(HL6) We keep an empty array of size O(m/k) at each node in Hi (needed for
various bucket sorts—see sections 2.5 and 2.6).

Note that using (HL3) and (HL4) one can test in constant time whether two
neighbors of a node C in Hi are biconnected in Hi.

Recall that after an update operation clusters might be split to restore the relaxed
partition.

Lemma 2.8. If a cluster C is split while restoring the relaxed partition, then
the clusters containing the vertices of C when the relaxed partition is restored form a
connected subgraph of H1.

Proof. Splitting simply regroups the partitioning of vertices into clusters but does
not change the connectivity properties in G. Since the vertices in C form a connected
subgraph of G before the split, they also do so after the split. Hence, the clusters
containing these vertices form a connected subgraph of H1.

Next we need to assign “ancestors” to nodes and edges in H1 and H2. This is
necessary for our lazy update scheme: if a node is split into two nodes, then the
resulting nodes have the same ancestor. However, we cannot afford to update all
cluster and shared graphs accordingly. Therefore, we will treat nodes with the same
ancestor that fulfills certain additional conditions as one node in some of the cluster
and shared graphs.

First we define a unique ancestor for each node in H2. Let C be a node in the
current graph H2. Since clusters are only split, never joined, all nodes represented by
C were represented by the same cluster A at the beginning of a phase. This node A
is called the ancestor of C.

To define ancestors for nodes in H1, we denote by Bs the cluster that contains
snum(s) at the beginning of a phase for each shared vertex s. Note that if a cluster
contains only representatives that were created after the last rebuild, then these rep-
resentatives represent a shared vertex. Consider a cluster C of H1. If C only contains
representatives that were created after the last rebuild, then the ancestor of C is Bs.
Otherwise, C has at least one representative that existed at the last rebuild. In this
case, the representatives that existed at the last rebuild belonged to the same cluster
A at the last rebuild. This node A is called the ancestor of C.

Lemma 2.9. Let i = 1 or 2. Assume a node C of Hi is split into clusters C1 and
C2. Then C1 and C2 have the same ancestor as C.

Proof. For i = 2 this follows immediately from the definition. For i = 1, we
only give the argument for C1; the same argument applies to C2. If C1 contains
representatives that existed at the last rebuild, then these representatives all belonged
to the same cluster at the last rebuild. This cluster is also the ancestor of C. Otherwise,
C1 contains only representatives that were created after the last rebuild. In this case
the ancestor of C1 is Bs. We show below inductively that representatives that are
created after the last rebuild are added into clusters whose ancestor is Bs. Thus, the
ancestor of C is Bs as well.

When a new representative is added for s, it is added to the cluster containing
snum(s). We show inductively that the cluster containing snum(s) for the current value
of num(s) has Bs as ancestor. The induction goes over the number of representatives
of s added to G′ after the last rebuild. By the definition of ancestor for clusters with
representatives that existed at the last rebuild the claim holds before a new repre-
sentative was added for s. Consider next the addition of the ith new representative
snum(s)+1 of s. If the cluster containing snum(s) is not split, then the claim holds induc-
tively. Otherwise two situations can arise: either the cluster C containing snum(s)+1
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after the split contains only representatives that were created after the last rebuild,
or not. In the former case, Bs is the ancestor of C by definition. In the latter case, C
contains representatives that belonged to Bs at the last rebuild. Thus, in either case,
Bs is the ancestor of C.

In particular, C1 and C2 have the same ancestor and each node has a unique
ancestor.

Data structure:
(HL7) We store at each node of Hi its ancestor.
(HL8) We number the edges of Hi in the order in which they were added to Hi

with the edges added during a rebuild in arbitrary order.
Recall that at the beginning of each phase a cluster contains at most k vertices

of G′. This enables us to prove the following lemma.
Lemma 2.10. The total number of vertices of G′ in all clusters with the same

ancestor is k + 2m/k. The total number of edges incident to these vertices is O(k).
Proof. Let A be a cluster at the beginning of a phase. All nodes of a cluster

with ancestor A (in G′) that existed at the time of the last rebuild belonged to A at
the beginning of the phase. Thus, there are at most k of them. Every other node was
created by one of the m/k update operations. Since each update creates at most two
new vertices, the bound follows.

2.5. Cluster graphs. Let C be a cluster. The cluster graph I(C) of C is used
to test if two vertices u and v of V (C) that are not separated by sC are biconnected
in G. This leads to a first requirement for I(C):

(IC1) If sC does not separate u and v, then u and v are biconnected in I(C) iff
they are biconnected in G.

As we see below, an amortized constant number of cluster graphs is rebuilt during
each update operation. This leads to a second requirement for I(C):

(IC2) The graph I(C) has size O(|C|) = O(k).
Recall that V (C) denotes the set of origins in G of the nodes of G′ that (1) either

belong to C or (2) are connected to a node in C by a solid tree edge.
We next motivate our definition of I(C) and explain why it can be used only if sC

does not separate the two nodes. Obviously, I(C) has to contain all nodes of V (C) and
all edges between the nodes of V (C). Since two nodes of V (C) can be connected by a
path in V (C) and additionally by a path that contains nodes of a non-tree neighbor
of C, we represent each non-tree neighbor of C by a node in I(C) (called either b-node
or c-node) and we add to I(C) all edges incident to C.

However, three questions remain: (1) If C shares a vertex sC , let C ′ be one of
the neighbors of C connected to C by a dashed tree edge (belonging to sC). Should
I(C) also contain a node representing C ′, i.e., should sC and C ′ be represented by
the same or different nodes in I(C)? (2) How is the set of b- and c-nodes connected
by edges? (3) How can the graph be maintained efficiently when a neighbor of C is
split?

Next we describe our solution to these questions. (1) If sC and C ′ are represented
by the same node, then two nodes u and v of V (C) that are biconnected in G might
not be biconnected in I(C). See Figure 2.1 for an example. On the other side, if I(C)
contains a node for sC and a separate node for C ′, then two vertices u and v of
V (C) that are not biconnected in G can be biconnected in I(C). See Figure 2.2 for
an example.

However, by Lemma 2.6 and the fact that in the latter approach all nodes on
πT (u, v) except for sC are contracted, it follows that the latter situation can happen
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Fig. 2.1. The graph G′ and a potential graph I(C). The graph G′ consists of cluster C and C′

(represented by circles), both sharing vertex s (represented by two nodes and the dashed line between
them). Tree edges are bold or dashed. In I(C), C′ and s are collapsed to one node. Nodes u and v
are biconnected in G but not in I(C).

Fig. 2.2. The graph G′ and a potential graph I(C). The graph G′ consists of cluster C and C′

(represented by circles), both sharing vertex s (represented by two nodes and the dashed line between
them). Tree edges are bold or dashed. In I(C), C′ and s are represented by two different nodes.
Nodes u and v are not biconnected in G′ but are biconnected in I(C).

only if sC separates u and v in G. Since this case is excluded by (IC1), we represent
sC and C ′ by separate nodes in I(C).

(2) Let j be the number of neighbors of C. There are at most j b- or c-nodes in
I(C). Since G′ is a graph of degree at most 3, j = O(|C|). To guarantee that I(C)
has size O(|C|), I(C) will contain at most j − 1 many edges between b- or c-nodes.
These edges will be colored and will fulfill the condition that two b- or c-nodes are
connected by a path of colored edges iff they are connected in H1 \ C.

(3) We will split a node representing a neighbor C ′ of C only if the two clusters
resulting from the split of C ′ are disconnected in H1 \ C. Otherwise, both resulting
clusters will be represented by the same c-node in I(C), i.e., a c-node in the cluster
graph might represent not just one cluster, but a set of clusters. This leads to the
following invariant: Two neighbors of C are represented by the same node in I(C) or
are connected by a colored path iff they are connected in H1 \ C.

Let us now give the exact definition of a cluster graph I(C) for a cluster C. Let
A be the ancestor of C. The cluster graph contains as nodes

(1) a node, called a-node, for each vertex with a representative in C,
(2) one node, called b-node, for each neighbor C ′ of C with ancestor A,
(3) one node, called c-node, for each maximal set X of clusters such that (a)

every cluster C ′ ∈ X is a neighbor of C, (b) all clusters in the set are connected in
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H1 \ C, (c) all clusters in X have the same ancestor which is different from A, (d)
at the creation of C, the set X contains only one cluster, and (e) at each previous
point in time since the creation of C all clusters that contain the vertices in ∪C′∈XC ′

existing at this time are represented by the same c-node in I(C).

Note that for each neighbor C ′ of C there exists a unique node in I(C) representing
C ′ (and potentially other clusters). Note further that each node of G is represented
by at most one node in I(C), except for sC , which can be represented by an a-node
and up to two b- or c-nodes, namely, the tree neighbors of C that share sC .

The graph I(C) contains the following edges:

(1) All edges between two vertices of G represented by an a-node belong to I(C).
(2) For each edge (u, v) where u is represented by an a-node and v is not, and

(u′, v′) is the corresponding edge in G′, there is an edge (u, d) in I(C), where d is the
b- or c-node representing Cv′ .

(3) For each tree neighbor C1 connected to C by a dashed edge there is an edge
from the b- or c-node of C1 to the a-node of sC .

(4) For each pair C1 and C2 of tree neighbors of C there is a red edge (d1, d2)
if C1 and C2 are biconnected in H1, where dj is the b- or c-node representing Cj ,
j = 1, 2.

(5) For each non-tree neighbor C1 of C with representative d1,
4 I(C) contains a

blue edge (d1, d2), where d2 represents the tree neighbor of C that lies on πT1
(C,C1),

if C is an articulation point in H1 (separating its at most two tree neighbors), and a
blue edge (d1, d3), where d3 represents an arbitrary tree neighbor of C, otherwise.5

Note that I(C) can contain parallel edges. They can be discarded without affecting
the correctness.

We show next that the cluster graphs fulfill (IC1) and (IC2).

Lemma 2.11. Two neighbors of C are biconnected in H1 iff either they are
represented by the same node in I(C) or their representatives in I(C) are connected
by a colored path.

Proof. We show first that if there is a colored edge between two nodes d1 and d2 in
I(C), then the clusters that they represent are biconnected in H1. For red edges this
follows immediately from the definition. For a blue edge consider first the case that
C is not an articulation point in H1. In this case all neighbors of C are biconnected
in H1. Since each blue edge connects two neighbors of C, the claim holds. Consider
next the case that C separates its tree neighbors C1 and C2 in H1. Note that there
are two vertex-disjoint paths in H1 between C and each of its non-tree neighbors C1:
one path consists of the non-tree edge (C,C1), and the other path is πT1(C,C1). Thus
C1 and C’s tree neighbor on πT1(C,C1) are biconnected as well, i.e., the claim holds
for each blue edge.

This implies that if the representative of two neighbors of C are connected by a
colored path in I(C), then the neighbors of C are biconnected in H1. If two neighbors
are represented by the same node in I(C), then they are biconnected in H1 by the
definition of a c-node.

Next we show that if two neighbors of C are biconnected in H1 and represented
by two different nodes in I(C), then these representatives in I(C) are connected by a
colored path. Each non-tree neighbor C1 is biconnected with the tree neighbor of C

4If C has a non-tree neighbor, then C has tree degree at most 2.
5Note that C1 and C are biconnected in H1. Thus this is equivalent to requiring that for each

non-tree neighbor C1 of C there exists a blue edge (d1, d2), where d2 represents a tree neighbor of
C that is biconnected to C1 in H1 and d1 represents C1.
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on πT1
(C,C1) and is connected to this tree neighbor by a colored path (of length at

most two). Thus it suffices to show the claim for two tree neighbors of C. But for two
tree neighbors the claim holds by definition.

Lemma 2.12. Let C be a cluster and let u and v be two nodes of V (C). If sC
does not separate u and v in G, then u and v are biconnected in I(C) iff they are
biconnected in G.

Proof. Assume first that u and v are biconnected in I(C) but are separated by a
node x in G. Note that x must belong to V (C). Furthermore, x must be represented
by at least two nodes in I(C). However, each node of G is represented by at most one
node in I(C), except for sC . Thus, x = sC , which leads to a contradiction.

Assume next that u and v are biconnected in G, but are separated by a node y
in I(C). Since u and v are connected by a tree path whose (internal) nodes all belong
to C, no b-node or c-node can separate u and v in I(C). Thus, y must be an a-node.

Consider the path P between u and v in G that does not contain y. Let P̃ be
the path created from P by (1) extending P to a path in G′, (2) contracting all
intracluster edges of P except for the nondashed intracluster edges of C, and (3) by
labeling the resulting nodes of P̃ with their clusters of G′.

Every edge of P̃ either is connecting two clusters or is incident to a vertex with
a representative in C. We show that P̃ induces a path without y in I(C) connecting
u and v. We split P̃ into subpaths. Each subpath either

(1) connects two neighbors of C and does not contain other neighbors of C or
vertices with representatives in C, or

(2) is one edge connecting two vertices with representatives in C, or
(3) is a solid edge connecting a vertex with a representative in C with a neighbor

of C, or
(4) is a dashed edge connecting a vertex with a representative in C with a neigh-

bor of C.
By Lemma 2.11 the endpoints of the type-(1) subpaths are connected by a colored

path in I(C). By definition type-(2), (3), or (4) subpaths are contained in I(C). Thus
P̃ induces a path without y from u to v in I(C). Thus we have a contradiction.

Lemma 2.13. For each cluster C,

|I(C)| = O(|C|).

Proof. Obviously, there are O(|C|) a-nodes and O(|C|) edges incident to them in
I(C). Each b-node or c-node in I(C) can be charged to one of the edges that connects
the b-node or c-node to a node in C. Thus, there are O(|C|) b- or c-nodes. Since the
number of colored edges is linear in the number of b- and c-nodes, it follows that
|I(C)| = O(|C|).

We will need the following fact when bounding the time of updates.
Lemma 2.14. Let C1, . . . , Cl be a set of clusters with the same ancestor. Then

l∑
i=1

|I(Ci)| = O(k).

Proof. By Lemma 2.13,

l∑
i=1

|I(Ci)| =
l∑
i=1

O(|Ci|).
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Let A be the ancestor of the clusters C1, . . . , Cl. Recall that either (1) each Ci contains
the representative of a vertex and that representative or the (unexpanded) origin of
the representative also belonged to A, or (2) C contains only representatives of the
shared vertex s of A, all these representatives were created after the last rebuild, and
A = Cs.

The number of clusters fulfilling (1) is bounded by the number of nodes of G′ in
A. The total number of clusters fulfilling (2) is bounded by the number of updates
since the last rebuild, which is m/k.

Thus,

l∑
i=1

O(|Ci|) ≤ O(|{v, v is a node of G′ in A}|+m/k) = O(k).

In [11]6 a cluster data structure for I(C) is given so that
(1) building the data structure takes time O(|C|), provided that the b-nodes, the

c-nodes, and the red and blue edges are given;
(2) changing one or all of the colored edges takes time linear in their total number,

provided the new colored edges are given;7

(3) testing whether two vertices of V (C) that are not separated by sC are bicon-
nected in I(C) takes constant time.

We keep as data structure
(CG1) for each cluster C a cluster data structure for I(C);
(CG2) for each cluster C the adjacency lists of the graph I(C) with the two occur-

rences of edges pointing at each other;
(CG3) for each cluster C, a list of pointers to the b- or c-nodes representing C in

I(C)′ for each neighbor C ′; for each b-node in I(C ′), a pointer back to C,
and for each c-node in I(C ′), a set of pointers to the clusters represented by
the c-node.

Note that given the b-nodes and c-nodes of I(C), the red and blue edges of I(C)
can be determined in time linear in their number using the data structure (HL3) and
(HL4) for H1. This leads to the following lemma.

Lemma 2.15. Let C be a cluster. There exists a cluster data structure for I(C)
such that

(1) building the data structure takes time O(|C|), provided that the b-nodes and
the c-nodes are given;

(2) changing one or all of the colored edges takes time linear in their total number,
given the b-nodes and c-nodes;

(3) testing whether two vertices of V (C) that are not separated by sC are bicon-
nected in I(C) takes constant time.

Note: We will use the same data structure and the same update algorithm in
section 2.6 for one class of shared graphs. There the same problem has to be solved in

6Lemma 4.6 of [11] states the result; section 4.1.2 of [11] describes the data structure. In the
notation of [11], G3(C) is identical to I(C) except that a non-tree neighbor C1 of C always has a
blue edge (C1, C2) to the tree neighbor C2 of C that lies on πT1 (C,C1), even if C is not an articulation
point. Furthermore, G2(C) = G3(C) \ {red edges}, CT = V (C), and the artificial edges of [11] are
identical to the colored edges of I(C).

7In [11] changing a red edge actually takes no time during an update: the existence of a red edge
is not recorded during an update but is checked during queries (by asking a biconnectivity query
in H1). This is possible, since only one red edge exists in a cluster graph. Since we will use the
same data structure also for one class of shared graphs, we treat red edges as blue edges in the data
structure of [11].
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H2 instead of H1. Since nodes in H2 are not guaranteed to have bounded tree degree,
we will not make use of this property of H1 in our update algorithm.

2.5.1. Updates. We show in this section that it takes amortized time O(k) to
update the data structures for all cluster graphs after an edge insertion or deletion in
G. The major difficulty is to maintain the b-nodes and c-nodes of each cluster graph.
Once it has been determined how they change, it will be quite straightforward to
update data structures (CG1)–(CG3). Let C be a cluster. A c-node of I(C) has to
be partitioned either (i) because C is split or (ii) because conditions (a) or (b) of a
c-node are no longer fulfilled for the c-node. We call the latter kind of update a split
by condition violation (CV-split) of a c-node. We say a CV-split occurs at a node C
of H1 if one of the c-nodes of C is CV-split.

Section 2.8 presents a data structure that given an update operation decides which
if any c-nodes have to be CV-split and for each CV-split c-node it returns the set of
clusters forming each new c-node. In section 2.9 we show that during m/k update
operations CV-splits occur at O(m/k) different nodes of H1. When a CV-split occurs
at a node C of H1 in a cluster graph, all data structures for the cluster graph of C
are rebuilt from scratch in time O(k). Thus the CV-splits add an amortized cost of
O(k) to the time per update. We describe below the remaining work that is necessary
after an update to maintain the cluster graphs.

Insertion. Let u′ and v′ be the (potentially newly added) representatives that
are incident to the newly inserted edge (u, v). The insertion affects the cluster graphs
as follows:

(1) The clusters Cu′ and Cv′ might become neighbors because of the edge insertion
and they also might be split while rebalancing the relaxed partition. In either case
some b-nodes and/or c-nodes in I(Cu′) and I(Cv′) change. If this happens the data
structures for I(Cu′) and I(Cv′) are rebuilt from scratch.

(2) For a cluster C ′ incident to a split cluster the b-node representing the split
cluster might have to be partitioned into a constant number of b-nodes. If this happens
the data structures for I(C ′) are rebuilt from scratch.

(3) Nodes on πT1
(Cu′ , Cv′) that separated Cu′ and Cv′ in H1 before the insertion

no longer separate Cu′ and Cv′ . For each such node, a suitable red edge is added to
the cluster graph, without rebuilding the cluster graph from scratch.

We next discuss each case in detail. (1) If Cu′ and Cv′ become neighbors because
of the edge insertion, then a new b- or c-node representing Cv′ , resp., Cu′ , has to
be added to I(Cu′), resp., I(Cv′). Consider the split of a cluster C into a constant
number of clusters Cj . Then each c-node in I(Cj) represents only one cluster by part
(d) of the definition of a c-node. Thus, for each neighbor of Cj simply test whether it
has the same ancestor as Cj . If yes, it is represented by a b-node in I(Cj), otherwise
it is represented by a c-node.

(2) We describe next how the changes in the b-nodes of I(C ′) are determined
when cluster C is split into a constant number of nodes Cj . Bucketsort the edges
incident to C in lexicographic order of its two endpoints in the updated graph H1

(using (HL6)). Each neighbor of C with the same ancestor as C that is incident
to edges from l > 1 different buckets (i.e., new clusters) of its array receives l new
b-nodes representing these new clusters, discards the b-node of C, and keeps all the
other old b-nodes.

(3) The articulation points on πT1(Cu′ , Cv′) are found by testing in constant time
each of the clusters on πT1(Cu′ , Cv′) using data structure (HL4) for H1 (before the
update). Then a red edge between its tree neighbors on πT1

(Cu′ , Cv′) is added to each
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articulation point.

We next show that this takes total time O(k). In (1) it takes constant time to
test whether a b-node or a c-node has to be added for the neighbor of a cluster. Each
test takes constant time using (HL7). By Lemma 2.10 there are O(k) many such tests.
Building the data structure (CG1) for a constant number of clusters takes time O(k)
by Lemma 2.15; building (CG2) and (CG3) takes O(k) as well.

In (2) there are O(k) edges to bucketsort. If each bucket with a count larger than
1 is put in a separate list, then all new b-nodes can be determined in time O(k), and
(CG3) can be updated accordingly. By Lemma 2.10 the total size of all the cluster
graphs rebuilt in (2) is O(k). Thus building (CG1) and (CG2) for all of them takes
total time O(k) by Lemma 2.15.

Each test in (3) takes constant time, and adding the red edge for a former articu-
lation point C ′ in H1 takes time linear in the degree of C ′. By Fact 2.1 the H1-degree
of all articulation points on πT1(Cu′ , Cv′) sums to O(m/k).

Deletion of a non-tree edge. The deletion of a non-tree edge does not change
the spanning tree and does not split a cluster (Lemma 2.5). Thus, the deletion of a
non-tree edge affects the cluster graph as follows:

(1) The clusters Cu′ and Cv′ might no longer be neighbors in H1. In this case the
corresponding b-node or c-node has to be removed from I(Cv′), resp., I(Cu′). If this
happens the data structures for I(Cu′) and I(Cv′) are rebuilt from scratch.

(2) A red edge has to be removed and the blue edges have to be updated in the
cluster graph of each new articulation point on πT1(Cu′ , Cv′) in the updated graph
H1.

We next discuss each case in detail: in case (1) we simply need to test whether
the edge (Cu′ , Cv′) was removed from H1. If so, and if Cu′ and Cv′ have the same
ancestor, then the corresponding b-nodes are removed from I(Cv′) and I(Cu′). Other-
wise, we need to test whether the c-node representing Cu′ in I(Cv′) represents further
clusters. If not, then the c-node is removed. We proceed in the same way for the
c-node representing Cv′ in I(Cu′).

In case (2) we determine each new articulation point C on πT1(Cu′ , Cv′) by testing
in constant time each of the clusters on πT1(Cu′ , Cv′) using data structure (HL4) for
H1 (after the update). Then we remove all old red and blue edges from I(C). Using
(HL3) we determine for each neighbor C ′ of C the tree neighbor C ′′ of C such that C ′′

lies on πT1(C,C ′), and connect C ′ by a blue edge with C ′′. Finally we determine the
biconnected components of the tree neighbors of C using a components?(C) operation
in (HL4) and add the suitable red edges.

We next show that this takes total time O(k). In case (1) testing and rebuilding
the data structures takes time O(k) by the same argument as for insertions. In case
(2) finding all articulation points takes time O(m/k). Determining the new red and
blue edges takes time linear in the degree of each articulation point. By Fact 2.1 the
total cost for all articulation points is O(m/k).

Deletion of a tree edge. Let u′ and v′ be the representatives that are incident
to the deleted edge (u, v) and let x′ and y′ be the representatives that are incident
to the new tree edge (x, y), if it exists. By Lemma 2.5, Cu′ , Cv′ , Cx′ , and Cy′ are the
only clusters that might be split.

The cluster graphs are affected as follows: (1) The clusters Cu′ and Cv′ might no
longer be neighbors in H1. In this case the corresponding b-node or c-node has to be
removed from I(Cv′), resp., I(Cu′). If this happens the data structures for I(Cu′) and
I(Cv′) are rebuilt from scratch.
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(2) The clusters Cu′ , Cv′ , Cx′ , and Cy′ might be split. The data structures (CG1)–
(CG3) are rebuilt from scratch for each cluster created by the splits.

(3) For a cluster C ′ incident to a split cluster the b-node representing the split
cluster might have to be partitioned into a constant number of b-nodes. If this happens
the data structures for I(C ′) are rebuilt from scratch.

(4) A red edge has to be removed and the blue edges have to be updated in the
cluster graph of each new articulation point on πT1

(Cx′ , Cy′) in the updated graph
H1.

We implement (1), (2), (3), and (4) as in the cases of edge insertions or deletions
of non-tree edges. Thus, the same arguments as above show that all this can be
implemented in time O(k).

We summarize the section with the following theorem.
Theorem 2.16. The given data structure
(1) tests in constant time whether two vertices u and v of V (C) for a cluster C

that are not separated by sC are biconnected in G,
(2) can be updated in amortized time O(k) after each update in G, and
(3) can be built in time O(m).

2.6. Shared graphs. We maintain a shared graph G(s) for every shared vertex
s. Given a shared vertex s and two of its tree neighbors x and y, the shared graph of
s is used to test in constant time whether s is an articulation point separating x and
y in G.

Let Cs be the node of H2 representing s, i.e., it represents the nodes in all s-
clusters. Let V(Cs) = {v; v ∈ G, and v is represented by Cs}. Shared graphs are
used to test whether a pair of two special vertices of G that either are represented by
the same node of H2 or are incident to the same node of H2 (to be precise, two tree
neighbors of s) are biconnected in G. Note that cluster graphs solve this problem in
H1: a cluster graph tests whether two vertices of G that are represented by or are
incident to the same node of H1 are biconnected in G, under the additional condition
that no dashed edge is incident to this node of H1. (For nodes of H1 that are incident
to a dashed edge only a restricted version of the problem is solved.) Since there are
no dashed edges in H2, we simply can define shared graphs analogously to cluster
graphs and use the data structure for cluster graphs also for shared graphs. However,
it is possible that |Cs| = Θ(m) and, thus, rebuilding the data structure from scratch
can take time Θ(m).

This leads to the following definition. Let us call a shared vertex s new if s became
shared by a cluster split after the last rebuild, and let it be called old otherwise (i.e.,
if it became a shared vertex during the last rebuild). Note that if s is new, then
|V(Cs)| = O(k) by Lemma 2.10, and, thus, a solution analogous to cluster graphs is
efficient.

For old shared vertices we use a new technique, which exploits the fact that the
tree neighbors x and y of s are biconnected iff x and y are connected in G \ s. Thus,
we maintain a “compressed” version of G \ s in which we ask connectivity queries.
The shared graph will be stored in a dynamic connectivity data structure. Note that
there are O(m/k) = O(k) many shared vertices, which implies we have to maintain
O(k) many shared graphs.

2.6.1. Shared graphs for new shared vertices. Let s be a new shared vertex
represented by node Cs in H2, and let As be the ancestor of Cs. The shared graph
G(s) contains as nodes

(1) a node, called a-node, for each vertex in V(Cs),
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(2) one node, called b-node, for each neighbor of Cs with ancestor As,
(3) one node, called c-node, for each maximal set X of nodes of H2 such that

(a) every cluster C ′ ∈ X is a neighbor of Cs, (b) all nodes in X are connected in
H2 \Cs, (c) all nodes in X have the same ancestor which is different from As, (d) at
the creation of Cs, the set X contains only one node, and (e) at each previous point
in time since the creation of Cs all nodes of H2 that contain the vertices in ∪C′∈XC ′

existing at this time are represented by the same c-node in G(s).

Note that for each neighbor C ′ of Cs there exists a unique node in G(s) repre-
senting C ′ and potentially other clusters.

The graph G(s) contains the following edges:

(1) All edges between two vertices of V(Cs) belong to G(s).
(2) For each edge (u, v), where u belongs to V(Cs), v does not belong to V(Cs),

and (u′, v′) is the corresponding edge in G, there is an edge (u, d), where d is the b-
or c-node representing Cv′ in G(s).

(3) All b- or c-nodes representing tree neighbors of C that are biconnected in H2

are connected by a tree of red edges.
(4) For each non-tree neighbor C1 of C, G(s) contains a blue edge (d1, d2), where

d2 represents a tree neighbor of C that is biconnected to C1 in H2, and d1 represents
C1.

Note that for each non-tree neighbor C1 of C there always exists a tree neighbor of
C that is biconnected to C1 in H2—the tree neighbor of C that lies on πT2(C,C1)
always is biconnected to C1.

Since all clusters sharing s have the same ancestor, Lemma 2.10 shows that
|G(s)| = O(k).

A tree neighbor of s either belongs to V(Cs) and is represented by an a-node, or
does not belong of V(Cs) and is represented by a b- or c-node. We need to show the
following lemma.

Lemma 2.17. Let x and y be two tree neighbors of a new shared vertex s. Then
(the representative of) x and y are biconnected in G(s) iff x and y are biconnected in
G.

Proof. Note that G(s) can be created by contracting edges in G. Thus, biconnec-
tivity in G(s) implies biconnectivity in G.

Vertices x and y are connected by a tree path (u, s), (s, v). Thus s is the only
node that could be an articulation point separating x and y. Contracting edges not
incident to s cannot make s into an articulation point separating x and y. Hence,
biconnectivity in G implies biconnectivity in G(s).

We use the same data structure as for cluster graphs to store shared graphs for
new shared vertices. Given the b- and c-nodes the red edges can be found in time linear
in their number using the data structure (HL4) for H2. We determine the blue edges
of G(s) by connecting each non-tree neighbor C1 of a node C to the tree neighbor of
C on πT2

(C,C1). Using the data structure (HL3) for H2 this takes time linear in the
number of blue edges times O(log n). Using the data structure of [11] results in the
following lemma.

Lemma 2.18. Let s be a shared vertex represented by the node C of H2. Then
there exists a data structure for the shared graph of s such that

(1) building the data structure takes time O(|Cs|+(m/k) log n), provided that the
b-nodes and the c-nodes are given;

(2) changing one or all of the colored edges in the data structure takes time linear
in their total number times O(log n), given the b-nodes and c-nodes;
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(3) testing whether two vertices of V(Cs) are biconnected in G(s) takes constant
time.

These data structures are updated with the algorithm of section 2.5.1 with H1

replaced by H2. Since the test in (HL3) takes time O(log n), the amortized time per
operation is O(k + (m/k) log n).

2.6.2. Shared graphs for old shared vertices. Let s be an old shared vertex
and let Cs be the node of H2 representing s. We cannot use the data structure of
the previous section for the shared graph of s since rebuilding the data structure
from scratch would take time Ω(|Cs|), which might be Θ(m). Still we use an approach
similar to the one in the previous section but avoid rebuilds from scratch for the whole
data structure.

We will exploit the following fact: Condition (C6) of a relaxed partition guarantees
that at any time in a phase O(m/k) vertices that do not belong to Cs are incident to
a vertex of Cs. Only the O(m/k) shared vertices and the O(m/k) endpoints of edges
inserted in the phase can be neighbors of a vertex in Cs and not belong to Cs.

The graphs G(s). Let s be an old shared vertex,

(1) let Cs be the node representing s in H2,
(2) let As be the ancestor of Cs in H2, and
(3) let Vs = {v, v ∈ G and v is represented by a node of H2 with ancestor As}.
Note that at the beginning of a phase Vs consists exactly of all the vertices in Cs.

Later in the phase, the vertices of G in Cs are all contained in Vs, but Vs can contain
additional vertices.

The graph G(s) contains as vertices

(1) a node, called a-node, for each vertex in Vs, except for s, and
(2) a node, called d-node, for each vertex of G that does not belong to Vs but is

a neighbor of a vertex in Vs.
The graph G(s) contains as edges every edge between two a-nodes or between an
a-node and a d-node.

Lemma 2.19. Let s be an old shared vertex. The number of d-nodes in G(s) is
O(m/k).

Proof. By condition (C6) of a relaxed partition the number of d-nodes at the
beginning of a phase connected to a vertex of Vs by non-tree edges is O(m/k). Addi-
tionally there are O(m/k) tree edges. During the phase only the endpoints of edges
inserted during the phase can become neighbors of vertices in Vs. Thus, the lemma
follows.

Data structure:

(S1) We store G(s) in a fully dynamic connectivity data structure. This data
structure allows us to execute the following operations:

(1) insert(u,v)/delete(u,v): Insert or delete the edge (u, v) in timeO(
√
m′),

where m′ is the number of edges in G(s).
(2) insert(u): Insert the degree-0 vertex u in time O(

√
m′), where m′ is

the number of edges in G(s).
(3) connected?(u,v): Test whether u and v are connected in constant

time.
(4) component?(u): Return the connected component of u in constant

time.

(S2a) We keep for each connected component of G(s) a list of all the d-nodes that
belong to it.
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(S2b) We keep for each connected component of G(s) a list of all neighbors of Cs
with ancestor As whose vertices belong to the connected component. We also
store for each node of H2 its position in the at most one such list to which it
belongs.

Lemma 2.20. The data structures for G(s) for all old shared vertices s can be
built in time linear in its size at the beginning of a phase and can be updated in time
O(

√
m) after an edge insertion or deletion in G.
Proof. At the beginning of a phase the vertices of G(s) are simply the vertices

in Cs and their neighbors and are given by (HL1) and (G1). The edges are given by
(G1). Building (S1) and (S2a) takes linear time; (S2b) is an empty list.

Each edge insertion or deletion in G affects the data structure for G(s) of at
most one old shared vertex s since the sets Vs are vertex-disjoint for different old
shared vertices s. Since the graph G(s) consists of at most m edges, its fully dynamic
connectivity data structure can be updated in time O(

√
m).

In case of the deletion of the edge (u′, v′) we test after the removal of the edge
from G(s) whether u′ and v′ are still connected. If not, we test each d-node in the old
connected component of u′ and v′ whether it is either connected to u′ or to v′. In this
way we construct the list of d-nodes for the two new connected components of G(s).
By Lemma 2.19 this requires O(m/k) tests. In the same way we split the (S2b) list
of the old connected component to create the (S2b) lists of the two new connected
components and update the corresponding positions at the nodes of H2.

In case of an edge insertion we insert a new d-node if one of the endpoints of the
new edge does not belong to G(s). Then we test whether the endpoints of the edge
belonged to the same connected component before the insertion. If they did not, we
combine their lists of d-nodes and their lists of neighbors of Cs. Note that these lists
were disjoint before the combination since otherwise the two connected components
would have shared a vertex.

Additionally we determine for each cluster split by an update operation whether
its node in H2 is split as well and whether a position in an (S2b) list is stored at the
node. If so, we update the entry in the (S2b) list accordingly and store the appro-
priate positions at the new nodes. Since only a constant number of nodes is split by
Lemma 2.5, this takes constant time.

Thus, the total time of an update is O(
√
m).

Note that each tree neighbor x of s either belongs to Cs or is represented by a
node of H2 that is a neighbor of Cs. In the latter case we call the neighbor of Cs
representing x the x-neighbor of Cs. In the former case we determine a node that is
a neighbor of Cs and connected to x in G(s) as follows: Using (S1) and (S2b) we can
determine in constant time a neighbor of Cs with ancestor As that is in the connected
component of x. If no such node exists, then using (S1) and (S2a) we can determine
in constant time a d-node, and using (HL1) a node of H2, that is connected to x in
G(s) if such a d-node exists. Note that in the latter case the d-node is connected to
a node in Cs, i.e., the node of H2 containing the d-node is a neighbor of Cs, since no
node with ancestor As belongs to the connected component of x. In either case the
determined neighbor of Cs is called an x-neighbor of Cs.

The graphs G̃(s). The intuition for the graph G̃(s) is as follows: Initially, and
whenever G̃(s) is rebuilt, each neighbor of Cs is represented by a vertex in G̃(s). If
this neighbor is split into two nodes C1 and C2 of H2, then the corresponding vertex
of G̃(s) is updated (and the whole graph G̃(s) is rebuilt) only if C1 and C2 are not
connected in H2 \Cs after the update. If C1 and C2 are connected in H2 \Cs after the
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update, then the vertex of G̃(s) is not modified, but represents now both nodes of H2.
This would guarantee that after an edge update we only have to update the graph
G̃(s) of an old shared vertex s if an edge of G(s) was modified (i.e., Vs contains an
endpoint of the updated edge) or the connected components of H2 \ Cs are modified
by the update. However, to bound the number of these graphs using the amortization
lemma of section 2.9 we need to treat nodes with ancestor As in a special way.

We formalize this as follows: The graph G̃(s) contains as vertices

(1) one node, called e-node, for each maximal set X of nodes of H2 \ Cs such
that (a) every node in X is a neighbor of Cs, (b) all nodes in X are connected in
H2 \ Cs, (c) all nodes in X have the same ancestor which is different from As, (d)
at the creation of Cs, the set X contains only one element, and (e) the vertices in
∪C′∈XC ′ used to belong to the same node Cold of H2 and since the split of Cold,
the graph G(s) was not modified and the connected components of H2 \ Cs did not
change;

(2) one node, called b-node, for each neighbor of Cs with ancestor As.

Each vertex in G̃(s) represents the nodes in the set X and thus also the vertices
of G contained in these nodes.

The graph G̃(s) contains the following edges.

(1) All vertices of G̃(s) that contain vertices that are connected in G(s) are
connected by a tree of yellow edges in G̃(s).

(2) All vertices of G̃(s) whose nodes are connected in H2 \ Cs are connected by
a tree of green edges in G̃(s).

Let x be a vertex of Vs and a tree neighbor of s. Note that by definition all nodes
of G̃(s) representing an x-neighbor are connected in G̃(s) by yellow edges, i.e., belong
to the same connected component of G̃(s).

Data structure:

(S3) We store G̃(s) in an adjacency list representation and label each node with
its connected component.

(S4) We store for each node C of H2 an array with one entry per old shared
vertex. The array stores for each old shared vertex s the vertex in G̃(s) that
represents C in G̃(s) if such a vertex exists and null otherwise.

The next lemma shows how to use G(s) and G̃(s) to test whether two neighbors
of s are biconnected in G.

Lemma 2.21. Two tree neighbors x and y of s are biconnected in G iff

(1) either x and y are connected in G(s), or
(2) the connected component of the vertices of G̃(s) representing x-neighbors is

identical to the connected component of the vertices of G̃(s) representing y-neighbors.

Proof. Each edge in G(s) or G̃(s) corresponds to a path in G that does not contain
s, and each vertex u ∈ Vs \ {s} is either contained in the u-neighbor or connected to
every u-neighbor by a path in G(s) that does not contain s. Additionally connectivity
of x and y in G \ {s} implies biconnectivity in G. Thus, if x and y are connected in
G(s) or if a vertex of G̃(s) representing an x-neighbor of Cs is connected with a vertex
of G̃(s) representing a y-neighbor of Cs in G̃(s), then x and y are biconnected in G.

To show the other direction consider a path P in G that connects x and y and
does not contain s. If all vertices of P belong to Vs \ {s}, then x and y are connected
in G(s).

Otherwise, recall that all vertices of G(s) representing an x-neighbor (resp., y-
neighbor) form a connected component of G̃(s). It follows that it suffices to show that
one of the vertices of G̃(s) representing an x-neighbor is connected in G̃(s) to one
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of the vertices of G̃(s) representing a y-neighbor. In this case P contains a d-node
dx that is connected to x by a path in G(s). If the path from x to dx contains only
vertices of Cs (excluding dx), then let bx be the vertex of G̃(s) representing dx and
let ux be dx. If the path from x to dx contains vertices not in Cs, let bx be the vertex
of G̃(s) representing the first such node ux on the path. In either case bx represents
an x-neighbor. Define uy and by in the same way.

Consider the subpath P ′ of P between the ux and uy. Partition P ′ into subpaths
such that each subpath is a maximal sequence of edges such that either (a) each edge
is incident to a vertex of Cs or (b) no edge is incident to a vertex of Cs. Note that
the endpoints of each subpath belong to nodes in H2 that are neighbors of Cs.

Since P does not contain s, each subpath fulfilling (a) corresponds to a path
in G(s). Thus the vertices of G̃(s) representing the endpoints of the subpath are
connected by a path of yellow edges in G̃(s). Each subpath fulfilling (b) connects the
nodes of H2 containing the endpoints of the subpath by a path in H2 \ Cs. Thus the
vertices of G̃(s) representing these nodes of H2 are connected by a path of green edges
in G̃(s). It follows that bx is connected to by in G̃(s).

The first condition is tested in constant time using (S1). To test the second condi-
tion we determine the x-neighbor and y-neighbor using (S1), (S2a), (S2b), and (HL1).
We determine the vertices of G̃(s) representing the x-neighbor and the y-neighbor us-
ing (S4) and then test their connected components in G̃(s) using (S3). All this takes
constant time.

Let deg2(Cs) be the degree of Cs in H2.

Lemma 2.22. If only the green edges of H2 \ Cs change, then G̃(s) and the data
structures (S3) and (S4) can be updated in time O(deg2(Cs) log n).

Proof. Discard all old green edges. To compute the new green edges, map each
neighbor of Cs to a tree neighbor of Cs in H2 using (HL3) and determine the bicon-
nected component of this tree neighbor using blockid?-queries in (HL4) for H2. Then
bucketsort the neighbors according to these biconnected components using (HL6). For
each neighbor in a biconnected component determine its vertex in G̃(s) using (S4)
and connect it by a green edge to the vertex in G̃(s) of the previous neighbor in the
same biconnected component. Then compute a spanning forest of the green edges by
performing a depth-first search on the graph of green edges, and discard all green
edges not in the spanning tree. Finally recompute the connected components of G̃(s).
This takes time O(log n) per neighbor and constant time per green edge. Since the
number of green edges is linear in the number of neighbors, the lemma follows.

Lemma 2.23. Let s be an old shared vertex. At the beginning of a phase or when-
ever G(s) has changed, the graph G̃(s) can be constructed in time O((m/k) log n).

Proof. Note first that the size of G̃(s) is linear in its number of vertices of G̃(s),
which is bounded by deg2(Cs).

The vertices of G̃(s) are the neighbors of Cs and are given by (HL2). To determine
the yellow edges, process the d-nodes belonging to the same connected component of
G(s) as follows. Map each d-node in (S2a) for this connected component to its node
in H2 using (HL1). Append to this list the neighbors of Cs stored in (S2b) for this
connected component. Now process each node C in this list as follows: Determine
the vertex of G̃(s) representing C and connect it by a yellow edge to the vertex of
G̃(s) representing the previous node on the list. This takes time linear in the length
of the list. Then compute a spanning tree of yellow edges by performing a depth-first
search on the graph of yellow edges. Discard the yellow edges that do not belong to
the spanning tree. This takes time linear in the number of yellow edges, which is linear
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in the length of the list. The length of the list is linear in the number of d-nodes in
G(s) in the connected component and the length of the (S2b) list for the connected
component. By Lemma 2.19 there are O(m/k) many d-nodes in G(s), i.e., in the (S2a)
lists for all connected components. Also there are O(m/k) many neighbors, i.e., in
the (S2b) lists for all connected components. Thus, the total time for determining all
yellow edges in G̃(s) is O(m/k).

The green edges are computed in time O((m/k) log n) as in Lemma 2.22.

Lemma 2.24. Constructing the graphs G̃(s) for all old shared vertices at the
beginning of a phase takes time O(m log n). Building the data structures (S3) and
(S4) for all s at the beginning of a phase takes time O(m).

Proof. By Lemma 2.23, constructing one graph G̃(s) takes time O((m/k) log n),
for a total of O((m/k)2 log n) = O(m log n).

When G̃(s) is given, then building (S3) for s takes time linear in the size of G̃(s).
To build (S4) we allocate and initialize with null all the necessary arrays. This takes
time O((m/k)2) = O(m). Then we process each graph G̃(s) and set the entry for s in
the array of node C of H2 to the vertex of G̃(s) representing C if it exists.

Lemma 2.25. The graphs G̃(s) and the data structures (S3) and (S4) for all
old shared vertices s can be updated in amortized time O((m/k) log n) after an edge
insertion or deletion in G.

Proof. We will show that after the insertion or deletion of the edge (u, v) in G the
only old shared vertices s for which G̃(s) has to be updated are the ones (1) where
Vs contains u or v, (2) where a node of H2 that is split by the update has ancestor
As, or (3) where Cs is an articulation point on πT2(Cu, Cv) before or after the current
update. For type-(3) old shared vertices either (i) a vertex of G̃(s) has to be split and
the green and yellow edges have to be recomputed or (ii) only the green edges have
to be updated. If a yellow edge has to be changed without splitting a vertex, then Vs
must contain u or v, i.e., it is a type-(1) old shared vertex.

To guarantee that all graphs that have to be changed are indeed updated we use
the following update algorithm:

(1) Rebuild from scratch the graphs G̃(s) for all old shared vertices s where Vs
contains either u or v (type (1) above), where Cs has the same ancestor as a split
node in H2 (type (2) above), or where a vertex of G̃(s) is split (type (3(i)) above).

(2) Update the green edges in the graph G̃(s) for the remaining old shared ver-
tices where Cs is an articulation point on πT2(Cu, Cv) before or after the update (case
(3(ii)) above).

To find all type-(2) old shared vertices, we determine for each split node of H2 its
ancestor A using (HL7) and test for each old shared vertex s whether the ancestor of
Cs equals A. The old shared vertices for which this test returns true are the type-(2)
old shared vertices.

We discuss next how to determine all type-(3(i)) and type-(3(ii)) old shared ver-
tices. There are two kinds of vertices in G̃(s), e-nodes and b-nodes. If a b-nodes has
to be split, then s is also a type-(2) old shared vertex and will be updated correctly.
Thus, it suffices to determine all type-(3(i)) old shared vertices s where an e-nodes
has to be split. In section 2.8 we give a data structure that determines all e-nodes
that have to be split in time O((m/k) log n). Furthermore, we show in section 2.9
that only an amortized constant number of e-nodes has to be split. We determine
all articulation points on πT2(Cu, Cv) using (HL4). This gives all type-(3) old shared
vertices. We remove the ones that are of type (2). In the remaining set the ones that
contain an e-node that has to be split are the type-(3(i)) but not type-(2) old shared
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vertices; the rest are the type-(3(ii)) old shared vertices.

Whenever G̃(s) is rebuilt, we also rebuild (S3) from scratch. The data structure
(S4) is updated as follows:

(1) For each new node that is created by a split of an old node during the phase,
the array of the old node is copied to create the array for the new node.

(2) For each old shared vertex s where G̃(s) is rebuilt, the entry of s in the array
of every neighbor of Cs is replaced by the vertex representing the neighbor in G̃(s).

Lemma 2.23 shows that for type-(1), type-(2), and type-(3(i)) old shared ver-
tices the graph G̃(s) can be constructed in time O((m/k) log n). Lemma 2.22 shows
that for type-(3(ii)) old shared vertices the green edges can be updated in time
O(deg2(Cs) log n). Determining all old shared vertices s such that a vertex of G̃(s)
has to be split or that As = A takes time O(m/k) per split cluster. By Lemma 2.5
there are a constant number of split clusters per update, i.e., the total time spent
to determine type-(2) and type-(3(i)) old shared vertices is O(m/k). Determining all
articulation points and all type-(3(ii)) old shared vertices takes time O(m/k). Build-
ing (S3) takes time O(deg2(Cs)). The first type of update of (S4) creates a new array
and takes time O(m/k); the second type takes time O(deg2(Cs)). Thus, updating the
graphs G̃(s) and the data structure (S3) for type-(1), (2), and (3(i)) old shared ver-
tices takes time (O(m/k) log n) each; updating the graphs G̃(s) and the data structure
(S3) for type-(3(ii)) old shared vertices takes time O(deg2(Cs) log n) each.

We show next that there are only an amortized constant number of type-(1), (2),
and (3(i)) old shared vertices whose graphs G̃(s) have to be updated, for a total time
of O((m/k) log n) to update them. There are at most two type-(1) old shared vertices.
There is at most one type-(2) old shared vertex per split node C of H2, since the fact
that C has ancestor As implies that the vertices of C belong to Vs and the sets Vs
are disjoint for different old shared nodes. By Lemma 2.43 and Lemma 2.44 there are
an amortized constant number of type-(3(i)) old shared vertices, where an e-node has
to be split.

By Fact 2.1 the degree of all articulation points on a path in H2 sums to O(m/k).
Thus, deg2(Cs) for all type-(3(ii)) old shared vertices sums to O(m/k). Hence, up-
dating all graphs G̃(s) and building (S3) for the type-(3(ii)) old shared vertices takes
time O((m/k) log n). Finally, a new array in (S4) is created for a constant number of
new nodes of H2. Summing all the cost gives a total time of O((m/k) log n) to update
all graphs G̃(s) and their data structures (S3) and (S4).

We still need to show the above claim about which graphs G̃(s) have to be changed
and how. A graph G̃(s) has to be updated if (A) a vertex, (B) a yellow edge, or (C)
a green edge has to be changed.

(A) If a b-node of G̃(s) has to be changed, then a node in H2 with ancestor As was
split (case (2) above). If an e-node of G̃(s) has to be changed, then either condition
(a), (b), or (c) of an e-node does not hold anymore. If (a) does not hold anymore,
then the current update deleted an edge of G(s), i.e., Vs contains an endpoint of the
updated edge (case (1) above). If (b) does not hold anymore, then Cs is an articulation
point separating the endpoints of the updated edge before or after the current update
(case (3) above). If (c) does not hold, then again either the current update modified an
edge of G(s) (case (1) above), or Cs is an articulation point separating the endpoints
of the updated edge before or after the current update (case (3) above).

(B) If a yellow edge but no vertex of G̃(s) has to be changed, then an update
occurred in the graph G(s). It follows that Vs contains at least one of the endpoints
of the updated edge (case (1) above).
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(C) If a green edge has to be changed, then Cs is an articulation point separating
the endpoints of the updated edge before or after the current update (case (3) above).

This completes the proof of the lemma.
We summarize the section with the following theorem.
Theorem 2.26. The given data structure
(1) tests in constant time whether two tree neighbors x and y of a shared vertex

s are biconnected in G,
(2) can be updated in amortized time O((m/k) log n+

√
m) after each update in

G, and
(3) can be built in time O(m log n).

2.7. The high-level graphs. In this section we give the details of the high-level
graph data structures and explain how they are updated. For (HL1), (HL2), (HL5),
(HL6), and (HL7) the details are given in section 2.4 and it is obvious how to update
them in time O(k) per update in G, provided the change in the cluster partition is
known. The description in section 2.2 gives an O(k)-time algorithm to update the
cluster partition. Thus, we concentrate in this section on the details of (HL3) and
(HL4).

2.7.1. The data structure (HL3). Consider the graph Hi. Given the two
nodes C and C ′ of Hi we use (HL3) to find the tree neighbor of C on πTi

(C,C ′). For
H2 (HL3) consists of a dynamic tree data structure of T2. To find the tree neighbor,
root T2 at C ′ and return the parent of C. Update (HL3) by executing link and cut
operations whenever T2 changes. It takes time O(log n) to test or update (HL3).

For H1, (HL3) consists of a degree-k ET-tree data structure of T1. To find the
tree neighbor proceed as follows. For the node C ′, and the tree neighbors of C, label
one of the leaves representing the node with the name of the node. Then traverse
the ET-tree from all labeled leaves in lockstep, labeling each internal node with the
concatenation of the label of its left child and the label of its right child. At the root
the label incident to C ′’s label is the desired tree neighbor. To update the ET-tree,
whenever T1 changes, split and join the ET-tree accordingly. Since the ET-tree has
O(1) depth and C has O(1) tree neighbors, a test takes O(1) time. Each update takes
time O(k).

2.7.2. The data structure (HL4). Recall that (HL4) implements the following
query operations in Hi:

(1) biconnected?(C,C ′,C ′′): Given that nodes C ′ and C ′′ are both tree neighbors
of a node C test whether C ′ and C ′′ are biconnected in Hi.

(2) blockid?(C,C ′): Given that C and C ′ are tree neighbors in Ti, output the
name of the biconnected component of Hi that contains both C and C ′.

(3) components?(C): Output the tree neighbors of C in Hi grouped into bicon-
nected components.
As we show below, biconnected? and blockid? take constant time, and components?
takes time linear in the size of the output.

We say a node C of Hi is avoidable on the tree path P iff C and two of its tree
neighbors, called D and D′, belong to P and there is an edge in Hi \ C between
the subtree of Ti \ C containing D and the subtree containing D′. Note that if C is
avoidable, then C does not separate D and D′. However, if C does not separate D
and D′ it does not follow that C is avoidable.

To implement (HL4) we build a compressed graph Hi(C) of Hi \C for each node
C in H2. Let C be a node in Hi. The graph Hi(C) contains a node for each tree
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neighbor of C in Hi. There is an edge between two tree neighbors D and D′ of C iff
C is avoidable on πTi(D,D′).

We keep the following data structures. The second is needed to efficiently main-
tain the Hi(C).
(HL4-1) For i = 1, 2, and for each node C we store Hi(C) in a dynamic connectivity

data structure.
(HL4-2) A 2-dimensional topology tree [5] of T and one ambivalent data struc-

ture [6] are maintained. They implement the following operations in time
O((m/k) log n):

(1) insert&return avoidable(u,v): Return all nodes on π(Cu, Cv) that become
avoidable on π(Cu, Cv) by the insertion of edge (u, v), where Cu and Cv are the
endpoints in Hi of the newly inserted edge.

(2) delete&return unavoidable(u,v): Return all nodes on π(Cu, Cv) that become
unavoidable on π(Cu, Cv) by the deletion of edge (u, v), where Cu and Cv are the
endpoints in Hi of the newly deleted edge.

We show how to implement the operations of (HL4) using (HL4-1).
(1) biconnected?(C,C ′,C ′′): Return connected?(C ′, C ′′) in Hi(C).
(2) blockid?(C,C ′): Return component?(C ′) in Hi(C).
(3) components?: Return all connected components of Hi(C), and for each con-

nected component output all its nodes.
The correctness of this implementation is shown by the following lemma.
Lemma 2.27. Two tree neighbors D and D′ of C in Hi are biconnected in Hi iff

they are connected in Hi(C).
Proof. IfD andD′ are connected inHi(C), then every edge on the path connecting

D and D′ corresponds to a path in Hi \C. Thus they are biconnected in Hi. If D and
D′ are biconnected in Hi, they are connected by a path in Hi \C. Every edge on this
path either lies in a subtree of Ti \C or connects two subtrees. The edges connecting
two subtrees give a path in Hi(C) connecting D and D′.

Updates in Hi(C). Consider an insertion of edge (u, v) in G and let Cu and
Cv be the nodes in Hi incident to the edge. The graph Hi(C) has to be modified only
for the nodes that become avoidable on π(Cu, Cv). These nodes can be found with
one insert&return avoidable operation in (HL4-2). Let C be such a node. Note that
exactly one edge is added to Hi(C), namely, the edge between the tree neighbors of
C on π(Cu, Cv).

An edge deletion in G is handled analogously.
To analyze the running time recall that the operation in (HL4-2) takes time

O((m/k) log n). The update in a graphHi(C) takes timeO((degT (C))1/3 log degT (C)),
where degT (C) is the degree of C in Ti. Since

∑
C degT (C) = O(k), the cost for up-

dating all Hi(C) is O(k). This shows the following theorem.
Theorem 2.28. There exists a data structure that implements the operations

biconnected?, blockid?, and components? in time linear in their output. The data
structure can be updated in time O(k+(m/k) log n) after each update operation in G.

2.7.3. The data structure (HL4-2). We present now a data structure that im-
plements insert&return avoidable and delete&return unavoidable in timeO((m/k) log n).

We will actually show a slightly more general result: we give a data structure
that can be updated in time O(m/k) after each update in G and that can return all
avoidable nodes on a tree path P in Hi in time O((m/k) log n). Obviously this data
structure can be used to execute the above operations in time O((m/k) log n).

In this section we assume that T1 is rooted at a node R.
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The data structure consists of two parts: (1) a 2-dimensional topology tree and (2)
an extended ambivalent data structure. Both are slight variations of data structures
defined in [5, 6].

Let e = (D,C) be an edge of T1. We denote by ST (D,C) the subtree of T1 \ e
that contains D. Obviously a node C of H1 is avoidable on a tree path P iff there
exists an edge between ST (D,C) and ST (D′, C), where D and D′ are the neighbors
of C on P . We call a node on P that is not an endpoint of P an internal node of P .

The 2-dimensional topology tree and the extended ambivalent data structure are
based on H1, not H2. Thus, to test avoidability in H2 we need to reduce it to testing
avoidability in H1. For each path P in T2, let PT1 denote the corresponding path in T1

starting, resp., ending, at an arbitrary node of H1 that maps to the start node, resp.,
end node, of P . Recall that each node C of H2 is created by a set of H1-nodes that
are connected by a path of dashed edges. For an internal node C on P, let C(PT1)
and C(PT1)

′ denote the extreme-most nodes of that dashed path on PT1 . We use the
following lemma.

Lemma 2.29. Let C be a node of H2 on a tree path P in T2. Let D, resp., D′,
be the neighbor of C(PT1

), resp., C(PT1
)′, on PT1 that does not map to C. Then C is

avoidable on P iff there is an edge between ST (D,C(PT1)) and ST (D′, C(PT1
)′).

Proof. Note that the edges incident to the subtree containing h(D), resp.,
h(D′), in H2 \ C are identical to the edges incident to ST (D,C(PT1)), resp., ST (D

′,
C(PT1)

′).

As we show below, the 2-dimensional topology tree can test in time O(m/k)
whether there is an edge between ST (D,C(PT1

)) and ST (D′, C(PT1)
′). We extend

the ambivalent data structure of [6] such that it can test in time O(m/k)

(1) for all but O(log n) nodes C of H2 on a path P of T2 whether there is an
edge between ST (D,C(PT1)) and ST (D′, C(PT1)

′); and
(2) for all but O(log n) nodes C of H1 on a path P of T1 whether there is an

edge between ST (D,C) and ST (D′, C).

Thus, to test the avoidability on a path P we use the ambivalent data structure
to get the avoidability information for all but O(log n) nodes of P and we use the
2-dimensional topology tree for the remaining nodes.

Note that the term tree edge refers to an edge in T, T ′, or Ti, never to an edge in
a topology tree.

The 2-dimensional topology tree. Given a restricted partition of order k we
call each cluster of the partition a level-0 cluster or basic cluster. A level-i cluster is

(1) the union of two level-(i− 1) clusters that are connected by a tree edge such
that one of them has tree degree 1 or both have tree degree 2, or

(2) one level-(i− 1) cluster if the previous rule does not apply.

A topology tree TT is a tree such that each node C at level i corresponds to a
level-i cluster. If C is the union of two clusters C1 and C2 at level i− 1, then C1 and
C2 are the children of C and the tree edge (C1, C2) is stored at C. If C consists of
one level-(i − 1) clusters C at level i, then C1 is the only child of C in the topology
tree. A rooted topology tree TT is a topology tree with the additional condition that
R is only unioned when no other unions are possible.8

A 2-dimensional topology tree 2TT for TT is a tree that contains a node C ×D
at level i for every pair (C,D) of level-i clusters in TT . A level-(i− 1) node C1 ×D1

8We will exploit the rootedness in the next section.
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is a child of a level-i node C ×D iff C1 is a child of C and D1 is a child of D. We call
each node in a topology tree or a 2-dimensional topology tree a topology node.

We keep TT and 2TT . We store at every node C ×D of 2TT with C �= D a bit
that is set to 1 iff there is a non-tree edge between cluster C and cluster D.

Next we show how to use 2TT to test whether an edge exists between ST (D,C)
and ST (D′, C ′). Let (D,C) be a tree edge in T1. The topology nodes representing
ST (D,C) are the nodes of TT (1) that are children of ancestors of C but are not
ancestors of C, and (2) whose leaf descendants in TT belong to ST (D,C). Since TT
has depth O(log n) [5], ST (D,C) is represented by O(log n) topology nodes.

Lemma 2.30. For D �= D′ let (D,C) and (D′, C ′) be edges of T1 such that D
and D′ do not belong to πT1(C,C ′). Let X1, . . . , Xp be the topology nodes representing
ST (D,C) and let Y1, . . . , Yq be the topology nodes representing ST (D′, C ′) such that
Xi and Yi are level-i topology nodes.

There is a non-tree edge between ST (D′, C ′) and ST (D,C) iff a bit is set to 1 at
a node X × Y of 2TT such that either

(1) X = Xi for some 1 ≤ i ≤ p and Y is a level-i descendant of a node Yj for
some 1 ≤ j ≤ q, or

(2) Y = Yj for some 1 ≤ j ≤ q and X is a level-j descendant of a node Xi for
some 1 ≤ i ≤ p.

Proof. Note that ST (D,C) and ST (D′, C ′) are disjoint. It follows that the
subtrees of TT rooted at X1, X2, . . . , Xp are disjoint from the subtrees rooted at
Y1, Y2, . . . , Yq.

Let (A,B) be the non-tree edge between ST (D,C) and ST (D′, C ′) with A ∈
ST (D,C) and B ∈ ST (D′, C ′). Let Xi (Yj) be the lowest ancestor of A (B) in TT
that is a topology node representing ST (D,C) (ST (D′, C ′)). If i ≤ j, there exists a
level-i cluster Y which is a descendant of Yj such that there is an edge between Xi

and Y. It follows that the bit stored at Xi × Y is set to 1. If j > i, a symmetric
argument applies.

If a bit is set to 1 at a node X × Y of 2TT such that either (1) X = Xi for
1 ≤ i ≤ p and Y is a level-i descendant of a node Yj for 1 ≤ j ≤ q or (2) Y = Yj for
1 ≤ j ≤ q and X is a level-j descendant of a node Xi for 1 ≤ i ≤ p, then there is an
edge between X and Y and, thus, between ST (D,C) and ST (D′, C ′).

Let Xi and Yj be defined as in the lemma. Let Yi = {Y |Y is a level-i descendant
of a topology node Yj for some i ≤ j ≤ q} and let Xj be defined symmetrically. Note
that the subtree in 2TT induced by the set of nodes {Xi × Y, for all 1 ≤ i ≤ p, and
all Y ∈ Yi} is isomorphic to a subtree of TT. The same holds with the roles of X and
Y reversed. Thus, Lemma 2.29 shows how to check the avoidability of C on a path
P by checking the bits of O(m/k) nodes in 2TT. Finding the topology nodes Xi and
Yi for all i takes time O(log n). As was shown in [5], 2TT can be maintained in time
O(k +m/k) after each update operation in G.

Lemma 2.31. A 2-dimensional topology tree can test in time O(m/k) whether a
node C is avoidable on a path P in a high-level graph Hi. It can be updated in time
O(k).

The extended ambivalent data structure. To determine the avoidability of
all but O(log n) nodes on a path P in Hi, for i = 1, 2, we simply extend TT and 2TT
with additional labels to construct the extended ambivalent data structure. We will use
two types of avoidability information, one for H1 and one for H2. Our approach is to
partition Ti into complete paths and to keep avoidability information for each complete
path. Then we show that each path P consists of subpaths of O(log n) complete paths.
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Thus, P ’s avoidability can be determined from the avoidability information of these
complete paths. To be precise let P = πTi(A,B) in Hi. Let P1 = P if i = 1, and let
P1 = PT1 if i = 2. We partition P1 at the least common ancestor LCA of its endpoints
A1 and B1 into the paths PA = πT1(A1, LCA) and PB = πT1(B1, LCA). Note that
both paths are increasing, i.e., they consist of a directed path toward the root R of T1.
We show below how to test the avoidability of all but O(log n) nodes of an increasing
path by breaking it into O(log n) complete paths.

Recall that T1 is stored in a rooted topology tree TT . Note that T1 induces a
rooted spanning tree TTj of the nodes at each level j of TT whose root is R. Note
further that when given TT, R, and also the least common ancestor between any two
basic clusters can be determined in time O(log n).

We now give the necessary definitions. For a basic cluster X1 let the graph G(X1)
be (1) the graph induced by the vertices of X1, if the tree degree of X1 is 1 or 3,
and (2) the graph induced by the vertices of X1 with all vertices between the two
boundary nodes contracted to one vertex, otherwise.

To construct complete paths we first need to introduce partial paths. We define
the partial path of a basic cluster X1 to be the (unique) endpoint x(X1) in G(X1) of
the tree edge incident to X1. In the following we often identify X1 and x(X1). Note
that if X1 shares a vertex s, then the partial path of X1 consists of s. The partial
path9 of a level-i cluster X1 with i > 0 consists of

(1) Case A: the partial path of X2, if X1 consists of one level-(i− 1) cluster X2,
(2) Case B: the concatenation of the partial path of X2 and of X3, if X1 is the

union of X2 and X3, and neither X2 nor X3 has tree degree 3.
(3) Case C: the vertex x(X3) and the two tree edges incident to it that are not

incident to X2 if X1 is the union of X2 and X3, and X2 has tree degree 1 and X3 has
tree degree 3. In this case the complete path of X1 consists of the partial path of X2

concatenated with the vertex x(X3). In all previous cases, the complete path of X1 is
not defined. Note that X3 is the parent of X2 in TTj .

(4) Case D: an empty path if X1 is the union of X2 and X3, and X2 has tree
degree 1 and X3 has tree degree 1. In this case the complete path of X1 consists of
the partial path of X2 and the partial path of X3.

For every complete path not stored at the root of TT note that one endpoint has
tree degree 1, and one has tree degree 3 (namely, the vertex of X3). The endpoints of
the complete path stored at the root of TT either both have tree degree 1 or one has
tree degree 1 and one has tree degree 3. We call the endpoint with tree degree 1 the
tail and the endpoint with tree degree 3 the head of the complete path. A tree-degree
3 node belongs to two complete paths; in one it is an internal node and in one it is a
head. All other nodes belong to exactly one complete path.

If x(X1), . . . , x(Xp) is the sequence of nodes on a partial or complete path P c,
then either X1, . . . , Xp is an increasing path in T1 or X1, . . . , Xj and Xp, Xp−1, . . . , Xj

are increasing paths, for some 1 < j < p.
Next we show that PA and also PB consist of O(log n) increasing subpaths of

complete paths. We will store avoidability information for the complete paths and
use it to test the avoidability of PA and PB except for the nodes that are heads in
the complete paths. Let P c

1 , P
c
2 , . . . , P

c
l be the complete paths whose intersection with

PA is nonempty such that the head of P c
j belongs to P c

j+1. Let Xj be the topology
node in TT at which P c

j is stored. Note that all topology nodes whose partial path
contains a vertex of P c

j are true descendants of Xj in TT . Note further that the head

9A path is formed by a list of vertices.
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of P c
j−1 belongs to P c

j . Thus, Xj−1 is a true descendant of Xj . Since TT has depth
O(log n) it follows that PA is contained in the union of O(log n) complete paths, i.e.,
l = O(log n). The same holds for PB .

We use the algorithm described in the previous section to test the avoidability of
LCA on PA and PB and for the heads of the complete paths. For all remaining nodes
on PA and PB we use the extended ambivalent data structure. It consists of further
labels for the 2-dimensional topology tree 2TT and search trees for the partial and
complete paths. The labels and search trees will be oblivious of the rooting of T1,
which is important for the efficiency of rebuilds.

Every node A×B with A �= B is labeled with two additional labels maxcov and
shared that are explained later. Each node A×A of 2TT is labeled with a pointer to
the partial path and complete path (if it exists) of A. The partial and complete paths
are stored in shared search trees as follows:

(1) The partial path of a level-0 cluster X is represented by one node x(X).
(2) In Case A, the search tree of the partial path of X1 is identical to the search

tree of the partial path of X2.
(3) In Case B, the partial path of X1 consists of a (root) node pointing to the

roots of the search trees of the partial paths of X2 and X3.
(4) In Case C, the partial path of X1 consists of one node. The complete path

of X1 consists of a (root) node pointing to the roots of the search trees of the partial
paths of X2 and X3.

(5) In Case D, the partial path of X1 is empty. The complete path of X1 consists
of a (root) node pointing to the roots of the search trees of the partial paths of X2

and X3.

Since the topology tree has depth O(log n), every search tree has depth O(log n). A
vertex v in the balanced search tree of a partial or complete path is labeled with two
bits somecovi(v) for i = 1, 2.

Let C be an internal node on the increasing path Q in Hi whose avoidability we
have to test. Let D and D′ be the neighbors of C on Q such that D is the child and
D′ is the parent of C in Ti. Lemma 2.37 below shows that

(1) for i = 1, if a complete path P c exists to which x(D′), x(C), and x(D) belong,
then somecov1(v) is set to 1 for an ancestor v of x(C) in P c iff C is avoidable on Q,
and

(2) for i = 2, let C1, . . . , Cl form an increasing subpath of QT1
with C1 = C(QT1)

and Cl = C(QT1)
′. If a complete path exists to which x(D′), x(D), and x(Cq) for all

1 ≤ q ≤ l belong, then for all Cq in P c, somecov2(vq) is set to 1 for an ancestor vq of
x(Cq) in P c iff C is avoidable on Q.

If no such complete path exists, then some Cq is the head of a complete path and
hence C is tested for avoidability using the 2-dimensional topology tree.

Note that P c is the lowest ancestor of the least common ancestor of C for H1

(resp., C1 for H2) and D in TT that has a complete path. It can be found in time
O(log n).

Thus, if l nodes of an increasing path of H1 lie on a complete path, we can
test their avoidability except for the head of the complete path in time O(l + log n).
Since the nodes of PA and PB are contained in O(log n) complete paths, we can test
the avoidability of all nodes on PA or PB excluding LCA and the heads in time
O(m/k + log2 n) = O(m/k) for k ≤ m/ log2 n.

Lemma 2.32. Given a path P in Hi the extended ambivalent data structure can
test the avoidability of all but O(log n) nodes on P in time O(m/k).
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Let us now define somecov, maxcov, and shared and prove Lemma 2.37. For a
cluster A the projection of a non-tree edge (u, v) with u ∈ A and v �∈ A onto the
partial or complete path P c of A is the node x on P c such that the tree path from u
to x in G(A) does not contain any other node on P c.

Recall that every node A × B with A �= B is labeled with a constant number of
labels: (1) For each tree edge E incident to A, there exists a label maxcov(A,B, e)
which is the node with maximum distance from e on the partial path of A that is
avoidable because of a non-tree edge between A and B, assuming that the tree edge
e incident to A lies on the tree path between A and B. (2) For each shared vertex s
of A, there exists a label shared(A,B, s) which is a bit that is set to 1 iff A shares s
and there is an edge between A and B whose projections onto the partial path of A
and of B are not nodes belonging to s.

Note that for each subpath of a complete path P c there exist O(log n) nodes in
the search tree of P c whose leaf descendants form exactly a subpath of P c. We say
we set the somecovi bits of a subpath when we set the somecovi bits of these O(log
n) nodes, excluding the nodes representing the endpoints.

The somecovi bits in the partial and complete paths are defined bottom-up. No
basic cluster has a complete path and the partial path of every basic cluster consists
of one node whose somecov bit is set to 0. The partial and complete path of a level-
(j + 1) cluster X1 is computed with the help of the maxcov and shared labels at
the nodes of 2TT as follows. If X1 has two children let e = (x, y) be the tree edge
connecting them.

(1) In Case A, the partial path of X1 is identical to the partial path of this child.
(2) In Case B, the partial path ofX1 is built by adding a node pointing to the bal-

anced search trees of X2 and X3. The somecovi bits of this node are unset. We set the
somecov1 bit to 1 for the path p between maxcov(X2, X3, e) and maxcov(X3, X2, e).
We remove from p all but one representative of the shared vertices of the endpoints of
p. This results in a subpath p′. If e is solid or if e is dashed, belonging to the shared
vertex s, and shared(X2, X3, s) is 1, then we also set the somecov2 bits of p′. If e is
dashed and shared(X2, X3, s) is 0, then we split p′ at the representatives of s and
remove all but one representative of s from each of the resulting subpaths. We set the
somecov2 bits for these subpaths.

(3) In Case C, the partial path of X1 consists of a tree of one node whose
somecovi bits are set to 0. The complete path of X1 consists of the partial path
of X2 unioned with the partial path of X3 which consists only of the node x(X3). We
describe next which somecovi bits of this complete path are set. We set the somecov1

bits of the subpath p between x(X3) and maxcov(X2, Y, e) for any level-j cluster Y
in TTj \X2. We remove from p all but one representative of the shared vertices of the
endpoints of p. We set the somecov2 bits of this subpath.

(4) In Case D, the partial path of X1 is empty. The complete path of X1 consists
of the partial path of X2 unioned with the partial path of X3. We set the somecov1

bits of the subpath p between maxcov(X2, X3, e) and maxcov(X3, X2, e). We remove
from p all but one representative of the shared vertices of the endpoints of p. This
results in a subpath p′. If e is solid or if e is dashed, belonging to the shared vertex
s, and shared(X2, X3, s) is 1, then we also set the somecov2 bits of p′. If e is dashed
and shared(X2, X3, s) is 0, then we split p′ at the representatives of s and remove all
but one representative of s from each of the resulting subpaths. We set the somecov2

bits for these subpaths.

Given the maxcov and shared labels, the above description also is an algorithm
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to build the partial paths of X1 from the partial paths of the children of X1 in time
O(log n) and the complete path of a level-j cluster in time linear in the number of
level-j nodes in TT.

Next we show how to use the somecovi bits to test the avoidability of a node e.
We start with the somecov1 bits.

Lemma 2.33. Let P c be a complete path and let D,D′, and C be basic clusters
such that x(C), x(D), and x(D′) belong to P c. Then somecov1(v) is set for an ancestor
v of x(C) in P c iff there exists a non-tree edge between ST (C,D) and ST (C,D′).

Proof. Consider the lowest level node X1 such that the partial or complete path
P x of X1 contains x(c), x(D), and x(D′). Let j+1 be the lowest level of X1 at which
a somecov1 bit is set for an ancestor v of x(C). Then X1 has two children X2 and X3

in TT, connected by an edge e in TTj . Without loss of generality (w.l.o.g.) x(C) is
a node of the partial path of X2. Then somecov1(v) is set in the path of X1 because
x(C) is an internal node of the subpath of P x between maxcov(X2, X3, e) and the
first node of X3 on P x. By the definition of maxcov there exists an edge between
ST (C,D) and ST (C,D′).

Assume next that an edge exists between ST (C,D) and ST (C,D′). Let X1 be
the least common ancestor of D and D′ in TT and let X2 and X3 be its two chil-
dren. W.l.o.g. the partial path of X2 contains x(C) and x(D). Since there exists
a non-tree edge between X2 and X3 whose projection is x(D), x(C) lies between
maxcov(X2, X3, e) and the first node of X3 on the partial or complete path P x of X1.
Thus the somecov1 bit is set for an ancestor of x(C) in the partial or complete path
of X1 and, hence, also in P c.

Next we discuss under which conditions somecov2(v) is set for an ancestor v of
x(C).

Lemma 2.34. Let C be a basic cluster and let P c be a complete path containing
C. If C is not connected in T1 to its neighbors in P c by a dashed edge of P c, then
somecov2(v) is set for an ancestor v of x(C) in P c iff somecov1(v) is set.

Proof. The lemma follows immediately from the definition of somecov2.

Lemma 2.35. Let P c be a complete path and let C1, . . . , Cl be basic clusters such
that x(C1), . . . , x(Cl) forms a maximal subpath of P c sharing the same vertex s. Let j
be the lowest level such that the somecov2 bits are set for an ancestor for every node
x(C1), . . . , x(Cl). Then all nodes x(C1), . . . , x(Cl) belong to the partial or complete
path of the same cluster at level j.

Proof. Let P c be stored at a level j∗ node. The claim obviously holds for level j∗.
Assume it does not hold for a level j < j∗. Then there exists at least one node x(Cq)
that is an endpoint of its partial path on level j and in this partial path there exists
an ancestor of x(Cq) whose somecov2 bit is set. Note that x(Cq) was the endpoint of
this partial path for every level ≤ j. Note further that the somecov2 bit is never set
to 1 for an ancestor of an endpoint of a partial path. Thus at level j, the somecov2

bit is not set for any ancestor of x(Cq). This is a contradiction.

Lemma 2.36. Let P c be a complete path and let D,D′, and C1, C2, . . . , Cl be
basic clusters such that x(D), x(C1), x(C2), . . . , x(Cl), x(D

′) is a subpath of P c and
x(C1), x(C2), . . . , x(Cl) forms a maximal subpath of P c sharing the same vertex. Then,
for all 1 ≤ q ≤ l, somecov2(v) is set for an ancestor v of x(Cq) in P c iff there exists
a non-tree edge between ST (C1, D) and ST (Cl, D

′).

Proof. Let s be the vertex shared by the cluster Cq to which the dashed edges
incident to Cq belong. Consider the lowest level j + 1 at which, for all 1 ≤ q ≤ l,
somecov2(vq) is set for an ancestor vq of x(Cq). By Lemma 2.35, all x(Cq) belong to
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the partial or complete path P x of the same level-(j+1) cluster X1. Then X1 has two
children X2 and X3 connected by an edge e in TTj . Note that one of the somecov2(vq)
bits was set while constructing P x.

If neither X2 nor X3 has tree degree 3, a somecov2(x(Cq)) bit was set when
constructing the path for X1 because either (1) x(D), x(D′), and all nodes x(Cq) are
nodes on the path between maxcov(X2, X3, e) and maxcov(X3, X2, e), and e does
not belong to s, or (2) there exists an edge between X2 and X3 whose projections do
not belong to s. In either case there exists a non-tree edge between ST (D,C1) and
ST (Cl, D

′).

If X2 has tree degree 1 and X3 has tree degree 3, a somecov2(x(Cq)) bit is set
while constructing the path for X1 only if all nodes x(Cq) are internal nodes on the
path between maxcov(X2, Y, e) and x(X3) for a level-j cluster Y in TTj\X2. It follows
that there is a non-tree edge between ST (C1, D) and ST (Cl, D

′).

Assume next that an edge exists between ST (C1, D) and ST (Cl, D
′). Let X1 be

the least common ancestor of D and D′ and let X2 and X3 be its two children. If
neither X2 nor X3 has tree degree 3, we consider two cases. If the tree edge e between
X2 and X3 does not belong to s, the somecov2 bits of the subpath x(C1), . . . , x(Cl)
including endpoints are set because the tree edge lies between maxcov(X2, X3, e) and
maxcov(X3, X2, e). If e belongs to s, the somecov2 bits of the subpath are set because
shared(X2, X3, s) is 1.

If X2 has tree degree 1 and X3 has tree degree 3, then x(X3) = x(D′) or x(X3) =
x(D), i.e., e is solid. The subpath x(C1), . . . , x(Cl) is internal to the path between
maxcov(X2, Y, e) and x(X3) for some level-j cluster Y in TTj\X2. Thus, the somecov2

bits of the subpath x(C1), . . . , x(Cl) including endpoints are set.

Lemma 2.37. Let C be an internal node on the increasing path Q in Ti and let
D and D′ be the neighbors of C on Q such that D is the child and D′ is the parent of
C.

(1) For i = 1, if a complete path P c exists to which x(D′), x(C), and x(D) belong,
then somecov1(v) is set to 1 for an ancestor v of x(C) in P c iff C is avoidable on Q.

(2) For i = 2, let C1, . . . , Cl form an increasing subpath of QT1 with C1 = C(QT1)
and Cl = C(QT1

)′. If a complete path exists that contains x(D′), x(D), and x(Cq)
for all 1 ≤ q ≤ l, then for all Cq in P c somecov2(vq) is set to 1 for an ancestor vq of
x(Cq) iff C is avoidable on Q.

Proof. Let P c be C’s complete path. We discuss first the case i = 1. Lemma 2.33
shows that somecov1 is set for an ancestor of x(C) iff there is a non-tree edge between
ST (C,D) and ST (C,D′). By the definition of avoidability, the latter holds iff C is
avoidable on Q.

Next we discuss the case i = 2. Lemma 2.34 shows the claim if l = 1. If l > 1,
then C represents at least two clusters in H1. Lemma 2.36 shows that for all Cq in
P c somecov2(vq) is set to 1 for an ancestor vq of x(Cq) iff there exists a non-tree edge
between ST (C1, D) and ST (Cl, D

′). The latter holds iff C is avoidable on Q.

Lemma 2.38. The extended ambivalent data structure can determine the avoid-
ability of all but O(log n) nodes on a path P in H in time O(m/k).

Updates. Next we show how to maintain the maxcov and shared values and
the partial and complete paths in time O(k) after each update operation in G. First,
we discuss the maxcov and shared values. By definition an update (u, v) operation
affects only the maxcov(X,Y, e) and shared(X,Y, s) values iff either X or Y contains
either u, v, x, or y, where (x, y) is the new tree edge. Consider the subtree of 2TT
induced by marking all nodes A× B such that A and B contain either u, v, x, or y.
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Since this subtree forms a structure which is isomorphic to two copies of TT, the total
number of affected maxcov and shared values is O(m/k). As was shown in [6] for
the maxcov values and as we show below for the shared values each such value at an
internal node of 2TT can be computed in constant time from the values of its children
and in time O(k) for a basic cluster. Thus, updating all maxcov and all shared values
takes time O(k).

Lemma 2.39 shows that the only clusters whose partial or complete paths are af-
fected by updates are the ones that are ancestors in TT of the basic cluster containing
u, v, x, or y. Thus, the partial and complete paths of at most two clusters at each
level have to be updated. We discuss below how to restore the partial and complete
paths of the clusters that do not contain u, v, x, or y, but are children of clusters
containing u, v, x, or y. The partial path of a cluster C can be computed in time
O(log n) from the partial paths of the children of C and the shared and maxcover
values. The complete path of a cluster C at level j can be computed in time linear in
the number of level j nodes in TT from the partial path of the child of C with tree
degree 1 and from the shared and maxcover values. Since TT has depth O(log n)
and size O(m/k), all affected partial and complete paths can be updated in time
O(m/k + log2 n) = O(m/k) for k ≤ m/log2 n.

Whenever we build the partial or complete path we keep a back log that stores
for each node X1 of 2TT all the operations that were executed to build the partial
or complete path of X1 from the partial or complete path of its children. Whenever
we execute an update operation, we walk top-down in TT and restore the path of
the suitable clusters and their children. The partial and complete path of the root
of TT are given. Assume inductively the partial and complete path of a node X at
level j are restored. Undo the operations in the back log of X to restore the partial
and complete paths of the children of X. Then recurse on the suitable child(ren) of
X. The same argument as above shows that this takes time O(m/k). Note also that
modifications in the back log of one child does not affect the back log of its sibling.

Lemma 2.39. An insert(u, v) and a delete(u, v) operation only modifies the bal-
anced tree of partial or complete paths of clusters containing u, v, x, or y, where (x, y)
is a new tree edge.

Proof. A somecov bit is set at a node in the balanced tree representing the
partial path of a cluster C only if there exists an edge internal to C that covers the
corresponding nodes. For a cluster not containing u, v, x, or y neither the partial
path nor the non-tree edges internal to the cluster have changed. Thus, the balanced
search tree of its partial path does not have to be updated.

Next we discuss complete paths. If a cluster C which has a complete path does
not contain u, v, x, or y, then the partial path of its child C ′ with tree degree 1
and the non-tree edges incident to C ′ are not affected by the above argument. The
modifications to this partial path that create the data structure for the complete path
of C depend only on the projection of edges incident to C ′ onto the partial path
of C ′. Since the partial path of C ′ and the non-tree edges incident to C ′ did not
change, the balanced search tree of the complete path of C is not affected by the
operation.

We are left with showing how to compute shared(A1, B1, s) from the shared
values of the children of A1 and B1 and information stored at their children in constant
time. Recall that for each pair of clusters at the same level shared(A1, B1, s) is 1 iff
A1 shares s and there is an edge between A1 and B1 whose projection onto the partial
path of A1 and onto the partial path of B1 is not s. If A1 does not share a vertex s,
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then shared(A1, B1, s) is not defined. Since each basic cluster and each cluster with
tree degree 1 or 3 shares at most one vertex and each nonbasic cluster with tree degree
2 shares at most two vertices, at most four shared(A1, B1, .) values are defined for
every pair of clusters A1 and B1. We distinguish cases depending on the number of
children of A1 and of B1 under the assumption that A1 shares the vertex s.

Case 1: A1 and B1 are basic clusters.
Then shared(A1, B1, s) = 0, since every edge incident to A1 is projected onto s

when it is projected onto the partial path of A1.
Case 2: A1 and B1 are clusters at level j > 0.
Case 2.1: A1 has one child A2 and B1 has one child B2.
Then shared(A1, B1, s) = shared(A2, B2, s).
Case 2.2: A1 has one child A2 and B1 has two children B2 and B3.
If neither B2 nor B3 has tree degree 3, then shared(A1, B1, s) = shared(A2, B2, s)

or shared(A2, B3, s).
If the tree degree of B3 is 3 and the tree degree of B2 is 1, then shared(A1, B1, s) =

shared(A2, B2, s) if B3 does not share s and 0 if B3 shares s.
Case 2.3: A1 has two children A2 and A3, A3 shares s, and B1 has one child B2.
W.l.o.g. A3 is incident to the tree edge incident to A1. Thus, A3 has tree degree

at least 2. If the tree degree of A3 is 3, then shared(A1, B1, s) = 0, since every edge
incident to A1 is projected onto s when it is projected onto the partial path of A1.

If the tree degree of A3 is 2, then we distinguish between the cases that A2 shares
s and that A2 does not share s. If A2 shares s, then

shared(A1, B1, s) = shared(A2, B2, s),

since the projection of every edge incident to A3 onto the partial path of A1 is s.
If A2 does not share s, then we distinguish between the cases that B2 shares s

and that B2 does not share s. If B2 shares s, then

shared(A1, B1, s) = shared(A3, B2, s)or shared(B2, A2, s).

(Note that shared(A2, B2, s) is not defined in this case, but shared(B2, A2, s) is de-
fined.)

If B2 does not share s, then

shared(A1, B1, s) = shared(A3, B2, s)or edge(A2, B2),

where edge(A2, B2) = 1 iff there exists an edge betweenA2 andB2 iffmaxcov(A2, B2, e)
(for any tree edge e incident to A2) is defined.

Case 2.4: A1 has two children A2 and A3 and B1 has two children B2 and B3.
W.l.o.g. A3 is incident to the tree edge incident to A1. Thus, A3 has tree degree at

least 2. If the tree degree of A3 is 3, then shared(A1, B1, s) = 0, since the projection
of every non-tree edge incident to A1 onto the partial path of A1 is s.

If the tree degree of A3 is 2, then we distinguish between the cases that A2 shares
s and that A2 does not share s. If A2 shares s, then

shared(A1, B1, s) = shared(A2, B2, s)or shared(A2, B3, s),

since the projection of every non-tree edge incident to A3 onto the partial path of A1

is s.
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If A2 does not share s, then we distinguish between the case that (1) B2 shares s
and B3 does not share s, that (2) B3 shares s and B2 does not share s, that (3) both
share s, and that (4) both do not share s.

In case (1) (B2 shares s and B3 does not share s)

shared(A1, B1, s) = shared(A3, B2, s)or shared(A3, B3, s)or

shared(B2, A2, s)or edge(A2, B3).

(Note that shared(A2, B2, s) is not defined in this case, but shared(B2, A2, s) is de-
fined.) The case (2) is symmetric to case (1).

In case (3) (B2 and B3 share s)

shared(A1, B1, s) = shared(A3, B2, s)or shared(A3, B3, s)or

shared(B2, A2, s)or shared(B3, A2, s).

In case (4) (B2 and B3 do not share s)

rclshared(A1, B1, s)

= shared(A3, B2, s)or shared(A3, B3, s)or edge(A2, B2)or edge(A2, B3).

This shows that the shared(A1, B1, .) bit can be computed in constant time from
the shared and maxcov values of the children of A1 and B1 and it finishes the proof
of the following lemma.

Lemma 2.40. The extended ambivalent data structure can be updated in time
O(k).

2.8. The c-structure. In this section we address the following problem. Given
the c-nodes of a cluster graph (see section 2.5) or the c-nodes of a shared graph G(s)
for a new shared vertex s (see section 2.6.1), determine which c-nodes are CV-split
by an update operation. For this problem we give in this subsection a data structure,
called c-structure and show in the next subsection that in a phase O(m/k) splits of c-
node occur because of violation of condition (a) or (b) (called CV-splits). Additionally
we show that the e-nodes of a shared graph G̃(s) for an old shared vertex s (see
section 2.6.2) fulfill the conditions of a c-node and therefore the same data structure
and proof apply.

First we recall the definitions of c-node and e-node; next we show that an e-node
also fulfills the conditions of a c-node, and then we define the c-structure exactly .

Let H = H1 for c-nodes in cluster graphs and H = H2 for c-nodes in shared
graphs. Given a node C in H with ancestor A a c-node represents a maximal set X
of nodes of H such that

(a) every node C ′ ∈ X is a neighbor of C,
(b) all nodes in X are connected in H \ C,
(c) all nodes in X have the same ancestor which is different from A,
(d) at the creation of C, the set X contains only one node, and
(e) at each previous point in time since the creation of C all nodes of H that

contain the vertices in ∪C′∈XC ′ existing at this time are represented by the
same c-node.

We show next that every e-node in the graph G̃(s) of an old shared vertex s fulfills
the conditions of a c-node with H = H2. Thus the amortization lemma of the next
section also applies to e-nodes.
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Lemma 2.41. Every e-node in the graph G̃(s) of an old shared vertex s fulfills
the conditions of a c-node with H = H2.

Proof. By definition every e-node fulfills conditions (a)–(d) of a c-node. We only
have to show that it also fulfills condition (e).

Let X be an e-node. By definition the vertices in ∪C′∈XC ′ used to belong to the
same node Cold of H2 and since the split of Cold, the graph G(s) was not modified and
the connected components of H2 \ Cs did not change. Thus, before the last change
in G(s) or H2 \ Cs the nodes in X belonged to the same node of H2 and thus were
represented by the same e-node.

Assume by contradiction that the nodes in X were represented by different e-
nodes at some point since the last change in G(s) or H2 \ Cs. While the nodes were
represented by different e-nodes they either must violate condition (a) or (b) of an
e-node, since conditions (c), (d), and (e) continue to hold. However, now they fulfill
conditions (a) and (b), i.e., either G(s) or H2 \ Cs must have changed, which is a
contradiction.

Thus, e-nodes are just a special case of c-nodes and we will just use the term
c-node in the following to denote c-nodes as well as e-nodes.

A c-node of C is CV-split iff conditions (a) or (b) of a c-node are no longer fulfilled.
Given the high-level graph H and its data structures the c-structure maintains

the c-nodes of each node in H under the following operations:
(1) c-split (C,C1, C2, u, v), where C is a node of H split by the delete(u, v) or

insert(u, v) operation, C1 and C2 are the two nodes of H created by the split. Split
the node C into C1 and C2.

(2) c-add (C1, C2), where C1 and C2 are nodes of H. Add one edge between C1

and C2.
(3) c-remove (C1, C2), where C1 and C2 are nodes of H. Remove the edge

between C1 and C2 and return a (possibly empty) list of CV-split c-nodes and for
each newly created c-node return its element list.

We use the following data structure for the c-structure, which uses O((m/k)2)
space.

(T1) For each node of H we keep a list of its c-nodes. For each c-node we keep
a list of its elements. For each node in H we keep a list of all the c-nodes it
belongs to. The position of the node in the list of the c-node and the position
of the c-node in the list of the node point to each other.

We keep two c-structures, namely, one with H = H1 to determine the CV-splits
in c-nodes of the cluster graphs, and one with H = H2 to determine the CV-splits in
c-nodes of the shared graph for new shared vertices.

2.8.1. Implementing the c-structure. We implement the operations as fol-
lows.

c-split (C,C1, C2, u, v): This requires (i) updating the c-nodes of C and (ii) up-
dating the c-nodes containing C. (i) Discard all c-nodes of C. Each neighbor of C1

(resp., C2) forms a 1-element c-node for C1 (resp., C2). (ii) Use (T1) to determine all
c-nodes X to which C belongs. Replace C by either C1 or C2 or both in X, depending
on which of the new nodes are incident to D. Note that all nodes in X still fulfill (a),
(c), (d), and (e) of a c-node. By Lemma 2.8 all nodes continue to fulfill (b) as well.

c-add (C1, C2): If C1 and C2 have the same ancestor, do nothing. Otherwise,
search the c-nodes to which C1 belongs to determine whether C2 is one of them. If
not, add to the c-nodes of C2 a 1-element c-node consisting of C1. Repeat with the
roles of C1 and C2 exchanged.
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c-remove (C1, C2): If C1 and C2 have the same ancestor, do nothing. Otherwise,
determine the c-node of C2 to which C1 belongs and remove C1 from it. If this c-node
becomes empty, discard it. If the c-node is modified, output it and its new element
list. Repeat with the roles of C1 and C2 exchanged. Finally determine all articulation
points D on π(C1, C2) in the (updated) graph H using (HL4). Test as follows for each
c-node X of D whether (b) is violated, and if so, how to partition X. Using (HL3)
determine for each node C ′ in X the tree neighbor of D on π(C ′, D) and bucketsort
the node according to the blockid of “its” tree neighbor using (HL4) and (HL6). This
results in either one or two nonempty buckets. In the former case (b) is not violated.
In the latter case, split the list of X according to the two buckets and report the
CV-split of X and return the two resulting lists.

To analyze the running time note that the intersection of two different c-nodes of
C is empty. The time spent by a c-split or c-add operation is linear in the number of
c-nodes of a node in H, which is O(m/k). In c-remove we spend the time O(m/k) to
determine all articulation points and then the following time per articulation point
D: O(log n) per non-tree neighbor of D to bucketsort it and constant time to remove
it from the bucket again. Since the nodes D are articulation points on a path in H,
this sums up to O((m/k) log n) by Lemma 2.1. Additionally the c-remove operation
spends time O(m/k) to update the c-nodes of C1 and the c-nodes of C2. Thus, the
total time spent is O((m/k) log n).

2.8.2. Updating the c-structure. At the beginning of a phase each c-node
consists of one node: every neighbor of a node in H forms its own c-node.

Whenever an edge is inserted in G and H changes, then first the data structures
of H are updated and then a c-add and potentially afterward a constant number of
c-split’s are executed in the c-structure. Whenever an edge is deleted from G and
H changes, then first the data structures of H are updated and then potentially a
constant number of c-split’s and afterward a c-remove are executed in the c-structure.
If an internal tree edge of a cluster C is deleted, then this implies that first the cluster
is split at this tree edge and afterward the tree edge is deleted. Each operation can be
implemented in time O((m/k) log n). Since there are only a constant number of them
per update in G, this gives a total time of O((m/k) log n) to update the c-structure.

Theorem 2.42. The c-structure
(1) can be updated in time O((m/k) log n) after each update in G, and returns

all the c-nodes CV-split by the update and the resulting c-nodes, and
(2) can be built in time O(m).

2.9. The amortization lemma. We show next that during a sequence of l
updates in a phase O(l) CV-splits of c-nodes occur. A similar, but less general lemma
was shown in [11].

Lemma 2.43. During l updates in G in a phase at most 2l CV-splits of a c-node
occur because of violation of condition (a).

Proof. Condition (a) is violated if a node C ′ belongs to a c-node of node C, but C ′

is no longer incident to C. This is only possible if C as well as C ′ contains an endpoint
of the update edge. Since all c-nodes of C are disjoint, condition (a) is violated for at
most one c-node of C. Similarly, condition (a) is violated for at most one c-node of
C ′ and for no c-nodes at other nodes.

Lemma 2.44. During l updates in G in a phase O(l + m/k) CV-splits occur
because of the violation of condition (b) for l ≥ m/k.

Proof. We construct a bipartite graph K consisting initially of O(m/k) blue
nodes, O(m/k) red nodes, and O(m/k) edges between red and blue nodes. A red node
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is incident to at least one blue node. We show that during a sequence of l updates
in G the number of blue nodes in K increases by O(l) (Proposition 2.45), each CV-
split of a c-node increases the number of connected components of K by at least
one (Proposition 2.46), and no other operation decreases the number of components
(Proposition 2.51). Thus, there are at most O(l + m/k) splits of c-nodes during l
updates in G.

The proof will exploit the following fact: Whenever a c-node at C containing D1

and D2 is CV-split, then there is no c-node at another node C ′ that contains both
D1 and D2. (Otherwise the path “through” C ′ would connect D1 and D2 in H \ C.)
Thus, the split discards the last common c-node of D1 and D2. We will show that an
even stronger property holds: Assume the relation r(D1, D2) holds iff D1 and D2 have
a common c-node. Let r∗ be the transitive closure of r. Then whenever the c-node
containing D1 and D2 is split, then r∗(D1, D2) does not hold after the split. The
graph K is constructed so that this fact implies that the connected components of K
increase.

Recall that an edge of H consists of a set of edges of G′. An edge of H is called
new if all edges of G′ in its set are new, i.e., have been inserted after the last rebuild.
All other edges of H are old. We “treat” new edges in a special way to guarantee that
edge insertions do not decrease the number of connected components of K. Note that
there are at most l new edges in H at each point in time.

We next define K.

(1) For each node C in H and each c-node X at C, K contains a red node (C,X).
(2) For each node D in H, K contains a blue node D.
(3) For each node D in a c-node X at C such that (D,C) is new there exists a

blue node (D,X). These nodes are called special.
(4) Let D be in the c-node X at C. If both a red node (C,X) and a blue node

(D,X) exist, there exists an edge between (C,X) and (D,X). If (D,X) does not
exist, there is an edge between (C,X) and D.

By abuse of notation we will equate a blue node in K with the node of H represented
by the blue node. Note that every edge in K corresponds to an edge of H. Thus, if
two blue nodes are connected in K, their nodes are connected in H.

There are four events that modify K: (A) a c-split operation, (B) a c-add opera-
tion, (C) a c-remove operation, and (D) the change of an edge from old to new.

Next we describe each event in detail:

(A) A c-split (C, C1, C2,u,v) operation. (1) Every red node (C,X) is removed.
For each D ∈ X incident to C1 we create a red node (C1, {D}), and if the
blue node (D,X) exists, it is replaced by a blue node (D, {D}). The new red
node is connected to (D, {D}) if it exists and to D otherwise. We proceed in
the same way with C2. (2) The blue node C and all blue nodes (C,X) are
split into two nodes and connected to the appropriate neighbors of the split
nodes.

(B) A c-add (C1, C2) operation. It might add a new red node at (C1, {C2}), a new
blue node (C2, {C2}), and connect them by an edge. It might do the same
with the roles of C1 and C2 reversed.

(C) A c-remove (C1, C2) operation. Let X be the c-node at C1 containing C2.
Remove the edge between the red node (C1, X) and the corresponding blue
node representing C2. If the blue node (C2, X) exists, remove it. If X = {C2},
also remove (C1, X). Proceed in the same way with the roles of C1 and C2

reversed. Finally for each split c-node X ′ of an articulation point D on
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π(C1, C2) in H replace the red node (D,X ′) by two red nodes, one for each
new c-node and connect their blue neighbors suitably.

(D) An old edge (D,C) of H becomes new. If D belongs to the c-node X at C,
then add a new blue node (D,X) with edge to (C,X) and remove the edge
from D to (C,X). Then proceed in the same way with the roles of D and C
reversed.

We prove next the three missing propositions.

Proposition 2.45. During l update operations the number of blue nodes in-
creases by O(l).

Proof. A sequence of l update operations in G leads to at most 7l c-split op-
erations, l c-add operations, and l c-remove operations. At each point there are at
most 2l special blue nodes. Next we bound the number of nonspecial blue nodes. A
c-add operation, a c-remove operation, and the change of an edge from old to new
do not increase the number nonspecial blue nodes. A c-split increases the number
of nonspecial blue nodes by at most 1. Thus, the number of nonspecial blue nodes
increases by O(l).

Next we show that the CV-split of a c-node increases the number of connected
components by at least 1.

Proposition 2.46. A CV-split of a c-node increases the number of connected
components by at least 1.

Proof. Consider the split of the c-node X at node C ′. A c-node is CV-split
only during a c-remove operation. So consider the removal of edge (C1, C2). Let
{X1, X2, . . . , Xp} be all the c-nodes that are CV-split at C ′. Let D1 and D2 be the
tree neighbors of C ′ on π(C1, C2) and let Y1 and Y2 be the blue nodes representing
D1 and D2 and incident to the red node (C ′, Xi) for some 1 ≤ i ≤ p in K. To update
K, each red node (C ′, Xj) is replaced by two new red nodes, one representing each
new c-node. Each (blue) neighbor of (C ′, Xj) is connected to exactly one of the new
c-nodes depending on which new c-node it belongs to. Obviously, D1 and D2 are con-
nected to different new red nodes. As we show in Proposition 2.50 after the c-remove
operation there exists no path in K anymore between D1 and D2, i.e., the number of
connected components in K has increased by at least 1.

We are left with proving Proposition 2.50 and showing that the number of con-
nected components of K does never decrease. We first need some intermediate results.

Proposition 2.47. Every blue node (D,X) has degree 1 in K.

Proof. Let X be a c-node of node C of H. By definition of K, a blue node (D,X)
can only be adjacent to node (C,X).

Proposition 2.48. Let C be a node in H. Each blue node representing a node
D in H is incident to at most one red node (C,X), and X is the c-node to which D
belongs at C.

Proof. The proof follows from the construction of K since each node D belongs
to at most one c-node at C.

Proposition 2.49. If two blue nodes are connected in K, then they represent
nodes with the same ancestor.

Proof. If there is a path in K between the two blue nodes Y and Y ′, then let
B1, . . . , Bj be the blue nodes on this path with Y = B1 and Y ′ = Bj . Since Bi and
Bi+1 are adjacent to the same red node, they belong to the same c-node at that node
and thus have the same ancestor. By the transitivity of the ancestor relation the claim
follows.

Proposition 2.50. Consider the operation c-remove(C1, C2). Let {X1, X2, . . . ,
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Xp} be all the c-nodes that are CV-split at a node C ′ of H. Let D1 and D2 be the
tree neighbors of C ′ on π(C1, C2). Let Y1 and Y2 be the blue nodes representing D1

and D2 that are incident to a red node (C ′, Xi) for some 1 ≤ i ≤ p. Then after the
c-remove operation no path exists connecting Y1 and Y2.

Proof. Consider first the case that either (D1, C
′) or (D2, C

′) is new. By Propo-
sition 2.47 every path between Y1 and Y2 contains (C ′, Xi) and hence is disconnected
after the remove operation.

Assume next that both edges are old, i.e., Y1 = D1 and Y2 = D2, and assume
that a path P exists between them after the c-remove operation. Since the c-node of
D1 and D2 was CV-split, after the deletion of (C1, C2) every path in H connecting D1

with D2 in H contains C ′. We will show that the existence of P implies the existence
of a path in H \ C ′ connecting D1 and D2, which gives the contradiction.

For this we show (1) that no blue node representing C ′ belongs to P, and (2) that
the blue nodes incident to a red node (C ′, X ′) on P are connected in H \C ′ after the
update.

(1) Since D1 and D2 belonged to a c-node at C ′, their ancestor differs from the
ancestor of C ′. By Proposition 2.49 the nodes of H represented by the blue nodes of
P all have the same ancestor. Thus, no blue node representing C ′ belongs to P .

(2) Let Fk and F ′
k be the two nodes incident on P to the kth red node (C ′, X ′)

for some c-node X ′. Then Fk and F ′
k both belong to the same c-node X ′. It follows

that Fk and F ′
k are connected in H \ C ′ after the deletion of edge (C1, C2).

From (1) it follows that P forms a path without a blue node representing C ′: (2)
shows that every red node on P representing C ′ can be avoided by a path in H \C ′.
Let l be the number of red nodes representing C ′ on P . Note that the subpaths of P
between F ′

k and Fk+1, the subpath from D1 to F1, and the subpath from F ′
l to D2

contain no edge incident to C ′ and thus correspond to paths in H \C ′. It follows that
P induces a path in H \C ′ between D1 and D2 after the deletion of (D1, D2), which
is a contradiction.

Proposition 2.51. The number of connected components of K never decreases.
Proof. As shown in Proposition 2.46 a c-remove operation does not decrease the

number of connected components.
A c-split operation consists of two parts. In part 1 the red node (C,X) is replaced

by many red nodes, each being connected at most to all the nodes that (C,X) was
connected to. This does not decrease the number of connected components. In part
2 the blue node C and all blue nodes (C,X) are each split into two new nodes such
that each new node is connected to at most all the nodes that the original blue node
was connected to. So again, the number of connected components is not decreased.

A c-add (C1, C2) operation might add a new blue node (C2, X), a new red node
(C1, X), an edge between them, and the same with the roles of C1 and C2 reversed.
Since they do not connect to the rest of K, an add operation does not decrease the
number of connected components in K either.

Note that an old edge (D,C) of H can become new, but not vice versa. If this
happens an edge is removed fromK, a new blue node (D,X) is added and is connected
to (C,X), where X is the c-node of C to which D belongs. The same happens with
the roles of D and C reversed. Thus the number of connected components does not
decrease.

This completes the proof of the lemma.

2.10. Complete block queries. A complete block query determines all the
blocks to which a vertex belongs by computing for each tree edge the block to which
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it belongs. A vertex belongs to exactly the blocks to which the tree edges adjacent
to the vertex belong. We can find the blocks in I(C) for every tree edge internal or
incident to the cluster C in time O(k) whenever we recompute I(C). To compute all
the blocks in G, we have to determine which blocks of different cluster graphs form
the same block of G, i.e., have to be combined.

Perform a depth-first traversal of the spanning tree T2 of H2. For each tree edge
e = (u, v) with u ∈ C1 and v ∈ C2 such that u is a parent of v in the (rooted)
depth-first search (dfs) tree, test for each tree edge (x,w) with x ∈ C2 and w ∈ C3

whether u and w are biconnected: if C2 is also a node of H1, then test whether the
shared vertex of C2 separates u and w and if not use the internal data structure of
C2 to test the biconnectivity of u and w in G. If C2 is no node of H1, then v = x is a
shared vertex. In this case test the biconnectivity of u and w using the shared graph
of v. If we recursively know all tree edges of T2 in the dfs subtree of edge (x,w) that
belong to the same block as (x,w), then we can construct for (u, v) the set of all tree
edges of T2 in the dfs subtree of (u, v) that belong to the same block as (u, v). The
dfs takes time O(m/k).

When the dfs is completed we combine the blocks of all the tree edges in the same
set and mark all the edges in T ′ accordingly. Thus the total cost is proportional to
the number of tree edges in T ′, which is n− 1.

Theorem 2.52. A complete block query in a graph of n vertices can be answered
in time O(n).

2.11. Biconnectivity queries. Given a query(u, v) operation, let x(i) and y(i)

be defined as in Lemma 2.7. The lemma shows that u and v are biconnected in G iff
(Q1) u and y(1) are biconnected in G,
(Q2) x(i) and y(i+1) are biconnected in G, for all 1 ≤ i < p, and
(Q3) x(p) and v are biconnected in G.
Condition (Q2) holds iff ei = (x(i), y(i)) and ei+1 = (x(i+1), y(i+1)) belong to the

same block of G for all 1 ≤ i < p. This is equivalent to the requirement that e1

belongs to the same block as ep. Thus, it suffices to determine and test e1 and ep and
to test (Q1) and (Q3).

By definition all edges ei are solid intercluster tree edges, i.e., tree edges on the
T2-path between the node Cu in H2 and the node Cv in H2. Therefore, we keep the
following data structure.

(HL9) We store a least common ancestor data structure [10] for T2 rooted at a
leaf R, such that least common ancestor queries between any two nodes of
H2 can be answered in constant time. If C is the least common ancestor
of C and D, then the data structure also returns in constant time the tree
edge, incident to C on π(C,D). We also keep at each node of H2 the tree
edge to its parent.

(HL10) We store at each solid intercluster tree edge its block in G.
Both data structures are recomputed from scratch after each update in G. The

computation of (HL10) proceeds in the same way as a complete block query: we
perform a dfs on T2 that determines the sets of solid intercluster tree edges that
belong to the same block. This takes time O(m/k). The time to build both data
structures is thus O(m/k).

Determining e1, ep, y(1), and x(p): We first use (HL9) to determine the least
common ancestor of Cu and Cv in H2. If Cu is the least common ancestor, the data
structure returns the tree edge incident to Cu on π(Cu, Cv). This is edge e1; the edge
from Cv to its parent is the edge ep. If the least common ancestor of Cu and Cv is a
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third node, then e1 is the edge from Cv to its parent and ep is the edge from Cu to
its parent. This also provides y(1) and x(p).

Testing conditions (Q1) and (Q3): We test conditions (Q1) and (Q3) in constant
time as described in section 2.3.

Testing condition (Q2): To test condition (Q2) we simply test with (HL10)
whether e1 and ep belong to the same block.

Theorem 2.53. The given data structure can answer a biconnectivity query in
constant time. The total update cost is

(1) time O(k) for restoring the relaxed partition,
(2) amortized time O(k) to update all cluster graphs,
(3) amortized time O((m/k) log n+

√
m) to update all shared graphs,

(4) time O(k + (m/k) log n) to update all data structures for high-level graphs
(HL1)–(HL10), and

(5) time O((m/k) log n) to update all c-structures.
Thus, choosing k =

√
m log n gives the following update time.

Theorem 2.54. The given data structure can be updated in amortized time
O(

√
m log n) after an edge insertion or deletion.

3. Plane graphs. In this section we present an algorithm for fully dynamic
biconnectivity in plane graphs with O(log n) query time and O(log2 n) update time,
where insertions are required to maintain the planarity of the embedding. We modify
the extended topology tree data structure of [14] and prove that this data structure
dynamically maintains biconnectivity information.

3.1. Definitions. As in general graphs (see section 2) we transform a given
graph G into a degree-3 graph G′ by replacing every vertex x of degree d > 3 with a
chain of d− 1 dashed edges (x1, x2), . . . , (xd−1, xd). We say each xi is a representative
of x and x is the original node of every xi. Then we find an embedding of G′ and a
spanning tree T ′ ofG′. A topology tree ofG′ based on T ′ is a hierarchical representation
of G′ introduced by Frederickson [5]. On each level of the hierarchy it partitions the
vertices of G′ into connected subsets called clusters. An edge is incident to a cluster
if exactly one endpoint of the edge is contained in the cluster. The external degree of
a cluster is the number of tree edges that are incident to the cluster. Each vertex of
G′ is a level-0 cluster. Two clusters at level i > 0 are formed by either

(1) the union of two clusters of level i − 1 that are joined by an edge in the
spanning tree and either both are of external degree 2 or one of them has external
degree 1, or

(2) one cluster of level i− 1, if the previous rule does not apply.
Each cluster at level i is a node of height i in the topology tree. If a cluster C at

level i is formed by two clusters A and B of level i− 1, then A and B are the children
of C in the topology tree. If C is formed by one cluster A of level i− 1, then A is the
only child of C in the topology tree. The topology tree has depth D = O(log n) [5].
In the following, node denotes a vertex of the topology tree.

In [14] the topology tree data structure is extended to maintain non-tree edges
of G′ and additional connectivity information at each node, called recipe. We use the
same technique to maintain dynamic 2-vertex connectivity.

Every insert(u,v), delete(u,v), or query(u,v) operation requires that the topology
tree is expanded at an (arbitrary) representative of u and of v: we mark all clusters
containing the two representatives in the topology tree. Note that all these clusters lie
on a constant number of paths to the root. Then we build the graph which consists
of the two representatives and a compressed representation of all the clusters that are
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unmarked children of a marked node in the topology tree. This creates a compressed
version of G, called G(u, v), of size O(log n). This graph is used to answer queries. In
the case of update operations, the edge is added to or deleted from G(u, v). Afterward
the topology tree is merged together again, i.e., a topology tree representation is
created for the (possibly modified) graph G(u, v).

To add non-tree edges to the topology tree data structure we define a bundle
between two clusters C and C ′ as follows: If neither C is an ancestor of C ′ nor vice
versa, let e(C,C ′) be the set of all edges between C and C ′. Otherwise, assume w.l.o.g.
that C ′ is the ancestor of C. We define e(C,C ′) to be the set of all edges incident to
C whose least common ancestor in the topology tree is C ′. Since we are considering
an embedded graph, the edges incident to a cluster C are embedded at C in a fixed
circular order. A bundle between a cluster C and C ′ is a subset of e(C,C ′) that forms
a maximal continuous subsequence in the circular order at C and C ′. Note that this
definition is independent of the level of the clusters and planarity guarantees that
there are at most three bundles between two clusters [14]. The first and last edge of
a bundle in this order are called the extreme edges of the bundle. In the topology
tree a bundle between C and C ′ is represented by two bundles, one from C to the
least common ancestor of C and C ′ (called the LCA-bundle of C) and one from C ′ to
the least common ancestor. Whenever the topology tree is expanded and the graph
G(u, v) is created, we convert these two bundles back into one.

An edge (u, v) with u, v ∈ C is called an internal edge of the cluster C. Assume
all dashed internal edges of C are contracted. The projection of an edge (x, y) onto
a tree path P is the path π(x, y) ∩ P . Note that, by definition, the vertices of each
cluster are connected by a subtree of T ′. In the following we define the projection edge
of an edge, the projection path p(C), and the coverage graph of C which consists of
small and big supernodes of C. All these definitions are independent of the level of
the cluster.

(1) If C has external degree 1, the projection path p(C) of C consists of the
endpoint z of the (unique) tree edge incident to C. This endpoint is a small supernode.
The coverage graph of C consists of this supernode and of all LCA-bundles of C. For
each edge e incident to C where y is the endpoint in C, the projection edge of e is e
if y = z and otherwise the tree edge incident to z that lies on π(y, z).

(2) If C has external degree 3, it consists of only one vertex z. Both the projection
path p(C) and the coverage graph consist of only this one vertex which is a small
supernode.

(3) If the external degree of a cluster C is 2, there is a unique simple tree path
between the tree edges that are incident to C. This path is the projection path p(C) of
C. The projection p(x) of a vertex x in C is the vertex closest to x on the projection
path. The projection edge of a vertex x is the edge on π(x, p(x)) incident to p(x). If
x = p(x), the projection edge of x is undefined. The projection edge of an edge (x, y)
with one endpoint x in C is the projection edge of x, if it is defined and it is (x, y)
otherwise. The projection edges of an edge (x, y) with x, y ∈ C are the projection
edge of x if it is defined and (x, y) otherwise and also the projection edge of y if it is
defined and (x, y) otherwise.

If (x, y) is an internal edge of C, then the subpath π(x, y) ∩ p(C) is the projection
of (x, y) on p(C), p(x) and p(y) are the extreme vertices of the projection, and all
vertices on the subpath except for p(x) and p(y) are the internal vertices of the
projection.
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Let (w, z) and (x, y) be the extreme edges of an LCA-bundle between a cluster C
and a cluster C ′ with w, x ∈ C and z, y ∈ C ′. The path π(w, x) ∩ p(C) is called the
projection of the edge bundle on p(C), p(w) and p(x) are called the extreme vertices
of the projection, and all vertices on the subpath except p(w) and p(x) are internal
vertices of the projection. The projection edges of a bundle are the projection edges
of the extreme edges of the bundle.

The coverage graph of C is built by compressing p(C) as follows:

(1) Let u1, u2, . . . , up be a maximal subpath of p(C) such that
(a) π(u1, up) intersects the projection of an LCA-bundle on p(C),
(b) u1 is the extreme vertex of the projection of an LCA-bundle or an in-

ternal edge,
(c) up is the extreme vertex of the projection of an LCA-bundle or an in-

ternal edge, and
(d) every vertex ui for 1 < i < p is an internal vertex of the projection of a

bundle or an internal edge, or there exist two projections with projection
node ui and the same projection edge at ui such that ui and uj with
j < i are the extreme vertices of one projection and ui and uk with k > i
are the extreme vertices of the other projection.

If p > 2, we contract the path u2, . . . , up−1 to one vertex u, called big supernode,
and we say u2, . . . , up−1 are replaced by the big supernode. The vertices u1 and up
are called small supernodes and the edges (u1, u) and (u, up) are called superedges.
All edges incident to u2, . . . , up−1 are now incident to u. This splits a bundle that is
incident to u1 and/or up and also ui with 1 < i < p into up to three subbundles, one
incident to u and the other(s) incident to u1 and/or up. If the edge (u1, u2) (resp.,
(up−1, up)) is dashed, then the edge (u1, u) (resp., (u, up)) is dashed.

If p ≤ 2 then no nodes are compressed.

(2) After replacing all subpaths that fulfill condition 1, let v1, v2, . . . , vq be a sub-
path of p(C) such that v1 and vq are two small supernodes and no vertex vi with 1 <
i < q is a supernode. We contract the path v2, . . . , vq−1 to one superedge (v1, vq) and
we say v2, . . . , vq−1 are replaced by the superedge. If all edges (v1, v2), . . . , (vq−1, vq)
are dashed, then the superedge is dashed; otherwise it is solid.

The coverage graph of C consists of this compressed representation of p(C) and all
LCA-bundles grouped into sets according to their projection edges.

Note that our definition of a supernode replaces a supernode of [14] by two small
and one big supernode and each bundle is split into at most three subbundles, one
incident to each small supernode and one incident to the big supernode.

When expanding the topology tree, we build the coverage graph for each node that
was marked and each child of a marked node. For each subbundle that is incident to a
supernode in a coverage graph we maintain its projection edges implicitly as described
below.

The coverage graph of a cluster C is maintained as a doubly linked path of
supernodes. Each supernode stores up to two doubly linked lists of projection edges
incident to it (called projection list), one list for each side of the tree path p(C).
Each projection edge e stores a doubly linked list of the subbundles such that e is
the projection edge of the subbundle. If C has external degree 1, there is only one
supernode and only one list of projection edges. If C has external degree 3, it consists
of only one supernode without any projection edges or subbundles. The projection
edges and the subbundles are listed in the counterclockwise order of their embedding.
Only the first and last subbundles in a list have direct access to the projection edge and
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only the first and last projection edges in a list have direct access to the supernode to
which they are incident. The data structure lets us coalesce two adjacent supernodes
or two projection lists into one in constant time; we can also split a supernode or a
projection edge list into two in constant time if we are given pointers that tell where
to split the lists. Note that each subbundle can be contained in at most two lists and
if it is contained in two lists, it is the first element of the one and the last element of
the other list.

3.2. Recipes. Each node in the topology tree is enhanced by a recipe that de-
scribes how the coverage graph of the children of the node can be created from the
coverage graph of the node. The only difference in the algorithm of [14] and this
biconnectivity algorithm is in the contents of the recipes. We describe our recipes in
the following. A recipe contains four kinds of instructions:

(1) Split a subbundle. Replace a subbundle of m edges that have the same target
by up to four adjacent subbundles that have that target and whose (specified) sizes
sum to m.

(2) Split a projection edge. Split the subbundle list at specified locations, and
replace the old subbundle list at the supernode by the new subbundle lists.

(3) Split a supernode. Split the two projection lists on either side of the supernode
into two pieces at specified locations. Replace the old supernode by two new ones
linked by a superedge, and give the appropriate piece of each projection list to each
of the new supernodes.

(4) Create a new subbundle. Create a subbundle with a specified target and
number of edges, and insert it at a specified place in a subbundle list of at most two
projection edges.

Using these instructions the coverage graphs of the children of a cluster C can
be transformed into a coverage graph of C. The sequence of instructions together
with the appropriate parameters (e.g., which subbundle list has to be split at which
location) is called a recipe and is stored at the node in the topology tree that represents
C. These parameters are either a record of a subbundle (consisting of the number of
edges in the subbundle and its target), a record of a projection edge (consisting of
the edge), or a pointer, called location descriptor. A location descriptor consists of
a pointer to a subbundle and an offset into the subbundle (in terms of number of
edges) or a pointer into a projection list. It takes constant time to follow a location
descriptor.

Whenever we expand the topology tree, we use the recipes to create the coverage
graphs along the expanded path. Whenever we merge the topology tree, we first
determine how to combine the coverage graphs of two clusters to create the coverage
graph of their parent, and then we remember how to undo this operation in a recipe.
We now describe the instructions in the recipe of C, depending on the number of
children of C and their external degrees. In the following subbundle stands for LCA-
subbundle.

Case 1: C has only one child. In this case the coverage graph of C is identical to
the coverage graph of its child. The recipe is therefore empty.

Case 2: C has two children with external degrees 3 and 1. Let Y be the child
with external degree 3 and let Z be the child with external degree 1. The coverage
graph of Y and of Z consists of one supernode. We build the coverage graph of C as
follows:

If the tree edge between Y and Z is dashed, we simply contract it by making the
projection list of Z the projection list of one side of the path of C. The projection list
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of the other side is empty. The projection edges of the bundles do not change and,
thus, the subbundle lists do not change.

If the edge (Y,Z) is not dashed, then the supernode of C has only one projection
edge, namely, the tree edge between Y and Z. Thus, the supernode of C has one
projection list (the projection list of the other side is empty) containing one projection
edge. The subbundle list of this projection edge consists of the concatenation of all
subbundle lists of Z. In the recipe we use location descriptors to point to the locations
of the concatenation. The number of location descriptors is proportional to the number
of removed projection edges.

Case 3: C has two children, both with external degree 1. In this case C is the root
of the topology tree. Its coverage graph is empty. The coverage graphs of the children
contain one supernode and at most one subbundle apiece, corresponding to the set
of non-tree edges linking the children. Since each subbundle is contained in at most
two projection lists, there are at most four projection lists. The recipe stores these
projection lists (i.e., whether a bundle is contained in one or two lists) and subbundles
(i.e., the number of non-tree edges linking the children).

Case 4: C has two children with external degrees 2 and 1. Let Y be the child
of degree 2 and Z be the child of degree 1. We collapse all supernodes of Y to one
supernode s to build the coverage graph of C from the coverage graph of Y as follows:

On each side of the tree edge between Y and Z there may be a subbundle that
connects Y and Z. We remove these subbundles and make all remaining subbundles
incident to s.

If the edge (Y,Z) is dashed, then the projection edge of the subbundles incident
to Y does not change. Thus, we concatenate the two projection lists of Y and the
projection list of Z (in the order of the embedding). This creates a single supernode
with a single projection list.

If the edge (Y,Z) is solid, then this edge becomes the projection edge for all
subbundles incident to Y . Thus, we concatenate all bundle lists of all projection edges
of Y to create the bundle list for (Y,Z). Then we concatenate the two projection lists
of Y and the projection list of Z (in the order of the embedding). This creates a single
supernode with a single projection list.

In both cases, if two newly adjacent subbundles have the same target, we merge
them into one subbundle and update the subbundle and projection lists appropriately.

In the recipe we need a location descriptor to point to each subbundle where
we concatenated projection lists or subbundle lists or merged subbundles. We also
have to store any subbundles that connect Y and Z and all projection edges that we
removed. The number of location descriptors we store is proportional to the number
of supernodes of Y plus the number of removed projection edges.

Case 5: C has two children, both with external degree 2. Let Y and Z be the
children of C. To join the coverage graphs of Y and Z we consider two cases: if the
tree edge between Y and Z is dashed, we join the two coverage graphs by identifying
the appropriate small supernodes (that are terminating the coverage graphs) and
concatenating their projection lists. If the tree edge between Y and Z is not dashed,
we connect the two coverage graphs by an edge.

In both cases we then remove all subbundles between Y and Z. If one of the
supernodes that was incident to a removed subbundle is no longer incident to a bundle,
we replace it by a superedge. Afterward we coalesce all the supernodes between the
(Y,Z)-subbundle endpoints into three supernodes as follows: If the path P between
their endpoints contains only one supernode other than the endpoints, nothing has to
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be done. Otherwise, we replace these (at least two) supernodes by one supernode by
concatenating their projection lists. We also merge newly adjacent subbundles into a
single subbundle if they have the same target.

The recipe contains a location descriptor pointing to each subbundle where we
coalesced supernodes and concatenated projection lists (and possibly merged adjacent
subbundles). We also store the subbundles that were merged together or deleted. If
there is a subbundle that loops around the tree, we need two more location descriptors
to mark its endpoints. The number of location descriptors is proportional to the
number of coalesced supernodes in Y and Z.

New subbundles may be created during recipe evaluation. For each new subbun-
dle, the recipe stores a bundle record, preloaded with the count of bundle edges, and
a location descriptor pointing to the place in the old subbundle list where the new
subbundle is to be inserted. The target field of the subbundle is easy to set: the least
common ancestor of the bundled edges is exactly the node at which the recipe is being
evaluated. In a way similar to [14] we can show the following lemma.

Lemma 3.1. If the topology tree is expanded at a constant number of vertices
and recipes are evaluated at the expanded clusters, the total number of edge bundles,
supernodes, and superedges created is O(log n). The expansion takes O(log n) time.

Proof. Since the topology tree has depth O(log n), there are O(log n) marked
nodes and O(log n) children of marked nodes. Thus, the cluster graph consists of
the coverage graph of O(log n) clusters. Planarity guarantees that these clusters are
connected by O(log n) bundles; each bundle is split into up to three subbundles. Thus,
there are O(log n) subbundles. Since each supernode in a cluster with more than one
supernode is incident to a subbundle, there are O(log n) supernodes. Because the
supernodes and superedges form a tree, the number of superedges is also O(log n).
Each subbundle has two projection edges. Thus, the total number of projection edges
is O(log n).

Evaluating a recipe takes time proportional to the number of supernodes or pro-
jection edges created by the recipe plus constant “overhead” time. Thus, the total
expansion time is O(log n).

3.2.1. Queries. To answer a query (u, v), we mark all the clusters containing u
and v in the topology tree. Then we create the graph G(u, v) in the following steps:

(1) We build the cluster graph by expanding the topology tree at a representative
of u and of v.

(2) Let e1, e2, . . . , ep with p > 1 be all the subbundles whose extreme edges
have the same projection edge (x, y) in a cluster C with x ∈ p(C). We add a small
supernode y and connect all these extreme edges to y.

(3) We contract all dashed edges. When contracting a dashed edge between two
supernodes, the resulting supernode is a small supernode.

Since the cluster graph consists of O(log n) supernodes, subbundles, and su-
peredges and can be computed in time O(log n), the graph G(u, v) resulting from
these 3 steps contains O(log n) supernodes, subbundles, and superedges and can be
computed in time O(log n).

The following lemmas show that two vertices u and v are not biconnected in G iff
there is an articulation point in G(u, v) separating u and v that is not a big supernode.
Since the cluster graph has size O(log n) this can be tested in time O(log n).

Lemma 3.2. Let u and v be two vertices of G2 and of G1 and let G2 be a graph
created from G1 by

(1) contracting connected subgraphs into one vertex,
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(2) replacing the only two edges (a, b) and (b, c) incident to a vertex b by the edge
(a, c),

(3) replacing parallel edges, and
(4) removing self-loops.

Let x be a vertex of G1 that is not contained in the contracted subgraphs and not
a removed degree-2 vertex. Then x is an articulation point in G1 separating u and v
iff x is an articulation point separating u and v in G2.

Proof. Consider first the case that x separates u and v in G1. To achieve that u
and v are not separated by x in G2 a cycle has to be created that contains u, x, and
v. Contracting pieces of G1 that do not contain x or removing degree-2 vertices (other
that x) cannot create new cycles. Thus, x is also an articulation point separating u
and v in G2.

If x separates u and v in G2, then expanding vertices (other than x) of G2 to
connected subgraphs, replacing one edge by two edges and a degree-2 vertex, or adding
parallel edges to edges not on π(u, v) and self-loops does not create a cycle that
contains x, u, and v. Thus, x separates u and v also in G1.

Lemma 3.3. Let u and v be two vertices of G. The graph G(u, v) is created from
G by

(1) contracting connected subgraphs into one vertex,
(2) replacing the only two edges (a, b) and (b, c) incident to a degree-2 vertex b

by the edge (a, c),
(3) collapsing parallel edges, and
(4) removing self-loops.

No small supernode on π(u, v) (except for u and v itself) in G(u, v) is contained in a
contracted subgraph of any of these operations.

Proof. The graph G(u, v) can be created from G by the three operations given in
the lemma using the following steps. Note that G(u, v) does not contain dashed edges
and every small supernode of G(u, v) represents a unique vertex x of G.

(1) Mark as red all the nodes that are small supernodes of G(u, v).
(2) Collapse all nodes on the tree path between two red nodes to one blue node.
(3) Contract every blue node and all the subtrees whose roots are uncolored and

connected to the blue node by a tree edge to a green node.

Now we are left with red, green, and uncolored nodes and every green node is
connected by tree edges to two red nodes.

(4) Replace all parallel edges by one edge and remove all self-loops.
(5) Replace every degree-2 green node by a superedge. (All remaining green nodes

correspond to big supernodes.)
(6) If a red node x lies on πG(u, v) and does not lie on π(u, v), shrink all sub-

trees whose roots are uncolored and connected by a tree edge to x to a yellow node.
Otherwise contract all subtrees whose roots are uncolored and connected to x by a
tree edge to the node x.

(7) Replace all parallel edges by one edge and remove all self-loops.

The resulting graph is G(u, v). Note that u and v are small supernodes in G(u, v)
and then marked red. Hence, if a small supernode x lies on π(u, v), it is not replaced by
step 6. No small supernodes are contained in a connected subgraph that is contracted
in steps (1)–(5). The lemma follows.

Lemma 3.4. No vertex on a subpath that is replaced by a big supernode in G(u, v)
is an articulation point separating u and v in G.
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Proof. Let C be the cluster of G(u, v) containing a vertex x that is replaced by a
big supernode. Since x is replaced by a big supernode, it follows that x is an internal
vertex of the projection path P creating this supernode. Let z1 and z2 be the extreme
vertices of P . Then z1 and z2 are connected by a path in G that does not use x. It
follows that x does not separate u and v in G.

Lemma 3.5. If a vertex x of G is replaced by a superedge (y, z) and if x separates
u and v in G, then y and z also separate u and v in G.

Proof. Let C be the cluster of G(u, v) that contains x, and let v1, v2, . . . , vq be
the subpath P that is replaced by (y, z) with y = v1 and z = vq and x = vi for some
1 < i < q. W.l.o.g. let the tree path from v2 to u contain v1. From the definition of
a superedge it follows that no vertex vi with 1 < i < q is a supernode. Thus, the
projection of none of the subbundles incident of C (i.e., edges with one endpoint in
C) contains a vertex vi. Since x is an articulation point separating u and v, no edge
with both endpoints outside C exists whose projection on π(u, v) contains a node vi
for 1 ≤ i ≤ q. Since v1 is a small supernode, it is the extreme vertex of a projection
of an edge or subbundle whose projection onto π(u, v) lies inside π(v1, u). Thus, no
edge or subbundle exists whose projection onto π(u, v) contains a vertex on π(v1, u)
other than v1 and v2. Additionally, if such a projection contains v1 it does not have
the same projection edge as any edge whose projection contains v2. Thus, every path
from u to v2 contains y and, hence, every path from u to v contains y. The symmetric
argument shows that z separates u and v in G.

Lemma 3.6. Two vertices u and v are not biconnected in G iff there is an
articulation point separating u and v that is not a big supernode in the cluster graph
G(u, v).

Proof. Lemma 3.3 shows that the cluster graph G(u, v) is created from G by con-
tracting subgraphs, removing degree-2 nodes, collapsing parallel edges, and removing
self-loops. Thus, Lemma 3.2 does apply with G1 = G and G2 = G(u, v).

Let x be an articulation point separating u and v in G. Then x lies on π(u, v).
From Lemma 3.4 it follows that x is cannot be represented by a big supernode in
G(u, v). If x is represented by a small supernode, then according to Lemma 3.3, x was
not affected by the contraction of G to G(u, v). Thus, Lemma 3.2 shows that x is an
articulation point separating u and v in G(u, v). If x is represented by a superedge
(y, z), then according to Lemma 3.5 y is an articulation point separating u and v in
G as well. Since y is a small supernode, the same argument as above shows that y
separates u and v in G(u, v).

If a small supernode x is an articulation point separating u and v in G(u, v), then
by Lemma 3.3 x was not part of a contracted subgraph. It follows from Lemma 3.2
that x is an articulation point separating u and v in G.

Theorem 3.7. The given data structure can answer biconnectivity queries in
time O(log n).

Proof. Lemma 3.6 shows that to test the biconnectivity of u and v in G it suffices
to test whether u and v are separated by a small supernode in G(u, v). Since G(u, v)
has size O(log n), this can be done in time O(log n).

3.3. Updates. An insert(u,v) or query(u,v) operation consists of three steps.
First, the topology tree is expanded at a representative of u and of v to create the
cluster graph as discussed in section 3.2. Second, we add or remove the edge (u, v)
from the cluster graph. Third, we merge the topology tree back together.

By adding or deleting a constant number of vertices and edges we guarantee that
the graph stays a degree-3 graph. Note that if a tree edge is deleted, we run along
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the faces adjacent to (u, v) to find a subbundle that connects the two disconnected
spanning trees. We can determine one of the edges of the subbundle by repeatedly
expanding the clusters containing the endpoints. This edge becomes the new tree
edge.

The details of merging the topology tree back together are given in [14]. There
are three basic steps. First, the new topology tree for the updated cluster graph is
computed. Second, the new subbundles and their LCA-targets are computed. Third,
the recipes in all clusters that are affected by the modification of subbundles are
recomputed. Steps one and two are identical to [14] and take time O(log n).

In step three of [14] the recipe of clusters is recomputed that contain the endpoint
of an extreme edge of a modified subbundle. The following lemma shows that with
the recipes described in section 3.2 it suffices to update these clusters also for 2-vertex
connectivity. Thus, the same algorithm as in [14] can be used to update the data
structure after each update operation.

Lemma 3.8. If a subbundle is split into a constant number of subbundles or if a
constant number of subbundles is merged, the only recipes that have to be updated are
the recipes of clusters containing the endpoints of the extreme edges of the modified
subbundles.

Proof. A recipe at a cluster C contains location pointers into subbundles, sub-
bundle lists, and projection lists. Additionally, it contains subbundle records and
projection edges.

All subbundles in the subbundle lists of C are incident to C. All projection edges
for whom we keep a projection list at C are projection edges of subbundles whose
extreme edges have at least one endpoint in C. These lists have to be updated only if
one of these subbundles is modified.

For each subbundle whose record is stored in the recipe or that is pointed to by
a location descriptor at least one of the endpoints is contained in C. The record has
to be updated only if the subbundle is modified.

Each projection edge that is stored in the recipe is the projection edge of a
subbundle whose extreme edges have at least one endpoint in C. The projection edge
information changes only if this subbundle is modified.

This results in the following theorem.

Theorem 3.9. The given data structure can answer biconnectivity queries in time
O(log n) and can be updated in time O(log2 n) after an edge insertion or deletion under
the requirement that the edge insertions maintain the planarity of the embedding.
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Abstract. For the execution of an arbitrary parallel program P , consisting of a set of processes
with any executable interprocess dependency structure, we consider two alternative multiprocessors.

The first multiprocessor has q processors and allocates parallel programs dynamically; i.e., pro-
cesses may be reallocated from one processor to another. The second employs cluster allocation with
k clusters and u processors in each cluster: here processes may be reallocated within a cluster only.
Let Td(P, q) and Tc(P, k, u) be execution times for the parallel program P with optimal allocations.
We derive a formula for the program independent performance function

G(k, u, q) = sup
all parallel programs P

Tc(P, k, u)

Td(P, q)
.

Hence, with optimal allocations, the execution of P can never take more than a factor G(k, u, q)
longer time with the second multiprocessor than with the first, and there exist programs showing
that the bound is sharp.

The supremum is taken over all parallel programs consisting of any number of processes. Over-
head for synchronization and reallocation is neglected only.

We further present a tight bound which exploits a priori knowledge of the class of parallel pro-
grams intended for the multiprocessors, thus resulting in a sharper bound. The function g(n, k, u, q)
is the above maximum taken over all parallel programs consisting of n processes.

The functions G and g can be used in various ways to obtain tight performance bounds, aiding
in multiprocessor architecture decisions.

Key words. dynamic allocation, cluster allocation, static allocation, scheduling, multiprocessor,
optimal performance, extremal combinatorics, combinatorial formula, 0,1-matrices, optimal partition
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1. Introduction. It is relatively easy and cheap to build large multiprocessors,
i.e., systems with a large number of processors, by connecting a number of small
clusters with a communication network. The message passing interface (MPI) [16]
and parallel virtual machine (PVM) [2] environments make it possible to write a
parallel program which executes on a number of clusters. Systems which consist of
a number of clusters can easily scale up; i.e., one can simply connect more clusters
to the communication network. Another advantage of using multiple clusters is that
communication within one cluster does not interfere with communication within other
clusters. An alternative to having multiple small clusters is to have one large cluster.
The processors in a cluster are often connected with a shared bus, which becomes a
bottleneck when the number of processors grows. Consequently, systems with multiple
small clusters have a number of advantages compared with systems consisting of one
large cluster. A major disadvantage with multiple clusters is that, since processes
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may not be reallocated between clusters, some clusters may be idle while others are
very busy. In most cases the time when processors are idle can be reduced by careful
allocation of processes to clusters.

The problem of finding allocations which result in minimum makespan, i.e., min-
imum completion time, is NP-hard [1]. In this report tight worst case bounds com-
paring the minimum makespan for a program on two multiprocessors are established.
The multiprocessors have identical processors but different organization and different
numbers of processors.

2. Problem definition and results. The parallel program model under consid-
eration is general. The multiprocessors execute parallel programs P which may have
any set of processing times and any possible structure of interprocess dependency,
only excepting deadlock.

A parallel program consists of a set of processes, some of which may run in
parallel, and a set of synchronization signals between the processes, which introduce
dependencies between the processes. A synchronization signal is a prohibition on
one process at a specific time point to execute, unless another process has reached a
certain time point; see section 4 for further details. We have no limitations on such
dependencies in a program, other than that the program is required to be executable.

There are no restrictions on the numbers denoting processing times of the process
parts or synchronization time points—the numbers are not required to be integers or
multiples of a certain time unit. The only requirement is that all numbers are rational
numbers, which from a practical point of view is a weak restriction.

The processors are assumed to be identical. In cluster allocation the processors
are organized in k groups, the clusters, where each cluster contains u processors.
Here we thus have in total ku processors. Once a process is allocated to a processor
in a specific cluster it can only be executed on a processor in this cluster. It may
be transferred any time, but only to a processor in the same cluster. The cost of
transferring processes is neglected. If a process is put into a waiting state, it will thus
later be restarted on a processor in the same cluster.

Dynamic and static allocations are both special cases of cluster allocation. Dy-
namic allocation represents the case of having all processors in one cluster, k = 1;
hence the processes may be transferred between all processors without limitations.
Static allocation can be described as the case when each cluster has one single pro-
cessor, u = 1, so a process may never be transferred from the processor where it was
initiated.

A cluster organized multiprocessor with k clusters, each containing u processors,
will be compared with a multiprocessor with q processors using dynamic allocation,
executing a program with n processes.

For a parallel program P , there is a certain number of different cluster allocations.
Consider the simple example of a program P with three processes (n = 3) p1, p2, and
p3 and a multiprocessor with two clusters (k = 2). Then there are four different
cluster allocations. One allocation is to put all processes on the same cluster. The
other three allocations correspond to the three possible ways to put two processes on
one cluster and one process on the other cluster. We may put p1 and p2 on the same
cluster or we may put p1 and p3 on the same cluster or we may put p2 and p3 on
the same cluster. The number of different cluster allocations is very large even for
moderate values of n and k, however certainly finite.

Continuing the same example, assume that the structure of P is such that pro-
cesses p1 and p2 execute for one time unit, and then they terminate. Neither p1 nor
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p2 has to wait for any other process. Process p3 may, however, not start its execution
until p2 has completed. Process p3 then executes for one time unit before it termi-
nates; i.e., the program contains one dependency—the dependency between p2 and
p3. Consider the allocation where p1 and p2 are allocated to cluster one and p3 to
cluster two. At the start of the program both p1 and p2 can execute. Process p3 may,
however, not start its execution before p2 has completed. If p1 executes before p2

on cluster one the makespan of the program will be three time units. However, if p2

executes before p1 the makespan will be two time units.
This example shows that the makespan of each allocation is affected by the order

in which the processes allocated to the same cluster are executed. However, each of the
allocations of the program has a well-defined minimal makespan. We are interested
in the minimal makespans for two multiprocessor organizations. Therefore, we only
need to consider the minimal makespan for each allocation.

Since we now have a well-defined minimal makespan for each allocation, the set
of minimal makespans of the program P for all cluster allocations is finite, so it has
a minimum. An allocation which results in a minimal makespan, i.e., shorter than or
equal to the makespan of any other allocation, is called an optimal allocation.

For any fixed parallel program P , we compare the minimal makespans of P for
two multiprocessors.

The first multiprocessor has q processors and allocates parallel programs dynami-
cally. For a parallel program P , we denote the makespan for P with optimal dynamic
allocation by Td(P, q).

The second multiprocessor performs cluster allocation with k clusters and u pro-
cessors in each cluster. Let Tc,A(P, k, u) denote the makespan for the parallel program
P with the cluster allocation A. The makespan for the parallel program P with opti-
mal cluster allocation is denoted by Tc(P, k, u). Hence, Tc(P, k, u) = minTc,A(P, k, u),
where the minimum is taken over all possible cluster allocations A.

Overhead for synchronization and reallocation is neglected throughout the report.
We now define the performance function g:

g(n, k, u, q) = max
all n-programs P

Tc(P, k, u)

Td(P, q)
.

Here n-programs denote parallel programs with n processes. The formula for g
is presented in section 6. Programs P for which we have equality, g(n, k, u, q) =
Tc(P, k, u)/Td(P, q), are referred to as extremal programs.

The function g(n, k, u, q) is also a tight bound for the same ratio taken over all
programs with at most n processes. This follows from Theorem 6.4, where we show
that the function g(n, k, u, q) is increasing in the variable n.

This increasing property can furthermore be used to compute a formula for the
process independent performance function

G(k, u, q) = sup
all parallel programs P

Tc(P, k, u)

Td(P, q)
= lim
n→∞

g(n, k, u, q).

The performance function G(k, u, q) is applicable for a multiprocessor intended
for any parallel program. This is the best possible bound in the case of no prior
knowledge of the parallel programs. In the case when the number of processes of the
parallel programs is a priori bounded to at most n processes, the function G(k, u, q)
is still an upper bound, but not tight. In this case the function g(n, k, u, q) gives a
tight bound.
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Note that besides the allocations, the performance functions themselves are opti-
mal, while representing bounds which cannot be improved. The term “optimal” thus
appears in two senses. We have optimality as a minimum over allocations, and we
have optimality as a maximum over programs.

This second sense of “optimal” appears in the expressions “optimal function” and
“optimal performance function.” However, when we refer to the bounds we use the
term “tight bound.”

3. Previous results and applications. The present report extends the results
in [4]. Here the formula for the function g in the case u = 1, k = q is treated only,
representing static versus dynamic allocation on the same multiprocessor.

The mathematics of the subject is focused in this report. It can be viewed as
the theoretical base for the reports [6], [8], and [10], which treat different applications
from a computer science point of view.

The report [9] provides an application not covered by the present report. Here
extra information is provided by a test execution of the program. In light of this
information, the general bound is not tight. In [9], tight bounds for this situation are
established. The results involve linear programming where values of the function G
occur as coefficients.

Furthermore, the basic method presented here has proved to be useful in other
contexts. In the report [11], the efficiency of cache memories for single processors is
studied. Here tight bounds comparing more flexible with less flexible cache memory
organization alternatives are derived. The final part of the argument is similar to
that of the present report, while a different set of transformations and arguments is
needed to reach the corresponding matrix problem. The report [7] is a survey article
of the results in [11].

Other than the reports [4] to [15], the only general results concerning allocation
strategies of parallel programs where synchronization is not neglected appear to be
the results by R. L. Graham [3]. The overhead for process reallocation and synchro-
nization is neglected also in this work. Here so-called list scheduling algorithms are
considered. This term is used for dynamic allocation algorithms where, when a pro-
cessor becomes idle and there are waiting executable processes, one of the executable
processes is immediately allocated to the idle processor. It is established in [3] that
the makespan for a program allocated with a list scheduling algorithm is never higher
than two times the makespan with optimal dynamic allocation.

The most general result in this report is clearly the one represented by the function
G. Here we have no demands on the program. The function g is restricted to programs
with at most n processes. It is expected that the techniques presented here can be
extended to take advantage of further kinds of program specifics, thus improving the
bounds by keeping away from those programs which maximize the ratio studied in
this work.

One example of a multiprocessor architecture feature which immediately follows
from the function G(k, u, q) is the number of extra processors which would compensate
for a more static allocation. The concluding graphics section shows plots of this and
many other ways to exploit the performance functions for multiprocessor architecture
purposes.

We next give an overview of the report.
In the following section the allocation problem is described and analyzed in detail

and transformed to a mathematical problem. In section 5 we give a full formulation of
the mathematical problem and introduce necessary notation. In section 6 the formula
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for the program dependent performance function g(n, k, u, q) is stated and proved.
Basic properties of the function g(n, k, u, q) are also established here. Section 7 deals
with the general performance function G(k, u, q). The report is concluded with a
graphics section. The purpose of this section is twofold: to show the performance
functions quantitatively and geometrically, and to suggest how the functions can be
used to aid in multiprocessor design decisions.

4. From programs to matrices. A program P consists of n processes of pos-
sibly very different execution times. The processes are usually dependent on each
other. One can expect dependencies of the type that process i cannot execute further
at the time point ti unless process j has reached the time point tj . When process j
has reached the time point tj it is said to execute a synchronizing signal to process i,
restarting this process. Certainly there can be many synchronizing signals to a time
point tj , in which case all have to be executed before the process restarts. The execu-
tion time of synchronizing signals is neglected. Most parallel programs contain many
synchronizing signals. In this report any set of synchronization signals is allowed,
except those which include a deadlock.

Now consider a parallel program P and a multiprocessor with q processors. As-
sume that we have found an optimal dynamic allocation, with makespan Td(P, q). This
optimal dynamic allocation will be kept fixed during the rest of this section. Next
we introduce a discretization of the time interval in m subintervals (ti, ti+1) of equal
length, such that all synchronizing signals, process initiations, and process termina-
tions appear on the time points ti, where ti =

i
mTd(P, q), i = 0, . . . ,m. Consequently,

there is no time point t: ti < t < ti+1 for any i so that a process of the program
P starts or stops or a synchronization signal is executed at the time t. Obviously,
all processes in the interval (ti−1, ti) are completed before any part of the processes
corresponding to the interval (ti, ti+1) start when using this allocation, since this is
so without the discretization. For instance, a process which is active from time ti−1

to time ti+1 completes the processing in the interval (ti−1, ti) before any processing
corresponding to the interval (ti, ti+1) starts, and when the process starts processing
the time interval (ti, ti+1), all processing corresponding to the interval (ti−1, ti) is
completed.

Such a discretization is possible if all synchronizing signals and process termina-
tions occur at rational time points, which we can assume. Therefore the discretization
involves no approximation; exactly the same program is represented in a discrete way.
Observe that m might be very large even if the program P is small and has a simple
structure.

From the program P we next construct another program P ′ which will prolong
or not affect the makespan using cluster allocation Tc(P, k, u) ≤ Tc(P

′, k, u) but leave
the makespan using dynamic allocation unchanged, Td(P, q) = Td(P

′, q).

The construction of P ′ is obtained by two changes of the program P : we introduce
new synchronizing signals and prolong certain processes. At every time point ti we
introduce all possible synchronization between the processes. This means that the
synchronization structure now requires that all processes in the interval (ti−1, ti) have
to be completed before any part of the processes corresponding to the interval (ti, ti+1)
may start. Since the execution time of synchronizing signals is neglected, this does not
change the makespan with the fixed optimal dynamic allocation, which is Td(P, q).
Further, all processors are made to be busy at all time intervals. This is achieved
by, if necessary, prolonging some processes. However, no process is prolonged beyond
Td(P, q); hence Td(P, q) = Td(P

′, q). It is of no importance that the prolonging of
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processes can be made in many ways; many programs can play the role of P ′ to a
specific program P .

By the construction we thus have Td(P, q) = Td(P
′, q). However, since introducing

more synchronization and prolonging processes never shortens the makespan, for other
allocations the makespan is either increased or unchanged. In particular, for optimal
cluster allocation we therefore have Tc(P, k, u) ≤ Tc(P

′, k, u). Consequently,

Tc(P, k, u)

Td(P, q)
≤ Tc(P

′, k, u)

Td(P ′, q)
.

Certainly there are programs P which are left unchanged by the above transformation:
programs such that P = P ′. Since these programs constitute a subset of the parallel
programs we consider, we actually have

g(n, k, u, q) = max
P

Tc(P, k, u)

Td(P, q)
= max

P ′

Tc(P
′, k, u)

Td(P ′, q)
.

Therefore, in order to calculate the maximum, only programs of the type P ′ need to
be considered.

We next represent a program P ′ by an m×n matrix of zeros and ones only. Here
each process is represented by a column, and each time period is represented by a row.
The entry at the position (i, j) of the matrix is one if the jth process is active between
ti−1 and ti; if it is inactive the entry is zero. Each row contains exactly q ones, since
each processor is constantly busy. Because of the complete synchronization, each row
has to be completed before the next row may start.

Our next objective is to compute the makespan for cluster allocation of the pro-
gram P ′.

Since we consider a time ratio, the choice of time unit is immaterial. Then we
can choose the time unit so that Td(P

′, q) = m; hence the processing time for each
time period using the optimal dynamic allocation is 1.

To compute the makespan for cluster allocations we need to decide how the n
processes are to be allocated to the k clusters. In this case every process is to be
executed within one cluster, so each cluster allocation corresponds to a way of grouping
the n processes onto the k clusters. In the matrix formulation each cluster allocation
corresponds to a way of grouping the n columns of the matrix together in k sets. Here
each set represents one cluster.

Consider one such cluster allocation A. Assume that l of the processes which
are allocated to a specific cluster are executable at a specific time interval. Within a
cluster there are u processors and the processes are allocated dynamically. Since there
is no synchronization within a time interval, the programs are independent and we will
next see that the completion time of this cluster in this time interval is max(l/u, 1).
The completion time clearly cannot be lower than l/u. Further, the completion time
cannot be lower than 1 since no part of a process can be executed in parallel with
another part of the same process. In the case l ≥ u the limit l/u is reached, which
has been proved by McNaughton (see Theorem 3.1 in [17]).

Because of the complete synchronization at the time points ti, processing in the
next time interval cannot start before completion of the slowest cluster in the current
time interval. Since the clusters are identical, the slowest cluster is the cluster with
a maximal number of active processes at that time interval. Hence, we obtain the
completion time of a time interval as the maximum of max(li/u, 1) over the k clusters,
where li, i = 1, . . . , k is the number of active processes in cluster i during the time
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interval. The makespan with the cluster allocation A is the sum of these maxima.
If we have found an allocation of the n columns together in k sets which minimizes
the makespan using cluster allocation, this is an optimal cluster allocation, and the
makespan is denoted Tc(P

′, k, u).

5. The matrix problem. We have seen in section 4 that for the sake of com-
puting Tc(P

′, k, u) and Td(P
′, q), the program P ′ can be replaced by a certain m× n

matrix P ′ of zeros and ones only. In this matrix each row has exactly q ones, and
thus n− q zeros, 1 ≤ q ≤ n. We say that a matrix P ′ of this type is an n, q-matrix.

We call an n, q-matrix complete if all ( nq ) permutations of the q ones occur equally
frequently as rows. For a complete matrix, the number of rows is thus necessarily
divisible by ( nq ). When considering n and q fixed, complete n, q-matrices differ from
each other only in that they may have different number of copies of each row, and that
the rows may occur in different order. Here are examples of two complete 4, 2-matrices
(n = 4 and q =2): 



1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1




,




0 1 0 1
0 0 1 1
1 0 0 1
1 0 1 0
0 1 1 0
1 1 0 0



.

Theorem 5.1. If P ′ and Q′ are complete n, q-matrices, then

Tc(P
′, k, u)

Td(P ′, q)
=

Tc(Q
′, k, u)

Td(Q′, q)
.

Proof. The order of the rows does not affect the ratio Tc(P
′, k, u)/Td(P

′, q), since
each row must be completed before the execution of the next row may start. Having
x (x > 1) copies of each row will multiply both quantities Tc(P

′, k, u) and Td(P
′, q)

by x; hence this does not affect the ratio Tc(P
′, k, u)/Td(P

′, q). Consequently, the
ratio Tc(P

′, k, u)/Td(P
′, q) is the same for all complete n, q-matrices. The theorem is

proved.
Consider a complete n, q-matrix P ′ and a partition A of the n column vectors into

k sets. Each set is allocated to a cluster. Denote the makespan for partition A with
Tc,A(P

′, k, u). Denote the number of ones in cluster l at row j by c(l, j). As described
in the previous section, the makespan with cluster allocation using the partition A is
then

Tc,A(P
′, k, u) =

m∑
j=1

max
l=1,...,k

(c(l, j)/u, 1).

Theorem 5.2.

g(n, k, u, q) = max
all n,q-matrices P ′

Tc(P
′, k, u)

Td(P ′, q)
=

Tc(P
′′, k, u)

Td(P ′′, q)
,
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where P ′′ is a complete n, q-matrix.
Proof. Consider an arbitrary n, q-matrix P ′ of m rows. From P ′ we will produce

a complete n, q-matrix P ′′ where

Tc(P
′, k, u)

Td(P ′, q)
≤ Tc(P

′′, k, u)

Td(P ′′, q)
.

Since this can be done for any n, q-matrix P ′, and since P ′ itself may be complete,
the theorem then follows by Theorem 5.1.

We create n! copies P ′
i of P

′, and in each copy we permute the columns according
to one of the n! possible permutations of n columns. Next we form an n, q-matrix P ′′

of n!m rows by concatenating the n! copies. It is easy to see that the matrix P ′′ is
complete. We obviously have Td(P

′′, q) = Td(P
′, q)n!.

Now we will show that the makespan of each copy cannot be less than Tc(P
′, k, u),

using cluster allocation. Let A be an optimal partition for P ′′. Consider one of the
parts P ′

i of P
′′, and consider the quantity Tc,A(P

′
i , k, u). Since P

′
i is produced from P ′

by permuting columns, and A is a specific partition of the columns of P ′
i , we can find

a partition of P ′, denoted Ai, containing exactly the same columns as the partition
A of P ′

i . This is an essential observation for this proof. Hence, Tc,Ai
(P ′, k, u) =

Tc,A(P
′
i , k, u). We can produce Ai by letting the permutation corresponding to Pi act

on the partition A.
Therefore we obtain Tc(P

′, k, u) ≤ Tc,A(P
′
i , k, u) for all i = 1, . . . , n!. Then we

also have Tc(P
′, k, u) ≤

∑n!
i=1 Tc,A(P

′
i , k, u)/n!.

Furthermore, Tc(P
′′, k, u) =

∑n!
i=1 Tc,A(P

′
i , k, u). Consequently, Tc(P

′, k, u) ≤
Tc(P

′′, k, u)/n!. Hence

Tc(P
′, k, u)

Td(P ′, q)
≤ Tc(P

′′, k, u)

Td(P ′′, q)
.

Can there exist a noncomplete matrix Q′ with a ratio Tc(Q
′,k,u)

Td(Q′,q) larger than the

complete matrices? No, since by duplicating the columns of Q′ as above, we get a
complete matrix Q′′ with

Tc(Q
′, k, u)

Td(Q′, q)
≤ Tc(Q

′′, k, u)

Td(Q′′, q)
.

The theorem is proved.
In order to compute the functions g and G representing the rightmost side of the

theorem, we therefore only need to consider complete n, q-matrices.
Consider a partition A, such that column vector v1 is in set X and column vector

v2 is in set Y . Consider also another partition A′ which is identical to A, with
the exception that vector v1 is in set Y and vector v2 is in set X. In that case the
symmetry of a complete n, q-matrix P ′ guarantees that Tc,A(P

′, k, u) = Tc,A′(P ′, k, u).
Consequently, Tc,A(P

′, k, u) is only affected by the number of vectors in each set.
We want to choose the partition A so that Tc,A(P

′, k, u) is minimal. The execution
time with optimal cluster allocation is thus

Tc(P
′, k, u) = min

all partitions A
Tc,A(P

′, k, u).

We refer to partitions where the sizes of the sets in the partition differ as little as
possible as even partitions.
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If n/k is an integer w, every set in an even partition has w members. Denote
the integer part of n/k, the floor function, by �n/k�, and the smallest integer greater
than or equal to n/k, the ceiling function, by �n/k�. If n/k is not an integer, the sets
in an even partition have �n/k� or �n/k� members.

Theorem 5.3. All even partitions are optimal partitions for a complete n, q-
matrix.

Proof. Consider a complete matrix P and an arbitrary partition A. Suppose A
is not even. Then there are two partition sets where one set contains at least two
columns more than the other one. In this proof we will modify the partition A into a
partition A′ by moving one of the columns in the larger partition set to the smaller.
We will prove that

Tc,A(P
′, k, u) ≥ Tc,A′(P ′, k, u).

By repeating this argument, we finally obtain an even partition Ã where

Tc,A(P
′, k, u) ≥ Tc,Ã(P

′, k, u).

Since this can be done for any partition A, it follows that even partitions are optimal.
Consider a partition A where there are x column vectors allocated to set X, there

are y column vectors allocated to set Y , and x − y > 1. Consider another partition
A′ which is identical to A, with the exception that one vector is moved from set X to
set Y , resulting in the sets X ′ and Y ′.

We order the vectors in such a way that vectors 1 to x are in set X and vectors
x + 1 to x + y are in set Y in partition A, and vectors 1 to x − 1 are in set X ′ and
vectors x to x + y are in set Y ′ in partition A′. Hence the xth column is moved
from the first set to the second. The example below shows how this looks for one row
(x = 5 and y = 3):

01011︸ ︷︷ ︸
X

111︸︷︷︸
Y

· · ·

0101︸︷︷︸
X′

1111︸︷︷︸
Y ′

· · · .

The rows in a complete n, q-matrix P contain all permutations. By Theorem 5.1
we may consider a complete n, q-matrix P where each permutation occurs exactly
once: P has ( nq ) rows. We next consider a row r in the matrix P . We denote by r(i)

the ith element in the row r. Then, for each row r such that
∑x+y
x+1 r(i) >

∑x
1 r(i),

there is another row r′ which is obtained by switching the entry at index i with the
entry at index x+y+1− i for i = 1, . . . , y: r′(i) = r(x+y+1− i) for i = 1, . . . , y and
for i = y + 1, . . . , x+ y. For all other i we have r′(i) = r(i). Note that two different
such rows are never mapped to the same row. Below we have an example of a row r
and the corresponding row r′ for the case when x = 5 and y = 3:

r = 01011︸ ︷︷ ︸
X

111︸︷︷︸
Y

· · ·

r′ = 11111︸ ︷︷ ︸
X

010︸︷︷︸
Y

· · · .
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We will show that if the shift from A to A′ gives a problem at row r in that
the maximum here increases, then we can find another row where the maximum
necessarily decreases. Therefore the sum of maxima cannot increase, and we have
Tc,A(P, k, u) ≥ Tc,A′(P, k, u).

Suppose that maxl=1,...,k(c(l, r)/u, 1) is larger with partition A′ than with parti-
tion A for row r. Then necessarily r(x) = 1, and the set Y ′ has more ones than the
set X:

∑x+y
x r(i) >

∑x
1 r(i). Also,

∑x+y
x r(i) is larger than the sum corresponding

to any other partition set.

Then, at the row r′ the maximum maxl=1,...,k(c(l, r
′)/u, 1) will necessarily be

smaller. We have r′(x) = r(x) = 1, and from
∑x+y
x r(i) >

∑x
1 r(i) and the mapping

from r to r′ we get
∑x

1 r
′(i) ≥

∑y
1 r

′(i) + 1 =
∑x+y
x r(i) >

∑x
1 r(i) ≥

∑x+y
x r′(i).

The sum corresponding to any other partition set is unchanged since here r′(i) = r(i)
and A′ = A.

Hence the sum of ones in X at row r′ is larger than the sum in Y ′. The sum in
Y ′ is also larger than the sum in any other set at row r, from which it follows that
the sum in X at row r′ is larger than the sum corresponding to any other partition
set at row r′. Hence the maximum at row r′ decreases.

Consequently, Tc,A(P, k, u) ≥ Tc,A′(P, k, u).

The theorem is proved.

Referring to the definition of g(n, k, u, q) in section 2, we may now conclude that
it holds for the performance function g(n, k, u, q) that

g(n, k, u, q) =
Tc(P

′, k, u)

Td(P ′, q)
=

Tc,A(P
′, k, u)

Td(P ′, q)
,

where P ′ is any complete n, q-matrix and A is any even partition.

Then g can be obtained by explicitly calculating the ratio Tc,A(P
′, k, u)/Td(P

′, q)
for some arbitrary complete n, q-matrix P ′ and an even partition A. Unfortunately,
this is extremely inefficient, making it impossible to handle reasonable parameters
n, k, u, and q. In the next section we present a formula for g which makes it possible
to handle realistic values on n, k, u, and q.

The function g is defined only for q ≤ n. This is due to the matrix formulation,
since there cannot be more than n ones in each row of the matrix: n is the number of
columns. From the parallel program application it is clear that the function g should
be extended by g(n, k, u, q) = g(n, k, u, n) when q > n. We here have more processors
than processes in the dynamic case. If q > n we have q − n unnecessary processors,
and we can safely reduce the number of processors from q to n.

6. Process dependent performance function. For the next theorem we need
the following three combinatorial functions. Let I = {i1, . . . , ik−1} be a decreasing
finite sequence of nonnegative integers. Then we define the following:

b(l, I) = the number of distinct integers in {l, i1, . . . , ik−1};
a(l, I, j) = the number of occurrences of the jth distinct integer in {l, i1, . . . , ik−1},

enumerated in size order, 1 ≤ j ≤ b(l, I);
π(k,w, q, l) = the number of permutations of q ones distributed in kw slots, which

are divided in k sets with w slots in each, such that the set with maximum
number of ones has exactly l ones. Note that all parameters to π are integers.

We can now state the formula for g(n, k, u, q), from which an explicit formula for
the function G(k, u, q) follows.



1826 HÅKAN LENNERSTAD AND LARS LUNDBERG

Theorem 6.1. Given positive integers n, k, q, and u where n ≥ q, in the case
where w = n/k is an integer, we have

g(n, k, u, q) =
1

u
(
n
q

)
min(w,q)∑
l=1

max(l, u)π(k,w, q, l).

If n/k is not an integer we let w = �n/k� and denote the remainder of n divided
by k by nk. Then we have

g(n, k, u, q) =
1

u
(
n
q

)
min(w+1,q)∑

l1=max(0,� q−(k−nk)w

nk
�)

min(w,q−l1)∑
l2=max(0,� q−l1nk

k−nk
�)

max(l1, l2, u)

×
min(l1nk,q−l2)∑

i=max(l1,q−l2(k−nk))

π(nk, w + 1, i, l1)π(k − nk, w, q − i, l2).

The formula for π is given in the following lemma.
Lemma 6.2. In the special cases min(q, w) < l and q > kl, π(k,w, q, l) = 0.

Otherwise, if k = 1 and q = l, π(1, w, q, l) =
(
w
l

)
. In all other cases we have

π(k,w, q, l) =
(w
l

)∑
I∈I

(
w

i1

)
· . . . ·

(
w

ik−1

)
k!

Π
b(l,I)
j=1 a(l, I, j)!

.

The set I is the set of all sequences of nonnegative integers I = {i1, . . . , ik−1}
which are decreasing: ij ≥ ij+1 for all j = 1, . . . , k − 2, bounded by l : i1 ≤ l, and

have sum q − l:
∑k−1
j=1 ij = q − l.

Proof of Theorem 6.1. We consider the smallest complete n, q-matrix P ′ possible,
i.e., the complete n, q-matrix with ( nq ) rows.

We start by considering the case when n/k is an integer. In this case, the n
column vectors can be mapped to k sets containing w vectors each. Choose the time
unit so that Td(P

′, q) = ( nq ). The processing time of each row is then max(l, u)/u,
where l is the maximum number of ones in one set for the row. Obviously, l is an
integer in the interval 1 to min(w, q).

From the definition of the function π we know that for each specific l in the
interval 1 to min(w, q), π(k,w, q, l) denotes the number of rows with completion time
max(l, u)/u. Consequently,

Tc(P
′, k, u) =

1

u

min(w,q)∑
l=1

max(l, u)π(k,w, q, l).

We get

g(n, k, u, q) = Tc(P
′, k, u)/Td(P

′, q) =
1

u
(
n
q

)
min(w,q)∑
l=1

max(l, u)π(k,w, q, l).

The formula for the case when n/k is not an integer follows by considering nk
sets of size w + 1 and k − nk sets of size w. In this case the first sum runs over the
number of ones the nk first sets. The theorem is proved.
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Proof of Lemma 6.2. We take care of the trivial cases first. We have π(k,w, q, l) =
0 if w < l (l is too large for the partition sets), q < l (there are not ones enough to
get l ones in one set), or if q > kl (there are at least l + 1 ones in some set). If k = 1
we have one partition set only, and we have n = w, so one of the conditions q < l and
q > kl applies unless q = l. If k = 1 and q = l we get π(k,w, q, l) = π(k, n, q, q) = (nq ),

so g(n, 1, u, q) = max(l/u, 1) = max(q/u, 1).

The formula for π is obtained in the following way. Consider a complete matrix
and an even partition of the columns in k sets. Each row corresponds to a sequence
I = {i1, . . . , ik} of nonnegative integers, where each integer ij denotes the number
of ones in set j. The sequence clearly has sum equal to q. We assume that the
sequence is decreasing; hence we may rearrange the order of the ij ’s derived from the
matrix to obtain a decreasing sequence. In this way the set of possible rows of n, q-
matrices is grouped into subsets, where each subset corresponds to a certain sequence
I = {i1, . . . , ik}.

Note that for all rows in the subset represented by the sequence I = {i1, . . . , ik},
the maximal number of ones in one set is i1. To compute the sum of maxima for a
complete matrix where each row occurs exactly once, we then only need to compute
the number of rows in each subset.

The number of rows corresponding to a sequence I can be obtained by permuting
the number of ones allocated to each set and by permuting the sets. Permuting
within the sets causes a product of binomial coefficients: ( wi1 ) (

w
i2 ) · · · (

w
ik ). Since we

know that i1 = l is the maximal integer, we can extract the factor
(
w
l

)
and consider

decreasing sequences of length k − 1 and with sum q − l. Permuting the sets gives a
factor k!; however, since no new rows are obtained when permuting sets with equal
number of ones, we have to divide by the number of permutations of equal sets. We

therefore get the factor k!/(Π
b(l,I)
j=1 a(l, I, j)!). (The functions a(l, I, j) and b(l, I) have

been defined previously.)

The summation in the formula for π sums the number of rows where the maximum
number of ones in a set is l. The lemma is proved.

As described earlier, g(n, k, u, q) is defined also in the case q > n; here we have
g(n, k, u, q) = g(n, k, u, n) = max(�nk �/u, 1). A consequence of this and of Theorem 6.1
is that for k = 1 we have g(n, 1, u, q) = max(min(n, q)/u, 1).

In section 8, the 256 first values of g(n, k, u, q), for 1 ≤ n, k, u, q ≤ 4, are presented
in Figure 8.2. Figure 8.3 shows three plots of g representing three cases of increasing
degrees of cluster organization using the same number of processors.

The following lemma provides an algorithm which generates all decreasing se-
quences appearing in Theorems 6.1 and 7.1.

We say that the least decreasing sequence of length µ and sum σ is the sequence
{�σµ�, . . . , �

σ
µ�, �

σ
µ�, . . . , �

σ
µ�}. If σµ is the remainder when σ is divided by µ, the

number of �σµ�’s is σµ, and the number of �σµ�’s is µ − σµ, making the sum of the
sequence σ.

Lemma 6.3. Let λ and σ be nonnegative integers and µ be a positive integer such
that λ ≤ σ ≤ λµ.

Every sequence of µ integers in the interval 0 ≤ i ≤ λ which is decreasing, bounded
by λ, and has sum σ is generated exactly once by the following algorithm:

(1) Take I as the least decreasing sequence of length µ and sum σ.
(2) Find the rightmost position in I, say, j, which fulfills

(a) ij < l,
(b) ij < ij−1 or j = 1,



1828 HÅKAN LENNERSTAD AND LARS LUNDBERG

(c) ij+1 > 0.
The algorithm terminates if no such j can be found.

(3) The next sequence is obtained from I by increasing the entry in position j
by one and replacing the subsequence {ij+1, . . . , iµ} with the least decreasing
subsequence of length µ− j and sum

∑µ
k=j+1 ik − 1.

(4) Go to step 2.
Proof. The lemma is proved on page 758 in [4].

Observe that if n/k is an integer,
∑min(w,q)
l=1 π(k,w, q, l) = ( nq ). Otherwise we

have

min(w+1,q)∑
l1=0

min(w,q−l1)∑
l2=0

min(l1nk,q−l2)∑
i=max(l1,q−l2(k−nk))

π(nk, w+1, i, l1)π(k−nk, w, q−i, l2) =

(
n

q

)
,

since we are only counting all permutations of the q ones in the n slots in different ways.
Thus the formula can be regarded as a weighted average of the numbers {max(l/u, 1) :
l = 1, 2, . . . ,min(�n/k�, q)}. In the case u ≥ min(�n/k�, q) all these numbers are 1;
hence we in this case obtain g(n, k, u, q) = 1. In multiprocessor terms this corresponds
to a collapse of cluster allocation into dynamic allocation since then one cluster alone
is equally large as the first multiprocessor.

For the sake of the following theorem, we remark that we use the term “increasing”
in the nonstrict sense: f(k) is increasing if f(k) ≤ f(k+1) for all k. We do not require
f(k) < f(k + 1).

Theorem 6.4. The function g(n, k, u, q) has the following properties:
(1) g(n, k, u, q) is increasing in the variables n and q and decreasing in the vari-

ables u and k.
(2) Given positive integers ν, w, and u, we have

max
(w + 1

u
, 1
)
−
(
max

(w + 1

u
, 1
)
−max

(w
u
, 1
))

(1− w−(w+1))ν

≥ lim
k→∞

g(wk + ν, k, u, k)

≥ max
(
max

(w
u
, 1
)
,max

(w + 1

u
, 1
)
−
(
max

(w + 1

u
, 1
)

− 1
)
(1−(w+1))ν

)
.

(3) The function g(n, k, u, q) is unbounded.
Note further that g(n, k, u, q) = 1 if u ≥ min(�n/k�, q) or if k ≥ n, and

g(n, k, u, q) = g(n, k, u, n) = max(�n/k�/u, 1) for all q ≥ n.
If w > u, (2) reduces to

w + 1

u
−
(w + 1

u
− 1
)
(1− w−(w+1))ν

≥ lim
k→∞

g(wk + ν, k, u, k)

≥ max
(w
u
,
w + 1

u
− 1

u
(1− w−(w+1))ν

)
.

Proof. (1) That g is increasing as a function of n follows by considering an ex-
tremal program P with n processes, i.e., Tc(P, k, u)/Td(P, q) = g(n, k, u, q). Consider
also a program P ′ which is identical to P with the exception that a new process has
been added. This new process is inactive during the entire execution of P ′; i.e., there
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are n + 1 processes in P ′. Obviously, Tc(P, k, u)/Td(P, q) = Tc(P
′, k, u)/Td(P

′, q).
From the definition of g we know that Tc(P

′, k, u)/Td(P
′, q) ≤ g(n+ 1, k, u, q). Con-

sequently, g(n, k, u, q) = Tc(P
′, k, u)/Td(P

′, q) ≤ g(n+ 1, k, u, q).
Consider q < n. That g is increasing as a function of q follows by considering

a complete n, q-matrix P , i.e., Tc(P, k, u)/Td(P, q) = g(n, k, u, q). If we replace the
first zero in each row with a one we get an n, q + 1-matrix P ′. Obviously, Td(P, q) =
Td(P

′, q + 1) and Tc(P, k, u) ≤ Tc(P
′, k, u), i.e., g(n, k, u, q) = Tc(P, k, u)/Td(P, q) ≤

Tc(P
′, k, u)/Td(P

′, q + 1) ≤ g(n, k, u, q + 1).
Since max(1, l/u) is decreasing as a function of u, so is g(n, k, u, q).
Tc(P, k, u) is obviously a decreasing function of k for any program P , and Td(P, q)

is not affected by k. Consequently, g(n, k, u, q) = maxall n-programs P
Tc(P,k,u)
Td(P,q) ≥

maxall n-programs P
Tc(P,k+1,u)
Td(P,q) = g(n, k + 1, u, q). Here n-programs denotes parallel

programs with n processes.
(2) The idea of the proof of (2) is to exploit the fact that g is a weighted average

of the numbers {max(l/u, 1) : l = 1, 2, . . . ,min(�n/k�, k)}. We calculate the weight
Wk corresponding to the number max((w+1)/u, 1) in the weighted average. We then
let k → ∞, in which case Wk → W . Since k is large we may assume min(�n/k�, k) =
�n/k� = w + 1. Then the estimate follows from W max((w + 1)/u, 1) + (1 −W )1 ≤
limk→∞ g(wk + ν, k, u, k) ≤ W max((w + 1)/u, 1) + (1 − W )max(w/u, 1). On page
763 in [4] we prove that W = 1− (1− w−(w+1))ν .

The lower bound on limk→∞ g(wk + ν, k, u, k) for a certain w and ν is bounded
from below by w

u . This follows from the fact that g is increasing in n.
If we let ν → ∞, the upper and lower bounds coincide, so

limν→∞

(
lim
k→∞

g(wk + ν, k, u, k)

)
=

w + 1

u
.

Furthermore, for each k and ν, there is a ν0 so that

g(wk + ν, k, u, k) ≥ g((w − 1)k + ν1, k, u, k)

for all ν1 > ν0. Hence,

lim
k→∞

g(wk + ν, k, u, k) ≥ w

u
.

(3) follows immediately from (2). We remark that g(n, k, u, q) being unbounded
means that for any real M there exist positive integers n, k, u, q so that g(n, k, u, q) >
M .

Analogously to the function g(n, k) described in [4], the existence of plateaus for
the graph of g(n, k, u, k) follows. From

lim
ν→∞

(
lim
k→∞

g(wk + ν, k, u, k)

)
=

w + 1

u
,

and the fact that g(n, k, u, k) is increasing in n, it follows that there exists an un-
bounded plateau at level (w+1)/u for each integer w. For example, for each ε > 0 there
is a number N so that for all (n, k) in the domain {(n, k) : wk +N < n < (w + 1)k}
we have |g(n, k, u, k)− w/u | < ε. For a given ε, N appears to increase very rapidly
with w.

The function g(n, k) = g(n, k, 1, k), which compares static with dynamic alloca-
tion, is neither increasing nor decreasing as a function of k (see [4]). A plot of the
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local extreme values of g(n, k) as a function of k, for each fixed n, is shown in section
8. Detail structure otherwise not visible is revealed in this plot.

The optimal performance function g(n, k, u, k) thus has a shape resembling a
winding staircase with constant step height 1/u and an infinite number of steps,
where each step is narrower, less sharp edged, and much farther from the origin than
the previous step.

7. The process independent performance function. It turns out that it is
also possible to compute explicitly the optimal performance function G(k, u, q).

Theorem 7.1. For any positive integers k, u, and q,

G(k, u, q) = lim
n→∞

g(n, k, u, q) = sup
n∈N

g(n, k, u, q),

where G(1, u, q) = max(q/u, 1), and if k > 1,

G(k, u, q) =
k!q!

kqu

l=q∑
l=1

max(l, u)

l!

∑
I∈I

(
Πk−1
j=1 ij ! Π

b(l,I)
j=1 a(l, I, j)!

)−1

.

The set I is the set of all sequences I = {i1, . . . , ik−1} of nonnegative integers which
are decreasing; ij ≥ ij+1 for all j = 1, . . . , k − 2, bounded by l; i1 ≤ l, and have sum

q − l;
∑k−1
j=1 ij = q − l.

Further, the function G(k, u, q) is decreasing as a function of k and as a function
of u, and increasing as a function of q. G(k) = G(k, 1, k) is an increasing function.

Proof. By Theorem 6.4 the function g(n, k, u, q) is increasing as a function of n;
hence the limit and the supremum in the theorem coincide. Furthermore it follows
that limn→∞ g(n, k, u, q) = limw→∞ g(wk, k, u, q). Note also that exactly the same
decreasing sequences are generated in the function π(k,w, k, l) for all w ≥ k, if l and
k are fixed. This fact makes it possible to explicitly compute the function G(k, u, q).
When letting w → ∞, it is enough to study the behavior of the w-dependent part of
each term, which is

(
w
l

) (
w
i1

)
· . . . ·

(
w
ic

)
(
wk
q

) .

We will next prove that

lim
w→∞

(
w
l

) (
w
i1

)
· . . . ·

(
w
ic

)
(
wk
q

) =
q!k−q

l!i1! · . . . · ic!
.

Here c is the number of nonzero entries in the sequence I. In the following we
will use the fact that l+ i1 + · · ·+ ic = q. From the Stirling formula n! ≈ (ne )

n
√
2πn,

we get for large n:

(n
k

)
≈ e−k

k!

√
n

n− k

nn

(n− k)n−k
.
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Thus the quotient approximately equals

e−l

l!

√
w

w − l

ww

(w − l)w−l
e−i1

i1!

√
w

w − i1

ww

(w − i1)w−i1 · . . .

·e
−ic

ic!

√
w

w − ic

ww

(w − ic)w−ic
q!

e−q

√
kw − q

kw

(kw − q)kw−q

(kw)kw

=
q!

l!i1! · . . . · ic!

·
√

w

w − l

w

w − i1
· . . . · w

w − ic

kw − q

kw

·
(
1− q

kw

)kw ww−lww−i1 · . . . · ww−ic

(w − l)w−l(w − i1)w−i1 · . . . · (w − ic)w−ic w
q(kw − q)−q.

The first line after the last equality clearly is independent of w. The second line tends
to 1. The first factor of the third line tends to e−q. The second factor consists of c+1
factors, where each can be written as

(
1 +

i

w − i

)w
·
( w

w − i

)−i

for i = l, i1, . . . , ic. The factors ( w
w−i )

−i together with the third factor on the third
line gives

(kw − q

w − l

)−l(kw − q

w − i1

)−i1
· . . . ·

(kw − q

w − ic

)−ic
→ k−lk−i1 · . . . · k−ic = k−q.

Now,

(
1 +

i

w − i

)w
→ ei as w → ∞,

so the remaining factors contributes with

elei1 · . . . · eic = eq

as w → ∞. This leaves

(
w
l

) (
w
i1

)
· . . . ·

(
w
ic

)
(
wk
q

) → q!

l!i1! · . . . · ic!
· e−q · eq · k−q = q!

l!i1! · . . . · ic!
k−q.

Since g(n, 1, u, q) = max(min(n, q)/u, 1), it immediately follows that G(1, u, q) =
max(q/u, 1). Note that this case represents the worst case ratio of dynamic versus
dynamic allocation, with u and q processors, respectively. This completes the proof
of the formula for G(k, u, q).
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The increasing and decreasing properties for G(k, u, q) follow from (1) in Theorem
6.4. In Theorem 2 part (2) on page 762 in paper [4] we show that g(wk, k, 1, k) is
increasing as a function of k for any positive integer w. From this we immediately get
that G(k) = G(k, 1, k) is increasing. The theorem is proved.

In the case of static allocation and k = q, the case considered in [4], we get
G(k) = G(k, 1, k), where

G(k) =
(k!)2

kk

l=k∑
l=1

1

(l − 1)!

∑
I

(
Πk−1
j=1 ij ! Π

b({l}+I)
j=1 a({l}+ I, j)!

)−1

.

The last sum is taken over the same sequences I as in the previous formula, with
q = k.

Note that the number of terms in the sum increases rapidly with k. However,
being unit fractions with products of factorials as denominators, all terms are very
small if k is large. From the Stirling formula it indeed follows that (k!)2 � kk � k!
for large k.

We give the first values of G(k) as maximally reduced rational numbers, prime
factorizations, and decimal expansions:

G(1) = 1,
G(2) = 3

2 = 1.5,

G(3) = 17
9 = 17

32 = 1.888 . . . ,

G(4) = 17
8 = 17

23 = 2.125,

G(5) = 1429
625 = 1429

54 = 2.2864,

G(6) = 3121
1296 = 3121

2434 = 2.40818 . . . ,

G(7) = 295189
117649 = 211·1399

76 = 2.50907 . . . ,

G(8) = 680849
262144 = 13·83·631

218 = 2.597232 . . . ,

G(9) = 38404547
14348907 = 43·107·491·1717

315 = 2.67648 . . . ,

G(10) = 274868911
100000000 = 3929·69959

2858 = 2.74868911.
We conclude with some notes on the computability of the functions.
The variable u does not affect the number of floating point operations necessary

for computing the value of the function g(n, k, u, q). This number increases slightly
with q and n, if n is a multiple of k, because of the larger values in the binomials and
factorials to be computed. However, the number of operations increases rapidly with
the variable k since the number of decreasing sequences increase rapidly. This is also
true for the variable n if it is not a multiple of k.

The approximation h(n, k, u, q) = g(k�n/k�, k, u, q) is much faster to compute,
since only a fraction of the values are needed. Furthermore, by Theorem 6.1 it is evi-
dent that the values which are calculated involve a simple sum in the function π only;
hence they are the computationally lightest. The function h is close to optimal upper
bound since h(n, k, u, q) ≥ g(n, k, u, q) for all n, k, u, and q, with equality whenever
n/k is an integer.

8. Graphics. The graphics and tables in this section refer to and illustrate
functions and concepts of the report. One aim is to describe the performance functions
quantitatively and geometrically. Another is to give examples of how the functions
can be used to provide optimal trade-off estimates, aiding in the choices between
multiprocessor design alternatives.
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Fig. 8.1. Level surfaces G(k, u, q) = C.

In Figure 8.1 we plot a version of G(k, u, q) where the discrete variable q is
turned into a continuous variable Q by linear interpolation between neighboring val-
ues. Thus, given k, u, and C, all values Q such that (�Q� − Q)G(k, u, �Q�) + (Q −
�Q�)G(k, u, �Q�) = C are plotted, if any exist. Since G(k, u, q) ≥ 1 is a sharp bound
of G, every C ≥ 1 gives a plot. The grayscale in the plots emphasizes the value of q:
black is q = 1, white is q = 15. G(k, u, q) = 1 if u ≥ q, so there are no level surfaces
here for C > 1. G(k, u, q) > 1 if q > u; however, G clearly increases very slowly with
q when q − u is small.

Most of the values of g(n, k, u, q) are 1. Figure 8.2 indicates in which directions
g(n, k, u, q) is not 1 and indicates the initial growth here. g(n, k, u, q) = 1 if u ≥ �n/k�,
u ≥ q, or k ≥ n. Further, g(n, k, u, q) = g(n, k, u, n) if q > n. In all these cases there
are more processors than processes in some sense. g(n, 1, 1, n) = n is the direction of
fastest growth. For example, here we have the only value where g(n, k, u, q) > 1 if
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Fig. 8.2. The 256 first values of g(n, k, u, q).

all arguments are one or two. In multicomputing terms this corresponds to the worst
case ratio of one processor compared to n processors, running a multiprogram with n
subprocesses.

The plot in Figure 8.3 shows the worst case execution time for three degrees
of cluster allocation, compared to dynamic allocation. The number of processors in
corresponding points is equal. Note that when there are u > 1 processors in each
cluster, the plateaus for the case u = 1 split into several, where plateau number i
have asymptotic height g = 1 + (i− 1)/u.

The function G(k, u, ku) expresses the worst case ratio of cluster allocation with
k clusters and u processors in each cluster, compared to dynamic allocation with the
same processor quantity: ku processors. See Figure 8.4.

Note the following: G(k, 1, k) is static versus dynamic allocation (k-axis). G(1, u, u)
= 1; this is dynamic versus dynamic allocation (u-axis). The function G exists only
for integer arguments; in the plot, linear interpolation is done between these points.
The grayscale in the figure indicates the value linearly, where black is minimum and
white is maximum.

A measure of the trade-off between processor organization and processor power is
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Fig. 8.3. Increasing degree of cluster allocation. (a) g(n, k, 1, k), n ≤ 80, k ≤ 80; (b) g(n, k,
2, 2k), n ≤ 80, k ≤ 40; (c) g(n, k, 4, 4k), n ≤ 80, k ≤ 20.

provided by the graphs in Figure 8.5. The gain in execution time G(k, u, q) for each
possible cluster allocations using a fixed number of processors (ku) is compared to
dynamic allocation with various numbers of processors (q). For example, if we assume
ku = 6, constant worst case efficiency implies that the four possible cluster allocation
strategies correspond to dynamic allocation with 7, 11, 13, and 16 processors, in
increasing degree of cluster organization of the processors. Optimal bounds comparing
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Fig. 8.4. Cluster versus dynamic allocations on the same multiprocessor.

Fig. 8.5. Degree of clustering versus processor quantity.

any two cluster allocations, generalizing the main results of the article, cannot be
concluded. The worst case estimate of dynamic (u) versus dynamic (q) allocations,
G(1, u, q) = max(q/u, 1), appears in the figure.

Functions giving upper and lower bounds for the diagonal limit function

D(w, ν) = lim
k→∞

g(wk + ν, k, 1, k)
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Fig. 8.6. Bounds on diagonal limit functions.

are plotted in Figure 8.6 given by the estimate of Theorem 6.4(2) in the case u = α = 1:

max(w,w + 1− w(1− w−w−1)ν) ≤ D(w, ν) ≤ w + 1− (1− w−w−1)ν .

Observe the increasing scale of the ν-axis. The plots illustrate the fact that the
distance from the wth plateau to the next increases very rapidly with w.
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Abstract. One of the long-standing open questions in the theory of parallel computation is the
parallel complexity of the integer gcd and related problems, such as modular inversion. We present
a lower bound Ω(log n) for the parallel time on a concurrent-read exclusive-write parallel random
access machine (CREW PRAM) computing the inverse modulo certain n-bit integers, including all
such primes. For infinitely many moduli, our lower bound matches asymptotically the known upper
bound. We obtain a similar lower bound for computing a specified bit in a large power of an integer.
Our main tools are certain estimates for exponential sums in finite fields.
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1. Introduction. In this paper we address the problem of parallel computation
of the inverse of integers modulo an integer M . That is, given positive integers
M ≥ 3 and x < M , with gcd(x,M) = 1, we want to compute its modular inverse
invM (x) ∈ N defined by the conditions

x · invM (x) ≡ 1 mod M, 1 ≤ invM (x) < M.(1.1)

Since invM (x) ≡ xϕ(M)−1 mod M , where ϕ is the Euler function, inversion can be
considered as a special case of the more general question of modular exponentiation.
Both these problems can also be considered over finite fields and other algebraic
domains.

For inversion, exponentiation, and gcd, several parallel algorithms are in the
literature [1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 22, 27, 29]. The question
of obtaining a general parallel algorithm running in polylogarithmic time (logn)O(1)

for n-bit integers M is wide open [11, 12].
Some lower bounds on the depth of arithmetic circuits are known [11, 15]. On the

other hand, some examples indicate that for this kind of problem the Boolean model
of computation may be more powerful than the arithmetic model; see discussions of
these phenomena in [9, 11, 15].

In this paper we show that the method of [5, 25] can be adapted to derive non-
trivial lower bounds on Boolean concurrent-read exclusive-write parallel random ac-
cess machines (CREW PRAMs). It is based on estimates of exponential sums.

Our bounds are derived from lower bounds for the sensitivity σ(f) (or critical
complexity) of a Boolean function f(X1, . . . , Xn) with binary inputs X1, . . . , Xn. It is
defined as the largest integerm ≤ n such that there is a binary vector x = (x1, . . . , xn)
for which f(x) �= f(x(i)) for m values of i ≤ n, where x(i) is the vector obtained from
x by flipping its ith coordinate. In other words, σ(f) is the maximum, over all input

∗Received by the editors October 1, 1997; accepted for publication (in revised form) March 9,
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vectors x, of the number of points y on the unit Hamming sphere around x with
f(y) �= f(x); see, e.g., [30].

Since [4], the sensitivity has been used as an effective tool for obtaining lower
bounds of the CREW PRAM complexity, i.e., the time complexity on a parallel ran-
dom access machine with an unlimited number of all-powerful processors, where each
machine can read from and write to one memory cell at each step, but where no write
conflicts are allowed: each memory cell may be written into by only one processor, at
each time step.

By [21], 0.5 log2(σ(f)/3) is a lower bound on the parallel time for computing f on
such machines; see also [6, 7, 8, 30]. This yields immediately the lower bound Ω(logn)
for the OR and the AND of n input bits. It should be contrasted with the common
concurrent-read concurrent-write (CRCW) PRAM, where write conflicts are allowed,
provided every processor writes the same result, and where all Boolean functions can
be computed in constant time (with a large number of processors).

The contents of the paper are as follows. In section 2, we prove some auxiliary
results on exponential sums. We apply these in section 3 to obtain a lower bound on
the sensitivity of the least bit of the inverse modulo a prime. In section 4, we use the
same approach to obtain a lower bound on the sensitivity of the least bit of the inverse
modulo an odd squarefree integer M . The bound is somewhat weaker, and the proof
becomes more involved due to zero-divisors in the residue ring modulo M , but for
some such moduli we are able to match the known upper and the new lower bounds.
Namely, we obtain the lower bound Ω(logn) on the CREW PRAM complexity of
inversion modulo, an n-bit odd squarefree M with not “too many” prime divisors,
and we exhibit infinite sequences of M for which this bound matches the upper bound
O(log n) from [11] on the depth of P -uniform Boolean circuits for inversion modulo a
“smooth” M with only “small” prime divisors; see (4.6) and (4.7). For example, the
bounds coincide for moduli M = p1 · · · ps, where p1, . . . , ps are any �s/ log s� prime
numbers between s3 and 2s3.

We apply our method in section 5 to the following problem posed by Allan Borodin
(see Open Question 7.2 of [11]): given n-bit positive integers m,x, e, compute the mth
bit of xe.

Generally speaking, a parallel lower bound Ω(logn) for a problem with n inputs
is not a big surprise. Our interest in these bounds comes from their following features:

• some of these questions have been around for over a decade;
• no similar lower bounds are known for the gcd;
• on the common CRCW PRAM, the problems can be solved in constant time;
• for some types of inputs, our bounds are asymptotically optimal;
• the powerful tools we use from the theory of finite fields might prove helpful
for other problems in this area.

2. Exponential sums. The main tool for our bounds are estimates of exponen-
tial sums. For positive integers M and z, we write eM (z) = exp(2πiz/M) ∈ C. Thus
eM (z1 + z2) = eM (z1) + eM (z2) for any z1, z2.

The following identity follows from the formula for a geometric sum.
Lemma 2.1. For any integer a,

∑
0≤a<M

eM (au) =

{
0, if u �≡ 0 mod M,
M, if u ≡ 0 mod M.
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Lemma 2.2. For positive integers M and H, we have

∑
0≤a<M

∣∣∣∣∣∣
∑

0≤x,y<H
eM (a(y − x))

∣∣∣∣∣∣ = H2 + (r + 1)(M − r − 1),

where r ≡ H − 1 mod M with 0 ≤ r < M is the remainder of H − 1 modulo M .
Proof. We note that

∑
0≤x,y<H

eM (a(y − x)) =

∣∣∣∣∣∣
∑

0≤x<H
eM (ax)

∣∣∣∣∣∣
2

> 0.

Thus

∑
0≤a<M

∣∣∣∣∣∣
∑

0≤x,y<H
eM (a(y − x))

∣∣∣∣∣∣ =
∑

0≤a<M

∑
0≤x,y<H

eM (a(y − x))

=
∑

0≤x,y<H

∑
0≤a<M

eM (a(y − x)) .

From Lemma 2.1 we see that the last sum is equal to MW , where W is the number
of (x, y) with x ≡ y mod M and 0 ≤ x, y < H. It is easy to see that

W =
∑

0≤i<M

(⌊
H − 1− i

M

⌋
+ 1

)2

.

Let s = r + 1 and q = �(H − 1)/M�, thus q = (H − s)/M . Then,

W = (r + 1)(q + 1)2 + (M − r − 1)q2 = Mq2 + s(2q + 1)

= (H − s)q + 2sq + s = (H + s)q + s

=
H2 − s2

M
+ s =

1

M
(H2 + sM − s2),

and the result follows.
Taking into account that (r+1)(M − r− 1) ≤ M2/4, we derive from Lemma 2.2

that the bound

∑
0≤a<M

∣∣∣∣∣∣
∑

0≤x,y<H
eM (a(y − x))

∣∣∣∣∣∣ ≤ H2 +M2/4(2.1)

holds for any H and M .
Also, it is easy to see that for H ≤ M , we have r = H − 1, and the identity of

Lemma 2.2 takes the form

∑
0≤a<M

∣∣∣∣∣∣
∑

0≤x,y<H
eM (a(y − x))

∣∣∣∣∣∣ = MH, 0 ≤ H ≤ M.(2.2)

Finally, we have

∑
1≤a<M

∣∣∣∣∣∣
∑

0≤x,y<H
eM (a(y − x))

∣∣∣∣∣∣ = (r + 1)(M − r − 1) ≤ M2/4.(2.3)
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Indeed, this sum is smaller by the term corresponding to a = 0, which equals H2.
In what follows, we consider several sums over values of rational functions in

residue rings, which may not be defined for all values. We use the symbol
∑∗

to
express that the summation is extended over those arguments for which the rational
function is well defined, so that its denominator is relatively prime to the modulus.
We give an explicit definition only in the example of the following statement, which
is known as the Weil bound ; see [18, 24, 31].

Lemma 2.3. Let f, g ∈ Z[X] be two polynomials of degrees n, m, respectively,
and p a prime number such that the rational function f/g is defined and not constant
modulo p. Then

∣∣∣∣∣∣
∑

0≤x<p

∗ ep (f(x)/g(x))

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

∑
0≤x<p

gcd(g(x),p)=1

ep (f(x)/g(x))

∣∣∣∣∣∣∣
≤ (n+m− 1)p1/2.

Let ω(k) denote the number of distinct prime divisors of an integer k. The
following statement is a combination of the Chinese remainder theorem and the Weil
bound.

Lemma 2.4. Let M ∈ N be squarefree with M ≥ 2, d a divisor of M , and
f, g ∈ Z[X] of degrees n, m, respectively, such that the rational function f/g is defined
and not constant modulo each prime divisor p > max{n,m} of M . Then∣∣∣∣∣∣

∑
0≤x<M

∗ eM (d f(x)/g(x))

∣∣∣∣∣∣ ≤ (n+m− 1)ω(M)M1/2d1/2.

Proof. In the following, p stands for a prime divisor of M . We define Mp ∈ N by
the conditions

Mp ≡ 0 mod M/p, Mp ≡ 1 mod p, 1 ≤ Mp ≤ M.

Then, one easily verifies the identity∑
0≤x<M

∗ eM (d f(x)/g(x)) =
∏
p|M

∑
0≤x<p

∗ ep (d f(Mpx)/g(Mpx)) .

We use the estimate of Lemma 2.3 for those p for which p |/ d and p > max{n,m}, and
estimate trivially by p the sum for each other p. Then∣∣∣∣∣∣

∑
0≤x<M

∗ eM (d f(x)/g(x))

∣∣∣∣∣∣ ≤
∏
p |/ d

(n+m− 1)p1/2
∏
p|d

p

= (n+m− 1)ω(M/d)(Md)1/2.

Since ω(M/d) ≤ ω(M), we obtain the desired estimate.
Lemma 2.5. Let M ≥ 2 be a squarefree integer, f, g ∈ Z[X] of degrees n, m,

respectively, such that f/g is defined and neither constant nor a linear function modulo
each prime divisor p of M . Then for any N,H, d ∈ N with H ≤ M and d|M , we have∣∣∣∣∣∣

∑
0≤x,y<H

∗ eM

(
d
f(N + x− y)

g(N + x− y)

)∣∣∣∣∣∣ ≤ (n+m− 1)ω(M)HM1/2d1/2.
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Proof. From Lemma 2.1 we obtain

∣∣∣∣∣∣
∑

0≤x,y<H

∗ eM

(
d
f(N + x− y)

g(N + x− y)

)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

0≤u<M

∗ eM (d f(u)/g(u))
∑

0≤x,y<H

1

M

∑
0≤a<M

eM (a(u−N − x+ y))

∣∣∣∣∣∣

=
1

M

∣∣∣∣∣∣
∑

0≤u<M

∗ eM (d f(u)/g(u))
∑

0≤a<M

∑
0≤x,y<H

eM (a(u−N − x+ y))

∣∣∣∣∣∣

=
1

M

∣∣∣∣∣∣
∑

0≤a<M
eM (−aN)

∑
0≤u<M

∗ eM

(
d
f(u)

g(u)
+ au

) ∑
0≤x,y<H

eM (a(y − x))

∣∣∣∣∣∣

≤ 1

M

∑
0≤a<M

∣∣∣∣∣∣
∑

0≤u<M

∗ eM

(
d
f(u)

g(u)
+ au

)∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

0≤x,y<H
eM (a(y − x))

∣∣∣∣∣∣ .

From Lemma 2.4 we see that for each a < M the sum over u can be estimated as∣∣∣∣∣∣
∑

0≤u<M

∗ eM

(
d
f(u)

g(u)
+ au

)∣∣∣∣∣∣ ≤ (max{n+m− 1, 2m})ω(M)
M1/2δ1/2,

where δ = gcd(d, a) ≤ d. Applying the estimate (2.2), we obtain the result.
The following result is the particular case p = 2 of Theorem 1 of [28].
Lemma 2.6. There exists a constant c such that for all polynomials f = atX

t +
· · ·+ a1X + a0 ∈ Z[X] with gcd(at, . . . , a1, 2) = 1 and all integers m ≥ 1 we have

∣∣∣∣∣∣
∑

0≤x<2m

e2m (f(x))

∣∣∣∣∣∣ ≤ c · 2m(1−1/t).

For a0, . . . , ak−1 ∈ Z, not all zero, we define µ(a0, . . . , ak−1) to be the largest
exponent e for which 2e divides a0, . . . , ak−1.

Lemma 2.7. Let a0, . . . , ak−1 ∈ Z not be all zero, and

bj =
∑

0≤i<k
ai2

ij

for 0 ≤ j < k. Then µ(b0, . . . , bk−1) ≤ µ(a0, . . . , ak−1) + (k − 1)(k − 2)/2.
Proof. We extend µ to Q by µ(a/b) = µ(a)−µ(b) and to nonzero matrices in Q

k×k

by taking the minimum value at all nonzero entries. Then µ(U · v) ≥ µ(U) + µ(v) for
a matrix U and a vector v such that Uv �= 0.

Let Ck = (2ij)0≤i,j<k. The determinant of this Vandermonde matrix has value

µ(detCk) = µ


 ∏

0≤i<j<k
(2j − 2i)


 =

∑
0≤i<j<k

i =
1

6
k(k − 1)(k − 2).
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We consider an entry of the adjoint adCk of Ck. Each of the summands contributing
to the determinant expansion of that entry is divisible by

2(k−3)+2(k−4)+···+(k−3),

so that

µ(adCk) ≥
∑

1≤i<k−2

i · (k − 2− i) =
1

6
(k − 1)(k − 2)(k − 3).

(In fact, we have equality, since detCk−1 has the right-hand side as its µ-value and is
one entry of adCk.) Therefore

µ(C−1
k ) ≥ µ(adCk)− µ(detCk)

≥ 1

6
(k − 1)(k − 2)(k − 3)− 1

6
k(k − 1)(k − 2)

= −1

2
(k − 1)(k − 2).

Now from the inequality µ(a) = µ(C−1
k b) ≥ µ(C−1

k ) + µ(b) the result follows.
We also need an estimate on the number of terms in the sum of Lemma 2.5. For

a polynomial g ∈ Z[X] and M,H ∈ Z, we denote by Tg(M,H) the number of x ∈ Z

for which 0 ≤ x < H and gcd (g(x),M) = 1. The following result is, probably, not
new and can be improved via more sophisticated sieve methods.

Lemma 2.8. Let M > 1 be squarefree and g ∈ Z[x] of degree m such that
gcd(g(x),M) = 1 for some x ∈ Z. Then for all integers H ≤ M , we have

Tg(M,H) ≥ H
∏
p|M

(
1− min{m, p− 1}

p

)
− (m+ 1)ω(M).

Proof. We denote by ρ(M,H) the number of x ∈ {0, . . . , H − 1} such that

g(x) ≡ 0 mod M,

and set ρ(M) = ρ(M,M). Since M is squarefree, the inclusion–exclusion principle
yields

Tg(M,H) = H +
∑

1≤k≤ω(M)

(−1)k
∑
d|M

ω(d)=k

ρ(d,H).

For any divisor d of M we have∣∣∣∣ρ(d,H)− ρ(d)
H

d

∣∣∣∣ ≤ ρ(d) =
∏
p|d

ρ(p).

Therefore,

Tg(M,H) ≥ H +H
∑

1≤k≤ω(M)

(−1)k
∑
d|M

ω(d)=k

ρ(d)

d
−
∑
d|M

ρ(d)

= H
∏
p|M

(
1− ρ(p)

p

)
−
∏
p|M

(1 + ρ(p)) .
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By assumption, g takes a nonzero value modulo every prime divisor p of M . Thus
ρ(p) ≤ min{m, p− 1}, and the claim follows.

Throughout this paper, log z means the logarithm of z in base 2, ln z means the
natural logarithm, and

Ln z =

{
ln z, if z > 1,
1, if z ≤ 1.

Lemma 2.9. For positive integers m and M , with M > 1 squarefree, we have

∏
p|M

(
1− min{m, p− 1}

p

)
≥ exp (−2mLnlnω(M)− 7m) .

Proof. We split the logarithm of the product as follows:

ln
∏
p|M

(
1− min{m, p− 1}

p

)
≥
∑
p|M

p≤2m

ln

(
1

p

)
+
∑
p|M

p>2m

ln

(
1− m

p

)
;(2.4)

and we prove a lower bound on each summand. For the first one, we use that

∑
p≤x

ln p ≤ x

(
1 +

1

2 lnx

)
for x > 1

by [24, (3.15)]. Thus, for m > 1,

∑
p|M

p≤2m

ln p ≤
∑
p≤2m

ln p ≤ 2m

(
1 +

1

2 ln 2m

)
≤ 3m.(2.5)

It is easy to verify that for m = 1 the sum on the left-hand side does not exceed 3m
as well.

For the second summand, we use that (1 + 2δ)(1 − δ) = 1 + δ(1 − 2δ) ≥ 1 for
0 ≤ δ < 1/2, so that exp(2δ) > 1 + 2δ ≥ (1− δ)−1 and ln(1− δ) > −2δ. This implies
that

∑
p|M

p>2m

ln

(
1− m

p

)
≥ −2m

∑
p|M

p>2m

1

p
.

From [24, (3.20)], we know that

∑
p≤x

1

p
≤ Lnlnx+B +

1

ln2 x
,

where B < 0.262 is a constant. Let s = ω(M) and ps be the sth prime number, so
that ps ≤ s2 for s ≥ 2. Thus for s ≥ 2 we have

∑
p|M

p>2m

1

p
≤
∑
p≤ps

1

p
≤
∑
p≤s2

1

p
≤ Lnln(s2) +B + (ln s2)−2 ≤ Lnln(s) + 2.(2.6)

The inequality between the first and last term is also valid for s = 1. Now (2.4), (2.5),
and (2.6) imply the claim.
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3. PRAM complexity of the least bit of the inverse modulo a prime
number. In this section, we prove a lower bound on the sensitivity of the Boolean
function representing the least bit of the inverse modulo p, for an n-bit prime p. For
x ∈ N with gcd(x, p) = 1, we recall the definition of invp (x) ∈ N in (1.1). Furthermore,
for x0, . . . , xn−2 ∈ {0, 1}, we let

num(x0, . . . , xn−2) =
∑

0≤i≤n−2

xi2
i.(3.1)

We consider Boolean functions f with n− 1 inputs which satisfy the congruence

f(x0, . . . , xn−2) ≡ invp (num(x0, . . . , xn−2)) mod 2(3.2)

for all x0, . . . , xn−2 ∈ {0, 1} with (x0, . . . , xn−2) �= (0, . . . , 0). Thus no condition is
imposed for the value of f(0, . . . , 0).

Finally we recall the sensitivity σ from the introduction.
Theorem 3.1. Let p be a sufficiently large n-bit prime. Suppose that a Boolean

function f(x0, . . . , xn−2) satisfies the congruence (3.2). Then

σ(f) ≥ 1

6
n− 1

2
log n− 1.

Proof. We let k be an integer parameter to be determined later, with 2 ≤ k ≤ n−3,
and show that σ(f) ≥ k for p large enough. For this, we prove that there is some
integer z with 1 ≤ z ≤ 2n−k−1 and

invp (2
kz) ≡ 1 mod 2, invp (2

kz + 2i−1) ≡ 0 mod 2 for 1 ≤ i ≤ k,

provided that p is large enough. We note that all these 2kz and 2kz+2i−1 are indeed
invertible modulo p.

We set e0 = 0, δ0 = 1, and ei = 2i−1, δi = 0 for 1 ≤ i ≤ k. Then it is sufficient
to show that there exist integers z, w0, . . . , wk with

(2kz + ei)
−1 ≡ 2wi + δi mod p,

1 ≤ z ≤ 2n−k−1, 0 ≤ wi ≤ (p− 3)/2 for 0 ≤ i ≤ k.
(3.3)

Next we set A = 2k, H = 2n−k−2, K = �(p− 3)/4�, and ∆i = 2K + δi for 0 ≤ i ≤ k.
Then it is sufficient to find integers x, y, u0, . . . , uk, v0, . . . , vk satisfying

(A(H + x− y) + ei)
−1 ≡ 2(ui − vi) + ∆i mod p,

0 ≤ x, y < H, 0 ≤ u0, . . . , uk, v0, . . . , vk < K.
(3.4)

Indeed from each solution of the system (3.4) we obtain a solution of the system (3.3)
by putting z = H + x − y and wi = K + ui − vi, i = 0, . . . , k. On the other hand,
the system (3.4) contains more variables and is somewhat easier to study. A typical
application of character sum estimates to systems of equations proceeds as follows.
One expresses the number of solutions as a sum over a ∈ Zp, using Lemma 2.1, then
isolates the term corresponding to a = 0, and (hopefully) finds that the remaining
sum is less than the isolated term. Usually, the challenge is to verify the last part. In
the task at hand, Lemma 2.1 expresses the number of solutions of (3.4) as
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p−(k+1)
∑

0≤x,y<H

∗
∑

0≤u0,...,uk,

v0,...,vk<K

·
∑

0≤a0,...,ak<p

ep


 ∑

0≤i≤k
ai

(
(A(H + x− y) + ei)

−1 − 2(ui − vi)−∆i

)

= p−(k+1)
∑

0≤a0,...,ak<p

ep


−

∑
0≤i≤k

ai∆i




·
∑

0≤x,y<H

∗ ep


 ∑

0≤i≤k
ai (A(H + x− y) + ei)

−1




·
∑

0≤u0,...,uk,

v0,...,vk<K

ep


 ∑

0≤i≤k
2ai(vi − ui)




= p−(k+1)(H2K2(k+1) +R),

where the first summand corresponds to a0 = · · · = ak = 0 and R to the remaining
sum; we also used (2.2). For other k+1 tuples (a0, . . . , ak), the sum over x, y satisfies
the conditions of Lemma 2.5, with n = k and m = k + 1; indeed, we have

∑
0≤i≤k

ai (A(H + x− y) + ei)
−1

=
f(H + x− y)

g(H + x− y)
,

where

g =
∏

0≤i≤k
(AX + ei), f =

∑
0≤i≤k

ai
g

AX + ei
∈ Z[X].

Therefore f/g is neither constant nor linear modulo p. Thus,

|R| ≤ 2(k + 1)Hp1/2
∑

0≤a0,...,ak<p

∣∣∣∣∣∣∣
∑

0≤u0,...,uk,

v0,...,vk<K

ep


 ∑

0≤i≤k
2ai(vi − ui)



∣∣∣∣∣∣∣

= 2(k + 1)Hp1/2
∏

0≤i≤k

∑
0≤ai<p

∣∣∣∣∣∣
∑

0≤ui,vi<K

ep (ai(vi − ui))

∣∣∣∣∣∣
≤ 2(k + 1)Hp1/2(pK)k+1.

We have left out the factors |ep(−ai∆i)|, which equal 1, transformed the summation
index 2ai into ai, and used the identity (2.2).

It is sufficient to show that H2K2(k+1) is larger than |R|, or that

HKk+1 > 2(k + 1)pk+3/2.(3.5)

Since K ≥ (p− 6)/4, it is sufficient that

2n−k−2 > 2(k + 1)

(
p

p− 6

)k+1

p1/24k+1.(3.6)
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We now set k = �(n−3 log n)/6�, so that 6(k+1) ≤ n ≤ 2n−2 ln 2 < (p−6) ln 2. Now
(1 + z−1)z < e for real z > 0, and

(
p

p− 6

)k+1

< e6(k+1)/(p−6) < 2.

Furthermore, p1/2 < 2n/2 and 32n/3 < n3/2, and (3.6) follows from

2n/2 > 2n/2 · 32
3
n · 2− 3

2 logn = 64 · n
6
· 2n/2− 3

2 logn ≥ 64(k + 1) · 23k.

Hence the inequality (3.5) holds, and we obtain σ(f) ≥ k ≥ n/6− 0.5 log n− 1.
From [21] we know that the CREW PRAM complexity of any Boolean function

f is at least 0.5 log(σ(f)/3), and we have the following consequence.
Corollary 3.2. Any CREW PRAM computing the least bit of the inverse

modulo a sufficiently large n-bit prime needs at least 0.5 log n− 3 steps.

4. PRAM complexity of inversion modulo an odd squarefree integer.
In this section, we prove a lower bound on the PRAM complexity of finding the least
bit of the inverse modulo an odd squarefree integer.

To avoid complications with gcd computations, we make the following (generous)
definition. Let M be an odd squarefree n-bit integer and f a Boolean function with
n inputs. Then f computes the least bit of the inverse modulo M if and only if

invM (num(x)) ≡ f(x) mod 2

for all x ∈ {0, 1}n−1 with gcd(num(x),M) = 1, where num(x) is the nonnegative
integer with binary representation x, similar to (3.1). Thus no condition is imposed
for integers x ≥ 2n or for integers that have a nontrivial common factor with M .

Theorem 4.1. Let M > 2 be an odd squarefree integer with ω(M) distinct prime
divisors, and f the Boolean function representing the least bit of the inverse modulo
M , as above. Then

σ(f) ≥ lnM − 2ω(M)LnlnM

4Lnlnω(M) +O(1)
.

Proof. We let n = �log2 M� and k be an integer parameter to be determined
later. We want to show that there is some integer z with 1 ≤ z ≤ 2n−k−1 for which

invM (2kz) ≡ 1 mod 2, invM (2kz + 2i−1) ≡ 0 mod 2 for 1 ≤ i ≤ k.

As in the proof of Theorem 3.1, we see that in this case σ(f) ≥ k.
We put e0 = 0, δ0 = 1, and ei = 2i−1, δi = 0 for 1 ≤ i ≤ k. It is sufficient to

show that there exist integers z, w0, . . . , wk such that

(2kz + ei)
−1 ≡ 2wi + δi mod M,

1 ≤ z ≤ 2n−k−1, 0 ≤ wi ≤ (M − 3)/2 for 0 ≤ i ≤ k.

Next, we set A = 2k, H = 2n−k−2, K = �(M − 3)/4�, and ∆i = 2K + δi for
0 ≤ i < k. As in the proof of Theorem 3.1 we see that it is sufficient to find integers
x, y, u0, . . . , uk, v0, . . . , vk satisfying the following conditions for 0 ≤ i ≤ k:

(A(H + x− y) + ei)
−1 ≡ 2(ui − vi) + ∆i mod M,

0 ≤ x, y < H, 0 ≤ u0, . . . , uk, v0, . . . , vk < K.
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Lemma 2.1 expresses the number of solutions as

M−(k+1)
∑

0≤x,y<H

∗
∑

0≤u0,...,uk,

v0,...,vk<K

·
∑

0≤a0,...,ak<M

eM


 ∑

0≤i≤k
ai

(
(A(H + x− y) + ei)

−1 − 2(ui − vi)−∆i

)

= M−(k+1)
∑

0≤a0,...,ak<M

eM


−

∑
0≤i≤k

ai∆i




·
∑

0≤x,y<H

∗ eM


 ∑

0≤i≤k
ai (A(H + x− y) + ei)

−1




·
∑

0≤u0,...,uk,

v0,...,vk<K

eM


2 ∑

0≤i≤k
ai(vi − ui)




= M−(k+1)
∑
d|M

Sd,

where Sd is the subsum over those 0 ≤ a0, . . . , ak < M for which

gcd(a0, . . . , ak,M) = d.

It is sufficient to show that

SM >
∑
d|M
d<M

|Sd|.(4.1)

First we note that SM consists of only one summand corresponding to a0 = · · · =
ak = 0. Since all values to be added equal 1, we only have to estimate the number of
terms for which the argument of

∑∗
is defined. For each y with 0 ≤ y < H, we apply

Lemma 2.8 to the polynomial

g =
∏

0≤i≤k
(A(H +X − y) + ei) ∈ Z[X]

of degree k + 1. We set s = ω(M), and using Lemmas 2.8 and 2.9, we deduce that

SM ≥ H

(
H exp (−2(k + 1)Lnln s− 7(k + 1))− (k + 2)s

)
K2(k+1).(4.2)

The other |Sd| are bounded from above by

|Sd| ≤
∑

0≤a0,...,ak<M

gcd(a0,...,ak,M)=d

∣∣∣∣∣∣
∑

0≤x,y<H

∗ eM


 ∑

0≤i≤k
ai (A(H + x− y) + ei)

−1



∣∣∣∣∣∣

·

∣∣∣∣∣∣∣
∑

0≤u0,...,uk,

v0,...,vk<K

eM


2 ∑

0≤i≤k
ai(vi − ui)



∣∣∣∣∣∣∣
.
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Now let d = gcd(a0, . . . , ak,M) and

g =
∏

0≤i≤k
(AX + ei), f =

∑
0≤i≤k

ai
d

g

AX + ei
∈ Z[X].

Then

∑
0≤i≤k

ai
d
(A(H + x− y) + ei)

−1
=

f(H + x− y)

g(H + x− y)
,

and f/g is neither constant nor linear modulo any prime divisor p ≥ k+1 of M . Thus
we can apply Lemma 2.5 and find that

∣∣∣∣∣∣
∑

0≤x,y<H

∗ eM


d

∑
0≤i≤k

ai/d (A(H + x− y) + ei)
−1



∣∣∣∣∣∣ ≤ (2k + 2)sHM1/2d1/2;

the hypothesis of the lemma is satisfied because M is squarefree. If d < M , then
ai = dbi for some 0 ≤ b0, . . . , bk < M/d, with at least one bi �= 0. Then

∑
0≤a0,...,ak<M

gcd(a0,...,ak,M)=d

∣∣∣∣∣∣∣
∑

0≤u0,...,uk,

v0,...,vk<K

eM/d


 ∑

0≤i≤k
2ai(vi − ui)



∣∣∣∣∣∣∣

≤ (k + 1)
∑

1≤b0<M/d

0≤b1,...,bk<M/d

∣∣∣∣∣∣∣
∑

0≤u0,...,uk,

v0,...,vk<K

eM/d


 ∑

0≤i≤k
2bi(vi − ui)



∣∣∣∣∣∣∣

= (k + 1)
∑

1≤b0<M/d

∣∣∣∣∣∣
∑

0≤u0,v0<K

eM/d (2b0(v0 − u0))

∣∣∣∣∣∣

·
∏

1≤i≤k

∑
0≤bi<M/d

∣∣∣∣∣∣
∑

0≤ui,vi<K

eM/d (2bi(vi − ui))

∣∣∣∣∣∣ .

Since M/d is odd, we may replace the summation index 2bi by bi. From the inequal-
ities (2.3) and (2.1) we find

∑
1≤b0<M/d

∣∣∣∣∣∣
∑

0≤u0,v0<K

eM/d (b0(v0 − u0))

∣∣∣∣∣∣ ≤
M2

4d2
,

∑
0≤bi<M/d

∣∣∣∣∣∣
∑

0≤ui,vi<K

eM/d (bi(vi − ui))

∣∣∣∣∣∣ ≤ K2 +
M2

4d2
≤ 5

16
M2 ≤ M2.

Combining these inequalities, we obtain

|Sd| ≤ (k + 1)(2k + 2)sHM2k+5/2d−3/2;
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therefore ∑
d|M
d<M

|Sd| ≤ (k + 1)(2k + 2)sHM2k+5/2
∑
d|M

d−3/2

< ζ(3/2)(k + 1)s+12sHM2k+5/2,

where

ζ(3/2) =
∑
h≥1

h−3/2 = 2.61 . . . .

Using (4.1) and (4.2) it is now sufficient to prove that

H

(
H exp (−2(k + 1)Lnln s− 7(k + 1))− (k + 2)s

)
K2(k+1)

> ζ(3/2)(k + 1)s+12sHM2k+5/2

for some

k ≥ lnM − 2sLnlnM

4Lnln s+O(1)
.(4.3)

To do so we suppose that

(H exp (−2(k + 1)Lnln s− 7(k + 1))− (k + 2)s)K2(k+1)

≤ ζ(3/2)(k + 1)s+12sM2k+5/2(4.4)

and will show that k satisfies the opposite inequality. Obviously, we may assume that

k ≤ 0.5 lnM − 1.

We also recall that K ≥ (M − 6)/4 and H = 2n−k−2 ≥ M2−k−3. Now if

(k + 2)s ≤ 0.5H exp (−2(k + 1)Lnln s− 7(k + 1)) ,

then, because s ≤ log2 M , we immediately obtain (4.3). Otherwise, we derive from (4.4)
that

exp (−2(k + 1)Lnln s+O(k)) ≤ (2k + 2)sM−1/2 ≤ M−1/2 exp(sLnlnM).

Comparing this inequality with the inequality (4.3), we are able to obtain the desired
statement.

Our bound takes the form

σ(f) = Ω(n/Lnlnn)(4.5)

for an odd squarefree n-bitM with ω(M) ≤ β lnM/LnlnM for some constant β < 0.5.
We recall that ω(M) ≤ (1 + o(1)) lnM/LnlnM for any M > 1, and that ω(M) =
O(LnlnM) for almost all odd squarefree numbers M .

We denote by iPRAM(M) and iBC(M) the CREW PRAM complexity and the
Boolean circuit complexity, respectively, of inversion modulo M . We know from [11,
20] that

iPRAM(M) ≤ iBC(M) = O(n)(4.6)
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for any n-bit integer M . The smoothness γ(M) of an integer M is defined as its
largest prime divisor, and M is b-smooth if and only if γ(M) ≤ b. Then

iPRAM(M) ≤ iBC(M) = O(log(nγ(M))).(4.7)

Since we are mainly interested in lower bounds in this paper, we do not discuss the
issue of uniformity.

Corollary 4.2.

iBC(M) ≥ iPRAM(M) ≥ (0.5 + o(1)) log n(4.8)

for any odd squarefree n-bit integer M with ω(M) ≤ 0.49 lnM/LnlnM .
Theorem 4.3. There is an infinite sequence of moduli M such that the CREW

PRAM complexity and the Boolean circuit complexity of computing the least bit of the
inverse modulo M are both Θ(logn), where n is the bit length of M .

Proof. We construct infinitely many odd squarefree integers M with ω(M) ≤
0.34 lnM/LnlnM , thus satisfying the lower bound (4.8); and with smoothness γ(M) =
O(log3 M), thus satisfying the upper bound O(ln lnM) = O(log n) of [11] on the depth
of Boolean circuits for inversion modulo such M .

For each integer s > 1 we select �s/ ln s� primes between s3 and 2s3 and let M
be the product of these primes. Then, M ≥ s3s/ ln s = exp(3s), and thus ω(M) ≤
s/ ln s ≤ 0.34 lnM/ ln lnM , provided that s is large enough.

5. Complexity of one bit of an integer power. For nonnegative integers u
and m, we let Btm(u) be the mth lower bit of u, i.e., Btm(u) = um if u =

∑
i≥0 ui2

i

with each ui ∈ {0, 1}. If u < 2m, then Btm(u) = 0.
In this section, we obtain a lower bound on the CREW PRAM complexity of

computing Btm(x
e). For small m, this function is simple; for example, Bt0(x

e) =
Bt0(x) can be computed in one step. However, we show that for larger m this is not
the case, and the PRAM complexity is Ω(log n) for n-bit data.

Exponential sums modulo M are easiest to use when M is a prime, as in section
3. In section 4 we had the more difficult case of a squarefree M , and now we have the
extreme case M = 2m.

Theorem 5.1. Let m and n be positive integers with n ≥ m +m1/2, and let f
be the Boolean function with 2n inputs and

f(x0, . . . , xn−1, e0, . . . , en−1) = Btm−1(x
e),

where x = num(x0, . . . , xn−1) and e = num(e0, . . . , en−1); see (3.1). Then

σ(f) ≥ γm1/2 +O(m1/3),

where γ = 3− 71/2 = 0.3542 . . ..
Proof. We set e =

⌈
m1/2

⌉
and consider g(x) = f(x, e), so that σ(f) ≥ σ(g).

Furthermore, k is an integer parameter with e ≥ k ≥ 2 to be determined later.
To prove that σ(g) ≥ k, it is sufficient to show that there exists an integer x with

0 ≤ x < 2n−e, Btm−1 ((2
ex)e) = 0, and Btm−1

(
(2ex+ 2i)e

)
= 1 for 0 ≤ i < k.

The first equality holds for any such x because e2 ≥ m, and thus the conditions
are equivalent to the existence of integers x, u0, . . . , uk−1 such that

(2ex+ 2i)e ≡ 2m−1 + ui mod 2
m,

0 ≤ x < 2n−e, 0 ≤ u0, . . . , uk−1 < 2m−1 for 0 ≤ i < k,
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which is implied by the existence of x, u0 . . . , uk−1, v0, . . . , vk−1 with

(2ex+ 2i)e ≡ 2m−1 + 2m−2 + ui − vi mod 2
m,

0 ≤ x < 2n−e, 0 ≤ ui, vi < 2m−2 for 0 ≤ i < k.
(5.1)

We set H = 2m−2 and K = 2m−1 + 2m−2.
Lemma 2.1 expresses the number of solutions of (5.1) as

2−mk
∑

0≤x<2n−e

∑
0≤u0,...,uk−1
v0,...,vk−1<H

·
∑

0≤a0,...,ak−1<2m

e2m


 ∑

0≤i<k
ai
(
(2ex+ 2i)e − (K + ui − vi)

)



= 2−mk
∑

0≤a0,...,ak−1<2m

e2m(−K
∑

0≤i<k
ai)

∑
0≤x<2n−e

e2m


 ∑

0≤i<k
ai(2

ex+ 2i)e




·
∑

0≤u0,...,uk−1,

v0,...,vk−1<H

e2m(
∑

0≤i<k
ai(vi − ui))

= 2−mk
∑

0≤δ≤m
Sδ,

where Sδ is the subsum over all integers 0 ≤ a0, . . . , ak−1 < 2m with

gcd(a0, . . . , ak−1, 2
m) = 2δ.

It is sufficient to show that

Sm >
∑

0≤δ<m
|Sδ|.(5.2)

Sm contains only one summand, for a0 = · · · = ak−1 = 0, and equals

Sm = 2n−eH2k = 2n+2mk−4k−e.(5.3)

Using the function µ from section 2, we have for δ < m that

|Sδ| ≤
∑

0≤a0,...,ak−1<2m

µ(a0,...,ak−1)=δ

∣∣∣∣∣∣
∑

0≤x<2n−e

e2m


 ∑

0≤i<k
ai(2

ex+ 2i)e



∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣
∑

0≤u0,...,uk−1,

v0,...,vk−1<H

e2m


 ∑

0≤i<k
ai(vi − ui)



∣∣∣∣∣∣∣∣
.

Now let a0, . . . , ak−1 < 2m. We set

h(X) =
∑

0≤i<k
ai(2

eX + 2i)e =
∑

0≤j≤e
AjX

j ∈ Z[X],(5.4)
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so that

Aj = 2ej
(
e

j

) ∑
0≤i<k

ai2
i(e−j) for 0 ≤ j ≤ e.

We put

∆ = µ(A1, . . . , Ae).

If ∆ < m, then h is periodic modulo 2m with period 2m−∆:

h(X + 2m−∆) ≡ h(X) mod 2m.

Since n− e ≥ m and eM (z) is periodic with period M , then

∣∣∣∣
∑

0≤x<2n−e

e2m

(∑
0≤i<k ai(2

ex+ 2i)e
)∣∣∣∣

= 2n−e−m+∆

∣∣∣∣∣∣
∑

0≤x<2m−∆

e2m−∆

(
2−∆h(x)

)
∣∣∣∣∣∣

≤ 2n−e−m+∆ · c · 2m−∆−(m−∆)/e = c · 2n−e−(m−∆)/e,

(5.5)

where c is the constant from Lemma 2.6. This bound also holds for ∆ ≥ m, because
the sum contains 2n−e terms with absolute value 1. Using the (crude) estimate

µ

((
e

j

))
≤ log2

(
e

j

)
≤ log2 2

e ≤ e,

and noting that

Ak−j = 2e(k−j)
(

e

k − j

) ∑
0≤i<k

(
ai2

i(e−k)
)
2ij ,

from Lemma 2.7 we derive that for tuples with µ(a0, . . . , ak−1) = δ,

∆ ≤ µ(A1, . . . , Ak) ≤ ek + e+ δ + (k − 1)(e− k) + (k − 1)(k − 2)/2

= 2ek + δ − (k − 1)(k + 2)/2 ≤ 2ek + δ − k2/2,

provided that k ≥ 2. Substituting this bound in (5.5), we obtain

|Sδ| ≤ c · 2n−e−(m−2ek−δ+k2/2)/eTδ = c · 2n−e−m/e+δ/e+2k−k2/2eTδ,

where

Tδ =
∑

0≤a0,...,ak−1<2m

µ(a0,...,ak)=δ

∣∣∣∣∣∣∣∣
∑

0≤u0,...,uk−1,

v0,...,vk−1<H

e2m


 ∑

0≤i<k
ai(vi − ui)



∣∣∣∣∣∣∣∣
.

We set

Uδ =

{
22(m−δ) + 22(m−2) if δ ≥ 3,
22m−δ−2 if 0 ≤ δ ≤ 2.
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Then Uδ ≤ 22m−3 for all δ ≥ 0, and as in the proof of Theorem 4.1, from Lemma 2.2
we find

Tδ ≤ k ·
∑

1≤b0<2m−δ

∑
0≤b1,...,bk−1<2m−δ

∣∣∣∣∣∣∣∣
∑

0≤u0,...,uk−1,

v0,...,vk−1<H

e2m−δ


 ∑

0≤i<k
bi(vi − ui)



∣∣∣∣∣∣∣∣

≤ k · 22(m−δ)Uk−1
δ ≤ k · 22mk−3k−2δ+3.

Next, we obtain

∑
0≤δ<m

|Sδ| ≤ c ·
∑

0≤δ<m
2n−e−m/e+δ/e+2k−k2/2e · k · 22mk−3k−2δ+3

= ck · 2n+2mk−k−e−m/e−k2/2e+3
∑

0≤δ<m
2−δ(2−1/e)

< ck · 2n+2mk−k−e−m/e−k2/2e+4.

We set

k =
⌊
γm1/2 −m1/3

⌋
,

where γ = 3− 71/2 = 0.3542 . . . satisfies −γ − 1− γ2/2 = −4γ. It easy to verify that
the inequality (5.2) holds for this choice of k, provided that m is large enough.

Corollary 5.2. Let n ≥ m +m1/2. The CREW PRAM complexity of finding
the mth bit of an n-bit power of an n-bit integer is at least 0.25 logm− o(logm). In
particular, for m = �n/2� it is Ω(log n).

6. Conclusion and open problems. Inversion in arbitrary residue rings can
be considered along these lines. There are two main obstacles for obtaining similar
results. Instead of the powerful Weil estimate of Lemma 2.3, only essentially weaker
(and unimprovable) estimates are available [16, 26, 28]. Also, we need a good explicit
estimate, while the bounds of [16, 26] contain nonspecified constants depending on
the degree of the rational function in the exponential sum. The paper [28] deals with
polynomials rather than with rational functions, and its generalization has not been
worked out yet.

Open Question 6.1. Extend Theorem 4.1 to arbitrary moduli M .
Moduli of the form M = pm, where p is a small prime number, are of special

interest because Hensel’s lifting allows to design efficient parallel algorithms for them
[2, 11, 15]. Theorem 5.1 and its proof demonstrate how to deal with such moduli and
what kind of result should be expected.

Each Boolean function f(X1, . . . , Xn) can be uniquely represented as a multilinear
polynomial of degree n over F2 of the form

f(X1, . . . , Xn) =
∑

0≤k≤d

∑
1≤i1<···<ik≤r

Ai1...ikXi1 . . . Xik ∈ F2[X1, . . . , Xn].

We define its weight as the number of nonzero coefficients in this representation. Both
the weight and the degree can be considered as measures of complexity of f . In [5, 25],
the same method was applied to obtain good lower bounds on these characteristics of
the Boolean function f deciding whether x is a quadratic residue modulo p. However,
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for the Boolean functions of this paper, the same approach produces rather poor
results.

Open Question 6.2. Obtain lower bounds on the weight and the degree of the
Boolean function f of Theorem 4.1.

It is well known that the modular inversion problem is closely related to the
GCD-problem.

Open Question 6.3. Obtain a lower bound on the PRAM complexity of com-
puting integers u, v such that Mu + Nv = 1 for given relatively prime integers
M ≥ N > 1.

In the previous question we assume that gcd(N,M) = 1 is guaranteed. Otherwise
one can easily obtain the lower bound σ(f) ≥ Ω(n) on the sensitivity of the Boolean
function f which on input of two n-bit integers M and N , returns 1 if they are
relatively prime, and 0 otherwise. Indeed, if M = p is an n bit integer, then the
function returns 0 for N = p and 1 for all other n bit integers. That is, the PRAM
complexity of this Boolean function is at least 0.5 log n+O(1).
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Abstract. This paper describes an efficient scheme for the dynamic maintenance of the set
of maxima of a 2-d set of points. Using the fact that the maxima can be stored in a staircase
structure, we use a technique in which we maintain approximations to the staircase structure. We
first describe how to maintain the maxima in O(logn) time per insertion and deletion when there
are n insertions and deletions. O(logn) is charged per change for reporting changes to the staircase
structure which stores the maxima. O(n) space is used. We also show another scheme which requires
a total of O(n logn + r) time when r maximal points are listed. We finally consider extensions to
higher dimensions.
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1. Introduction. Given a set S of points in the x-y plane, pi = (xi, yi) ∈ S is a
maximal point iff it is not dominated by another point pj , where a point pj dominates
pi iff xi < xj and yi < yj . The set of maximal points of S form a structure which
monotonically decreases in the y direction as the x-coordinate of the points increases.
Such a structure is called a staircase structure. The problem of computing the maxima
occurs in a large number of applications in statistics, economics, operations research,
etc. The reader is referred to the book by Preparata and Shamos for [FP] further
details.

In this paper we describe an efficient data structure for the dynamic maintenance
of the maxima of a point set. We maintain approximations to the maxima set in a
structure called the approximate staircase structure.

For the static case it has been shown that the staircase structure can be com-
puted in O(n log n) time, eliminating dominated points [KLP]. In the dynamic case,
however, one needs to keep track of the dominated points. In this case Overmars and
Van Leeuwen [OL] have designed a data structure which requires splitting and merg-
ing balanced trees when points are inserted and deleted. In their scheme O(log2 n)
operations are required for each insertion and deletion. A scheme by Willard and
Lueker [WL] gives a bound of O(log n) for updates but the set of maxima is not
maintained. Frederickson and Rodger [GR] and Janardan [J] have designed schemes
which maintain the staircase structure of the set of maxima and allow for insertions
and deletions in O(log n) and O(log2 n) operations, respectively. These are the most
asymptotically efficient schemes known. Their data structure requires O(n) space.
Also, Hershberger and Suri [HS] give a scheme for off-line maintenance.

We first present an improved data structure that maintains an approximate stair-
case structure in O(log n) time per insertion and deletion. A point can be tested
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for maximality in O(log n) time in our representation. The staircase structure repre-
senting the set of maxima can be listed in linear time but O(log n) operations have
to be spent on removal of every approximation present in the current semistaircase
structure to be reported. Our data structure is simple and requires O(n) space.

We further show that the data structure can be modified to give a total bound
of O(n log n +m log n + r) when there are n insertions, m deletions, and r maximal
points are reported.

The methodology that we have presented here may also be applicable to dynamic
maintenance of other geometric structures such as convex hulls, intersections of half
planes, and kernels of simple polygons. Since the optimal dynamic maintenance of
these geometric structures has been an open problem for some time, the solution in
this paper may be of interest in terms of technique.

We also outline an extension of our scheme to higher dimensions but only for
the case of insertions. Maintaining the maxima efficiently, under both deletions and
insertions, in higher dimensions is a challenging problem.

2. Preliminaries and outline of the paper. In this paper we first describe
the structural changes required for maintaining the maxima under insertions and
deletions. We then show how to implement the scheme in a data structure requiring
O(n) space.

The underlying data structure that we use for storing the points is the red-black
tree [T]. We call it the maxima balanced tree. The set of points, S, are stored at
the leaves of a red-black tree, which we denote by MT (S), in order of increasing
x-coordinate values. At each node we store the set of maxima of the subset of points
stored in the subtree rooted at that node. This subset is not stored explicitly as
we will see. The initial tree can be constructed in O(n log n) time easily. Note that
red-black trees can be maintained in O(log n) steps at each update.

We let ST (q) be the set of points in the subtree rooted at q and MAX(q) the set
of maxima of ST (q) at node q in the tree. Furthermore, we assume that at each node
the maxima are specified in a sorted order with points having decreasing y-coordinate
and increasing x-coordinate. We let M(q) represent this ordered set. It is known
that the set M(q) has a staircase structure. Top(M(q)) represents the point with the
maximum y-coordinate in M(q). We let y(p) refer to the y-coordinate of point p. We
use y(TOP (M(q))) and TOP (M(q)) interchangeably when making comparisons for
ease of presentation. Finally, we let right(v) and left(v) refer to the left and right
children of an internal node v in the binary tree, MT (S) storing the maxima.

The first scheme that we propose uses the fact that during insertions binary
search is performed only once after which the inserted point is dominated. This fact
has also been used in [GR], [J] in their data structure. We thus obtain a solution with
O(log n) insertion time and O(log2 n) deletion time. We also isolate the reason for the
O(log2 n) behavior of the scheme. We consider only structural changes, i.e., changes
to the staircase structure. This scheme is briefly described in section 3 to motivate
the final improved method.

Then, in section 4, we refine the algorithm so that both insertions and deletions
can be done in O(log n) time. We do so by maintaining approximations to the staircase
structure. This allows us to use only a constant number of binary searches to update
the balanced tree structure storing the maxima. We describe the improvements in
time complexity for making structural changes without a description of the secondary
structures required to store the maxima at the nodes of the balanced binary tree.

Finally, in section 5, the secondary structures required to store the maxima are
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described. The space requirements are shown to be O(n). In section 6 we show how
to modify the scheme to list the maximal points in linear amortized time. In section
7 we consider insertions of points in d-dimensions.

3. An O(logn) insertion and O(log2 n) deletion scheme. In this section
we describe a scheme for insertions and deletions which is suboptimal. The scheme is
described without details of secondary structures which we consider in detail for the
improved scheme in a later section.

The following definitions will be required.

The staircase structure is a sequence of points, simultaneously sorted in increasing
x order and in decreasing y order, such that two adjacent points are connected by a
horizontal and vertical Manhattan path.

A stairstep is the horizontal and vertical Manhattan path that connects two ad-
jacent points in a staircase structure.

A point p is located onto a point q in M(v), v ∈ MT (S) when q ∈ M(v) is the
point with the least y-coordinate such that y(q) > y(p). The point p is also said to
be located onto the stairstep formed by q.

We will use the following characterization [GR, FP].

Lemma 1. The maximal elements of a set of points in the plane form a staircase
structure.

We will refer to the staircase structure, comprising maximal elements of the set
of points in the subtree rooted at a node v, as the staircase structure at the node.
This structure is also referred to by M(v).

We first consider insertions. Let p be the point to be inserted into the treeMT (S)
storing the set of maxima of the point set S. Since the leaves are arranged in x-sorted
order a binary search gives us the leaf at which the point p is to be inserted. Let P
be the path from the root to the leaf. Suppose, on the path P , we encounter a triple
of nodes (u, v, w), where v is the common parent of u and w. u is the left child and
is referred to by left(v), and w is the right child and referred to by right(v). P uses
v and one of u and w.

First suppose the path P uses w. Assume that the maxima of the points in
the subtree at w has been recomputed because of the insertion of the new point
p. M(v) has to be recomputed from M(u) and M(w) by a merger. The merger, in
general, involves locating Top(M(w)) inM(u) and then replacing the portion ofM(u)
dominated byM(w) byM(w) itself. However when a single point, p, is inserted,M(w)
changes only locally. The merger operation can now be accomplished by changes to the
current staircase structure instead of complete recomputation. There are a number
of cases depending on the topmost point of M ′(w), Top(M ′(w)), where M ′(w) is the
updated staircase structure at w. We assume that Top(M ′(w)) has changed. If it has
not, then no change in the merged staircase structure, M(v), is required.

Case R.1. Top(M ′(w)) is above Top(M(v)). In this case the merger requires
constant time since M ′(v) is actually M ′(w) (Figure 1(i)).

Case R.2. Top(M ′(w)) is not above Top(M(v)). In this case the merger is done
by first locating Top(M ′(w)) by a binary search onM(u) to obtain the first point, q, in
M(u) such that y(q) > Top(M ′(w)). The portion ofM(u) below q is now replaced by
M ′(w) (Figure 1(ii)). This requires O(log n) time. Note that from this node upwards
to the root the topmost point of any staircase structure does not change since the
inserted point is now within a staircase structure and new merger points need not be
recomputed.
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Fig. 1. Insertion and deletion cases.

Next consider the case when P uses u. Again, suppose M(u) has been modified
and let the modified structure be M ′(u). There are two cases:

Case L.1. Top(M(u)) has changed. There are two subcases. If Top(M(w))<
Top(M ′(u)), then locate Top(M(w)) inM ′(u). This is done by comparing Top(M(w))
with the stairstep formed by the inserted point. If Top(M(w)) is located below this
stairstep, then the previous location of Top(M(w)) is valid, and M(u) is updated
using this merge point. Otherwise, Top(M(w)) is located onto the stairstep, and
M ′(v) is obtained by adding Top(M ′(u)) to the staircase structure M(w).

Alternatively, suppose Top(M(w)) ≥ Top(M ′(u)). Then M ′(v) is M(w).

Case L.2. The topmost point of M(u) has not changed. In this case we have to
determine the changes that are to be made to M(v) since the top of M(w) has to
be positioned with respect to the changes in M(u). As in the previous case this can
be done in constant time since only a comparison of Top(M(w)) with the stairstep
formed by the point inserted into M(u) has to be made, provided that point is in the
set of maxima (Figure 1(iii)). This information is easily maintained as we proceed up
the path P .

We thus see that the above procedure requires O(log n) steps for an insertion
since a binary search is performed once only in Case L.2.

We next consider the effect of deletions. Again, we consider a path P from leaf
to root and a triple of nodes (u, v, w) on the path. First consider the case when the
path P uses w. Suppose the maximal set has been recomputed at w and is M ′(w).
There are two cases depending on Top(M(w)): Case R.1, where Top(M(w)) changes
(this case has two subcases); and Case R.2, when Top(M(w)) does not change. We
consider the cases.
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Case R1.1. Top(M ′(w)) < Top(M(u)). Then M(v) can be computed in O(log n)
time by locating Top(M ′(w)) in M(u) by a binary search.

Case R1.2. Top(M ′(w)) > Top(M(u)). Update Top(M(v)) in O(1) time since
M(v) is M ′(w).

Case R2. Top(M(w)) does not change. M(v) changes exactly asM(w) is changed
in the portion of the staircase common to both M(v) and M(w). In this case the
staircase structure at v need not be searched but only changed at Top(M(w)) to
incorporate M ′(w).

Next consider the case when the path P uses u. M(v) is obtained from M ′(u)
and M(w) by a merge operation and requires O(log n) operations (Figure 1(iv)).

Finally we consider the rebalancing operations. Rebalancing involves O(1) single
or double rotations. Consider single rotations. The update of M(u), where u is a
node with right and left child u1 and u2, respectively, and which participates in the
rebalancing can be performed in O(log n) time since the update requires a location of
Top(M(u1)) in M(u2). Double rotations can be handled similarly.

From the above case description, we obtain the following theorem.

Theorem 1. The structural changes required to maintain the set of maxima
require O(log n) steps for each insertion and O(log2 n) steps for each deletion.

It is the first subcase of the first case, Case R1.1, during deletions, when the
path uses w and v, that creates the first problem. It gives a time bound of O(log2 n)
since the merge of M(u) and M ′(w) requires O(log n) time, because of the search for
Top(M ′(w)) in M(u), and there may be O(log n) such merges to be performed. The
second problem occurs since Top(M ′(u)) may be changed at O(log n) nodes along
path P . This occurs when the path P uses u in the second case above. There may
be O(log n) merges of this type requiring O(log n) operations each.

We next show how to improve the performance of the deletion operation to
O(log n) per deletions also.

4. Improving the performance.

4.1. Outline. In order to improve the performance we attempt to remove the
bottlenecks introduced by the repeated mergers that are required on path P when
eitherM ′(w) andM(u) orM ′(u) andM(w) are merged after a deletion. This is done
by performing a constant number of mergers as outlined below:

Let Mset(P ) be the set of nodes on the path P where the staircase structure is
changed due to the deletion. Let wi be a node on P with left(wi) its left child and
right(wi) its right child. Mset(P ) consists of two types of nodes. One type, type 1,
has the property that Top(M(wi)), wi ∈Mset(P ) is changed due to the deletion. The
other type, type 2, has the property that M(right(wi)) is merged with M(left(wi))
when Top(right(M(wi))) intersects the section of the staircase, M(left(wi)), that
is changed due to the deletion. Note that |Mset(P )| = O(log n). We only do two
mergers requiring a binary search for each type of nodes in Mset(P ). One is the
merger at M(wk), where wk is the node in the binary tree such that Top(M(wk))
exceeds the top, Top(M(wi)), of all nodes wi, of type 2 in the set Mset(P ). The
other merger is due to the location of Top(M(wl)), where Top(M(wl)) exceeds the top,
TOP (M(wj)), of all nodes, wj , of type 1. All the other mergers required are deferred.
Instead, M(right(wi)) is merged with M(left(wi)) by joining Top(M(right(wi))) to
one of the following points:

(i) The point in M(left(wi)) with y-coordinate just less than that of
TOP (M(wk)) when wi is a node of type 2.
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Fig. 2. Semistaircase structure.

(ii) Top(M(left(wi))), if Top(M(left(wi))) > Top(M(right(wi))),when right(wi)
is a node of type 1.

This destroys the staircase nature of the maximal set, creating nonhorizontal and
vertical lines called “kinks,” but the deletion now requires O(log n) steps.

The insertion also requires O(log n) steps. It may so happen that during insertion
or deletion the top point of a set of “kinks” changes. The kinks thus shift. However,
we show that there are only O(log n) kink edges to be shifted.

4.2. Detailed algorithm. First, we formally define the semistaircase structure.

Definition 1. The semistaircase structure is a sequence of points, simultaneously
sorted in increasing x order and in decreasing y order, such that two adjacent points
are either connected by a horizontal and vertical Manhattan path or by a straight line
(called a kink line) (Figure 2).

Definition 2. A stairstep is the horizontal and vertical Manhattan path that
connects two adjacent points in a staircase or a semistaircase structure.

Definition 3. A kink line (p, q) is an approximation to a staircase structure
which connects the two points p and q with x(p) > x(q) and y(p) < y(q).

Definition 4. A point p is said to be located onto a point q in M(v), v ∈MT (S)
when q ∈MAX(v) is the point with the least y-coordinate such that y(q) > y(p). The
point p is also said to be located onto the stairstep formed by q.

Note the difference in the definition of located with respect to the previous section.

At the nodes of the data structure MT (S), we store approximations to sets of
maxima. Each approximation will be a subset of the maximal elements, and at node
v the approximation will be referred to by M(v) for ease of notation. M(v) will be
represented by a semistaircase structure. The following invariant holds during the
execution of the algorithm.

Property Semi. If p ∈ M(v), then p is a maximal point in the set of points
stored in the subtree rooted at V .

We next show how to dynamically maintain semistaircase structures under inser-
tions and deletions.

4.3. Insertions. We first consider insertions. When inserting point p, let P be
the path from the leaf containing p to the root. As we proceed up the path consider
the triple of nodes (u, v, w) such that v is the parent of u and w.

Suppose the path P uses w. The cases are similar to the previous section and
involve a binary search with Top(M(w)) onto a semistaircase structure. As in the
previous section one location of Top(M(w)) in a semistaircase structure is required.
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Before describing the updates we describe two generic procedures for the location
of Top(M(w)) in M(u). The procedure LOCATE(p, z) locates a point p in a semis-
taircase at node z. And the procedure RELOCATE(z1, z2) updates the semistaircase
after locating Top(M(z1)) in M(z2), where z1 and z2 are the right and left children
of a node z.

Procedure LOCATE(p, z).

The procedure is recursive. We start with node z. In the generic step, at any
node a in the tree we check if the point is located in the part of the semistaircase at
the left child or at the right child and we recur in the appropriate subtree. This check
is done as follows: Suppose b and c are the right and left children at a and M(b) is
merged with M(c) by a horizontal edge, h. Then the procedure branches to the left if
y(p) is greater than the y-coordinate of points on h; otherwise the procedure branches
to the right. Alternatively, if at a there is a kink edge (r, s) merging the semistaircase
at the right child with the one at the left child, then the procedure recurs to the left
if y(p) ≥ y(r). Otherwise the procedure recurs to the right. The procedure stops at
a leaf having discovered on the staircase a point with y-coordinate just greater than
y(p). This is the point adjacent to p in the staircase and defines the location of p.
The procedure requires O(log n) steps. Also those O(log n) kink edges on the search
path which intersect y = y(p) are obtained. We summarize this below.

Lemma 2. LOCATE(p, z) correctly locates point p in the semistaircase at node
z in O(log n) steps.

We next describe the second procedure.

Procedure RELOCATE(z1, z2).

In this procedure, Top(M(z1)), denoted by p′, is first located in M(z2) using
LOCATE(Top(M(z1)), z2). To update the staircase structures after the location of
p′ is done, suppose the location of p′ is q at node l. First, the stairstep joining
Top(M(z1)) to q is constructed, all points with the y-coordinate less than q in M(z2)
are removed, and M(z1) is added to the semistaircase structure at z. Next all the
kink edges intersected by y = y(Top(M(z1))) during the location procedure have their
top point changed. The procedure for doing this is as follows: Let lp(p′) be the path
followed by the location procedure for locating p′. Let d be a node on lp(p′) where
a kink edge is used to merge M(right(d)) with M(left(d)). Top(right(d)) is merged
using the point q′, just below q, in the semistaircaseM(left(d)), if such a point exists.
Otherwise Top(right(d)) is located onto q. The point q′ may be found as follows:

(i) Start at node l with q′ being a point with y-coordinate −∞.
(ii) At each node z, z ∈ lp(p′) such that right(z) �∈ lp(p′), q′ is updated as

follows: If y(Top(right(z))) > y(q′), then q′ = Top(right(z)).

Note that q′ is defined not to exist if y(q′) = −∞.

The following result will be proved formally in a later section.

Lemma 3. RELOCATE(z1, z2) correctly locates TOP (M(z1)) in M(z2) and
updates semistaircase structures in O(log n) steps.

The above procedures are used to update the staircase structure when path P (p)
uses w and a location is required. The procedure called RELOCATE(Top(M ′(w)), u)
suffices.

When path P uses u, the update after an insertion is again in constant time as
described in the previous section.

Thus a point can be inserted and semistaircase structures updated in O(log n)
steps.
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4.4. Deletion. We consider the various cases that arise during a deletion. Again
consider the triple (u, v, w). Suppose P , the path from the leaf deleted (corresponding
to point q) to the root, uses w. We consider the cases depending on whether M ′(w)
has its topmost point different from M(w) or not.

Case L.1. Top(M ′(w)) is changed, i.e., the topmost point of the previous maximal
set has been deleted. In this case Top(M ′(w)) is to be located in M(u) to construct
M(v). There are two subcases: Either the new topmost point is the topmost point of
M(v) (this check can be done in O(1) time); alternatively, the topmost point has to
be relocated within M(u) in O(log n) time. This can be achieved by the procedure
RELOCATE(w, u) which locates Top(M ′(w)) inM(u). However, we need to do this
only when the set of maxima might be affected.

We first describe when the relocation of points in the semistaircases is necessary:
LetWset be the set of nodes whose Top has changed due to the deletion of the partic-
ular node. The Top value of these nodes can be ordered by increasing y-coordinates.
A relocation is done at the node, say t, with the highest Top value. Furthermore,
consider a node a, a �= t and a ∈ Wset. Let b be the parent of a and c its sibling to
the left. Top(M(a)) is not relocated but is joined to Top(M(c)) by a kink edge.

Case L.2. Top(M ′(w)) has not changed. In this case , M(u) changes in the
section comprising points from M ′(w) but no new merger is required.

Next suppose the path P uses u. We assume by induction that M ′(u) has a
semistaircase structure.

Case R.1. M(w) intersects M(u) at the stairstep associated with the removed
point. Let R(q) be the semistaircase that replaces the point q deleted. We let RP be
the set of right children of nodes on the path P such that if a ∈ RP , then Top(M(a))
is to be located within the the stairstep associated with q and thus within R(q). Let
b be the node in RP such that Top(M(b)) ≥ Top(M(a)), a ∈ RP . Then Top(M(b))
is located in R(q) to give a point z which is used to form a stairstep onto which q is
located, with z being the point just above Top(M(b)) in the semistaircase structure
at the parent of b. For all a ∈ RP, a �= b, a direct line (kink line) is drawn from
Top(M(a)), a ∈ RP to a point t in R(q) where t is the point in R(q) such that y(t)
is just less than y(z) and y(t) > Top(M(a)). If such a t does not exist, say when
Top(M(a)) > y(t), then a normal staircase is constructed with z being the point
next to TOP (M(a)) in the semistaircase structure at the parent of a. Note that this
procedure involves delaying the construction of the straight lines until z is obtained.
All the merges required can be done in O(log n) time (Figure 3).

Case R.2. M(w) does not intersect M(u) at the stairstep associated with the
changed node. Then no change in the merger need be done.

The above cases complete the description of the changes required after a deletion.
It is easily seen that O(log n) steps are required.

Furthermore, balancing requires O(log n) steps at each single or double rotation.
Consider the case of a single rotation. Let z be a node affected by the rotation with z1
and z2 being the right and left child, respectively. The semistaircase structure at z is
updated by locating Top(M(z1)) in M(z2) using the procedure RELOCATE(z1, z2).
Since there are at mostO(1) nodes affected, maintenance of the semistaircase structure
at a single rotation can be achieved in O(log n) steps. A similar analysis applies to
the case of double rotations. Since there are at most O(1) single and double rotations
while balancing red-black trees, an overall bound of O(log n) on the balancing of the
maxima balanced tree MT (S) follows.

Note, however, that at the end of the deletion kinks may be left on the final
staircase structure at the root.
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Fig. 3. Deletion of point q.

4.5. Correctness. We next show that the insertion and deletion procedures are
correct. It suffices to show that a semistaircase is maintained at each of the nodes.

We first prove Lemma 3.
Lemma 3. RELOCATE(z1, z2) correctly locates TOP (M(z1)) in M(z2) and

updates semistaircase structures in O(log n) steps.
Proof. To prove the correctness first note that the LOCATE procedure correctly

computes the location of p′ = Top(M(z1)) in M(z2). Let lp(p′) be the set of nodes
traversed during the location of p′. And let l be the node at which p′ is located.
We next show that kink edges intersected by y = Top(M(z1)) are updated correctly.
Let d be the node on lp(p′) where such a kink edge is present. It suffices to show
that q′, the point just below q in M(left(d)), is computed correctly. Note that q′

is the point with the highest y-coordinate amongst points in ST (d) located onto the
stairstep formed by q. This point is a maximal point in M(left(d)). Consider the
set of potentially maximal points in ST (d) located onto the stairstep formed by q,
Mlp(d) = {Top(M(right(z))), z ∈ Rlp(d)}, where Rlp(d) is the set of nodes on lp(p′)
lying between l and d with right children not on lp(p′). q′ is an element of this set
since for every point in ST (d) located onto q there exists a point in Mlp(d) with
greater y-coordinate value. The set Mlp(d) and thus q′ is correctly computed by the
procedure.

We next prove the correctness of the changes made to the semistaircase structures.
Consider the path in MT , lp(p′), followed by LOCATE. The insertion procedure
changes semistaircase structures on lp(p′) after the location of p′. We prove that
semistaircases along lp(p′) are maintained correctly. The proof is by induction on the
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distance to the leaf node. The basis is easily established. Let q be the location of p′.
And v be a node on lp(p′). Let q′ be the point inM(left(v)) just below q. A merger is
updated when the line y = y(p′) intersects a kink line joining Top(right(v)) to a point
r with y(r) > y(p′). By induction M(left(v)) is a semistaircase structure. Thus all
points s with y(s) ≥ y(q′) in M(left(v)) are maximal in ST (v). Moreover, all points
in M(right(v)) are maximal in ST (right(v)). Since Top(right(v)) is connected to
either q′ or located onto q by a horizontal edge, all points in M(v) are also maximal
in ST (v).

Finally, we bound the time complexity. First, LOCATE requires O(log n) steps.
Thus q is obtained in O(log n) steps. Next kink edges are changed along lp(p′). This
requires computation of q′ at each node on lp(p′). q′ is maintained in constant time
as we traverse nodes up lp(p′). Since there are O(log n) nodes on lp(p′), all the kink
edge changes require O(log n) steps.

We next prove the correctness of the insertion procedure.

Lemma 4. The insertion procedure maintains semistaircases, satisfying Property
Semi, at each node of the maxima balanced tree.

Proof. The proof is by induction. It is trivially true when there is only one point.
Thus assume that there are n points and the data structure contains lists which are
semistaircase structures.

On an insertion, let P (p) be the path from the leaf containing the inserted point p
to the root. Let cp be the node at which the point p is located within a semistaircase
structure. The semistaircase structures change at cp and above and below cp.

First, consider nodes below cp. We prove the claim in the lemma by induction
on the distance from the leaf node in P (p). At a node v, M(v) changes in two ways.
Either r = Top(M(right(v))) is located onto p or M(v) = M(right(v)). Since points
in M(right(v)) are maximal in ST (right(v)) and since points in M(left(v)) with
y-coordinates greater than p are maximal in ST (v), points in M(v) are maximal in
ST (v). At cp, p is correctly located in M(left((cp))) by the procedure RELOCATE,
as shown in Lemma 3.

Finally, consider a node, v, on P (p) above cp. The semistaircase structures
at these nodes are updated when Top(M(right(v))), v ∈ P (p) is located onto p.
Again, it can be shown, by induction, that M(v) contains only maximal points in
ST (v).

Next consider deletions.

Lemma 5. The deletion procedure maintains semistaircases, satisfying Property
Semi, at each node of the maxima balanced tree.

Proof. Let p be the deleted point. Along the deletion path P (p), at most two
locations are done using procedure RELOCATE. Changes during this procedure
correctly maintain the semistaircase structure as shown in Lemma 3. Let q be the
point obtained on relocation and let cp be the node at which a relocation takes place.
We next consider changes along path P (p) and show that these changes preserve
semistaircase structures. We use induction on the distance from the leaf containing p.
Consider any node v, v ∈ P (p), which is below cp. The semistaircase structure, M(v),
is changed in two ways. Either it is replaced byM(right(v)) or a merge is performed.
This is done by either constructing a kink edge which connects r = Top(M(right(v)))
to a node q′, y(q′) > y(r), q′ ∈ M(left(v)) or locating r onto q. Note that q′ may
be Top(M(left(v))). By induction M(left(v)) and M(right(v)) are semistaircase
structures. Thus M(v) also comprises maximal points after the merger. Nodes above
cp on P (p) are not affected during the deletion procedure.
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The arguments above, proving correctness under insertions and deletions, extend
to proving that changes done during rebalancing, when relocations are performed,
also correctly maintain semistaircases satisfying Property Semi.

To report the maximal elements of S, kinks in the semistaircase structure at the
root of the treeMT are important since these kinks have to be removed to obtain the
actual output. These kinks can be removed at the time of reporting along with other
kinks that are discovered when points are located to remove kinks. This is done by
the procedure RELOCATE as in the case of insertions. Note that once the set of
maxima is reported, no kinks remain in the staircase structure at the root. We thus
define chng to be the number of changes in the semistaircase structure to be output
as compared with the last staircase structure reported. The changes are kinks and
new points added to the semistaircase structure representing the set of maxima. The
time for output is now O(m+ chng. log n). Note that chng can be O(m). Details of
the reporting will be discussed in the next section.

The following lemma follows from the discussion above and the insertion and
deletion procedures.

Lemma 6. The structural changes carried out to maintain the semistaircase struc-
tures at each node of the maxima balanced tree under an insertion or deletion require
O(log n) operations. Moreover, O(log n) operations are required for every change to
be reported in the staircase representing the maximal set.

4.6. Implementing the scheme in O(n)space. In this section we show how
to implement the scheme for insertion and deletion in O(n) space. This is accom-
plished by maintaining O(1) information at the nodes of the balanced binary search
tree, MT .

First, at each node v are maintained left and right pointers, left(v) and right(v),
to the children of the node, say u and w. We also maintain two variables TOP (v)
and INTER(v) which contain points. TOP (v) is the topmost point in the semistair-
case structure at v (this point having been referred to by Top(M(v)) before). And
INTER(v) is the point at which Top(M(w)) is located in the semistaircase structure
at u, i.e., INTER(v) is the point in the staircase structure at v just above the point
TOP (w), in the staircase structure at v, if such a point exists. Otherwise INTER(v)
is TOP (v). Note that Top(M(w)) may be attached to INTER(v) by a kink edge.
This can be detected by maintaining at each node a Boolean variable called MARK-
KINK. In the description below the value of INTER(v) for nodes where a kink line
(p, q) is drawn from p to q is assumed to y(q), the y-coordinate of the upper point of
the kink line. To list the points more efficiently we need another variable NextLeft
which we detail below.

We first describe the listing procedure on the data structure without using
NextLeft. We then show how to make the procedures more efficient using NextLeft.

4.7. Listing the maxima. To list all the maxima we proceed as follows: We
start at the root of the tree MT . At the root node TOP gives the leftmost point in
the staircase structure. In general, to obtain points contributed by the left subtree at
a node v in MT , we test if the topmost point of the right subtree, say w, is located
strictly below the topmost point of the left subtree, say u. If so, then we list recursively
those maximal elements in the subtree at u not yet reported and with y-coordinate
greater than the y-coordinate of TOP (w). We then list the maximal elements in the
subtree rooted at w recursively.
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This procedure is formalized as follows:

Procedure LIST1(v, stop).
(This procedure lists the maxima in the subtree at v with
y-coordinate greater than or equal to stop. )
Begin

If y(TOP (v)) ≥ stop, then
begin

If y(TOP (v)) = stop or v is a leaf node, then
output TOP (v)
else
begin

if y(TOP (v)) > y(TOP (right(v))), then
begin
LIST1(left(v),max(stop, y(TOP (right(v)))));
LIST1(right(v), stop)

end
else LIST1(right(v), stop)

end
end

end.

The procedure LIST1 above is invoked at the root with stop being the y-coordinate
of the point with the maximum x-coordinate.

Lemma 7. LIST1 correctly outputs the set of maxima of size m stored in tree
MT in O(m log n) steps.

Proof. At node v the procedure correctly outputs, in order of decreasing y-
coordinate, all points in the staircase at v such that if p is to be reported, then
y(p) ≥ stop. It does so by first comparing y(TOP (v)) with stop. If y(TOP (v)) ≥ stop,
then there exist points to be reported in the staircase structure. There are two cases:
If either y(TOP (v)) = stop or v is a leaf node, then only the topmost point is to be
reported. On the other hand, if y(TOP (v)) > stop, then the points to be reported
are to be found in the left and right subtrees of v. Points in M(v) are to be found
in the left subtree iff y(TOP (v)) > y(TOP (w)), where w = right(v). These points
are output by the recursive call to the left child. Each point, p, which is to be output
from the left subtree, lies on the staircase structure at v if y(p) ≥ y(TOP (right(v)))
and y(p) ≥ stop. Thus the recursive call to the left has max(stop, y(TOP (right(v))))
as the new stop parameter. The remaining points are to be output from the right
subtree. The parameter stop for the call to the right subtree is the same as the param-
eter stop at the current node, v, since all points in the staircase at the right subtree
are in the staircase at v.

We next estimate the time required by LIST1. First note that a recursive call is
made only when at least one point is to be reported. During a call, either a maximal
point is reported or another recursive call is made. Furthermore, at each recursive
call the procedure processes points at a node which is closer to a leaf node. In
O(log n) steps a node will be reached where a point will be reported. The procedure
thus requires time proportional to O(m log n), where m is the number of maximal
points.

To list the maximal points in linear time we make the following modification
to the data structure: At each leaf node, say v, where point p is stored, we store
a pointer called NextLeft(p). For addressing NextLeft, v and p are used synony-
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mously. NextLeft(p) points to the node in the tree at which p is first located within
a staircase structure. NextLeft(p) is null if p is not located within any staircase
structure.

Using these pointers we can recursively list the maxima as described in LIST2(MT ).
In this procedure, RELOCATE removes kinks in the staircase structure at the root
node as well as other kinks along the location path in the tree MT . The time for
listing the maxima is linear in addition to the time for removal of kinks.

Procedure LIST2(MT ).
(This procedure lists the maxima in a tree MT .)
Begin

Let p be the point with maximum x-coordinate in the set of points in MT ;
v = NextLeft(p);
output(p);
while v �= null do

begin
if (M(right(v)) is merged with M(left(v)) by a kink edge), then
RELOCATE(right(v), left(v)) and update NextLeft(q) for all q
whose location is updated during the process;

output(INTER(v));
v := NextLeft(INTER(v));

end;
end.

Note that a kink is removed by locating TOP (right(v)). This requires O(log n)
steps for every kink removal.

We next prove the correctness of the algorithm LIST2(MT ). We need the fol-
lowing property.

Lemma 8. Property Next: If a point, p, is maximal and p is not located by a
kink edge then INTER(NextLeft(p)) is also maximal.

Proof. Since p is maximal there does not exist any point with greater x and greater
y-coordinate. Consider the location of p inside a staircase structure inMT . The node
at which this location is performed is given by w = NextLeft(p). q = INTER(w)
gives the point just above p in the staircase structure, M(w). This point is maximal
with respect to the set of points in the subtree rooted at w since it is on the staircase
structure at w. Moreover, at tree nodes which are ancestors of w, there does not exist
any point in the staircase structures at these nodes which has greater x-coordinate
and greater y-coordinate. This is because such a point would also dominate p which
is maximal and stored in the subtree rooted at w. Thus q is maximal.

Lemma 9. LIST2(MT) correctly reports the set of maxima of S stored in MT .

Proof. The proof is by induction on the number of maximal elements. For the
base case note that the first element reported is in the set of maxima. To prove
the lemma consider the report of the kth element of the set of maxima when k − 1
elements have been reported. The kth point is reported after locating Top(right(v)),
if necessary, where v = NextLeft(q). After the location q is not located by a kink
edge at v, Property Next is applicable to q and thus INTER(v) is maximal.

The complexity of the procedure is O(m+ chng. log n) where m is the number of
maxima and chng is bounded by the number of changes in the semistaircase structure
representing the set of maxima since the last report of the maxima. Note that, at
that report, no kink edges were left in the staircase structure.
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It will be shown later that the pointersNextLeft(p) can be maintained inO(log n)
time per insertion and deletion. NextLeft(p) changes only at locations of points
within staircase structures and only one location is required during an insertion, dele-
tion, or a rotation.

4.8. Searching for dominance. In this section we show how to determine if a
given point, p, is dominated by the set of maxima or not. We do so by a search for the
y-coordinate of the given point in the set of points with greater x-coordinates. Let
P be the path from the root to the leaf where point p is stored. Let R be the set of
roots of the subtrees to the right of path P . It suffices to check if y(p) ≥ y(TOP (v))
for all v ∈ R. If it is, then the point is not dominated; otherwise it is dominated.

4.9. Insertions and deletions. To bound the time for insertions and deletions
in the O(n) space data structure we note that the crucial step while performing inser-
tions and deletions is that of locating the topmost point of a semistaircase structure in
another semistaircase structure. An O(log n) solution to this step has been presented
above.

Moreover, the O(1) rotations performed at every step can also be done in O(log n)
steps since they require O(1) mergers, each requiring O(log n) steps. The variables
TOP and INTER stored at the nodes at which relocations are performed can also
be modified in O(log n) steps. Note that the value of INTER is obtained by using
LOCATE. The value of TOP is immediately available.

We would also like to update the value of NextLeft(p) during the insertion,
deletion, and rotation process. We describe the updated steps below.

First consider insertions. Let P (p) be the insertion path in MT for point p. Let
cp be the node at which p is located within a staircase structure. NextLeft(p) is
defined at this point. Below that node, p is at the top of the staircase structures. For
nodes below cp on P (p), NextLeft(q) changes for points q which are located onto the
stairstep defined by p. For each such point, say q, NextLeft(q) is updated in O(1)
time. And NextLeft(q) is made null for each point, say q, which was replaced by p
as top of the staircase structures since these points are not located onto any staircase
structures. Also let cu be the node at which p is removed from the maxima set by
a point that dominates it. Above this node the point p is no longer on the staircase
and will not affect the value of NextLeft(q) for any point q located at a node above
cu in the tree. For nodes between cp and cu, both included, the value of NextLeft(q)
changes and is updated when the point q is located onto the stairstep defined by p.
Note that during the location of p a number of kink edges would have their top points
changed. If a kink edge (r, s) is constructed from point r to point s, NextLeft(r) is
set to s. At most O(log n) such changes are made.

The modification of the NextLeft pointers thus requires O(log n) steps since at
most O(log n) values are changed along P (p). The entire insertion procedure thus
requires O(log n) steps.

A similar procedure to update NextLeft values is used when a point p is deleted.
Consider the path P (p). During a deletion there are at most two nodes at which a
relocation of a point, say q, is performed. Let the node at which a location takes place
be called cq. NextLeft(q) is thus to be updated. Below node cq, merges are performed
using kink edges. Let r be the topmost point of the staircase structure which is to
be merged by a kink edge. NextLeft(r) is updated in O(1) time. Above node cq no
changes in the location of any point occur. Note that during the relocation at node
cq, O(log n) steps are required for changes of NextLeft values for points connected
by new kink edges formed during the relocation procedure as already described in the
case of insertions.
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Finally, consider rebalancing operations. We consider single rotations only. The
procedure is similar for double rotations. Let v be the node at which a rebalancing
operation is performed. Consider the nodes affected by the rotation. These include
v, the roots of the subtrees involved in the rotation, and the additional node created.
At each of these nodes a relocation is performed and NextLeft values are changed
as described above. And no point, located at nodes not involved in the rotation, has
its NextLeft value affected. The updates require O(log n) operations.

We can thus state the following theorem.
Theorem 2. The maxima of a set of points S, of size n, can be maintained in

a data structure which uses O(n) space and which requires O(log n) operations per
update when O(n) points are deleted or inserted. The complexity of reporting the
maxima is O(m + chng. log n) when there are m maximal points reported and chng
changes in the semistaircase structure storing the maxima since the last report.

5. An improved amortized bound. In this section we show how the maxima
can be reported in linear amortized time.

To improve the reporting bound we note that the O(log n) factor in the reporting
time bound essentially arises because a kink edge (p, q) repeatedly reoccurs in the
changes in the semistaircase representing the maximal set, i.e., it occurs, is removed
from the maxima semistaircase structure by, say, an insertion, and then reoccurs in the
semistaircase structure representing the maxima after a deletion. Thus its location in
the staircase is to be determined at each report. To remedy this we keep the location
of p and update it whenever necessary.

Let p be a point and let v be a node in the tree where the point p first occurs
within a semistaircase, i.e., is not at the top of the semistaircase at v. At this node
the point has to be located within a staircase structure. This location, LOC(p), is
important since it may need to be redetermined during deletions. So we keep this
location in a variable SLOC(p). However, this location is not updated at every
insertion or deletion since only the top points in any staircase are manipulated. Thus
when this point is to be output, the value of SLOC(p) may need to be updated. The
update is necessary when the stairstep onto which the point is located is changed. If
the location requires a binary search, the time for this search is charged to a point,
say q, that is inserted or deleted and changes the location of p. However point q may
already have been charged. This happens when a set of points are located on the
stairstep with q as its corner point. Fortunately, this set of points can be ordered by
domination and there is one point in this set which dominates the others. This point
must be deleted before other points become maximal. A location onto a stairstep
whose corner point is already charged by the location of another point, r, is charged
to the deletion of this point r, an event which must occur for the current location to
be computed.

We prove this formally below. We need the following definitions.
We let P (p) be the path from the leaf containing p to the root and LS(p) be the

set of points such that for each point q, x(q) < x(p), q ∈ S.
LOC(p) is the maximal point in LS(p) with y-coordinate just greater than y(p).
CLOC(p) = {q| such that SLOC(q) = LOC(q) prior to the insertion or deletion

of point p but not after }. This is the set of points for which the LOC(p) has changed
due to insertion and deletion of p.

MCLOC(p) = {q|y(q) = maxq′∈CLOC(p){y(q′)}}, OTHER(p) = {r|r&p ∈
CLOC(q) and r is dominated by p}. Note that OTHER(p) is the set of points
which are dominated by p and required to be located onto R(q), when q is a deleted
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point and p is located onto q. R(q) is the semistaircase structure that replaces the
deleted point q at nodes on P (q), the path from the leaf containing q to the root.
Alternatively, OTHER(p) is the set of points dominated by p which are to be located
onto q at the insertion of q.

The dynamic maintenance scheme, described in the section before, is now modified
so that for every point we maintain LOC(p) in the variable SLOC(p). This value
may be precomputed initially and may be updated when the point is to be output as
a maximal point. To reduce the time for relocations consider the following additional
steps in the insertion and deletion procedures where certain points are marked.

Insertions. On an insertion the following additional step is done:

1. Mark MCLOC(p).

Deletions. On a deletion the additional steps are the following.

1. Mark MCLOC(p).
2. If p =MCLOC(q), mark updated MCLOC(q) obtained after deleting p.
3. Relocate maximal point op in OTHER(p). Also let OTHER(op) =

OTHER(p)− {op}.
Reporting. Finally, on the report, do the following step.

1. Locate all marked nodes encountered and unmark them while reporting the
maximal points.

No marks are changed during rotations. The correctness of the reporting proce-
dure is shown next.

Lemma 10. Let q be a maximal point which is unmarked. Then LOC(q) is
correctly maintained.

Proof. The proof is by induction on the number of insertions and deletions. For
the base case, the lemma is trivially true. Assume that it is true when k insertions or
deletions have been made. Consider the k + 1st operation.

Consider an insertion. Suppose LOC(q) is modified due to insertion of p′. Then
q′ =MCLOC(p) is marked. If q �= q′, then q′ dominates q and thus q is not maximal.

Next, consider deletions. Suppose a point q is affected. This occurs in two ways:

(i) q becomes maximal, and
(ii) LOC(q) is changed.

Consider the following cases: q is already in some set CLOC or not in any such
set. In the first case, if q ∈ OTHER(p), then q may become maximal and is marked.
Otherwise it is in OTHER(op), where op is the maximal point in OTHER(p). Al-
ternatively, q ∈ CLOC(p) at the current deletion. Then either q is marked or some
other point q′ =MCLOC(p) is marked. If q′ dominates q, then q is not maximal but
q is in OTHER(q′). Otherwise x(q) > x(q′) and thus LOC(q) �= p since q would be
located onto either q′ or some other point. No other point is affected by p.

Since marking points requires maintaining sets CLOC and OTHER, we omit
the marking in our actual procedure. It suffices to simply determine if SLOC(p) =
LOC(p), i.e., if LOC(p) is correctly maintained for a maximal point p. If not, then
p is located. Let v be a node in the tree where a point p is located or to be located.
To determine if LOC(p) is correctly maintained we first check if y(p) > y(TOP (v)).
If not, then Top(v) is in the maximal set along with other points in M(v). The
points with y-coordinate greater than y(LOC(p)) are determined by traversing M(v)
in decreasing order of y-coordinate values, starting from Top(v), until the last node,
q, q ∈M(v), such that y(q) > y(p) is reached. At this stage p is required to be located
if either a kink edge connects p to q or if SLOC(p) is not q. Let L(M(v)) be the
list of points traversed, in order of decreasing y-coordinate values, until q is reached.
L(M(v)) satisfies the following property.
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Lemma 11. All points in L(M(v)) are maximal. Furthermore, if r and s are
adjacent points in L(M(v)) with y(r) > y(s), then LOC(s) is either r or is a point t
such that y(r) < y(t) < y(s).

Proof. We first show that since p is maximal, all points in M(v) with greater
y-coordinate are also maximal. The proof is by contradiction. If not then there exists
a point, say p′, at a node above v in MT such that y(p′) > y(z) and x(p′) > x(z), z ∈
L(M(v)). But p′ also dominates p.

To show the second part of the lemma, consider r and s which are adjacent points
in L(M(v)). s is connected to r by either a stairstep or by a kink edge. In the first
case, LOC(s) is r. In the second case, s is located in the staircase structure in between
r and s. LOC(s) is to be determined at NextLeft(s) in the subtree rooted at left(v),
and thus LOC(s) has y-coordinate less than that of r.

The following lemma justifies recomputation of LOC(p).

Lemma 12. If (p, q) is a kink edge or SLOC(p) �= q, then p is marked.

Proof. Suppose (p, q) is a kink edge. Then this kink edge must be due to the
deletion of a point p′ with x-coordinate less than x(p). p is in CLOC(p′′) where p′′ is
such that x(p′′) < x(p). If p is not MCLOC(p′′), then either there exists a point that
dominates p and thus p is not maximal or p �∈ CLOC(p′′). Thus p is MCLOC(p′′)
and is marked.

Next, consider the case when SLOC(p) �= q. Since p must be located onto the
stairstep formed by q, p ∈ CLOC(q) when q is inserted or p ∈ CLOC(q′) when q′ is
deleted and since p is maximal, p is marked.

To traverse M(v) efficiently we keep with every point p the point next to p when
M(v) is ordered by decreasing value of y-coordinates. This point, say Nextdown(p),
is located onto the stairstep formed by p in M(u), u ∈ P (p) where u is the highest
node in P (p) such that a point is located onto the stairstep formed by p at the nodes
of the tree. Note that a point joined by a kink edge to p is also said to be located
onto the stairstep formed by p. Nextdown(p) is determined by keeping the following
variable, INTERLOC, with every point p.

Definition 5. INTERLOC(p) is the node, say u, in the tree, MT , where
q = Nextdown(p) is located onto the stairstep formed by p in M(u).

INTERLOC(p) can be computed in O(log n) steps. The sequence of points
M(v), starting from TOP (v), can be listed using INTERLOC values in linear time.
Moreover INTERLOC(p) can be easily maintained during insertions and deletions
and rotations. The maintenance is similar to that of NextLeft values.

Lemma 13. INTERLOC(p), p ∈ S can be maintained in O(log n) steps during
insertions, deletions, and rotations.

Proof. Consider an insertion of a point q. At most one location is performed
during an insertion. Suppose q is located onto a point p. Only INTERLOC(p)
needs to be updated. This can be done by comparing with the current value of
INTERLOC(p). Moreover, during relocations kink edges are changed. Each
INTERLOC value affected during a relocation, say INTERLOC(p), is updated
by maintaining p and the highest node, denoted by H(p), at which a kink edge is
joined to p as the relocation path is traversed from a leaf to the root. At each step
along this path only one point, q′, and H(q′) need be maintained. This follows from
the way that the relocation procedure, RELOCATE, modifies kink edges using the
point q′. The procedure changes q′ along the relocation path such that y(q′) increases.
Let r and s be two points such that q′ = s and subsequently q′ = r. Since y(s) < y(r)
no kink edge will be joined onto s once q′ becomes r. Thus only INTERLOC(p),
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where p is q′ currently, needs to be modified as RELOCATE processes nodes on the
relocation path.

During a deletion, two relocations are performed. INTERLOC values affected
are updated again in O(log n) steps. Furthermore, kink edges are introduced. Each
INTERLOC value affected by kink edges can be updated in constant time since this
value can be maintained as we traverse up the path where a deletion or relocation
takes place. The maintenance detail is similar to that described for insertions.

Finally, during rotations, a constant number of relocations are performed.
INTERLOC values can again be updated as in the case of insertions and deletions in
O(log n) steps.

We thus have the following lemma.

Lemma 14. Let LS be the subset of maximal points such that SLOC(p), p ∈ LS,
needs to be updated. Given INTERLOC(p), p ∈ S, LS can be determined in time
linear in the output size.

Proof. Consider the linear search performed at a node v using INTERLOC
values to determine if LOC(p) is to be updated. By Lemma 11 all the points scanned
are in the output, and by the discussion above L(M(v)) can be determined in linear
time. Moreover, as shown in Lemma 11, these points need not be scanned more than
once since this scan allows us to determine if LOC updates of points in L(M(v)) is
either already determined or is to be determined by a location.

Note that while updating LOC(p), NextLeft values at leaf nodes also need to be
updated. This is done by a procedure similar to that which updates NextLeft values
during locations while inserting or deleting and requires O(log n) steps. We can thus
state the following result.

Theorem 3. The set of maxima of a set of points in the plane can be maintained
in O(n log n +m log n + r) operations when there are n insertions, m deletions, and
r is the number of points reported. Furthermore, each update requires O(log n) steps
in the worst case.

Proof. We need show the correctness of only the reporting procedure. By
Lemma 12, during a report a point is located only if it is marked. Furthermore, a
point, p such that LOC(p) is not correctly maintained is always marked (Lemma 10).

We next analyze the time complexity. The time complexity for insertion, delete,
and report operations without the maintenance of LOC(p) has been shown before in
Theorem 2. We consider the effect of marking of nodes ignoring the time required to
compute sets CLOC and OTHER since our procedure avoids these computations.
The analysis uses the following potential function:

PF = log n×( No. of marked points).
When we use this potential function, the amortized time for an insertion is O(log n)
since at most one location is done and one point is marked. The amortized time for a
deletion operations is also O(log n) since apart from a constant number of locations at
most three marked nodes are affected. During the reporting of the maxima, marked
points are located and the points are unmarked. Since the number of locations is equal
to the number of marked points decreased by becoming unmarked, the amortized time
is O(r) where there are r points reported.

In the actual procedure described above the marking is not explicitly done, but a
marked point p is detected by checking SLOC(p) or the existence of a kink edge onto
which p is located. By Lemma 12 this suffices to detect marked points. Moreover,
by Lemma 14 these points can be detected in O(r) time since Lemma 13 shows that
INTERLOC values can be maintained in O(log n) steps. The theorem follows.
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6. Maintaining maximas under insertions in d-dimension. In this section
we show how to extend the scheme of maintenance of maximas to higher dimensions.
We only consider insertions.

We use the fact that the problem can be solved in two dimensions in O(log n)
time per update. To this we add the range restriction technique [WL]. The ranges are
added to all dimensions other than the last two where the solution described above is
used.

The details of the data structure are as follows: The primary structure is a bal-
anced tree Td representing the dth dimension. It stores at its nodes secondary struc-
tures which represent the maximal points of the subset of points at that node. At each
secondary structure it suffices to maintain the set of maxima in d − 1 dimensions of
a set of points. This set is obtained from the projection of the subset of points in the
subtree rooted at the node onto a d-dimensional hyper-plane xd = xmin where xmin
is the minimum d-coordinate of the subset of points. Thus each node u in the tree is
also associated with a hyperplane H(u) onto which maximal points in the subtree are
projected. The secondary structure is denoted by Td−1(u). To compute the maxima
at a node the maxima obtained from the left child are filtered from those at its right
child. The filtering operation is well known [KLP].

We next define the filtering operation when a point is added into the data struc-
ture. Let P be the path from the leaf where the point is added to the root in Td.
Suppose the point added is a maximal point in a subset of points present at node u in
Td. Let w be the node such that v is a child, and let u be its other child. First consider
the case when v is a right child. Then the point p eliminates maxima from the set
of maxima at u. This filtering operation is performed recursively as follows: Let p′

be the projection of p on the hyperplane H(u) at u. We determine the points that
are eliminated in the secondary structure at u by p′. This is done by inserting p′ into
the secondary structure Td−1(u) using a similar procedure. The recursion stops when
the secondary structure contains two-dimensional points. At this stage the procedure
defined above for maintaining the maxima in two dimensions is used to obtain the
set of points eliminated by the introduction of p. The time required for this filtering
operation is O(logd−1 n).

We next consider the case when v is a left child of w. In this case it has to be
determined whether p is eliminated by the set of maxima at u the other child of w. To
do this we recursively evaluate whether p′, the projection of p onto H(u), is dominated
by the set of maxima in Td−1(u). This is done recursively as follows: Let P (p′) be the
path from the leaf to the root. For all subtrees along the path containing points with
greater d − 1st coordinate it is determined whether p′ is dominated by the points in
the subtree in the remaining d−2 dimensions also. The recursion stops at the second
dimension when the point is checked to be dominated or not in O(log n) steps using
the staircase structure.

The filtering operation gives a set of points that are to be deleted and inserted
from the set of maxima at w. Consider the deletion of a point q from a secondary
structure Td−1(w). Again let P (q) be the path from the leaf containing q to the root.
The point is recursively removed from each of the secondary data structures at the
nodes on the path. The recursion stops when the dimension is 2. At this point the
procedure defined before is used to delete the point from the set of two-dimensional
maxima in O(log n) operations. The insertion of a point is done similarly.

The details of the balancing procedures and the changes to the secondary struc-
tures are similar to that described in Willard and Leuker [WL] and are omitted here.
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We thus achieve changes in the maxima tree structure in O(logd−2 n) time per
change after the insert and filter steps which require O(logd−1 n) operations.

Conclusions and acknowledgments. We have shown efficient schemes for dy-
namically maintaining the set of maxima of a set of points in two dimensions. We
do so by maintaining approximate information. Other applications of this technique
would be interesting. I would like to thank A. Dutta and S. Sen for helpful discussions.
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Abstract. We present a deterministic polynomial-time algorithm for the ABC problem, which
is the membership problem for 2-generated commutative linear semigroups over an algebraic num-
ber field. We also obtain a polynomial-time algorithm for the (easier) membership problem for
2-generated abelian linear groups. Furthermore, we provide a polynomial-sized encoding for the set
of all solutions.
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1. Introduction. Most algorithmic questions about infinite groups and semi-
groups given by presentations (generators and relations) are known to be undecidable
[11], [38], [1], [40]. However, the most useful and interesting representation of groups
is by matrices over a field. Most groups occurring in physics and many finite sim-
ple groups arise as groups of matrices. Nonetheless, it should be noted that many
interesting groups do not have faithful matrix representations. An interesting class
of groups that cannot be represented by matrices is the uncountable class of infinite
Burnside groups introduced by Grigorchuk [20] and whose computational properties
were studied in [16]. Rabin has stated without proof in [41] that if the groups are
represented by matrices over a field then the word problem is decidable. This re-
sult was improved to log space complexity by Lipton and Zalcstein [33] for fields of
characteristic zero and by Simon [42] for fields of positive characteristic.

The word problem is a “checking” problem. The corresponding “search” problem
is the membership problem: Precisely, given a finite number of elements a1, . . . , ak
(given as matrices or permutations) of a group G and a target element g, does g
belong to the group generated by a1, . . . , ak?

In this generality the problem is undecidable [37], even for groups of 4-by-4 ma-
trices. Thus work on this problem has focused on finite groups. Babai and Szemeredi
[5] have shown that, for finite groups of matrices over a finite field the problem is in
NP. This problem has also motivated the introduction of the complexity class AM
[2]. Since, as has been observed in [5], the membership problem for finite matrix
groups over finite fields is closely related in complexity to that of the discrete loga-
rithm problem, further progress seems unlikely and most research has concentrated
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on groups represented by permutations rather than matrices. Over the years, this
research has culminated in efficient sequential and parallel algorithms [3, 4, 15, 22].
Progress on the matrix representation case is very recent. Luks [35] has presented a
polynomial-time membership test for solvable matrix groups over “good” finite fields
(where the discrete logarithm problem can be bypassed). Beals and Babai [6] have
given a polynomial-time Las Vegas membership test for arbitrary finite matrix groups
over an algebraic number field. For semigroups the problem is even harder. It is known
to be undecidable even if the target element g is the zero matrix and the matrices
are 3 by 3 [39] (for a related unsolvable problem for semigroups of triangular 3-by-3
matrices see [23]). For finite semigroups the problem is PSPACE-hard [25], even if
the semigroups are inverse (this follows from [9, Theorem 5.4]) and it is NP-hard for
finite commutative semigroups [8].

In this paper, we extend previous algorithmic results in two directions. First, we
allow infinite systems, where even decidability is not clear, and second, we consider
as semigroups as well. On the other hand, since the general problem is undecidable,
some restrictions are needed. In 1980, Kannan and Lipton [28] solved the following
orbit problem, which is the membership problem for a cyclic semigroup, by giving a
polynomial-time algorithm:

Given two commuting matrices A and B over the rational numbers,
does there exist a nonnegative integer i, such that Ai = B?

The following generalized orbit problem, or the A B C problem, has remained open
since 1980:

Given commuting matrices A, B, and C over the rational numbers,
does there exist nonnegative integers i and j, such that AiBj = C?

In this paper, we resolve the A B C problem by giving a polynomial-time algo-
rithm which not only decides the solvability of a given instance A, B and C, but also
finds all solutions by showing that the set of solutions is a (possibly empty) “affine
lattice” and producing a polynomial-sized basis for that lattice.

We also obtain the corresponding result for the group case. We would like to
point out that the semigroup problem is harder, even when the generating matrices
are invertible, since we do not allow the use of the inverse operation. The results are
new, even in the group case. Prior to this work, the best result for the problem in the
group case was that it is decidable, a result by Kopytov [24]. The proof in [24], which
constructs “yes” and “no” lists, does not give any complexity bounds. Nothing was
previously known for the semigroup case.

The techniques presented here can be generalized and modified to solve the mem-
bership problem for the case of k > 2 generators, where k is fixed [7]. However,
we should point out that, for semigroups, the number of generators must be fixed;
otherwise, as noted above, the problem is already NP-hard in the finite case.

We will explain briefly why the problem is challenging. Let us assume first (this is
seemingly the easiest case) that the matrices A,B, and C are all diagonalizable. Since
they commute they must be simultaneously diagonalizable. In this case the problem is
reduced to n instances of the following problem (n is the size of the matrices): Given
algebraic numbers α, β, and γ, are there nonnegative integers i, j such that αiβj = γ?
Or more generally, for a fixed k, given algebraic numbers α1, . . . , αk, and η, are there
nonnegative integers i1, . . . , ik such that

αi11 . . . αikk = η(1)

holds? In case some of the α’s are not units, one can use Kummer’s unique fac-
torization of ideals and apply an argument based on the exponential growth of the
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norms [N(αi)]
i. However, the hard case is when all the α’s are units. The theorem of

Blanksby and Montgomery [10] used in [28] is inadequate for the case k ≥ 2. Another
natural attempt is to use Dirichlet’s unit theorem to decompose the α’s in terms of
fundamental units. However, the complexity of computing such decompositions has
not, to our knowledge, been analyzed and it may not be computationally tractable.
Furthermore, Dirichlet’s theorem handles only the group case. Finally, in reducing
the general case to the diagonalizable case, Dirichlet’s theorem is not enough. We
need a description of all solutions of (1). Such a description, for the special case that
η = 1, has been obtained only recently by Masser [36]. A more recent result, by Ge
[19] gives a polynomial-time algorithm for computing a basis for all solutions of (1),
for η = 1.

The proof builds upon Ge’s result and the observation that if a matrix A is given
in Jordan normal form (JNF), then there are closed form formulas for the powers of A.
A recent result [12], developed simultaneously with this paper, gives a polynomial-
time algorithm for computing JNF. This observation, together with Theorem 3.2
which handles the scalar case, provides a quick proof of the Kannan–Lipton theorem.
It should be pointed out that [12] uses the L3 algorithm [31], which had not yet
been discovered at the time that [28] was written. Generalizing to the case of two
generators, if both generators are diagonalizable, the problem is reduced to the scalar
case. If at least one of the generator matrices is not diagonalizable, it is tempting
to believe that, since the matrices commute, they can be brought simultaneously to
JNF. If this were true, an extension of the argument in the diagonalizable case could
possibly be constructed. However, this is not true. To overcome this difficulty, we
introduce a technique which we call successive restriction.

Our results are as follows.

Theorem 1.1. There is a polynomial-time algorithm for the following prob-
lem: Given k + 1 algebraic numbers α1, . . . , αk and η, are there nonnegative integers
i1, . . . , ik such that (1) holds? If so, find all solutions (in a polynomial-sized encod-
ing).

Theorem 1.2. There is a polynomial-time algorithm to decide the solvability
of the A B C problem; namely, given commuting matrices A, B, and C over an
algebraic number field, do there exist nonnegative integers i and j such that AiBj = C?
Further, if there is a solution, the algorithm finds all solutions (in a polynomial-sized
encoding).

Theorem 1.3. There is a polynomial-time algorithm to solve the A B C problem
in the group case, i.e., where the exponents are allowed to be arbitrary integers.

It is possible to generalize Theorem 1.3 as follows. A group G satisfies the per-
mutation (or rewriting) property P3 iff for any three elements a1, a2, a3 in G, the
product a1a2a3 equals a product which is a nontrivial permutation of a1, a2, a3. Any
abelian group satisfies the property P3. It is known [14] (see also [17]) that a group
satisfies P3 iff it has at most one nontrivial commutator. Thus in a group satisfying
P3, any product of powers of the generators equals the product ai11 . . . aikk , possi-
bly post-multiplied by the unique commutator. Thus membership testing is reduced
to the abelian case. Unfortunately, the P3 semigroups have not been characterized
completely (for some partial results see [17]) and the complexity of the membership
problem for P3 semigroups is not known.

The plan for this paper is as follows. In section 2 we will deal with some prelimi-
nary issues. Proofs in section 2 are omitted. In section 3 we prove Theorem 3.2, from
which Theorem 1.1 follows. In section 4, we first give an illustration of the power of
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our new techniques in a simple setting by giving a transparent proof of the Kannan–
Lipton theorem. Then in section 4 we use the method of successive restriction to
complete the solution of the A B C problem.

2. Preliminaries. First, without loss of generality, we may assume that the
matrices are over the rationals. This reduction uses the classical matrix representation
of a finite algebraic extension over the ground field [21]. Let A, B, and C ∈ Qn×n be
n × n rational matrices. The input size to the problem is n plus the sum of binary
lengths of all entries. By an extension of a technique from [28], we may assume that
C is given as a polynomial in A and B with rational coefficients. This is certainly a
necessary condition, and whether C is such a polynomial can be decided in polynomial
time, as it is a question of linear dependence over the rationals [26].

Thus, we are given A,B ∈ Qn×n such that A,B commute, and a polynomial p in
A and B. The question is to decide if p can be expressed as a product of nonnegative
powers of A and B. In [28], the computation of eigenvalues could be circumvented,
using the crucial fact that the ring of polynomials in one variable over a field is
principal. Since the ring of polynomials in two variables is not principal, this strategy
no longer works. We will compute in various number fields, mostly symbolically; i.e.,
we will have an irreducible polynomial f (proven so by the L3-algorithm), and each
element in the field will be represented by a polynomial of degree < deg(f) [31, 29].
This can be done over any number fields as well, not just Q. However, an important
issue is that we cannot allow the degree of the extension over Q to be too large; in
general, to stay within polynomial time, we cannot operate in the splitting field of
an irreducible polynomial of degree say, n, since the Galois group of this extension
field might be too large. It is not known how to compute in polynomial time in an
extension field where the Galois group has size n! and in fact it is believed to be
impossible [32].

We will need to compute the JNF for either of the matrices A or B. What we
will show in the paper is a technique of successive restriction which is of independent
interest and is almost as good for our purposes as simultaneous JNF. But before
we get to that, let’s first ask if we can compute a basis change for the JNF of a
matrix A in polynomial time. The difficulty is that if we use the standard textbook
algorithm, we will be dealing with the splitting field of χA over Q. Thus the standard
algorithm will not do. However, there is a polynomial-time algorithm [12] that finds
an invertible matrix T , such that T−1AT = JA, the JNF for A. The matrix T has
entries from the splitting field of χA, but the trick is that in [12] we can find a T
where every entry t in fact belongs to a much smaller extension field, which varies
with t and can be computed in polynomial time within the smaller field. The matrix
JA is not computed from the product T−1AT ; in fact, computing T−1 from T , say
using Gaussian elimination, involves the splitting field again. However, a different
technique is used in [12] to compute JA, and to compute T−1 from T , without ever
going to the splitting field, all accomplished in polynomial time.

Next there is the issue of how to apply this basis transformation to another matrix
M . The fact is that this cannot be done in polynomial time. The same difficulty with
the splitting field gets in the way. But it can be done for the matrices B and C, using
the fact that they commute with A. It is only in this limited sense that we have
obtained this basis transformation computationally. Fortunately, this is sufficient for
the solution of the A B C problem.

There is another technical issue concerning conjugates of the same irreducible
polynomial. When it is necessary to distinguish one root from another, we will use a
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“good enough” rational approximation, which gives a polynomial number of bits and
uniquely identifies the root on the complex plane. We refer the reader to [34] for the
details.

In the following we will speak freely of computing JNF, invariant subspaces, etc.,
all in polynomial time, without further comment. We will reduce the situation to the
case where both A and B have exactly one eigenvalue each, λ and µ, respectively.
We view A and B as linear transformations over the field C of complex numbers.
Let p(.) be a polynomial with complex coefficients. Consider a subspace V defined as
ker(p(A)) or Im(p(A)). It is easy to see that V is an invariant subspace for both A
and B

Now consider the subspace Vλ = ker(λIn − A)n−1, where λ is any eigenvalue of
A, i.e., λ ∈ Spec(A). Since A and B commute, Vλ is an invariant subspace for both
A and B.

After some preparation, we can arrive at the following situation: we have a de-
composition of Cn as a direct sum of subspaces Vλ,µ, invariant for both A and B,
where λ and µ range over Spec(A) and Spec(B), i.e., all eigenvalues of A and B, such
that there is just one eigenvalue λ (and µ, respectively) for A (and B, respectively)
on Vλ,µ:

Cn =
⊕

λ∈Spec(A),µ∈Spec(B)

Vλ,µ.

Lemma 2.1.
Suppose A,B commute and C is a polynomial in A and B; then for any i, j,

AiBj = C ⇐⇒ (A |Vλ,µ
)i(B |Vλ,µ

)j = C |Vλ,µ
,

∀λ ∈ Spec(A), µ ∈ Spec(B).
For what follows, we will fix any pair of eigenvalues λ ∈ Spec(A) and µ ∈ Spec(B)

and consider A |Vλ,µ
and B |Vλ,µ

. We will call them A and B, respectively, when no
confusion arises.

3. The affine lattice of solutions. We will need the following theorem of
Masser [36].

Theorem 3.1. Fix any k ≥ 1. Let α1, . . . , αk be nonzero algebraic numbers over
Q. Let D = [Q(α1, . . . , αk) : Q] be the degree of the algebraic extension, and let h be
the maximum height 1 of α1, . . . , αk over Q. Then, the relation group

L = { (e1, . . . , ek) ∈ Zk | αe11 · · ·αekk = 1 }

is a lattice with a small basis. More specifically, L has a generating set v1, . . . , v� ∈ Zk,
1 ≤ $ ≤ k, such that the maximum entry in these vectors max1≤i≤� 1≤j≤k |vi,j | is at
most

(ckh)k−1Dk−1 (log(D + 2))3k−3

(log log(D + 2))3k−4
,

where c is some absolute constant.
In order to appreciate this remarkable theorem of Masser, let’s look at its im-

plication on the computational complexity of finding such a basis. Note that in the

1The height function of an algebraic number is essentially the sum of the degree and the binary
length of all coefficients in the defining equation over Q.
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inequality, the left hand side refers to the quantity vi,j , while the right hand side es-
sentially refers to the binary length of the input data. (Recall that k is fixed.) Thus,
an exhaustive search can be done in polynomial time to find a small basis.

We call a shift of a lattice L+ v, for some v ∈ Zk, an affine lattice. We say that
an affine lattice has small description if it is L+ v for some small v and L has a small
basis; here small means all entries are polynomially bounded in quantity (not merely
in binary length).

Theorem 3.2. Given nonzero algebraic numbers α, β1, . . . , βk, the set

{ (j1, . . . , jk) | αβj11 · · ·βjkk = 1 }

is either empty or is an affine lattice with rank at most k and a small description.
Moreover, it is decidable in polynomial time whether it is empty, and if not, to compute
a small description in terms of an off-set vector v and a small basis. Finally, if the
rank of the affine lattice is k, then all of α, β1, . . . , βk are roots of unity.

Proof. Consider the lattice

L = { (i, j1, . . . , jk) | αiβj1 · · ·βjk = 1 }.

By Ge’s theorem [19], we get a small basis v1, . . . , v�, $ ≤ k + 1. Now we wish to
intersect this lattice with the affine lattice {(1, j1, . . . , jk) | j1, . . . , jk ∈ Z}.

Write 

v1

v2

...
v�


 =



v10 v11 . . . v1k

v20 v21 . . . v2k

...
...

. . .
...

v�0 v�1 . . . v�k


 ,

where vij ∈ Z and |vij | ≤ nO(1).
We can first perform a basis reduction to transform the basis to a so-called canon-

ical basis in the sense of Hermite. This can be done in polynomial time [27]



v10 v11 . . . v1k

0 v21 . . . v2k

...
...

. . .
...

0 0 . . . ·


 ,

where 0 ≤ v10, 0 ≤ v11 ≤ v21, etc. The row vectors still form a basis for L. We will
still call them v1, . . . , v�.

Now it is clear that this lattice intersects with {(1, j1, . . . , jk) | j1, . . . , jk ∈ Z} iff
v10 = 1, and if so, then the intersection is L′ + v1, where L

′ is the lattice spanned by
v2, . . . , v�.

If the rank of the affine lattice is k, then $ = k + 1. The basis matrix is a
square matrix and all diagonal entries are nonzero. In particular, vkk = 0, and
βvkk

k = 1. Thus, βk is a root of unity. Continuing, we have vk−1,k−1 = 0, and

β
vk−1,k−1

k−1 = β
−vk−1,k

k , which is a root of unity. Thus, βk−1 is also a root of unity. The
proof is completed by an easy induction.

If any of the algebraic numbers α, β1, . . . , βk are 0, we will adopt the convention
that 00 = 1 and 0i = 0 for i > 0. Under this convention, the statement in Theorem 3.2
can be easily adapted to allow 0’s. Now to prove Theorem 1.1, note that the set
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of k-tuples of nonnegative integers (i1, . . . , ik) such that (1) holds is obtained by
intersecting the affine lattice L of Theorem 3.2 with the set of k-tuples of nonnegative
integers. By Lenstra [30], membership in the intersection can be decided in polynomial
time.

4. The proof. We will first illustrate the new technique, in a simple setting, by
demonstrating how swiftly the Kannan–Lipton Theorem [28] can be proved using this
technique.

4.1. The Kannan–Lipton theorem.
Theorem 4.1. There is a polynomial-time algorithm for the following problem:

Given two rational matrices A, B, is there a nonnegative integer i
such that Ai = B?

Proof. Put A in JNF. Restrict to a subspace Vλ, where the only eigenvalue for A
on Vλ is λ.

• Case 1. λ = 0. Then A|Vλ
is nilpotent, (A|Vλ

)n = 0. Thus we need only
check the cases (A|Vλ

)i = (B|Vλ
), for 0 ≤ i ≤ n.

• Case 2. λ = 0. Consider the solutions to λi = c, which is obtained by looking
at any diagonal entry in (A|Vλ

)i = B|Vλ
. If the solution set is empty, we are

finished. Suppose the solution set is an affine lattice of rank 0, i.e., there is a
unique solution i and since i ≤ nO(1) we can directly check if Ai = B. The
only nontrivial case is rank 1. Then by Theorem 3.2, λ is a root of unity. So
must be c, hence c = 0. The order of λ must be polynomially bounded, since
χA(λ) = 0.
1. A|Vλ

is diagonal. Then it is completely determined by Theorem 3.2.
2. A|Vλ

is not diagonal. Then some Jordan block has size ≥ 2. We can

symbolically compute the powers of A|Vλ
, up to (A|Vλ

)i, for i ≤ 2n
O(1)

.
This uses the fact that λ is a root of unity, and we know the closed form
formula for powers of JNF. Thus, on the diagonal we get equation λi = c,
and on the off-diagonal we get an equation

(
i
1

)
λi−1 = c′. This gives the

necessary condition that i = λc′/c. If λc′/c is not a nonnegative integer,
then there is no solution. Otherwise, we simply check directly if λi = c.

The Kannan–Lipton Theorem is proved.

4.2. The method of successive restriction. Now the setting is Vλ,µ. We will
write A for A|Vλ,µ

and do the same for B. There will be four cases, depending on
whether λ = 0 and/or µ = 0. The cases when at least one of the eigenvalues is 0 are
in fact simpler, since then the matrix is nilpotent, so that we need only check powers
up to n. (Recall that on Vλ,µ, each matrix has exactly one eigenvalue.) We will omit
the details on these three cases and assume λ = 0 and µ = 0. If both A and B are
diagonal matrices λIand µI, then this case is completely determined by Theorem 3.2.
Suppose A is not diagonal. Put A in its JNF. Since A = λI, at least one block is of
dimension > 1.

Let

V ′ = ker(λI −A)

and

V ′′ = ker(λI −A)2.

Since A and B commute, both V ′ and V ′′ are invariant subspaces of B as well as
A. In terms of the Jordan form of A, V ′ corresponds to the first rows and columns
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of each λ-block. And V ′′ corresponds to the first and the second rows and columns
(whenever a second row and column exists) of each λ-block. Since at least one block
is of dimension > 1, V ′ = V ′′.

Let n1 = dimV ′ and n1 + n2 = dimV ′′; then n1 ≥ n2 ≥ 1.
Let v11, . . . , v1k1 , v21, . . . , v2k2 , . . . , v�1, . . . , v�k� be the basis vectors for which A

has its Jordan form, where vi1, . . . , viki is the basis vectors corresponding to the ith
block. We also assume that the blocks are ordered so that k1 ≥ · · · ≥ k�. Then
v11, . . . , v�1 spans the eigenspace V ′ = ker(λI − A), and consequently $ = n1. By
assumption k1 ≥ 2, and let $′ = max{i | ki ≥ 2}; then v11, . . . , v�,1, v12, . . . , v�′2 spans
V ′′ and $′ = n2.

Consider A |V ′′ and B |V ′′ . If we order the basis vectors as v11, . . . , v�,1, v12, . . . ,
v�′2, then A has the form

A =


λIn2 0 In2

0 λIn1−n2 0
0 0 λIn2


 .

By decomposing B in blocks of the same dimensions, one can easily verify that

A and B commute ⇐⇒ B is of the following

block upper triangular form:

B =


X Y Z

0 U V
r0 0 X


 ,

where X,Y, Z, U, V are of the appropriate dimensions.
(If n1 = n2, then the middle blocks λIn1−n2 in A, and Y , U , and V in B are

understood not to appear.)

4.2.1. Restriction to V ′. Choose a basis transformation of V ′ such that B |V ′

is in its Jordan form. Note that on V ′, A |V ′ is the scalar matrix λIn1
which is

unchanged under all basis transformations. Thus, under this basis, A |V ′ is still the
scalar matrix λIn1

, and B |V ′ is a direct sum of Jordan blocks all of which have µ on
its diagonal, since Spec(B |V ′) = {µ}. By comparing eigenvalues, we get λiµj = c.
By Theorem 3.2 we get either an empty set of solutions or an affine lattice of small
description. If it is empty, we are finished; or if the rank is 0, we can directly check
it. If the rank is 1, then we can reduce it to Kannan–Lipton’s theorem. In fact,
let i = i0 + as and j = j0 + bs for small i0, j0, a, b; then we have to solve for s in
(AaBb)s = (CA−i0B−j0).

Now suppose the rank is 2. Then both λ and µ are roots of unity. We note that

in this case we can compute high powers of A and B, up to 2n
O(1)

, in polynomial
time. This is accomplished separately for A and B by first putting the target matrix
in JNF, then taking its power, and finally reverting back.

Suppose B |V ′ is not a scalar matrix µI. Then some µ-block of B |V ′ has dimen-
sion > 1. Then consider

U ′ = ker(µI −B |V ′)

and

U ′′ = ker(µI −B |V ′)2.
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As before, both U ′ and U ′′ are invariant subspaces of A as well as B. Since at least
one block of B |V ′ is of dimension > 1, U ′ = U ′′.

Let m1 = dimU ′ and m1 +m2 = dimU ′′; then m1 ≥ m2 ≥ 1, and if we order the
basis vectors appropriately, we have A |U ′′= λIm1+m2 and

B |U ′′=


µIm2 0 Im2

0 µIm1−m2
0

0 0 µIm2


 .

(Again, if m1 = m2, then the middle blocks are understood not to appear.)
Implied by the forms of A |U ′′ and B |U ′′ is the fact that the first and the last m2

basis vectors together generate an invariant subspace for both A and B. By focusing
on this subspace, we get a necessary condition of AiBj = C in the form of a pair of
equations

λiµj = c, jλiµj−1 = c′.

This gives us, upon substitution, j = µc′/c, which reduces the problem to the
one-variable case.

4.2.2. Restriction to V ′′. Now we suppose on V ′, B |V ′= µIn1
; thus on V ′′,

B |V ′′=


µIn2 0 Z

0 µIn1−n2 V
0 0 µIn2


 .

(Once again, the middle blocks disappear if n1 = n2.)
Suppose n1 > n2. V ∗ = span{vn2+1 1, . . . , vn11}, the subspace corresponding to

the middle blocks, is an invariant subspace for both A and B. Consequently we may
consider the quotient space V ′′/V ∗ and the induced action of A and B on this quotient
space, denoted by Ã and B̃, respectively. (If n1 = n2, then V

∗ = 0 and V ′′/V ∗ = V ′′.)
Under the induced basis from {v11, . . . , vn2,1, v1,2, . . . , vn2,2} for V ′′/V ∗,

Ã =

(
λIn2 In2

0 λIn2

)

and

B̃ =

(
µIn2 Z
0 µIn2

)
.

If Z = 0 then we will get a necessary condition

λiµj = c, iλi−1µj = c′.

This gives us, upon substitution, i = λc′/c, which reduces the problem to the one-
variable case.

If Z = 0 then we will get a necessary condition

λiµj = c, jλiµj−1z + iλi−1µj = c′,

for some known algebraic numbers c, c′ and z = 0. Upon substitution, we get

i

λ
+ z

j

µ
=

c′

c
.
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Solving i in terms of j,

i =
λc′

c
− zλ

µ
j.

If zλµ is not rational, then we will have at most one pair of integral solution (i, j), and

we can easily find it and test it. If zλµ is rational, then unless λc′/c is rational, there

is no solution, and if λc′/c is rational, then there is an integral relationship between
i and j,

ui+ vj = w.

We can solve this equation in general form, i = i0 + v1t and j = j0 − u1t, where
u1 = u/ gcd(u, v) and v1 = v/ gcd(u, v). Substituting back in AiBj = C, we get
(Ai0Bj0)(Av1B−u1)t = C, which reduces it to the case with one variable t. This
proves Theorem 1.2. Theorem 1.3 is proved by removing the restriction to nonnegative
exponents at the appropriate places in the proof. Alternatively, as suggested by the
referee, apply Theorem 1.2 four times with the respective generator pairs A, B; A,
B−1; A−1, B; and A−1, B−1.
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Abstract. Replicated services accessed via quorums enable each access to be performed at
only a subset (quorum) of the servers and achieve consistency across accesses by requiring any two
quorums to intersect. Recently, b-masking quorum systems, whose intersections contain at least
2b+1 servers, have been proposed to construct replicated services tolerant of b-arbitrary (Byzantine)
server failures. In this paper we consider a hybrid fault model allowing benign failures in addition
to the Byzantine ones. We present four novel constructions for b-masking quorum systems in this
model, each of which has optimal load (the probability of access of the busiest server) or optimal
availability (probability of some quorum surviving failures). To show optimality we also prove lower
bounds on the load and availability of any b-masking quorum system in this model.

Key words. quorum systems, Byzantine failures, replication, load, availability, distributed
computing
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1. Introduction. Quorum systems are well-known tools for increasing the effi-
ciency of replicated services, as well as their availability when servers may fail benignly.
A quorum system is a set of subsets (quorums) of servers, every pair of which intersect.
Quorum systems enable each client operation to be performed only at a quorum of
the servers, while the intersection property makes it possible to preserve consistency
among operations at the service.

Quorum systems work well for environments where servers may fail benignly.
However, when servers may suffer arbitrary (Byzantine) failures, the intersection
property does not suffice for maintaining consistency; two quorums may intersect
in a subset containing faulty servers only, which may deviate arbitrarily and unde-
tectably from their assigned protocol. Malkhi and Reiter thus introduced masking
quorums systems [25], in which each pair of quorums intersects in sufficiently many
servers to mask out the behavior of faulty servers. More precisely, a b-masking quorum
system is one in which any two quorums intersect in 2b+ 1 servers, which suffices to
ensure consistency in the system if at most b servers suffer Byzantine failures.

In this paper we develop four new constructions for b-masking quorum systems.
For the first time in this context, we distinguish between masking Byzantine faults
and surviving a possibly larger number of benign faults. Our systems remain available
in the face of any f crashes, where f may be significantly larger than b (such a system
is called f -resilient). In addition, our constructions demonstrate optimality (ignoring
constants) in two widely accepted measures of quorum systems, namely load and
crash probability. The load (L), a measure of best-case performance of the quorum
system, is the probability with which the busiest server is accessed under the best
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possible strategy for accessing quorums. The crash probability (Fp) is the probability,
assuming that each server crashes with independent probability p, that all quorums
in the system will contain at least one crashed server (and thus will be unavailable).
The crash probability is an even more refined measure of availability than f , as a good
system will tolerate many failure configurations with more than f crashes. Three of
our systems are the first systems to demonstrate optimal load for b-masking quorum
systems, and two of our systems each demonstrate optimal crash probability for its
resilience f . In proving optimality of our constructions, we prove new lower bounds
for the load and crash probability of masking quorum systems.

The techniques for achieving our constructions are of interest in themselves. Two
of the constructions are achieved using a boosting technique, which can transform any
regular (i.e., benign fault-tolerant) quorum system into a masking quorum system
of an appropriately larger system. Thus, it makes all known quorum constructions
available for Byzantine environments (of appropriate sizes). In the analysis of one of
our best systems we employ strong results from percolation theory.

The rest of this paper is structured as follows. We review related work and
preliminary definitions in sections 2 and 3, respectively. In section 4 we prove bounds
on the load and crash probability for b-masking quorum systems and introduce quorum
composition. In sections 5–7 we describe our new constructions. We discuss our results
in section 8.

2. Related work. Our work borrows from extensive prior work in benignly
fault-tolerant quorum systems (e.g., [12, 39, 24, 11, 15, 4, 9, 1, 7, 31, 36]). The notion
of availability we use here (crash probability) is well known in reliability theory [5]
and has been applied extensively in the analysis of quorum systems (cf. [4, 34, 35] and
the references therein). The load of a quorum system was first defined and analyzed
in [31], which proved a lower bound of Ω( 1√

n
) on the load of any quorum system (and,

a fortiori, any masking quorum system) over n servers. In proving load-optimality of

our constructions, we generalize this lower bound to Ω(
√

b
n ) for b-masking quorum

systems.
Grids, which form the basis for our multigrid (denoted M-Grid) construction,

were proposed in [24, 7, 21, 25]. The technique of quorum composition, which we
use in our recursive threshold (RT) and boosted finite projective planes (boostFPP)
constructions, has been studied in [29, 33, 32] under various names such as “coterie
join” and “recursive majority.” Our multipath (M-Path) construction generalizes the
system of [41], coupled with the analysis of the Paths construction of [31], and the
recent system of [6].

Several constructions of masking quorum systems were given in [25] for a variety
of failure models. For the model we consider here—i.e., any b servers may experience
Byzantine failures—that work gave two constructions. We compare those construc-
tions to ours in section 8.

Hybrid failure models have been considered in other works (e.g., [10, 22, 23, 38]).

3. Preliminaries. In this section we introduce notation and definitions used
in the remainder of the paper. Much of the notation introduced in this section is
summarized in Table 1 for quick reference.

We assume a universe U of servers, |U | = n, over which our quorum systems
will be constructed. Servers that obey their specifications are correct. A faulty server,
however, may deviate from its specification arbitrarily. We assume that up to b servers
may fail arbitrarily and that 4b < n, since this is necessary for a b-masking quorum
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Table 1
The notation used in this paper.

b Maximum number of Byzantine server failures.
c(Q) Size of the smallest quorum in Q.
f Resilience (Definition 3.4).

Fp(Q) Crash probability (Definition 3.10).
IS(Q) Size of smallest intersection between any two quorums in Q.
L(Q) Load of Q (Definition 3.8).
MT (Q) Size of a smallest transversal of Q (Definition 3.3).

n Number of servers (i.e., |U | = n).
p Independent probability that each server crashes.
Q A quorum system (Definition 3.1).
U Universe of servers.

system to exist [25]. Beginning in section 3.2.2, we will also distinguish benign (crash)
failures as a particular failure of interest, and in general there may be more than b
such failures.

3.1. Quorum systems.
Definition 3.1. A quorum system Q ⊆ 2U is a collection of subsets of U , each

pair of which intersect. Each Q ∈ Q is called a quorum.
We use the following notation. The cardinality of the smallest quorum in Q is

denoted by c(Q) = min{|Q| : Q ∈ Q}. The size of the smallest intersection between
any two quorums is denoted by IS(Q) = min{|Q ∩ R| : Q,R ∈ Q}. The degree of
an element i ∈ U in a quorum system Q is the number of quorums that contain i:
deg(i) = |{Q ∈ Q : i ∈ Q}|.

Definition 3.2. A quorum system Q is (s, d)-fair if |Q| = s for all Q ∈ Q and
deg(i) = d for all i ∈ U . Q is called fair if it is (s, d)-fair for some s and d.

Definition 3.3. A set T is a transversal of a quorum system Q if T ∩ Q �= ∅

for every Q ∈ Q. The cardinality of the smallest transversal is denoted by MT (Q) =
min{|T | : T is a transversal of Q}.

Regular quorum systems, with IS(Q) = 1, are insufficient to guarantee consis-
tency in case of Byzantine failures. Malkhi and Reiter [25] defined several varieties of
quorum systems for Byzantine environments, which are suitable for different types of
services. In this paper we focus on masking quorum systems.

Definition 3.4 (see [25]). The resilience f of a quorum system Q is the largest
k such that for every set K ⊆ U , |K| = k, there exists Q ∈ Q such that K ∩Q = ∅.

Remark. The resilience of any quorum system Q is f =MT (Q)− 1.
Definition 3.5 (see [25]). A quorum system Q is a b-masking quorum system

if it is resilient to f ≥ b failures, and obeys the following consistency requirement:

∀Q1, Q2 ∈ Q : |Q1 ∩Q2| ≥ 2b+ 1.(3.1)

Remark. Informally, if we view the service as a shared variable which is updated
and read by the clients, then the resilience requirement of Definition 3.4 ensures that
no set of b ≤ f faulty servers will be able to block update operations (e.g., by causing
every update transaction to abort). The consistency requirement of Definition 3.5
ensures that read operations can mask out any faulty behavior of up to b servers. Ex-
amples of protocols implementing various data abstractions using b-masking quorum
systems can be found in [25, 26, 27].

Lemma 3.6. Let Q be a quorum system. Then Q is b-masking if both the following
conditions hold:
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(1) MT (Q) ≥ b+ 1;
(2) IS(Q) ≥ 2b+ 1.
Proof. Assume that MT (Q) ≥ b + 1. To see that Q is resilient to b failures,

note that if there exists some K such that K ∩ Q �= ∅ for all Q ∈ Q, then K is a
transversal. By the minimality we have |K| ≥ b + 1, and we are done. Condition 2
immediately implies (3.1).

Corollary 3.7. Let Q be a quorum system, and let b = min{MT (Q) −
1,IS(Q)−1

2 }. Then Q is b-masking.

3.2. Measures. The goal of using quorum systems is to increase the availability
of replicated services and decrease their access costs. A natural question is how
well any particular quorum system achieves these goals, and moreover, how well it
compares with other quorum systems. Several measures will be of interest to us.

3.2.1. Load. A measure of the inherent performance of a quorum system is its
load. Naor and Wool define the load of a quorum system as the frequency of accessing
the busiest server using the best possible strategy [31]. More precisely, given a quorum
system Q, an access strategy w is a probability distribution on the elements of Q; i.e.,∑
Q∈Q w(Q) = 1. The value w(Q) ≥ 0 is the frequency of choosing quorum Q when

the service is accessed. The load is then defined as follows.

Definition 3.8. Let a strategy w be given for a quorum system Q={Q1, . . . , Qm}
over a universe U . For an element u ∈ U , the load induced by w on u is lw(u) =∑
Qi	u w(Qi). The load induced by a strategy w on a quorum system Q is Lw(Q) =

maxu∈U{lw(u)}. The system load on a quorum system Q is L(Q) = minw{Lw(Q)},
where the minimum is taken over all strategies.

We reiterate that the load is a best-case definition. The load of the quorum
system will be achieved only if an optimal access strategy is used and only in the case
that no failures occur. A strength of this definition is that the load is a property of a
quorum system and not of the protocol using it. Examples of load calculations can be
found in [40]. As an aside, we note that not every quorum system can have a strategy
that induces the same load on each server. In [16] it is shown that for some quorum
systems it is impossible to balance the load perfectly.

Recall that c(Q) denotes the cardinality of the smallest quorum in Q. The next
result will be useful to us in what follows (recall Definition 3.2).

Proposition 3.9 (see [31]). Let Q be a fair quorum system. Then L(Q) =
c(Q)/n.

3.2.2. Availability. By definition a b-masking quorum system can mask up to b
arbitrary (Byzantine) failures. However, such a system may be resilient to more benign
failures. By benign failures we mean any failures that render a server unresponsive,
which we refer to as crashes to distinguish them from Byzantine failures.

The resilience f of a quorum system provides one measure of how many crash
failures a quorum system is guaranteed to survive, and indeed this measure has been
used in the past to differentiate among quorum systems [3]. However, it is possible
that an f -resilient quorum system, though vulnerable to a few failure configurations
of f + 1 failures, can survive many configurations of more than f failures. One way
to measure this property of a quorum system is to assume that each server crashes
independently with probability p and then to determine the probability Fp that some
quorum survives with no faulty members. This is known as crash probability and is
formally defined as follows.
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Definition 3.10. Assume that each server in the system crashes independently
with probability p. For every quorum Q ∈ Q let EQ be the event that Q is hit, i.e., at
least one element i ∈ Q has crashed. Let crash(Q) be the event that all the quorums
Q ∈ Q were hit, i.e., crash(Q) =

∧
Q∈Q EQ. Then the system crash probability is

Fp(Q) = P(crash(Q)).
We would like Fp to be as small as possible. A desirable asymptotic behavior of

Fp is that Fp → 0 when n → ∞ for all p < 1/2, and such an Fp is called Condorcet
(after the Condorcet jury theorem [8]).

4. Building blocks. In this section, we prove several theorems which will be our
basic tools in what follows. First we prove lower bounds on the load and availability
of b-masking quorum systems, against which we measure all our new constructions.
Then we prove the properties of a quorum composition technique, which we later use
extensively.

4.1. The load and availability of masking quorum systems. We begin by
establishing a lower bound on the load of b-masking quorum systems, thus tightening
the lower bound on general quorum systems [31] as presented in [25].

Theorem 4.1. Let Q be a b-masking quorum system. Then L(Q) ≥ max{ 2b+1
c(Q) ,

c(Q)
n }.

Proof. Let w be any strategy for the quorum system Q, and fix Q1 ∈ Q such that
|Q1| = c(Q). Summing the loads induced by w on all the elements of Q1, and using
the fact that any two quorums have at least 2b+ 1 elements in common, we obtain

∑
u∈Q1

lw(u) =
∑
u∈Q1

∑
Qi	u

w(Qi) =
∑
Qi

∑
u∈(Q1∩Qi)

w(Qi)

≥
∑
Qi

(2b+ 1)w(Qi) = 2b+ 1.

Therefore, there exists some element in Q1 that suffers a load of at least
2b+1
|Q1| .

Similarly, summing the total load induced by w on all of the elements of the
universe, and using the minimality of c(Q), we get

∑
u∈U

lw(u) =
∑
u∈U

∑
Qi	u

w(Qi) =
∑
Qi

|Qi|w(Qi)

≥
∑
Qi

c(Q)w(Qi) = c(Q).

Therefore, there exists some element in U that suffers a load of at least c(Q)
n .

Corollary 4.2. Let Q be a b-masking quorum system. Then L(Q) ≥
√

2b+1
n ,

and equality holds if c(Q) =
√
(2b+ 1)n.1

Remark. Corollary 4.2 shows that the threshold construction of [25] in fact has
optimal load when b = Ω(n). E.g., when b ≈ n/4 the obtained load is ≈ 0.75, but
for such systems we can only hope for a constant load of ≈ 1/

√
2 = 0.707. However,

the load of the threshold construction is always ≥ 1/2, which is far from optimal for
smaller values of b.

On the other hand, the grid-based construction of [25] does not have optimal
load. It has quorums of size O(b

√
n) and load of roughly 2b/

√
n. In what follows we

1To avoid repetitive notation, we omit floor and ceiling brackets from expressions for integral
quantities.
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show systems which significantly improve this: some of our new constructions have
quorums of size O(

√
bn) and optimal load.

Our next propositions show lower bounds on the crash probability Fp in terms
of MT (Q) and b.

Proposition 4.3. Let Q be a quorum system. Then Fp(Q) ≥ pMT (Q) = pf+1

for any p ∈ [0, 1].
Proof. Consider a minimal transversal T with |T | =MT (Q). If all the elements

of T crash, then every quorum contains a crashed element, so Fp(Q) ≥ pMT (Q).
Proposition 4.4. Let Q be a b-masking quorum system. Then Fp(Q) ≥ pc(Q)−2b

for any p ∈ [0, 1].
Proof. Let Q ∈ Q be a minimal quorum with |Q| = c(Q), and consider Z ⊂ Q,

|Z| = 2b. Since Q is b-masking, then |R ∩ Q| ≥ 2b + 1 for any R ∈ Q, and so
|(Q \ Z) ∩ R| ≥ 1 and Q \ Z is a transversal. Therefore MT (Q) ≤ c(Q)− 2b, which
we plug into Proposition 4.3.

The next proposition is less general than Proposition 4.4, but it is applicable for
most of our constructions and it gives a much tighter bound.

Proposition 4.5. Let Q be a b-masking quorum system such that MT (Q) ≤
(IS(Q) + 1)/2. Then Fp(Q) ≥ pb+1 for any p ∈ [0, 1].

Proof. IfMT (Q) ≤ (IS(Q)+1)/2, then from Corollary 3.7 we have that b+1 =
MT (Q), which again we plug into Proposition 4.3.

4.2. Quorum system composition. Quorum system composition is a well-
known technique for building new systems out of existing components. We compose
a quorum system S over another system R by replacing each element of S with a
distinct copy of R. In other words, when element i is used in a quorum S ∈ S we
replace it with a complete quorum from the ith copy of R. Using the terminology of
reliability theory, the system S ◦ R has a modular decomposition where each module
is a copy of R. Formally, we have the following.

Definition 4.6. Let S and R be two quorum systems, over universes of sizes
nS and nR, respectively. Let R1, . . . ,RnS

be nS copies of R over disjoint universes.
Then the composition of S over R is

S ◦ R =
{⋃

Ri : S ∈ S, Ri ∈ Ri for all i ∈ S
}

.

The next theorem summarizes the properties of quorum composition.
Theorem 4.7. Let S and R be two quorum systems, and let Q = S ◦ R. Then
• The universe size is nQ = nSnR.
• The minimal quorum size is c(Q) = c(S)c(R).
• The minimal intersection size is IS(Q) = IS(S)IS(R).
• The minimal transversal size is MT (Q) =MT (S)MT (R).
• Denote the crash probability functions of S and R by s(p) = Fp(S) and r(p) =

Fp(R). Then Fp(Q) = s(r(p)).
• The load is L(Q) = L(S)L(R).

Proof. The behavior of the combinatorial parameters nQ, c(Q), IS(Q), and
MT (Q) is obvious. The behavior of Fp(Q) is standard in reliability theory (cf. [5]).
As for the load, consider the following strategy: pick a quorum S ∈ S using the
optimal strategy for S. Then for each element i ∈ S, pick a quorum Ri ∈ Ri using
the optimal strategy for (the ith copy of) R. Clearly this strategy induces a load of
L(S)L(R), and hence L(Q) ≤ L(S)L(R).

We now show the inequality in the opposite direction. Enumerate the elements of
Q by denoting the jth element in Ri by uij , let Q(S) = {

⋃
Ri : Ri ∈ Ri for all i ∈ S}
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be the set of all quorums that are based on some S ∈ S, and let wQ be an access
strategy on Q. Then wQ induces a strategy wS on S defined by

wS(S) =
∑

Q∈Q(S)

wQ(Q).(4.1)

The load on an element i ∈ S (i.e., the frequency of accessing the quorum system Ri)
is then lwS (i) =

∑
S	i,S∈S wS(S). Similarly, wQ induces a strategy on each copy Ri

defined by

wRi(R) =

( ∑
Q⊇R

wQ(Q)

)/
lwS (i).(4.2)

This wRi is well defined when lwS (i) > 0. It is easy to verify that wS and wRi are
indeed strategies, i.e., that the probabilities add up to 1.

Claim 4.8. Let lwQ(uij) be the load induced by wQ on an element uIj ∈ Ri, and
let lwRi (uij) be the load induced on it by wRi . Then lwQ(uij) = lwS (i) · lwRi (uij).

Proof of Claim. Using (4.1) and (4.2) we have that

lwS (i) · lwRi (uij) = lwS (i)
∑
R	uij

wRi(R) = lwS (i)
∑
R	uij

( ∑
Q⊇R

wQ(Q)

)/
lwS (i)

=
∑
R	uij

∑
Q⊇R

wQ(Q) =
∑
Q	uij

wQ(Q) = lwQ(uij).

To complete the proof of Theorem 4.7, assume that wQ is an optimal strategy
for Q. Consider the copy Ri for which lwS (i) is maximal, i.e., LwS (S) = lwS (i), and
let uij be the maximally loaded element in this Ri. Clearly lwS (i) > 0 so wRi is well
defined for this i. Note that we do not require uij to be the maximally loaded element
in all of Q. Using the claim and the minimality of L(S) and L(R) we obtain that

L(Q) = LwQ(Q) ≥ lwQ(uij) = lwS (i) · lwRi (uij)

= LwS (S) · LwRi (R) ≥ L(S)L(R).

By combining this inequality with the upper bound we had before we conclude that
L(Q) = L(S)L(R).

The multiplicative behavior of the combinatorial parameters in composing quo-
rum systems provides a powerful tool for “boosting” existing constructions into larger
systems with possibly improved characteristics. Below, we use quorum composition
in two cases and demonstrate that this technique yields improved constructions over
their basic building blocks, for appropriately larger system sizes. In particular, in
section 6 we show a composition that allows us to transform any regular quorum
construction into a (larger) b-masking quorum system.

5. Simple systems. In this section we show two types of constructions, M-Grid
and RT. These systems significantly improve upon the original constructions of [25];
however, both are still suboptimal in some parameter: M-Grid has optimal load but
can mask only up to b = O(

√
n) failures and has poor crash probability; and RT

can mask up to b = O(n) failures and has near-optimal crash probability but has
suboptimal load.

In sections 6 and 7 we present systems which are superior to the M-Grid and RT.
Nonetheless, we feel that the simplicity of the M-Grid and RT systems, and the fact
that they are suitable for very small universe sizes, are what makes them appealing.
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Fig. 1. The multigrid construction, n = 7× 7, b = 3, with one quorum shaded.

5.1. The M-Grid system. We begin with the M-Grid system, which achieves
an optimal load among b-masking quorum systems, where b ≤ (

√
n − 1)/2. The

idea of the construction is as follows. Arrange the elements in a
√

n ×
√

n grid. A
quorum in an M-Grid consists of any choice of

√
b+ 1 rows and

√
b+ 1 columns, as

shown in Figure 1. Formally, denote the rows and columns of the grid by Ri and Ci,
respectively, where 1 ≤ i ≤

√
n. Then, the quorum system is

M-Grid(b) =



⋃
j∈J

Cj ∪
⋃
i∈I

Ri : J, I ⊆ {1 . . .
√

n}, |J | = |I| =
√

b+ 1


 .

Proposition 5.1. The multigrid M-Grid(b) is a b-masking quorum system for
b ≤ (

√
n− 1)/2.

Proof. Consider two quorums R,S ∈ M-Grid(b). If they have either a row or
a column in common, then |R ∩ S| ≥

√
n ≥ 2b + 1 and we are done. Otherwise

the intersection of S’s columns with R’s rows is disjoint from the intersection of R’s
columns with S’s rows, so |R ∩ S| ≥ 2

√
b+ 1

√
b+ 1 > 2b+ 1. Therefore consistency

holds.
Resilience holds since f = MT (M-Grid(b)) − 1 =

√
n −

√
b+ 1 ≥ b. Therefore

MT (M-Grid(b)) ≥ b+ 1, and Lemma 3.6 finishes the proof.

Proposition 5.2. L(M-Grid(b)) ≈ 2
√

b+1
n .

Proof. Since M-Grid(b) is fair we can use Proposition 3.9 to get L(M-Grid(b)) =
c(M-Grid(b))/n.

Remark. The load of M-Grid(b) is within a factor of
√
2 from the optimal load

which can be achieved for b ≈
√

n/2.
A disadvantage of the M-Grid system is its poor asymptotic crash probability.

If crashes occur with some constant probability p, then any configuration of crashes
with at least one crash per row disables the system. Therefore, as shown by [20, 40],

Fp(M-Grid) ≥ (1− (1− p)
√
n)

√
n −→
n→∞

1.

5.2. RT systems. An RT system RT(k,  ) of depth h is built by taking a simple
building block, which is an  -of-k threshold system (with k >  > k/2), and recursively
composing it over itself to depth h. In what follows, we often omit the depth parameter
h when it has no effect on the discussion. The RT systems generalize the recursive
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Fig. 2. An RT(4, 3) system of depth h = 2, with one quorum shaded.

majority constructions of [29], the HQC system of [19] is an RT(3, 2) system, and in
fact the threshold system of [25] can be viewed as a trivial RT(4b+ 1, 3b+ 1) system
with depth h = 1. As an example throughout this section we will use the RT(4, 3)
system, depicted in Figure 2.

Proposition 5.3. An RT(k,  ) system of depth h is a fair quorum system, with
n = kh elements, quorums of size c(RT(k,  )) =  h, intersection size of IS(RT(k,  )) =
(2 − k)h, and minimal transversals of size MT (RT(k,  )) = (k −  + 1)h.

Proof. The basic  -of-k system is symmetric (and therefore fair), with c( -of-k) =
 , MT ( -of-k) = k −  + 1, and IS( -of-k) = 2 − k. The combinatorial parameters
are computed by activating Theorem 4.7 h times and the composition preserves the
fairness.

Plugging this into Corollary 3.7 we obtain the following.
Corollary 5.4. An RT(k,  ) system over a universe of size n is a b-masking

quorum system for

b = min{(nlogk(2�−k) − 1)/2, nlogk(k−�+1) − 1}.

In the 3-of-4 example we have IS(3-of-4) = MT (3-of-4) = 2 and c(3-of-4) = 3.
Therefore for the whole system (to depth log4 n) we get c(RT(4, 3)) = nlog4 3 = n0.79,
with IS(RT(4, 3)) = MT (RT(4, 3)) =

√
n and thus b = (

√
n − 1)/2. Note that the

basic 3-of-4 system is not even 1-masking since intersections of size 2 are too small;
however, already from h = 2 (i.e., n = 16) we obtain a masking system.

Proposition 5.5. The load L(RT(k,  )) = n−(1−logk �).
Proof. Since RT(k,  ) is fair we can use Proposition 3.9 to get L(RT(k,  )) =

c(RT(k,  ))/n.
Remark. In general the load is suboptimal for this construction. For instance, in

the RT(4, 3) system we obtain L(RT(4, 3)) = n−0.21. However for b = (
√

n− 1)/2 we
could hope for a load of

√
(2b+ 1)/n = n−0.25.

Proposition 5.6. There exists a unique critical probability 0 < pc < 1/2 for
which

lim
h→∞

Fp(RT(k,  ) of depth h) =

{
0, p < pc,

1, p > pc.

Proof. Let g(p) be the crash probability function of the  -of-k system and let
F (h) = Fp(RT(k,  ) of depth h) denote the crash probability for the RT(k,  ) system
of depth h. Then F (h) obeys the recurrence

F (h) =

{
g(F (h− 1)), h ≥ 1,
p, h = 0.

(5.1)



1898 DAHLIA MALKHI, MICHAEL K. REITER, AND AVISHAI WOOL

Now g(p) is a reliability function, and therefore it is “S-shaped” (see [5]). This implies
that there exists a unique critical probability 0 < pc < 1 for which g(pc) = pc, such
that g(p) < p when p < pc and g(p) > p when p > pc (and [34] shows that for quorum
systems such as RT in fact pc < 1/2). Therefore if p < pc, then repeated applications
of recurrence (5.1) would decrease F (h) arbitrarily close to 0, and when p > pc the
limit is 1.

Proposition 5.7. If p < 1/
(
k
�−1

)
and  < k, then Fp(RT(k,  )) < exp(−Ω

(nlogk(k−�+1))), which is optimal for systems with resilience f = nlogk(k−�+1).
Proof. Let g(p) and F (h) be as in the proof of Proposition 5.6. Any configuration

of at least k −  + 1 crashes disables the  -of-k system, so

g(p) =

k∑
j=k−�+1

(
k

j

)
pj(1− p)k−j .

By Lemma A.2 (see Appendix A) we have that

g(p) ≤
(

k

 − 1

)
pk−�+1.

Plugging this into (5.1) gives that

F (h) ≤
(

k

 − 1

)1+(k−�+1)+···+(k−�+1)h−1

p(k−�+1)h

<

[(
k

 − 1

)
p

](k−�+1)h

.

If p < 1/
(
k
�−1

)
, then the last expression decays to zero with h, so Fp(RT(k,  )) <

exp(−Ω(nlogk(k−�+1))).
The lower bound of Proposition 4.3 shows that

Fp(RT(k,  )) ≥ pn
logk(k−�+1)

,

so our analysis is tight.
For the RT(4, 3) system a direct calculation shows that g(p) = 6p2 − 8p3 + 3p4

and pc = 0.2324. Therefore Proposition 5.6 guarantees that when the element crash
probability is in the range p < 0.2324, then Fp → 0 when n → ∞. Furthermore, when
p < 1/6 then Proposition 5.7 shows that the decay is rapid, with Fp(RT(4, 3)) <

(6p)
√
n, which is optimal.

6. boostFPP. In this section we introduce a family of b-masking quorum sys-
tems, the boosted finite projective planes, which we denote by boostFPP. A boostFPP
system is a composition of a finite projective plane (FPP) over a threshold system
(Thresh).

The first component of a boostFPP system is an FPP of order q (a good reference
on FPPs is [14]). It is known that FPPs exist for q = pr when p is prime. Such an
FPP has nF = q2 + q + 1 elements and quorums of size c(FPP) = q + 1. This is a
regular quorum system, i.e., it has intersections of size IS(FPP) = 1. The minimal
transversals of an FPP are of size MT (FPP) = q + 1 (in fact the only transversals
of this size are the quorums themselves). The load of FPP was analyzed in [31] and
shown to be L(FPP) = q+1

nF
≈ 1/√nF , which is optimal for regular quorum systems.
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The second component of a boostFPP is a Thresh system, with nT = 4b + 1
elements and a threshold of 3b+1. This is a b-masking quorum system in itself, with
IS(Thresh) = 2b+ 1, MT (Thresh) = b+ 1, and a load of L(Thresh) ≈ 3/4.

Proposition 6.1. Let boostFPP(q, b) = FPP(q) ◦ Thresh(3b + 1 of 4b + 1).
Then the composed system has n = (4b+1)(q2+q+1) elements, with quorums of size
c(boostFPP(q, b)) = (3b+1)(q+1), intersections of size IS(boostFPP(q, b)) = 2b+1,
and minimal transversals of size MT (boostFPP(q, b)) = (b + 1)(q + 1). Therefore
boostFPP(q, b) is a b-masking quorum system.

Proof. We obtain the combinatorial parameters by plugging the values of the
component systems into Theorem 4.7. By Corollary 3.7 we have that the system can
mask min{(b+ 1)(q + 1)− 1, b} = b failures.

Proposition 6.2. L(boostFPP(q, b)) ≈ 3
4q , which is optimal for b-masking quo-

rum systems with n ≈ 4bq2 elements.
Proof. boostFPP(q, b) is a fair quorum system since both its components are fair,

so by Proposition 3.9 we have

L(boostFPP(q, b)) = c(boostFPP(q, b))

n

=
(3b+ 1)(q + 1)

(4b+ 1)(q2 + q + 1)
≈ 3

4q
.

On the other hand, for b-masking systems with n ≈ 4bq2 elements the lower bound of
Theorem 4.1 gives

L(boostFPP(q, b)) ≥
√
2b

n
≈ 1√

2q
.

Note that the optimality of the load holds for any choice of q and b. Therefore
when the number of servers (or elements) increases, the boostFPP(q, b) system can
scale up using different policies while maintaining load optimality. There are two
extremal policies:

(1) Fix q and increase b; then the system can mask more failures when new servers
are added; however, the load on the servers does not decrease.

(2) Fix b and increase q; then the load decreases when new servers are added,
but the number of failures that the system can mask remains unchanged.

It is important to note that systems of arbitrarily high resilience can be con-
structed using the first policy since b can be chosen independently of q. In particular,
we can choose b = qa for any a > 0. Then the resulting system has n ≈ 4bq2 = 4b

a+2
a ,

and so b ≈
(
n
4

) a
a+2 , thus asymptotically approaching the resilience upper bound of n4 .

Finally we analyze the crash probability of boostFPP. The following proposition
shows that boostFPP has good availability as long as p < 1/4.

Proposition 6.3. If p < 1/4, then Fp(boostFPP(q, b)) ≤ exp(−Ω(b− log q)).
Proof. We start by estimating Fp(Thresh). Let #crashed denote the number of

crashed elements in a universe of size 4b+ 1. Let γ = b+1
4b+1 − p; thus 0 < γ < 1 when

p < 1/4. Then using the Chernoff bound we obtain

Fp(Thresh) = P(#crashed ≥ b+ 1)

= P(#crashed ≥ (p+ γ)(4b+ 1))

≤ e−2(4b+1)γ2 ≈ e−b(1−4p)2/2.(6.1)
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Next we estimate Fp(FPP). Let Q0 ∈ FPP be some quorum. Then

Fp(FPP) = 1− P(there exists Q ∈ FPP : Q is alive)

≤ 1− P(Q0 is alive) = 1− (1− p)q+1 ≤ (q + 1)p.(6.2)

Using Theorem 4.7 we plug (6.1) into (6.2) to obtain

Fp(boostFPP(q, b)) ≤ (q + 1)e−b(1−4p)2/2 = e−Ω(b−log q).

Remarks.
• In general the crash probability is not optimal; sinceMT (boostFPP(q, b)) ≈

bq then the lower bound of Proposition 4.3 shows we could hope for a crash
probability of exp(−Ω(bq)). Nevertheless if q is constant, then Fp is asymp-
totically optimal, and if b � q, then the gap between the upper and lower
bounds is small.

• The final estimate we get for Fp(boostFPP) seems poor, as the bound is
higher than the crash probability of the Thresh components. However, this
is not an artifact of overestimates in our analysis. Rather, it is a result of
the property that the crash probability of FPP is higher than p, and in fact
Fp(FPP) → 1 as shown by [37, 40]. In this light it is not surprising that
boostFPP does not have an optimal crash probability.

• The requirement p < 1/4 is essential for this system; if p > 1/4, then in fact
Fp(boostFPP) → 1 as n → ∞.

7. The M-Path system. Here we introduce the construction we call the multi-
path system, denoted by M-Path. The elements of this system are the vertices of a
triangulated square

√
n×

√
n grid; formally, the vertices are the points {(i, j) ∈ R

2 :
1 ≤ i, j ≤

√
n; i, j ∈ Z}. The triangulated grid has an edge between (i1, j1) and

(i2, j2) if one of the following three conditions holds: (i) i1 = i2 and j2 = j1 + 1; (ii)
j1 = j2 and i2 = i1 + 1; (iii) i2 = i1 − 1 and j2 = j1 + 1. A quorum in the M-Path
system consists of

√
2b+ 1 disjoint paths from the left side to the right side of the

grid (LR paths) and
√
2b+ 1 disjoint top-bottom (TB) paths (see Figure 3).

The M-Path system has several characteristics similar to the basic M-Grid system
of section 5, namely an ability to mask b = O(

√
n) failures and optimal load. Its

major advantage is that it also has an optimal crash probability Fp. Moreover, it is
the only construction we have for which Fp → 0 as n → ∞ when the individual crash
probability p is arbitrarily close to 1/2. We are able to prove this behavior of Fp using
results from percolation theory [18, 13].

Remark. The system we present here is based on a triangular lattice, with el-
ements corresponding to vertices, as in [41, 6]. We have also constructed a second
system which is based on the square lattice with elements corresponding to the edges,
as in [31]. The properties of this second system are almost identical to those of
M-Path, so we omit it.

Proposition 7.1. M-Path(b) has minimal quorums of size c(M-Path) ≤
2
√

n(2b+ 1), minimal intersections of size IS(M-Path) ≥ 2b + 1, and minimal
transversals of size MT (M-Path) =

√
n −

√
2b+ 1 + 1. Therefore M-Path is a b-

masking quorum system for b ≤
√

n−
√
2n1/4.

Proof. Let Q1, Q2 ∈ M-Path(b). Then the
√
2b+ 1 LR paths of Q1 intersect the√

2b+ 1 TB paths of Q2 in ≥ 2b+1 elements, since the LR and TB paths are disjoint.
As in the M-Grid system we have thatMT (M-Path(b)) =

√
n−

√
2b+ 1+1, so when

b ≤
√

n−
√
2n1/4 it follows that MT (M-Path(b)) ≥ b+ 1 and we are done.
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Fig. 3. A multipath construction on a 9× 9 grid, b = 4, with one quorum shaded.

Proposition 7.2. L(M-Path(b)) ≤ 2
√

2b+1
n , which is optimal.

Proof. The strategy only uses straight line LR and TB paths. It picks
√
2b+ 1

of the
√

n rows uniformly at random and likewise for the columns. Clearly the load
equals the probability of accessing some element in position i, j, which is

L(M-Path) ≤ P(row i chosen) + P(column j chosen)

≤ 2
( √

n− 1√
2b+ 1− 1

)/( √
n√

2b+ 1

)

= 2
√
2b+ 1/

√
n.

By Corollary 4.2 this is optimal.

Proposition 7.3. Fp(M-Path(b)) ≤ exp(−Ω(
√

n−
√

b)) for any p < 1/2, which

is optimal for systems with resilience f = O(
√

n−
√

b).

Proof. We use the notation Pp(E) to denote the probability of event E defined on
the grid when the individual crash probability is p. A path is called “open” if all its
elements are alive.

Let LR be the event “there exists an open LR path in the grid,” and let LRk be
the event “there exist k open LR paths.” A failure configuration in M-Path(b) is one
in which either

√
2b+ 1 open LR paths or

√
2b+ 1 open TB paths do not exist. By

symmetry we have that

Fp(M-Path(b)) ≤ 2Pp(LR√
2b+1) = 2(1− Pp(LR√

2b+1)).(7.1)

Fix some p′ such that p < p′ < 1/2. Then by Theorem B.3 (see Appendix B) we have
that

1− Pp(LR√
2b+1) ≤

(
1− p

p′ − p

)√
2b+1−1

[1− Pp′(LR)].(7.2)
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Table 2
Constructions in this paper (n = number of servers).

System b < f L Fp

Threshold [25] n/4 O(n− b) 1/2 +O(b/n) exp(−Ω(f)) ∗

Grid [25]
√
n/3 O(

√
n− b) O(b/

√
n) −→

n→∞
1

M-Grid
√
n/2 O(

√
n−
√
b) O(

√
b/n) † −→

n→∞
1

RT(k, �)‡ O(min{nα1 , nα2}) ‡ O(b) n−(1−logk �) exp(−Ω(f)) ∗

boostFPP n/4 O(
√
bn) O(

√
b/n) † exp(−Ω(b− log(n/b)))

M-Path (1− o(1))
√
n O(

√
n−
√
b) O(

√
b/n) † exp(−Ω(f)) ∗

† Optimal for b-masking systems
∗ Optimal for f -resilient systems
‡ α1 = logk(2�− k) and α2 = logk(k − �+ 1)

Plugging the bound on Pp′(LR) from Theorem B.1 into (7.2) and (7.1) yields

Fp(M-Path(b)) ≤ 2
(
1− p

p′ − p

)√
2b+1−1

e−ψ(p′)
√
n

= 2e
−ψ(p′)

√
n+(

√
2b+1−1) ln

(
1−p
p′−p

)

for some function ψ(p′) > 0. Now
√
2b+ 1 = O(n1/4), so for large enough n we can

certainly write

Fp(M-Path(b)) ≤ exp(−Ω(
√

n−
√

b)).

This is optimal by Proposition 4.3.

8. Discussion. We have presented four novel constructions of b-masking quo-
rum systems. For the first time in this context, we considered the resilience of such
systems to crash failures in addition to their tolerance of (possibly fewer) Byzantine
failures. Each of our constructions is optimal in either its load or its crash probability
(for sufficiently small p). Moreover, one of our constructions, namely M-Paths, is op-
timal in both measures. One of our constructions is achieved using a novel boosting
technique that makes all known benign fault-tolerant quorum constructions available
for Byzantine environments (of appropriate sizes). In proving optimality of our con-
structions, we also contribute lower bounds on the load and crash probability of any
b-masking quorum system.

The properties of our various constructions are summarized in Table 2, along-
side the properties of two other b-masking constructions proposed in [25], namely
Threshold and Grid.

Determining the best quorum construction depends on the goals and constraints
of any particular settings, as no system is advantageous in all measures. For example,
suppose we fix n to be 1024, the desired load L to be approximately 1/4, and assume
that the individual failure probability of components is 1/8. In these settings, an
M-Grid system can tolerate b = 15 Byzantine failures and up to f = 28 benign
failures, but it has a failure probability Fp ≥ 0.638. In the same settings, a boostFPP
system (with n = 1001, q = 3) can tolerate b = 19, up to f = 79 benign failures, with
somewhat better failure probability: it has Fp ≤ 0.372. The M-Path construction,
with four LR and four TB paths per quorum, has b = 7 here and can tolerate up to
f = 29 benign failures, but it has a good crash probability: Fp ≤ 0.001 (using the
estimate following Theorem B.1, together with Theorem B.3 with p′ = 1/7). In this



THE LOAD AND AVAILABILITY OF BYZANTINE QUORUM SYSTEMS 1903

setting, the RT(4, 3) construction, with depth h = 5, is the best, with b = 15, f = 31,
and an excellent failure probability of only Fp ≤ 0.0001.

More generally, if masking large numbers of Byzantine server failures is important,
then of the systems listed in Table 2, only Threshold and boostFPP can provide the
highest possible masking ability, i.e., up to b < n/4. However, Threshold can mask
n/4 Byzantine failures for any system size, whereas boostFPP approaches such degree
of Byzantine resilience only for very large n. If, on the other hand, load is more
crucial, then Threshold suffers in load whereas boostFPP offers reduced load, as do
the other three systems in this paper, albeit with lower masking ability. If masking
fewer Byzantine server failures is allowable, then other quorum constructions can be
used, in particular RT and M-Path. These two constructions have similar masking
ability, resilience, and load, but M-Path has asymptotically superior crash probability
when p is close to 1/2.

Finally, we note that it is impossible to achieve optimal resilience and load si-
multaneously: since necessarily f ≤ c(Q), Theorem 4.1 implies that f ≤ nL(Q), i.e.,
when load is low then so is resilience, and when resilience is high then so is load. In
order to break this trade-off, in [28] we propose relaxing the intersection property of
masking quorum systems, so that “quorums” chosen according to a specific strategy
intersect each other in enough correct servers to maintain correctness of the system
with a high probability.

Appendix A. Combinatorial lemmas.

Lemma A.1. Let 0 ≤ i, d ≤ k be integers. Then
( k
d+i)
(kd)

≤
(
k−d
i

)
.

Proof.

(
k
d+i

)
(
k
d

) =
k!d!(k − d)!

(d+ i)!(k − d− i)!k!
=

(k − d)!

(k − d− i)!

d!

(d+ i)!
≤ (k − d)!

(k − d− i)!i!
=

(
k − d

i

)
.

Lemma A.2. Let 0 ≤ d ≤ k be integers and let p ∈ [0, 1]. Then

k∑
j=d

(
k

j

)
pj(1− p)k−j ≤

(
k

d

)
pd.

Proof.

k∑
j=d

(
k

j

)
pj(1− p)k−j =

(
k

d

)
pd

k∑
j=d

(
k
j

)
(
k
d

)pj−d(1− p)k−j ,

so it suffices to show that the last sum is ≤ 1. But using Lemma A.1 we get

k∑
j=d

(
k
j

)
(
k
d

)pj−d(1− p)k−j =
k−d∑
i=0

(
k
d+i

)
(
k
d

) pi(1− p)k−d−i

≤
k−d∑
i=0

(
k − d

i

)
pi(1− p)k−d−i = [p+ (1− p)]k−d = 1.
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Appendix B. Theorems of percolation theory. In this section we list the
definitions and results that are used in our analysis of the M-Path system, following
[18, 13].

The percolation model we are interested in is as follows. Let Z be the graph of the
(infinite) triangle lattice in the plane. Assume that a vertex is closed with probability
p and open with probability 1 − p, independently of other vertices. This model is
known as site percolation on the triangle lattice. Another natural model, which plays
a minor role in our work, is the bond percolation model. In it the edges are closed
with probability p.

A key idea in percolation theory is that there exists a critical probability, pc, such
that graphs with p < pc exhibit qualitatively different properties than graphs with
p > pc. For example, Z with p < pc has a single connected (open) component of
infinite size. When p > pc there is no such component. For site percolation on the
triangle pc = 1/2 [17].

The following theorem shows that when the probability p for a closed vertex is
below the critical probability, the probability of having long open paths tends to 1
exponentially fast. Recall that LR is the event “there exists an open LR path in the√

n×
√

n grid.” Then [30] (see also [13, p. 287]) implies the following.
Theorem B.1. If p < 1/2, then Pp(LR) ≥ 1 − e−ψ(p)

√
n, for some ψ(p) > 0

independent of n.
Remark. The dependence of ψ on p is such that ψ(p) → 0 when p → 1/2.

However, for p’s not too close to 1/2 we can obtain concrete estimates using elementary
techniques. For instance, a counting argument similar to that of Bazzi [6] shows that

Pp(LR) ≥ 1−
√

n(3p)
√
n

1− 3p ,

when p < 1/3.
Definition B.2. Let E be an event defined in the percolation model. Then the

interior of E with depth r, denoted Ir(E), is the set of all configurations in E which
are still in E even if we perturb the states of up to r vertices.

We may think of Ir(E) as the event that E occurs and is “stable” with respect
to changes in the states of r or fewer vertices. The definition is useful to us in the
following situation. If LR is the event “there exists an open left-right path in a
rectangle D,” then it follows that Ir(LR) is the event “there are at least r+1 disjoint
open left-right paths in D.”

Theorem B.3 (see [2]). Let E be an increasing event and let r be a positive
integer. Then

1− Pp(Ir(E)) ≤
(
1− p

p′ − p

)r
[1− Pp′(E)]

whenever 0 ≤ p < p′ ≤ 1.
The theorem amounts to the assertion that if E is likely to occur when the crash

probability is p′, then Ir(E) is likely to occur when the crash probability p is smaller
than p′.

Acknowledgments. We thank Oded Goldreich and the anonymous referees of
the 16th ACM Symposium on Principles of Distributed Computing for many helpful
comments on an earlier version of this paper.



THE LOAD AND AVAILABILITY OF BYZANTINE QUORUM SYSTEMS 1905

REFERENCES

[1] D. Agrawal and A. El-Abbadi, An efficient and fault-tolerant solution for distributed mutual
exclusion, ACM Trans. Comput. Systems, 9 (1991), pp. 1–20.

[2] M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo, On a sharp transition
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[19] A. Kumar, Hierarchical quorum consensus: A new algorithm for managing replicated data,

IEEE Trans. Comput., 40 (1991), pp. 996–1004.
[20] A. Kumar and S. Y. Cheung, A high availability

√
n hierarchical grid algorithm for replicated

data, Inform. Process. Lett., 40 (1991), pp. 311–316.
[21] A. Kumar, M. Rabinovich, and R. K. Sinha, A performance study of general grid structures

for replicated data, in Proceedings of the 13th International Conference on Distributed
Computing Systems, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 178–185.

[22] P. Lincoln and J. Rushby, A formally verified algorithm for interactive consistency under a
hybrid fault model, in Proceedings of the 23rd IEEE Symposium on Fault-Tolerant Com-
puting, Toulouse, France, 1993, pp. 402–411.

[23] P. Lincoln and J. Rushby, Formal verification of an interactive consistency algorithm for
the Draper FTP architecture under a hybrid fault model, in Proceedings of the 9th IEEE
Conference on Computer Assurance, Gaithersburg, MD, 1994, pp. 107–120.

[24] M. Maekawa, A
√
n algorithm for mutual exclusion in decentralized systems, ACM Trans.

Comput. Systems, 3 (1985), pp. 145–159.
[25] D. Malkhi and M. K. Reiter, Byzantine quorum systems, Distrib. Comput., 11 (1998),

pp. 203–213.
[26] D. Malkhi and M. K. Reiter, Secure and scalable replication in Phalanx, in Proceedings of

the 17th IEEE Symposium on Reliable Distributed Systems, West Lafayette, IN, 1998,
pp. 51–58.

[27] D. Malkhi and M. K. Reiter, Survivable consensus objects, in Proceedings of the 17th IEEE
Symposium on Reliable Distributed Systems, West Lafayette, IN, 1998, pp. 271–279.

[28] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright, Probabilistic Byzantine Quo-



1906 DAHLIA MALKHI, MICHAEL K. REITER, AND AVISHAI WOOL

rum Systems, Tech. Report 98.7, AT&T Research, 1998; also available online from
http://www.research.att.com/library/trs/TRs/98/98.7/98.7.1.body.ps.gz.

[29] Y. Marcus and D. Peleg, Construction Methods for Quorum Systems, Tech. Report CS92–33,
The Weizmann Institute of Science, Rehovot, Israel, 1992.

[30] M. V. Menshikov, Coincidence of critical points in percolation problems, Soviet Math. Dokl.,
33 (1986), pp. 856–859.

[31] M. Naor and A. Wool, The load, capacity, and availability of quorum systems, SIAM J.
Comput., 27 (1998), pp. 423–447.

[32] M. L. Neilsen, Quorum Structures in Distributed Systems, Ph.D. thesis, Department of Com-
puting and Information Sciences, Kansas State University, 1992.

[33] M. L. Neilsen and M. Mizuno, Coterie join algorithm, IEEE Trans. Parallel Distrib. Systems,
3 (1992), pp. 582–590.

[34] D. Peleg and A. Wool, The availability of quorum systems, Inform. and Comput., 123 (1995),
pp. 210–223.

[35] D. Peleg and A. Wool, The availability of crumbling wall quorum systems, Discrete Appl.
Math., 74 (1997), pp. 69–83.

[36] D. Peleg and A. Wool, Crumbling walls: A class of practical and efficient quorum systems,
Distrib. Comput., 10 (1997), pp. 87–98.

[37] S. Rangarajan, S. Setia, and S. K. Tripathi, A fault-tolerant algorithm for replicated data
management, in Proceedings of the 8th IEEE International Conference on Data Engineer-
ing, Tempe, AZ, 1992, pp. 230–237.

[38] M. K. Reiter and K. P. Birman, How to securely replicate services, ACM Trans. Prog. Lang.
Systems, 16 (1994), pp. 986–1009.

[39] R. H. Thomas, A majority consensus approach to concurrency control for multiple copy
databases, ACM Trans. Database Systems, 4 (1979), pp. 180–209.

[40] A. Wool, Quorum Systems for Distributed Control Protocols, Ph.D. thesis, Department of
Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot,
Israel, 1996.

[41] C. Wu and G. G. Belford, The triangular lattice protocol: A highly fault tolerant protocol
for replicated data, in Proceedings of the 11th IEEE Symposium on Reliable Distributed
Systems, 1992, pp. 66–73.



AN ONLINE ALGORITHM FOR IMPROVING PERFORMANCE IN
NAVIGATION∗
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Abstract. We consider the following scenario. A point robot is placed at some start location s
in a 2-dimensional scene containing oriented rectangular obstacles. The robot must repeatedly travel
back and forth between s and a second location t in the scene. The robot knows the coordinates of s
and t but initially knows nothing about the positions or sizes of the obstacles. It can only determine
the obstacles’ locations by bumping into them. We would like an intelligent strategy for the robot
so that its trips between s and t both are relatively fast initially and improve as more trips are taken
and more information is gathered.

In this paper we describe an algorithm for this problem with the following guarantee: in the first

k ≤ n trips, the average distance per trip is at most O(
√

n/k) times the length of the shortest s-t
path in the scene, where n is the Euclidean distance between s and t. We also show a matching lower
bound for deterministic strategies. These results generalize known bounds on the one-trip problem.
Our algorithm is based on a novel method for making an optimal trade-off between search effort
and the goodness of the path found. We improve this algorithm to a “smooth” variant having the

property that for every i ≤ n, the robot’s ith trip length is O(
√

n/i) times the shortest s-t path
length.

A key idea of this paper is a method for analyzing obstacle scenes using a tree structure that can
be defined based on the positions of the obstacles.

Key words. online algorithms, robot path planning, exploration vs. exploitation, learning,
navigation, unfamiliar terrain, competitive analysis, lower bounds

AMS subject classification. 68Q25

PII. S0097539795290593

1. Introduction. This paper addresses an abstraction of the following type of
scenario. Imagine you have just moved to a new city. You are at your home and
must travel to your office, but you do not have a map (let’s assume you know the
coordinates of your office; you just do not know the street layout). Several papers in
recent literature have discussed strategies that can be used to plan one’s route in this
type of situation so that the distance traveled is not too much longer than the shortest
path. But now, suppose you have reached your office, spent the day there, and it is
time to go home. You could retrace your path, but you now have some information
about the city (what you saw on your way to work in the morning) and would like
to do better. The next morning you have even more information and so on. What
is a strategy that allows your path taken each time to be good and to improve with
experience? Perhaps you might even design your paths explicitly so as to gain more
information for future trips.

Specifically, we consider the scenario (examined in [17, 7, 11, 10]) where there is
a start point s and target t in a 2-dimensional plane filled with nonoverlapping, axis-
parallel rectangular obstacles, having corners at integral coordinates. A point robot
begins at s, and knows its current position and that of the target, but it does not
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know the positions and extents of the obstacles; it only discovers their existence as it
bumps into them. In the problem considered in previous papers, the robot’s goal is to
travel from s to t as quickly as possible. We call this the one-trip problem. For this
problem, if n is the Euclidean s-t distance, [7] presents an algorithm that guarantees
an O(

√
n) ratio of the distance traveled to the shortest path length, which is known

to be optimal for deterministic algorithms [17]. Here, we consider the situation where
the robot may be asked to make multiple trips between s and t. We would like an
intelligent strategy for the robot so that its trips between s and t both are as fast as
can be hoped for initially and improve as more trips are made and more information is
gathered. For instance, after making one trip that achieves the above O(

√
n) ratio, the

robot has some partial information about the scene. Can it exploit this information
to improve its ratio on the second trip? Can it continue to exploit new information
gained on future trips? It is important to note that partial information may not help
if it is somehow not sufficiently relevant. Thus the challenge is to perform as well as
possible on each trip given the information gained so far and at the same time acquire
information that will be useful for improving on later trips. This makes the multitrip
problem more difficult than the single trip problem.

The multitrip problem has aspects of both a machine learning and an online
algorithms problem. As in machine learning settings, we would like our algorithm to
improve its performance with experience. As in standard online algorithms settings
(e.g., [16]), decisions the robot makes now may affect the costs it experiences in
the future. However, our scenario also exhibits key differences. In particular, unlike
typical online algorithms problems, here the algorithm may have partial information
about the future—namely, the positions of obstacles that lie ahead that it has already
encountered. There is also a value associated with information gathering in our setting
in the sense that such information may (or may not) prove to be useful on the future
trips made. One contribution of our work is a method for analyzing problems of this
sort and quantifying the information that is most relevant in this setting.

We study the case of oriented rectangular obstacles for two main reasons. First,
scenes containing such obstacles are complex enough to embody many of the strategic
issues that arise in path planning. For example, there is the question of when one
should “give up” on a difficult region in the scene and move to a new region that
might be more promising, and there is also the question of which information is worth
gathering. Second, if one allows arbitrarily shaped obstacles, it is known [7] that one
cannot perform much better in the worst case than a simpleminded depth-first-search
strategy. Thus, such scenes do not allow one to demonstrate theoretically the value
of a useful approach by the performance guarantees achieved.

An extended abstract of this paper appears as [6].

1.1. Results and goodness measures. Given the basic scenario described
above, the first question to be addressed is the measure of success to use. Clearly we
do not want to give high marks to a solution in which the robot makes an artificially
long first trip and then subsequently “improves” on future trips. Instead we would
like an algorithm that performs as well as possible at all times. For this reason,
we will analyze our algorithms using a type of “competitive analysis.” The idea of
competitive analysis is to compare the performance of one’s algorithm to the best
one could hope to do if there were no missing information (in our case, if a map of
the scene were known). For instance, for the one-trip problem, Papadimitriou and
Yannakakis [17] showed that for any deterministic algorithm and integer n > 0, there
exist scenes having Euclidean s-t distance n (the width of the thinnest obstacle is taken
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as 1 unit), forcing the algorithm to travel Ω(
√
n) times the length of the shortest

path. Subsequently, Blum, Raghavan, and Schieber [7] showed an algorithm (BRS
algorithm) having a performance guarantee that matches this lower bound.

For the multitrip problem we consider two similar measures of performance. In the
cumulative measure, we compare the total distance traveled on the first k trips to the
length of the optimal path. Our first main result is a deterministic strategy having the
property that given k < n, it guarantees that the total distance traveled in the first k
trips is at most O(L

√
nk), where L is the length of the shortest s-t path. (If k ≥ n the

distance becomes O(Lk).) We also show that up to constant factors this is the best
guarantee achievable by a deterministic strategy. In particular, for any deterministic
strategy and any n and k ≤ n, there exist scenes which force the strategy to travel
distance Ω(L

√
nk) on the first k trips. One problem with the cumulative measure is

that it does not force the algorithm to perform as well as possible on each trip. For
this reason, we also consider a per-trip measure in which we separately bound the cost
of each trip. Our second main result is an improvement on the cumulative algorithm
having the property that for all i < n, the ith trip of the robot has length at most
O(L

√
n/i). This is optimal in the sense that (up to constant factors) it meets the

cumulative lower bound simultaneously for all i.

1.2. Main ideas and the basic strategy. The core of our results (and the bulk
of the paper) is a method for achieving a smooth search-quality trade-off: smoothly
trading off in a single trip the exploration cost with the goodness of the path found.
Specifically, we design an algorithm that, given any k ≤ n, searches a distance
O(L

√
nk) and finds an s-t path of length at most O(L

√
n/k). In other words, at

a cost of only t times the cost of the BRS algorithm (t =
√
k in our case) we find a

path that is a factor of t better than the BRS guarantee. In addition, our method for
achieving this trade-off has the property that it can be performed in a “piecemeal”
fashion (somewhat like the piecemeal learning of [5]). In particular, the searching can
be performed a little bit at a time on each trip. This latter property is what allows us
to turn our cumulative algorithm into one that is more like a learning algorithm, with
optimal per-trip performance. As more trips are made, better searches are performed,
and cheaper paths are found for the future trips. An example of an exploratory trip
achieving the desired trade-off is given in Figure 1.1.

Our main idea for achieving this search-quality trade-off is a method for analyzing
an obstacle scene and determining which pieces of information are the most important.
In particular, we show that a tree structure can be defined in the scene, where the
nodes are portions of certain obstacles and the edges are short paths from a node
to its children. This tree can be tailored to the search cost and path quality desired.
Our search algorithm is essentially an online strategy to traverse a sequence of trees
optimally, and the path found is a concatenation of specific root-to-leaf paths from
each tree. Besides its use for achieving a search-quality trade-off on a single trip,
the tree structure enables us to spread the search over several trips: since there is a
“short” path from the root to each node, we can suspend our tree-traversal on one
trip and resume the exploration on a later trip by moving quickly to the point where
we stopped. The tree structure is defined formally in section 5.

1.3. Related work. Versions of the multitrip problem have been addressed in
the framework of reinforcement learning. Thrun [18] describes heuristics for path
improvement in scenes containing (possibly concave) obstacles and presents empirical
results. Koenig and Simmons [12] consider a similar problem on graphs. In other
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Fig. 1.1. An example of an initial search trip, k = 3. The thick line shows the s-t path found
(s is at center top, t is at the bottom), and the thin and thick lines are the search path. The robot
occasionally will back up, which accounts for the dead ends. Obstacles hit are shaded. In each “fence
group” (see section 5.1) fences 1 and 3 are lightly shaded and fence 2 is darkly shaded. This figure
is a screen dump of a demonstration program that allows a user to create a “simple scene” (see
section 4) and then run various algorithms on it.

machine learning literature, Chen [9] considers how the computation time for path-
planning in a known scene can be improved by making use of (portions of) solutions
to previous path planning problems in the same scene.

Betke, Rivest, and Singh [5] consider a related problem of completely exploring
an environment, but with the restriction that the robot must return to the start to
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refuel every d steps for some distance d. They call this piecemeal learning and provide
algorithms for the case of a bounded region with axis-parallel rectangular obstacles.

Lumelsky [13, 14] and Lumelsky and Stepanov [15] describe some very simple
algorithms that can be used to solve the one-trip problem for arbitrary (nonconvex)
obstacles having the property that the distance traveled is at most the Euclidean s-t
distance plus 1.5 times the sum of the perimeters of all the obstacles.

2. The model. Let S(n) denote the class of scenes in which the Euclidean
distance between s and t is n. We define s to be at the origin (0, 0). As mentioned
above, we assume that the width and height of each obstacle is at least 1 (this in
essence defines the units of n) and for simplicity assume that the x-coordinates of the
corners of obstacles are integral. Thus no more than n obstacles can be placed side
by side between s and t. We assume that when obstacles touch, the point robot can
move between them.

To simplify the exposition, for most of this paper we will take t to be the infinite
vertical line (a “wall”) x = n and require the robot only to get to any point on this
line; this is the wall problem of [7]. Our algorithms are easily extended to the case
where t is a point, using the room problem algorithms of [7] or [3], and we describe
this modification in section 8.

We model the robot as having only tactile sensors; that is, it discovers an obstacle
only when it bumps into it. It will be convenient to assume, however, that when the
robot hits an obstacle, it is told which corner of the obstacle is nearest to it and how
far that corner is from its current position. As in [7], our algorithms can be modified
to work without this assumption with only a constant factor penalty. We describe
these modifications toward the end of the paper.

Consider a robot strategy R for making k trips between s and t. Let Ri(S) be the
distance traveled by the robot in the ith trip, in scene S. Let L(S) be the length of
the shortest obstacle-free path in the scene between s and t. We define the cumulative
k-trip competitive ratio as

ρ(R,n, k) = max
S∈S(n)

R(k)(S)

kL(S)
,

where R(k)(S) =
∑k
i=1 Ri(S) is the total distance traveled by the robot in k trips.

That is, ρ(R,n, k) is the ratio between the robot’s average distance traveled in k trips
and L. We define the per-trip competitive ratio for the ith trip as

ρi(R,n) = max
S∈S(n)

Ri(S)

L(S)
.

Given this notation, our main results can be described as follows. First, we show
for any k, n, and deterministic algorithm R, that ρ(R,n, k) = Ω(

√
n/k). Second, we

describe a deterministic algorithm that given k ≤ n achieves ρ(R,n, k) = O(
√

n/k).

Finally, we show an improvement to that algorithm that achieves ρi(R,n) = O(
√

n/i)
for all i ≤ n. Notice that the latter algorithm is optimal in that it matches the lower
bound simultaneously for all k. I.e., 1

k

∑k
i=1

√
n/i = O(

√
n/k). The simplest of these

results is the lower bound, which we describe first.
Conventions. We will use the words up, down, left, and right to mean the

directions +y,−y,−x, and +x, respectively. When we say point A is above, below,
behind, or ahead of a point B we will mean that A is in the +y,−y,−x, or +x
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s

Fig. 3.1. A 4-coloring of the brick pattern for the lower bound.

direction, respectively, from B. Finally, vertical (respectively, horizontal) motion is
parallel to the y (respectively, x) axis. At any point in time, the current coordinates
of the robot (which are known to the robot) are denoted by (x, y).

3. A lower bound for k-trips.

Theorem 3.1 (k-trip cumulative lower bound). For k ≤ n, the ratio ρ(R,n, k)
is at least Ω(

√
n/k) for any deterministic algorithm R.

Proof. Since R is deterministic, an adversary can simulate it and place obstacles
in S as follows. Recall that s is the point (0, 0).

The adversary first places obstacles of fixed height 2h ≥
√
n and width 1, in a

full “brick pattern” on the entire plane, as shown in Figure 3.1, with s at the center
of the left side of an obstacle. (Recall that the point robot can “squeeze” between
bricks.) The adversary simulates R on this scene, notes which obstacles it has touched
at the end of k trips, then removes all other obstacles from the scene. This is the final
scene that the adversary creates for the algorithm. Let us say it contains M obstacles.
The brick pattern ensures that R must have hit at least one brick at every integer
x-coordinate, so M ≥ n. Further, this arrangement forces the robot to hit a brick
at every integer x-coordinate on every trip. Whenever it hits a brick, it must move
vertically up or down a distance h, so its total k-trip distance R(k) is at least nkh.

We now show that there is a path from s to the wall of length at most O(
√
R(k)h).

Imagine the full brick pattern to be built out of four kinds of bricks (red, blue,
yellow, and green, say) arranged in a periodic pattern as shown in the figure. This
arrangement has the following property: for each color, to go from a point on an
obstacle of that color to a point on any other obstacle of the same color, the robot
must move a distance at least h. Out of the M obstacles hit by the robot, at least
M/4 must have the same color, say blue. So regardless of how the robot moved, since
it has visited M/4 blue obstacles, we have R(k) ≥ Mh/4, which implies M ≤ 4R(k)/h.

We claim there is a nonnegative integer j ≤
√
M such that at most

√
M obstacles

have centers at the y-coordinate jh. This is because a given obstacle intersects at
most one y-coordinate of the form jh, and there are M obstacles. Thus, there is a
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path to t that goes vertically to the y-coordinate jh, then horizontally along this
y-coordinate, going around at most

√
M obstacles. The total length of this path is

at most 2h
√
M + 2h

√
M + n, which is at most 6h

√
M since n ≤ M and

√
n ≤ 2h.

Since M ≤ 4R(k)/h, this path is in fact of length at most 6
√

4hR(k). Thus the k-

trip ratio is at least R(k)/(6k
√

4hR(k)). Recalling that R(k) ≥ nkh, this is at least
1
12

√
n/k = Ω(

√
n/k).

It is not hard to see that this lower bound also holds for the case where t is a
point rather than a wall.

4. The k-trip cumulative algorithm: Preliminaries. We now give some
preliminary observations needed for our algorithm.

We begin by assuming for simplicity that the algorithm knows the length L of the
shortest obstacle-free path from s to t. In section 5.1 we show that this assumption can
be removed by using a standard “guessing and doubling” trick. One simple observation
is that the shortest obstacle-free s-t path must lie entirely within a window of height
2L centered at s, since any s-t path that leaves the window must be longer than L. In
the remainder of the paper we will refer to the rectangular region of height 2L centered
vertically at s, and extending horizontally between s and t, as “the window.” This
observation immediately leads to an easy algorithm to achieve a cumulative k-trip
ratio of O(1) for k ≥ n:

First trip: Using a depth-first-search, explore the entire window. This
can be done by walking a total distance of O(Ln). Compute the shortest
obstacle-free s-t path (of length L).

Remaining trips: Use the shortest path.

Clearly the average trip length is O(L), so the cumulative n-trip ratio is O(1).
Thus, the cases k = 1 (the BRS algorithm) and k ≥ n can be done with known

methods. In fact, at the high level, our optimal cumulative strategy for 1 ≤ k ≤ n
trips is similar to the n-trip algorithm just described:

First trip: Somehow perform an “exploratory” walk of length O(L
√
nk),

in such a way that an s-t path P of length O(L
√

n/k) is discovered.

Remaining k − 1 trips: Use the path P .

The average trip length of this algorithm is O( 1
k (L

√
nk+(k−1)L

√
n/k)) = O(L

√
n/k),

so the cumulative k-trip ratio is O(
√

n/k). Thus, as mentioned in the introduction,

the key question is how to find a path that is a factor Ω(
√
k) better than the BRS

guarantee while traveling a distance that is only O(
√
k) longer.

In order to make the main ideas clear, we first describe our algorithm for a class
of scenes we call simple scenes that capture most of the difficulties in designing online
navigation algorithms (for both the one-trip and k-trip problems). In section 6 we
show how to extend this algorithm to handle the general case. A scene is simple if (a)
all obstacles have the same height 2h and width 1 and (b) the obstacle corners have
coordinates of the form (i, jh) for integer i and j. For instance, the obstacles in the
lower bound of section 3 form a simple scene. Observe that in a simple scene one can
move unimpeded vertically along any integer x-coordinate without encountering any
obstacles.

Notice that if h ≤ L/
√
nk, then a brute-force strategy that moves forward when

possible and otherwise arbitrarily goes around any obstacle encountered will hit at
most n obstacles and therefore travel a distance at most O(nL/

√
nk) = O(L

√
n/k),

which is our desired bound. Thus, we may assume in what follows that h > L/
√
nk.

Conventions. For convenience, in a simple scene we define the position of an
obstacle A to be the coordinates of the midpoint of the left edge of the obstacle. A
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horizontal path whose y coordinate is a multiple of h is said to hit an obstacle if it
hits the obstacle’s center (as opposed to grazing the top or bottom edge), i.e., if it
reaches the obstacle’s position. We reiterate that we will use the phrase “the window”
to refer to the rectangular region of height 2L centered vertically at s and extending
horizontally between s and t. As mentioned above, we will assume in what follows
that h > L/

√
nk.

5. The algorithm for simple scenes.

5.1. Fences and the one-trip BRS algorithm. One key notion used in both
the one-trip BRS algorithm and our k-trip algorithm is that of a fence.1 An up-fence F
is a sequence of M obstacles at points (X(1), Y (1)), (X(2), Y (2)), . . . , (X(M), Y (M))
such that Y (1) ≤ −L, Y (M) ≥ L, and for m = 1, 2, . . . ,M − 1,

X(m) ≤ X(m + 1),(5.1)

Y (m + 1) = Y (m) + h.(5.2)

See Figure 5.1. A down-fence has the same definition except Y (1) ≥ L, Y (M) ≤ −L,
and (5.2) is replaced by Y (m + 1) = Y (m)−h. The mth obstacle (counting from the
left) of fence F i is denoted by Fi(m) and its coordinates are (Xi(m), Yi(m)). For each
m, the rectangular region of height h whose opposite corners are (X(m), Y (m)) and
(X(m + 1), Y (m + 1)) is called a band. A fence can thus be viewed as a contiguous
sequence of bands extending across the window.

A point P is said to be left (respectively, right) of a fence F if an imaginary
horizontal line from P to the left (respectively, right) does not intersect any obstacle
of F . A path is said to cross the fence if it connects some point left of the fence to
some point right of the fence and stays inside the window. Any path that crosses
a fence has vertical length at least h since it must completely cross some band (see
Figure 5.1).

It is easy to see how a robot can find a fence with vertical motion at most 2L.
Specifically, starting from the bottom of the window, an up-fence can be found as
follows:

Repeat until at top of the window (i.e., y = +L): walk to the right until

an obstacle is hit, then move up to the top of the obstacle.

The one-trip BRS algorithm restricted to simple scenes (and assuming L is known)
reduces to the following:

Initially, walk from s down to the bottom of the window. Until the wall is

reached, walk to the right, alternately building up- and down-fences across

a window of height 2L centered at s.

The robot never walks backward in the BRS algorithm, so its total horizontal cost
is n, and since L ≥ n, this cost is only a small order term. Note that every obstacle hit
by the robot is part of some fence. Thus every time the robot spends 2L (vertically)
to build a fence, it is also forcing the optimal offline path to spend at least h to cross
the fence. So if h ≥ L/

√
n, the competitive ratio is O(

√
n). The case h < L/

√
n is

even easier to handle: the robot hits at most n obstacles (since they have width 1 and
the robot never walks backward), so its total vertical cost is at most nh < L

√
n.

We say that two fences are disjoint if their bands do not intersect each other
(see Figure 5.2). Because the bands of disjoint fences do not overlap, any path that
crosses t disjoint fences must pay (vertically) at least th. For the k-trip problem an

1This is called a sweep in [7].
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Fig. 5.1. A fence in a simple scene. The obstacles 〈1, 2, 3, 4, 5〉 with thick boundaries form a
fence. The dashed line connecting points A and B crosses the fence. The shaded regions are the
bands of the fence. Note: since L ≥ n, the window in this figure should really be taller than its
width. However for the sake of clarity, in this and all figures in this paper the vertical dimension
has been compressed considerably.
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Fig. 5.2. The fences F1 = 〈1, 2, 3, 4, 5〉 and F2 = 〈6, 7, 8, 9, 10〉 are disjoint. F1 and F3 =
〈6, 7, 8′, 9, 10〉 are not disjoint since the band of F3 between 8′ and 9 overlaps the band of F1 between
3 and 4. In fact, one can cross both F1 and F3 at a total cost of only h by traveling between 8′ and
4. A greedy strategy for constructing a fence such as F2 disjoint from the previously found fence
F1 might be to go up and over obstacle 8′ until obstacle 4 is hit, and then down around 4 to reach
obstacle 8. However, this type of strategy might be expensive, as shown in Figure 5.3.

intuitively reasonable approach is to extend the BRS idea as follows: On each trip,
make new fences that are disjoint from previous fences. If on each trip one could
find new disjoint fences “cheaply” (O(L) cost) and one could cross old fences cheaply
(O(h) cost), then this would result in an optimal algorithm. However, we know of
no way to find new disjoint fences this cheaply. The naive strategy of extending each
new fence greedily and using previously found paths to bypass obstacles that enter
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h        L       a  

2L

fences:k   /a workO(kL)

=
n k

O( L ) path

Fig. 5.3. High-level view of the optimal k-trip strategy. First trip: create groups of fences with
short group-crossing paths. Remaining trips: follow these short paths.

existing fences can be too expensive in certain scenes. Examples of such scenes are
given in [8].

Our approach, as hinted in section 4, is to give up on trying to create new disjoint
fences on each trip and instead to try to find a group of disjoint fences all at once on
one trip. Specifically, we do the following. Suppose that h = aL/

√
nk for some a ≥ 1

(recall that 2h is the obstacle height, and a < 1 is an easy case to handle). Then our
strategy is the following.

First trip: Build a sequence of fence groups in which each group con-
sists of � k

a
� disjoint fences (alternate between groups of up-fences

and groups of down-fences) until the wall is reached. Ensure that
(a) the cost of building each group is O(kL),
(b) an O(L) length path crossing each group (i.e., going from

the x-coordinate of the leftmost obstacle of the leftmost
fence to the x-coordinate of the rightmost obstacle of the
rightmost fence) is found, and

(c) the right end of each group-crossing path is the left end
of the next group-crossing path.

Remaining k − 1 trips: Follow the group-crossing paths to the wall.

The first trip is shown schematically in Figure 5.3. To see why the above strategy
achieves an O(

√
n/k) ratio, assuming we can somehow satisfy (a), (b), and (c), notice

that the average online cost per trip to get past each fence group is O(L) (amortizing
the O(kL) building cost). Crossing each group costs the optimal offline path at least
(k/a)h = L/

√
n/k, so the average online trip length is within an O(

√
n/k) factor of

optimal, as desired.

A search-quality trade-off. Since each fence group costs the offline optimum path
at least L/

√
n/k to cross, the robot will find at most

√
n/k groups before reaching

the wall. Thus the total length of its first trip is O(kL
√

n/k) = O(L
√
nk), and the

total length of the group-crossing paths is O(L
√

n/k). Therefore, this achieves the
search-quality trade-off mentioned earlier.

The doubling strategy when L is unknown. Note that if L is not known, we can
just begin with a guess of L = n, and if the wall has not been reached after building√

n/k fence groups, we can double our guess and repeat the entire procedure. Thus
there is only a constant factor penalty for not knowing L.
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Fig. 5.4. A scene showing a 3 × 4 fence-tree, where the root F1(1) is obstacle 1. The shaded
obstacles are the nodes of the tree, and the dark lines are the edges. Differently-shaded obstacles
constitute different fences; other obstacles are not part of any fence. For instance, obstacle 4 is
node F1(4), obstacle 7 is node F2(3), and obstacle 8 is node F2(4). Note that the tree defines three
disjoint fences with four obstacles each. If we had failed to follow the fence-tree rules and instead had
made F2(4) be up-right from F2(3) (that is, obstacle B) then fences 1 and 2 would not be disjoint.

The advantage of building an entire collection of fences on one trip is that this
allows the robot to make more effective use of its movements. In [8] a detailed example
is given where building fences one-by-one on consecutive trips can be too expensive.
In fact a crucial property of the fence collections we will define is that the ith obstacle
of a fence is always easily reachable either from the preceding obstacle on the same
fence or the corresponding obstacle of the fence above.

5.2. Fence-trees. We would like to build a collection of G = �ka� up-fences
across the window, and find an O(L) length path crossing the collection, while paying
a cost of only O(kL). Our key idea is to define a tree structure whose nodes are
obstacles in the scene and whose edges are “short” paths between the nodes. These
nodes will constitute the desired collection of fences, and the path from the root node
to the rightmost node is the desired O(L) length path that crosses the collection.
Furthermore, traversing all edges of this tree with a cost of O(kL) is equivalent to
building the desired collection of fences.

In order to define the tree structure we introduce some notation and termi-
nology. The nodes of this tree will be denoted by Fi(m), for i = 1, 2, . . . , G and
m = 1, 2, . . . ,M (M is roughly 2L/h and will be fully specified later). The reason for
this notation is that Fi(m) will turn out to be the mth obstacle of the ith fence. The
coordinates of obstacle Fi(m) are denoted by (Xi(m), Yi(m)). We say an obstacle Q
is down-right (up-right) from an obstacle P if Q is the first obstacle hit when moving
to the right from the bottom (top) of P . The following rules then define the G×M
fence-tree with root F1(1) (an example is given in Figure 5.4).

Fence-Tree Rules.
(1) For i = 2, 3, . . . , G, Fi(1) is down-right from Fi−1(1).
(2) For m = 2, 3, . . . ,M, F1(m) is up-right from F1(m− 1).
(3) For i = 2, 3, . . . , G:

For m = 2, 3, . . . ,M :
If Xi(m− 1) ≥ Xi−1(m),

then Fi(m) is up-right from Fi(m− 1)
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else Fi(m) is down-right from Fi−1(m).
(E.g., in Figure 5.4, obstacle 7 is up-right from obstacle 6, and

obstacle 8 is down-right from obstacle 4.)

Thus each node Fi(m) (except the root node F1(1)) is defined to be either up-right
from Fi(m− 1) or down-right from Fi−1(m). We will call that “defining obstacle” of
Fi(m) its parent, and call the up-right or down-right path from the parent to Fi(m)
(consisting of a vertical portion of height h followed by a horizontal portion) an edge
in the tree. That is, if rule (2) is used or if Fi(m− 1) is to the right of Fi−1(m), then
Fi(m− 1) is the parent of Fi(m) and otherwise Fi−1(m) is the parent of Fi(m).

The fence-tree rules define a natural binary rooted tree structure. The tree struc-
ture is visually apparent in Figure 5.4. The G×M fence-tree in fact defines exactly
the group of fences that we want to build.

Theorem 5.1 (fence-tree). Let P be an obstacle with y-coordinate −L in a simple
scene, and let M ≥ � 2L

h � + �ka�. Then, the obstacles in a G×M fence-tree with root
P form G disjoint up-fences with M obstacles each, with P as the first obstacle of the
leftmost fence.

Proof. It is easy to see that the obstacles F1(m) defined by rule (2) constitute a
fence F1. In addition, for all i > 1, the obstacles Fi(m), m = 1, 2, . . . ,M , constitute a
fence Fi since each is to the right of and exactly h higher than the previous obstacle.
By rule (1), the initial obstacle of each fence is down-right from the initial obstacle
of the fence Fi−1 above it. Therefore, the fences are disjoint if and only if for each
m = 2, 3, . . . ,M, Fi(m) is to the right of Fi−1(m), and this is guaranteed by rule (3).

It is easy to verify that the value M = � 2L
h � + �ka� is sufficient to ensure that

even the fence FG that starts Gh = h�ka� below the bottom of the window extends at
least 2L above the obstacle P, and thus all fences cross the window.

Recall that we wanted to define the fence group so that there is a cheap (O(L)
length) path that crosses the group. One such path is the path from the root of the
tree to the rightmost obstacle on the rightmost fence (strictly speaking, this path does
not cross the rightmost fence, but it can be cheaply extended to one that does). In
fact, the unique path in the tree from the root F1(1) to each node has length at most
O(L), as we show below.

Lemma 5.2. In a G×M fence-tree in a simple scene, where G = �ka� and

M = �ka� + � 2L
h �,

(a) the unique path in the tree from the root to each node has length O(L), and
(b) the total length of all edges is O(kL).

Proof. Recall first that k ≤ n and L ≥ n. Since the unique tree path from the
root to any given node always proceeds to the right, the total horizontal cost of this
path is at most n. On this path, each down-edge leads to a lower fence (and there
are only G = �ka� fences), and each up-edge leads to an obstacle on the same fence

(and there are only M = �ka� + � 2L
h � obstacles per fence). So, the total vertical cost

of this path is at most h(G + M). Thus the total length of any such path is at most
n + h(G + M) = n + h(2�ka� + � 2L

h �), which is O(L) since h = aL/
√
nk ≤ aL/k.

To bound the total length of all edges, note that each edge can be associated with
a unique node, namely the one on its right (the child). Thus, the sum of the vertical
portions of all edges is at most h(GM − 1) = O(kL). By fence rules (2) and (3), the
length of the horizontal portion of the edge associated with Fi(m) is no more than the
horizontal distance between Fi(m) and its predecessor Fi(m− 1) on the same fence.
Thus the sum of the horizontal portions of the edges is a most Gn: n for each fence.
This is also O(kL).



ONLINE ALGORITHM FOR IMPROVING PERFORMANCE 1919

Thus if the robot traverses all edges of this tree it will have found not only a
group of disjoint fences but also a cheap path that crosses all of them.

As noted in the proof above, there are GM obstacles in the fence-tree, and GMh ≤
kMh = O(kL). Thus we would like the robot to traverse the fence-tree with a cost
proportional to h times the number of obstacles in the fences, or a cost proportional
to the total length of the tree edges. We remark here that the fence-tree must be
traversed online; a simple approach based on depth-first-traversal may not be efficient
since the algorithm does not know where exactly the nodes are: the robot can locate
Fi(m) only after it has located both its potential parents Fi−1(m) and Fi(m− 1) or at
least after it has determined whether or not Xi(m− 1) ≥ Xi−1(m). So, intuitively the
difficulty is that before visiting a node such as Fi(m) we need to visit both potential
parent nodes, which may be in very different parts of the tree. (Actually, one could
imagine an algorithm that attempted to visit nodes before finding both parents and
only later verified whether or not those nodes were actually legally part of the tree;
our algorithm does not do this.)

Conventions. In the subsequent sections, we will find it convenient to associate
an edge in the tree with the obstacle at its right end, and we define the coordinates of
an edge to be the coordinates of its associated obstacle. We say an edge belongs to a
fence Fi if its associated obstacle belongs to Fi. When we say an object A, such as an
edge or obstacle, is left (right) of another object B we will mean that the x-coordinate
of A is strictly smaller (greater) than that of B. We will often identify a fence with its
rightmost obstacle; thus when we say “fence Fi is to the left of obstacle P” we mean
that the last obstacle of Fi is left of P . We use (Xi, Yi) to denote the coordinates of
the rightmost obstacle of Fi, and |Fi| will denote the number of obstacles currently
in Fi. To simplify the wording of our algorithms we will assume that X0 = ∞, and
|F0| = M + 1.

5.3. Finding the fence-tree. Our algorithm builds a tree using a conservative
strategy in the following sense. It adds a new edge to the current partial tree only
when such an edge is certain to be part of the final tree being built. In addition,
the algorithm visits a node Fi(m), i > 1,m > 1, only after both its possible parents
Fi−1(m) and Fi(m− 1) have been visited. At any stage our algorithm will be located
at the rightmost node found so far for some partial fence and then either adds a
(down-right or up-right) edge from the current fence, or “jumps” to another fence.

It is reasonable to wonder whether an efficient fence-tree-traversal strategy exists
that only walks along the tree edges when jumping from one fence to another. We
do not know of any such strategy; our algorithm may often shortcut to another fence
without necessarily walking along tree edges. Even with this freedom to walk outside
the tree, it is important to note that a bad order of visiting the nodes of the fence-tree
may make the jumps prohibitively expensive.

The key problems in designing a traversal strategy therefore are (a) deciding the
order in which the nodes will be discovered, and (b) designing the jump procedures.
Procedure FindFenceTree in Figure 5.5 finds the desired fence-tree, using a recursive
procedure Raise described in Figure 5.6. In these procedures, it should be understood
that if the “wall” x = n is reached at any time, the robot halts and the procedures
terminate. The procedure JumpDownLeft (i) and JumpDownRight (i) take the robot
from the last obstacle of the current fence Fi to the last obstacle of the next lower fence
Fi+1. These procedures are described in Figures 5.7 and 5.8. In all the procedures,
the “retrace to Fi(j)” statements are executed by simply retracing the path used to
reach the current position from Fi(j).
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1 procedure FindFenceTree
2 Move to the right until at an obstacle; this defines F1(1)
3 for i := 2 to G do
4 Add a down-right edge to defineFi(1);
5 end
6 Retrace to F1(1);
7 Raise (1, 0);
8 end

Fig. 5.5. The main procedure for finding the fence-tree.

1 procedure Raise (i, q)
2 while (Up(i)) do
3 Retrace to Fi; j := i;
4 Add an up-right edge to Fi;
5 while (j < G and Xj > Xj+1) do
6 Retrace to Fj ;
7 if (Down(j))
8 Add a down-right edge; j := j + 1;
9 else

10 JumpDownLeft (j);
11 Raise (j + 1, j);
12 fi
13 od
14 od
15 Let Fd be the current fence;
16 if (d < G and Xd+1 < Xq)
17 JumpDownRight (d);
18 Raise (d + 1, q);
19 fi
20 end

Fig. 5.6. Recursive procedure Raise used by FindFenceTree.

We start with an intuitive description of the algorithm. The algorithm begins
(FindFenceTree) by finding the first obstacle in each fence and placing itself at the
first obstacle of the topmost one. It then calls the recursive procedure Raise (1, 0).
In general for q < i, the job of Raise (i, q) is to raise all fences i and lower that are
currently behind Fq, as far as possible given the constraints imposed by the location
of Fq. (For i = 1, q = 0, this means to raise all the fences until they each have M
obstacles.)

The Raise procedure is a bit complicated, so is perhaps best described through
the example of Figure 5.4. In this example, Raise (1, 0) is first called at obstacle 1,
and the algorithm knows only about obstacles 1, 5, and 9. Raise begins by adding
new obstacles to its current fence (in line 4) so long as these are legal with respect
to constraints imposed from above, until it has overshot the fence below it. In the
example, these are obstacles 2, 3, and 4. Once it reaches obstacle 4, Raise realizes it
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1 procedure JumpDownLeft (j)
2 Move left along tree edges until x-coordinate = Xj+1;
3 Move vertically down to last obstacle of Fj+1;
4 end

Fig. 5.7. Procedure JumpDownLeft to jump from current fence Fj to the next lower fence Fj+1

when Xj+1 < Xj .

1 procedure JumpDownRight (d)
2 Move vertically down until on a previously found tree edge;
3 Follow tree edges to the right until at last obstacle of Fd+1;
4 end

Fig. 5.8. Procedure JumpDownLeft to jump from current fence Fd to the next lower fence Fd+1

when Xd+1 ≥ Xd.

is to the right of the fence F2 below it (formally, the conditions of the inner while
loop become satisfied) and will try to make sufficient progress on F2 (and any others
that are behind and below F1, in this case F3). Unfortunately, because the current
obstacle (number 4) of fence F1 is too high relative to obstacle 5 on fence F2, the
algorithm cannot simply add a down-right edge (formally, Down(j) is not satisfied)
from obstacle 4 to discover the next obstacle of fence F2. So, the algorithm runs the
JumpDownLeft(1) procedure to reach the last obstacle (number 5) of fence F2 and
calls Raise (2, 1) recursively to raise that fence. This call to Raise begins by finding
obstacle 6. At this point the robot is to the right of the fence below it (the condition
of the inner while loop is satisfied) and it is just high enough above the last obstacle
of F3 (i.e., Down(j) is satisfied) so it adds the down-right edge to obstacle 10 (line
8). At this point it goes back to obstacle 6 (since Up(i) is still satisfied) and makes
the up-right edge to obstacle 7. Now, Up(i) is no longer satisfied because the current
fence has bumped into the constraint imposed by the fence above it. So, Raise (1, 0)
drops down to line 17, where it calls JumpDownRight (2) to get back to obstacle 10
(using the path indicated by “p” in the figure) and then recursively calls itself to work
on raising that fence. Finally, that recursive call ends with obstacle 11, we pop out
of both levels of recursion, and at the very top level we retrace our path all the way
to obstacle 4, finally adding down-right edges to obstacles 8 and 12 in the inner while
loop.

We now give a formal analysis of the formal algorithm given in Figures 5.5–5.8.
In order to establish the correctness and bound the cost of these procedures, we need
to show that certain pre- and postconditions hold whenever they are invoked. For
ease of reference we use mnemonic names for the various conditions:

• Up(i): i ≥ 1 and an up-right edge is legal from fence Fi, i.e., either Xi < Xi−1

and |Fi| < |Fi−1| − 1, or Xi ≥ Xi−1 and |Fi| < |Fi−1|.
• Down(i): i < G and a down-right edge is legal from Fi, i.e., Xi+1 < Xi and

|Fi+1| = |Fi| − 1.
• Ord(i, j): if i ≤ j, then Xi ≤ · · · ≤ Xj .
• At(i) means that the robot is at the last known obstacle of fence Fi.
• Eq(i, j) means “if i ≤ j, then |Fi| = · · · = |Fj |.”
• Unch(i, j) stands for “if i ≤ j, then the values of |Fi| through |Fj | have not
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PreRaise(i, q):
1. Eq(q + 1, i− 1),
2. At(i),
3. i > q,
4. Xi < Xq,
5. Ord(q + 1, G),
6. If q+ 1 < i, then NOT Up(q+ 1),
7. Up(i).

PostRaise(i, q) (Fc is the current fence):
1. Unch(1, i− 1),
2. Eq(q + 1, c),
3. Ord(q + 1, G),
4. If c < G, Xc+1 ≥ Xq,
5. NOT Up(q + 1),
6. AtNewest.

OuterWhile(k) (Fc is the current fence):
1. Unch(1, i− 1),
2. Eq(i, c) and c ≥ i,
3. Ord(i, G),
4. AtNewest holds after the first (if

any) iteration of the loop.

InnerWhile(k) (Fc is the current fence):
1. Unch(1, i− 1),
2. Eq(i, j),
3. Ord(j + 1, G),
4. AtNewest.
5. If c > j, then all PostRaise(j +

1, j) conditions hold.

PreJDL(j):
1. At(j),
2. Xj+1 < Xj ,
3. Up(j + 1).

PreJDR(d):
1. At(d),
2. Xd ≤ Xd+1 < Xq,
3. Eq(q + 1, d),
4. NOT Up(q + 1),
5. Up(d + 1).

Fig. 5.9. Various conditions required for the formal proof.

changed since the start of the procedure or while loop under consideration.”
• AtNewest means that the robot is at the newest obstacle found so far.
• AlmostOrd: No fence has more than one obstacle to the right of a lower fence.

That is, for i = 1, 2, . . . , G, if |Fi| = m, then Xi(m− 1) ≤ Xj for all j > i.
We prepend a condition by NOT to signify that the logical negation of the condi-

tion holds. For easy reference, in Figure 5.9 we define several collections of conditions
that will be useful in the correctness proof of the algorithm.

We use the next several lemmas to establish the correctness of the procedure
FindFenceTree (Theorem 5.8).

Lemma 5.3. Whenever Raise (i, q) is called, the PreRaise(i, q) conditions hold.
Moreover, the procedure terminates, and the PostRaise(i, q) conditions hold at that
time.

Proof. It is easy to verify that when FindFenceTree makes the first call Raise
(1, 0), the PreRaise(1, 0) conditions hold. We claim that if the PreRaise(i, q) conditions
hold when Raise (i, q) is called, then Raise (i, q) terminates and the PostRaise(i, q)
conditions hold. We prove this by induction. The base case is i = G, i.e., an invocation
of the form Raise (G, q): in this case there are no recursive calls to Raise, the inner
while loop is not entered, and JumpDownLeft and JumpDownRight are not called.
The only effect of Raise (G, q) is that up-right edges are added (line 4) to fence FG
until Up(G) is not true. It is easy to check that Raise (G, q) terminates with all the
PostRaise(G, q) conditions holding.

Next, let us inductively assume that the claim holds for all calls to Raise (j, .),
for j = i + 1, . . . , G. Consider an invocation of Raise (i, q) at some point when the
PreRaise(i, q) conditions hold. Before the outer while loop is entered, the current
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fence is Fc, where c = i. It is easily verified that the PreRaise(i, q) conditions imply
that all the OuterWhile conditions hold at this point. By Lemma 5.4, when the outer
while loop is exited, all the OuterWhile conditions continue to hold, and NOT Up(i)
holds. At this point, if the “If” condition on line 16 fails, then we claim that all the
PostRaise(i, q) conditions hold. Most of these conditions are easy to check, so we will
only argue the less trivial ones. To argue that condition (2) Eq(q + 1, c) holds, note
that NOT Up(i), combined with Ord(q + 1, G) and i > q (from PreRaise(i, q)), imply
Eq(i − 1, i). This, combined with Eq(q + 1, i − 1) (in PreRaise(i, q)) and Eq(i, c) (in
OuterWhile) implies Eq(q+1, c). Condition (5) NOT Up(q+1) follows from Eq(q+1, c)
(which implies Eq(q + 1, i)) and NOT Up(i).

Thus if the condition on line 16 fails, then Raise (i, q) terminates with the
PostRaise (i, q) conditions holding, and the lemma is proved. But if the condition
on line 16 is true upon exit of the outer while loop, then we claim that the condi-
tions PreJDR(d) hold. Again we will only show the arguments for the nontrivial ones
among these: condition (2) Xd ≤ Xd+1 < Xq follows from Ord(i, G) and c ≥ i (in
OuterWhile), which imply Xd ≤ Xd+1 (where d = c), and from the truth of the If con-
dition. The reasoning to show that (5) Up(d + 1) holds is as follows. Since AtNewest
holds (from OuterWhile), this means that the robot has just found the new obstacle
on Fc. Since obstacle number |Fd| on Fd+1 can only be found after the corresponding
obstacle on Fd, this means that |Fd+1| < |Fd|. From the condition Xd ≤ Xd+1 that
we just argued, this implies that Up(d + 1) must hold.

Now when JumpDownRight (d) is invoked on line 17, by Lemma 5.7, the robot
ends up at (the most-recently discovered obstacle of) Fd+1. At this point we claim
that the conditions PreRaise(d + 1, q) hold. In particular, condition (3) d + 1 > q
holds since d ≥ i (from OuterWhile) and i > q (from PreRaise(i, q)). (This actually
implies that d > q, a fact we will use below.) Condition (4) Ord(q + 1, G) is one of
the PreRaise(i, q) conditions, which we assumed to hold. The fact that d > q implies
q + 1 < d + 1, and NOT Up(q + 1) was already argued above, so (5) holds. The
remaining PreRaise(d + 1, q) conditions are easy to check.

By induction assumption, therefore, procedure Raise (d + 1, q) terminates with
the conditions PostRaise(d + 1, q) holding. Of these conditions, all but condition (1)
depend only on q and the number c of the current fence at the end of the procedure. So
the conditions PostRaise(i, q) (2) through (6) hold. Finally, condition (1) Unch(1, i−1)
holds because it is an OuterWhile condition, and this completes the proof.

Lemma 5.4. The conditions OuterWhile are invariants for the outer while loop.

Proof. Suppose all the OuterWhile conditions hold just before entry of the outer
while loop. If the outer while loop is entered, an obstacle is added to the current fence
Fc = Fi via an up-right edge at line 4, and at this point j = i. At this stage it is trivial
to verify that the InnerWhile conditions hold. By Lemma 5.5, upon exit of the inner
while loop, all the invariants InnerWhile continue to hold, and either j = G or j < G
and Ord(j, j + 1) holds. At this point we claim that the OuterWhile conditions hold:
condition (1) Unch(1, i−1) is an InnerWhile condition. We argue condition (2) Eq(i, c)
as follows. If c = j, then Eq(i, j) (from InnerWhile) implies Eq(i, c). Otherwise, c > j,
in which case from the InnerWhile conditions, all the PostRaise(j + 1, j) conditions
hold. In particular, Eq(j + 1, c) holds and Up(j + 1) is false. Since c > j we must also
have j < G and Ord(j, j + 1) (the failure of the conditions of the inner while loop),
i.e., Xj ≤ Xj+1. Since Up(j + 1) is false, this must mean that |Fj | = |Fj+1|. Thus we
have Eq(j, c). This, combined with Eq(i, j) from the InnerWhile conditions, implies
Eq(i, c). Condition (3) Ord(i, G) is argued as follows. The InnerWhile conditions
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Ord(j + 1, G) and Eq(i, j), and the condition Ord(j, j + 1) that holds because the
inner while loop was just exited, imply Ord(i, G). Finally, condition (4) AtNewest
follows from the fact that just before returning to the start of the outer while loop,
either an up-right edge was added at line 4, or the inner while loop was executed, and
AtNewest is one of its invariants.

Lemma 5.5. The conditions InnerWhile are invariants for the inner while loop.

Proof. Suppose all the conditions InnerWhile hold at the start of an iteration
of the inner while loop. If the loop is entered, then clearly Xj > Xj+1. If at this
point Down(j) holds, then a down-right edge is added, and j is incremented to j + 1.
At this point it is easy to check that all the InnerWhile conditions continue to hold.
On the other hand, if Down(j) does not hold, then we claim that the conditions
PreJDL(j) hold: (1) At(j) is clearly true. (2) Xj+1 < Xj holds as we observed above.
(3) Up(j + 1) holds since Xj+1 < Xj and NOT Down(j) holds.

By Lemma 5.6, after JumpDownLeft is executed, the robot is at Fj+1. At this
point we claim that all the conditions PreRaise(j + 1, j) hold. For instance, condition
(5) Ord(j + 1, G) holds since by assumption it held when the inner while loop was
entered (being one of the InnerWhile conditions), and before this invocation of Raise
(j+1, j), no new obstacles were discovered on any fence. The remaining Raise (j+1, j)
conditions are trivially checked.

By Lemma 5.3, after Raise is executed, all the conditions PostRaise(j + 1, j)
will hold. At this point we claim that all the conditions InnerWhile continue to
hold: (1) Unch(1, i − 1) is maintained since fences Fj and above are unaffected by
Raise(j + 1, j) (this is the Unch(1, j) condition in PostRaise(j + 1, j)), and j ≥ i.
(2) Eq(i, j) is maintained for the same reason. Conditions (3) Ord(j + 1, G) and (4)
AtNewest are also PostRaise(j + 1, j) conditions. Finally, we just argued above that
the PostRaise(j +1, j) conditions hold, and this is condition (5) of InnerWhile.

We establish below that the procedures JumpDownLeft and JumpDownRight work
correctly if they are invoked under appropriate conditions.

Lemma 5.6. Whenever JumpDownLeft (j) is invoked, the conditions PreJDL(j)
hold, and the procedure terminates with the robot at the last known obstacle of Fj+1.

Proof. That the conditions PreJDL(j) hold whenever JumpDownLeft (j) is in-
voked can easily be seen from the proofs of Lemmas 5.3 and 5.5. The PreJDL(j)
condition Xj+1 < Xj implies that the motion in line 2 (following tree edges to the
left) leads to a point where the x-coordinate is Xj+1 (see Figure 5.10). Since edges
followed to the left only lead to the same fence or to a higher one, this implies that
the point at the end of the motion in line 2 is vertically above (and not below) the last
known obstacle P of Fj+1. Thus moving vertically down in line 3 leads to obstacle
P .

Lemma 5.7. Whenever the procedure JumpDownRight (d) is invoked, the condi-
tions PreJDR(d) hold, and the procedure terminates with the robot at the last known
obstacle of Fd+1.

Proof. That the conditions PreJDR(d) hold whenever JumpDownRight (d) is
invoked can easily be seen from the proof of Lemma 5.3. Since Xd ≤ Xd+1, moving
vertically down from Fd will lead to a tree edge that is to the left of Fd+1. Therefore,
following the tree edges to the right will lead to the most recently discovered obstacle
of Fd+1.

From the above lemmas it is easy to prove that the procedure FindFenceTree finds
the desired fence-tree.

Theorem 5.8. When executing procedure FindFenceTree, the robot either finds a
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Fig. 5.10. Showing a use of procedure JumpDownRight to jump from Fd(m) to Fd+1(p). Solid-
boundary rectangles are obstacles found so far in the tree. The set N of dotted rectangles represents
obstacles that will be found on fence Fd+1 immediately following this procedure. Thick solid lines are
tree edges. The thin solid line shows the path followed when executing the procedure. The procedure
starts from A (obstacle Fd(m)), goes vertically down to a tree edge (point B), then follows the edges
to the right to the final obstacle of Fd+1 (point C). The set E is the set of edges followed in BC.
The length of AB is no more than the lengths of the edges in E plus the heights of the obstacles in
N .

complete G ×M fence-tree or reaches the wall (the line x = n) after having found a
collection of i partial fences F1, F2, . . . , Fi that satisfy the fence-tree rules.

Proof. Recall that we have set |F0| to be M + 1 and X0 to be infinite. After
the first obstacle on fence F1, F2, . . . , FG is found in line 4 of FindFenceTree, the
robot returns to F1(1). At this point it is easy to check that the PreRaise(1, 0)
conditions are satisfied. When Raise (1, 0) is invoked in line 7, by Lemma 5.3, the
robot completes the procedure (if it hasn’t reached the wall) with the PostRaise(1, 0)
conditions holding. In particular, condition (4) implies that the current fence upon
completion of the procedure must be Fc = FG (since otherwise Xc+1 ≥ X0, which is
impossible since X0 = ∞). Also, conditions (2) Eq(1, c) and (5) NOT Up(1) imply
that |F1| = |F2| = · · · = |FG| = |F0| − 1 = M .

Finally, we establish an invariant that will be useful later.

Lemma 5.9. The AlmostOrd invariant holds throughout any execution of Raise
(i, q).

Proof. The only two statements of the procedure which could possibly result in
a violation of the AlmostOrd invariant are 4 (where an up-right edge is added) and
8 (where a down-right edge is added). But whenever line 4 is reached, Ord(i, G)
holds: this follows from Ord(q + 1, G), which is one of the OuterWhile conditions
(which we prove below to be invariants for the outer while loop), and i > q, which is
a PreRaise(i, q) condition. Thus even if the new obstacle added to Fi in line 4 is to
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the right of (the last obstacle of) a lower fence, this would be the only such obstacle
of Fi. Similarly, whenever a down-right edge is added from fence Fj (thereby adding
an obstacle to Fj+1), Ord(j + 1, G) holds: this is one of the InnerWhile conditions,
which we show below to be invariants for the inner while loop. Thus even if the new
obstacle added to Fj+1 in line 8 is to the right of some lower fence, it would be the
only such obstacle of Fj+1.

5.4. Cost analysis. Recall from subsection 5.2 that we would like our fence-
tree-finding algorithm to travel a distance of no more than O(kL). The next theorem
establishes this.

Theorem 5.10. For G = �ka� and M = �ka� +� 2L
h �, the algorithm FindFenceTree

for finding a G×M fence-tree in a simple scene has total cost O(kL).

Proof. From Lemma 5.2, it suffices to show that the total distance traveled by
the robot while executing FindFenceTree is bounded by some constant times the total
length of all edges plus the heights of all obstacles in the fence-tree. There are four
kinds of motions performed by the algorithm:

• adding an up-right edge (line 4 of Raise);
• adding a down-right edge (line 8 of Raise);
• retracing an old path (lines 3, 6 of Raise);
• jumping from a fence to the next lower one, using procedures JumpDownLeft

and JumpDownRight.
Consider a specific iteration of the outer while loop of Raise. If the robot is not at
Fi at the start of this iteration, it executes “Retrace to Fi” at line 3. This motion
consists simply of retracing the paths it walked while executing the remaining lines
of this loop, during the previous iteration of the loop. So the retracing motion at
line 3 in a given iteration of the outer while loop can be charged off to the non-line-
3 motions executed during the previous iteration of the outer loop. Similarly, the
retracing motion at line 6 in a given iteration of the inner while loop can be charged
off to the non-line-6 motions executed during the previous iteration of this loop. Thus
it suffices to bound the cost of the remaining three kinds of motions. Clearly, the
motion required to add up-right and down-right edges can be charged off to the edges
created, so we only need to bound the cost of the procedures JumpDownLeft and
JumpDownRight. Lemmas 5.11 and 5.12 below establish that the total cost of these
procedures is O(kL), which implies our theorem.

Lemma 5.11. The total distance traveled during all invocations of JumpDownLeft
is O(kL).

Proof. Consider a call to JumpDownLeft (j) at line 10 of Raise (i, q), and suppose
the robot is at obstacle Fj(m) when this procedure is invoked. The edge-following
motion in line 2 of this procedure can be charged to the set E of edges followed.
The right ends of all these edges are at obstacle number m of different fences. Note
that just before JumpDownLeft (j) is invoked, Up(j + 1) is true (this is a PreJDL(j)
condition), and when Raise (j+1, j) is completed after JumpDownLeft (j), Up(j+1) is
not true (this is a PostRaise(j + 1, j) condition). This means that the procedure Raise
(j + 1, j) has discovered a collection N of new obstacles on fence Fj+1, so that |Fj+1|
would be at least m − 1. The cost of the vertical motion in line 3 of JumpDownLeft
(j) is clearly no more than the total length of the edges E plus the heights of the new
obstacles N discovered by the subsequent call to Raise. We can thus charge the total
cost of this specific invocation of JumpDownLeft (j) to the set E of edges and the set
N of new obstacles. Now we need to argue that the sets E and N of future calls to
JumpDownLeft will not overlap with those of the present call. Since the obstacles N
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Fig. 5.11. Showing a use of procedure JumpDownLeft to jump from Fj(m) to Fj+1(p). Solid-
boundary rectangles are obstacles found so far in the tree. The set N of rectangles with dotted
boundaries are obstacles that will be found on fence Fj+1 immediately after this procedure completes.
Thick solid lines are tree edges. The thin solid line is the path followed when executing the procedure.
The procedure starts from A (obstacle Fj(m)), retraces tree edges to the left to point B, then goes
vertically down to C, at the top of the final obstacle of Fi+1. The set E is the set of edges retraced
in AB. The length of BC is no more than the total length of the edges in E plus the heights of the
obstacles in N .

are new obstacles discovered on Fj+1 just after the present call to JumpDownLeft (j),
the only future calls to JumpDownLeft whose N -sets can possibly overlap with the N
set of the present one are calls to JumpDownLeft from the same fence Fj , i.e., calls
to JumpDownLeft (j). However, as we observed above, the Raise (j + 1, j) executed
just after the present JumpDownLeft (j) finds the obstacles on N before any future
call to JumpDownLeft (j) is made. Moreover, it is easy to see that the execution of
Raise (j + 1, j) does not involve any calls to JumpDownLeft (j). Therefore the N -sets
of different calls to JumpDownLeft do not overlap.

Now we show that the E-sets of different calls to JumpDownLeft do not overlap.
Again consider a specific invocation of JumpDownLeft (j) from obstacle Fj(m). As we
noted above, all the edges in E have at their ends the mth obstacle of different fences.
Therefore the only future invocations of JumpDownLeft whose E sets can possibly
overlap with the current E set are those from obstacle m of some fence Fu below Fj .
We established before that an invocation of JumpDownLeft (u) is only made when the
conditions PreJDL(u) hold, and in particular (a) Xu+1 < Xu and (b) Up(u+ 1) must
hold. However, just after the present execution of JumpDownLeft (j), Raise (j + 1, j)
is executed, and at that point the PostRaise(j + 1, j) conditions hold. In particular,
for any fences Fu below Fj such that Xu < Xj , Up(u) does not hold. Therefore when
(if at all) a future call to JumpDownLeft (u) is made from obstacle m of a fence Fu
below Fj , Xu+1 ≥ Xj(m) must hold at that time. In such a future invocation, in line
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2, edges are followed to the left until the x-coordinate equals Xu+1, so these edges
would be to the right of Xj(m) and so would not overlap with the edges E of the
present set (all of which are to the left of Xj). Thus the “charge sets” E and N for
different calls to JumpDownLeft (j) will not overlap.

Lemma 5.12. The total distance traveled during all invocations of JumpDown-
Right is O(kL).

Proof. Consider an invocation of JumpDownRight (d) at line 17 of Raise (i, q). We
will present a charging scheme where different invocations of JumpDownRight (d) will
be charged to distinct portions of the fence-tree. When JumpDownRight (d) is invoked,
Up(d + 1) is true (this is a PreJDR(d) condition). Subsequent to this invocation of
JumpDownRight (d), Raise (d + 1, q) is invoked, and when that procedure completes,
the PostRaise(d+ 1, q) conditions imply that Up(d+ 1) is no longer true. This means
that Raise (d + 1, q) has found a collection N of new obstacles on fence Fd+1, and
then |Fd+1| would equal |Fd| = m (this is a PostRaise(d + 1, q) condition). The edge-
following motion in line 3 of JumpDownRight (d) can be charged to the set E of edges
that are followed. The vertical motion in line 2 of JumpDownRight (d) is clearly no
more than the lengths of the edges E plus the heights of the obstacles N, so this
motion can be charged to the edge-set E and the obstacle-set N (see Figure 5.11).

Note that since Up(d + 1) is not true after the Raise procedure completes just
after this invocation JumpDownRight (d), the next invocation of JumpDownRight (d)
can only occur from obstacle m + 1 or later of Fd. Since presently Xd < Xq, and
NOT Up(q + 1) and Eq(q + 1, d) hold, the obstacle m+ 1 of Fd will be to the right of
Xq. So the edge-set E followed by any future invocation of JumpDownRight (d) will
be distinct from the set E of the present invocation. Also, since N is the set of new
obstacles discovered just after the present invocation of JumpDownRight (d), the set
N of any future call to JumpDownRight (d) will not overlap with the set N of the
present one. In fact, since we are charging the motion of JumpDownRight (d) only to
obstacles and edges associated with fence Fd+1, the sets N and E of any future call
to JumpDownRight (d′) will also not overlap with the sets N and E of the present
call.

6. Extension to arbitrary axis-parallel rectangular obstacles. We now
show how to extend the search algorithm to scenes with arbitrary axis-parallel rec-
tangular obstacles (for brevity we call such scenes general scenes). That is, we will
show how to explore a distance of O(L

√
nk) and find a path of length O(L

√
n/k).

Fortunately it turns out that algorithm FindFenceTree, interpreted appropriately, can
be used unchanged for these scenes. However, the procedures JumpDownRight and
JumpDownLeft must be modified since for general scenes vertical motion is not always
unobstructed. In fact if all obstacles have width 1 (but arbitrary heights and positions),
then even these procedures remain unchanged. In the next two subsections, we define
the notions of τ -post and a τ -fence, which are the analogues of “obstacle” and “fence”
for general scenes. As stated earlier, we will assume throughout that all obstacles
have their corners at integer coordinates.

6.1. τ -posts. Throughout this section we will denote the value L/
√
nk by τ .

We assume k ≤ n so τ ≥ 1. Recall that in a simple scene if the obstacles have height
less than 2τ = 2L/

√
nk, then they can be considered “small”—in the sense that the

simple strategy of just moving horizontally forward (walking around any obstacles on
the way by the shortest route) achieves the optimal ratio of O(

√
n/k) on each trip.

This motivates the following definition in a general scene. A point P on the left side
of an obstacle is called a τ -post if the obstacle extends vertically at least τ above and
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Fig. 6.1. A collection of three disjoint fences with four posts each. The solid rectangles are
the obstacles. The bands of different fences are shaded differently. For convenience, post Fi(m) is
denoted Pm

i .

below P . We will use the term τ -post to refer either to the entire segment of height 2τ
or just to the center of that segment. Roughly speaking when the robot encounters a
τ -post P while moving horizontally, the obstacle encountered is “big,” otherwise it is
“small.”

6.2. τ -fences. We define a τ -fence as the generalization of the fence defined in
section 5.1. The definitions (and notations) for up τ -fence, down τ -fence, band , as well
as the definition of a point being left or right of a fence, and of a path crossing a fence,
remain the same as in simple scenes, except that we replace the word “obstacle” with
“τ -post” throughout and replace h by τ in the relations (5.1) and (5.2) of section 5.1.
Note that consecutive τ -posts of a fence may lie on the same obstacle, since the
inequality (5.1) is not strict. The band between two such posts is empty. We say
two τ -fences are disjoint if their nonempty bands are disjoint. Thus a collection of
k disjoint τ -fences costs at least kτ to cross. In Figure 6.1, the sequence of τ -posts
〈F 1

1 , F
2
1 , F

3
1 , F

4
1 〉 form a τ -fence F 1. Note that F 2

1 , F
3
1 are on the same obstacle and

that the three fences in the figure are disjoint.

For future reference we define a (right) τ -path as the path of the robot when it
moves to the right along a fixed horizontal line y = y0 until it hits a τ -post or the
wall, moving around any nonpost obstacle on its way. For instance, in Figure 6.2, the
path from A to τ -post F1(2) is a τ -path. Observe that a τ -path has vertical motion
at most 2τ at every (integer) x-coordinate on the path, so we have the following.

Fact 6.1. A τ -path between two points (x, y) and (x + δx, y) has length at most
δx + 2τ δx.

6.3. The initial search trip. Roughly speaking, a general scene is treated as
if it is a simple scene with obstacles of height 2h = 2τ = 2L/

√
nk. Recall that for

simple scenes, the initial trip consists of building groups of G fences of M obstacles
each (where G = �kτh � and M = �kτh � + � 2L

h �), where each group must be built
“cheaply” (i.e., with cost O(kL)) and must have a known “short” (cost O(L)) path
crossing it. Analogously for general scenes, we have h = τ and we would like to
build groups of k τ -fences with M = k + � 2L

τ � τ -posts each. We will now pay more
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attention to our progress in the x direction and will build each group with cost at most
O(kL + kτ ∆x) and give each group a group-crossing path of length O(L + τ ∆x).
Here ∆x is the x-distance between the leftmost τ -post F1(1) and rightmost τ -post
Fk(M) in the group.

These bounds are sufficient for our purposes for the following reason. Since a
fence costs τ = L/

√
nk to cross, there can be at most

√
nk disjoint τ -fences in

the window between s and t, so the algorithm will find at most
√

n/k groups of
k fences each. Since the x-motions do not overlap between the groups of fences, the
∆x terms add to at most n, so the total distance traveled is O(kL

√
n/k + nkτ) =

O(L
√
nk). In addition, the concatenation of the group-crossing paths has total cost

O(L
√

n/k + nτ) = O(L
√

n/k).

6.4. Extending FindFenceTree to general scenes. Once we fix the τ -post
F1(1) in a scene, the three fence-tree definition rules given for simple scenes can be
used in a general scene to define a group of G = k τ -fences with M τ -posts each, with
the following interpretation. First, “τ -post” replaces the word “obstacle” everywhere.
Second, an up-right edge from a τ -post Fi(m) is simply a path that goes up to the
top of the τ -post, then right along a τ -path until a τ -post is reached; this τ -post
is Fi(m + 1). A down-right edge is a similar path that leads to the τ -post Fi+1(m).
With this interpretation, the algorithm FindFenceTree can be used unchanged for gen-
eral scenes; only the jump procedures must be changed to handle arbitrary obstacle
widths, since the vertical motions (in line 3 of JumpDownLeft and line 2 of Jump-
DownRight) may no longer be possible. The modified jump algorithms are described
in the next two subsections, and we will show that they work correctly, i.e., that
the analogues of Lemmas 5.6 and 5.7 hold. We will also show that these procedures
are not expensive, i.e., that the analogues of Lemmas 5.11 and 5.12 hold. Given the
correctness of the jump procedures, it is easy to verify that the Raise procedure works
correctly, i.e., satisfies Lemma 5.3, and consequently that the procedure FindFence-
Tree does indeed find a k ×M τ -fence-tree, if it exists, with the given post F1(1) as
root. Furthermore, the invariant AlmostOrd also holds (Lemma 5.9) throughout the
execution of FindFenceTree.
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We must show that this algorithm is still “cheap” in a general scene. Note that if
the robot does not encounter any small obstacles when adding the various edges, then
(assuming the jump procedures are cheap) our previous arguments suffice. We begin
with the fairly straightforward argument that in general the cost of going around
small obstacles is not too large. To do this, we show the analogue of Lemma 5.2,
namely, that the total cost of the tree edges and the cost of the path from the root
to the rightmost node are both within our required bounds.

Lemma 6.2. Suppose there is a k ×Mτ -fence-tree consisting of fences F 1, F 2, . . . ,
F k, with M = k + � 2L

τ �, where τ = L/
√
nk. Let ∆x be the x-distance from F1(1) to

Fk(M). Then
(a) The unique path in the tree from F1(1) to Fk(M) has length at most 4L +

3τ∆x.
(b) The total length of all the edges in the fence-tree is at most k(3L + 3τ∆x).
Proof. Since k ≤ n it follows that kτ = kL/

√
nk ≤ L. This implies Mτ =

2L + kτ ≤ 3L.
Part (a). There are exactly (M + k − 2) edges in the tree path from F1(1) to

Fk(M). Since the vertical portion of each edge has length τ , and the τ -path portions
of the edges do not overlap in the x-direction, the total length of these edges is at
most (M + k− 2)τ + 2τ∆x+ ∆x, which is at most (4L+ 3τ∆x) from the inequalities
above.

Part (b). Note that we can associate each edge with a unique post, namely the
one at the right-end of the edge. For any given post Fi(m) other than F1(1), the x-
distance to its parent is at most the x-distance δx to its predecessor Fi(m− 1) on the
same fence. So the edge associated with this post has length at most (τ + 2τδx+ δx).
The sum of the δx terms over all posts of the fence F i is the x-distance between
the first and last posts of F i, which is at most ∆x. So the total length of the edges
associated with the M posts of a fence is at most (Mτ + 2τ∆x+ ∆x), which sums to
k(Mτ + 2τ∆x+ ∆x) for k fences. This last expression is at most k(3L+ 3τ∆x) from
the previous inequalities.

Thus, just as in simple scenes, we need to argue only that the total cost of each
jump procedure is at most a constant times the total length of the tree edges plus
the heights of all τ -posts in the tree. In the next two subsections we show how these
procedures can be modified to handle arbitrary obstacle widths, and we prove that
they are not too expensive. As before, our approach will be to argue that for each
jump procedure, no portion of the tree is charged too often for different executions of
that procedure.

6.5. Modifying JumpDownRight. To describe the modifications, it will be use-
ful to introduce the notion of a greedy down-left path: it is a path that repeatedly goes
“down till it hits an obstacle, then to the left corner of the obstacle.” Other greedy
paths are defined similarly. Also, a point (x, y) will be said to be down-left of another
point (x0, y0) if x ≤ x0 and y ≤ y0. As in the case of simple scenes, we will find it
convenient to associate an edge in the fence-tree with the post at its right end. Our
modified procedure is shown in Figure 6.3, and a typical path walked while executing
this procedure is shown in Figure 6.4.

We first establish the correctness of this modified procedure, i.e., the analogue of
Lemma 5.7.

Lemma 6.3. If the general procedure JumpDownRight (d) is called when the
PreJDR(d) conditions hold, then after the procedure is completed, the robot will be at
the last known τ -post of Fd+1.
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Procedure JumpDownRight (d)

1. Let m = |Fd| and p = |Fd+1|.
2. Move greedy down-left until down-left of top of Fd+1(p).

3. Move greedy right-down until:

• at τ -post Fd+1(p), or
• on a tree edge. In this case, follow tree-edges to the right until at Fd+1(p).

Fig. 6.3. General procedure for jumping down from Fd to Fd+1 when Xd ≤ Xd+1.

F (m)
d

A

B

F (p)
d+1

F (m)
d+1

F (m+1)
q

N

EC

D

F
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(p+1)

Fig. 6.4. A use of the generalized procedure JumpDownRight to jump from Fd(m) to Fd+1(p),
for clarity shown in a scene where the fence posts correspond exactly to obstacles of height 2τ .
Shaded rectangles with no boundaries are obstacles that are not part of any fence. Solid-boundary
rectangles are nodes found so far in the tree. Dotted-boundary rectangles are posts on Fd+1 that will
be found immediately following this procedure. Thick solid lines are tree edges. The thin arrow line
shows the path followed when executing the procedure.

Proof. It will be useful to consult Figure 6.4 which shows a typical path followed
while executing this procedure. From the PreJDR(d) conditions, the robot is initially
at (the last known τ -post of) Fd, so the initial y-coordinate is Yd(m). The PreJDR(d)
conditions Xd ≤ Xd+1 and Up(d + 1) also imply that |Fd+1| < |Fd|, or p < m, which
means that the bottom of the τ -post Fd(m) is no lower than the top of the τ -post
Fd+1(p). Therefore the greedy down-left path in step 2 will not encounter any tree-
edges, since even a down-right leading to the destination τ -post Fd+1(p) can only
originate at τ -post number p or lower of Fd, which must be lower than Fd(m). Note
that the path in step 2 is bounded on the left by the τ -posts of Fi. Also, at the end
of this step, the robot’s y-coordinate is the same as the top of the τ -post Fd+1(p)
to which the robot is jumping. Even if the greedy right-down path of step 3 goes
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Procedure JumpDownLeft (j)

1. Let m = |Fj |, p = |Fj+1|.
2. Follow tree edges to the left until x = Xj+1(p).

3. Go greedy down-left until robot is either

• down-left of top of Fj+1(p), or
• down-left of top of Fu(m− 1) for some u ≤ j. In this case:

(a) While u ≤ j do the following:
i. Go greedy right-down until at Fu(m− 1) or on a tree edge.
ii. If at a tree edge, follow edges to right until at Fu(m− 1).
iii. u := u+ 1.

(b) Go greedy down-left until down-left of top of Fj+1(p).

4. Go greedy right-down until at Fj+1(p) or on a tree edge. If at a tree edge, follow
edges to right until at Fj+1(p).

Fig. 6.5. General procedure for jumping down from Fj to Fj+1 when Xj > Xj+1.

only to the right, it will hit this τ -post. In the worst case, the motion in step 3 is
just vertically down until a tree edge (down-right or up-right) is reached. From the
definition of the fence-tree, it is easy to see that following the tree edges to the right
must lead to Fd+1(p).

In the lemma below, we show that the cost of all calls to JumpDownRight can be
charged off to the lengths of all edges in the fence-tree.

Lemma 6.4. The total cost of all calls to JumpDownRight is at most a constant
times the total length of all edges in the fence-tree, plus the heights of all τ -posts in
the tree.

Proof. As in the case of simple scenes (Lemma 5.12) we will present a charging
scheme where the cost of different invocations of JumpDownRight is charged to distinct
portions of the fence-tree. Consider a particular call to JumpDownRight (d) from Raise
(i, q), to jump from Fd(m) to Fd+1(p) (that is, when this procedure is called, |Fd| = m
and |Fd+1| = p). See Figure 6.4. By a reasoning similar to the one in the proof of
Lemma 5.12, we can see that there is a set N of new obstacles that will be added
to Fd+1 by the Raise (d + 1, q) procedure that is invoked just after this invocation of
JumpDownRight (d). After these new obstacles are added to Fd+1, |Fd+1| would equal
|Fd| = m. Let E be the set of edges of Fd+1 (if any) that are followed in step 3 of
JumpDownRight.

Clearly the total horizontal and vertical motion of this procedure (in steps 2 and
3) is no more than twice the total length of the edges in E plus the heights of the
obstacles in N . (This bound is actually quite loose but will suffice for our purposes.)
As before it is easy to argue that the sets N and E of any future call of JumpDownRight
(d) will not overlap with the corresponding sets of the present call.

6.6. Modifying JumpDownLeft. The general procedure JumpDownLeft is shown
in Figure 6.5, and a sample path executed by that procedure is shown in Figure 6.6.

We first establish the correctness of this general procedure, i.e., the analogue of
Lemma 5.6.

Lemma 6.5. If the general procedure JumpDownLeft (j) is called under the condi-
tions PreJDL(j), then the procedure terminates with the robot at the last known τ -post
of Fj+1.
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Fig. 6.6. A use of procedure JumpDownLeft to jump from Fj(m) to Fj+1(p), for clarity shown
in a scene where the fence posts correspond exactly to obstacles of height 2τ . Shaded rectangles
with no boundaries are obstacles that are not part of any fence. Solid-boundary rectangles are posts
found so far in the tree. Dotted-boundary rectangles are posts of Fj+1 that will be found immediately
following this procedure. Thick solid lines are tree edges. The thin arrow line is the path followed
when executing the procedure. Curved arrows represent motions executed during steps 3(a)(i) and 4
of the procedure.

Proof. Let m and p be the quantities defined in the procedure. See Figure 6.6 for
a typical path of this procedure. The PreJDL(j) condition Xj+1 < Xj implies that
following tree edges to the left in step 2 will lead to a point where x = Xj+1 = Xj+1(p).
The PreJDL(j) conditions Xj+1 < Xj and Up(j + 1) imply that p = |Fj+1| < m− 1,
so the (m−1)st posts of fences Fj and above are higher than the top of the destination
post Fj+1(p). Suppose Fr is the highest fence reached in step 2, i.e., the last edge
retraced has its right end on a τ -post of Fr. By the AlmostOrd invariant, no fence
can have more than one post to the right of a lower one, so only the last edge retraced
in step 2 can be an up-right edge; the others must be down-right edges. The same
invariant implies that the x-coordinate of the robot at the end of step 2 (i.e., Xi+1(p))
lies in the interval [Xu(m− 1), Xu(m)], for each u = r, r + 1, . . . , j. This means that
in step 3 when the robot goes greedily down-left, the robot must either reach a point
down-left of the top of some post Fu(m−1), or else reach a point down-left of Fj+1(p),
the destination post. In the former case, the robot enters the while loop of step 3(a).
We claim that in each iteration of this while loop, the robot jumps down to post
(m − 1) of the next lower fence until it reaches Fj(m − 1). This motion is similar to
that of procedure JumpDownRight, so we can reason as in the proof of Lemma 6.3
(correctness of JumpDownRight) to show this claim. Once the robot is at Fj(m− 1),
step 3(b) will take the robot to a point down-left of the top of Fj+1(p). Finally
step 4 is similar to step 3 in the general version of JumpDownRight, so by reasoning
as in the proof of Lemma 6.3, we can show that the robot will eventually be at
Fj+1(p).
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Lemma 6.6. The total cost of all calls to JumpDownLeft is at most a constant
times the total length of all the tree edges, plus the heights of all the τ -posts in the
fence-tree.

Proof. Consider a call to JumpDownLeft (j). As in the case of simple scenes, we
can use a charging scheme where different calls to JumpDownLeft will be charged to
distinct portions of the fence-tree. As in the proof of Lemma 5.11, let E be the set of
edges followed in step 2 of the procedure, and let N be the set of m − 1 − p “new”
obstacles that will be added to Fj+1 by the Raise procedure invoked just after this
procedure completes. By the same reasoning as in that Lemma, the E and N sets of
this call to JumpDownLeft will not overlap with the corresponding sets of any future
call. The edge-following motion of the robot during step 2 of the procedure can be
charged to the edge-set E, and so we only need to account for the motions in the
remaining steps of the procedure.

If step 3 takes the robot vertically down to the τ -post Fj+1(p), then as in the
case of simple scenes this vertical motion can be charged to the edge-set E and the
set N . In this case we are done with the proof. However, in general scenes there are
two possibilities for the motion of the robot during this step:

• (A) The robot may reach some point down-left of the top of Fj+1(p). Let
(x1, y1) be the coordinates of the robot at this point. In this case, step 3 is
done, and we charge the vertical motion to the total heights of the τ -posts in
N plus the lengths of the edges in E. Also in this case, while going greedy
down-left, the robot cannot go to the left of post Fj(p+1), since the bottom of
this post has the same y-coordinate as the top of Fj+1(p). (If the robot were
forced to go to the left of Fj(p + 1), case (B) below would occur.) Therefore
the horizontal motion in this case is no more than Xj+1(p)−Xj(p+1), which
in turn is no more than the lengths of the portions of the edges of Fj+1 that
lie between x = Xj(p + 1) and x = Xj+1(p); we can charge the horizontal
motion to this edge-set E1. We now claim that the edge-set E1 of this call
to JumpDownLeft (j) will not overlap with the E1 set of any future call to
JumpDownLeft (j). As we argued in the proof of Lemma 5.11, by the time
any future call to JumpDownLeft (j) is made, Fj+1 would have at least m− 1
obstacles. Since Xj(m) > Xj+1(p), the E1 set of such a call would lie entirely
to the right of x = Xj(m + 1) > Xj(m), which is to the right of x = Xj+1(p)
(the right-boundary of the present E1 set). Therefore the edge-sets E1 of
different calls to JumpDownLeft (j) cannot overlap.

• (B) The robot may reach some point down-left of the top of post (m− 1) of
some fence Fj or above. In this case the robot enters the while loop of step
3(a), and repeatedly moves down to the (m−1)st post of the next lower fence
until it reaches Fj(m− 1). The motion in each iteration of this while loop is
similar to the motion in the JumpDownRight procedure. The only difference is
that instead of going from post number m of one fence to a lower-numbered
obstacle of the next lower fence, in this case the robot goes to the same-
numbered post of the next lower fence. Consider some iteration of this while
loop, where the robot is jumping down from Fu(m− 1) to Fu+1(m− 1). Let
E2 be the set of edges of Fu+1 contained in the region between the lines
x = Xu(m − 1) and x = Xu+1(m − 1). The vertical motion in step 3(a)(i)
is no more than the height of the destination post, plus the heights of the
posts associated with the edges E2. The horizontal motion in steps 3(a)(i)
and 3(a)(ii) is no more than the lengths of the edges in E2. In any future call
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to JumpDownLeft the E2 set corresponding to fence Fu+1 must lie entirely to
the right of Fu(m), which in turn is to the right of Fu+1(m − 1) (the right-
boundary of the present E2 set). Thus in any future call to JumpDownLeft,
the E2 set associated with Fu+1 will not overlap with the E2 set of the present
call. Similarly, as argued in the case of simple scenes, in any future call to
JumpDownLeft from post m of a fence below Fj the edge-set E followed in
step 2 will lie entirely to the right of Xj(m), so none of the E2 sets of that call
will overlap with those of the present call. After exiting the while loop of step
3(a), the robot executes step 3(b): go greedy down-left until down-left of top
of Fj+1(p). The charging for this step is similar to case (A) above, except that
we do not need to charge the vertical motion to the edge-set E since this step
starts at Fj(m − 1). The same argument as in case (A) establishes that the
charge-sets for this step will not overlap with the corresponding charge-sets
of any future call to JumpDownLeft.

Finally in step 4, the robot performs a motion similar to the one in the (gener-
alized) procedure JumpDownRight, and we can use a charging-scheme similar to the
one used there. The argument to show that the portions of the tree charged for step
4 of this call to JumpDownLeft (j) do not overlap with the corresponding charge-sets
of any future call is similar to the one used above for case (B) of step 3.

7. An incremental algorithm. We describe here an improvement of our cu-
mulative algorithm, so that the per-trip ratio on the ith trip, for all i ≤ n, is O(

√
n/i).

Let us for simplicity say that we know L. From the earlier results in this paper, we
know that by searching a distance at most cL

√
nk we can find an s-t path of length

at most c′L
√

n/k, for some constants c, c′ and any k ≤ n.

Let us suppose that at the end of i trips we know an s-t-path π of length at most
c′L
√

n/i (for the base case, simply use the BRS algorithm). What we now want to do

is to search with cost at most cL
√
n2i and find a path of length at most c′L

√
n/2i.

Let us denote by Π the path we would have traveled if we did this entire search in
one trip using the algorithm of the previous sections. In order to maintain a per-trip
ratio of O(

√
n/i), we spread the work of Π over the next i trips as follows. Each

trip consists of two phases: The first is a search phase, where we walk an additional
portion of Π of length 1

i cL
√
n2i = cL

√
2n/i, starting from where we left off on the

previous trip. We can always do this because the fences are in a tree structure, so
that the last point in Π during the previous search can always be reached from the
start point by a known short path whose length adds only a small constant factor to
the total trip length. Once the search phase is completed, we “give up” and enter the
follow phase, where we complete the trip by joining (by a greedy path) the known
path π of length c′L

√
n/i and following it to t. Thus our trip length is still O(L

√
n/i).

Since in each such search-follow trip we traverse a portion of Π of length cL
√

2n/i,

and the length of Π is at most cL
√

2ni, after i trips we will have completely walked
the path Π. So after the first 2i trips we have a path of length at most c′L

√
n/2i.

This reestablishes our invariant. Thus, we have the following theorem.

Theorem 7.1. There is a deterministic algorithm R that for every i ≤ n achieves
a per-trip ratio on the ith trip, ρi(R,n), of O(

√
n/i).

8. Modification for point-to-point navigation. Our algorithms can be ex-
tended to the case where t is a point rather than a wall, with the same bounds, up
to constant factors, as follows. Let us assume for simplicity that the shortest path
length L is known. As before, if we do not know L, we can use the standard “guessing
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and doubling” approach and suffer only a constant factor penalty in performance. On
the first trip, the robot can get to t using the optimal point-to-point algorithms of [7]
or [3], with a single-trip ratio of O(

√
n). Once at t, the robot creates a greedy up-left

path and a greedy down-left path from t, within a window of height 4L centered at t.
Note that the highest post in a k ×M τ -fence-tree is Mτ ≤ 3L above the root (which
is always distance L below t) and the lowest post is kτ ≤ L below the root. So the
robot is guaranteed to stay within a window of height 4L centered at t. Thus after
the first trip, these greedy paths play the role of a wall; once the robot hits one of
these paths, it can reach t with an additional cost that is only a low-order term in
the total cost.

9. Modification for a purely tactile robot. We assumed so far that whenever
our robot hits an obstacle, it is told how far the nearest corner of the obstacle is. This
information is used only to tell the robot whether or not there is a τ -post at the point
of encounter. With only a constant factor penalty (see the analysis in [1]) the robot
can obtain this information on its own, using the standard doubling strategy: Move
up a distance 1, then down 2, then up 4, and so on, each time moving double the
previous distance.

10. Conclusion and open problems. The core result of this paper is an al-
gorithm that performs a smooth trade-off between search effort and the goodness of
the path found. This algorithm may be of interest independently of the performance-
improvement problem. For instance when a robot has more time or fuel available, one
would like it to spend more effort and find a better route. The fence-tree structure
is central to this search algorithm. Intuitively, one can think of the fence-tree as
representing the collection of those obstacles in the scene which are responsible for
making the scene difficult to cross from s to t. Thus the fence-tree in a sense captures
the “essence” of a scene, as far as the difficulty (i.e., cost) of crossing the scene is
concerned. It would be interesting to explore whether an analogous structure can be
defined in more general scenes. This might lead to a generalization of our results to
such scenes.

At a higher level, our approach in designing a “learning” navigation algorithm
was to start with an algorithm that achieves the above-mentioned cost/performance
trade-off and convert that to a more incremental algorithm by spreading the work
over several trips. This high-level idea may well be useful in designing performance-
improvement algorithms for other tasks.

There are several other interesting research directions that can be explored. For
instance, can randomization provide a better or simpler algorithm? For the one
trip problem, the best lower bound known is Ω(log logn) by Karloff, Rabani, and
Ravid [11], and the best upper bound is O(n4/9 log n) by Berman et al. [2]. What
about extending our multitrip results to more general scenes? Recently, Berman and
Karpinski [4] designed a randomized O(n3/4)-competitive single-trip algorithm for 2-
dimensional scenes containing arbitrary convex obstacles within which a unit circle
can be inscribed. Achieving an O(

√
n) ratio for such scenes seems considerably harder.

A good first step might be to consider scenes with rectangular obstacles in arbitrary
orientations (i.e., not necessarily axis-parallel).

A related problem is the question of how the robot can efficiently visit several des-
tinations in a scene, improving performance wherever possible. One difficulty here is
devising a useful performance measure (depending on the location of the destinations,
one may be able to use previous information to varying degrees) that appropriately
captures the essence of the problem.
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Abstract. The interpolation method has been one of the main tools for proving lower bounds
for propositional proof systems. Loosely speaking, if one can prove that a particular proof system
has the feasible interpolation property, then a generic reduction can (usually) be applied to prove
lower bounds for the proof system, sometimes assuming a (usually modest) complexity-theoretic
assumption. In this paper, we show that this method cannot be used to obtain lower bounds for Frege
systems, or even for TC0-Frege systems. More specifically, we show that unless factoring (of Blum
integers) is feasible, neither Frege nor TC0-Frege has the feasible interpolation property. In order to
carry out our argument, we show how to carry out proofs of many elementary axioms/theorems of
arithmetic in polynomial-sized TC0-Frege.

As a corollary, we obtain that TC0-Frege, as well as any proof system that polynomially simulates
it, is not automatizable (under the assumption that factoring of Blum integers is hard). We also
show under the same hardness assumption that the k-provability problem for Frege systems is hard.

Key words. propositional proof systems, Frege proof systems, threshold circuits, Diffie–Hellman
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1. Introduction. One of the most important questions in propositional proof
complexity is to show that there is a family of propositional tautologies requiring
superpolynomial-sized proofs in a Frege or extended Frege proof system. The problem
is still open, and it is thus a very important question to understand which techniques
can be applied to prove lower bounds for these systems, as well as for weaker sys-
tems. In recent years, the interpolation method has been one of the most promising
approaches for proving lower bounds for propositional proof systems and for bounded
arithmetic. Here we show that this method is not likely to work for Frege systems and
some weaker systems. The basic idea behind the interpolation method is as follows.

We begin with an unsatisfiable statement of the form F (x, y, z) = A0(x, z) ∧
A1(y, z), where z denotes a vector of shared variables, and x and y are vectors of
private variables for formulas A0 and A1, respectively. Since F is unsatisfiable, it
follows that for any truth assignment α to z, either A0(x, α) is unsatisfiable or A1(y, α)
is unsatisfiable. An interpolation function associated with F is a Boolean function
that takes such an assignment α as input, and outputs 0 only if A0 is unsatisfiable,
and 1 only if A1 is unsatisfiable. (Note that both A0 and A1 can be unsatisfiable, in
which case either answer will suffice.)
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How hard is it to compute an interpolation function for a given unsatisfiable
statement F as above? It has been shown, among other things, that interpolation
functions are not always computable in polynomial time unless P = NP ∩ co −NP
[M1, M2, M3]. Nevertheless, it is possible that such a procedure exists for some special
cases. In particular, a very interesting and fruitful question is whether one can find
(or whether there exists) a polynomial-sized circuit for an interpolation function in
the case where F has a short refutation in some proof system S. We say that a
proof system S admits feasible interpolation if, whenever S has a polynomial-sized
refutation of a formula F (as above), an interpolation function associated with F
has a polynomial-sized circuit. Kraj́ıček [K2] was the first to make the connection
between proof systems having feasible interpolation and circuit complexity.

There is also a monotone version of the interpolation idea. Namely, for conjunctive
normal form formulas A0 and A1, F = A0(x, z)∧A1(y, z) is monotone if the variables
of z occur only positively in A1 and only negatively in A0. In this case, an associated
interpolant function is monotone, and we are thus interested in finding a polynomial-
sized monotone circuit for an interpolant function. We say that a proof system S
admits monotone feasible interpolation if whenever S has a polynomial-sized refutation
of a monotone F , a monotone interpolation function associated with F has a monotone
polynomial-sized circuit.

Beautiful connections exist between circuit complexity and proof systems with
feasible interpolation in both (monotone and nonmonotone) cases.

In the monotone case, superpolynomial lower bounds can be proven for a (suffi-
ciently strong) proof system that admits feasible interpolation. This was presented
by the sequence of papers [IPU, BPR, K1] and was first used in [BPR] to prove lower
bounds for propositional proof systems. (The idea is also implicit in [Razb2].)

In short, the statement F that is used is the clique interpolation formula, A0(g, x)∧
A1(g, y), where A0 states that g is a graph containing a clique of size k (where the
clique is described by the x variables), and A1 states that g is a graph that can be
colored with k− 1 colors (where the coloring is described by the y variables). By the
pigeonhole principle, this formula is unsatisfiable. However, an associated monotone
interpolation function would take as input a graph g and distinguish between graphs
containing cliques of size k from those that can be colored with k − 1 colors. By
[Razb1, AB], when k = n2/3, such a circuit is of exponential size. Thus, exponen-
tial lower bounds follow for any propositional proof system S that admits feasible
monotone interpolation.

Similar ideas also work in the case where S admits feasible interpolation (but
not necessarily monotone feasible interpolation). The first such result, by [Razb2],
gives explicit superpolynomial lower bounds for (sufficiently strong) proof systems S
admitting feasible interpolation, under a cryptographic assumption. In particular,
it was shown that a (nonmonotone) interpolation function, associated with a certain
statement expressing P �= NP , is computable by polynomial-sized circuits only if there
do not exist pseudorandom number generators. Therefore, lower bounds follow for
any (sufficiently strong) propositional proof system that admits feasible interpolation
(conditional on the cryptographic assumption that there exist pseudorandom number
generators). It is also possible to prove nonexplicit superpolynomial lower bounds for
a (sufficiently strong) proof system under the assumption that NP is not computable
by polynomial-sized circuits.

Many researchers have used these ideas to prove lower bounds for propositional
proof systems. In particular, in the last five years, lower bounds have been shown
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for all of the following systems using the interpolation method: resolution [BPR],
cutting planes [IPU, BPR, Pud, CH], generalizations of cutting planes [BPR, K1, K3],
relativized bounded arithmetic [Razb2], Hilbert’s Nullstellensatz [PS], the polynomial
calculus [PS], and the Lovasz–Schriver proof system [Pud3].

1.1. Automatizability and k-provability. As explained in the previous para-
graphs, the existence of feasible interpolation for a particular proof system S gives rise
to lower bounds for S. Feasible interpolation, moreover, is a very important paradigm
for proof complexity (in general) for several other reasons. In this section, we wish to
explain how the lack of feasible interpolation for a particular proof system S implies
that S is not automatizable.

We say that a proof system S is automatizable if there exists a deterministic pro-
cedure D that takes as input a formula f and returns an S-refutation of f (if one
exists) in time polynomial in the size of the shortest S-refutation of f . Automatiz-
ability is a crucial concept for automated theorem proving: in proof complexity we
are mostly interested in the length of the shortest proof, whereas in theorem proving
it is also essential to be able to find the proof. While there are seemingly powerful
systems for the propositional calculus (such as extended resolution or even axiomatic
set theory (ZFC)), they are scarce in theorem proving because it seems difficult to
search efficiently for a short proof in such systems. In other words, there seems to
be a tradeoff between proof simplicity and automatizability—the simpler the proof
system, the easier it is to find the proof.

In this section, we formalize this tradeoff in a certain sense. In particular, we
show that if S has no feasible interpolation, then S is not automatizable. This was
first observed by Impagliazzo. The idea is to show that if S is automatizable (using
a deterministic procedure D), then S has feasible interpolation.

Theorem 1.1. If a proof system S does not have feasible interpolation, then S
is not automatizable.

Proof. Suppose that S is automatizable, and suppose D is the deterministic
procedure to find proofs, and moreover, D is guaranteed to run in time nc, where
n is the size of the shortest proof of the input formula. Let A0(x, z) ∧ A1(y, z) be
the interpolant statement, and let α be an assignment to z. We want to output an
interpolant function for A0(x, α) ∧ A1(y, α). First, we run D on A0(x, z) ∧ A1(y, z)
to obtain a refutation of size s. Next, we simulate D on A0(x, α) for T (s) steps, and
return 0 if and only if D produces a refutation of A0(x, α) within time T (s). T (s)
will be chosen to be the maximum time for D to produce a refutation for a formula
that has a refutation of size s; thus T (s) = sc in this case. This works because in the
case where A1(y, α) is satisfiable with satisfying assignment γ, we can plug γ into the
refutation of A0(x, α)∧A1(y, α) to obtain a refutation of A0(x, α) of size s. Therefore
S has feasible interpolation.

Thus, feasible interpolation is a simple measure that formalizes the complex-
ity/search tradeoff: the existence of feasible interpolation implies superpolynomial
lower bounds (sometimes modulo complexity assumptions), whereas the nonexistence
of feasible interpolation implies that the proof system cannot be automatized.

A concept that is very closely related to automatizability is k-provability. The
k-symbol provability problem for a particular Frege system S is as follows. The
problem is to determine, given a propositional formula f and a number k, whether
or not there is a k-symbol S proof of f . The k-line provability problem for S is
to determine whether or not there is a k-line S proof of f . The k-line provability
is an undecidable problem for first-order logic [B1]; the first complexity result for
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the k-provability problem for propositional logic was provided by Buss [B2], who
proved the rather surprising fact that the k-symbol propositional provability problem
is NP -complete for a particular Frege system. More recently, [ABMP] show that the
k-symbol and k-line provability problems cannot be approximated to within linear
factors for a variety of propositional proof systems, including resolution and all Frege
systems, unless P = NP .

The methods in our paper show that both the k-symbol and k-line provability
problems cannot be solved in polynomial time for any TC0-Frege system, Frege sys-
tem, or extended Frege system, assuming hardness of factoring (of Blum integers).
More precisely, using the same idea as above, we can show that if there is a polynomial
time algorithm A solving the k-provability problem for S, then S has feasible interpo-
lation: suppose that F = A0(x, z) ∧ A1(y, z) is the unsatisfiable statement. We first
run A with k = n, n2, n3, . . . on F , until A first verifies that there is a size s = |F |c
proof of F for some fixed value of c. Now let α be an assignment to z. As above, we
run A to determine if there is an O(s)-symbol (or O(s)-line) refutation of A0(x, α)
and return 0 if and only if A accepts. In fact, this proof can be extended easily to
show that both the k-symbol and k-line provability problems cannot be approximated
to within polynomial factors for the same proof systems (TC0-Frege, Frege, extended
Frege) under the same hardness assumption.

1.2. Interpolation and one way functions. How can one prove that a certain
propositional proof system S does not admit feasible interpolation? One idea, due to
Kraj́ıček and Pudlák [KP], is to use one way permutations in the following way. Let
h be a one way permutation and let A0(x, z), A1(y, z) be the following formulas.

The formula A0:
h(x) = z, AND the ith bit of x is 0.
The formula A1:
h(y) = z, AND the ith bit of y is 1.

Since h is one to one, A0(x, z) ∧ A1(y, z) is unsatisfiable. Assume that A0, A1 can
be formulated in the proof system S and that in S there exists a polynomial-sized
refutation for A0(x, z) ∧ A1(y, z). Then, if S admits feasible interpolation, it follows
that given an assignment α to z there exists a polynomial-sized circuit that decides
whether A0(x, α) is unsatisfiable or A1(y, α) is unsatisfiable. Obviously, such a circuit
breaks the ith bit of the input for h. Since A0, A1 can be constructed for any i, all
bits of the input for h can be broken. Hence, assuming that the input for h is secure,
and that in the proof system S there exists a polynomial-sized refutation for A0 ∧A1,
it follows that S does not admit feasible interpolation.

A major step towards the understanding of feasible interpolation was made by
Kraj́ıček and Pudlák [KP]. They considered formulas A0, A1 based on the Rivest–
Shamir–Adleman (RSA) cryptographic scheme and showed that unless RSA is not
secure, extended Frege systems do not have feasible interpolation. It has been open,
however, whether or not the same negative results hold for Frege systems and for
weaker systems such as bounded depth threshold logic or bounded depth Frege.

1.3. Our results. In this paper, we prove that Frege systems, as well as constant-
depth threshold logic (referred to below as TC0-Frege), do not admit feasible interpo-
lation, unless factoring of Blum integers is computable by polynomial-sized circuits.
(Recall that Blum integers are integers P of the type P = p1 ·p2, where p1, p2 are both
primes such that p1 mod 4 = p2 mod 4 = 3.) Thus our result significantly extends
[KP] to weaker proof systems. In addition, our cryptographic assumption is weaker.
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To prove our result, we use a variation of the ideas of [KP]. In a conversation with
Moni Naor [N], he observed that the cryptographic primitive needed here is not a one
way permutation as in [KP], but the more general structure of bit commitment. Our
formulas A0, A1 are based on the Diffie–Hellman secret key exchange scheme [DH].
For simplicity, we state the formulas only for the least significant bit. (Our argument
works for any bit.)

Informally, our propositional statement DH will be

DHn = A0(P, g,X, Y, a, b) ∧A1(P, g,X, Y, c, d).

The common variables are two integers X,Y , and P and g. P represents a number
(not necessarily a prime) of length n, and g an element of the group Z∗

P . The private
variables for A0 are integers a, b, and the private variables for A1 are integers c, d.

Informally, A0(P, g,X, Y, a, b) will say that ga mod P = X, gb mod P = Y ,
and gab mod P is even. Similarly, A1(P, g,X, Y, c, d) will say that gc mod P = X,
gdmodP = Y , and gcd mod P is odd. The statement A0 ∧ A1 is unsatisfiable since
(informally) if A0, A1 are both true we have

gab mod P = (ga mod P )b mod P = Xb mod P

= (gc mod P )b mod P = gbc mod P = (gb mod P )c mod P

= Y c mod P = (gd mod P )c mod P = gcd mod P.

We will show that the above informal proof can be made formal with a (polynomial-
sized) TC0-Frege proof. On the other hand, an interpolant function computes one
bit of the secret key exchanged by the Diffie–Hellman procedure. Thus, if TC0-
Frege admits feasible interpolation, then all bits of the secret key exchanged by the
Diffie–Hellman procedure can be broken using polynomial-sized circuits, and hence
the Diffie–Hellman cryptographic scheme is not secure. Note, that it was proved that
for P = p1 · p2, where p1, p2 are both primes such that p1 mod 4 = p2 mod 4 = 3 (i.e.,
P is a Blum integer), breaking the Diffie–Hellman cryptographic scheme is harder
than factoring P ! (See [BBR] and also [Sh, Mc]).

It will require quite a bit of work to formalize the above statement and argument
with a short TC0-Frege proof. Notice that we want the size of the propositional
formula expressing the Diffie–Hellman statement to be polynomially bounded in the
number of binary variables. And additionally, we want the size of the TC0-Frege
proof of the statement also to be polynomially bounded. A key idea in order to define
the statement and prove it efficiently is to introduce additional common variables to
our propositional Diffie–Hellman statement. The bulk of the argument then involves
showing how (with the aid of the auxiliary variables) one can formalize the above proof
by showing that basic arithmetic facts, including the Chinese remainder theorem, can
be stated and proven efficiently within TC0-Frege.

1.4. Section description. The paper is organized as follows. In section 2, we
define our TC0-Frege system. In section 3, we define the TC0-formulas used for the
proof. In section 4, we define precisely the interpolation formulas which are based
on the Diffie–Hellman cryptographic scheme. In section 5, we show how to prove our
main theorem, provided we have some technical lemmas that will be proved fully in
section 7. In section 6, there is a discussion and some open problems. Finally, in
section 7, we prove all the technical lemmas required for the main theorem.
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The unusual organization of the paper is due to the many very technical lemmas
required to show the result, which are essential to the correctness of the argument but
which not every reader might want to go through. Sections 1–6 give an exposition of
the result, relying on the complete proofs in the technical part.

2. TC0-Frege systems. For clarity, we will work with a specific bounded-depth
threshold logic system, which we call TC0-Frege. However, any reasonable definition
of such a system should also suffice. Our system is a sequent-calculus logical system
where formulas are built up using the connectives ∨, ∧, Thk, ¬, ⊕0, and ⊕1. (Thk(x)
is true if and only if the number of 1’s in x is at least k, and ⊕i(x) is true if and only
if the number of 1’s in x is i mod 2.)

Our system is essentially the one introduced in [MP], (which is, in turn, an ex-
tension of the system PTK introduced by Buss and Clote [BC, section 10]).

Intuitively, a family of formulas f1, f2, f3, . . . has polynomial-sized TC0-Frege
proofs if each formula has a proof of size polynomial in the size of the formula, and
such that every line in the proof is a TC0 formula.

Definition 2.1. Formulas are built up using the connectives ∧, ∨, Thk, ⊕1, ⊕0,
¬. All connectives are assumed to have unbounded fan-in. Thk(A1, . . . , An) is inter-
preted to be true if and only if the number of true Ai’s is at least k; ⊕j(A1, . . . , An)
is interpreted to be true if and only if the number of true Ai’s is equal to j mod 2.

The formula ∧(A1, . . . , An) denotes the logical AND of the multiset consisting of
A1, . . . An, and similarly for ∨, ⊕j , and Thk. Thus commutativity of the connectives
is implicit. Our proof system operates on sequents which are sets of formulas of the
form A1, . . . , Ai → B1, . . . , Bj . The intended meaning is that the conjunction of the
Ai’s implies the disjunction of the Bj ’s. A proof of a sequent S in our logic system
is a sequence of sequents, S1, . . . , Sq, such that each sequent Si either is an initial
sequent or follows from previous sequents by one of the rules of inference, and the
final sequent, Sq, is S. The size of the proof is

∑
1≤i≤q size(Si), and its depth is

max1≤i≤q(depth(Si)).
The initial sequents are of the form (1) A → A, where A is any formula; (2) → ∧()

; ∨() →; (3) ⊕1() → ; → ⊕0(); and (4) Thk() → for k ≥ 1 ; → Th0(A1, . . . , An) for
n ≥ 0. The rules of inference are as follows. Note that the logical rules are defined for
n ≥ 1 and k ≥ 1. First we have simple structural rules such as weakening (formulas
can always be added to the left or to the right), contraction (two copies of the same
formula can be replaced by one), and permutation (formulas in a sequent can be
reordered). The remaining rules are the cut rule and logical rules, which allow us to
introduce each connective on both the left side and the right side. The cut rule allows
the derivation of Γ,Γ′ → ∆,∆′ from Γ, A → ∆, and Γ′ → A,∆′.

The logical rules are as follows.
1. (Negation-left) From Γ → A,∆, (for consistency) derive ¬A,Γ → ∆.
2. (Negation-right) From A,Γ → ∆, derive Γ → ¬A,∆.
3. (And-left) From A1,∧(A2, . . . , An),Γ → ∆, derive ∧(A1, . . . , An),Γ → ∆.
4. (And-right) From Γ → A1,∆ and Γ → ∧(A2, . . . , An),∆, derive

Γ → ∧(A1, . . . , An),∆.
5. (Or-left) From A1,Γ → ∆ and ∨(A2, . . . , An),Γ → ∆, derive ∨(A1, . . . , An),Γ

→ ∆.
6. (Or-right) From Γ → A1,∨(A2, . . . , An),∆, derive Γ → ∨(A1, . . . , An),∆.
7. (Mod-left) From A1,⊕1−i(A2, . . . , An),Γ → ∆ and ⊕i(A2, . . . , An),Γ → A1,

∆, derive ⊕i(A1, . . . , An), Γ → ∆.
8. (Mod-right) FromA1,Γ → ⊕1−i(A2, . . . , An),∆ and Γ → A1,⊕i(A2, . . . , An),
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∆, derive Γ → ⊕i(A1, . . . , An),∆.
9. (Threshold-left) From Thk(A2, . . . , An),Γ → ∆ and A1,Thk−1(A2, . . . , An),

Γ → ∆, derive Thk(A1, . . . , An),Γ → ∆.
10. (Threshold-right) From Γ → A1,Thk(A2, . . . , An),∆, and Γ →

Thk−1(A2, . . . , An),∆, derive Γ → Thk(A1, . . . , An),∆.
A TC0 proof is a bounded-depth proof in our system of polynomial size. More

formally, we have the following definitions.
Definition 2.2. Let F = {(Γn → ∆n) : n ∈ N} be a family of sequents. Then

{Rn : n ∈ N} is a family of TC0 proofs for F if there exist constants c and d such
that the following conditions hold: (1) each Rn is a valid proof of (Γn → ∆n) in our
system; (2) for all i, the depth of Rn is at most d; and (3) for all n, the size of Rn is
at most (size(Γn → ∆n))

c.
We note that we have defined a specific proof system for clarity; our result still

holds for any reasonable definition of a TC0-Frege proof. (It can be shown that our
system polynomially simulates any Frege-style system.) The difference between a
polynomial-sized proof in our system and a polynomial-sized TC0 proof is similar to
the difference between NC1 and TC0.

3. The TC0-formulas. In this section, we will describe some of the TC0-
formulas needed to formulate and to refute the Diffie–Hellman formula. For simplicity
of the description, let us assume that we have a fixed number N which is an upper
bound for the length of all numbers used in the refutation of the Diffie–Hellman for-
mula. The number N will be used to define some of the formulas below. After seeing
the statement and the refutation of the Diffie–Hellman formula, it will be clear that
it is enough to take N to be a small polynomial in the length of the number P used
for the Diffie–Hellman formula.

3.1. Addition and subtraction. We will use the usual carry-save AC0-formulas
to add two n-bit numbers. Let x = xn, . . . , x1 and y = yn, . . . , y1 be two numbers.
Then x + y will denote the following AC0-formula: There will be n + 1 output bits,
zn+1, . . . , z1. The bit zi will equal the mod 2 sum of Ci, xi, and yi, where Ci is
the carry bit. Intuitively, Ci is 1 if there is some bit position less than i that gen-
erates a carry that is propagated by all later bit positions until bit i. Formally, Ci
is computed by OR(Ri(i−1), . . . , Ri1), where Rij = AND(Pi−1, . . . , Pj+1, Gj), where
Pk = Mod2(xk, yk), and Gj = AND(xj , yj). (Gj is 1 if the jth bit position generates
a carry, and Pk is 1 if the kth bit position propagates but does not generate a carry.)

As for subtraction, let us show how to compute z = |x − y|. Think of x, y as
N -bit numbers. Let s = x + y + 1, and similarly let t = y + x + 1, where y is the
complement (modulo 2) of the N bits of y, and x is the complement of the N bits of
x. Denote s = sN+1, sN , . . . , s1, and note that s is equal to 2N +(x−y), and similarly
t is equal to 2N + (y − x). If sN+1 = 1, then we know that x− y ≥ 0 and thus s = z.
Otherwise, if sN+1 = 0, then we know that y − x > 0 and thus t = z. Thus, for any
i, we can compute zi by (sN+1 ∧ si) ∨ (¬sN+1 ∧ ti).

3.2. Iterated addition. We will now describe the TC0-formula SUM [x1, . . . ,
xm] that inputs m numbers, each n bits long, and outputs their sum x1+x2+ · · ·+xm
(see [CSV]). We assume that m ≤ N . The main idea is to reduce the addition
of m numbers to the addition of two numbers. Let xi be xi,n, . . . , xi,1 (in binary
representation). Let l = �log2 N�. Let r = n

2l , and assume (for simplicity) that r is
an integer.

Divide each xi into r blocks, where each block has 2l bits, and let Si,k be the



1946 MARIA LUISA BONET, TONIANN PITASSI, AND RAN RAZ

number in the kth block of xi. That is,

Si,k =

2l∑
j=1

xi,(k−1)·2l+j · 2j−1.

Now, each Si,k has 2l bits. Let Li,k be the low-order half of Si,k, and let Hi,k be the
high-order half. That is, Si,k = Hi,k · 2l + Li,k.

Denote

H =

m∑
i=1

r∑
k=1

Hi,k · 2l · 2(k−1)2l,

L =

m∑
i=1

r∑
k=1

Li,k · 2(k−1)2l.

Then,

x1 + · · · + xm =

m∑
i=1

r∑
k=1

Si,k · 2(k−1)2l

=

m∑
i=1

r∑
k=1

Hi,k · 2l · 2(k−1)2l +

m∑
i=1

r∑
k=1

Li,k · 2(k−1)2l = H + L.

Hence, we just have to show how to compute the numbers H,L. Let us show how to
compute L; the computation of H is similar.

Denote Lk =
∑m
i=1 Li,k. Then

L =
r∑

k=1

Lk · 2(k−1)2l.

Since each Li,k is of length l, each Lk is of length at most l + log2 m, which is at
most 2l. Hence, the bits of L are just the bits of the Lk’s combined. That is,
L = Lr, Lr−1, . . . , L1.

As for the computation of the Lk’s, note that since each Lk is a polysize sum of
logarithmic length numbers, it can be computed using polysize threshold gates.

3.3. Modular arithmetic. Next, we describe our TC0-formulas that compute
the quotient and remainder of a number z modulo p, where z is of length n. The
remainder and the inputs for the remainder and the quotient formulas are as follows:

1. the number z,
2. numbers p1, p2, . . . , pn,
3. numbers ki and ri for all 1 ≤ i ≤ n.

The intended values for the variables ki and ri are such that 2i = p · ki + ri, where
0 ≤ ri < p for all 1 ≤ i ≤ n. The intended values for the variables pi are i · p.

Suppose that z = kp + r, where 0 ≤ r < p, and assume that the input variables
ki, ri, and pi take the right values. Then our formula [z]p will output r, and our
formula divp(z) will output k. The formulas are computed as follows.
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Let z = zn, . . . , z1; i.e., z =
∑n
i=1 2i−1zi. Suppose that the ki, ri, and pi variables

satisfy 2i = ki · p + ri, where 0 ≤ ri < p, and pi = i · p for all 1 ≤ i ≤ n. Then z
satisfies

z =
n∑
i=1

2i−1zi =

n∑
i=1

(p · ki−1 + ri−1)zi

= p ·
n∑
i=1

ki−1 · zi +
n∑
i=1

ri−1 · zi.

Denote s =
∑n
i=1 ri−1 · zi, and let l be such that l · p ≤ s < (l + 1) · p. Then

[z]p = s− l · p and can therefore be computed by

[z]p = SUMn
i=1[ri−1 · zi] − p · l.

divp(z) is computed by SUMn
i=1[ki−1 · zi] + l.

Notice that if the ki, ri, and pi’s are not such that 2i = ki · p + ri, 0 ≤ ri < p,
and pi = i · p, then the formulas are not required to compute the correct values of the
quotient or remainder and can give an arbitrary answer.

3.4. Product and iterated product. We will write x · y to denote the for-
mula SUMi,j [2

i+j−2xiyj ], computing the product of two n-bit numbers x and y. By
2i+j−2xiyj , we mean 2i+j−2 if both xi and yj are true, and 0 otherwise.

Last, we will describe our TC0-formula for computing the iterated product of m
numbers. This formula is basically the original formula of [BCH] and is articulated
as a TC0-formula in [M].

The iterative product PROD[z1, . . . , zm] gives the product of z1, . . . , zm, where
each zi is of length n, and we assume that m,n are both bounded by N . The basic
idea is to compute the product modulo small primes using iterated addition and then
to use the constructive chinese remainder theorem to construct the actual product
from the product modulo small primes.

Let Q be the product of the first t primes q1, . . . , qt, where t is the first integer
that gives a number Q of length larger than N2. Since q1, . . . , qt are all larger than 2,
t is at most N2, and by the well-known bounds for the distribution of prime numbers
the length of each qj is at most O(logN). For each qj , let gj be a fixed generator
for Z∗

qj . Also, for each qj , let uj ≤ Q be a fixed number with the property that
uj mod qj = 1 and for all i �= j, uj mod qi = 0 (such a number exists by the Chinese
remainder theorem). PROD[z1, . . . , zm] is computed as follows.

1. First we compute ri,j = [zi]qj for all i, j. This is calculated using the modular
arithmetic described earlier.

2. For each 1 ≤ j ≤ t we will compute rj = (
∏m
i=1 ri,j) mod qj as follows.

a. Compute aij such that (g
aij
j ) mod qj = ri,j . This is done by a table

lookup.
b. Calculate cj = SUMm

i=1[aij ](qj−1).

c. Compute rj such that g
cj
j mod qj = rj . This is another table lookup.

3. Finally, compute

PROD[z1, . . . , zm] = SUM t
j=1[uj · rj ]Q.

We will hardwire the values uj · k for all k ≤ qj . Thus, this computation is
obtained by doing a table lookup to compute uj · rj followed by an iterated
sum followed by a mod Q calculation.
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3.5. Equality and inequality. Often we will write x = y, where x and y are
both vectors of variables or formulas: x = x1, . . . , xn, and y = y1, . . . , yn. When we
write x = y, we mean the formula ∧i((¬xi ∨ yi) ∧ (xi ∨ ¬yi)). We apply the same
conventions when writing �=, <,≤, >,≥.

4. The Diffie–Hellman formula. We are now ready to formally define our
propositional statement DH. DH will be the conjunction of A0 and A1. The common
variables for the formulas will be

(a) P and g representing n-bit integers, and for every i ≤ 2n, we will also add

common variables for g2i

mod P .
(b) X,Y , and for every i ≤ 2n, we will also add common variables for X2i

mod P

and for Y 2i

mod P .
(c) We also add variables for P2, . . . , PN , and for k1, . . . , kN and r1, . . . , rN . These

variables are needed to define arithmetic modulo P (see section 3.3).

For e ∈ {0, 1}, denote by g2i·e (respectively, X2i·e, Y 2i·e) the following: the

common variable g2i

mod P (respectively, X2i

mod P , Y 2i

mod P ) if e = 1, and 1
if e = 0. The formula A0(P, g,X, Y, a, b) will be the conjunction of the following
TC0-formulas:

1.

PRODi

[
g2i·ai

]
P

= X,

which means ga mod P = X.
2. For every j ≤ n,

PRODi

[
g2i+j ·ai

]
P

= X2j

mod P,

which means (g2j

)amodP = X2j

modP . Note that from this, it is easy to
prove for e ∈ {0, 1},

PRODi

[
g2i+j ·ai·e

]
P

= X2j ·e.

3. Similar formulas for gb mod P = Y , and for (g2j

)b mod P = Y 2j

mod P .

4. PRODi,j [g
2i+j ·ai·bj ]P is even, which means gab mod P is even.

5. For every i ≤ N , formulas expressing 2i = P · ki + ri, 1 ≤ ri < P , and
Pi = i · P . (These formulas are added to guarantee that the modulo P
arithmetic is computed correctly.)

Similarly, the formula A1(P, g,X, Y, c, d) will be the conjunction of the above
formulas, but with a replaced by c, b replaced by d, and the fourth item stating that
gcd mod P is odd.

Note that the definition of the iterated product (PROD) requires the primes
q1, . . . , qt (as well as their product Q, and the numbers u1, . . . , ut), which are fixed
for the length n. So we are going to hardwire the numbers q1, . . . , qt, Q, u1, . . . ut, as
well as the correct values for the ri’s and ki’s needed for the modulo qj arithmetic for
each one of these numbers.

5. A TC0-Frege refutation for DH. We want to describe a TC0-Frege refu-
tation for DH. As mentioned above, the proof proceeds as follows.

1. Using A0, show that gab mod P = Xb mod P .
2. Using A1, show that Xb mod P = gcb mod P .
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3. Show that gcb mod P = gbc mod P .
4. Using A0, show that gbc mod P = Y c mod P .
5. Using A1, show that Y c mod P = gdc mod P .
6. Show that gdc mod P = gcd mod P .

We can conclude from the above steps that A0 and A1 imply that gab mod P =
gcd mod P , but now we can reach a contradiction since A0 states that gab mod P is
even, while A1 states that gcd mod P is odd.

We formulate gab mod P as

PRODi,j

[
g2i+j ·ai·bj

]
P

and Xb mod P as

PRODj

[
X2j ·bj

]
P
.

Thus, step 1 is formulated as

PRODi,j

[
g2i+j ·ai·bj

]
P

= PRODj

[
X2j ·bj

]
P
,

and so on.
Steps 1, 2, 4, and 5 are all virtually identical. Steps 3 and 6 follow easily because

our formulas defining gab make symmetry obvious. Thus the key step is to show step
1; that is, to show how to prove gab mod P = Xb mod P . As mentioned above, this
is formulated as follows:

PRODi,j

[
g2i+j ·ai·bj

]
P

= PRODj

[
X2j ·bj

]
P
.

We will build up to the proof that gab mod P equals Xb mod P by proving many
lemmas concerning our basic TC0-formulas. The final lemma that we need is the
following.

Lemma 5.1. For every z1,1, . . . , zm,m′ and p, there are TC0-Frege proofs of

PRODi,j [zi,j ]p = PRODi[PRODj [zi,j ]p]p.

The proof of the lemma is given in section 7.
Using Lemma 5.1 for the first equality and point 2 from section 4 for the second

equality, we can now obtain

PRODi,j

[
g2i+j ·ai·bi

]
P

= PRODj

[
PRODi

[
g2i+j ·ai·bj

]
P

]
P

= PRODj

[
X2j ·bj

]
P
,

which proves step 1.
Hence, the main goal of section 7 is to show that the statement

PRODi,j [zi,j ]p = PRODi[PRODj [zi,j ]p]p

has a short TC0-Frege proof. This is not trivial because our TC0-Frege formulas are
quite complicated (and in particular the formulas for iterated product and modular



1950 MARIA LUISA BONET, TONIANN PITASSI, AND RAN RAZ

arithmetic). In order to prove the statement, we will need to carry out a lot of the
basic arithmetic in TC0-Frege. Before we go on to the technical part, we will try to
give some intuition on how the proof of the main lemma is built.

We organized the proof as a sequence of lemmas that show how many basic facts
of arithmetic can be formulated and proved in TC0-Frege (using our TC0-formulas).
The proofs of these lemmas require careful analysis of the exact formula used for
each operation. The proofs of some of these lemmas are straightforward (using the
well-known TC0-formulas), while the proofs of other lemmas require some new tricks.

In short, the main lemmas that are used for the TC0-Frege proof of the final
statement (Lemma 5.1) are the following:

1. (Lemma 7.34) For every x, y, and p, there are TC0-Frege proofs of

[x · y]p = [x · [y]p]p.

2. (Lemma 7.37) For every z1, . . . , zm, and every 1 ≤ k ≤ m, there are TC0-
Frege proofs of

PROD[z1, . . . , zm] = PROD[z1, . . . , zk−1, PROD[zk, . . . , zm]].

3. (Lemma 7.43) For every z1, z2, there are TC0-Frege proofs of

PROD[z1, z2] = z1 · z2.

First, we prove some basic lemmas about addition, subtraction, multiplication,
iterative-sum, less-than, and modular arithmetic. Among these lemmas will be Lemma
7.34.

The proof of Lemma 7.37 is cumbersome, but it is basically straightforward, given
some basic facts about modular arithmetic. Recall that to do the iterated product we
have to first compute the product modulo small primes and then combine all these
products to get the right answer using iterated sum. Therefore, many basic facts of
the modulo arithmetic need to be proven in advance, as well as some basic facts of
the iterated sum.

Once this is done, we need to obtain the same fact modulo p (Lemma 7.44).
At this point it is easier to go through the regular product, where the basic facts
of modular arithmetic are easier to prove. Therefore it is important to show that
TC0-Frege can prove

PROD[z1, z2] = z1 · z2
(Lemma 7.43). In our application, z1 and z2 will themselves be iterated products.

To show this fact we use the Chinese remainder theorem. We first prove the
equality modulo small primes. This is relatively easy, since the sizes of these primes
are sufficiently small (O(logN)), and we can basically check all possible combinations.
Once this is done, we apply the Chinese remainder theorem to obtain the equality
modulo the product of the primes, and since this product is big enough, we obtain
the desired result.

Our TC0-Frege proof of the Chinese remainder theorem is different than the
standard textbook one. The main fact that we need to show is that if for every j,
[R]qj = [S]qj , then there are TC0-Frege proofs of [R]Q = [S]Q (Q = q1 · . . . · qt).
The usual proofs use some basic facts of division of primes that would be hard to
implement here. Instead we prove by induction on i < t that [R]Qi

= [S]Qi
, where

Qi =
∏i
j=1 qj . This method allows us to work with numbers smaller than the qi’s,

and again since these numbers are sufficiently small, we can verify all possibilities.
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6. Discussion and open problems. We have shown that TC0-Frege does not
have feasible interpolation, assuming that the factoring of Blum integers is not effi-
ciently computable. This implies (under the same assumptions) that TC0-Frege as
well as any system that can polynomially simulate TC0-Frege is not automatizable.
It is interesting to note that our proof and even the definition of the Diffie–Hellman
formula itself is nonuniform, essentially due to the nonuniform nature of the iterated
product formulas that we use. It would be interesting to know to what extent our
result holds in the uniform TC0 proof setting.

A recent paper [BDGMP] extends our results to prove that bounded-depth Frege
does not have feasible interpolation assuming factoring Blum integers is sufficiently
hard (actually their assumptions are stronger than ours). As a consequence bounded-
depth Frege is not automatizable under somewhat weaker hardness assumptions.

An important question that is still open is whether resolution, or some restricted
forms of it, is automatizable. A positive answer to this question would have important
applied consequences.

7. Formal proof of the main lemma. The goal of this section is to prove
Lemma 5.1. As mentioned earlier, we will build up to the proof of this lemma by
showing that basic facts concerning arithmetic, multiplication, iterated multiplication,
and modulus computations can be efficiently carried out in our proof system. Before
we begin the formal presentation, we would like to note that we will be giving a
precise description of a sequence of lemmas that are sufficient in order to carry out
a full, formal proof of Lemma 5.1. However, since there are many lemmas and many
of them have obvious proofs, we will describe at a meta-level what is required in
order to formalize the argument in TC0-Frege, rather than give an excessively formal
TC0-Frege proof of each lemma.

In what follows, x, y, and z will be numbers. Each one of them will denote a
vector of n variables or formulas (representing the number), where n ≤ N and xi
(respectively, yi, zi) denotes the ith variable of x (representing the ith bit of the
number x). When we need to talk about more than three numbers, we will write
z1, . . . , zm to represent a sequence of m n-bit numbers, (where m,n ≤ N), and now
zi,j is the jth variable of zi (representing the jth bit in the ith number).

Recall that whenever we say below “there are TC0-Frege proofs,” we actually
mean to say “there are polynomial-sized TC0-Frege proofs.” Some trivial properties
like x = y ∧ y = z → x = z are not stated here.

7.1. Some basic properties of addition, subtraction, and multiplication.

Lemma 7.1. For every x, y, there are TC0-Frege proofs of x + y = y + x.

Proof of Lemma 7.1. The proof is immediate from the fact that the addition
formula was defined in a symmetric way.

Lemma 7.2. For every x, y, z, there are TC0-Frege proofs of x + (y + z) =
(x + y) + z.

Proof of Lemma 7.2. By the definition of the addition formula, the ith bit of
((x + y) + z) is equal to ⊕1(⊕1(xi, yi, Ci(x, y)), zi, Ci((x + y), z)), where Ci(x, y) is
the carry bit going into the ith position, when we add x and y, and Ci((x + y), z) is
similarly defined to be the carry bit going into the ith position when we add (x + y)
and z.

Using basic properties of ⊕1 and the above definitions, there is a simple TC0-
Frege proof that if ⊕1(Ci(x, y), Ci((x + y), z)) = ⊕1(Ci(y, z), Ci(x, (y + z))), then it
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follows that ((x+ y)+ z) = (x+(y+ z)). Thus it is left to show that for all i ≤ n+2,

⊕1(Ci(x, y), Ci((x + y), z)) = ⊕1(Ci(y, z), Ci(x, (y + z))).

We will show how to prove the stronger equality

Ci(x, y) + Ci((x + y), z) = Ci(y, z) + Ci(x, (y + z)).

(It can be verified that this is the strongest equality possible for the four quantities
Ci(x, y), Ci((x+y), z), Ci(y, z), Ci(x, (y+z)). That is, all six assignments for Ci(x, y),
Ci((x+ y), z), Ci(y, z), Ci(x, (y + z)) that satisfy the above equality are actually pos-
sible.)

We will prove this by induction on i. For i = 1, the carry bits going into the first
position are zero, so the above identity holds trivially. To prove the above equality for
i, we assume that it holds for i− 1. We will prove the equality by considering many
cases, where a particular case will assume a fixed value to each of the following seven
quantities: xi−1, yi−1, zi−1, Ci−1(x, y), Ci−1(y, z), Ci−1((x + y), z), Ci−1(x, (y + z)),
subject to the condition that Ci−1(x, y)+Ci−1((x+y), z) = Ci−1(y, z)+Ci−1(x, (y+
z)). It is easy to check that the number of cases is 48 since there are 2 choices for
xi−1; 2 choices for yi−1; 2 choices for zi−1; and 6 choices in total for Ci−1(x, y),
Ci−1((x + y), z), Ci−1(y, z), and Ci−1(x, (y + z)).

Each case will proceed in the same way. We will first show how to compute
Ci(x, y), Ci(y, z), Ci((x+y), z), and Ci(x, (y+z)) using the above seven values. Then
we simply verify that in all 48 cases where the inductive hypothesis holds, the equality
is true.

First, we will show that

Ci(x, y) = 1 ↔ xi−1 + yi−1 + Ci−1(x, y) ≥ 2.

This requires a proof along the following lines. If xi−1 = yi−1 = 1, then the left-hand
side of the above statement is true since position i − 1 generates a carry, and the
right-hand side of the statement is also true. Similarly, if xi−1 = yi−1 = 0, then both
sides of the above statement are false (since position i − 1 absorbs a carry). The
last case is when xi−1 = 1 and yi−1 = 0 (or vice-versa). In this case, position i − 1
propagates a carry, so the ith carry bit is 1 if and only if there exists a j < i− 1 such
that the jth position generates a carry and all positions between j and i−1 propagate
carries—but this is exactly the definition of Ci−1(x, y). Thus, we have in this last
case that both sides of the statement are true if and only if Ci−1(x, y) is true.

Using the above fact and also that (x + y)i = xi ⊕ yi ⊕ Ci(x, y), we have that
Ci((x+y), z) = 1 if and only if zi−1 +(xi−1⊕yi−1⊕Ci−1(x, y))+Ci−1((x+y), z) ≥ 2.
Identical arguments show that Ci(y, z) = 1 and Ci(x, (y+z)) = 1 can also be computed
as simple formulas of the seven pieces of information.

Lemma 7.3. For every x, y, there are TC0-Frege proofs of (x + y) − y = x.
Proof of Lemma 7.3. (x + y) − y is computed by taking the first N bits of

(x + y) + y + 1. Note that by the definition of the addition formula it follows easily
that all bits of (y + y) are 1, and hence that ((y + y) + 1) = 2N . Thus,

(x + y) + y + 1 = x + ((y + y) + 1) = x + 2N ,

and hence the first N bits of this number are the same as the first N bits of x.
Lemma 7.4. For every x, y, there are TC0-Frege proofs of x ≥ y → (x− y)+ y =

x.
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Proof of Lemma 7.4. (x− y) is computed by taking the first N bits of x+ y + 1.
By the definition of the addition formula, and since x ≥ y, it can be proved that the
(N + 1)th bit of x + y + 1 is 1, and hence that

(x− y) + 2N = x + y + 1.

Therefore, as in Lemma 7.3,

(x− y) + y + 2N = x + y + y + 1 = x + 2N .

In particular, the first N bits of (x − y) + y + 2N are the same as those of x + 2N .
Thus, (x− y) + y = x.

Lemma 7.5. For every x, y, z, there are TC0-Frege proofs of x + z = y + z →
x = y.

Proof of Lemma 7.5. The proof follows immediately from Lemmas 7.3 and 7.2 as
follows: x = (x + z) − z = (y + z) − z = y.

Lemma 7.6. For every z, there are TC0-Frege proofs of

z = SUMi[2
i−1zi].

Proof of Lemma 7.6. We need to show that for every j,

zj = [SUMi[2
i−1zi]]j .

This is shown by a rather tedious but straightforward proof following the definition
of the formula SUM for iterated addition. Namely, we show first that

H = zn..zn−l+10..0zn−2l..zn−3l+10..0.....z2l..zl+10..0

and, similarly, that

L = 0..0zn−l..zn−2l+10..0zn−3l..zn−4l+1.....0..0zl..z1.

Secondly, we show that [H + L]j = zj , using the definition of +. This second step is
not difficult because all carry bits are zero.

Lemma 7.7. For every z1, . . . , zm, and every fixed permutation α, there are TC0-
Frege proofs of

SUM [z1, . . . , zm] = SUM [zα(1), ...., zα(m)].

(That is, the iterated sum is symmetric.)
Proof of Lemma 7.7. The proof is immediate from the fact that the formula SUM

was defined in a symmetric way.
Lemma 7.8. For every z, there are TC0-Frege proofs of

SUM [z] = z.

Proof of Lemma 7.8. By definition of the iterated addition formula SUM , it is
straightforward to prove that

H = zn..zn−l+10..0zn−2l..zn−3l+10..0.....z2l..zl+10..0

and, similarly, that

L = 0..0zn−l..zn−2l+10..0zn−3l..zn−4l+1.....0..0zl..z1.
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Then it is also straightforward to show, using the definition of the formula for +, that
[H + L]j = zj for every j. (Again, all carry bits are zero.)

Lemma 7.9. For every z1, . . . , zm, there are TC0-Frege proofs of

SUM [z1, . . . , zm] = z1 + SUM [z2, . . . , zm].

Proof of Lemma 7.9. Recall that SUM [z1, . . . , zm] is computed by adding two
numbers H,L. Recall that L is computed by first computing the numbers Lk =∑m
i=1 Li,k, where Li,k is the low-order half of the kth block of zi. The first equality

follows from Lemma 7.9, and similarly, SUM [z2, . . . , zm] is computed by H ′ + L′,
where L′ is computed by first computing the numbers L′

k =
∑m
i=2 Li,k. We can also

write z1 = H ′′+L′′, where H ′′ =
∑r
k=1 H1,k ·2l ·2(k−1)2l and L′′ =

∑r
k=1 L1,k ·2(k−1)2l.

In both Lk, L
′
k the sum is computed using polysize threshold gates, e.g., by using

the unary representation of each Li,k. It is therefore straightforward to prove for each
k, Lk = L′

k + L1,k, (e.g., by trying all the possibilities for L′
k, L1,k, and proving the

formula separately for each possibility).
Now consider the formula L′ + L′′. Since in this addition there is no carry flow

from one block to the next one, and since the bits of L,L′, L′′ in each block are just
the bits of Lk, L

′
k, L1,k (respectively), we can conclude that L = L′ + L′′. Since in a

similar way we can prove that H = H ′ + H ′′, we are now able to conclude

SUM [z1, . . . , zm] = H + L

= (H ′′ + L′′) + (H ′ + L′) = z1 + SUM [z2, . . . , zm].

Lemma 7.10. For every z1, . . . , zm, there are TC0-Frege proofs of

SUM [z1 + z2, z3, . . . , zm] = SUM [z1, z2, . . . , zm].

Proof of Lemma 7.10. The lemma can be proved easily from Lemmas 7.9 and 7.2
as follows:

SUM [z1, . . . , zm] = z1 + SUM [z2, . . . , zm]

= z1 + (z2 + SUM [z3, . . . , zm]) = (z1 + z2) + SUM [z3, . . . , zm]

= SUM [z1 + z2, z3, . . . , zm].

Lemma 7.11. For every z1, . . . , zm, and every 1 ≤ k ≤ m, there are TC0-Frege
proofs of

SUM [z1, . . . , zk−1, SUM [zk, . . . , zm]] = SUM [z1, . . . , zm].

Proof of Lemma 7.11. By Lemmas 7.9, 7.10, and 7.7, we have

SUM [z1, . . . , zk−1, SUM [zk, . . . , zm]]

= SUM [z1, . . . , zk−1, zk + SUM [zk+1, . . . , zm]]

= SUM [z1, . . . , zk−1, zk, SUM [zk+1, . . . , zm]].
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The proof now follows by repeating the same argument m−k times, where Lemma 7.8
is used for the base case.

Lemma 7.12. For every x, y, there are TC0-Frege proofs of

x · y = y · x.

Proof of Lemma 7.12. The proof is immediate from the fact that the product
formula was defined in a symmetric way.

Lemma 7.13. For every x, y, z, where x is a power of 2, there are TC0-Frege
proofs of

x · (y + z) = x · y + x · z.

Proof of Lemma 7.13. It is straightforward to prove that 2i · y, where y is
any sequence of bits, consists of adding to the end of y, i 0’s. The lemma easily
follows.

Lemma 7.14. For every z1, . . . , zm, and every x where x is a power of 2, there
are TC0-Frege proofs of

x · SUM [z1, . . . , zm] = SUM [x · z1, . . . , x · zm].

Proof of Lemma 7.14. The proof of this lemma is like the proof of Lemma 7.17
but uses Lemma 7.13 instead of 7.16.

Lemma 7.15. For every x, y, z, where x, y are powers of 2, there are TC0-Frege
proofs of

x · (y · z) = (x · y) · z.

Proof of Lemma 7.15. The proof is the same as the proof of Lemma 7.13.
The following three lemmas are generalizations of the previous three lemmas.
Lemma 7.16. For every x, y, z there are TC0-Frege proofs of

x · (y + z) = x · y + x · z.

Proof of Lemma 7.16. By definition of the product formula,

x · (y + z) = SUMi,j [2
i+j−2xi(y + z)j ].

Similarly,

x · y + x · z = SUMi,j [2
i+j−2xiyj ] + SUMi,j [2

i+j−2xizj ].

By iterative application of Lemma 7.11 (also using Lemma 7.7),

SUMi,j [2
i+j−2xi(y + z)j ] = SUMi[SUMj [2

i+j−2xi(y + z)j ]].

Similarly (also using Lemmas 7.9 and 7.10),

SUMi,j [2
i+j−2xiyj ] + SUMi,j [2

i+j−2xizj ]

= SUMi[SUMj [2
i+j−2xiyj + 2i+j−2xizj ]],
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and in the same way (using the same lemmas)

SUMi[SUMj [2
i+j−2xiyj + 2i+j−2xizj ]]

= SUMi[SUMj [2
i+j−2xiyj ] + SUMj [2

i+j−2xizj ]].

Thus, we have to prove

SUMi[SUMj [2
i+j−2xi(y + z)j ]] = SUMi[SUMj [2

i+j−2xiyj ] + SUMj [2
i+j−2xizj ]].

We will prove this by proving that for every i,

SUMj [2
i+j−2xi(y + z)j ] = SUMj [2

i+j−2xiyj ] + SUMj [2
i+j−2xizj ].

If xi = 0, this is trivial. Otherwise, xi = 1, and using Lemmas 7.15, 7.14, and 7.6
we have

SUMj [2
i+j−2xi(y + z)j ] = 2i−1SUMj [2

j−1(y + z)j ] = 2i−1 · (y + z).

In the same way (also using Lemma 7.13),

SUMj [2
i+j−2xiyj ] + SUMj [2

i+j−2xizj ] = 2i−1SUMj [2
j−1yj ] + 2i−1SUMj [2

j−1zj ]

= 2i−1 · y + 2i−1 · z = 2i−1 · (y + z).

Lemma 7.17. For every z1, . . . , zm, and every x, there are TC0-Frege proofs of

x · SUM [z1, . . . , zm] = SUM [x · z1, . . . , x · zm].

Proof of Lemma 7.17. We will show that for every i,

x · SUM [z1, . . . , zi] + SUM [x · zi+1, . . . , x · zm] = x ·SUM [z1, . . . , zi+1]

+ SUM [x · zi+2, . . . , x · zm].

The lemma then follows by the combination of all these equalities. The case i = 0 is
proven as follows:

SUM [x · z1, . . . , x · zm] = x · z1 + SUM [x · z2, . . . , x · zm]

= x · SUM [z1] + SUM [x · z2, . . . , x · zm].

The first equality follows by applying Lemma 7.9, and the second equality by applying
Lemma 7.8.

For the general step,

x · SUM [z1, . . . , zi] + SUM [x · zi+1, . . . , x · zm]

= x · SUM [z1, . . . , zi] + x · zi+1 + SUM [x · zi+2, . . . , x · zm]

= x · (SUM [z1, . . . , zi] + zi+1) + SUM [x · zi+2, . . . , x · zm]

= x · SUM [z1, . . . , zi+1] + SUM [x · zi+2, . . . , x · zm].

The first equality follows from Lemmas 7.9, the second equality follows from Lemma
7.16, and the third equality follows from Lemma 7.9.
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Lemma 7.18. For every x, y, z, there are TC0-Frege proofs of

x · (y · z) = (x · y) · z.

Proof of Lemma 7.18. We will show that x·(y·z) is equal to SUMi,j,k[2
i+j+k−3xiyjzk].

The same will be true for (x · y) · z, and the lemma follows.
By the definition of the product,

y · z = SUMj,k[2
j+k−2yjzk].

Hence, by Lemma 7.6 and two applications of Lemma 7.17 (and freely using Lemma 7.12),

x · (y · z) = SUMi[2
i−1xi] · SUMj,k[2

j+k−2yjzk]

= SUMi[(2
i−1xi) · SUMj,k[2

j+k−2yjzk]]

= SUMi[SUMj,k[(2
i−1xi) · 2j+k−2yjzk]].

Since it can be easily verified that (2i−1xi) · 2j+k−2yjzk = 2i+j+k−3xiyjzk, the above
is equal to

SUMi[SUMj,k[2
i+j+k−3xiyjzk]],

and by an iterative application of Lemma 7.11 (using also Lemma 7.7) the above is
equal to

SUMi,j,k[2
i+j+k−3xiyjzk].

7.2. Some basic properties of less-than.
Lemma 7.19. For every x, y, there are TC0-Frege proofs of x > y∨y > x∨x = y

and also of x > 0 ∨ x = 0.
Proof of Lemma 7.19. Either there is a bit i such that i is the most significant bit

where x and y differ, or not. If all bits are equal, then x = y. But if there is i such
that it is the most significant bit where they differ, then if xi = 1 and yi = 0, then
x > y, and if xi = 0 and yi = 1, then y > x.

Lemma 7.20. For every x, y, there are TC0-Frege proofs of x > y → (x−y) > 0.
Proof of Lemma 7.20. By Lemma 7.19, (x− y) = 0 ∨ (x− y) > 0. Suppose for a

contradiction that x− y = 0. Then x = (x− y) + y = y, and we get x > x (which is
easily proved to be false). So x− y > 0.

Lemma 7.21. For every x, y, z, there are TC0-Frege proofs of x > y ∧ y ≥ z →
x > z; and also x ≥ y ∧ y > z → x > z.

Proof of Lemma 7.21. If y = z, then the proof of the first statement is obvious.
Otherwise, suppose that i is the most significant bit where xi �= yi and that xi = 1
and yi = 0. Similarly, suppose that j is the most significant bit where yj �= zj and
that yj = 1 and that zj = 0. If i ≥ j, then it is easy to show that i is the most
significant bit where xi �= zi, xi = 1, zi = 0, and thus x > z. Similarly, if j > i, then
j is the most significant bit where xj �= zj , xj = 1, zj = 0, and thus x > z. Similar
reasoning also implies the second statement in the lemma.

Lemma 7.22. For every x, z, there are TC0-Frege proofs of x + z ≥ x; and also
z > 0 → x + z > x.
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Proof of Lemma 7.22. If z = 0, then it is clear that x+ z = x. For z > 0, we will
show inductively for decreasing k that

x + SUMi≥k[2
i−1zi] > x.

Then when k = 1, we have x + SUMi[2
i−1zi] = x + z > x, by Lemma 7.6.

Assuming that z > 0, let zi′ be the most significant bit such that zi′ = 1. The
base case of the induction will be to show that x + SUMi≥i′ [2

i−1zi] > x. Because
zi = 0 for all i > i′, and applying Lemma 7.8, it suffices to show that x + z′ >
x, where z′ = 2i

′−1zi′ . There are two cases. If xi′ = 0, then x + z′ is equal to
xnxn−1 · · ·xi′+11xi′−1 · · ·x1, and so clearly x + z′ > x. The other case is when
xi′ = 1. Let j be the most significant bit position greater than i′ such that xj = 0.
One clearly exists because xn+1 = 0. Then (x + z′)j = 1, xj = 0, and all higher bits
are equal, and thus x + z′ > x as desired.

For the inductive step, we assume that x + SUMi≥k[2
i−1zi] > x and want to

show that x+ SUMi≥k−1[2
i−1zi] > x. Using the same argument as in the base case,

one can prove that (a) x + SUMi≥k[2
i−1zi] + 2k−2zk−1 ≥ x + SUMi≥k[2

i−1zi]. By
the inductive hypothesis, (b) x + SUMi≥k[2

i−1zi] > x. Applying Lemma 7.21 to (a)
and (b), we obtain x+ SUMi≥k[2

i−1zi] + 2k−2zk−1 > x. By Lemma 7.9, this implies
x + SUMi≥k−1[2

i−1zi] > x, as desired.
Lemma 7.23. For every x, y, z there are TC0-Frege proofs of x > y → x+z > y.
Proof of Lemma 7.23. If z = 0, then x+z = x > y. Otherwise, z > 0 → x+z > x

by Lemma 7.22. Then by Lemma 7.21, x + z > y as desired.
Lemma 7.24. For every x, y, z there are TC0-Frege proofs of x > y → x + z >

y + z.
Proof of Lemma 7.24.

x + z = (x− y) + y + z

> y + z.

The first equality follows from Lemma 7.4, and the second follows from Lemma 7.22
and the fact that x > y → x− y > 0.

Lemma 7.25. For every x, y, there are TC0-Frege proofs of y > 0 → x ≤ x · y.
Proof of Lemma 7.25. x ·y = SUMi,j [2

i+j−2xiyj ] by definition. Also, since y > 0,
there is a bit of y that is 1, and suppose that it is yl. Then

x · y = SUMi,j [2
i+j−2xiyj ]

= SUMi[2
i+l−2xiyl] + SUMi,j,j �=l[2

i+j−2xiyj ]

≥ SUMi[2
i+l−2xiyl]

= 2l−1SUMi[2
i−1xi]

= 2l−1 · x ≥ x.

7.3. Some basic properties of modular arithmetic. Recall that the for-
mulas for [z]p and divp(z) take as inputs not only the variables p and z, but also
variables ki, ri (for every 1 ≤ i ≤ n), and variables p1, . . . , pn. The formulas give the
right output if 2i = p ·ki+ri, ri < p, and pi = i ·p (for all 1 ≤ i ≤ n). So the following
theorems will all have the hypothesis that the values for the variables ki, ri, and pi
are correct, and that there are short TC0-Frege proofs for 2i = p · ki + ri, ri < p, and
pi = i · p. We will state this hypothesis for the first lemma and omit it afterwards
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for simplicity. For simplicity, we will also use the notations k0 = 0 and r0 = 1, thus
20 = p · k0 + r0.

The lemmas will be used with either p = P , where P is the number used for the
DH formula, or with p = q, where q is some fixed hardwired value (e.g., q = qj or
q = Q, where qj is one of the primes used for the iterated product formula, and Q is the
product of all these primes). If p = q for some hardwired q, then ki, ri, and p1, . . . pn
can also be hardwired. Hence, their values are correct and it is straightforward to
check (i.e., to prove) that the nonvariable formulas 2i = p ·ki+ri, ri < p, and pi = i ·p
are all correct. If p = P , then ki, ri, and p1, . . . , pn are inputs for the DH formula
itself, and the requirements 2i = p · ki + ri, ri < p, and pi = i · p are part of the
requirements in the DH formula.

Lemma 7.26. Let z and p be n-bit numbers. Then there are TC0-Frege proofs of

2i = ki·p+ri, 0 ≤ ri < p, pi = i·p (for all 0 ≤ i ≤ n) −→ z = SUMi[(ri−1+p·ki−1)zi].

Proof of Lemma 7.26. From Lemma 7.6, and if 2i = ri + p · ki,

z = SUMi[2
i−1zi] = SUMi[(ri−1 + p · ki−1)zi].

Lemma 7.27. For every z and p, there are TC0-Frege proofs of

z = [z]p + divp(z) · p.

Also, the following uniqueness property has a TC0-Frege proof: If z = x+ y · p where
0 ≤ x < p, then x = [z]p and y = divp(z).

Proof of Lemma 7.27. From the previous lemma, we can express z as SUMi[(ri−1+
p · ki−1)zi]. Let l be the same as in the definition of the modulo formulas. Then

[z]p + p · divp(z) = (SUMi[ri−1zi] − p · l) + p · (SUMi[ki−1zi] + l)

= (SUMi[ri−1zi] − p · l) + (p · SUMi[ki−1zi] + p · l)
= ((SUMi[ri−1zi] − p · l) + p · l) + p · SUMi[ki−1zi]

= SUMi[ri−1zi] + p · SUMi[ki−1zi]

= SUMi[ri−1zi] + SUMi[p · ki−1zi]

= SUM [SUMi[ri−1zi], SUMi[p · ki−1zi]]

= SUM [r0z1, .., rn−1zn, p · k0z1, .., p · kn−1zn]

= SUMi[(ri−1 + p · ki−1)zi]

= z.

The first equality follows from the definitions of the formulas [z]p and divp(z). The
remaining equalities follow from Lemmas 7.16, 7.2, 7.4, 7.17, 7.9, 7.11, 7.10, and 7.26.

Let us now prove the uniqueness part. Suppose z = [z]p + divp(z) · p = x + y · p,
where 0 ≤ x, [z]p < p. If divp(z) = y, then we are finished. But if divp(z) > y, then
by the claim below x ≥ p, which is a contradiction. (A similar argument holds when
divp(z) < y.)

Claim 7.28. If x + y · p = u + v · p and v > y, then x ≥ p.
Proof of the claim. Since v > y, by Lemmas 7.4 and 7.20, y + (v − y) = v, and

v − y > 0. Then x + y · p = u + (y + (v − y)) · p, and by Lemma 7.16, x + y · p =
u + y · p + (v − y) · p. By Lemma 7.5 we get that x = u + (v − y) · p. Therefore by
Lemmas 7.25 and 7.22,

p ≤ (v − y) · p ≤ u + (v − y) · p = x,
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and by Lemma 7.21 we get p ≤ x.

Lemma 7.29. For every z, k, and p, there are TC0-Frege proofs of

[z]p = [z + k · p]p.

Proof of Lemma 7.29. Let x = z + k · p. Then x = [x]p + divp(x) · p, and
z = [z]p + divp(z) · p (by Lemma 7.27).

So, z + k · p = x = [x]p + divp(x) · p. Therefore, [z]p + divp(z) · p + k · p =
[x]p + divp(x) · p. By the uniqueness part of Lemma 7.27 applied to x, [z]p =
[x]p.

Lemma 7.30. For every x, y, z, and p, there are TC0-Frege proofs of

[x + y]p = [[x]p + [y]p]p,

[x + y]p = [[x]p + y]p,

and

[x + y + z]p = [[x]p + [y]p + z]p.

Proof of Lemma 7.30. By Lemma 7.27, x = [x]p + divp(x) · p and y = [y]p +
divp(y) · p. Hence,

[x + y]p = [[x]p + [y]p + (divp(x) + divp(y)) · p]p,

and by Lemma 7.29,

[x + y]p = [[x]p + [y]p]p.

A similar argument shows that [x + y]p = [[x]p + y]p and [x + y + z]p = [[x]p + [y]p
+ z]p.

Lemma 7.31. For every z1, . . . , zm and p, there are TC0-Frege proofs of

SUM [z1, . . . , zm]p = [[z1]p + SUM [z2, . . . , zm]p]p.

Proof of Lemma 7.31. The lemma follows easily from Lemmas 7.9 and 7.30.

Lemma 7.32. For every x, y, and p, there are TC0-Frege proofs of

[x]p = [y]p −→ [x + z]p = [y + z]p.

Proof of Lemma 7.32.

[x + z]p = [[x]p + [z]p]p = [[y]p + [z]p]p = [y + z]p.

The first equality follows from Lemma 7.30, the next equality follows from the as-
sumption that [x]p = [y]p, and the third equality follows from Lemma 7.30.

Lemma 7.33. For every x, y, z, and p, there are TC0-Frege proofs of

[x + z]p = [y + z]p −→ [x]p = [y]p.
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Proof of Lemma 7.33. Assuming that [x+z]p = [y+z]p, it follows from the above
Lemma 7.32 that [x + z + (p − [z]p)]p = [y + z + (p − [z]p)]p. The left side of the
equation is equal to

[x + z + (p− [z]p)]p = [[x]p + [z]p + (p− [z]p)]p

= [[x]p + p]p

= [x]p.

The first equality follows from Lemma 7.30; the second equality follows from Lem-
mas 7.1, 7.2, and 7.3; and the third equality follows from Lemma 7.29. Similarly, it
can be shown that [y + z + (p− [z]p)]p = [y]p and thus the lemma follows.

Lemma 7.34. For every x, y, and p, there are TC0-Frege proofs of

[x · y]p = [x · [y]p]p.

Proof of Lemma 7.34.

[x · y]p = [x · ([y]p + divp(y) · p)]p
= [x · [y]p + x · divp(y) · p]p
= [x · [y]p]p,

where the last equality follows from Lemma 7.29.
Lemma 7.35. Let A,B,C be fixed numbers such that A = BC. Then for every

z, there are TC0-Frege proofs of

[z]B = [[z]A]B .

This lemma will be used in situations where A = Q and B = qi for some i. Recall
that the numbers Q, q1, . . . qt are hardwired, along with their corresponding ki, ri,
and the variables for the j · qi’s. Hence, we think of A,B,C as hardwired.

Proof of Lemma 7.35. Using Lemmas 7.27, 7.29, and 7.18, we get

[z]B = [[z]A + A · divA(z)]B = [[z]A + B · (C · divA(z))]B = [[z]A]B .

7.4. Some basic properties of iterative product.
Lemma 7.36. For every z1, . . . , zm and every fixed permutation α, there are

TC0-Frege proofs of

PROD[z1, . . . , zm] = PROD[zα(a), . . . , zα(m)].

(That is, the iterated product is symmetric.)
Proof of Lemma 7.36. The proof of this lemma is immediate from the symmetric

definition of PROD.
Lemma 7.37. For every z1, . . . , zm and every 1 ≤ k ≤ m, there are TC0-Frege

proofs of

PROD[z1, . . . , zm] = PROD[z1, . . . , zk−1, PROD[zk, . . . , zm]].

Proof of Lemma 7.37. Recall that we have hard-coded the numbers uj , such that
uj mod qj = 1 and for all i �= j, uj mod qi = 0. For all primes qj dividing Q and for
all m, 1 ≤ m ≤ qj , we can verify the following statements: [uj · m]qj = m, and for
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all i �= j, [uj ·m]qi = 0. (Note that these statements are variable-free and hence they
can be easily proven by doing a formula evaluation.)

Recall that for any k, the iterated product of the numbers zk, . . . , zm is calculated
as follows:

PROD[zk, . . . , zm] = SUM t
j=1[uj · r

[k,..,m]
j ]Q,

where r
[k,...,m]
j is computed like rj as defined in section 3.4 but using rij only for i

such that k ≤ i ≤ m.
In the same way,

PROD[z1, . . . , zk−1, PROD[zk, . . . , zm]]

= SUM t
j=1[uj · r

[1,...,k−1,[k,...,m]]
j ]Q,

where r
[1,...,k−1,[k,...,m]]
j is calculated as before by the following steps:

1. For i < k, calculate ri,j = [zi]qj , and also calculate r∗,j = PROD[zk, . . . , zm]qj .
2. For i < k, calculate ai,j such that (g

ai,j
j ) mod qj = ri,j , and also a∗,j such

that (g
a∗,j
j ) mod qj = r∗,j by table lookup.

3. Calculate c′j = SUM [a1,j , . . . , ak−1,j , a∗,j ](qj−1).

4. Calculate r
[1,...,k−1,[k,...,m]]
j such that gc

′
j mod qj = r

[1,...,k−1,[k,..,m]]
j by table

lookup.
Therefore, all we have to do is to show that

SUM t
j=1[uj · r

[1,...,m]
j ]Q = SUM t

j=1[uj · r
[1,...,k−1,[k,...,m]]
j ]Q.

Hence, all we need to do to prove Lemma 7.37 is to show the following claim.

Claim 7.38. For every j, there are TC0-Frege proofs of r
[1,...,k−1,[k,...,m]]
j =

r
[1,...,m]
j .

The first step is to prove the following claim:

Claim 7.39. There are TC0-Frege proofs of PROD[zk, . . . , zm]qj = r
[k,...,m]
j .

Claim 7.39 is proven as follows.

PROD[zk, . . . , zm]qj

= [SUM t
i=1[ui · r

[k,...,m]
i ]Q]qj = SUM t

i=1[ui · r
[k,...,m]
i ]qj

= [[uj · r[k,...,m]
j ]qj + SUMi �=j [ui · r[k,...,m]

i ]qj ]qj

= [r
[k,...,m]
j + 0]qj = r

[k,...,m]
j .

The second equality follows by Lemma 7.35; the third equality follows by Lemmas 7.31

and 7.7. To prove the fourth equality, we need to use the fact that [uj · r[k,...,m]
j ]qj =

r
[k,...,m]
j , and also for all i �= j, [ui · r[k,...,m]

i ]qj = 0. These facts can be easily proved

just by checking all possibilities for r
[k,...,m]
i (proving the statement for each possibility

is easy, because these statements are variable-free and hence they can be easily proven
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by doing a formula evaluation). In order to prove the fourth equality formally, we can

show that SUMi �=j [ui · r[k,...,m]
i ]qj equals zero by induction on the number of terms in

the sum.
We can now turn to the proof of Claim 7.38. The quantity r

[1,...,m]
j is ob-

tained by doing a table lookup to find the value equal to g
cj
j modqj , where cj =

SUMm
i=1[ai,j ](qj−1). Similarly, the quantity r

[1,...,k−1,[k,...,m]]
j is obtained by doing a

table lookup to find the value equal to g
c′j
j modqj , where

c′j = SUM [a1,j , a2,j , .., ak−1,j , a∗,j ](qj−1).

Hence, it is enough to prove that cj = c′j . Using previous lemmas,

cj = [SUMk−1
i=1 [ai,j ](qj−1) + SUMm

i=k[ai,j ](qj−1)](qj−1),

c′j = [SUMk−1
i=1 [ai,j ](qj−1) + a∗,j ](qj−1).

Thus, it suffices to show that

SUMm
i=k[ai,j ](qj−1) = a∗,j .

Recall that a∗,j is the value obtained by table lookup such that (g
a∗,j
j ) mod qj =

r∗,j , and by Claim 7.39, we have that r∗,j = r
[k,...,m]
j . Now r

[k,...,m]
j , in turn, is the

value obtained by table lookup to equal (gdj ) mod qj , where d = SUMm
i=k[ai,j ](qj−1).

Now it is easy to verify that our table lookup is one to one. That is, for every
x, y, z ≤ qj , if gxj mod qj = z, and gyj mod qj = z, then x = y. Using this property

(with x = SUMm
i=k[ai,j ](qj−1), y = a∗,j and z = r∗,j = r

[k,...,m]
j ), it follows that

SUMm
i=k[ai,j ](qj−1) = a∗,j .

7.5. The Chinese remainder theorem and other properties of iterative
product. The heart of our proof is a TC0-Frege proof for the following lemma, which
gives the hard direction of the Chinese remainder theorem (a TC0-Frege proof for the
other direction is simpler).

Lemma 7.40. Let R,S be two integers, such that for every j, [R]qj = [S]qj . Then
there are TC0-Frege proofs of

[R]Q = [S]Q,

where q1, . . . , qt are the fixed primes used for the PROD formula (i.e., the first t
primes), and Q is their product.

Proof of Lemma 7.40. Without loss of generality, we can assume that 0 ≤ R,S ≤
Q − 1, and prove that R = S. Otherwise, define R′ = [R]Q, and S′ = [S]Q, and use
Lemma 7.35 to show that for every j, [R′]qj = [S′]qj . Since 0 ≤ R′, S′ ≤ Q − 1, we
can then conclude that

[R]Q = R′ = S′ = [S]Q.

For every k, let Qk denote
∏k
j=1 qj . Note that the numbers Qk can be hard-

wired, and that one can easily prove the following statements. (These statements are
variable-free and hence they can be easily proven by doing a formula evaluation.)
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For every i, Qi+1 = Qi · qi+1.

The proof of the lemma is by induction on t (the number of qj ’s). For t = 1,
Q = q1, and the lemma is trivial. Assume therefore by the induction hypothesis that

[R]Qt−1 = [S]Qt−1 ,

and hence

[[R]Qt−1 ]qt = [[S]Qt−1 ]qt .

Denote, DR = divQt−1
[R], and DS = divQt−1 [S]. Then by Lemma 7.27,

R = DR ·Qt−1 + [R]Qt−1 ,

and

S = DS ·Qt−1 + [S]Qt−1 ,

and since we know that [R]qt = [S]qt , we have

[DR ·Qt−1 + [R]Qt−1
]qt = [DS ·Qt−1 + [S]Qt−1

]qt ,

and by [R]Qt−1 = [S]Qt−1 and Lemma 7.33,

[DR ·Qt−1]qt = [DS ·Qt−1]qt .

Since R,S are both lower than Q, it follows that DR, DS are both lower than qt.
Hence, by Claim 7.41, DR = DS . Therefore, we can conclude that

R = DR ·Qt−1 + [R]Qt−1
= DS ·Qt−1 + [S]Qt−1

= S.

Claim 7.41. For every i, there are TC0-Frege proofs of: if d1, d2 < qi, and
[d1 ·Qi−1]qi = [d2 ·Qi−1]qi ; then d1 = d2.

Proof. Since d1, d2 < qi, there are only O(log n) possibilities for d1, d2. Therefore,
one can just check all the possibilities for d1, d2. Proving the statement for each
possibility is easy, because these statements are variable-free and hence they can be
easily proven by doing a formula evaluation.

Alternatively, one can define the function f(x) = [x · Qi−1]qi , in the domain
{0, . . . , qi}, and prove that f(x) is onto the range {0, . . . , qi}. Then, by applying
the propositional pigeonhole principle, which is efficiently provable in TC0-Frege, it
follows that f is one to one.

We are now able to prove the following lemmas.

Lemma 7.42. For every z, there are TC0-Frege proofs of

PROD[z] = z.
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Proof of Lemma 7.42. Recall that PROD[z] is calculated as follows:

PROD[z] = SUM t
j=1[uj · rj ]Q,

where rj is computed by rj = [z]qj .
By Claim 7.39, for every i, PROD[z]qi = ri. We thus have for every i, PROD[z]qi =

[z]qi . The proof of the lemma now follows by Lemma 7.40.
Lemma 7.43. For every z1, z2, there are TC0-Frege proofs of

PROD[z1, z2] = z1 · z2.

Proof of Lemma 7.43. Let us prove that for every i,

[PROD[z1, z2]]qi = [z1 · z2]qi .

The proof of the lemma then follows by Lemma 7.40. By two applications of Lemma 7.34,
it is enough to prove for every i,

[PROD[z1, z2]]qi = [[z1]qi · [z2]qi ]qi .

Recall that PROD[z1, z2] is calculated as follows:

PROD[z1, z2] = SUM t
j=1[uj · r

[1,2]
j ]Q,

where r
[1,2]
j is computed like rj as defined in section 3.4. By Claim 7.39, for every i,

PROD[z1, z2]qi = r
[1,2]
i .

Recall that [z1]qi = r1,i, and [z2]qi = r2,i. Therefore, all we have to prove is that
for every i,

r
[1,2]
i = [r1,i · r2,i]qi .

By the definitions: r1,i = (g
a1,i

i ) mod qi, and r2,i = (g
a2,i

i ) mod qi, and therefore,

[r1,i · r2,i]qi = [(g
a1,i

i ) mod qi · (ga2,i

i ) mod qi]qi .

Also,

r
[1,2]
i = (g

SUM [a1,i,a2,i](qi−1)

i ) mod qi.

Therefore, one can just check all the possibilities for a1,i, a2,i.
Using the previous lemmas, we are now able to prove the following.
Lemma 7.44. For every z1, . . . , zm, every k ≤ m − 1, and every p, there are

TC0-Frege proofs of

PROD[z1, . . . , zm]p

= PROD[z1, . . . , zk, PROD[zk+1, . . . , zm]p]p

(as before, given that 2i = ki · p + ri, 0 ≤ ri < p, pi = i · p for all i).
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Proof of Lemma 7.44.

PROD[z1, . . . , zk, PROD[zk+1, . . . , zm]p]p

= PROD[PROD[z1, . . . , zk], PROD[zk+1, . . . , zm]p]p

= [PROD[z1, . . . , zk] · PROD[zk+1, . . . , zm]p]p

= [PROD[z1, . . . , zk] · PROD[zk+1, . . . , zm]]p

= PROD[PROD[z1, . . . , zk], PROD[zk+1, . . . , zm]]p

= PROD[z1, . . . , zk, PROD[zk+1, . . . , zm]]p

= PROD[z1, . . . , zk, zk+1, . . . , zm]p.

The lemmas used for each equality in turn are Lemmas 7.37, 7.43, 7.34, 7.43,
7.37, and 7.37.

We are now ready to prove Lemma 5.1: For every z1,1, . . . , zm,m′ and p, there are
TC0-Frege proofs of

PRODi,j [zi,j ]p = PRODi[PRODj [zi,j ]p]p,

(given that 2i = ki · p + ri, 0 ≤ ri < p, pi = i · p for all i).
Proof of Lemma 5.1. This lemma is proved by an iterative application of the

previous lemma.
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Abstract. We develop the first nontrivial lower bounds on the complexity of online hyperplane
and halfspace emptiness queries. Our lower bounds apply to a general class of geometric range
query data structures called partition graphs. Informally, a partition graph is a directed acyclic
graph that describes a recursive decomposition of space. We show that any partition graph that
supports hyperplane emptiness queries implicitly defines a halfspace range query data structure in the
Fredman/Yao semigroup arithmetic model, with the same asymptotic space and time bounds. Thus,
results of Brönnimann, Chazelle, and Pach imply that any partition graph of size s that supports
hyperplane emptiness queries in time t satisfies the inequality std = Ω((n/ logn)d−(d−1)/(d+1)).
Using different techniques, we improve previous lower bounds for Hopcroft’s problem—Given a set of
points and hyperplanes, does any hyperplane contain a point?—in dimensions four and higher. Using
this offline result, we show that for online hyperplane emptiness queries, Ω(nd/ polylog n) space is
required to achieve polylogarithmic query time, and Ω(n(d−1)/d/ polylog n) query time is required
if only O(n polylog n) space is available. These two lower bounds are optimal up to polylogarithmic
factors. For two-dimensional queries, we obtain an optimal continuous tradeoff st2 = Ω(n2) between
these two extremes. Finally, using a lifting argument, we show that the same lower bounds hold for
both offline and online halfspace emptiness queries in R

d(d+3)/2.

Key words. lower bounds, range searching, space-time tradeoff, partition graph
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1. Introduction. A geometric range searching data structure stores a finite
set of points so that we can quickly compute some function of the points inside an
arbitrary region of space, or query range. For example, a reporting query asks for
the list of points in the query range, and a counting query asks for their number.
Perhaps the simplest type of query is an emptiness query (also called an existential
query [6, 45]), which asks whether the query range contains any points in the set.
Emptiness query data structures have been used to solve several geometric problems,
including point location [20], ray shooting [2, 20, 41, 44], nearest and farthest neighbor
queries [2], linear programming queries [40, 11], depth ordering [25], collision detection
[19], and output-sensitive convex hull construction [40, 12].

This paper presents the first nontrivial lower bounds on the complexity of data
structures that support online emptiness queries, where the query ranges are either
arbitrary hyperplanes or arbitrary halfspaces. Most of our results take the form of
tradeoffs between space and query time; that is, we prove lower bounds on the size of
the data structure as a function of its worst-case query time, or vice versa. We also
prove tradeoffs between preprocessing time and query time. These are the first such
lower bounds for any range searching problem in any model of computation; earlier
models do not even define preprocessing time.
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1.1. Previous results. Most geometric range searching lower bounds are pre-
sented in the Fredman/Yao semigroup arithmetic model [33, 56]. In this model, the
points are given weights from a semigroup, and the goal of a range query is to deter-
mine the total weight of the points in a query region. A data structure in this model
can be informally regarded as a set of precomputed partial sums in the underlying
semigroup. The size of such a data structure is the number of partial sums, and the
query time is the minimum number of semigroup additions performed on these partial
sums to obtain the required answer. (We define the model more formally in section 2.)
Lower bounds have been established in this model for several types of query ranges
[10, 14, 16, 56], in many cases matching the complexities of the corresponding data
structures, at least up to polylogarithmic factors.

Unfortunately, emptiness queries are completely trivial in the semigroup arith-
metic model. If the query range is empty, we perform no additions; conversely, if we
perform even a single addition, the query range must not be empty. Similar argu-
ments apply to Tarjan’s pointer machine model [54], which has been used to derive
output-sensitive lower bounds for several types of reporting queries [15, 22]. In fact,
the only lower bounds previously known for hyperplane emptiness queries are essen-
tially trivial. The size of any range searching data structure must be Ω(n), since it
must store each of the points. The time to answer any range query must be at least
Ω(log n), even for a fixed one-dimensional point set, in any reasonable model of com-
putation such as algebraic decision trees [50], algebraic computation trees [8], pointer
machines [54], or real RAMs [49].1 Since there are both linear-size data structures
(with large query times) [38] and data structures with logarithmic query time (with
large space requirements) [17, 42], any better lower bound must take the form of a
tradeoff between space and time.

The only nontrivial lower bound previously known for any class of online empti-
ness queries, in any model of computation, is due to Andersson and Swanson [6].
They show that Ω(n log n/ log t) space is required to answer axis-aligned rectangular
emptiness queries in time t, in the so-called layered partition model. In particular,
Ω(n log n/ log log n) space is required to achieve polylogarithmic query time in this
model (but see [13] for better upper bounds in the integer RAM model).

Very recently, Borodin, Ostrovsky, and Rabani [9] derived lower bounds for hyper-
plane and halfspace emptiness, nearest-neighbor, point-location, and related queries
in high-dimensional spaces, in Yao’s extremely general cell probe model [57]. (See
also [46].) In the cell probe model, a data structure is an array of s cells, each
containing b bits. A query is answered by probing t of these cells in sequence; the
address of each probe may depend arbitrarily on the query and the results of previous
probes. Borodin, Ostrovsky, and Rabani show that for hyperplane queries among n
points in the d-dimensional Hamming cube {0, 1}d, either t log s = Ω(log n log d) or
tb = Ω(n1−ε) for any fixed ε > 0. Unfortunately, this lower bound is trivial for any
fixed dimension d, since it requires n � 2d. Even when the dimension is allowed to
vary, the bound is extremely weak unless the number of probes t is nearly constant.

1.2. New results. We derive our new lower bounds with respect to a general
class of geometric range query data structures called partition graphs. Informally, a

1Sublogarithmic or even constant query times can be obtained for axis-aligned rectangular queries
in models of computation that allow bit manipulation and require integer inputs within a known
bounded universe; see, for example, [4, 5, 13, 46, 47, 55]. No such result is known for nonorthogonal
ranges, however. We will take the traditional computational-geometric view that geometric objects
are represented by arbitrary real coordinates, for which bit manipulation is impossible.



1970 JEFF ERICKSON

Table 1
Best known upper bounds for online hyperplane emptiness queries.

Space Preprocessing Query Time Source

O(nd/ logd n) O(nd/ logd−ε n) O(logn) [17, 42]

O(n) O(n1+ε) O(n1−1/d) [42]

O(n) O(n logn) O(n1−1/d polylogn) [38]

n ≤ s ≤ nd/ logd n O(n1+ε + s logε n) O(n/s1/d) [17, 42]

partition graph is a directed acyclic graph that describes a recursive decomposition of
space into connected regions. This recursive decomposition provides a natural search
structure that is used both to preprocess points and to answer queries. (A formal
definition is provided in section 3.) Our model is powerful enough to describe most,
if not all, known hyperplane range searching data structures.2 Partition graphs were
originally introduced to study the complexity of Hopcroft’s problem—Given a set of
points and hyperplanes, does any hyperplane contain a point?—and similar offline
geometric searching problems [31].

We summarize our results below. In each of these results and throughout the
paper, s denotes space, p denotes preprocessing time, and t denotes worst-case query
time. For comparison, the best known upper bounds are listed in Table 1. For a
thorough overview of range searching techniques, results, and applications, see the
surveys by Matoušek [43] and by Agarwal and Erickson [1].

• Any partition graph that supports hyperplane queries requires Ω(n) space,
Ω(n log n) preprocessing time, and Ω(logn) query time.

• Any partition graph that supports hyperplane emptiness queries implicitly
defines a halfspace range query data structure in the Fredman/Yao semi-
group arithmetic model, with the same time and space bounds. Thus, re-
sults of Brönnimann, Chazelle, and Pach [10] immediately imply that std =
Ω((n/ log n)d−(d−1)/(d+1)). This lower bound applies with high probability to
a randomly generated set of points. This is the first nontrivial lower bound
for hyperplane emptiness queries in any model of computation.

• We generalize earlier lower bounds on the complexity of Hopcroft’s prob-
lem [31] for the special case of polyhedral partition graphs. Specifically, we
prove that in the worst case, the time to preprocess n points in R

d and per-
form k hyperplane emptiness queries is

Ω(n log k + n1−2/d(d+1)k2/(d+1) + n2/(d+1)k1−2/d(d+1) + k log n),

even if the query hyperplanes are specified in advance. This lower bound was
previously known in dimensions less than four and in arbitrary dimensions
for offline counting and reporting queries, for arbitrary partition graphs [31].

• The previous result implies the worst-case tradeoffs pt(d+2)(d−1)/2 = Ω(nd)
and pt2/(d−1) = Ω(n(d+2)/d). These lower bounds match known upper bounds
up to polylogarithmic factors when d = 2, p = O(n polylogn), or t =
O(polylogn) [38, 42]. These results apply to polyhedral partition graphs
when d ≥ 4 and to all partition graphs when d ≤ 3. Under a mild assumption
about the partition graphs, these bounds imply similar tradeoffs between

2Difficulties in directly modeling existing range searching data structures as partition graphs are
discussed in [31, section 3.5].
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space and query time, improving the earlier space-time tradeoffs whenever
s = Ω(nd−1) or s = O(n1+2/(d2+d)) and giving us the optimal lower bound
st2 = Ω(n2) in two dimensions.

• Finally, using a lifting argument, we show that all of these lower bounds
also apply to online and offline halfspace emptiness queries in R

d(d+3)/2, at
least for semialgebraic partition graphs. The lower bounds we obtain match
existing upper bounds up to polylogarithmic factors in dimensions 2, 3, and 5.
In most other cases, our bounds are extremely weak; nevertheless, they are an
improvement over all previous (trivial) lower bounds for halfspace emptiness
searching.

All our lower bounds for hyperplane emptiness queries in R
d also apply to hyper-

plane and halfspace counting, reporting, or semigroup queries in R
d.

We also show that lower bounds in the semigroup arithmetic model imply lower
bounds for the corresponding counting or reporting queries in the partition graph
model. Thus, any partition graph supporting halfspace counting or reporting queries
satisfies std = Ω((n/ log n)d−(d−1)/(d+1)), even in the average case. We also derive the
worst-case lower bound std(d+1)/2 = Ω(nd) for hyperplane queries in the semigroup
model (no lower bound was previously known in this model) and thus for hyperplane
counting or reporting in the partition graph model as well. Surprisingly, in two
dimensions, the lower bound st3 = Ω(n2) is tight in the semigroup model.

From a practical standpoint, our results are quite strong. Even for very simple
query ranges, and even if we only want to know whether the range is empty, range
searching algorithms based on geometric divide-and-conquer techniques cannot be
significantly faster than the näıve linear-time algorithm that simply checks each point
individually, unless the dimension is very small or we have almost unlimited storage.3

For example, answering 10-dimensional hyperplane emptiness queries in, say,
√
n

time—quite far from the desired O(log n) time bound—requires Ω(n4) space, which
is simply impossible for large data sets. In practice, we can only afford to use linear
space, and this drives the worst-case query time up to roughly n9/10. This behavior
is unfortunately not a feature of some pathological input; most of our space-time
tradeoffs hold in the average case, so in fact, most point sets are this difficult to
search. The lower bounds that do not (as far as we know) hold in the average case
apply to extremely simple point sets, such as regular lattices.

1.3. Outline. The rest of the paper is organized as follows. In section 2, we
review the definition of the semigroup arithmetic model, state a few useful results,
and derive new bounds on the complexity of hyperplane queries in this model. Sec-
tion 3 defines partition graphs, describes how they are used to answer hyperplane and
halfspace queries, and states a few of their basic properties. We prove our new space-
time tradeoff lower bounds for hyperplane emptiness queries in section 4. In section 5,
we define polyhedral covers and develop bounds on their worst-case complexity. Using
these combinatorial bounds, in section 6, we (slightly) improve earlier lower bounds on
the complexity of Hopcroft’s offline point-hyperplane incidence problem in dimensions
four and higher. From these offline results, we derive new tradeoffs between prepro-
cessing and query time for online hyperplane queries in section 7. Section 8 describes
a reduction argument that implies lower bounds for halfspace emptiness queries in
both the online and offline settings. Finally, in section 9, we offer our conclusions.

3This “curse of dimensionality” can sometimes be avoided by requiring only an approximation
of the correct output; see, for example, [7, 24, 37].
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2. Semigroup arithmetic.

2.1. Definitions. We begin by reviewing the definition of the semigroup arith-
metic model, originally introduced by Fredman to study dynamic range searching
problems [33] and later refined for the static setting by Yao [56].

A semigroup (S,+) is a set S equipped with an associative addition operator
+ : S × S → S. A semigroup is commutative if the equation x+ y = y + x is true
for all x, y ∈ S. A linear form is a sum of variables over the semigroup, where each
variable can occur multiple times, or equivalently, a homogeneous linear polynomial
with positive integer coefficients. A commutative semigroup is faithful if any two
identically equal linear forms have the same set of variables, although not necessarily
with the same set of coefficients.4 For example, (Z,+) and ({true, false},∨) are faithful
semigroups, but ({0, 1},+ mod 2) is not faithful.

A semigroup is idempotent if x+x = x for all semigroup elements x, and integral
if x �= αx for all semigroup elements x and all integers α > 1. For example, the semi-
groups ({true, false},∨) and (Z,max) are idempotent, (Z,+) and (R,×) are integral,
and (C,×) is neither. (All these semigroups are faithful.)

Let P be a set of n points in R
d, let (S,+) be a faithful commutative semigroup,

and let w : P → S be a function that assigns a weight w(p) to each point p ∈ P .
For any subset P ′ ⊆ P , let w(P ′) =

∑
p∈P ′ w(P ), where addition is taken over the

semigroup.5 The range searching problem considered in the semigroup model is to
preprocess P so that w(P ∩ q) can be calculated quickly for any query range q.

Let x1, x2, . . . , xn be a set of n variables over S. A generator g(x1, . . . , xn) is a
linear form

∑n
i=1 αixi, where the αi’s are nonnegative integers, not all zero. Given a

class Q of query ranges (subsets of R
d), a storage scheme for (P,Q, S) is a collection

of generators {g1, g2, . . . , gs} with the following property: For any query range q ∈ Q,
there is a set of indices Iq ⊆ {1, 2, . . . , s} and an indexed set of nonnegative integers
{βi | i ∈ Iq} such that

w(P ∩ q) =
∑
i∈Iq

βigi(w(p1), w(p2), . . . , w(pn))

holds for any weight function w : P → S. The size of the smallest such set Iq is the
query time for q.

We emphasize that although a storage scheme can take advantage of special prop-
erties of the semigroup S or the point set P , it must work for any assignment of
weights to P . In particular, this implies that lower bounds in the semigroup model
do not apply to the problem of counting the number of points in the query range,
even though (Z,+) is a faithful semigroup, since a storage scheme for that problem
only needs to work for the particular weight function w(p) = 1 for all p ∈ P [14].
For the same reason, even though the semigroups ({true, false},∨) and (2P ,∪) are
faithful, the semigroup model cannot be used to prove lower bounds for emptiness

4More formally, (S,+) is faithful if for each n > 0, for any sets of indices I, J ⊆ {1, . . . , n} where
I �= J , and for all indexed sets of positive integers {αi | i ∈ I} and {βj | j ∈ J}, there are semigroup
elements s1, s2, . . . , sn ∈ S such that

∑
i∈I

αisi �=
∑
j∈J

βjsj .

5Since S need not have an identity element, we may need to assign a special value nil to the
empty sum w(∅).
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or reporting queries. Emptiness queries can also be formulated as queries over the
one-element semigroup ({∗}, ∗+ ∗ = ∗), but this semigroup is not faithful.

For any linear form
∑n

1=1 αixi, we call the set of points {pi | αi �= 0} its cluster.
The faithfulness of the semigroup S implies that the union of the clusters of the
generators used to determine w(P ∩ q) is precisely P ∩ q (since each αi > 0):

⋃
i∈Iq

cluster(gi) = P ∩ q.

Thus, we can think of a storage scheme as a collection of clusters, such that any set
of the form P ∩ q can be expressed as the (not necessarily disjoint) union of several of
these clusters. The size of a storage scheme is the number of clusters, and the query
time for a range q is the minimum number of clusters whose union is P ∩ q. This
is the formulation actually used to prove lower bounds in the semigroup arithmetic
model6 [10, 14, 16, 56].

Whether or not the clusters used to answer a query must be disjoint depends
on the semigroup. If the semigroup is integral, the clusters must be disjoint for
every query; on the other hand, if the semigroup is idempotent, clusters can overlap
arbitrarily. Thus, upper bounds developed for integral semigroups and lower bounds
developed for idempotent semigroups apply to all other semigroups as well.

Some of our lower bounds derive from the following result.
Theorem 2.1 (see Brönnimann, Chazelle, Pach [10]). Let P be a uniformly dis-

tributed set of points in the d-dimensional unit hypercube [0, 1]d. With high probability,
any storage scheme of size s that supports halfspace queries over P in time t satisfies
the inequality std = Ω((n/ log n)d−(d−1)/(d+1)).

2.2. Unreasonably good bounds for hyperplane queries. Although lower
bounds are known for offline hyperplane searching in the semigroup model [18, 31],
we are unaware of any previous results for online hyperplane queries. In particular,
Chazelle’s lower bound std = Ω(nd/ logd n) for simplex range searching [14], which
holds when the query ranges are slabs bounded by two parallel hyperplanes, does
not apply when the ranges are hyperplanes; Chazelle’s proof requires a positive lower
bound on the width of the slabs.

We easily observe that for any set of points in general position, the smallest
possible storage scheme, consisting of n singleton sets, allows hyperplane queries to
be answered correctly in constant “time.” We can obtain better lower bounds by
considering degenerate point sets, as follows.

First consider the two-dimensional case. Let C be (the set of clusters associated
with) an optimal storage scheme of size s that supports line queries for some n-point
set P in the plane. The storage scheme C must contain n singleton sets, one containing
each point in P . Without loss of generality, each of the other s− n clusters in C is a
maximal colinear subset of P ; that is, each has the form P ∩ � for some line �. (If a
cluster contains three noncolinear points, it can be discarded. If a cluster contains at
least two points on a line �, but not every point on �, then adding the missing points
decreases the query time for � without changing the number of clusters or the query
time for any other line.) Thus, the query time for any line � is 1 if P ∩ � ∈ C, and
|P ∩ �| otherwise. It follows that an optimal storage scheme of size s consists of n
singleton sets plus the s−n largest maximal colinear subsets of P , and the worst-case
query time is the size of the (s− n+ 1)th largest maximal colinear subset of P .

6Despite the complete absence of both semigroups and arithmetic!
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Theorem 2.2. A storage scheme of size s ≥ 2n that supports line queries in
time t satisfies the inequality st3 = Ω(n2) in the worst case.

Proof. Let P be a
√
n×

√
n integer lattice of points. Erdős showed that for any

integer k, there is a set of k lines L such that the number of point-line incidences
between P and L is Ω(n2/3k2/3); see [33] or [48, p. 177]. In particular, we can
take L to be the lines containing the k largest colinear subsets of P . Erdős’s lower
bound implies that the kth largest maximal colinear subset of P contains at least
Ω(n2/3/k1/3) points. Thus, the worst-case query time for any storage scheme of size
s is Ω(n2/3/(s− n+ 1)1/3) = Ω(n2/3/s1/3).

Surprisingly, this lower bound is optimal for most values of s.

Theorem 2.3. For any set P of n points in the plane and any integer s with
2n ≤ s ≤ n2, there is a storage scheme of size s that supports line queries for P in
time t, where st3 = O(n2).

Proof. Szemerédi and Trotter [53] proved that there are at mostO(n+n2/3k2/3+k)
incidences between any set of n points and any set of k lines. (See also [19, 52].)
Thus, for any k in both Ω(

√
n) and O(n2), the kth largest maximal colinear subset of

any n-point set has at most O(n2/3/k1/3) elements. The theorem follows by setting
k = s− n+ 1.

In order to derive bounds in higher dimensions, we focus our attention on re-
stricted point sets [35], in which any d points lie on a unique hyperplane. The optimal
storage scheme for a restricted point set again consists of n singleton sets plus the
s − n largest subsets of the form P ∩ h for some hyperplane h, and the worst-case
query time is the size of the (s−n+1)th largest subset of the form P ∩h. Of course,
lower bounds for restricted point sets also apply to the general case, but the upper
bounds do not similarly generalize.

Given a set P of points and a set H of hyperplanes, let I(P,H) denote the number
of incidences between P and H, that is, point-hyperplane pairs (p, h) ∈ P ×H such
that p ∈ h. Our higher-dimensional lower bounds, both here and later in the paper,
use the following generalization of the Erdős point-line construction.

Lemma 2.4 (see Erickson [31]). For any integers n and k with n > �k1/d�,
there is a restricted set P of n points and a set H of k hyperplanes in R

d, such that
I(P,H) = Ω(n2/(d+1)k1−2/d(d+1)).

Theorem 2.5. A storage scheme of size s that supports d-dimensional hyperplane
queries in time t satisfies the inequality std(d+1)/2 = Ω(nd) in the worst case.

Using probabilistic counting techniques of Clarkson et al. [23], Guibas, Overmars,
and Robert [35] prove that for any restricted set P of n points and any set H of k
hyperplanes, I(P,H) = O(n+nd/(2d−1)k(2d−2)/(2d−1)+k). The following upper bound
follows immediately from their result.

Theorem 2.6. For any restricted set P of n points in R
d and any integer s such

that 2n ≤ s ≤ nd, there is a storage scheme of size s that supports hyperplane queries
for P in time t, where st2d−1 = O(nd).

The general case is unfortunately not so straightforward. Optimal storage schemes
could have clusters contained in lower-dimensional flats, in which case the query time
for a hyperplane h is no longer necessarily either 1 or |P ∩ h|. If the semigroup is
idempotent, every cluster in an optimal storage scheme still has the form P ∩ h for
some hyperplane h, but this may not be true for all semigroups. We leave further
generalization of our upper bounds as an open problem.

Except when s is near nd, our upper bounds in the semigroup model are signifi-
cantly better than the best known upper bounds in more realistic models of computa-
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tion. The most efficient data structure known satisfies the upper bound std = O(nd)
[17, 42], and this is believed to be optimal, especially in light of Chazelle’s simplex
range searching lower bounds. We are not suggesting that this data structure can be
significantly improved, but rather that the semigroup model is too powerful to permit
tight lower bounds for this range searching problem. This raises the frustrating possi-
bility that closing the existing gaps between upper and lower bounds for other types of
ranges, such as halfspaces [10], will be impossible unless more realistic computational
models are considered.

In the remainder of this paper, we derive tighter lower bounds by considering
a model that more accurately describes the behavior of geometric range searching
algorithms.

3. Partition graphs.

3.1. Definitions. A partition graph is a directed acyclic (multi-)graph, with one
source, called the root, and several sinks, called leaves. Associated with each nonleaf
node v is a set Rv of query regions satisfying three conditions.

1. Rv contains at most ∆ query regions, for some constant ∆ ≥ 2.
2. Every query region is a connected subset of R

d.
3. The union of the query regions in Rv is R

d.
We associate an outgoing edge of v with each query region in Rv. Thus, the outdegree
of the graph is at most ∆. The indegree can be arbitrarily large. In addition, every
internal node v is labeled either a primal node or a dual node, depending on whether
its query regions Rv are interpreted as a partition of primal or dual space. The query
regions associated with primal (resp., dual) nodes are called primal (resp., dual) query
regions.

We do not require the query regions to be disjoint. In the general case, we do not
require the query regions to be convex, semialgebraic, simply connected, of constant
complexity, or even computable in any sense. However, a few of our results only hold
for partition graphs with particular types of query regions. If all the query regions in
a partition graph are constant-complexity polyhedra, we call it a polyhedral partition
graph. If all the query regions are constant-complexity semialgebraic sets (also called
Tarski cells), we call it a semialgebraic partition graph.

Given a partition graph, we preprocess a set P of points for hyperplane queries
as follows. We preprocess each point p ∈ P individually by performing a depth-first
search of the partition graph, using the query regions to determine which edges to
traverse. Whenever we reach a primal node v, we traverse the edges corresponding
to the query regions in Rv that contain p. Whenever we reach a dual node v, we
traverse the edges corresponding to the query regions in Rv that intersect the dual
hyperplane p∗. The same point may enter or leave a node along several different edges,
but we only test the query regions at a node once for each point. Thus, each point
traverses a given edge at most once. For each leaf �, we maintain a leaf subset P�
containing the points that reach �. See Figure 1(a).

To answer a hyperplane query, we use almost exactly the same algorithm as to
preprocess a point: a depth-first search of the partition graph, using the query regions
to determine which edges to traverse. The only difference is that the behavior at the
primal and dual nodes is reversed. See Figure 1(b).

Whenever the query algorithm reaches a leaf �, it examines the corresponding leaf
subset P�. The output of the query algorithm is computed from the examined subsets,
by assuming that the query hyperplane contains each examined subset. For example,
the output of an emptiness query is “yes” if and only if all the examined subsets are
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Preprocess(p):

at each primal node v:
for each query region R ∈ Rv :

if R contains p:
traverse the edge corresponding to R

at each dual node v:
for each query region R ∈ Rv :

if R intersects p∗:
traverse the edge corresponding to R

at each leaf �:
add p to P�

Query(h):

at each dual node v:
for each query region R ∈ Rv :

if R contains h∗:
traverse the edge corresponding to R

at each primal node v:
for each query region R ∈ Rv :

if R intersects h:
traverse the edge corresponding to R

at each leaf �:
examine P�

(a) (b)

Fig. 1. Preprocessing and query algorithms for hyperplane searching.

empty. (In fact, we can assume that if the algorithm ever examines a nonempty leaf
subset, it immediately halts and answers “no.”) The output of a counting query is
the sum of the sizes of the examined subsets; here, examining a leaf subset means
adding its size to a running counter. The output of a reporting query is the union
of the examined subsets; here, “examine” simply means “output.” More generally, if
the points are given weights from a (not necessarily faithful) semigroup (S,+), the
output is the semigroup sum over all examined subsets P� of the total weight of the
points in P�. (We will not explicitly consider semigroup queries in the rest of the
paper.)

By modifying the preprocessing algorithm slightly, we can also use partition
graphs to answer halfspace queries. For any hyperplane h, let h+ denote its closed
upper halfspace and h− its closed lower halfspace.7 Recall that the standard duality
transformation (a1, a2, . . . , ad) ←→ xd+ ad = a1x1 + a2x2 + · · ·+ ad−1xd−1 preserves
incidences and relative orientation between points and hyperplanes: If a point p is
above (on, below) a hyperplane h, then the dual point h∗ is above (on, below) the
dual hyperplane p∗.

To support halfspace queries, we associate one or two subsets of P with every
query region, called internal subsets. With each primal region R ∈ Rv, we associate
a single internal subset PR, which contains the points that reach v and lie inside R.
With each dual region R ∈ Rv, we associate two internal subsets P+

R and P−
R , which

contain the points that reach v and whose dual hyperplanes lie below and above R,
respectively. Our modified preprocessing and halfspace query algorithms are shown
in Figure 2. Note that the modified preprocessing algorithm can still be used for
hyperplane searching.

For purposes of proving lower bounds, the size of a partition graph is the number
of edges in the graph, the query time for a particular hyperplane is the number of
edges traversed by the query algorithm, and the preprocessing time is the total number
of edge traversals during the preprocessing phase. We ignore, for example, the time
required in practice to construct the graph, the complexity of the query regions, the
time required to determine which query regions intersect a hyperplane or contain a
point, the sizes of the subsets PR, P

+
R , P−

R , and P�, the time required to maintain and
test these subsets, and the size of the output (in the case of reporting queries).

7We assume throughout the paper that query halfspaces are closed and that no query halfspace
is bounded by a vertical hyperplane. Handling open halfspaces involves only trivial modifications
to our query algorithm, which have almost no effect on our analysis. Vertical halfspace queries can
be handled either through standard perturbation techniques or by using a lower-dimensional data
structure.
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Preprocess(p):

at each primal node v:
for each query region R ∈ Rv :

if R contains p:
add p to PR

traverse the edge corresponding to R

at each dual node v:
for each query region R ∈ Rv :

if R intersects p∗:
traverse the edge corresponding to R

else if R is above p∗:

add p to P+
R

else if R is below p∗:

add p to P−
R

at each leaf �:
add p to P�

Query(h±):

at each dual node v:
for each query region R ∈ Rv :

if R contains h∗:

examine P±
R

traverse the edge corresponding to R

at each primal node v:
for each query region R ∈ Rv :

if h intersects R:
traverse the edge corresponding to R

else if h± contains R:
examine PR

at each leaf �:
examine P�

(a) (b)

Fig. 2. Modified preprocessing algorithm and query algorithm for halfspace searching.

We emphasize that since we never charge for the construction of the partition
graph itself, the graph and its query regions can depend arbitrarily on the input point
set P and on the types of queries we expect to receive. Our preprocessing algorithm
has “time” to construct the optimal partition graph for any given input, and even
very similar inputs may result in radically different partition graphs.

We will also consider offline range searching problems, where we are given both
a set P of points and a set H of ranges (either hyperplanes or halfspaces), and are
asked, for example, whether any range contains a point. A partitioning algorithm
constructs a partition graph, which can depend arbitrarily on the input, preprocesses
each point in P , and performs a query for each range in H. The running time of
the partitioning algorithm is the sum of the preprocessing and query times. In the
original definition [31], the preprocessing and queries were performed concurrently,
but this has no effect on the overall running time.8 Again, since we ignore the time
required in practice to construct the partition graph, partitioning algorithms have the
full power of nondeterminism.

3.2. Basic properties. Partition graphs have several properties that are very
useful in proving lower bounds.

Lemma 3.1. In any partition graph, if a point lies in a query range, it also lies
in at least one of the subsets PR, P

+
R , P

−
R , or P� examined during a query.

Proof. First suppose some point p lies on some hyperplane h. Clearly, any primal
query region that contains p also intersects h, and any dual query region that con-
tains h∗ also intersects p∗. Thus, there is at least one path from the root to a leaf �
that is traversed both while preprocessing p (so p ∈ P�) and while querying h (so P�
is examined).

Now suppose some point p lies in some upper halfspace h+. (The argument for
lower halfspaces is symmetric.) Let v be a node farthest from the root that is reached
both while preprocessing p and while querying h+. If v is a leaf, we are done. If v is
a primal node, then some query region R ∈ Rv contains p but does not intersect h.

8However, if we perform all the searches concurrently using the streaming technique of Edels-
brunner and Overmars [28], we only need to maintain a single root-to-leaf path in the graph at any
time. Thus, the space used by an offline partitioning algorithm is more reasonably modeled by the
depth of its partition graph. We will not pursue this idea further in this paper.
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Since p ∈ R, the subset PR contains p, and since p ∈ h+, R must lie above h, so PR
is examined. Finally, if v is a dual node, some query region R ∈ Rv contains the dual
point h∗ but does not intersect the dual hyperplane p∗. Since h∗ ∈ R, the subset P+

R

is examined. Since p ∈ h+, the dual point h∗ and thus the query region R lie above
the dual hyperplane p∗, so p ∈ P+

R .

Lemma 3.2. In any partition graph, if an internal subset PR, P
+
R , or P

−
R is

examined during a halfspace query, then the query halfspace contains every point in
that set.

Proof. Suppose we are performing a query for the upper halfspace h+. (Again,
the argument for lower halfspaces is symmetric.) If the primal subset PR is examined,
then PR ⊂ R ⊆ h+. If the dual subset P+

R is examined, then every point p ∈ P+
R is

above the hyperplane h, since the dual point h∗ ∈ R is above each dual hyperplane
p∗.

Lemma 3.1 implies that partition graphs are “conservative”—the output of a
reporting query contains every point in the query range, the output of a counting
query is never smaller than the actual number of points in the query range, and an
emptiness query never reports that a nonempty query range is empty. Lemma 3.2
further implies that the output of a query can be incorrect only if the query algorithm
examines a leaf subset that contains a point outside the query range.

The following lemma follows immediately from a close examination of the query
algorithm.

Lemma 3.3. A counting query is correct if and only if the points in the query range
are the disjoint union of the subsets examined by the query algorithm. A reporting
query is correct if and only if the points in the query range are the (not necessarily
disjoint) union of the subsets examined by the query algorithm.

We say that a partition graph supports a particular class of online range queries
for a given set of points if, after the points are preprocessed, any query in the class is
answered correctly. Even though we have a single preprocessing algorithm, a single
partition graph need not support all query types. However, in several cases, support
for one type of query automatically implies support for another type of query, with the
same (or possibly smaller) worst-case query time. These implications are summarized
in the following lemma.

Lemma 3.4. The following hold for any partition graph.

(a) If a counting query is answered correctly, then a reporting query for the same
range is also answered correctly.

(b) If a reporting query is answered correctly, then an emptiness query for the
same range is also answered correctly.

(c) For any hyperplane h, if counting (resp. reporting) queries for the halfspaces
h+ and h− are answered correctly, then a counting (resp., reporting) query
for h is also answered correctly.

(d) For any hyperplane h, if a reporting query for h is answered correctly, then
reporting queries for the halfspaces h+ and h− are also answered correctly.

Proof. Parts (a) and (b) follow immediately from Lemma 3.3.

Fix a hyperplane h, and let P+ = P ∩h+, P− = P ∩h−, and P ◦ = P ∩h. Suppose
reporting queries for the halfspaces h+ and h− are answered correctly. The reporting
query algorithms for h+, h−, and h traverse precisely the same set of edges and reach
precisely the same set of nodes. Let L be the set of leaves reached by any of these
three queries, and let PL =

⋃
�∈L P�. By Lemma 3.3, both P+ and P− are reported

as the union of several internal subsets and PL. It follows that PL ⊆ P+ ∩ P− = P ◦.
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Lemma 3.1 implies that every point in P ◦ lies in some leaf subset P� where � ∈ L,
so P ◦ ⊆ PL. Thus, a reporting query for h is also answered correctly. The argument
for counting queries is identical, except that the examined subsets are disjoint. This
proves part (c).

To prove part (d), suppose a reporting query for h is answered correctly. A report-
ing query for the halfspace h+ traverses exactly the same edges and visits exactly the
same nodes as the reporting query for h. In particular, the leaf subsets P� examined
by the halfspace query algorithm contain only points on the hyperplane h. Lemma
3.2 implies that every internal subset examined by the reporting query algorithm lies
in h+, and Lemma 3.1 implies that every point in P+ lies in some examined subset.
It follows that precisely the points in P+ are reported.

3.3. “Trivial” lower bounds. We conclude this section by proving “trivial”
lower bounds on the size, preprocessing time, and query time of any partition graph,
for points in any dimension.

Theorem 3.5. Any partition graph that supports hyperplane emptiness queries
has size Ω(n), preprocessing time Ω(n log n), and worst-case query time Ω(log n).

Proof. Let P be an arbitrary set of n points in R
d. Without loss of generality, all

the points in P have distinct xd coordinates; otherwise, rotate the coordinate system
slightly. Let H be a set of n hyperplanes normal to the xd-axis, with each hyperplane
just above (farther in the xd-direction than) one of the points in P . Thus, for all
1 ≤ i ≤ n, there is a hyperplane in H with i points below it and n− i points above it.
Any partition graph that correctly answers hyperplanes queries for P must at least
detect that every hyperplane in H is empty.

For each point in P , call the hyperplane in H just above it its partner. We say
that a point is active at a node v of the partition graph if both the point and its
partner reach v. We say that a node v deactivates a point p if both p and its partner
h reach v but no edge out of v is traversed by both p and h. Every point in P must be
deactivated by some node in the partition graph, since otherwise some active point p
and its partner h would reach a common leaf, so a query for h would be answered
incorrectly.

Any primal query region R contains at most one active point whose partner does
not intersect R. Similarly, for any dual query region R, there is at most one active
point whose dual hyperplane misses R and whose partner’s dual point lies in R. Thus,
any node deactivates at most ∆ points. Moreover, since every point in P must be
deactivated, the partition graph must have at least n query regions and thus at least
n edges.

The level of a node is its distance from the root. There are at most ∆k nodes
at level k. At least n −

∑k−1
i=0 ∆k+1 ≥ n − ∆k+2 points are active at some node at

level k. In particular, at least n(1 − 1/∆) points are active at level �log∆ n − 3�. It
follows that at least n(1− 1/∆) points in P each traverse at least �log∆ n− 2� edges,
so the total preprocessing time is at least

n(1− 1/∆)�log∆ n− 2� = Ω(n log n).

Similarly, at least n(1 − 1/∆) hyperplanes in H each traverse at least �log∆ n − 2�
edges, so the worst-case query time is Ω(log n).

Lemma 3.4 implies that the same lower bounds also apply to counting and report-
ing queries, both for hyperplanes and for halfspaces. Theorem 3.5 also implies that
any partitioning algorithm, given n points and k hyperplanes (or halfspaces, if we are
not performing emptiness queries), requires at least Ω(n log k + k log n) time in the
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worst case; this was previously proved in [31], using essentially the same argument.
We will prove similar lower bounds for halfspace emptiness queries in section 8.

4. Space-time tradeoffs. We now present our space-time tradeoff lower bounds
for hyperplane emptiness and related queries in the partition graph model. All of
these bounds are derived from results in the semigroup arithmetic model, which we
described in section 2, using the following theorem.

Theorem 4.1. Let P be a set of points. Given a partition graph of size s that
supports hyperplane (resp., halfspace) counting or reporting queries for P in time t, we
can construct a storage scheme of size O(s) that supports hyperplane (resp., halfspace)
queries for P , over any idempotent faithful semigroup, in time O(t).

Proof. For each query region R and leaf �, define the subsets PR, P
−
R , P+

R , and
P� by the preprocessing algorithm in Figure 2. We claim that these subsets of P form
the clusters of the required storage scheme. There are at most 3s of these clusters: at
most two for each of the s query regions, plus one for each of the ≤ s leaves. To prove
the theorem, it suffices to show that the points in any query range can be expressed
as the union of O(t) clusters.

Suppose the partition graph supports hyperplane reporting queries. By Lemma
3.3, the points on any hyperplane h are reported as the union of several leaf subsets P�.
Since the query algorithm reaches at most t leaves, the set P ∩ h is the union of at
most t clusters.

Similarly, if the partition graph supports halfspace reporting queries, then the
points in any halfspace h± are reported as the union of at most t subsets PR, at most
∆t subsets P±

R , and at most t subsets P�. Thus, the set P ∩ h± is the union of at
most (2 + ∆)t = O(t) clusters.

The argument for counting queries is identical, except that the O(t) clusters used
to answer any query are disjoint. (In fact, the resulting storage scheme works for any
faithful semigroup.)

This theorem implies that lower bounds for range queries in the semigroup arith-
metic model are also lower bounds for the corresponding counting and reporting
queries in the partition graph model. The following results now immediately follow
from Theorems 2.1 and 2.5.

Corollary 4.2. Let P be a uniformly generated set of n points in [0, 1]d. With
high probability, any partition graph of size s that supports halfspace counting or re-
porting queries for P in time t satisfies the inequality std = Ω((n/ log n)d−(d−1)/(d+1)).

Corollary 4.3. Any partition graph of size s that supports d-dimensional hyper-
plane counting or reporting queries in time t satisfies the inequality std(d+1)/2 = Ω(nd)
in the worst case.

One way to determine if a hyperplane is empty is by counting or reporting the
points in its two halfspaces—the hyperplane is empty if any only if every point in the
original point set is counted or reported exactly once. Thus, any halfspace counting or
reporting data structure also supports hyperplane emptiness queries. The following
result implies that the reverse is almost true in our model of computation.

Theorem 4.4. Let P be a set of points. Given a partition graph of size s that
supports hyperplane emptiness queries for P in time t, we can construct a storage
scheme of size O(s) that supports halfspace queries for P , over any idempotent faithful
semigroup, in time O(t).

Proof. Suppose a partition graph G supports hyperplane emptiness queries for the
set P in time t. Clearly, G also supports reporting queries for any empty hyperplane in
time t, since all the examined subsets are empty. Then by Lemma 3.4 (d), G correctly
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answers any halfspace reporting query in time at most t, provided the boundary of the
query halfspace is empty. However, for any halfspace, there is another halfspace with
empty boundary that contains precisely the same points. It follows that every set of
the form P ∩ h+ or P ∩ h− can be expressed as the union of at most (2 +∆)t = O(t)
internal subsets.

The following lower bound now follows immediately from Theorem 2.1.
Corollary 4.5. Let P be a uniformly generated set of n points in [0, 1]d. With

high probability, any partition graph of size s that supports hyperplane emptiness
queries for P in time t satisfies the inequality std = Ω((n/ log n)d−(d−1)/(d+1)).

Lemma 3.4 implies that the same lower bound applies to hyperplane counting
or reporting queries. This improves the lower bound in Corollary 4.3 whenever s =
O(nd−1) or t = Ω(n2/d(d+1)). Similarly, this lower bound also applies to halfspace
counting or reporting queries, giving us a rather roundabout proof of Corollary 4.2.
However, none of these results applies immediately to halfspace emptiness queries; we
will derive lower bounds for these queries in section 8.

5. Polyhedral covers.

5.1. Definitions. In order to derive our improved offline lower bounds and
preprocessing-query time tradeoffs, we first need to define a combinatorial object
called a polyhedral cover. The formal definition is fairly technical, but intuitively, one
can think of a polyhedral cover of a set P of points and a set H of hyperplanes as a
collection of constant-complexity convex polytopes such that for every point p ∈ P
and hyperplane h ∈ H, some polytope in the collection contains p and does not in-
tersect h. A polyhedral cover of P and H provides a compact representation of the
relative orientation of every point in P and every hyperplane in H.

Our combinatorial bounds rely heavily on certain properties of convex polytopes
and polyhedra. Many of these properties are more easily proved, and have fewer spe-
cial cases, if we state and prove them in projective space rather than affine Euclidean
space. In particular, developing these properties in projective space allows us to more
easily deal with unbounded polyhedra, degenerate polyhedra, and duality transfor-
mations. Everything we define in this subsection can be formalized algebraically in
the language of polyhedral cones and linear subspaces one dimension higher; we will
give a less formal, purely geometric treatment. For more technical details, we refer
the reader to the first two chapters of Ziegler’s lecture notes [58] or to the survey by
Henk, Richter-Gebert, and Ziegler [36].

The d-dimensional real projective space RP
d can be defined as the set of lines

through the origin in the (d + 1)-dimensional real vector space R
d+1. Every k-

dimensional linear subspace of R
d+1 induces a (k − 1)-dimensional flat f in RP

d,
and its orthogonal complement induces the (d− k− 1)-dimensional dual flat f∗. Hy-
perplanes are (d− 1)-dimensional flats, points are 0-dimensional flats, and the empty
set is the unique (−1)-flat.

Any finite setH of (at least two) hyperplanes in RP
d defines a regular cell complex

called an arrangement, each of whose cells is the closure of a maximal connected subset
of RP

d contained in the intersection of a fixed subset of H and not intersecting any
other hyperplane in H. The largest cells in the arrangement are the closures of the
connected components of RP

d \
⋃
H; the intersection of any pair of cells is another

cell of lower dimension.
A projective polyhedron is a single cell, not necessarily of full dimension, in an

arrangement of hyperplanes in RP
d. A projective polytope is a simply-connected poly-

hedron, or equivalently, a polyhedron that is disjoint from some hyperplane (not
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necessarily in the polyhedron’s defining arrangement). Every projective polyhedron
is (the closure of) the image of a convex polyhedron under some projective transfor-
mation, and every projective polytope is the projective image of a convex polytope.
Every flat is also a projective polyhedron.

The (projective) span of a polyhedron Π ⊆ RP
d, denoted span(Π), is the flat of

minimal dimension that contains it. The dimension of a polyhedron is the dimension
of its span. The relative interior (resp., relative boundary) of a polyhedron is its
interior (resp., boundary) in the subspace topology of its span. A hyperplane supports
a polyhedron if it intersects the polyhedron but not its relative interior. In particular,
a flat has no supporting hyperplanes.

A proper face of a polyhedron is the intersection of the polyhedron and one or more
supporting hyperplanes. Every proper face of a polyhedron is a lower-dimensional
polyhedron. A face of a polyhedron is either a proper face or the entire polyhedron.
We write |Π| to denote the number of faces of a polyhedron Π, and φ ≤ Π to denote
that φ is a face of Π. The faces of a polyhedron form a graded lattice under inclusion.
Every projective polyhedron has a face lattice isomorphic to that of a convex polytope,
possibly of lower dimension.

The dual of a polyhedron Π, denoted Π∗, is the set of points whose dual hyper-
planes intersect Π in one of its faces:

Π∗ �
= {p | (p∗ ∩Π) ≤ Π}.

In other words, p ∈ Π∗ if and only if p∗ either contains Π, supports Π, or completely
misses Π. This definition generalizes both the polar of a convex polytope containing
the origin and the projective dual of a flat. We easily verify that Π∗ is a projective
polyhedron whose face lattice is the inverse of the face lattice of Π. In particular,
Π and Π∗ have the same number of faces. See [58, pp. 59–64] and [51, pp. 143–150]
for similar definitions.

We say that a polyhedron Π separates a set P of points and a set H of hyper-
planes if Π contains P and the dual polyhedron Π∗ contains the dual points H∗, or
equivalently, if any hyperplane in H either contains Π or is disjoint from its relative
interior. In particular, if Π is of full dimension, then the hyperplanes in H avoid the
interior of Π. Both P and H may intersect the relative boundary of Π, and points
in P may lie on hyperplanes in H. See Figure 3. Note that Π separates P and H if
and only if Π∗ separates H∗ and P ∗. We say that P and H are r-separable, denoted
P %&r H, if there is a projective polyhedron with at most r faces that separates them.
We write P �%&r H if P and H are not r-separable.

Finally, an r-polyhedral cover of a set P of points and a set H of hyperplanes is
an indexed set of subset pairs {(Pi, Hi)} with the following properties.

• Pi ⊆ P and Hi ⊆ H for all i.
• If p ∈ P and h ∈ H, then p ∈ Pi and h ∈ Hi for some i.
• Pi %&r Hi for all i.

We emphasize that the subsets Pi are not necessarily disjoint, nor are the subsets Hi.
We refer to each subset pair (Pi, Hi) in a polyhedral cover as a r-polyhedral minor.
The size of a cover is the sum of the sizes of the subsets Pi and Hi.

Let πr(P,H) denote the size of the smallest r-polyhedral cover of P and H. Let
π◦d,r(n, k) denote the maximum of πr(P,H) over all sets P of n points and H of k

hyperplanes in RP
d, such that no point lies on any hyperplane. In all our terminology

and notation, whenever the parameter r is omitted, we take it to be a fixed constant.
In the remainder of this section, we derive asymptotic lower bounds for π◦d(n, k).
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Fig. 3. A polygon separating a set of points and a set of lines in RP
2.

5.2. Topological properties. The lower bound proofs in [31] relied on the
following trivial observation: If we perturb a set of points and hyperplanes just enough
to remove any point-hyperplane incidences, and every point is above every hyperplane
in the perturbed set, then no point was below a hyperplane in the original set. In this
section, we establish the corresponding, but no longer trivial, property of separable
sets and polyhedral covers. Informally, if a set of points and hyperplanes is not
separable, then arbitrarily small perturbations cannot make it separable. Similarly,
arbitrarily small perturbations of a set of points and hyperplanes cannot decrease its
minimum polyhedral cover size.

We start by proving a more obvious property of convex polytopes, namely, that
infinitesimally perturbing a set of points can only increase the complexity of its convex
hull.

Lemma 5.1. For any integers n and r, the set of n-point configurations in R
d

whose convex hulls have at most r faces is topologically closed.
Proof. Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} be two n-point configu-

rations (i.e., indexed sets of n points) in R
d. We say that A is simpler than B, written

A � B, if for any subset of B contained in a facet of conv(B), the corresponding sub-
set of A is contained in a facet of conv(A).9 Equivalently, A � B if and only if for
any subset of d + 1 points in B, d of whose vertices lie on a facet of conv(B), the
corresponding simplex in A either has the same orientation or is degenerate. Simpler
point sets have less complex convex hulls: if A � B, then |conv(A)| ≤ |conv(B)|.
If both A � B and B � A, then the convex hulls of A and B are combinatorially
equivalent.

If B is fixed, then the relation A � B can be encoded as the conjunction of a
finite number of algebraic inequalities of the form

∣∣∣∣∣∣∣∣∣

1 ai01 ai02 · · · ai0d
1 ai11 ai12 · · · ai1d
...

...
...

. . .
...

1 aid1 aid2 · · · aidd

∣∣∣∣∣∣∣∣∣
♦ 0,

where ♦ is either ≥, =, or ≤, and aij denotes the jth coordinate of ai ∈ A. In every
such inequality, the corresponding points bi1 , bi2 , . . . , bid ∈ B lie on a single facet of

9Every set of points is simpler than itself. It would be more correct, but also more awkward, to
say “A is at least as simple as B.”
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Fig. 4. Suspension (double wedge) and projection (line segment) of a polygon by a point in RP
2.

conv(B). For every d-tuple of points in B contained in a facet of conv(B), there are
n − d such inequalities, one for every other point in B. (If we replaced the loose
inequalities ≤,≥ with strict inequalities <,>, the resulting expression would encode
the combinatorial equivalence of conv(A) and conv(B).) Thus, for any fixed n-point
set B, the set {A ∈ (Rd)n | A � B} is the intersection of a finite number of closed
algebraic halfspaces, and is thus a closed semialgebraic set.

There are only finitely many equivalence classes of convex polytopes with a given
number of faces or vertices [34]. Thus, there is a finite set B = {B1, B2, . . .} of n-point
configurations, one of each possible combinatorial type, such that if conv(A) has at
most r faces, then A � Bi for some configuration Bi ∈ B. It follows that the set of
n-point configurations whose convex hulls have at most r faces is the union of a finite
number of closed sets and is therefore closed.

Before continuing, we need to introduce one more important concept. For any
subset X ⊆ RP

d and any flat f , the suspension of X by f , denoted suspf (X), is
formed by replacing each point in X by the smallest flat containing that point and f :

suspf (X)
�
=
⋃
p∈X

span(p ∪ f).

The suspension of a subset of projective space roughly corresponds to an infinite
cylinder over a subset of an affine space, at least when the suspending flat f is on the
hyperplane at infinity. The projection of X by f , denoted projf (X), is the intersection
of the suspension and the dual flat f∗:

projf (X)
�
= suspf (X) ∩ f∗.

In particular, suspf (X) is the set of all points in RP
d whose projection by f is in

projf (X). The projection of a subset of projective space corresponds to the orthog-
onal projection or shadow of a subset of affine space onto a lower-dimensional flat.
See Figure 4. For any polyhedron Π and any flat f , suspf (Π) and projf (Π) are
also polyhedra. These two polyhedra have the same number of faces (in fact, they
have isomorphic face lattices), although in general they have fewer faces than Π. In
particular, suspf (f) = f and projf (f) = ∅.

Lemma 5.2. Let H be a set of hyperplanes in RP
d. For any integers r and n,

the set Sepr(H,n) of n-point configurations P ∈ (RP
d)n such that P and H are r-

separable is topologically closed.
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Proof. There are two cases to consider: Either the hyperplanes in H do not have
a common intersection, or they intersect in a common flat. The proof of the second
case relies on the first.

Case 1 (
⋂
H = ∅). Any polyhedron that separates P and H must be completely

contained in a closed d-dimensional cell of the arrangement of H. Since there are
only finitely many such cells, it suffices to show, for each closed d-cell C, that the
set Sepr(H,n) ∩ Cn of n-point configurations contained in C and r-separable from H
is topologically closed. We will actually show that Sepr(H,n) ∩ Cn is a compact
semialgebraic set.

Fix a cell C. Since the hyperplanes in H do not have a common intersection,
both C and any polyhedra it contains must be polytopes. By choosing an appropriate
hyperplane “at infinity” that misses C, we can treat C and any polytopes it contains as
convex polytopes in R

d. Any separating polytope with r or fewer faces is the (closed)
convex hull of some set of r points, all contained in C. Thus, we can write

Sepr(H,n) ∩ Cn =
{
P ∈ Cn

∣∣ ∃A ∈ Cr : P ⊂ conv(A) ∧ |conv(A)| ≤ r
}
.

Lemma 5.1 implies that the set
{
(P,A) ∈ Cn+r

∣∣ |conv(A)| ≤ r} =
{
A ∈ Cr

∣∣ |conv(A)| ≤ r}× Cn

is compact (closed and bounded). The set
{
(P,A) ∈ Cn+r

∣∣ P ⊂ conv(A)
}

can be rewritten as{
(P,A) ∈ Cn+r

∣∣∣∣∣
n∧
i=1

(
∃λi ∈ [0, 1]r :

r∑
j=1

λijaj = pi ∧
r∑
j=1

λij = 1

)}
.

(Here pi is the ith point in P , aj is the jth point in A, λi is the vector of barycentric
coordinates for the point pi, and λij is its jth component.) This set is an orthogonal
projection of the compact semialgebraic set{

(P,A,Λ) ∈ Cn+r × [0, 1]r×n

∣∣∣∣∣
n∧
i=1

(
r∑
j=1

λijaj = pi ∧
r∑
j=1

λij = 1

)}

and is thus also compact. (Here Λ is the n× r matrix of barycentric coordinates λij .)
It follows that Sepr(H,n) ∩ Cn is an orthogonal projection of the intersection of two
compact sets and so must be compact.

Case 2 (
⋂
H �= ∅). The previous argument does not work in this case, because the

cells in the arrangement of H are not simply connected and thus are not polytopes.
However, they are combinatorially equivalent to polytopes of lower dimension. To
prove that Sepr(H,n) is closed, we essentially project everything down to a lower-
dimensional subspace in which the hyperplanes do not have a common intersection
and apply our earlier argument.

We will actually prove that the complement of Sepr(H,n) is open. Let P be an
arbitrary set of n points in RP

d such that P and H are not r-separable. To prove the
lemma, it suffices to show that there is an open set U ⊆ (RP

d)n with P ∈ U, such
that Q �%& H for all Q ∈ U.

Let f =
⋂
H, and let f∗ be the flat dual to f . Without loss of generality, suppose

that P \f = {p1, p2, . . . , pm} and P ∩f = {pm+1, . . . , pn} for some integer m. (Either



1986 JEFF ERICKSON

of these two subsets may be empty.) The lower-dimensional hyperplanes H ∩ f∗ do
not have a common intersection, so by our earlier argument, Sepr(H∩f∗,m) is closed.

If some polyhedron Π separated P and H, then its projection projf (Π) ⊆ f∗

would separate the projected points projf (P ) and the lower-dimensional hyperplanes
H ∩ f∗. Conversely, if any polyhedron Π ⊆ f∗ separated projf (P ) and H ∩ f∗,
then its suspension suspf (Π) would separate P and H. Thus, P %& H if and only if
projf (P ) %& (H∩f∗). Moreover, since projf (P ) = projf (P \f), it follows that P %& H
if and only if (P \ f) %& H. (Note that this argument is not valid for arbitrary flats f ,
but only for f =

⋂
H.)

Since by assumption P �%& H, it follows that projf (P ) �%& (H ∩ f∗). Thus, by
Case 1, there is an open set U′ ⊆ (f∗)m, with projf (P ) ∈ U′, such that S �%& H
for any S ∈ U′. Let U′′ ⊆ (RP

d \ f)m be the set of m-point configurations R with
projf (R) ∈ U′. Since RP

d \ f ∼= f∗ × R
dim f , we have U′′ ∼= U′ × (Rdim f )m, so U′′

is an open neighborhood of P \ f . For any R ∈ U′′, since projf (R) �%& (H ∩ f∗), we
have R �%& H. Finally, let U = U′′ × (RP

d)n−m; clearly, U is an open neighborhood
of P . For every configuration Q ∈ U, there is a subset R ⊆ Q such that R �%& H, so
Q �%& H.

Lemma 5.3. Let P be a set of n points and H a set of k hyperplanes in RP
d.

For all Q ∈ (RP
d)n in an open neighborhood of P , πr(Q,H) ≥ πr(P,H).

Proof. For any indexed set of objects (points or hyperplanes) X = {x1, x2, . . .}
and any set of indices I ⊆ {1, 2, . . . , |X|}, let XI denote the subset {xi | i ∈ I}.

Fix two sets of indices I ⊆ {1, 2, . . . , n} and J ⊆ {1, 2, . . . , k}, and consider
the corresponding subsets PI ⊆ P and HJ ⊆ H. If PI %& HJ , define UI,J = (RP

d)n.

Otherwise, define UI,J ⊆ (RP
d)n to be an open neighborhood of P such that QI �%& HJ

for all Q ∈ UI,J . Lemma 5.2 implies the existence of such an open neighborhood.
Let U be the intersection of the 2n2k open sets UI,J . Since each UI,J is an open

neighborhood of P , U is also an open neighborhood of P . For all Q ∈ U and for all
index sets I and J , if QI %& HJ , then PI %& HJ . In other words, every r-polyhedral
minor of Q and H corresponds to a r-polyhedral minor of P and H. Thus, for any r-
polyhedral cover of Q and H, there is a corresponding r-polyhedral cover of P and H
with exactly the same size.

5.3. Lower bounds. We are finally in a position to prove our combinatorial
lower bounds. As in section 2, let I(P,H) denote the number of point-hyperplane
incidences between P and H.

Lemma 5.4. Let P be a set of n points and let H be a set of k hyperplanes, such
that no subset of a hyperplanes contains b points in its intersection. If P and H are
r-separable, then I(P,H) ≤ r(a+ b)(n+ k).

Proof. Let Π be a polyhedron with r faces that separates P and H. For any point
p ∈ P and hyperplane h ∈ H such that p lies on h, there is some face φ of Π that
contains p and is contained in h. For each face φ ≤ Π, let Pφ denote the points in
P that are contained in φ, and let Hφ denote the hyperplanes in H that contain φ.
Every point in Pφ lies on every hyperplane in Hφ.

Since no set of a hyperplanes can all contain the same b points, it follows that for
all φ, either |Pφ| < b or |Hφ| < a. Thus, we can bound I(P,H) as follows.

I(P,H) ≤
∑
φ≤Π

I(Pφ, Hφ) =
∑
φ≤Π

(
|Pφ| · |Hφ|

)
≤ (a+ b)

∑
φ≤Π

(
|Pφ|+ |Hφ|

)
.

Since Π has r faces, the last sum counts each point in P and each hyperplane in H
at most r times.
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Theorem 5.5. π◦d(n, k) = Ω
(
n1−2/d(d+1)k2/(d+1) + n2/(d+1)k1−2/d(d+1)

)
.

Proof. Let P be a restricted set of n points and H a set of k hyperplanes in R
d,

such that I(P,H) = Ω(n2/(d+1)k1−2/d(d+1)) as described by Lemma 2.4. Consider
any subsets Pi ⊆ P and Hi ⊆ H such that Pi %&r Hi. Applying Lemma 5.4 with s = 2
and t = d, we have I(Pi, Hi) ≤ (2 + d)r(|Pi|+ |Hi|). It follows that any collection of
r-polyhedral minors that includes every incidence between P and H must have size at
least I(P,H)/(2+d)r. Thus, πr(P,H) = Ω(n2/(d+1)k1−2/d(d+1)). Finally, Lemma 5.3
implies that we can perturb P slightly, removing all the incidences, without decreasing
the polyhedral cover size.

The symmetric lower bound Ω(n1−2/d(d+1)k2/(d+1)) follows by considering the
dual points H∗ and the dual hyperplanes P ∗.

When d ≤ 3, this result follows from earlier bounds on the complexity of mono-
chromatic covers derived in [31]. (In a monochromatic minor, either every point lies
above every hyperplane, or every point lies below every hyperplane.)

Our d-dimensional lower bound only improves our (d−1)-dimensional lower bound
when k = O(n2/(d−1)) or k = Ω(n(d−1)/2). We can combine the lower bounds from
all dimensions 1 ≤ i ≤ d into a single expression, as in [31, 30]:

π◦d(n, k) = Ω

(
d∑
i=0

(
n1−2/i(i+1)k2/(i+1) + n2/(i+1)k1−2/i(i+1)

))
.

If the relative growth rates of n and k are fixed, this entire sum reduces to a single term.
In particular, when k = n, the best lower bound we can prove is π◦d(n, n) ≥ π◦2(n, n) =
Ω(n4/3), the proof of which requires only the original point-line configuration of Erdős.
(See Theorem 2.2.)

We conjecture that π◦d(n, n) = Θ(n2d/(d+1)). The lower bound would follow from
a construction of n points and n hyperplanes with Ω(n2d/(d+1)) incident pairs, such
that no d points lie on the intersection of d hyperplanes, or in other words, such that
the bipartite incidence graph of P and H does not have Kd,d as a subgraph. (The
results of Clarkson et al. [23] and of Guibas, Overmars, and Robert [35] imply that
this is the smallest forbidden subgraph for which the desired lower bound is possible.)
An upper bound of π◦d(n, n) = O(n2d/(d+1)2O(log∗ n)) follows from the running time
of Matoušek’s algorithm for Hopcroft’s problem [42], using the results in the next
section.

6. Better offline lower bounds. Recall that a partitioning algorithm, given a
set of points and hyperplanes, constructs a partition graph (which may depend arbi-
trarily on the input, at no cost), preprocesses the points, and queries the hyperplanes,
using the algorithms in Figure 1. For a polyhedral partitioning algorithm, the parti-
tion graph’s query regions are all convex (or projective) polyhedra, each with at most
r faces, where r is some fixed constant.10

In [31], it was shown that the worst-case running time of any partitioning algo-
rithm that solves Hopcroft’s point-hyperplane incidence problem, given n points and
k hyperplanes as input, requires time Ω(n log k + n2/3k2/3 + k log n) when d = 2, or
Ω(n log k+n5/6k1/2+n1/2k5/6+k log n) for any d ≥ 3. Here, by restricting our atten-
tion to polyhedral partitioning algorithms, we derive (slightly) better lower bounds
in arbitrarily high dimensions.

10In most actual partitioning algorithms, every query region is either a simplex (r = 2d+1) or a
combinatorial cube (r = 3d + 1).
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Theorem 6.1. Let P be a set of points and H a set of hyperplanes, such that no
point lies on any hyperplane. The running time of any polyhedral partitioning algo-
rithm that solves Hopcroft’s problem, given P and H as input, is at least Ω(π(P,H)).

Proof. For any partitioning algorithm A, let TA(P,H) denote its running time
given the points P and hyperplanes H as input. Recall that TA(P,H) is defined as
follows:

TA(P,H)
�
=
∑
p∈P

#edges traversed by p+
∑
h∈H

#edges traversed by h

=
∑

edge e

(
#points traversing e+#hyperplanes traversing e

)
.

We say that a point or hyperplane misses an edge from v to w if it reaches v but does
not traverse the edge. (It might still reach w by traversing some other edge.) Recall
that each node in the partition graph has at most ∆ outgoing edges, for some fixed
constant ∆. Thus, for every edge that a point or hyperplane traverses, there are at
most ∆− 1 edges that it misses.

∆ · TA(P,H) ≥
∑

edge e

(
#points traversing e+#points missing e

+ #hyperplanes traversing e+#hyperplanes missing e
)
.

Call any edge that leaves a primal node a primal edge, and any edge that leaves a
dual node a dual edge.

∆ · TA(P,H) ≥
∑

primal
edge e

(
#points traversing e+#hyperplanes missing e

)

+
∑
dual

edge e

(
#hyperplanes traversing e+#points missing e

)

For each primal edge e, let Pe be the set of points that traverse e, and let He be
the set of hyperplanes that miss e. The edge e is associated with a query region Π, a
polyhedron with at most r faces. The polyhedron Π separates Pe and He, since every
point in Pe is contained in Π, and every hyperplane in He is disjoint from Π.

Similarly, for each dual edge e, let He be the set of hyperplanes that traverse
it, and let Pe be the points that miss it. The associated polyhedral query region Π
separates the dual points H∗

e and the dual hyperplanes P ∗
e . By the definitions of

separation and dual polyhedra, Π∗ separates Pe and He.
Now our argument is similar to the proof of Theorem 3.5. Say that a node v

splits a point p and a hyperplane h if both p and h reach v but no edge out of v is
traversed by both p and h. For every point p ∈ P and hyperplane h ∈ H, some node
must split p and h, since otherwise p and h would both reach a leaf, and the output
of the algorithm would be incorrect. Thus, for some outgoing edge e of this node, we
have p ∈ Pe and h ∈ He.

It follows that the collection of subset pairs {(Pe, He)} is an r-polyhedral cover
of P and H. The size of this cover is at least ∆ ·TA(P,H) and, by definition, at most
πr(P,H).

We emphasize that in order for this lower bound to hold, no point can lie on a
hyperplane. If some point lies on a hyperplane, then the trivial partitioning algorithm,
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whose partition graph consists of a single leaf, correctly “detects” the incident pair
at no cost. This is consistent with the intuition that it is trivial to prove that some
point lies on some hyperplane, but proving that no point lies on any hyperplane is
more difficult.

Corollary 6.2. The worst-case running time of any polyhedral partitioning
algorithm that solves Hopcroft’s problem, given n points and k hyperplanes in R

d, is

Ω
(
n1−2/d(d+1)k2/(d+1) + n2/(d+1)k1−2/d(d+1)

)
.

Again, our d-dimensional bound improves our (d−1)-dimensional bound only for
certain values of n and k. We can combine the lower bounds for different dimensions
into the following single expression:

Ω

(
n log k +

d∑
i=0

(
n1−2/i(i+1)k2/(i+1) + n2/(i+1)k1−2/i(i+1)

)
+ k log n

)
.

This lower bound was previously known for arbitrary partitioning algorithms for
counting or reporting versions of Hopcroft’s problem—Given a set of points and lines,
return the number of point-hyperplane incidences, or a list of incident pairs—as well
as for offline halfspace counting and reporting problems [31].

7. Preprocessing-query time tradeoffs. Based on the offline results in the
previous section, we now establish tradeoff lower bounds between preprocessing and
query time for online hyperplane emptiness and related queries. These are the first
such lower bounds for any range searching problem in any model of computation;
preprocessing time is not even defined in earlier models such as semigroup arithmetic
and pointer machines. In some instances, our bounds allow us to improve the space-
time tradeoff bounds established in section 4.

Theorem 7.1. Any partition graph that supports line emptiness queries in time
t after preprocessing time p satisfies the inequality pt2 = Ω(n2) in the worst case.

Proof. Suppose p < n2, since otherwise there is nothing to prove. Let k =
cp3/2/n, where c is a constant to be specified later. Note that k = O(n2), and since

p = Ω(n log n) by Theorem 3.5, we also have k = Ω(n1/2 log1/2 n). Thus, there
is a set of n points and k lines such that for any partition graph, the total time
required to preprocess the n points and correctly answer the k line queries is at least
αn2/3k2/3 = αc2/3p for some positive constant α [31]. If we choose c = (2/α)3/2,
the total query time is at least p. Thus, at least one query requires time at least
p/k = Ω(n/p1/2).

This lower bound almost matches the best known upper bound pt2 = O(n2 logε n),
due to Matoušek [42].

The following higher-dimensional bound follows from Corollary 6.2 using precisely
the same argument.

Theorem 7.2. Any polyhedral partition graph that supports d-dimensional hyper-
plane emptiness queries in time t after preprocessing time p satisfies the inequalities
pt(d+2)(d−1)/2 = Ω(nd) and pt2/(d−1) = Ω(n(d+2)/d) in the worst case. When d ≤ 3,
these bounds apply to arbitrary partition graphs.

Although in general these bounds are far from optimal, there are two interesting
special cases that match known upper bounds [17, 38, 42] up to polylogarithmic
factors.

Corollary 7.3. Any polyhedral partition graph that supports hyperplane empti-
ness queries after O(n polylogn) preprocessing time requires query time Ω(n(d−1)/d/
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polylogn) in the worst case. When d ≤ 3, this bound applies to arbitrary partition
graphs.

Corollary 7.4. Any polyhedral partition graph that supports hyperplane empti-
ness queries in O(polylogn) time requires preprocessing time Ω(nd/polylogn) in the
worst case. When d ≤ 3, this bound applies to arbitrary partition graphs.

In any realistic model of computation, the size of a data structure is a lower
bound on its preprocessing time. However, partition graphs can have large subgraphs
that are never visited during the preprocessing phase or that cannot be visited by any
query. In principle, since we do not charge for the actual construction of a partition
graph, its size can be arbitrarily larger than its preprocessing time.

We say that a partition graph is trim if every edge that does not point to a leaf is
traversed both while preprocessing some point and while answering some query. Given
any partition graph, we can easily make it trim (trim it?) without increasing any of
its resource bounds. Since s ≥ ∆ · p for any trim partition graph, any asymptotic
lower bound on the preprocessing time for a trim partition graph is also a lower bound
on its size.

Corollary 7.5. Any trim partition graph of size s that supports line emptiness
queries in time t satisfies the inequality st2 = Ω(n2) in the worst case.

This lower bound is optimal, up to constant factors. Chazelle [17] and Matoušek
[42] describe a family of line query data structures satisfying the matching upper
bound st2 = O(n2) .

Corollary 7.6. Any trim polyhedral partition graph of size s that supports d-
dimensional hyperplane emptiness queries in time t satisfies the inequality
st(d+2)(d−1)/2 = Ω(nd) in the worst case. In particular, if t = O(polylogn), then
s = Ω(nd/polylogn). When d ≤ 3, these bounds apply to arbitrary trim partition
graphs.

Corollary 7.7. Any trim polyhedral partition graph of size s that supports d-
dimensional hyperplane emptiness queries in time t satisfies the inequality st2/(d−1) =
Ω(n(d+2)/d) in the worst case. In particular, if s = O(n polylogn), then t =
Ω(n(d−1)/d/polylogn). When d ≤ 3, these bounds apply to arbitrary trim partition
graphs.

Corollary 7.6 is an improvement over Theorem 4.5 for all s = Ω(nd−1) or t =

O(n2(d−1)/d3); and Corollary 7.7 is an improvement whenever s = O(n1+2/(d2+d)) or
t = Ω(n1−2/d). (These bounds are conservative; the actual breakpoints are much
messier.) The lower bounds for near-linear space and polylogarithmic query time are
optimal up to polylogarithmic factors.

All of these lower bounds apply to hyperplane and halfspace counting and report-
ing queries as well, by Lemma 3.4. In fact, the results in [31] imply that for counting
and reporting queries, the preprocessing-query tradeoffs apply to arbitrary partition
graphs, and the space-time tradeoffs to arbitrary trim partition graphs, in all dimen-
sions. Corollary 7.6 is always an improvement (although a small one) over the lower
bound in Corollary 4.3.

8. Halfspace emptiness queries. The space and time bounds for the best
hyperplane (or simplex) emptiness query data structures are only a polylogarithmic
factor smaller than the bounds for hyperplane (or simplex) counting queries. The
situation is entirely different for halfspace queries. The best halfspace counting data
structure known requires roughly Ω(nd) space to achieve logarithmic query time [17,
42]; whereas, the same query time can be achieved with o(n�d/2�) space if we only
want to know whether the halfspace is empty [44].
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Table 2
Best known upper bounds for halfspace emptiness queries.

Space Preprocessing Query Time Source

d ≤ 3 O(n) O(n logn) O(logn) [21, 3, 26]

O(n�d/2�/ log�d/2� n) O(n�d/2�/ log�d/2�−ε n) O(logn) [44]

O(n) O(n1+ε) O(n1−1/�d/2�2O(log∗ n)) [39]
d ≥ 4

O(n) O(n logn) O(n1−1/�d/2� polylogn) [44]

n ≤ s ≤ n�d/2� O(s polylogn) O((npolylogn)/s1/�d/2�) [44]

Table 2 lists the resource bounds for the best known online halfspace emptiness
data structures. The fastest offline algorithm, given n points and k halfspaces, requires

O
(
n log k + (nk)�d/2�/(�d/2�+1) polylog(n+ k) + k log n

)

time to decide if any point lies in any halfspace [44]. In contrast, the only lower
bounds previously known for halfspace emptiness queries are trivial. Linear space
and logarithmic query time are required to answer online queries. A simple reduction
from the set intersection problem shows that Ω(n log k + k log n) time is required
for the offline problem in the algebraic decision tree and algebraic computation tree
models [8, 50].

In this section, we derive the first nontrivial lower bounds on the complexity of
halfspace emptiness queries. To prove our results, we use a simple reduction argument
to transform hyperplane queries into halfspace queries in a higher-dimensional space
[31, 29]. A similar transformation is described by Dwyer and Eddy [27].

Define the function σd : R
d+1 → R

(d+2
2 ) as follows:

σd(x0, x1, . . . , xd) =
(
x2

0, x
2
1, . . . , x

2
d,
√
2x0x1,

√
2x0x2, . . . ,

√
2xd−1xd

)
.

This map has the property that 〈σd(p), σd(h)〉 = 〈p, h〉2 for any vectors p, h ∈ R
d+1,

where 〈·, ·〉 denotes the usual inner product. In a more geometric setting, σd maps
points and hyperplanes in R

d, represented as homogeneous coordinate vectors, to
points and hyperplane in R

d(d+3)/2, also represented in homogeneous coordinates. For
any point p and hyperplane h in R

d, the point σd(p) is contained in the hyperplane
σd(h) if and only if p is contained in h; otherwise, σd(p) is strictly above σd(h). Thus,
a hyperplane h intersects a point set P if and only if the closed lower halfspace σd(h)

−

intersects the lifted point set σd(P ). In other words, any (lower) halfspace emptiness
data structure for σd(P ) is also a hyperplane emptiness data structure for P .

Unfortunately, this is not quite enough to give us our lower bounds, since the
reduction does not preserve the model of computation. Specifically, the query regions
in a partition graph used to answer d-dimensional queries must be subsets of R

d. To
complete the reduction, we need to show that the d(d + 3)/2-dimensional partition
graph can be “pulled back” to a d-dimensional partition graph.

In order for such a transformation to be possible, we need to restrict the query
regions allowed in our partition graphs. A Tarski cell is a semialgebraic set defined by
a constant number of polynomial equalities and inequalities, each of constant degree.
Every Tarski cell has a constant number of connected components, and the intersection
of any two Tarski cells is another Tarski cell (with larger constants). A semialgebraic
partition graph is a partition graph whose query regions are all Tarski cells.
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Fig. 5. Each Tarski cell induces a constant number of lower-dimensional query regions.

Theorem 8.1. Let P be a set of points in R
d, and let P̂ = σd(P ). Given a

semialgebraic partition graph Ĝ that supports d(d+3)/2-dimensional halfspace empti-
ness queries over P̂ , we can construct a semialgebraic partition graph G that supports
d-dimensional hyperplane emptiness queries over P , with the same asymptotic space,
preprocessing time, and query time bounds.

Proof. We actually prove a stronger theorem, by assuming only that Ĝ supports
emptiness queries for hyperplanes of the form σd(h). Since no point in P̂ is ever
below such a hyperplane, any partition graph that supports lower halfspace emptiness
queries also supports our restricted class of hyperplane emptiness queries. As we noted
earlier, these queries are equivalent to hyperplane emptiness queries over the original
point set P .

Given Ĝ, we construct G as follows. G has the same set of nodes as Ĝ, but with
different query regions. Since each query region R̂ in the original partition graph Ĝ
is a Tarski cell, it intersects the algebraic surface σd(R

d) in a constant number of
connected components R̂1, R̂2, . . . , R̂δ, where the constant δ depends on the number
and degree of the inequalities that define R̂. The query regions in G are the preimages
Ri = σ

−1
d (R̂i) of these components. See Figure 5.

The edge associated with each d-dimensional query region Ri has the same end-
points as the edge associated with the original query region R̂. Thus, there may be
several edges in G with the same source and target. (Recall that partition graphs are
directed acyclic multigraphs.) If a query region R̂ does not intersect σd(R

d), then the
corresponding edge in Ĝ is not represented in G at all, so G may not be a connected
graph. Nodes in G that are not connected to the root can be safely discarded. The
size, preprocessing time, and query time for G are clearly at most a constant factor
more than the corresponding resources for Ĝ.

The leaf subsets P� in G cannot be larger than the corresponding subsets P̂� in Ĝ.
(They might be smaller, but that only helps us.) Similarly, a hyperplane query cannot
reach more leaves in G than the corresponding query reaches in Ĝ. It follows that G
supports hyperplane emptiness queries: For any hyperplane h, if Ĝ reports that σd(h)
is empty, G (correctly) reports that h is empty.

We emphasize that some restriction on the query regions is necessary to prove any
nontrivial lower bounds for halfspace emptiness queries. There is a partition graph of
constant size, requiring only linear preprocessing, that supports halfspace emptiness
queries in constant time. The graph consists of a single primal node with two query



SPACE-TIME TRADEOFFS FOR EMPTINESS QUERIES 1993

regions—the convex hull of the points and its complement—and two leaves. On the
other hand, our restriction to Tarski cells is stronger than necessary. It suffices that
every query region intersects (some projective transformation of) the surface σd(R

d)
in a constant number of connected components.

The following corollaries are now immediate consequences of our earlier results.
Corollary 8.2. For any d ≥ 2, any semialgebraic partition graph that sup-

ports d-dimensional halfspace emptiness queries has size Ω(n), preprocessing time
Ω(n log n), and worst-case query time Ω(log n).

Corollary 8.3. Any semialgebraic partition graph of size s that supports
d(d + 3)/2-dimensional halfspace emptiness queries in time t satisfies the inequality
std = Ω((n/ log n)d−(d−1)/(d+1)) in the worst case.

Corollary 8.4. The worst-case running time of any semialgebraic partitioning
algorithm which, given n points and k halfspaces in R

d, decides if any halfspace con-
tains a point, is Ω(n log k + k log n) for all 2 ≤ d ≤ 4, Ω(n log k + n2/3k2/3 + k log n)
for all 5 ≤ d ≤ 8, and Ω(n log k + n5/6k1/2 + n1/2k5/6 + k log n) for all d ≥ 9.

Corollary 8.5. Any semialgebraic partition graph that supports 5-dimensional
halfspace emptiness queries in time t after preprocessing time p satisfies the inequality
pt2 = Ω(n2) in the worst case. Any trim semialgebraic partition graph of size s that
supports 5-dimensional halfspace emptiness queries in time t satisfies the inequality
st2 = Ω(n2) in the worst case.

Corollary 8.6. Any semialgebraic partition graph that supports 9-dimensional
halfspace emptiness queries in time t after preprocessing time p satisfies the inequali-
ties pt5 = Ω(n3) and pt = Ω(n5/3) in the worst case. Any trim semialgebraic partition
graph of size s that supports 9-dimensional halfspace emptiness queries in time t sat-
isfies the inequalities st5 = Ω(n3) and st = Ω(n5/3) in the worst case.

Corollaries 8.2 and 8.4 are optimal when d ≤ 3; Corollary 8.4 is also optimal up to
polylogarithmic factors when d = 5; and Corollary 8.5 is optimal up to polylogarithmic
factors.

Theorem 8.1 does not imply better offline lower bounds or preprocessing/query
tradeoffs for halfspace emptiness queries in dimensions higher than 9, since the cor-
responding hyperplane results require polyhedral query regions. Marginally better
lower bounds can be obtained directly in dimensions 14 and higher(!) in the polyhe-
dral partition graph model by generalizing the arguments in sections 5 and 6 (as in
[30]). However, since these lower bounds are far from optimal, we omit further details.

9. Conclusions. We have presented the first nontrivial lower bounds on the
complexity of hyperplane and halfspace emptiness queries. Our lower bounds apply
to a broad class of range query data structures based on recursive decomposition of
primal and/or dual space.

The lower bounds we developed for counting and reporting queries actually apply
to any type of query where the points in the query range are required as the union
of several subsets. For example, simplex range searching data structures are typically
constructed by composing several levels of halfspace “counting” data structures [42].
To answer a query for the intersection of k halfspaces, the points in the first halfspace
are (implicitly) extracted as the disjoint union of several subsets, and a (k − 1)-
halfspace query is recursively performed on each subset.

With a few notable exceptions, our lower bounds are far from the best known
upper bounds, and a natural open problem is to close the gap. In particular, we
have only “trivial” lower bounds for 4-dimensional halfspace emptiness queries. We
conjecture that the correct space-time tradeoffs are std = Θ(nd) for hyperplanes
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and st�d/2� = Θ(n�d/2�) for halfspaces. Since these bounds are achieved by current
algorithms—exactly for hyperplanes [42], within polylogarithmic factors for halfspaces
[44]—the only way to prove our conjecture is to improve the lower bounds.

Our space-time tradeoffs derive from lower bounds for halfspace queries in the
semigroup arithmetic model [10], and our preprocessing-query tradeoffs follow from
lower bounds on the combinatorial complexity of polyhedral covers. Any improve-
ments to these lower bounds would improve our results as well. Both of these results
ultimately reduce to bounds on the minimum size of a decomposition of the (weighted)
incidence graph of a set of points and a set of halfspaces into complete bipartite sub-
graphs.

The best known data structures for d-dimensional hyperplane emptiness queries
and 2d- or (2d + 1)-dimensional halfspace emptiness queries have the same resource
bounds. We conjecture that this is also true of optimal data structures for these
problems. Is there a reduction from hyperplane queries to halfspace queries that only
increases the dimension by a constant factor (preferably two)?

Finally, can our techniques be applied to other closely related problems, such as
nearest neighbor queries [2], linear programming queries [40, 11] and ray shooting
queries [2, 20, 41, 44]?

Acknowledgments. I thank Pankaj Agarwal for suggesting studying the com-
plexity of online emptiness problems.
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Abstract. We study the problem of sorting on a parallel computer with limited communication
bandwidth. By using the PRAM(m) model, where p processors communicate through a globally
shared memory which can service m requests per unit time, we focus on the trade-off between the
amount of local computation and the amount of interprocessor communication required for parallel
sorting algorithms. Our main result is a lower bound of Ω(n logm

m logn
) on the time required to sort

n numbers on the exclusive-read and queued-read variants of the PRAM(m). We also show that
Leighton’s Columnsort can be used to give an asymptotically matching upper bound in the case
where m grows as a fractional power of n. The bounds are of a surprising form in that they have
little dependence on the parameter p. This implies that attempting to distribute the workload across
more processors while holding the problem size and the size of the shared memory fixed will not
improve the optimal running time of sorting in this model. We also show that both the lower and the
upper bounds can be adapted to bridging models that address the issue of limited communication
bandwidth: the LogP model and the bulk-synchronous parallel (BSP) model. The lower bounds
provide further convincing evidence that efficient parallel algorithms for sorting rely strongly on high
communication bandwidth.

Key words. parallel sorting, limited bandwidth, PRAM, LogP, BSP
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1. Introduction. A large body of theoretical research has concentrated on al-
gorithms designed in the parallel random access machine (PRAM) model of compu-
tation. The PRAM allows processors to communicate with each other in unit time
through a large globally shared memory, which leads to algorithms that have a high
degree of parallelism but perform a great deal of interprocessor communication, an
inexpensive operation in the PRAM model. This leaves unresolved the question of how
to design algorithms for machines which have limited interprocessor communication
bandwidth.

Addressing this limitation has motivated the development of other models of
parallel computation, representative of which are the BSP model [33], the LogP model
[15], and the PRAM(m) model [35]. Provably efficient algorithms in the PRAM model
are not necessarily the most efficient algorithms for these models, so a host of problems
must be reevaluated in this framework. In this paper, we examine the problem of
sorting in the context of parallel machines with limited communication bandwidth.
We formalize the sorting problem as follows.

Definition 1.1. The Sorting Problem.
Input: n distinct keys k1 . . . kn, with total order k(1) < k(2) < · · · < k(n).
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Output at processor i: A sorted list of keys: k( in
p +1) . . . k( in

p +n
p ).

We concentrate on the complexity of sorting in the PRAM(m) model. In this
variant of the classical PRAM model, p processors communicate through a globally
shared memory consisting of m memory cells and the entire input, assumed to be of
size n, is provided to each processor in a globally shared read-only memory (ROM).
This model allows us to focus on the trade-off between the amount of information
derived from local computation and the amount of information derived from inter-
processor communication.

Each of the m shared memory cells consists of log n bits. As in traditional PRAM
models, the resolution of contention for these shared memory cells can be defined
in a variety of ways. In this paper, we focus on the exclusive-read and queued-read
variants of the PRAM(m) model (ER PRAM(m) and QR PRAM(m), respectively);
these are defined in section 2. The main result of this paper is the proof of a lower
bound that holds for both the ER PRAM(m) and the QR PRAM(m) on the time
required to sort n distinct keys of

Ω

(
n logm

m log n

)
.

The bound holds when n > p2, which is the case of primary interest, since typical
parallel applications involve problems where the input size is much larger than the
number of processors. This lower bound does not rely on any restriction on the local
computation of a processor. This is in contrast to sorting results which prove lower
bounds on comparison-based algorithms. The proof extends to both Monte Carlo and
Las Vegas randomized algorithms and to algorithms which allow for the m shared
memory cells to employ a concurrent write contention resolution rule.

In order to prove the lower bound, we introduce the oracle model of computation,
a model that allows us to quantify a trade-off between local computation and infor-
mation received from other processors. In this model, which is defined more fully in
section 2.1, processors are not required to transmit any information. Rather, all inter-
processor communication is simulated by an oracle that is assumed to know the entire
input before computation begins. The oracle is of unlimited computational power, and
thus can precompute any function of the inputs before computation begins. We prove
that even in this setting, local computation is of such limited utility that the oracle
must provide a large amount of information in order to enable the processors to solve
the sorting problem efficiently.

When m = O(nβ), for some β < 1, we show that a version of Columnsort [26]
has a running time that is bounded by

O
( n
m
(1− β)−3.42

)
.

For n� m, the case of greatest interest, the final factor becomes a small constant and
so in this setting the ratio between the upper and lower bounds is Θ( log n

logm ). When
sorting k-bit keys, the algorithm used in the upper bound runs with a slowdown of
a factor of O( k

logn ) on a machine model in which the input is distributed among all
processors rather than stored in a globally shared ROM. This gives the algorithm
more credibility from a practical standpoint.

We also show that our results can be generalized to two other models that in-
corporate limited communication throughput, the LogP model and the BSP model.
In both of these models, the processors communicate using point-to-point messages,
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and a parameter g represents the minimum number of cycles between transmission of
successive messages from a processor. To prove a lower bound for the ER PRAM(m)
model, we show a lower bound on the number of bits which must be transmitted
through the network in order to solve the sorting problem efficiently. Coupling this
bound with model-dependent lower bounds on the amount of time required to trans-
mit a fixed number of bits in the BSP and LogP models results in lower bounds for
sorting in these two models. We defer definitions of the models and the exact form of
the bounds to the section where those results are discussed.

Our results show that fast parallel algorithms to solve the sorting problem must
rely on large amounts of communication. Furthermore, we have the surprising result
that both our upper and lower bounds are unaffected by attempting to distribute the
work across an unlimited number of processors, while holding fixed the problem size,
the size of the shared memory, and the number of processors that actually output
the result. Therefore, to increase the speed of parallel sorting on a machine with
limited communication bandwidth, increasing bandwidth is more likely to improve
the running time than is increasing the number or computational power of processors.

The remainder of the paper is organized as follows. In the rest of section 1, we
briefly compare our results with previous work in parallel sorting. In section 2, we
provide a complete description of both the PRAM(m) model and our lower bound
tool, the oracle model of communication. Sections 3 and 4 provide proofs of our lower
bound for deterministic and randomized algorithms for sorting in the ER PRAM(m)
and QR PRAM(m) models of computation. Section 5 provides the matching upper
bound, and section 6 briefly describes extensions of those proofs to the LogP and BSP
models.

1.1. Previous work. From the large body of research in the realm of paral-
lel sorting algorithms, we discuss several results which also focus on interprocessor
communication requirements. Using Thompson’s VLSI model [32], Leighton, in [26],
proves a lower bound of AT2 = Ω(n2 log2 n) for sorting n keys of size Θ(log n), where
A is the area of a VLSI chip and T is the running time of the chip. His methods can
be used to show bounds of the form Ω

(
n
m

)
in a PRAM model with a globally shared

memory of size m, but in which the input is evenly distributed across the p processors,
rather than stored in a globally shared ROM. Indeed, an interesting question would
be to determine whether we could apply our lower bound technique to a nonstandard
VLSI model in which the chip could receive each input in more than one location and
at more than one time.

Other related work on parallel sorting includes [12], where Borodin and Cook

prove that sorting requires TIME · SPACE = Ω( n2

logn ). Aggarwal, Chandra, and Snir

show in [3] that any parallel comparison-based algorithm that sorts n words requires
Ω( n logn

p log(n
p ) ) communication steps. Also, the same authors show in [5] that sorting

requires time Ω(n logn
p + l log p) in a model where reading or writing a block of size b

from memory takes time l + b.

The PRAM(m) model was introduced in [35] and has been studied subsequently
in [28], [19], [18], [9], [30], [1], and [10]. The case where n � p was first examined in
[30], where Mansour, Nisan, and Vishkin prove a lower bound of Ω( n√

mp ) for several

problems, including sorting, in a concurrent read version of the PRAM(m), which
implies the same bound in the ER PRAM(m) and the QR PRAM(m).

An easy upper bound on the time required for sorting can be obtained by using
a variant of Cole’s parallel merge sort [13] for the PRAM. Cole’s algorithm uses
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n processors to sort n keys in time O(log n) time. This algorithm requires the use
of a total of O(n log n) shared memory cells per time step, but by letting each of
the m words of shared memory simulate O(n log n

m ) cells of the PRAM memory, we

can run Cole’s algorithm in time O(n log2 n
m ) on the ER PRAM(m). Related work on

upper bounds includes [16], in which Cypher and Sanz discuss a recursive version of
Columnsort and introduce Cubesort, which can be used to obtain a running time of
O( nm (1−β)−2)25log∗ n−log∗(n/m) for sorting on the ER PRAM(m), where m = O(nβ).
However, this algorithm has substantial overhead and is considerably more involved
then the one presented in this paper. A recursive version of Columnsort is also used
by Aggarwal and Huang in [6] to obtain an algorithm for sorting in fixed connection
networks.

Subsequent to a preliminary version of this paper in [2], Adler [1] provides an
algorithm for sorting in the concurrent-read PRAM(m) (CR PRAM(m)) that is con-
siderably faster than the lower bound for the ER PRAM(m) presented in this paper.
Thus, that result together with the lower bound presented here imply that the CR
PRAM(m) is strictly more powerful than the ER PRAM(m). [1] also slightly improves
the ER PRAM(m) upper bound to O( n log p

m log n ).
Finally, with respect to BSP algorithms for sorting, Gerbessiotis and Valiant

[21] introduce a randomized algorithm for parallel sorting in the BSP model. Also,
subsequent to an earlier version of this paper, the upper bound for sorting in the BSP
model has been improved by both Goodrich [24] and by Gerbessiotis and Siniolakis
[20]. The form of these bounds is deferred to section 5.2, where they are described in
the context of our description of the BSP model.

2. The PRAM(m) model. In this section, we define the PRAM(m) model,
and then describe a theoretical tool derived from the PRAM(m) model, the ora-
cle model of communication. The primary goal of these models is to examine the
effectiveness of parallel computation given a sharp limitation on interprocessor com-
munication.

In a classical PRAM, p processors communicate by writing to and reading from
a large globally shared memory in unit time. However, in practice, the available per-
processor bandwidth to shared memory can be quite small. Access to shared memories
is slowed by such factors as long message send overheads [15], contention at memory
banks, the fact that memory banks are much slower than processors [11], and band-
width limitations of the network connecting processors to memory banks. Similar
difficulties exist in distributed memory parallel machines. The parameter m of the
PRAM(m) model focuses attention on this bottleneck, by enforcing the condition
that the shared memory can service only m requests per unit time, where m < p.
This is modeled as a PRAM consisting of m shared memory cells, each of size log n
bits, as shown in Figure 2.1. We note that all the results in this paper can easily be
extended to a model in which each memory cell can hold a word of w bits, independent
of the input size.

The input of size n is provided to the PRAM(m) in a read-only shared memory
(ROM) concurrently available to all of the processors. Conceptually, this is equivalent
to having each processor begin with an identical copy of the input in its local mem-
ory. This capability serves to concentrate our lower bound efforts on the amount of
communication required for actual computation, rather than on the amount required
to distribute the input. Since such a ROM may be unrealistic from a practical stand-
point, upper bounds achieved in this model that rely on use of the ROM are only
applicable to problems in which the entire input is initially known by all the proces-
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m

processorsp

n input size

shared memory cells

Fig. 2.1. The PRAM(m) model.

sors. During each synchronized round of computation, every processor can perform
one of four actions: it can read the contents of a ROM location, read the contents
of a globally shared memory location, write to a globally shared memory location, or
perform local computation.

As defined in [35], the PRAM(m) model allows processors concurrent read, con-
current write access to the globally shared memory. In this paper, we consider exclusive-
read and queued-read variants of the PRAM(m) model. In the ER PRAM(m), two
distinct processors are forbidden from reading the same memory cell at the same time
step. We also define the QR PRAM(m), where read contention at a memory cell is
resolved as follows: each step of an algorithm completes in k time steps, where k is
the maximum number of processors reading the same memory location during that
step of the algorithm. Finally, we define the asynchronous QR PRAM(m), where ev-
ery memory cell services one request if any requests to that cell are pending, and
all other requests are stored in a FIFO queue. We note that both queued contention
resolution strategies are analogous to those devised in [22] and [23] for the standard
PRAM. The contention resolution strategy for write access to the shared memory
can be either concurrent write, queued write, or exclusive write. Our upper and lower
bounds are not affected by this choice, and thus, we leave this component of the model
unspecified.

2.1. The oracle model of communication. It is often the case in parallel
computing that the amount of computation required by a processor is greatly re-
duced by receiving results of computations performed by other processors. In order to
quantify a trade-off between local computation and information received from other
processors, we define the oracle model of computation. This lower bound tool uses the
principle that the combined information a processor receives from all other processors
is no more useful than the information it can receive from a single processor with
unlimited computational resources and access to all the information the processors
have.

In the oracle model, shown in Figure 2.2, processors do not transmit any infor-
mation. Rather, each processor only receives information from an oracle of unlimited
computational power, and a read-only memory (ROM) that contains the input. The
oracle transmits information to the processors through p oracle memories consisting
of cells of size log n bits. Each of these memory cells is referred to as an oracle word.
Processor i has read-only access to the ith oracle memory but is not able to access any
of the other oracle memories. We subject the oracle to the restriction that it compute
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Oracle Memories Processors ROMOracle

Fig. 2.2. The flow of information in the oracle model.

and set all the values of the oracle memory before the processors begin computation.
This restriction does not alter the power of the model; it only serves to simplify the
analysis.

The processors access the input using a concurrently readable ROM, which is
identical to the ROM of the PRAM(m) model. During computation, at each syn-
chronous time step every processor is allowed to perform one of three actions: it can
read the contents of a cell from its oracle memory, read an input from the ROM,
or perform local computation. The oracle knows the entire input and the programs
executed by each of the processors. We are interested in the trade-off between the
maximum number of time steps required by any processor and the total number of
cells read from the oracle memory. Lower bounds on the number of cells that must be
read from the oracle memory by all processors combined with the limited throughput
of the memory give corresponding lower bounds on the execution time.

More formally, consider algorithms Ae and Ao designed for the ER PRAM(m) and
the oracle model, respectively. Let r(Ae, i, p) denote the aggregate number of reads
the p processors perform from the shared memory and the ROM on input i. Likewise,
let t(Ae, i, p) denote the number of time steps Ae runs on i with p processors. Define
r(Ao, i, p) and t(Ao, i, p) similarly for algorithm Ao.

Definition 2.1. An oracle algorithm Ao exactly simulates a PRAM(m) algo-
rithm Ae if for all values of p and on all inputs i, r(Ao, i, p) = r(Ae, i, p), t(Ao, i, p) =
t(Ae, i, p), and Ao computes the same output as Ae.

Lemma 2.2. Given any ER PRAM(m) algorithm Ae, there is an oracle algorithm
Ao such that Ao exactly simulates Ae.

Proof. Consider the execution of the ER PRAM(m) algorithm Ae on input i. Let
w(u, v) denote the contents of the cell processor u would read at time v. The oracle can
compute w(u, v) for all u, v instantaneously in advance of the simulation by using its
unlimited resources. To perform the simulation, the oracle simply furnishes w(u, v)
in oracle memory u at time v for all u, v. The processors then execute their ER
PRAM(m) algorithms, ignoring all write operations and reading from their oracle
memory in place of reading from shared memory locations. The simulation has zero
slowdown and the processors read the same total number of cells in both execu-
tions.

Note that the oracle model can also exactly simulate any QR PRAM(m) algo-
rithm, as well as any asynchronous QR PRAM(m) model. Furthermore, a similar
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lemma shows that an oracle model in which processors have concurrent read access
to a single, m cell oracle memory can exactly simulate any CR PRAM(m) algorithm,
but proving strong lower bounds for sorting in this model remains open. The oracle
model can also be used to prove lower bounds for randomized algorithms. To allow
the oracle to simulate the programs of processors in such a setting, we give the or-
acle access to the random bits used by each processor prior to the execution of the
algorithm.

3. Lower bounds. In this section, we prove lower bounds for sorting algorithms
in the oracle model by showing that even when all processors know the range of keys
that need to be output by each processor, the task of locating those keys within the
input is difficult. If we wish to sort n keys, and if all processors know the range of
key values that will be output by each processor, but not the value of these keys, nor
their location within the ROM, then the work remaining can be formalized as the
permutation routing problem.

Definition 3.1.

The permutation routing problem.
Input: n memory locations, each containing a processor ID, such that each processor
ID appears exactly n

p times.
Output at processor i: a list of the locations where i appears.

Lemma 3.2. Any algorithm for the ER PRAM(m) that sorts n distinct keys in
time T can solve any instance of the permutation routing problem of size n in time
T . The same is true for the QR PRAM(m).

Proof. We derive from each location of the permutation routing problem a key
to be sorted, where the key is the concatenation of the processor ID stored at that
location and the location index within the ROM. Sorting these keys is sufficient to
inform each processor i of the locations where i appears.

Thus, any lower bound for the permutation routing problem implies an identical
lower bound for sorting. In order to prove our lower bounds for this problem in
different scenarios, we first prove a lower bound on a simpler problem in the oracle
model. This problem is called the processor d permutation routing problem, and is
defined as follows, with d any processor ID between 1 and p. The input is chosen
uniformly at random from the set of all possible n element inputs to the permutation
routing problem. Processor d is required to determine the list of locations in the ROM
where d appears, but the remaining processors are not required to do anything. We
are interested in the average, over all possible n element inputs to the permutation
routing problem, of the number of oracle words processor d reads, given a limitation
on how many ROM locations processor d reads.

Lemma 3.3. In any deterministic algorithm for the oracle model that solves the
processor d permutation routing problem when n > p2, if the average number of oracle
words read by processor d is at most n logm

8p logn , and processor d never reads more than
n logm
m logn ROM locations, then on an input chosen uniformly at random, processor d

produces an incorrect result with probability at least 1
4 .

The proof of this lemma is the main technical portion of our lower bound, and is
deferred to section 3.1. We first discuss its implications.

Theorem 3.4. For any deterministic ER PRAM(m) algorithm that solves the
sorting problem for any set of n distinct keys, where n > p2, the average over all
permutations of the input keys of the time required by the algorithm is at least n logm

8m logn .

The same is true for any deterministic algorithm for the QR PRAM(m).
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Proof. We assume there is a sorting algorithm A for the ER PRAM(m), where the
average over all permutations of the input keys of the time to perform A is less than
n logm
8m logn , and we reach a contradiction. Let w(A,C) be the total number of words read

from the shared memory when algorithm A is executed on input C. Let r(A,C, i) be
the number of ROM locations read by processor i when A is executed on input C. We
shall use w(A,C) and r(A,C, i) to represent these quantities for both the PRAM(m)
as well as the oracle model.

Since at most m words can be read from the shared memory at any time step,
when C ranges over all permutations of the input keys, the average of w(A,C) is
less than n logm

8 log n . Also, the average over all such C of maxi r(A,C, i) is less than
n logm
8m logn . By Lemmas 2.2 and 3.2, this implies the existence of an oracle algorithm A′

for the permutation routing problem, where the average over all input permutations
C of w(A′, C) is less than n logm

8 log n , and the average over all input permutations of

maxi r(A,C, i) is less than
n logm
8m logn .

For any such A′, there is some processor d such that the average over all inputs
of the number of oracle words read from the oracle memory for processor d is less
than n logm

8p logn , and the average over all inputs of r(A′, C, d) is at most n logm
8m logn . By

Markov’s inequality, in A′, the fraction of inputs C where r(A′, C, d) ≥ n logm
m logn is at

most 1
8 . Thus, we can use A′ to construct algorithm A′′ for the oracle model. In A′′,

processor d behaves the same as in A′, except that it only performs at most n logm
m logn

ROM queries. If in A′ processor d requires more ROM queries on a given input,
on that input in A′′, processor d returns an arbitrarily chosen permutation. Since
algorithm A′ responds correctly on all inputs, A′′ responds correctly on at least 7

8
of all possible inputs. This contradicts Lemma 3.3, and thus there does not exist
such an algorithm A for the ER PRAM(m). The proof for the QR PRAM(m) is
identical.

For Las Vegas algorithms, or randomized strategies that are guaranteed to provide
a correct solution with a bound only on the expected running time, we have a lower
bound which follows from a direct application of Yao’s lemma [36].

Theorem 3.5. For any Las Vegas algorithm Av for the ER PRAM(m) where
n > p2, there is some permutation of the inputs I for the sorting problem such that
Av requires expected time at least

n logm
8m logn to solve I. Also, the expected running time

of any Las Vegas algorithm on an input chosen uniformly at random from the set of
all inputs is at least n logm

8m logn . The same is true for the QR PRAM(m).

Proof. Yao’s lemma [36] states that if there is a distribution over the inputs such
that every deterministic algorithm requires time at least L for that distribution, then
for any randomized algorithm there exists an input for which the expected running
time is at least L. This combined with Theorem 3.4 directly implies the first claim
of Theorem 3.5. The second claim follows from Theorem 3.4 and the fact that any
Las Vegas algorithm is actually a distribution over deterministic algorithms and thus
cannot fare better than the best deterministic algorithm.

For Monte Carlo algorithms, or randomized strategies with bounded running time
which provide a correct solution with probability greater than 3

4 , we have the following
lower bound.

Theorem 3.6. For any Monte Carlo algorithm Am for the ER PRAM(m) where
n > p2, there is some input I for the sorting problem such that Am requires time at
least n logm

8m logn to solve I. Also, for the uniform distribution over all possible inputs, the

running time of any Monte Carlo algorithm is at least n logm
8m logn . The same is true for
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the QR PRAM(m).
We prove this theorem using an alternate formulation of Yao’s lemma, provided

in [29].
Lemma 3.7. Let P1 be the success probability of a T step randomized algorithm

solving problem B, where the success probability is taken over the random choices made
by the algorithm and minimized over all possible inputs. Let P2 be the success proba-
bility over a distribution D of inputs, maximized over all possible T step deterministic
algorithms to solve B. Then, P1 ≤ P2.

Theorem 3.6 follows from a direct application of Lemma 3.7 to the following
lemma.

Lemma 3.8. For any deterministic ER PRAM(m) algorithm A that solves the
sorting problem for any set of n distinct keys, where n > p2, if A always uses fewer
than n logm

8m logn time steps, then when the input is chosen uniformly at random from
the set of all possible permutations of the inputs, the probability that every processor
successfully produces the correct output is ≤ 3

4 . The same is true for any deterministic
algorithm for the QR PRAM(m).

Proof. We assume that there is such a deterministic algorithm Ad which produces
the correct output with probability greater than 3

4 , and we reach a contradiction. In

such an algorithm, for every input C, w(Ad, C) <
n logm
8 log n and maxi r(Ad, C, i) <

n logm
8m logn . By Lemmas 2.2 and 3.2, this implies the existence of an oracle algorithm A′

d

for the permutation routing problem, where the total number of oracle words read by
all of the processors is less than n logm

8 log n , and maxi r(A
′
d, C, i) <

n logm
8m log n . For any such

A′, there is some processor d such that the average over all inputs of the number of
oracle words read from the oracle memory for processor d is less than n logm

8p logn , and

r(A′
d, C, d) ≤ n logm

8m logn . However, this implies the existence of an algorithm for the
processor d permutation routing problem, where the average over all inputs of the
number of oracle words read from the oracle memory for processor d is less than
n logm
8p logn , r(A

′
d, C, d) <

n logm
8m logn , and yet processor d responds correctly with probability

> 3
4 . This contradicts Lemma 3.3, and thus there does not exist such an algorithm

Ad.

3.1. The processor d permutation routing problem. In this subsection,
we prove Lemma 3.3, restated here for convenience.

Lemma 3.9. In any deterministic algorithm for the oracle model that solves the
processor d permutation routing problem when n > p2, if the average number of oracle
words read by processor d is at most n logm

8p logn , and processor d never reads more than
n logm
m logn ROM locations, then on an input chosen uniformly at random, processor d

produces an incorrect result with probability at least 1
4 .

For concreteness and simplicity, we represent an input to the permutation routing
problem as a bit matrix B with n rows and p columns. If processor ID j appears in
location i in the permutation routing problem instance, then Bij = 1; otherwise Bij =
0. Rows of B correspond to locations, and columns of B correspond to processors,
so each column of B has exactly n

p ones, and there is exactly one 1 in each row. A
ROM query to location k reveals row k of this matrix. In order to solve the processor
d permutation routing problem correctly, processor d must be able to specify column
d of B exactly.

The proof of this lower bound employs the “little birdie” principle: giving a
processor additional information never increases the complexity of the problem that
the processor must solve. The side information that the “little birdie” reveals a priori
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1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0




Fig. 3.1. Permutation routing problem input: n = 6, p = 3.




0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 1 0




Fig. 3.2. A hidden matrix for processor 1 consistent with input in Figure 3.1

to processor d is a perturbed representation of the input specification B called a
hidden matrix. Providing this matrix to processor d allows us to prove lower bounds
on the amount of information subsequent ROM queries provide to processor d.

The hidden matrix is chosen as follows. A permutation routing problem instance
B is chosen uniformly at random and revealed to the oracle. Then, based on the
choice of B, a hidden matrixH is chosen and revealed to processor d and the oracle. To
construct the hidden matrix H, we first choose an n×p matrix G uniformly at random
from binary matrices whose dth column is identical to the dth column of B, and the
remaining columns each have either � n

p(p−1)	 1’s or 

n

p(p−1)� 1’s, such that every row

with a 1 in column d has exactly one 1 in some other column, and all other rows have
no 1’s. The hidden matrix H is defined to be H = B⊕G, where ⊕ denotes the bitwise
XOR of the two matrices. This mapping evenly redistributes the 1’s from column
d of B across the other columns while leaving all other rows unchanged. A pictorial
representation of an input matrix and a possible hidden matrix constructed from it
are given in Figures 3.1 and 3.2. Based on B and H, the oracle places some number
of words in processor d’s oracle memory. Processor d then executes its deterministic
algorithm and produces its output.

We say that an input C is consistent with a hidden matrix H if there is a matrix
G perturbing C as defined above such that C ⊕ G = H. Let C(H) denote the set of
inputs that are consistent with hidden matrix H. For deterministic algorithms, the
pair 〈C,H〉, where C is an input consistent with hidden matrixH uniquely determines
S, the setting of oracle memory d. We say that S is consistent with hidden matrix
H if there is C ∈ C(H) such that H and C determine S. Let S(H) be the set of all
settings of the oracle memory S that are consistent with H. Also, we say that input
C is consistent with both H and S if H and C determine S. Let C(H,S) be the set
of all inputs C that are consistent with H and S. Finally, for a hidden matrix H and
an input C ∈ C(H), let the indicator variable R(H,C) = 1 if processor d produces
the correct output on C when given H and 0 otherwise.
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We first demonstrate that for any given hidden matrix, setting of the oracle
memory, and algorithm, there cannot be too many inputs for which the algorithm
produces the correct result.

Claim 3.9. In any algorithm for the processor d permutation routing problem,
where processor d is provided with any hidden matrix H and any setting of the oracle
memory S, if processor d performs no more than n logm

m logn ROM queries, then

∑
C∈C(H,S)

R(H,C) ≤ Z, where Z =

n
p∑
r=1

(n logm
m logn

r

)
.

Proof. After the setting of the oracle memory and the hidden matrix have been
fixed, we can model processor i’s actions by a decision tree, in which each node of the
decision tree corresponds to a ROM query, and each leaf of the tree corresponds to a
processor state achievable after performing at most n logm

m logn ROM queries. The number
of distinct results that processor d can produce is at most the number of leaves in
this tree. We show that for any nonredundant algorithm, i.e., an algorithm that only
examines each ROM location once, the tree has at most Z leaves. Any redundant
algorithm can be simulated by a nonredundant algorithm, and thus the number of
distinct results processor d can produce is at most Z for all algorithms.

Suppose processor d reads the value of row i of C from the ROM. Then, either (a)
row i of H is identical to row i of C, or (b) C has a 1 in column d of row i whereas H
has a 1 in some other column. Since processor d knows H at the start of the algorithm,
the decision tree has branching factor two. Since processor ID d only appears in n

p
elements, at most n

p of these ROM queries can discover elements where processor ID
d appears. Mapping successful discoveries to left branches and unsuccessful queries
to right branches ensures that any algorithm which is nonredundant has a decision
tree where any path from root to leaf can have at most n

p left branches. The number
of distinct leaves of the decision tree that can be reached by a path from root to leaf

with k left branches is at most
(n log m

m log n

k

)
. Thus, the possible number of leaves in the

decision tree is at most
(n log m

m log n

0

)
+
(n log m

m log n

1

)
+ · · ·+

(n log m
m log n

n/p

)
.

For any algorithm for the processor d permutation routing problem, let a(H) be
the average number of oracle words provided to processor d, where the average is
taken over all inputs in C(H).

Claim 3.10. Consider any algorithm for the processor d permutation routing
problem where n > p2, where the little birdie provides processor d with a hidden
matrix, and where processor d performs at most n logm

m logn ROM queries. For any H, if

a(H) < n logm
4p logn , then on an input chosen uniformly at random from the set C(H), the

probability that processor d produces the correct output is < 1
2 .

Proof. The total number of inputs in C(H) on which processor d responds correctly
is at most

∑
C∈C(H)

R(H,C) =
∑

S∈S(H)

∑
C∈C(H,S)

R(H,C),

and so the probability of a successful response is at most

1

|C(H)|
∑

S∈S(H)

∑
C∈C(H,S)

R(H,C).
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But, by Claim 3.9, this is at most Y, where

Y =
∑

S∈S(H)

min

(
Z

|C(H)| ,
|C(H,S)|
|C(H)|

)
.

We assume that Y ≥ 1
2 , and we reach a contradiction by showing that this implies

that a(H) ≥ n logm
4p logn . First, note that Y ≥ 1

2 implies that |S(H)| ≥ |C(H)|
2Z . Let |S|

denote the number of words in oracle memory setting S. Because there are at most

2r logn settings of the oracle memory with ≤ r words, there are at least 3|C(H)|
8Z oracle

memory settings S ∈ S(H) such that

|S| ≥
log
(

|C(H)|
8Z

)
log n

.

We call such oracle memory settings large settings. We use this to minimize a(H)
subject to Y ≥ 1

2 . Note that

a(H) =
∑

S∈S(H)

|S| |C(H,S)||C(H)| .

By counting the total contribution to a(H) of the large settings, we see that

a(H) ≥ 3|C(H)|
8Z

·
log
(

|C(H)|
8Z

)
log n

· |C(H,S)||C(H)| .

We can assume that for any S ∈ S(H), |C(H,S)| ≥ Z, since given any valid solu-
tion, any sets C(H,S) of smaller cardinality can be combined into sets of cardinality
Z without changing the value of Y and without increasing a(H). Thus,

a(H) ≥
3 log

(
|C(H)|

8Z

)
8 log n

.

Using the fact that n > p2, we have that for any H,

|C(H)| ≥
( � n

p−1	
� n
p(p−1)	

)p−1

.

Using the inequality
(
a
b

)b ≤ (
a
b

)
≤
(
ae
b

)b
, and the fact that m ≤ p implies that the

sum expressed by Z is dominated by the final term, this gives us

a(H) ≥ 3n logm

8p log n
− o

(
n logm

p log n

)
,

which is a contradiction. Thus, the probability of a correct response from processor d
is less than 1

2 .
Proof of Lemma 3.3. The number of hidden matrices consistent with a given input

is invariant over the choice of input and the number of inputs consistent with a given
hidden matrix is invariant over the choice of matrix. Thus, if the average, over all
inputs, of the number of oracle words read by processor d is at most n logm

8p logn , then the



PARALLEL SORTING WITH LIMITED BANDWIDTH 2009

average of a(H) over all H is at most n logm
8p logn . By Markov’s inequality, this implies that

a(H) ≤ n logm
4p logn for at least 1

2 of the hidden matrices H. The input to the permutation
routing problem is chosen uniformly at random from the set of all inputs. One method
for producing this uniform distribution is as follows: first a hidden matrixHi is chosen
uniformly at random from the set of all hidden matrices that can be given to d. Then,
an input Ci is chosen uniformly at random from C(Hi). With probability at least 1

2 , for

the resulting choice of Hi, a(Hi) ≤ n logm
4p logn . By Claim 3.10, if a(Hi) ≤ n logm

4p logn , then the

probability that processor d responds correctly is at most 1
2 . Therefore, the probability

that processor d responds correctly on an input chosen uniformly at random, when
given a hidden matrix, is at most 3

4 . By the little birdie principle, the probability that
processor d responds correctly on an input chosen uniformly at random, when not
given a hidden matrix, also is at most 3

4 .

4. The upper bound. We show that a version of Leighton’s Columnsort [26]
performs well in both the ER PRAM(m) and the QR PRAM(m). Moreover, this
algorithm runs in a model where there is no globally shared ROM for the input
(which may not always be realistic in practice), but instead the input is distributed
across the processor’s local memories.

Theorem 4.1. There is an ER PRAM(m) algorithm for sorting n keys which
runs in time

O
( n
m
(1− β)−3.42)

)
,

provided p ≥ m log n and m = O(nβ), for some β < 1. This algorithm has the same
running time on the QR PRAM(m).

Proof. It is sufficient to provide a sorting algorithm for the ER PRAM(m). To do
so, we use a recursive version of Columnsort, which we describe below. In Columnsort,
the n keys are thought of as elements in a matrix M . There is a requirement on the
aspect ratio ofM : ifM is an s×r matrix, then s must be larger than r2. The elements
are sorted using seven phases, where each phase is one of three types: phases that
sort the columns of the matrix, phases that perform an odd-even transposition sort
along the rows of the matrix, and phases that route a fixed permutation of the matrix
elements, where each column routes an equal number of elements to every other
column. The following simple description of Columnsort is provided in [27]. In phases
1, 3, and 7, the columns are sorted into increasing order. In phase 5, odd columns
are sorted into increasing order and even columns are sorted into decreasing order. In
phase 2, the matrix is “transposed”: the items are picked up in column-major order
and set down in row-major order (preserving the shape of the matrix). Phase 4 applies
the reverse of the permutation applied in phase 2, and phase 6 performs two steps of
odd-even transposition sort to each row.

We specify a call to recursive Columnsort in the ER PRAM(m) by two parameters:
k, the number of keys to be sorted, and a, the number of memory cells dedicated to
this function call. We develop the following recurrence relation for the running time
of recursive Columnsort, where the keys are contained in a ROM of size n:

RC(k, a) = O

(
k

a

)
if k ≥ a3 log n,

RC(k, a) = 4 RC
(
k2/3, ak−1/3

)
+ O

(
k

a

)
otherwise.
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In the version of Columnsort we use to obtain this recurrence, each of the m
memory cells is assigned a set of log n processors. These m log n processors sort the
n keys, and inform each of the p−m log n remaining processors of the range of keys
that they need to output. Note that since the algorithm makes effective use of only
m log n processors, this algorithm is consistent with the observation that increasing
communication throughput, as opposed to adding processors, is required for faster
parallel sorting.

The base case for the recurrence, where k ≥ a3 log n, works as follows. The k keys
are thought of as being entries in a matrix M of keys of size k

a logn × a log n; this
matrix satisfies the aspect ratio requirement of Columnsort. We have a log n available
processors, and each of these is assigned to one column of M . Thus, a memory cell
serving a set of log n processors handles data transfer for logn columns. Recall that
each memory cell is assigned to the set of log n columns to which its processors are
assigned. We now show that we can implement each of the three types of phases of
Columnsort on the PRAM(m) in time O(ka ). Sorting the columns can be performed

by each of the a processors locally in time O( k log k
a logn ) = O(ka ) by any of a variety of

known serial algorithms.

Routing the fixed permutation on the matrix elements requires each processor to
send an identical number of keys to every other processor, and thus can be done with
a single pass through all the entries. A single element is routed by the source and
destination processors using the shared memory location that is assigned to the desti-
nation processor. The source processor writes to this memory cell the key’s address in
the ROM, and then the destination processor reads this address. Since each memory
cell handles log n columns, and each column contains k

a logn keys, the total number

of addresses written to each memory cell is O(ka ). Thus, the entire permutation can

be routed in time O(ka ). One phase of odd-even transposition sort can be performed
by each processor routing all the keys currently in its column to the processor that is
assigned to the neighboring column. This can also be done in time O(ka ).

For the case where k < a3 log n, we sort the keys as follows. The keys are thought
of as the elements in a matrix M of size k2/3 × k1/3. This matrix satisfies the aspect
ratio of Columnsort, and thus we use Columnsort to sort this matrix as well. We
can still route the permutations of the matrix M and perform the phases of odd-even
transposition sort in time O(ka ). This follows from the fact that for each permutation
only k keys need to be routed through the shared memory and this operation can be
performed without conflict while making use of each cell during each of the O(ka ) time
steps. For the phases which sort the columns of the matrix, we employ parallel calls
to recursive Columnsort, one call per column. Each column consists of k2/3 keys, and
we evenly distribute the a available memory cells (with their associated processors)
across the columns. Thus, each of the 4 sorting phases takes time RC

(
k2/3, ak−1/3

)
.

An example which graphically describes one level of this recursive procedure is given
in Figure 4.1.

The algorithm starts with a call to recursive Columnsort with n keys and m
memory cells (with each assigned log n processors). After the n keys are sorted, the
m log n processors can inform each of the remaining p − m log n processors of the
correct sorted list of n

p keys to output in the same amount of time as is required
to route one permutation. To analyze the running time of sorting n keys on the ER
PRAM(m), we evaluate the recurrence RC (n,m). The running time of the algorithm
is dominated by the time for sorting at the bottom of the recursion at level j: O( nm4j).
When m is a fixed function of n where m = O(nβ) for β < 1, this j is the smallest
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m = n 5 / 9

n

2 / 3

1 / 3

4 / 9n

n n n n n2 / 9 2 / 9 2 / 9 2 / 9 2 / 9

n

Fig. 4.1. The recursive algorithm when m = n5/9

integer that satisfies n((2/3)j) ≤ n1−β , and the following bound on 4j follows directly:

4j ≤ (1− β)
2

log 2
3 ≈ (1− β)−3.42.

Substituting into the formula above gives an upper bound on the running time of
O( nm (1− β)−3.42).

5. Other limited bandwidth models. We can use the techniques discussed
for the PRAM(m) to derive bounds in other parallel models which address the issue
of limited communication throughput. We give a brief discussion of translating the
ER PRAM(m) lower bound for sorting into the LogP model [15] and the BSP model
[33] and state the best known upper bounds for sorting in these models.

5.1. The LogP model. In the LogP model, limited communication throughput
in a parallel machine is enforced by requiring that each processor must wait for a gap
of at least g cycles between the transmission of consecutive point-to-point messages.
The three other LogP parameters are P, the number of processors, L, the latency of a
message in the network, and o, the overhead (in cycles) to place a fixed-size message
onto the network. Note that this model uses point-to-point messages for communica-
tion, as opposed to using the global shared memory used in the PRAM(m) model. We
make the additional assumption that the point-to-point messages, or packets, have a
maximum size w, measured in bits.

In this model, only P packets can be issued into the network each g time steps,
and thus the throughput of the network is

mL =

⌈
wP

g log n

⌉

log n-bit words per machine cycle. We denote this expression for throughput by mL

to make plain its correspondence with m in the PRAM(m) model. In order to prove
a lower bound for sorting in the LogP model, we first show that any LogP model
algorithm can be simulated in the oracle model.

Lemma 5.1. If w > log g, then given any LogP algorithm Al that completes in
time T, there is an oracle algorithm Ao that computes the same function as Al, also
in time T, and Ao writes at most 2mLT words to each of the oracle memories.
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Proof. We partition the time steps of the LogP algorithm Al into epochs, where
each epoch consists of g consecutive time steps. Note that each processor receives
at most one message during any epoch. We number the bits of each oracle memory,
ignoring word boundaries. We can simulate Al with an oracle algorithm Ao, where
epoch i in Al is represented in Ao by the oracle utilizing bits (i−1)(�log g	+1+w)+1
through i(�log g	+1+w)+1 in each oracle memory. The first �log g	+1 of the bits for
each epoch are used to inform processor j of whether or not a message arrives during
that epoch, and in the case of an arrival, the exact time step of the arrival during the
epoch. In the case of an arrival, the remaining w bits contain the message contents.
In Ao, the processors execute their algorithms for Al, ignoring steps where messages
are sent, and reading from the oracle memory at the start of every epoch. The total
number of bits read is P (�log g	+ 1+w)
Tg �. When w > log g, this is O(mLT log n),

and thus at most O(mLT ) words are required in each oracle memory.

We briefly point out why we require that the oracle give each processor the timing
information provided by the �log g	 + 1 additional bits used for each epoch. The
LogP model is an asynchronous model, and thus processors cannot use the timing
information to ensure the correctness of the algorithm. However, for the purpose
of running time analysis, it is assumed that each processor behaves synchronously.
Thus, in the optimal algorithm, it is possible that a processor is able to use the
timing information to achieve a better running time than an algorithm that does not
make inferences based on this information. Note that any algorithm that does not use
this timing information can be simulated in the oracle model using at most O(mLT )
words, even in the case where w ≤ g.

As in the ER PRAM(m) model, when mL grows as a fractional power of n, the
time required to sort n keys is asymptotically no less than the time required to route
all n keys through the network, even in the case where every processor knows all the
keys in advance. Let Ts(n) be the optimal sequential time required to sort the n keys.

Theorem 5.2. In the LogP model, sorting n distinct keys requires expected time

Ω

(
Ts(n)

P
+
n logmL

mL log n
+ L+ o+ g

)
,

provided that n > P 2, w > log g, and Ts(n) ≥ L. This bound holds even in the case
that every processor has access to every key at the start of the algorithm.

Proof. We first assume there exists an algorithm Al for the LogP model, where the
average over all inputs of the time to perform Al is at most n logmL

16mL logn , and we reach a
contradiction. By Lemma 5.1, such an algorithm Al implies the existence of an oracle
model algorithm where the average number of oracle words used is at most n logmL

8 log n ,
and the average of the maximum number of ROM queries by any processor is at most
n logmL

8mL logn . However, as we saw in Theorem 3.4, this leads to a contradiction of Lemma

3.3, and thus there does not exist such an algorithm Al for the ER PRAM(m). The
lower bound then follows from the fact that at least one transmission, which requires
time at least max(L, o, g), is required in any algorithm that sorts in time faster than
time Ts(n), and that the time to sort on P processors is no faster than the optimal
time to sort on one processor divided by P .

A recursive implementation of Columnsort similar to that presented in section 4
can be tuned to deliver the following asymptotic performance.

Theorem 5.3. In the LogP model, sorting n keys known to all processors can be
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completed in time

O

(
Ts

( n
P

)
+

n

mL
+ L+ o+ g

)
,

provided that P = O(nβ) for some constant β < 1 and that w ≤ log n.
The case where the input is distributed across the processors requires long keys

to be sent in their entirety, rather than sending just the original index of the key.
Otherwise, the algorithm, as well as the resulting bounds, are the same.

5.2. The BSP model. We now briefly describe analogous bounds for sorting
in the BSP model proposed by Valiant [33], [34]. The model consists of a set of
processors capable of transmitting point-to-point messages through a communication
network and facilities for performing barrier synchronization across any subset of the
processors. The three parameters of the model are P, the number of processors, L,
the minimum number of local computation steps between successive synchronization
operations, and g, the ratio between the throughput of local computation to the
throughput at which a processor may inject point-to-point messages into the network.
As in the LogP model, g enforces a limit on the communication throughput available
to each processor. We assume that each transmitted packet is at most w bits in size.

Computation in the BSP model proceeds in supersteps, wherein each processor
in parallel executes a task consisting of some number of local computation steps,
message transmissions, and message receipts, subject to the constraints imposed by
the parameter g. The superstep lasts for kL time steps, where k is the minimum
integer such that all processors have completed their tasks before time kL. As in the
LogP model, the total communication throughput in the BSP model is mB = 
 wP

g logn�
words per step of local computation, where each word consists of log n bits.

Theorem 5.4. In the BSP model, sorting n distinct keys requires time

Ω

(
Ts(n)

P
+
n logmB

mB log n
+ L+ o+ g

)

when n > P 2 and Ts(n) ≥ L.
Proof. Using the technique from Lemma 5.1, we see that the oracle model is also

capable of simulating any BSP algorithm. Thus, the existence of any algorithm that
sorts faster than n logmB

16mB logn again implies the existence of an algorithm that contradicts
Lemma 3.3.

Using recursive Columnsort, it is straightforward to show that in the BSP model,
sorting any n keys can be completed in time O(TS(

n
P )+

n
mB

+L+g+o), provided that

P = O(nβ) for some constant β < 1 and that w ≤ log n. This result for sorting in
the BSP model compares with the previous best randomized methods of Gerbessiotis
and Valiant [21] for the BSP model with the assumption that each packet that is
transmitted consists of exactly one key. Their algorithms run in time O(n logn

P +
gpε + gn

P + L), with high probability, for any positive constant ε < 1, and for P ≤
n1−δ, where δ is a small constant depending on ε. After the preliminary version of
this paper appeared in [2], work on this problem by Goodrich [24] tightened the
bounds for sorting on the BSP, giving deterministic algorithms which run in time
O(n logn

P +(L+ gn
P )(log n/ log(n/P ))) for all values of P, coupled with a matching lower

bound. Other recent work by Gerbessiotis and Siniolakis [20] gives a deterministic
algorithm for sorting on the BSP which runs in time (1 + o(1))(n logn

P +L) + O( gnP )
for P = n1−ε, 0 < ε < 1, and uses 1-optimal local computation.
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6. Conclusion. We have examined the problem of sorting on parallel models
with limited communication bandwidth. Our main results include upper and lower
bounds for sorting on exclusive- and queued-read variants of the PRAM(m) model
which are asymptotically optimal for many practical settings of the parameters and
are otherwise asymptotically tight to within at most a logarithmic factor. The form of
our bound is noteworthy in that it demonstrates that all efficient parallel algorithms
for sorting in this limited bandwidth model depend on large amounts of interprocessor
communication. The techniques used to develop the bounds also apply to the LogP
model and the BSP model, bridging models which consider the effect of limited band-
width on parallel computation. For all three models of computation considered, when
m = Ω(nβ), the time to sort and the time to transmit all the keys through the shared
memory (or the network) are asymptotically equivalent, even in the case where the
entire input is known to each of the processors. Furthermore, as long as n > p2, the
bounds do not depend on the parameter p, so that when attempting to improve the
performance of parallel sorting on machines with limited communication bandwidth,
increasing communication bandwidth is more likely to be beneficial than increasing
the number of processors. The lower bound, however, does not apply to the concurrent
read version of the PRAM(m) originally introduced by Mansour, Nisan, and Vishkin
in [30], and thus the asymptotic complexity of sorting in this model remains an open
question.

Acknowledgments. We would like to thank Ralph Werchner for his useful com-
ments and suggestions on an earlier version of this paper and for the valuable and
insightful suggestions of the anonymous SICOMP referees.
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Abstract. We present several variants of a new randomized incremental algorithm for com-
puting a cutting in an arrangement of n lines in the plane. The algorithms produce cuttings whose
expected size is O(r2), and the expected running time of the algorithms is O(nr). Both bounds are
asymptotically optimal for nondegenerate arrangements. The algorithms are also simple to imple-
ment, and we present empirical results showing that they perform well in practice. We also present
another efficient algorithm (with slightly worse time bound) that generates small cuttings whose size
is guaranteed to be close to the best known upper bound of J. Matoušek [Discrete Comput. Geom.,
20 (1998), pp. 427–448].

Key words. cuttings, range-searching, computational geometry
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1. Introduction. A natural approach for solving various problems in compu-
tational geometry is the divide-and-conquer paradigm. A typical application of this
paradigm to problems involving a set Ŝ of n lines in the plane is to fix a parameter
r > 0 and to partition the plane into regions R1, . . . , Rm (those regions are usually
vertical trapezoids, or triangles, but we will consider here also convex polygons with
more edges) such that the number of lines of Ŝ that intersect the interior of Ri is at
most n/r for any i = 1, . . . ,m (see Figure 1). This allows us to split the problem
at hand into subproblems, each involving the subset of lines intersecting a region Ri.
Such a partition is called a (1/r)-cutting of the plane. See [Aga91] for a survey of
algorithms that use cuttings. For further work related to cuttings, see [AM95].

The first (though not optimal) construction of cuttings is due to Clarkson [Cla87].
Chazelle and Friedman [CF90] showed the existence of (1/r)-cuttings with m = O(r2)
(a bound that is worst-case tight). They also showed that such cuttings, consisting
of vertical trapezoids, can be computed in O(nr) time. An optimal deterministic
algorithm for generating cuttings was given by [Cha93]. Although those constructions
are asymptotically optimal, they do not seem to produce a practically small number of
regions. Coming up with a really small number of regions (i.e., reducing the constant
of proportionality) is important for the efficiency of (recursive) data structures and
algorithms that use cuttings. Currently, the best lower bound on the number of
vertical trapezoids in a (1/r)-cutting in an arrangement of lines is 2.54(1 − o(1))r2,
and the optimal cutting has at most 8r2 + 6r + 4 trapezoids; see [Mat98]. Improving
the upper and lower bounds on the size of cuttings is still open, indicating that our
understanding of cuttings is still far from being fully satisfactory. In section 3, we
outline Matoušek’s construction for achieving the upper bound and show a slightly
improved construction (see below for details).
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Fig. 1. (1/20)-cutting of 100 lines as computed by our demo program [HP98], using the PolyTree
algorithm (see section 4.2). The boundaries of the cutting regions are marked by thick lines, and
each such region intersects at most 5 lines in its interior.

In this paper we propose several variants of a new and simple randomized in-
cremental algorithm CutRandomInc for constructing cuttings and prove the expected
worst-case tight performance bounds, as stated in the abstract, for CutRandomInc

and for some of its variants. We also present empirical results on several algo-
rithms/heuristics for computing cuttings that we have implemented. They are mostly
variants of our new algorithm, and they all perform well in practice.1 As already
stated, O(r2) bounds on the expected size of the cuttings for some of those variants
can be proved. For the other improved algorithms, no formal proof of performance is
currently available, and we leave this as an open question for further research.

Matoušek [Mat98] gave an alternative construction for cuttings, showing that
there exists a (1/r)-cutting with at most (roughly) 8r2 vertical trapezoids. Unfor-
tunately, this construction relies on computing the whole arrangement, and its com-
putation thus takes O(n2) time. We present a new randomized algorithm that is
based on Matoušek’s construction; it generates a (1/r)-cutting of size ≤ (1 + ε)8r2,
in O

(
nr
ε log

2 n
)
expected time, where 0 < ε ≤ 1 is any prescribed constant.

In section 2, we present the main two variants of the new algorithm CutRandomInc

and analyze their expected running time and the expected number of trapezoids that
they produce. Specifically, the expected running time is O(nr) and the expected
size of the output cutting is O(r2). We also analyze, in section 2.1, another variant
CRIVPolygon of the algorithm that also has similar performance bounds. In sec-
tion 3, we present and analyze our variant of Matoušek’s construction. In section 4,
we present our empirical results, comparing the new algorithms with several other
algorithms/heuristics for constructing cuttings. These algorithms are mostly also
variants of CutRandomInc (except that we still do not have a formal analysis of their
performance bound), but they also include a variant of the older algorithm of Chazelle

1In spite of the theoretical importance of cuttings (in the plane and in higher dimensions), we
are not aware of any (other) implementation of efficient algorithms for constructing cuttings.
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and Friedman. The first batch of the implemented algorithms generate cuttings that
consist of vertical trapezoids. Our empirical results show that the cuttings generated
by the new algorithm CutRandomInc and its variants have between 10r2 and 14r2

vertical trapezoids. (The algorithms generate smaller cuttings when r is small. For
example, for r = 2 the constant is about 9.) In contrast, the Chazelle–Friedman
algorithm generates cuttings of size roughly 70r2. Some variants of our algorithm
are based on cuttings by convex polygons with a small number of edges rather than
by vertical trapezoids. These perform even better in practice, and we have a proof
of optimality for one of the methods CRIVPolygon, which can be interpreted as an
extension of CutRandomInc (see section 2.1). We conclude in section 5 by mentioning
a few open problems. A program with a graphical user interface (GUI) demonstrating
the algorithms and heuristics presented in the paper is available on the web in source
form [HP98].

2. Incremental randomized construction of cuttings. Given a set Ŝ of n
lines in the plane, let A(Ŝ) denote the arrangement of Ŝ, namely, the partition of
the plane into faces, edges, and vertices as induced by the lines of Ŝ [Ede87]. Let
AVD(Ŝ) denote the partition of the plane into vertical trapezoids (i.e., the vertical
decomposition of A(Ŝ)), obtained by erecting two vertical segments up and down
from each vertex of A(Ŝ) and extending each of them until it either reaches a line of
Ŝ, or otherwise all the way to infinity.

Computing the decomposed arrangement AVD(Ŝ) can be done as follows. Pick
a random permutation S = 〈s1, . . . , sn〉 of Ŝ. Put Si = 〈s1, . . . , si〉 for i = 1, . . . , n.
We compute incrementally the decomposed arrangements AVD(Si) for i = 1, . . . , n
by inserting the ith line si of S into AVD(Si−1). To do so, we compute the zone Zi
of si in AVD(Si−1), which is the set of all trapezoids in AVD(Si−1) that intersect si.
We split each trapezoid of Zi into at most four trapezoids, such that no trapezoid
intersects si in its interior, as in [SA95]. Finally, we perform a pass over all the newly
created trapezoids, merging vertical trapezoids that are adjacent and have identical
top and bottom lines. The merging step guarantees that the resulting decomposition
is AVD(Si), independently of the insertion order of elements in Si; see [dBvKOS97].

However, if we decide to skip the merging step, the resulting structure, denoted as
A|(Si), depends on the order in which the lines are inserted into the arrangement. In
fact, A|(Si) is AVD(Si) with additional superfluous vertical walls. Each such vertical
wall is a fragment of a vertical wall that was created at an earlier stage and got split
during a later insertion step.

Definition 2.1. Let Ŝ be a set of n lines in the plane, and let 0 < c < 1 be a
constant. A c-cutting of Ŝ is a partition of the plane into regions R1, . . . , Rm such
that, for each i = 1, . . . ,m, the number of lines of Ŝ that intersect the interior of Ri
is at most cn.

A region C in the plane is c-active if the number of lines of Ŝ that intersect the
interior of C is larger than cn.

A (1/r)-cutting is thus a partition of the plane into m regions such that none of
them is (1/r)-active. Chazelle and Friedman [CF90] showed that one can compute, in
O(nr) time, a (1/r)-cutting that consists of O(r2) vertical trapezoids. Both bounds
are asymptotically tight in the worst case.

We propose a new algorithm for computing a cutting that works by incrementally
computing the arrangements A|(Si), using a random insertion order S of the lines.
The new idea in the algorithm is that any “light” trapezoid (i.e., a trapezoid that
is not (1/r)-active) constructed by the algorithm is immediately added to the final
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Algorithm CutRandomInc(Ŝ, r, merge−flag)
Input: A set Ŝ of n lines, a positive integer r, and

a flag merge−flag that indicates whether merging is used or not
Output: A (1/r)-cutting of Ŝ by vertical trapezoids

begin

Choose a random permutation S = 〈s1, s2, . . . , sn〉 of Ŝ.
C0 ←

{
R

2
}
.

i← 0.
while there are (1/r)-active trapezoids in Ci do

i← i+ 1
Zonei ← The set of (1/r)-active trapezoids in Ci−1 that intersect si.
Zone′i ← ∪∆∈Zonei split(∆, si),
where split(∆, s) is the operation of splitting a vertical trapezoid ∆
crossed by a line s into at most four vertical trapezoids, as in
[dBvKOS97], such that the new trapezoids cover ∆, and they do not
intersect s in their interior.

if merge−flag then

Merge adjacent trapezoids in Zone′i that have the same top
and bottom lines (one of which is si).

end if

Ci ← (Ci−1 \ Zonei) ∪ Zone′i.
end while

return Ci
end CutRandomInc

Fig. 2. Algorithm for constructing a (1/r)-cutting of an arrangement of lines.

cutting, and the algorithm does not maintain the arrangement inside such a trapezoid
from this point on. In this sense, one can think of the algorithm as being greedy; that
is, it adds a trapezoid to the cutting as soon as one is constructed and proceeds in
this manner until the whole plane is covered. The algorithm, called CutRandomInc,
is depicted in Figure 2.

The algorithm has two variants. One does not merge adjacent trapezoids (as
in the construction of A|(S)), while the other performs such mergings (as in the
construction of AVD(S)).

If CutRandomInc outputs Ck for some k < n, then Ck has no (1/r)-active trape-
zoids, and it is thus a (1/r)-cutting. After the ith line is inserted, it is guaranteed
that no active trapezoid of Cj intersects si in its interior for j ≥ i. This remains true
even if merging is done by CutRandomInc. In particular, Cn has no active region, and
it is a cutting.

To appreciate the following proof of correctness and optimality of CutRandomInc,
one has to observe that the covering Ci of the plane maintained by CutRandomInc

depends heavily on the order in which the lines are inserted into the arrangement.
Indeed, the set of active trapezoids maintained by CutRandomInc falls outside the
classical frameworks of Clarkson and Shor [CS89], lazy randomized incremental con-
struction [dBDS95], and epsilon nets [HW87]. See Figures 3 and 4 for situations that
illustrate the difference between these frameworks and ours. In order to analyze our
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Fig. 3. If merging is not used by CutRandomInc, an active trapezoid ∆ ∈ Ci might disappear if
we skip an insertion of a line which does not belong to the defining or crossing sets of ∆. Indeed,
if CutRandomInc inserts the lines in the order l1, l2, . . . , l7, then the trapezoid ∆ is created; see (i).
However, if we skip the insertion of the line l1, then the trapezoid ∆ is not created, because the
ray emanating downward from l2 ∩ l3 intersects it. This implies that there is no “locality” in the
determination of which trapezoids arise in the execution of CutRandomInc, so the standard techniques
of [CS89, dBDS95, HW87] cannot be applied directly in analyzing CutRandomInc.
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Fig. 4. Even if merging is used by CutRandomInc, an active trapezoid ∆ ∈ Ci might disappear
if we skip an insertion of a line which is completely unrelated to ∆. The thick lines represent
two sets of 100 parallel lines, and we want to compute a (1/10)-cutting. We execute CutRandomInc

with the first 6 lines l1, . . . , l6 in this order. Note that any trapezoid that intersects a thick line is
active. The first trapezoid ∆′ inside �abc that becomes inactive is created when the line l5 is being
inserted; see parts (i) and (ii). However, if we skip the insertion of the line l4 (as in part (iii)), the
corresponding inactive trapezoid ∆′′ will extend downward and intersect ∆. Since ∆′′ is inactive,
the decomposition of the plane inside ∆′′ is no longer maintained. In particular, this implies that
the trapezoid ∆ will not be created, since it is being blocked by ∆′′, and no merging involving areas
inside ∆′′ will take place. Here too l4 belongs neither to the defining nor to the crossing sets of ∆.

algorithms, new techniques need to be developed.
In the following, we denote by R a selection of Ŝ of length r ≤ n, i.e., an ordered

sequence of r distinct elements of Ŝ. By a slight abuse of notation, we also denote
by R the unordered set of its elements. We define the weight of a trapezoid to be the
number of lines that cross its interior.

Definition 2.2. Let T = T (Ŝ) denote the set of all vertical trapezoids whose
top and bottom edges are contained in lines of Ŝ, and whose vertical sides are con-
tained in lines that pass through vertices of A(Ŝ).

For a selection R of Ŝ, let CT VD(R) denote the set of trapezoids of AVD(R). A
trapezoid in CT VD(R) is defined by at most four lines. For an integer 0 ≤ k ≤ n, let
CT VD(R, k) denote the trapezoids of CT VD(R) having weight at least k.

Definition 2.3. A vertical segment that serves as a left or right side of a trape-
zoid in T (Ŝ) is called a splitter. The weight of a splitter is the number of lines of Ŝ
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Fig. 5. Splitters created by CutRandomInc.

that cross the relative interior of the splitter. For a selection R of Ŝ, let CT SP(R)
denote the set of splitters of the trapezoids of A|(R), and let CT SP(R, k) denote the
set of splitters in CT SP(R) of weight at least k, where 0 ≤ k ≤ n. In general, a
splitter in CT SP(R) is uniquely defined by four lines: two define the vertex of the
arrangement through which the vertical line containing the splitter passes, and two
define (pass through) its top and bottom endpoints; see Figure 5(i). There are also
splitters that are adjacent to the vertex that induces them (see Figure 5(ii)); these
are defined uniquely by three lines.

In the following, S denotes the random permutation of Ŝ used by CutRandomInc.
Lemma 2.4. Let s be a splitter induced by {l1, l2, l3, l4} ⊆ Ŝ, so that l1 and l2

intersect at a vertex p; s is contained in the vertical line l passing through p; and the
endpoints of s are a = l3 ∩ l, b = l4 ∩ l, with a nearer to p than b. Let Lw be the set
of lines of Ŝ that intersect the relative interior of s, and let Lq be the set of lines of

Ŝ that intersect the relative interior of ap; see Figure 5(i). Then the probability of s
to be created by CutRandomInc is bounded by

8

(w + 1)2(q + w + 3)2
,

where w = |Lw|, q = |Lq|.
If one of the endpoints of the splitter is p, then the probability of s to be created is

≤ 6/(w + 1)3, where w = |Lw| and Lw is the set of lines crossing the relative interior
of s; see Figure 5(ii).

Proof. Let A denote the event that l1, l2 appear in S before all the lines of
Lq ∪ Lw ∪ {l3}, and let B denote the event that l3, l4 appear in S before all the lines
of Lw.

The event A is a necessary and sufficient condition for pb (or a longer segment) to
be created when merging is not used. The event B, conditioned on A, is a necessary
and sufficient condition for the vertices delimiting s to be created before s is being
“killed.” Hence s is created by CutRandomInc (without merging) if and only if A∩B
occurs for S. (If merging is used, only one implication holds: If s is created, then
A ∩B occurs for S.)
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To compute P (A ∩ B) it suffices to consider permutations of only the q + w + 4
lines in Lq ∪ Lw ∪ {l1, l2, l3, l4}. We distinguish between two cases.

(i) The first three lines in such a permutation are the lines l1, l2, l4, in any order
in which l4 is not the third line. This ensures the occurrence of A. We now choose
the w + 1 locations of the lines in Lw ∪ {l3} in the permutation and place l3 at the
first of the these locations, thus ensuring B. The number of such permutations is
(6− 2)

(
q+w+1
w+1

)
w!q! = 4(q + w + 1)!/(w + 1).

(ii) The first two lines in the permutation are l1, l2 (in any order). Again, A is
ensured. To ensure B, we choose the w + 2 locations of the lines in Lw ∪ {l3, l4} and
place l3, l4 as the first two of them (in any order). The number of such permutations
is

2!

(
q + w + 2

w + 2

)
2!w!q! =

4(q + w + 2)!

(w + 1)(w + 2)
.

It is easily verified that these two cases exhaust all possibilities of A ∩ B to arise.
Hence,

P (A ∩B)= 4(q + w + 1)!

(w + 1)(q + w + 4)!
+

4(q + w + 2)!

(w + 1)(w + 2)(q + w + 4)!

≤ 4

(w + 1)(q + w + 2)(q + w + 3)2
+

4

(w + 1)2(q + w + 3)2

≤ 8

(w + 1)2(q + w + 3)2
.

The proof of the second part of the lemma follows by observing that ap is created
if and only if l1, l2, l3 appear in S before all the lines of Lw. The probability for this
to happen is 3!w!/(w + 3)! ≤ 6/(w + 1)3.

Definition 2.5. Let TSP(S) denote the set of splitters in
⋃n
i=1 CT SP(Si),

and let TVD(S) denote the set of trapezoids in
⋃n
i=1 CT VD(Si). Let T A

SP(S) =⋃n
i=1 CT SP(Si, n/(2r)), and let T A

VD(S) =
⋃n
i=1 CT VD(Si, n/r).

Lemma 2.6. Let S be a random permutation of Ŝ. Then

E


 ∑
s∈T A

SP(S)

(w(s))c


 = O (ncr2−c)

for c = 0 or c = 1.
Proof. Let p be a vertex of A(Ŝ). The expected contribution of all the splitters

that lie on the vertical line passing through p to the above sum is at most

O


 ∞∑
w=n/2r

∞∑
q=0

wc

(w + 1)2(q + w + 3)2
+

∞∑
w=n/2r

wc

(w + 1)3




= O


 ∞∑
w=n/2r

∞∑
q=0

wc−2

(q + w + 3)2
+
(n
r

)c−2


 = O


 ∞∑
w=n/2r

wc−3 +
(n
r

)c−2




= O

((n
r

)c−2
)

for c = 0, 1.
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Since there are O(n2) vertices in A(Ŝ), it follows that

E


 ∑
s∈T A

SP(S)

(w(s))c


 = O (ncr2−c) .

Lemma 2.6 implies that the number of “heavy” splitters generated by CutRandomInc,
with or without merging, is O(r2), and their total weight is O(nr).

Lemma 2.7. Let S be a random permutation of Ŝ. Then

W = E


 ∑

∆∈T A
VD(S)

(w(∆))c


 = O (ncr2−c)

for c = 0, 1.
Proof. The probability of a trapezoid ∆ of weight w to be created during the

computation of CT VD(S), if it is defined by d ≤ 4 lines, is proportional to 1/wd. Let
fdw denote the number of trapezoids of TVD(S) that are defined by d lines of S and
have weight w. Let F d≤w =

∑w
q=0 f

d
q . By the Clarkson–Shor probabilistic technique

[CS89], we have F d≤w = O((n/w)
2wd) = O(n2wd−2). Let Wd denote the contribution

to W made by trapezoids defined by d lines. Then

Wd =

n−d∑
w=n/r

fdww
c

wd
=

n−d∑
w=n/r

fdww
c−d ≤

n−d∑
w=n/r

(F d≤w − F d≤w−1)w
c−d

≤ F d≤nnc−d +
n−d−1∑
w=n/r

F d≤w(w
c−d − (w + 1)c−d) = O


nc +

n−d−1∑
w=n/r

F d≤ww
c−d−1




= O


nc +

n−d−1∑
w=n/r

n2wd−2wc−d−1


 = O


nc + n2

∞∑
w=n/r

wc−3




= O
(
nc + n2(n/r)c−2

)
= O

(
ncr2−c

)
.

Overall, W =
∑4
d=1Wi = O(n

cr2−c).
By Lemma 2.7, the expected number of trapezoids in T A

VD(S) is O(r
2), and their

expected total weight is O(nr).
Remark 2.8. Lemmas 2.6 and 2.7 hold for any 0 ≤ c < 2, but we only need the

results for c = 0, 1.
Let ∇VDi = CT VD(Si, n/r) \ CT VD(Si−1, n/r), let ∇SPi = CT SP (Si, n/2r) \

CT SP (Si−1, n/2r), and let ∇Ci be the set of active trapezoids in Ci \ Ci−1, namely,
the new active trapezoids created in the ith iteration of the algorithm.

Lemma 2.9. (a) Each new trapezoid τ ∈ ∇Ci must be contained in a new trapezoid
∆ ∈ ∇VDi.

(b) Let ∆ be a (1/r)-active trapezoid in ∇VDi, and let ∇Ci(∆) (resp., ∇SPi(∆))
denote the set of trapezoids in ∇Ci (resp., splitters in ∇SPi) that are contained in ∆.
Then

∑
τ∈∇Ci(∆)

w(τ) = O


w(∆) + ∑

s∈∇SPi(∆)

w(s)
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τ ∆

si

τ ∆

si

Fig. 6. A new trapezoid τ ∈ ∇Ci must lie inside a new trapezoid ∆ ∈ ∇VDi.

and ∣∣∣∇Ci(∆)
∣∣∣ = O ( r

n
w(∆) +

∣∣∣∇SPi(∆)
∣∣∣) .

The lemma holds regardless of whether or not CutRandomInc performs merging.
Proof. (a) Let τ ∈ ∇Ci be an active trapezoid created in the ith iteration of

CutRandomInc, and let ∆ be the trapezoid of CT VD(Si) that contains ∆. If the line
si is the top or bottom line of τ , then clearly ∆ is also newly created. Otherwise si
must delimit one of the vertical sides of τ . This side is also a side of ∆, so ∆ is newly
created. Hence ∆ ∈ ∇VDi. See Figure 6.

(b) Let τ be a trapezoid in ∇Ci(∆). We charge the weight of τ either to (a
portion of) the weight of the (active) trapezoid of ∆, or to a new “heavy” splitter
that bounds τ .

As noted in (a), at least one of the splitters of τ must be new (i.e., created in the
ith iteration), and this remains true even if τ was created by merging a few active
trapezoids of Ci−1.

Consider the lines l ∈ Ŝ that cross τ . If at least half of these lines intersect the
ceiling and/or floor of ∆, we charge w(τ) to those intersection points whose number
is at least w(τ)/2. Since there are at most 2w(∆) such intersections on the boundary
of ∆, it follows that the sum of the weights w(τ) of such trapezoids is at most 4w(∆).

So one can assume that at least half the lines that cross τ do not intersect either
the floor or the ceiling of τ . This implies that the new splitter must intersect at least
w(τ)/2 > n/(2r) of these lines, which implies that s ∈ ∇SPi. Thus, we charge w(τ)
to w(s). Since w(τ) ≤ 2w(s), and each such splitter can be charged at most twice,
the first inequality of (b) follows.

As for the second inequality, if a (1/r)-active trapezoid τ ∈ ∇Ci(∆) does not have
a splitter of ∇SPi as one of its sides, then there at least n/r intersections between the
lines crossing τ and the bottom and top edges of τ . The number of such trapezoids
within ∆ is at most 2w(∆)/(n/r) = O((r/n)w(∆)). This is easily seen to imply the
second inequality.

Theorem 2.10. The expected size of the cutting generated by CutRandomInc

(with or without merging) is O(r2) and the expected running time is O(nr).
Proof. Since the direct work involved in creating the children of a trapezoid is pro-

portional to the number of lines that cross it, we can bound the overall work performed
by CutRandomInc by the total weight of the active trapezoids that it generates.

Of course, if we perform merging, there is also additional work associated with
merging trapezoids. However, the merging stage can be performed in linear time
in the total weight of the split trapezoids. This requires a somewhat careful but
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routine implementation, so that the running time remains linear even when merging
the conflict lists of a potentially large number of trapezoids, during the creation of a
single new (merged) trapezoid.

Thus, using Lemma 2.9(a), the expected running time is proportional to

E

[
n∑
i=1

∑
τ∈∇Ci

w(τ)

]
= E


 n∑
i=1

∑
∆∈∇VDi

∑
τ∈∇Ci(∆)

w(τ)


 .

By Lemma 2.9(b), we have

E

[
n∑
i=1

∑
τ∈∇Ci

w(τ)

]
= E


 n∑
i=1

∑
∆∈∇VDi

O


w(∆) + ∑

s∈∇SPi(∆)

w(s)






= O


E


 ∑

∆∈T A
VD(S)

w(∆) +
∑

s∈T A
SP(S)

w(s)




 = O(nr)

by Lemmas 2.6, 2.7.

As for the expected size of the cutting,

E

[
n∑
i=1

|∇Ci|
]
= E

[
n∑
i=1

∑
∆∈∇VDi

|∇Ci(∆)|
]
= O


E


 ∑

∆∈T A
VD(S)

r

n
w(∆) + |T A

SP(S)|






= O(r2),

by Lemma 2.9(b).

The algorithm CutRandomInc works also for planar arrangements of segments
and x-monotone curves (such that the number of intersections of any pair of curves
is bounded by a constant). This follows by a straightforward adaption of the proof to
those cases, which we omit, and it is summarized in the following proposition.

Proposition 2.11. Let Γ̂ be a set of x-monotone curves such that each pair
intersects in at most a constant number of points. Then the expected size of the
(1/r)-cutting generated by CutRandomInc for Γ is O(r2), and the expected running
time is O(nr) for any integer 1 ≤ r ≤ n in an appropriate model of computation.2

However, the arrangement of a set of n segments or curves might have sub-
quadratic complexity (since the number of intersection points might be subquadratic).
This raises the question of whether CutRandomInc generates smaller cuttings for such
sparse arrangements.

Indeed, an algorithm of [dBS95] generates cuttings of size O(r+ r2

n2κ) in expected
time O

(
n log r + r

nκ
)
, where κ is the overall complexity of the arrangement. Using

CutRandomInc for this case, we obtain the following slightly weaker bounds.

Proposition 2.12. Let Γ̂ be a set of n curves, such that each pair of curves
of Γ̂ intersect in at most a constant number of points. Then the expectedsize of the

2Namely, the real-RAM model—the intersection of two curves, and the value of a curve at a
certain x-coordinate can be computed in O(1) time.
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(1/r)-cutting generated by CutRandomInc, when applied to Γ̂, is

O

(
r log r +

r2

n2
κ

)
,

and the expected running time is O(n log2 r+ rκ/n) for any integer 1 ≤ r ≤ n, where
κ is the complexity of A(Γ̂).

Since CutRandomInc generates superficial splitters, the results for sparse arrange-
ments are slightly worse (by a factor of log r if κ is relatively small) than those of
[dBS95]. We omit any further details. The algorithm of [dBS95] is similar to the
algorithm of Chazelle and Friedman [CF90], and we therefore believe that in practice
CutRandomInc (with merging) will generate much smaller cuttings for A(Γ̂), as the
results of section 4 might suggest.

Remark 2.13. An interesting question is whether CutRandomInc can be extended
to higher dimensions. If we execute CutRandomInc in higher dimensions, we need to
use a more complicated technique in decomposing each of our “vertical trapezoids”
whenever it intersects a newly inserted hyperplane. Chazelle and Friedman’s algo-
rithm uses bottom vertex triangulation for this decomposition. However, in our case,
it is easy to verify that CutRandomInc might generate simplices so that the size of
their defining set need not be bounded by a constant, if we use bottom vertex trian-
gulation. This implies that the current analysis cannot be extended to this case. We
leave the problem of extending CutRandomInc to higher (say, three) dimensions as an
open problem for further research.

2.1. Cuttings by vertical polygons. In this section, we present another vari-
ant of CutRandomInc that uses “vertical polygons” instead of vertical trapezoids and
establish similar optimal performance bounds for this variant.

Definition 2.14. Let Ŝ be a set of n lines. A convex polygon P is a µ-vertical
polygon of Ŝ if the boundary of P , except for the two vertical sides of P , if any, is
contained in

⋃
Ŝ, and the number of nonvertical edges of P is at most µ, where µ is a

small positive constant (the case µ = 2 is the case of vertical trapezoids). We denote
the set of all such polygons by VPµ(Ŝ). A µ-vertical polygon P is a µ-corridor if its

two splitters (i.e., vertical sides) are defined by vertices of A(Ŝ) lying on the boundary
of P . Note that the size of the defining set of a µ-corridor is ≤ µ+ 2.

In the following, we consider µ to be a prescribed small constant.
We can use µ-vertical polygons instead of vertical trapezoids in CutRandomInc;

namely, each region maintained by CutRandomInc is a µ-vertical polygon. Whenever
a new region is being created, it is split into two subregions if it has more than µ
nonvertical edges. This is done by erecting a splitter from an appropriate vertex of
the region. Let CRIVPolygon denote this variant of CutRandomInc. Here too we have
the option of performing merging. That is, we merge an as-long-as-possible sequence
of adjacent µ-vertical polygons within the same face of A(Si) into a single vertical
polygon, as long as the number of its nonvertical edges does not exceed µ.

The gain in using µ-vertical polygons instead of vertical trapezoids is that the
number of splitters generated is much smaller, yielding smaller cuttings. See section
4. The disadvantage is that the regions output by the algorithm are more complex to
handle in any subsequent application of the cutting.

Lemma 2.15. Let Ŝ be a set of n lines in the plane. The number of µ-corridors
of A(Ŝ) is O(n2).

Proof. A vertex p of A(Ŝ) is the left-bottom vertex of onlya constant num-
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ber (O(µ)) of µ-corridors. The lemma follows since the number of such vertices is
O(n2).

Note that any µ-vertical polygon is contained in only a constant number of µ-
corridors. Let S be a random permutation of the lines of Ŝ, and let COi denote
the set of active µ-corridors in A(Si) for i = 1, . . . , n. Let T A

CO =
⋃n
i=1 COi. Note

that those corridors are not necessarily disjoint. Moreover, each active region main-
tained by CRIVPolygon is contained inside at least one active corridor, and the set
of splitters generated by CRIVPolygon is a subset of the set of splitters generated
by CutRandomInc. Thus, Lemma 2.6 holds for the active splitters generated by
CRIVPolygon. As for the corridors, we have the following lemma.

Lemma 2.16. Let S be a random permutation of Ŝ; then

W = E


 ∑
τ∈T A

CO(S)

(w(τ))c


 = O (ncr2−c)

for c = 0, 1.
Proof. We follow the proof of Lemma 2.7, using Lemma 2.15 to bound the number

of “heavy” µ-corridors. This follows by observing that we can apply the Clarkson–
Shor technique [CS89] to bound the number of µ-corridors with weight at most k.
Indeed, arguing as in the proof of Lemma 2.7, the expected contribution to total
weight of µ-vertical corridors having weight at least n/(2r), created by the algorithm
and defined by d lines, is O(ncr2−c) for d = 1, . . . , µ+ 4.

Theorem 2.17. The expected size of the cutting generated by CRIVPolygon (with
or without merging) is O(r2), and the expected running time is O(nr).

Proof. We only sketch the proof, since it is similar to the analysis of CutRandomInc.
Note that the proof of Lemma 2.9 can be adapted to handle active corridors and the
active regions maintained by CRIVPolygon. Indeed, after the ith iteration of the al-
gorithm, each newly created active µ-vertical polygon is contained in (at least one)
newly created active µ-corridor. We assign each such µ-vertical polygon to one of
those newly active µ-corridors in an arbitrary manner.

Now, to bound the work associated with such a µ-corridor X, we apply the same
charging scheme used in Lemma 2.9, charging the weight of all the active µ-vertical
polygons that were assigned to X (all of them are contained inside X) to the weight
of X and to the weight of the newly created “heavy” splitters inside X.

Since each splitter is contained in a constant number of µ-corridors, this implies
that the overall charge made to a newly created splitter s is O(w(s)).

Overall, this implies that the overall expected running time of the algorithm is
bounded by the total weight of the active µ-corridors and the heavy splitters that it
creates.

By Lemmas 2.6 and 2.16, the expected total weight of the µ-vertical polygons
generated by CRIVPolygon is O(nr), which implies immediately that the expected
running time is O(nr), and the expected size of the cuttings is O(r2), by following
the proof of Theorem 2.10. We omit the details.

Remark 2.18. We can further modify the algorithm CRIVPolygon so that it tries
to remove inactive regions from the left and right sides of any newly created active
region. We call this variant PolyVertical. It is easy to verify that the same proof of
correctness, with slight modifications, works also for PolyVertical.

3. Generating small cuttings. In this section, we present an efficient algo-
rithm that generates cuttings of guaranteed small size. The algorithm is based on
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Matoušek’s construction of small cuttings [Mat98]. We first review this construction
and then show how to modify it for building small cuttings efficiently.

Definition 3.1 (see [Mat98]). Let Ŝ be a set of n lines in the plane in general
position, i.e., every pair of lines intersects in exactly one point, no three have a common
point, no line is vertical or horizontal, and the x-coordinates of all intersections are
distinct. The level of a point in the plane is the number of lines of Ŝ lying strictly
below it. Consider the set Ek of all edges of the arrangement of Ŝ having level k
(where 0 ≤ k < n). These edges form an x-monotone connected polygonal line, which
is called the level k of the arrangement of Ŝ.

Definition 3.2 (see [Mat98]). Let Ek be the level k in the arrangement A(Ŝ)
with edges e0, e1, . . . , et (from left to right), and let pi be a point in the interior of the
edge ei, for i = 0, . . . , t. The q-simplification of the level k for an integer parameter
1 ≤ q ≤ t is defined as the x-monotone polygonal line containing the part of e0 to the
left of the point p0, the segments p0pq, pqp2q, . . . , p�(t−1)/q�qpt, and the part of et to
the right of pt. Let simpq(Ek) denote this polygonal line.

Let Ŝ be a set of n lines in general position, and let Ei,q denote the union of the
levels Ei, Ei+q, . . . , En+i−q for i = 0, . . . , q−1. Let simpq(Ei,q) denote the set of edges
of the q-simplifications of the levels of Ei,q.

Matoušek showed that the vertical decomposition of the plane induced by
simpq(Ei,q), where q = n/(2r) (we assume that n is divisible by 2r), is a (1/r)-cutting
of the plane for any i = 0, . . . , q − 1. Moreover, the following holds.

Theorem 3.3 (see [Mat98]). Let Ŝ be a set of n lines in general position, let r be
a positive integer, and let q = n/(2r). Then the subdivision of the plane defined by the
vertical decomposition of simpq(Em,q) is a (1/r)-cutting of A(Ŝ), where 0 ≤ m < q
is the index i ∈ {0, . . . , q − 1} for which |Ei,q| is minimized. Moreover, the cutting
generated has at most 8r2 + 6r + 4 trapezoids.

Remark 3.4. (i) Matoušek’s construction can be slightly improved, by noting
that the leftmost and rightmost points in a q-simplification of a level can be placed at
“infinity”; that is, we replace the first and second edges in the q-simplification by a ray
emanating from pq which is parallel to e0. We perform a similar shortcut for the two
last edges of the simplified level. We denote this improved simplification by simp′q. It
is easy to prove that using this improved simplification also results in a (1/r)-cutting
of A(Ŝ) with at most 8r2 + 6r + 4− 4 · 2r = 8r2 − 2r + 4 vertical trapezoids.

(ii) Inspecting Matoušek’s construction, we see that if we can only find an i
such that |Ei,q| ≤ cn2/q, where c > 1 is a prescribed constant, then the vertical
decomposition induced by simp′q(Ei,q) is a (1/r)-cutting having ≤ c(8r2 − 2r + 4)
trapezoids.

Let ni = |Ei,q| for i = 0, . . . , q − 1. Matoušek’s construction is carried out by
computing the numbers n0, . . . , nq and picking the minimal number ni, which is guar-
anteed to be no larger than the average n2/q. Unfortunately, implementing this
scheme explicitly requires computing the whole arrangement A(Ŝ), so the resulting
running time is O(n2). Let us assume for the moment that one can compute any
of the numbers ni quickly. Then, as the following lemma shows, one can compute a
number ni which is ≤ (1 + ε)n2/q, without computing all the ni’s.

Lemma 3.5. Let n0, . . . , nq−1 be q positive integers, whose sum m =
∑q−1
i=0 ni

is known in advance, and let ε > 0 be a prescribed constant. One can compute an
index 0 ≤ k < q, such that nk ≤ �(1 + ε)m/q�, by repeatedly picking uniformly and
independently a random index 0 ≤ i < q and by checking whether ni ≤ �(1 + ε)m/q�.
The expected number of iterations required is ≤ 1 + 1/ε.
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Proof. Let Yi be the random variable which is the value of ni picked in the ith
iteration. Using Markov’s inequality3, one obtains

Pr

[
Yi ≥ (1 + ε)

m

q

]
≤

E
[
Yi

]
(1 + ε)mq

.

Since E[Yi] = m/q, we have that the probability for failure in the ith iteration is

Pr

[
Yi ≥ (1 + ε)

m

q

]
≤ 1

1 + ε
.

Let X denote the number of iterations required by the algorithm. Then E[X]
is bounded by the expected number of trials to the first success in a geometric dis-
tribution with probability p ≥ 1 − 1

1+ε . Thus, the expected number of iterations is
bounded by

E[X] ≤ 1

p
≤ 1

1− 1
1+ε

= 1 +
1

ε
.

To apply Lemma 3.5 in our setting, we need to supply an efficient algorithm for
computing the level of an arrangement of lines in the plane.

Lemma 3.6. Let Ŝ be a set of n lines in the plane. Then one can compute, in
O((n + h) log2 n) time, the level k of A(Ŝ), where h = |Ek| is the complexity of the
level.

Proof. The technique presented here is well known (see [BDH99] for a recent
example); we include it for the sake of completeness of exposition. Let e0, . . . , et be
the edges of the level k from left to right (where e0, et are rays).

Let e be an edge of the level k. Let f be the face of A(Ŝ) having e on its boundary
and lying above e. In particular, all the edges on the bottom part of ∂f belong to the
level k.

Let f1, . . . , fr be the faces of A(Ŝ) having the level k as their “floor,” from left
to right. The ray e0 can be computed in O(n) time since it lies on line lk of Ŝ, with
the kth largest slope. Moreover, by intersecting lk with the other lines of Ŝ, one can
compute e0 in linear time.

Any face of A(Ŝ) is uniquely defined as an intersection of half-planes induced by
the lines of Ŝ. For the face f1, we can compute the half-planes and their intersection
that represents f1, in O(n log n) time; see [dBvKOS97]. To carry out the computation
of the bottom parts of f2, . . . , fr, one can dynamically maintain the intersection rep-
resenting fi as we traverse the level k from left to right. To do so, we will use the data
structure of Overmars and Van Leeuwen [OvL81] that maintains such an intersection,
with O(log2 n) time for each update operation. As we move from fi to fi+1 through
a vertex v, we have to “flip” the two half-planes associated with the two lines passing
through v, at a cost of O(log2 n) time per vertex. Similarly, if we are given an edge e
on the boundary of fi we can compute the next edge in O(log

2 n) time.
Thus, we can compute the level k of A(Ŝ) in O((n+ h) log2 n) time.
Combining Lemmas 3.5 and 3.6, we have the following theorem.
Theorem 3.7. Let Ŝ be a set of n lines in the plane, and let 0 < ε ≤ 1 be

a prescribed constant. Then one can compute a (1/r)-cutting of A(Ŝ), having at

3The inequality asserts that Pr[Y ≥ t] ≤ E[Y ]
t

for a random variable Y that assumes only
nonnegative values.
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most (1 + ε)(8r2 − 2r + 4) trapezoids. The expected running time of the algorithm is
O
((
1 + 1

ε

)
nr log2 n

)
.

Proof. By the above discussion, it is enough to find an index 0 ≤ i ≤ q − 1, such
that |Ei,q| ≤ M = (1 + ε)n

2

q ≤ 2(1 + ε)nr, where q = �n/(2r)�. By Remark 3.4(ii),
the vertical decomposition of simp′q(Ei,q) is a (1/r)-cutting of the required size.

Picking i randomly, we have to check whether |Ei,q| ≤ M . We can compute Ei,q
by computing the levels Ei, Ei+q, . . . , Ei+�(n−i−1)/q�q in an output-sensitive manner,
using Lemma 3.6. Note that if |Ei,q| > M , we can abort as soon as the number of
edges we computed exceeds M . Thus, we can check if |Ei,q| ≤ M takes O(nr log2 n)
time. By Lemma 3.6, the expected number of iterations the algorithm performs until
the inequality |Ei,q| ≤ M will be satisfied is ≤ 1 + 1/ε. Thus, the expected running
time of the algorithm is

O

((
1 +

1

ε

)
nr log2 n

)
,

since the vertical decomposition of simp′q(Ei,q) (which is the resulting cutting) can
be computed in additional O(nr) time. In fact, one can also compute, in O(nr) time,
for each trapezoid in the cutting, the lines of Ŝ that intersect it.

4. Empirical results. In this section, we present the empirical results we got
for computing cuttings in the plane using CutRandomInc and various related heuristics
that we have implemented and experimented with. A program with a GUI demon-
strating the algorithms and heuristics presented in the paper is available on the web
in source form [HP98].

4.1. The implemented algorithms—using vertical trapezoids. We have
implemented the algorithm CutRandomInc presented in section 2 as well as several
other algorithms for constructing cuttings. In this section, we report on the experi-
mental results that we obtained.

Most of the algorithms we have implemented are variants of CutRandomInc. The
algorithms implemented are the following (we denote by K(∆) the set of lines that
cross a vertical trapezoid ∆).

Classical: This is a variant of the algorithm of Chazelle and Friedman [CF90]
for constructing a cutting. We pick a sample R ⊆ Ŝ of r lines and compute its
arrangement A = AVD(R). For each active trapezoid ∆ ∈ A, we pick a random sample
R∆ ⊆ K(∆) of size 6k log k, where k = �r|K(∆)|/n�, and compute the arrangement
of AVD(R∆) inside ∆. If AVD(R∆) is not a (1/r)-cutting, then the classical algorithm
performs resampling inside ∆ until it reaches a cutting. Our implementation is more
naive, and it simply continues recursively into the active subtrapezoids of AVD(R∆).

Cut randomized incremental: This is CutRandomInc without merging, as de-
scribed in Figure 2.

Randomized incremental: This is CutRandomInc with merging.

The following four heuristics, for which we currently do not have a proof of any
concrete bound on the expected size of the cutting that they generate, also perform
well in practice.

Parallel incremental: Let Ci be the covering generated in the ith iteration of the
algorithm. For each active trapezoid ∆ ∈ Ci, pick a random line from K(∆) and insert
it into ∆ (i.e., split ∆ accordingly). Continue until there are no active trapezoids.
Note that unlike CutRandomInc the insertion operations are performed locally inside
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each trapezoid, and the line chosen for insertion in each trapezoid is independent of
the lines chosen for other trapezoids.

Greedy trapezoid: This is a variant of CutRandomInc, where we try to be “smarter”
about the line inserted into the partition in each iteration. Let Vi be the set of
trapezoids of Ci with maximal weight. We pick randomly a trapezoid ∆ out of the
trapezoids of Vi and pick randomly a line s from K(∆). We then insert s into Ci.

Greedy line: Similar to greedy trapezoid, but here we compute the set U of lines
of Ŝ, for which w′(s) is maximal, where w′(s) is the number of active trapezoids in
Ci that intersect the line s. We pick randomly a line from U and insert it into the
current partition of the plane.

Greedy weighted line: Similar to greedy line, but our weight function is

w′(s) =
∑

∆∈Ci,s∩∆ �=∅,w(∆)>n/r

⌊
w(∆)⌊
n
3r

⌋
⌋
;

namely, we give a higher priority to lines that intersect heavier (1/r)-active trapezoids.

4.2. Polygonal cuttings. In judging the quality of cuttings, the size of the
cutting is of major concern. However, other factors might also be important. For
example we want the regions defining the cutting to be as simple as possible. Fur-
thermore, there are applications where we are not interested directly in the size of
the cutting, but rather in the overall number of vertices defining the cutting regions.
This is useful when applying cuttings in the dual plane and transforming the vertices
of the cutting back to the primal plane, as done in the computation of partition trees
[Mat92]. A natural question is the following: Can one compute better cuttings if one
is willing to use cutting regions which are different from vertical trapezoids?

For example, if one is willing to cut using nonconvex regions having a nonconstant
description complexity, the size of the cutting can be improved to 4r2+2r+2 [Mat98].
On the other hand, if one wishes to cut a collection of lines by triangles instead
of trapezoids, the situation becomes somewhat disappointing, because the smallest
cuttings currently known for this case are generated by taking the cutting of Remark
3.4 and by splitting each trapezoid into two triangles. This results in cuttings having
(roughly) 16r2 triangles.

In this section, we present a slightly different approach for computing cuttings,
suggested to us by Matoušek, that works extremely well in practice. The new ap-
proach, a variant of which has already been presented in section 2.1, is based on
cuttings using polygonal convex regions with a small number of sides, instead of ver-
tical trapezoids. Namely, we apply CutRandomInc, where each region is a convex
polygon (of constant complexity). Whenever we insert a new line into an active re-
gion, we split the polygon into two new polygons. Of course, it might be that the
number of vertices of a new polygon is too large. If so, we split each such polygon into
two subpolygons ensuring that the number of vertices of the new polygons is below
our threshold.

Intuitively, the benefit in this approach is that the number of superfluous entities
(i.e., vertical walls in the case of vertical trapezoids) participating in the definition
of the cutting regions is much smaller. Moreover, since the cutting regions are less
restrictive, the algorithm can be more flexible in its maintenance of the active regions.

Here are the different methods we tried.
PolyTree: We use CutRandomInc where each region is a convex polygon having

at most k-sides. When inserting a new line, we first split each of the active regions
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a

b

Fig. 7. In the PolyTree algorithm, each time a polygon is being split by a line, we might have
to further split it because a split region might have too many vertices.

that intersect it into two subpolygons. If a split region R has more than k sides, we
further split it using the diagonal of R that achieves the best balanced partition of R;
namely, it is the pair of vertices a, b realizing the following minimum:

min
a,b∈V (R)

max
(
w(R ∩H+

ab), w(R ∩H−
ab)
)
,

where V (R) is the set of vertices of R, w(R) is the number of lines intersecting R,
and H+

ab (resp., H
−
ab) is the closed half-plane lying to the right (resp., left) of ab. See

Figure 7.
PolyTriangle: Modified PolyTree for generating cuttings by triangles. In each

stage, we check whether a newly created region R can be triangulated into a set of
inactive triangles. To do so, compute an arbitrary triangulation of the region R and
check if all the triangles generated in our (arbitrary) triangulation of R are inactive.
If so, replace R in our cuttings by its triangulation.4

PolyDeadLeaf: Modified PolyTree for generating cuttings by triangles. Whenever
a region is being created we check whether it has a leaf triangle (a triangle defined by
three consecutive vertices of the region) that is inactive. If we find such an inactive
triangle, we add it immediately to the final cutting. We repeat this process until the
region cannot be further shrunk.

PolyVertical: (This is the variant presented in section 2.1.) We use PolyTree, but
instead of splitting along a diagonal, we split along a vertical ray emanating from one
of the vertices of the region. The algorithm also tries to remove dead regions from the
left and right side of the region. Intuitively, each region is now an extended vertical
trapezoid having a convex ceiling and floor, with at most two additional vertical walls.

Remark 4.1. Note that for all the polygonal cutting methods, except CRIVPolygon
(this is PolyVertical without the removal of dead regions; see section 2.1) and
PolyVertical, it is not even clear that the number of regions they maintain in the ith
iteration is O(i2). Thus, the proof of Theorem 2.10 does not work for those methods.

4Computing the “best” triangulation (i.e., the weight of the heaviest triangle is minimized) is
relatively complicated and requires dynamic programming. It is not clear that it is going to perform
better than PolyDeadLeaf, described below.
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4.3. Implementation details. As an underlying data structure for our testing,
we implemented the history-graph data structure [Sei91]. Our random arrangements
were constructed by choosing n points uniformly and independently on the left side
of the unit square, and similarly on the right side of the unit square. We sorted the
points and connected them by lines in a transposed manner. This yields a random
arrangement with all the

(
n
2

)
intersections inside the unit square.

We had implemented our algorithm in C++. We had encountered problems with
floating point robustness at an early stage of the implementation and decided to use
exact arithmetic instead, using LEDA rational numbers [MN95]. While this solved the
robustness problems, we had to deal with a couple of other issues:

• Speed: Using exact arithmetic instead of floating point arithmetic resulted
in a slowdown by a factor 20–40. The time to perform an operation in ex-
act arithmetic is proportional to the bit-sizes of the numbers involved. To
minimize the size of the numbers used in the computations, we normalized
the line equations so that the coefficients are integer numbers (in reduced
form). Using more advanced techniques one can get close to floating-point
speed with the “security” provided by exact arithmetic. See [AHH+99].

• Memory consumption: A LEDA rational is represented by a block of memory
dynamically allocated on the heap. In order to save, both in the memory
consumed and the time used by the dynamic memory allocator, we observe
that in a representation of vertical decomposition the same number appears
in several places (i.e., an x-coordinate of an intersection point appears in 6
different vertical trapezoids). We reduce memory consumption, by storing
such a number only once. To do so, we use a repository of rational numbers
generated so far by the algorithm. Whenever we compute a new x-coordinate,
we search it in the repository, and if it does not exist, then we insert it. In
particular, each vertical trapezoid is represented by two pointers to its xleft
and xright coordinates and pointers to its top and bottom lines.
The repository is implemented using Treaps [SA96].

4.4. Handling degeneracies. Geometric degeneracy is one of the main obsta-
cles when implementing geometric algorithms. To overcome this problem, we used
exact arithmetic. While this ensured that the underlining geometric primitives work
correctly, it does not tackle the problem of geometric degeneracies directly. Fortu-
nately, in our case the handling of geometric degeneracies is straightforward.

Indeed, the various algorithms we presented for computing cuttings use only two
geometric primitives. The first is split, which split a region (i.e., vertical trape-
zoid/convex polygon) ∆ by a line l that crosses it (the line might be an input line,
or a line connecting two vertices of the region) into a constant number of regions
R1, . . . , Rk. Here, to overcome degeneracy the algorithm throws away regions hav-
ing an empty interior. If the regions are polygons, an additional step is added to
remove superfluous collinear vertices (i.e., a vertex lying on the line induced by its
two neighbors) from the newly created regions.

The second primitive checks whether a line l crosses the interior of a region ∆.
This is done by checking for each vertex of ∆, on which side of l it lies. If two vertices
of ∆ lie on opposite sides of l, then l crosses the interior of ∆. Since the program uses
exact arithmetic this primitive gives the correct results.

4.5. Results—vertical trapezoids. The empirical results we got for the algo-
rithms/heuristics of subsection 4.1 are depicted in Tables 1–5.
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Table 1
Results for 1/2-cuttings. Each entry is the size of the minimal cutting computed, divided by

22 = 4. The corresponding value in Matoušek’s construction [Mat98] is smaller than 12.00.

Lines Parallel Classical Randomized Greedy Greedy Greedy
Inc Inc trapezoid line weighted line

4 1.50 1.50 1.50 1.50 1.50 1.50
8 2.00 12.50 2.75 2.25 2.25 2.50

16 4.75 25.75 4.25 4.75 4.00 4.50
32 4.75 24.75 7.00 5.50 6.00 6.25
64 6.75 28.25 6.50 7.50 7.50 7.25

128 8.75 26.75 7.75 7.25 8.25 8.50
256 8.75 30.75 6.50 8.00 6.75 7.25
512 6.00 36.50 8.25 9.75 8.50 8.00

1024 9.25 26.00 10.00 7.75 7.75 9.00
2048 7.50 28.50 9.00 7.25 8.75 9.75
4096 7.50 35.25 8.50 8.25 7.75 7.50
8192 8.25 36.75 7.00 7.75 6.25 7.50

16384 9.00 30.25 8.75 8.00 8.50 8.75
32768 10.25 33.00 7.75 9.00 6.25 7.75
65536 10.00 31.25 6.50 6.75 6.75 8.50

Table 2
Results for 1/4-cuttings. Each entry is the size of the minimal cutting computed, divided by

42 = 16. The corresponding value in Matoušek’s construction [Mat98] is smaller than 9.75.

Lines Parallel Classical Randomized Greedy Greedy Greedy
Inc Inc trapezoid line weighted line

8 1.88 2.69 1.56 2.00 1.62 1.62
16 3.69 20.31 3.44 3.62 3.50 3.62
32 6.12 31.12 6.56 5.50 5.75 5.50
64 8.25 35.94 8.06 7.69 7.12 8.06

128 9.19 37.12 9.75 9.94 8.62 7.88
256 11.00 44.06 9.62 9.00 10.25 8.19
512 11.75 48.75 9.81 10.31 9.75 10.12

1024 12.75 46.88 12.12 11.25 10.25 10.62
2048 11.19 37.00 11.50 11.00 10.81 10.50
4096 11.81 44.38 10.94 11.19 10.62 10.50
8192 12.19 52.00 10.19 11.06 10.25 10.00

16384 12.31 43.88 10.94 11.25 10.31 10.88
32768 11.50 42.69 10.69 11.81 11.31 10.25

Table 3
Results for 1/8-cuttings. Each entry is the size of the minimal cutting computed, divided by

82 = 64. The corresponding value in Matoušek’s construction [Mat98] is smaller than 8.81.

Lines Parallel Classical Randomized Greedy Greedy Greedy
Inc Inc trapezoid line weighted line

16 2.23 4.08 2.06 1.89 1.86 1.83
32 4.80 23.17 4.19 3.92 3.91 3.53
64 7.67 37.25 6.64 6.27 6.31 6.12

128 10.44 45.50 8.84 8.83 8.80 8.31
256 11.56 44.12 9.91 10.53 9.91 9.94
512 12.77 50.14 11.36 11.11 10.86 11.20

1024 13.31 47.58 11.61 11.33 10.95 11.31
2048 13.42 54.84 12.36 11.17 12.38 11.17
4096 15.00 53.17 12.08 12.22 12.08 11.98
8192 13.98 51.75 11.73 12.19 12.67 12.27
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Table 4
Results for 1/16-cuttings. Each entry is the size of the minimal cutting computed, divided by

162 = 256. The corresponding value in Matoušek’s construction [Mat98] is smaller than 8.39

Lines Parallel Classical Randomized Greedy Greedy Greedy
Inc Inc trapezoid line weighted line

32 2.70 5.54 2.18 2.09 2.04 2.11
64 5.38 24.27 4.52 4.21 4.36 4.20

128 8.16 44.00 7.16 7.00 6.66 6.55
256 10.88 56.30 9.34 9.25 9.16 8.48
512 12.61 66.60 11.26 10.85 10.37 10.18

1024 14.02 66.64 12.30 11.40 11.23 11.10
2048 14.24 67.25 12.51 11.84 11.98 11.78

Table 5
Results for 1/32-cuttings. Each entry is the size of the minimal cutting computed, divided by

322 = 1024. The corresponding value in Matoušek’s construction [Mat98] is smaller than 8.19.

Lines Parallel Classical Randomized Greedy Greedy Greedy
Inc Inc trapezoid line weighted line

64 2.84 5.45 2.26 2.19 2.14 2.14
128 5.48 24.73 4.54 4.44 4.33 4.22
256 8.89 52.62 7.52 7.05 6.68 6.61
512 11.26 67.72 9.48 9.54 8.98 8.87

1024 13.25 74.47 11.63 10.86 10.23 10.34

For each value of r and each value of n, we computed a random arrangement
of lines inside the unit square, as described above. For each such arrangement, we
performed 10 tests for each algorithm/heuristic. The tables present the size of the
minimal cutting computed in those tests. Each entry is the size of the output cutting
divided by r2. In addition, each table caption presents a range containing the size of
the cutting that can be obtained by Matoušek’s algorithm [Mat98].

It is an interesting question whether using merging by CutRandomInc results in
practice in smaller cuttings. We tested this empirically, and the results are presented
in Table 6. As can be seen in Table 6, using merging does generate smaller cuttings,
but the improvement in the cutting size is rather small. The difference in the size of
the generated cuttings seems to be less than 2r2.

4.6. Implementing Matoušek’s construction. In Table 7, we present the
empirical results for Matoušek’s construction, comparing it with the slight improve-
ment described in Remark 3.4. For small values of r, the improved version yields con-
siderably smaller cuttings than Matoušek’s construction, making it the best method
we are aware of for constructing small cuttings.

We had implemented Matoušek’s algorithm naively, using quadratic space and
time. Currently, this implementation cannot be used for larger inputs because it runs
out of memory. Implementing the more efficient algorithm described in Theorem 3.7
is nontrivial since it requires the implementation of the rather complex data structure
of Overmars and van Leeuwen [OvL81]. However, if it is critical to reduce the size of
a cutting for large inputs, the algorithm of Theorem 3.7 seems to be the best available
option.

Overall, Matoušek’s algorithm gives the best results for cuttings by vertical trape-
zoids. However, for polygonal cuttings, the results we got are even better, as described
below.
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Table 6
Comparing the size of cuttings computed by CutRandomInc, with or without using merging. Each

entry is the size of the minimal cutting computed, divided by r2.

Value of r
Number 2 4 8 16 32
of lines Merge Merge Merge Merge Merge

4 1.50 1.50 — — — — — — — —
8 2.25 2.75 1.88 1.50 — — — — — —

16 4.75 4.00 3.44 3.56 2.27 2.03 — — — —
32 5.00 5.75 6.44 6.25 4.86 4.31 2.56 2.14 — —
64 7.25 7.75 8.25 9.00 7.36 6.45 5.30 4.54 2.78 2.29

128 8.00 7.50 8.94 9.38 9.56 9.00 8.48 7.19 5.44 4.52
256 8.00 8.00 11.94 9.88 11.86 10.81 10.84 9.73 8.26 7.29
512 5.75 9.00 10.25 10.62 13.05 11.48 12.36 11.29 11.17 9.55

1024 8.25 6.75 12.62 10.12 12.69 11.83 13.80 11.96 13.07 11.24
2048 7.50 8.50 11.31 10.31 13.06 12.66 14.11 13.44 14.04 12.38
4096 8.75 9.25 12.31 11.12 13.81 12.39 13.95 13.13 14.61 12.96
8192 7.50 8.00 12.00 12.12 13.34 12.97 14.67 12.67 14.72 13.18

16384 9.25 8.50 11.38 10.56 12.69 12.33 14.53 13.61 15.02 13.30
32768 7.25 7.50 12.12 10.44 13.00 12.59 13.96 13.00 15.17 13.46

Table 7
Comparing the size of cuttings computed by Matoušek’s method, to the slightly improved method

described in section 3.

Value of r
Number 2 4 8 16 32
of lines Impr’ Impr’ Impr’ Impr’ Impr’

4 8.75 5.25 — — — — — — — —
8 10.75 6.25 8.25 6.56 — — — — — —

16 10.25 7.25 9.19 7.44 8.14 7.27 — — — —
32 10.00 7.00 9.38 7.56 8.64 7.64 8.06 7.63 — —
64 10.00 7.25 9.81 7.25 8.66 7.73 8.32 7.82 8.04 7.81

128 10.50 6.50 9.31 7.06 8.72 7.70 8.38 7.90 8.15 7.91
256 11.00 7.50 9.81 7.44 8.81 7.73 8.37 7.90 8.18 7.92
512 11.00 6.75 10.06 7.69 8.81 7.84 8.41 7.88 8.17 7.94

4.7. Results—polygonal cuttings. The results for polygonal cuttings are pre-
sented in Table 8. As seen in the tables, the polygonal cutting methods perform well
in practice. In particular, the PolyTree method generated cuttings of average size
(roughly) 7.5r2, beating all the cutting methods that use vertical trapezoids.

As for triangles, the situation is even better: PolyDeadLeaf generates cuttings
by triangles of size ≤ 12r2. (That is better by an additive factor of about 4r2 than
the best theoretical bound.)

To summarize, polygonal cutting methods seem to be the clear winner in practice.
They generate cuttings of a small size, with a small number of vertices and small
number of triangles.

5. Conclusions. In this paper, we have presented a new approach, different
from that of [CF90], for constructing cuttings in the plane. The new algorithm is
rather simple and easy to implement. We have proved the correctness and bounded
the expected output size and expected running time of several variants of the new
algorithm and have also demonstrated that the new algorithms perform much better in
practice than the algorithm of [CF90]. We believe that the results in this paper show
that planar cuttings are practical and might be useful in practice when constructing
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Table 8
Results for (1/8)-cutting of 1024 lines. The best results (and fastest) were generated by PolyTree

using polygons with at most 8 sides. The execution time for this variant was less than 40 seconds
on a Pentium Pro 200MhZ computer.

Size / r2 Triangles / r2 Vertices / r2 Cutting
min avg max min avg max min avg max region

ParallelInc 13.64 15.03 16.33 27.28 30.06 32.66 21.84 24.34 26.67 VTrapezoid
Chazelle–Friedman 44.30 55.73 79.48 88.59 111.47 158.97 52.78 65.05 89.16 VTrapezoid
Cut random Inc 12.00 12.77 13.52 24.00 25.53 27.03 14.52 15.50 16.30 VTrapezoid
Greedy random 11.17 11.69 12.72 22.34 23.38 25.44 13.52 14.19 15.69 VTrapezoid
Greedy line 10.36 11.02 11.77 20.72 22.05 23.53 12.53 13.19 14.03 VTrapezoid
Greedy weighted line 10.33 11.20 12.16 20.66 22.42 24.31 12.39 13.33 14.36 VTrapezoid

Matoušek 8.67 17.34 13.22 VTrapezoid
Matoušek-improved 7.72 15.44 11.78 VTrapezoid

Polytree 9.73 10.83 12.25 14.88 16.20 18.59 9.91 10.55 12.03 4-Polygon
Polytree 7.39 7.89 8.41 12.94 14.08 15.25 8.86 9.61 10.42 5-Polygon
Polytree 6.88 7.47 8.16 13.28 14.42 15.56 9.36 10.14 11.19 6-Polygon
Polytree 6.92 7.38 7.70 13.70 14.61 15.19 9.62 10.30 10.83 7-Polygon
Polytree 6.34 7.28 8.36 12.69 14.53 16.72 8.86 10.41 11.95 8-Polygon
Polytree 6.66 7.34 8.12 13.31 14.70 16.22 9.47 10.52 11.81 9-Polygon
Polytree 6.56 7.22 7.91 13.12 14.44 15.81 9.42 10.25 10.98 10-Polygon
Polytree 7.17 7.62 8.14 14.34 15.27 16.28 10.20 11.02 11.64 11-Polygon
PolyTriang (≤ 4) 11.38 15.03 16.97 11.38 15.03 16.97 7.42 9.64 10.75 Triangle
PolyTriang (≤ 5) 13.00 13.72 14.75 13.00 13.72 14.75 8.73 9.27 10.16 Triangle
PolyTriang (≤ 6) 11.91 13.20 14.06 11.91 13.20 14.06 8.19 9.05 9.62 Triangle
PolyTriang (≤ 7) 11.47 13.08 14.94 11.47 13.08 14.94 8.02 9.05 10.25 Triangle
PolyTriang (≤ 8) 11.50 12.89 14.09 11.50 12.89 14.09 8.17 8.97 9.72 Triangle
PolyTriang (≤ 9) 12.06 13.17 15.50 12.06 13.17 15.50 8.47 9.27 11.00 Triangle
PolyTriang (≤ 10) 11.47 12.47 13.47 11.47 12.47 13.47 8.06 8.75 9.30 Triangle
PolyTriang (≤ 11) 12.25 13.28 14.09 12.25 13.28 14.09 8.27 9.23 9.95 Triangle
PolyDeadLeaf (≤ 4) 11.09 11.98 12.81 11.09 11.98 12.81 7.73 8.33 9.08 Triangle
PolyDeadLeaf (≤ 5) 10.38 11.02 11.94 10.38 11.02 11.94 7.33 7.83 8.62 Triangle
PolyDeadLeaf (≤ 6) 10.78 11.50 13.00 10.78 11.50 13.00 7.69 8.22 9.27 Triangle
PolyDeadLeaf (≤ 7) 9.58 11.81 13.78 9.58 11.81 13.78 6.89 8.42 9.61 Triangle
PolyDeadLeaf (≤ 8) 10.59 11.47 12.47 10.59 11.47 12.47 7.64 8.23 8.92 Triangle
PolyDeadLeaf (≤ 9) 11.00 11.62 13.12 11.00 11.62 13.12 7.78 8.31 9.39 Triangle
PolyDeadLeaf (≤ 10) 9.97 10.75 12.47 9.97 10.75 12.47 7.02 7.72 8.70 Triangle
PolyDeadLeaf (≤ 11) 9.97 11.30 12.34 9.97 11.30 12.34 6.98 8.05 8.64 Triangle
PolyVertical 11.61 13.05 14.09 18.94 21.56 23.91 13.81 15.64 16.78 4-Polygon
PolyVertical 8.98 9.67 10.42 14.52 15.61 16.98 11.34 12.31 13.20 5-Polygon
PolyVertical 8.50 9.41 11.16 13.17 14.81 17.55 10.89 12.14 14.30 6-Polygon
PolyVertical 8.25 9.16 10.02 12.88 14.31 15.75 10.61 11.83 13.03 7-Polygon
PolyVertical 8.48 9.33 10.66 13.22 14.55 16.59 11.02 12.05 13.72 8-Polygon
PolyVertical 8.36 9.22 10.05 13.11 14.33 15.58 10.98 11.92 12.86 9-Polygon
PolyVertical 8.39 9.06 10.55 13.25 14.14 16.53 10.98 11.77 13.83 10-Polygon
PolyVertical 8.31 9.03 9.91 12.92 14.08 15.44 10.80 11.73 12.91 11-Polygon

data structures for range searching and related applications.

Moreover, the empirical results show that the size of the cutting constructed by
the new algorithms is not considerably larger (and in some cases even smaller) than
the cuttings that can be computed by the currently best theoretical algorithm (too
slow to be useful in practice due to its O(n2) running time) of Matoušek [Mat98].
The empirical constants that we obtain are generally between 10 and 13 (for vertical
trapezoids). For polygonal cuttings we get a constant of 8 by cutting by convex
polygons (using PolyTree) having at most 6 vertices. Moreover, the various variants
of CutRandomInc seem to produce constants that are rather close to each other. As
noted above, the method described in Remark 3.4 generates the smallest cuttings by
vertical trapezoids.

As for running time, the results we got in practice are the following: In com-
puting a (1/8)-cutting of 1024 lines, the fastest algorithm was PolyTree, requiring
about half a minute on average. The other polygonal methods lagged slightly behind.
CutRandomInc was the fastest algorithm that produced cuttings by vertical trape-
zoids, being several times slower. Matoušek’s method required several hours due to
our naive (i.e., O(n2)) implementation. This information should be taken with reser-
vation, since no serious effort had gone into optimizing the code for speed, and those
measurements tend to change from execution to execution. (Recall also that we use
exact arithmetic, which slows down the running time significantly.)

Given these results, we recommend for use in practice one of the polygonal cutting
methods. They perform well in practice, and they should be used whenever possible.
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If we are restricted to a vertical trapezoid, CutRandomInc seems like a reasonable
algorithm to be used in practice (without merging, as merging is the only “nontrivial”
part in the implementation of the algorithm).

There are several interesting open problems for further research:

• Can one obtain provable bounds on the expected size of the cutting generated
by the PolyTree method, and on its running time? (Remember that in the
PolyTree method the cutting regions are convex polygons with a constant
number of edges.) The same question applies for all the other methods we
had implemented.

• Can one prove the existence of a cutting smaller than the one guaranteed by
the algorithm in Remark 3.4 for specific values of r? For example, Table 1
suggests a smaller cutting should exist for r = 2. In particular, the test results
hint that a cutting made out of 32 vertical trapezoids should exist, while the
cutting size guaranteed by Matoušek’s algorithm [Mat98] is 48.

• Can one generate smaller cuttings by modifying CutRandomInc to be smarter
in its decision on when to merge trapezoids?

• Is there a simple and practical algorithm for computing cuttings in three and
higher dimensions? The current algorithms seems to be far from practical.

• Can the following heuristic improve (substantially) the size of the cuttings
in practice? After the cuttings are computed, pass over the cutting regions
and merge adjacent regions that are adjacent and compatible, so that the
resulting regions are still (1/r)-inactive. Inspecting the output of our test
program in Figure 1 indicates that this indeed the case.

Acknowledgments. The author wishes to thank Pankaj Agarwal, Boris Aronov,
Hervé Brönnimann, Bernard Chazelle, Jǐŕı Matoušek, and Joe Mitchell for helpful
discussions and suggestions concerning the problems studied in this paper and related
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Abstract. We study the problem of achieving reliable communication with quiescent algorithms
(i.e., algorithms that eventually stop sending messages) in asynchronous systems with process crashes
and lossy links. We first show that it is impossible to solve this problem in asynchronous systems
(with no failure detectors). We then show that, among failure detectors that output lists of suspects,
the weakest one that can be used to solve this problem is �P, a failure detector that cannot be imple-
mented. To overcome this difficulty, we introduce an implementable failure detector called Heartbeat
and show that it can be used to achieve quiescent reliable communication. Heartbeat is novel: in
contrast to typical failure detectors, it does not output lists of suspects and it is implementable
without timeouts. With Heartbeat, many existing algorithms that tolerate only process crashes can
be transformed into quiescent algorithms that tolerate both process crashes and message losses. This
can be applied to consensus, atomic broadcast, k-set agreement, atomic commitment, etc.

Key words. algorithms, reliability, reliable communication, quiescence, asynchronous systems,
heartbeat, crash failures, link failures, failure detection, fault-tolerance, message passing, processor
failures
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1. Introduction.

1.1. Motivation. We focus on the problem of quiescent reliable communication
in asynchronous message-passing systems with process crashes and lossy links. To
illustrate this problem consider a system of two processes, a sender s and a receiver
r, connected by an asynchronous bidirectional link. Process s wishes to send some
message m to r. Suppose first that no process may crash, but the link between s and
r may lose messages (in both directions). If we put no restrictions on message losses it
is obviously impossible to ensure that r receives m. An assumption commonly made
to circumvent this problem is that the link is fair : if a message is sent infinitely often,
then it is received infinitely often.

With such a link, s could repeatedly send copies of m forever, and r is guaranteed
to eventually receive m. This is impractical, since s never stops sending messages.
The obvious fix is the following protocol: (a) s sends a copy of m repeatedly until it
receives ack(m) from r, and (b) upon each receipt of m, r sends ack(m) back to s.
Note that this protocol is quiescent : eventually no process sends or receives messages.

The situation changes if, in addition to message losses, process crashes may also
occur. The protocol above still works, but it is not quiescent anymore: for example,
if r crashes before sending ack(m), then s will send copies of m forever. Is there a
quiescent protocol ensuring that if neither s nor r crashes then r eventually receives
m? It turns out that the answer is no, even if one assumes that the link can only lose
a finite number of messages.
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Since process crashes and message losses are common types of failures, this neg-
ative result is an obstacle to the design of fault-tolerant distributed systems. In this
paper, we explore the use of unreliable failure detectors to circumvent this obstacle.
Roughly speaking, unreliable failure detectors provide (possibly erroneous) hints on
the operational status of processes. Each process can query a local failure detector
module that provides some information about which processes have crashed. This
information is typically given in the form of a list of suspects.

In general, failure detectors can make mistakes: a process that has crashed is not
necessarily suspected, and a process may be suspected even though it has not crashed.
Moreover, the local lists of suspects dynamically change and lists of different processes
do not have to agree (or even eventually agree). Introduced in [12], the abstraction
of unreliable failure detectors has been used to solve several important problems such
as consensus, atomic broadcast, group membership, nonblocking atomic commitment,
and leader election [3, 20, 26, 28, 32, 34].

Our goal is to use unreliable failure detectors to achieve quiescence, but before
we do so we must address the following important question. Note that any reasonable
implementation of a failure detector in a message-passing system is itself not quiescent:
a process being monitored by a failure detector must periodically send a message to
indicate that it is still alive, and it must do so forever (if it stops sending messages it
cannot be distinguished from a process that has crashed). Given that failure detectors
are not quiescent, does it still make sense to use them as a tool to achieve quiescent
applications (such as quiescent reliable broadcast, consensus, or group membership)?

The answer is yes for two reasons. First, a failure detector is intended to be a basic
system service that is shared by many applications during the lifetime of the system,
and so its cost is amortized over all these applications. Second, failure detection is
a service that needs to be active forever—and so it is natural that it sends messages
forever. In contrast, many applications (such as a single remote procedure call (RPC)
or the reliable broadcast of a single message) should not send messages forever, i.e.,
they should be quiescent. Thus, there is no conflict between the goal of building
quiescent applications and the use of a nonquiescent failure detection service as a tool
to achieve this goal.

1.2. Achieving quiescent reliable communication using failure detec-
tors. How can we use an unreliable failure detector to achieve quiescent reliable
communication in the presence of process and link failures? This can be done with
the eventually perfect failure detector �P [12]. Intuitively, �P satisfies the following
two properties: (a) if a process crashes, then there is a time after which it is per-
manently suspected, and (b) if a process does not crash, then there is a time after
which it is never suspected. Using �P, the following obvious algorithm solves our
sender/receiver example: (a) while s has not received ack(m) from r, it periodically
does the following: s queries �P and sends a copy of m to r if r is not currently
suspected; (b) upon each receipt of m, r sends ack(m) back to s. Note that this
algorithm is quiescent : eventually no process sends or receives messages.

So �P is sufficient to achieve quiescent reliable communication. But is it neces-
sary? In the first part of the paper, we show that among all failure detectors that
output lists of suspects, �P is indeed the weakest one that can be used to solve this
problem. Unfortunately, �P is not implementable (this would violate a known im-
possibility result [17, 12]). Thus, at a first glance, it seems that achieving quiescent
reliable communication requires a failure detector that cannot be implemented. In
the second part of the paper, we show that this is not so.
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In fact, we show that quiescent reliable communication can be achieved with
a failure detector that is implementable in systems with process crashes and lossy
links. This new failure detector, called Heartbeat and denoted HB, is very simple.
Roughly speaking, the failure detector module of HB at a process p outputs a vector
of counters, one for each neighbor q of p. If neighbor q does not crash, its counter
at p increases with no bound. If q crashes, its counter eventually stops increasing.
The basic idea behind an implementation of HB is the obvious one: each process
periodically sends an I-am-alive message (a “heartbeat”) and every process receiving
a heartbeat increases the corresponding counter.1

HB should not be confused with existing implementations of failure detectors
(some of which have modules that are also called heartbeat [35, 10]). Even though
existing failure detectors are also based on the repeated sending of a heartbeat, they
use timeouts on heartbeats in order to derive lists of processes considered to be up or
down, and applications can only see these lists. In contrast, HB does not use timeouts
on the heartbeats of a process in order to determine whether this process has failed
or not. HB just counts the total number of heartbeats received from each process and
outputs these “raw” counters without any further processing or interpretation.

A remark is now in order regarding the practicality of HB. As we mentioned
above, HB outputs a vector of unbounded counters. In practice, these unbounded
counters are not a problem for the following reasons. First, they are in local memory
and not in messages—our HB implementations use bounded messages. Second, if we
bound each local counter to 64 bits and assume a rate of one heartbeat per nanosecond,
which is orders of magnitude higher than currently used in practice, then HB will work
for more than 500 years.

1.3. Detailed outline of the results. We focus on two types of reliable com-
munication mechanisms: quasi-reliable send and receive, and reliable broadcast. Rough-
ly speaking, a pair of send and receive primitives is quasi-reliable if it satisfies the
following property: if processes s and r are correct (i.e., they do not crash), then r
receives a message from s exactly as many times as s sent that message to r. Re-
liable broadcast [23] ensures that if a correct process broadcasts a message m then
all correct processes deliver m; moreover, all correct processes deliver the same set
of messages. Our goal is to obtain quiescent implementations of these primitives in
networks that do not partition permanently. More precisely, we consider networks
in which processes may crash and links may lose messages, but every pair of correct
processes are connected through some fair path, i.e., a path containing only fair links
and correct processes.

We first show that in asynchronous systems (with no failure detectors), there is no
quiescent implementation of quasi-reliable send and receive or of reliable broadcast in
such networks (even if we assume that links can lose only a finite number of messages).
We then show that the weakest failure detector with bounded output size2 that can be
used to solve these problems is �P—which is not implementable.

To overcome this difficulty, we introduce HB, a failure detector that outputs
unbounded counters, and show that HB is strong enough to achieve quiescent reliable
communication but weak enough to be implementable. We consider two types of
networks. In the first type, all links are bidirectional and fair. In the second one, some
links are unidirectional, and some links have no restrictions on message losses, i.e.,

1As we will see, however, in some types of networks the actual implementation is not as easy.
2Note that a list of suspects has bounded size.
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they are not fair. Examples of such networks are unidirectional rings that intersect.
For the first type of networks, a common one in practice, the implementation of
HB and the reliable communication algorithms are very simple and efficient. The
algorithms for the second type are significantly more complex.

We then consider two stronger types of communication primitives, namely, reliable
send and receive and uniform reliable broadcast, and give quiescent implementations
that use HB. These implementations assume that a majority of processes are correct
(a result in [5] shows that this assumption is necessary).

We conclude the paper by showing how HB can be used to extend previous work in
order to solve problems with algorithms that are both quiescent and tolerant of process
crashes and messages losses. First, we explain how HB can be used to transform
many existing algorithms that tolerate process crashes into quiescent algorithms that
tolerate both process crashes and message losses (fair links). This transformation
can be applied to the algorithms for consensus in [2, 7, 9, 12, 14, 16, 33], for atomic
broadcast in [12], for k-set agreement in [13], for atomic commitment in [20], for
approximate agreement in [15], etc. Next, we show that HB can be used to extend the
work in [5] to obtain the following result. Let P be a problem. Suppose P is correct-
restricted (i.e., its specification refers only to the behavior of correct processes), or
a majority of processes are correct. If P is solvable with a quiescent protocol that
tolerates only process crashes, then P is also solvable with a quiescent protocol that
tolerates process crashes and message losses.3

To summarize, in this paper, we do the following.
1. We explore the use of unreliable failure detectors to achieve quiescent reliable

communication in the presence of process crashes and lossy links—a problem
that cannot be solved without failure detection.

2. We show that the weakest failure detector with bounded output size that can
be used to solve this problem is �P—which is not implementable.

3. To overcome this obstacle, we introduce HB: this failure detector can be
used to achieve quiescent reliable communication, and it is implementable.
In contrast to common failure detectors [3, 12, 20, 21, 28, 34], HB does not
output a list of suspects, and it can be implemented without timeouts.

4. We show that HB can be used to extend existing algorithms for many funda-
mental problems (e.g., consensus, atomic broadcast, k-set agreement, atomic
commitment, and approximate agreement) to tolerate message losses. It can
also be used to extend the results of [5].

Result (2) above implies that failure detectors with bounded output size are either
(a) too weak to achieve quiescent reliable communication, or (b) not implementable.
Thus, failure detectors that output lists of processes, which are commonly used in
practice, are not always the best ones to solve a problem: their power or applicability
is limited. To the best of our knowledge, this is the first work that shows that failure
detectors with bounded output size have inherent limitations.

The problem of achieving reliable communication despite failures has been exten-
sively studied, especially in the context of data link protocols (see Chapter 22 of [29]
for a compendium). Our work differs from previous results because we seek quies-
cent algorithms in systems where processes and links can fail (and this requires the
use of unreliable failure detectors). The works that are the closest to ours are due to
Moses and Roth [30] and Basu, Charron-Bost, and Toueg [5]. The main goal of [30]
is to achieve quiescent reliable communication with algorithms that garbage-collect

3The link failure model in [5] is slightly different from the one used here (cf. section 10).
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old messages in systems with lossy links (the issue of garbage collection is only briefly
considered here). The algorithms in [30], however, are not resilient to process crashes.
The protocols in [5] tolerate both process crashes and lossy links, but they are not
quiescent (and they do not use failure detectors). In section 10, we use HB to extend
the results of [5] and obtain quiescent protocols.

The paper is organized as follows. Our model is given in section 2. In section 3,
we define the reliable communication primitives that we focus on. In section 4, we
show that, without failure detectors, quiescent reliable communication is impossible.
In section 5, we prove that �P is the weakest failure detector with bounded output size
that can be used to solve this problem (this proof is under a simplifying assumption;
the proof without this assumption is given in the appendix). We then define the
heartbeat failure detector HB in section 6. In section 7, we show how to use HB to
achieve quiescent reliable communication. In section 8, we show how to implement
HB. In section 9, we consider two stronger types of communication primitives and
give quiescent implementations that use HB. In section 10, we explain how HB can
be used to extend several previous results. We conclude the paper with some remarks
about message buffering, quiescence versus termination, models of lossy links, and the
generalization of our results to partitionable networks.

2. Model. We consider asynchronous message-passing distributed systems in
which there are no timing assumptions. In particular, we make no assumptions on
the time it takes to deliver a message, or on relative process speeds. Processes can
communicate with each other by sending messages through unidirectional links. We
do not assume that the network is completely connected or that the links are bidirec-
tional. The system can experience both process failures and link failures. Processes
can fail by crashing, and links can fail by dropping messages. The model, based on
the one in [11], is described next.

A network is a directed graph G = (Π,Λ) where Π = {1, . . . , n} is the set of
processes, and Λ ⊆ Π×Π is the set of links. If there is a link from process p to process
q, we denote this link by p → q, and if, in addition, q 
= p, we say that q is a neighbor
of p. The set of neighbors of p is denoted by neighbor(p).

We assume the existence of a discrete global clock—this is merely a fictional
device to simplify the presentation, and processes do not have access to it. We take
the range T of the clock’s ticks to be the set of natural numbers.

2.1. Failures and failure patterns. Processes can fail by crashing, i.e., by
halting prematurely. A process failure pattern FP is a function from T to 2Π. Intu-
itively, FP (t) denotes the set of processes that have crashed through time t. Once a
process crashes, it does not “recover,” i.e., for all t: FP (t) ⊆ FP (t + 1). We say p
crashes in FP if p ∈ FP (t) for some t; otherwise we say p is correct in FP .

Some links in the network are fair. Roughly speaking, a fair link p → q may
intermittently drop messages and may do so infinitely often, but it must satisfy the
following “fairness” property: if p repeatedly sends some message to q and q does not
crash, then q eventually receives that message. Link properties are made precise in
section 2.5.

A link failure pattern FL is a subset of the set of links Λ. Intuitively, FL is the
set of links that may fail to satisfy the above fairness property. If p → q 
∈ FL, we say
that p → q is fair in FL.

A failure pattern F = (FP , FL) combines a process failure pattern and a link
failure pattern, and correct proc(F ) and crashed proc(F ) denote the set of processes
that are correct and crashed in FP , respectively.
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2.2. Network connectivity. The following definitions are with respect to a
given failure pattern F = (FP , FL). We say that a path (p1, . . . , pk) in the network is
fair if processes p1, . . . , pk are correct and links p1 → p2, . . . , pk−1 → pk are fair. We
assume that every pair of distinct correct processes is connected through a fair path.
This precludes permanent network partitions.

2.3. Failure detectors. Each process has access to a local failure detector mod-
ule that provides (possibly incorrect) information about the failure pattern that occurs
in an execution. A failure detector history H with range R is a function from Π × T
to R. H(p, t) is the output value of the failure detector module of process p at time
t. A failure detector D is a function that maps each failure pattern F to a set of
failure detector histories with range RD (where RD denotes the range of the output
of D). D(F ) denotes the set of possible failure detector histories permitted by D for
the failure pattern F .

We now define the eventually perfect failure detector �P [12].4 Each failure de-
tector module of �P outputs a set of processes that are suspected to have crashed,
i.e., R�P = 2Π. For each failure pattern F, �P(F ) is the set of all failure detector
histories H with range R�P that satisfy the following properties.

1. Strong completeness. Eventually, every process that crashes is permanently
suspected by every correct process. More precisely,

∃t ∈ T ∀p ∈ crashed proc(F ), ∀q ∈correct proc(F ), ∀t′ ≥ t : p ∈H(q, t′).

2. Eventual strong accuracy . There is a time after which correct processes are
not suspected by any correct process. More precisely,

∃t ∈ T ∀t′ ≥ t, ∀p, q ∈ correct proc(F ) : p 
∈ H(q, t′).

Sometimes we need to consider systems without failure detectors. For conve-
nience, we model such systems by assuming that their failure detectors always output
nil. More precisely, the nil failure detector D⊥ is the one where the failure detec-
tor modules of all processes always output ⊥, independent of the failure pattern. A
system without failure detectors is one whose failure detector is D⊥.

2.4. Runs of algorithms. An algorithm A is a collection of n deterministic
automata, one for each process in the system. Computation proceeds in atomic steps
of A. In each step, a process may receive a message from a process, get an external
input, query its failure detector module, undergo a state transition, send a message
to a neighbor, and issue an external output.

A run of algorithm A using failure detector D is a tuple R = (F,HD, I, S, T )
where F is a failure pattern, HD ∈ D(F ) is a history of failure detector D for failure
pattern F, I is an initial configuration of A, S is an infinite sequence of steps of A, and
T is an infinite list of increasing time values indicating when each step in S occurs.

A run must satisfy the following properties for every process p. If p has crashed
by time t, i.e., p ∈ FP (t), then p does not take a step at any time t′ ≥ t; if p is correct,
i.e., p ∈ correct proc(F ), then p takes an infinite number of steps; if p takes a step at
time t and queries its failure detector, then p gets HD(p, t) as a response.

2.5. Link properties. Each run R = (F,HD, I, S, T ) must also satisfy some
“link properties.” First, no link creates or duplicates messages. More precisely, for
every link p → q ∈ Λ, the following must hold.

4In [12], �P denotes a class of failure detectors.
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1. Uniform integrity . For all k ≥ 1, if q receives a message m from p exactly k
times by time t, then p sent m to q at least k times before time t.

Moreover, every fair link transports any message that is repeatedly sent through
it. More precisely, for every link p → q 
∈ FL, the following must hold.

2. Fairness. If p sends a message m to q an infinite number of times and q is
correct, then q receives m from p an infinite number of times.

Note that any link, whether fair or not, may lose (or not lose) messages arbitrarily
during any finite period of time. In particular, a fair link may lose all the messages
sent during any finite period of time, while a link that is not fair may behave perfectly
during that time.

2.6. Environments and problem solving. The correctness of an algorithm
may depend on certain assumptions on the “environment,” e.g., the maximum num-
ber of processes that may crash. For example, a consensus algorithm may need the
assumption that a majority of processes is correct. Formally, an environment E is a
set of failure patterns. Unless otherwise stated, the only restriction that we put on the
environment in this paper is that every pair of distinct correct processes is connected
through a fair path.

A problem P is defined by properties that sets of runs must satisfy. An algorithm
A solves problem P using a failure detector D in environment E if the set of all runs
R = (F,HD, I, S, T ) of A using D, where F ∈ E satisfies the properties required by
P .

Let C be a class of failure detectors. An algorithm A solves a problem P using C
in environment E if for all D ∈ C, A solves P using D in E . An algorithm implements
C in environment E if it implements some D ∈ C in E .

3. Quiescent reliable communication. In this paper, we focus on quasi-
reliable send and receive, and reliable broadcast, because these communication prim-
itives are sufficient to solve many problems (see section 10.1). Stronger types of com-
munication primitives—reliable send and receive, and uniform reliable broadcast—are
briefly considered in section 9.

3.1. Quasi-reliable send and receive. Consider any two distinct processes s
and r. We define quasi-reliable send and receive from s to r in terms of two primitives,
qr-sends,r and qr-receiver,s. We say that process s qr-sends message m to process r
if s invokes qr-sends,r(m). We assume that if s is correct, it eventually returns from
this invocation. We allow process s to qr-send the same message m more than once
through the same link. We say that process r qr-receives message m from process s if r
returns from the invocation of qr-receiver,s(m). Primitives qr-sends,r and qr-receiver,s
satisfy the following properties.

1. Uniform integrity . For all k ≥ 1, if r qr-receives m from s exactly k times by
time t, then s qr-sent m to r at least k times before time t.

2. Quasi no loss.5 For all k ≥ 1, if both s and r are correct, and s qr-sends m
to r exactly k times by time t, then r eventually qr-receives m from s at least k times.

Intuitively, quasi no loss together with uniform integrity implies that if s and r
are correct, then r qr-receives m from s exactly as many times as s qr-sends m to r.

We want to implement quasi-reliable send and receive primitives using the com-
munication service provided by the network links. Informally, such an implementation
is quiescent if it sends only a finite number of messages when qr-sends,r is invoked a

5A stronger property, called No Loss, is used in section 9.1 to define reliable send and receive.
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finite number of times.6

3.2. Reliable broadcast. Reliable broadcast [9] is defined in terms of two prim-
itives: broadcast(m) and deliver(m). We say that process p broadcasts message m if p
invokes broadcast(m). We assume that every broadcast message m includes the fol-
lowing fields: the identity of its sender, denoted sender(m), and a sequence number,
denoted seq(m). These fields make every message unique. We say that q delivers
message m if q returns from the invocation of deliver(m). Primitives broadcast and
deliver satisfy the following properties [23].

1. Validity . If a correct process broadcasts a message m, then it eventually
delivers m.

2. Agreement . If a correct process delivers a message m, then all correct pro-
cesses eventually deliver m.

3. Uniform integrity . For every message m, every process delivers m at most
once, and only if m was previously broadcast by sender(m).

Validity and agreement imply that if a correct process broadcasts a message m,
then all correct processes eventually deliver m.

We want to implement reliable broadcast using the communication service pro-
vided by the network links. Informally, such an implementation is quiescent if it sends
only a finite number of messages when broadcast is invoked a finite number of times.

3.3. Relating reliable broadcast and quasi-reliable send and receive.
From a quiescent implementation of quasi-reliable send and receive one can easily
obtain a quiescent implementation of reliable broadcast, and vice-versa.

Remark 3.1. From any quiescent implementation of reliable broadcast, we can
obtain a quiescent implementation of the quasi-reliable primitives qr-sendp,q and
qr-receiveq,p for every pair of processes p and q.

Remark 3.2. Suppose that every pair of correct processes is connected through
a path of correct processes. If we have a quiescent implementation of quasi-reliable
primitives qr-sendp,q and qr-receiveq,p for all processes p and q ∈ neighbor(p), then we
can obtain a quiescent implementation of reliable broadcast.

To implement reliable broadcast from qr-send and qr-receive, one can use a simple
diffusion algorithm (e.g., see [23]).

4. Impossibility of quiescent reliable communication. We now show that
in a system without failure detectors, quiescent reliable communication cannot be
achieved. This holds even if the network is completely connected and only a finite
number of messages can be lost.

Theorem 4.1. Consider a system without failure detectors where every pair of
processes is connected by a fair link and at most one process may crash. Let s and r
be any two distinct processes. There is no quiescent implementation of quasi-reliable
send and receive from s to r. This holds even if we assume that only a finite number
of messages can be lost.

Proof. 7 Assume, by contradiction, that there exists a quiescent implementation
I of quasi-reliable qr-sends,r and qr-receiver,s. The basic intuition behind the proof

6 A quiescent implementation of qr-sends,r and qr-receiver,s is allowed to send a finite number
of messages even if no qr-sends,r is invoked at all (e.g., some messages may be sent as part of an
“initialization phase”).

7This theorem is actually a corollary of Theorem A.12 and the fact that the eventually perfect
failure detector �P cannot be implemented. The proof of Theorem A.12, however, uses some complex
arguments that obscure the intuition behind Theorem 4.1. We prefer to give a self-contained and
direct proof that does not use Theorem A.12.
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is to construct a run R1 where s qr-sends a message to r, but r crashes. Since the
implementation of qr-send and qr-receive is quiescent, only a finite number of messages
are sent to r in R1. We then construct a similar run R2 where s qr-sends a message
to r, r does not crash, but the finite number of messages sent to r are lost. Runs R1

and R2 are indistinguishable from the point of view of r, so r never qr-receives the
message—a contradiction. It turns out that to construct run R1, we need another run
R0. This is because we allow the quiescent implementation of qr-send and qr-receive
to send a finite number of “initialization” messages (see footnote 6). We now describe
runs R0, R1, and R2 in more detail.

In run R0, s qr-sends no messages, all processes are correct, processes take steps
in round-robin fashion, and every time a process takes a step, it receives the earliest
message sent to it that it did not yet receive. Since I is quiescent, there is a time t0
after which no messages are sent or received. By the uniform integrity property of
qr-send and qr-receive, process r never qr-receives any message.

Run R1 is identical to run R0 up to time t0; at time t0 + 1, s qr-sends M to r,
and r crashes; after time t0 + 1, no processes crash, and every time a process takes a
step, it receives the earliest message sent to it that it did not yet receive. Since I is
quiescent, there is a time t1 > t0 after which no messages are sent or received.

In run R2, r behaves exactly as in run R0 (in particular, r does not crash and r
receives a message m in R2 whenever it receives m in R0); all other processes behave
exactly as in run R1 (in particular, a process p 
= r receives a message m in R2

whenever it receives m in R1). Note that, in R2, if messages are sent to or from r
after time t0, then they are never received.

We now show that in R2 all links satisfy the uniform integrity property. Assume
that for some k ≥ 1, some process q receives m from some process p k times by time
t. There are several cases. (1) If q = r, then r receives m from p k times in R0 by time
t (since r behaves in the same way in R0 and R2). In R0, by the uniform integrity
property of the links, p sends m to r at least k times before time t. This happens by
time t0, since there are no sends in R0 after time t0. Note that by time t0, p behaves
exactly in the same way in R0, R1, and R2. Thus p sends m to r at least k times
before time t in R2. (2) If q 
= r and p = r, then q receives m from r k times in R1

by time t (since q behaves in the same way in R1 and R2). In R1, by the uniform
integrity property of the links, r sends m to q at least k times before time t. This
happens by time t0, since r crashes at time t0 +1 in R1. By time t0, r behaves exactly
in the same way in R0, R1, and R2. Thus r sends m to q at least k times before time t
in R2. (3) If q 
= r and p 
= r, then q receives m from p k times in R1 by time t (since
q behaves in the same way in R1 and R2). In R1, by the uniform integrity property of
the links, p sends m to q at least k times before time t. Note that p behaves exactly
in the same way in R1 and R2. Thus p sends m to q at least k times in R2 before
time t. Therefore, in R2 all links satisfy the uniform integrity property.

We next show that in R2 all links satisfy the fairness property, and in fact only a
finite number of messages are lost. Note that r sends only a finite number of messages
in R0 (since it does not send messages after time t0), and every process p 
= r sends
only a finite number of messages in R1 (since it does not send messages after time
t1). So, by construction of R2, all processes send only a finite number of messages in
R2. Therefore, only a finite number of messages are lost, and in R2 all links satisfy
the fairness property.

We conclude that R2 is a possible run of I in a network with fair links that lose
only a finite number of messages. Note that in R2: (a) both s and r are correct;
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(b) s qr-sends M to r; and (c) r does not qr-receive M . This violates the quasi no loss
property of qr-sends,r and qr-receiver,s, and so I is not an implementation of qr-sends,r
and qr-receiver,s—a contradiction.

Theorem 4.1 and Remark 3.1 immediately imply the following corollary.
Corollary 4.2. There is no quiescent implementation of reliable broadcast in a

network where a process may crash and links may lose a finite number of messages.
The above results show that quiescent reliable communication cannot be achieved

in a system without failure detectors. The rest of this paper explores the use of failure
detectors to solve this problem.

5. The weakest failure detector with bounded output size for quiescent
reliable communication. In practice, and in much of the previous literature, the
output of a failure detector is just a set of processes suspected to have failed. One such
failure detector, namely �P, can be used to achieve quiescent reliable communication.
However, �P is not implementable in asynchronous systems. Can we achieve quiescent
reliable communication with a failure detector that outputs a set of suspects and is
implementable?

In this section we show that the answer is no. In fact, we prove a stronger
result: Among all failure detectors with bounded output size (these include all failure
detectors that output a set of suspects), the weakest one for achieving quiescent
reliable communication is �P—which is not implementable. In contrast, if we do not
bound the output size, quiescent reliable communication can be solved with HB—
which is implementable. This shows that failure detectors with bounded output size
have some inherent limitations.

We prove our result with respect to a problem that we call single-shot reliable
send and receive. This problem is weaker than quasi-reliable send and receive, and
reliable broadcast, and thus our result immediately applies to those problems as well.

In section 5.1, we explain what it means for a failure detector to be weaker
than another one. In section 5.2, we define the single-shot reliable send and receive
problem. We then proceed to prove our main result under some reasonable simplifying
assumption. We first give a rough outline of this proof (section 5.3) and then the
proof itself (sections 5.4 and 5.5). In the appendix, we give the full proof without the
simplifying assumption.

5.1. Failure detector transformations. Failure detectors can be compared
via algorithmic transformations [12, 11]. A transformation algorithm TD→D′ uses fail-
ure detector D to emulate D′, as we now explain. At each process p, the algorithm
TD→D′ maintains a variable D′

p that emulates the output of D′ at p. Let HD′ be the
history of all the D′ variables in a run R of TD→D′ , i.e., HD′(p, t) is the value of D′

p

at time t in run R. Algorithm TD→D′ transforms D into D′ in environment E if and
only if for every F ∈ E and every run R = (F,HD, I, S, T ) of TD→D′ using D, we have
HD′ ∈ D′(F ). Intuitively, since TD→D′ is able to use D to emulate D′, D provides at
least as much information about process failures as D′ does, and we say that D′ is
weaker than D in E .

Note that, in general, TD→D′ need not emulate all the failure detector histories
of D′ (in environment E); what we do require is that all the failure detector histories
it emulates be histories of D′ (in that environment).

5.2. Single-shot reliable send and receive. The single-shot reliable send and
receive problem is defined in terms of two communication primitives, called s-send and
s-receive. Each process can s-send a single bit once to one process of its choice, if it
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wishes to do so (but it is also possible that no process in the system ever s-sends any
bit). The s-send and s-receive primitives must satisfy the following property. For any
two correct processes p and q, and any b ∈ {0, 1}, p s-sends b to q if and only if q
s-receives b from p.

An implementation I of s-send and s-receive is quiescent if it sends only a finite
number of messages throughout the network.

5.3. Intuitive overview of the simple proof. Let D be a failure detector
with bounded output size, i.e., the range of D is finite. Suppose D can be used to
solve the single-shot reliable send and receive problem with a quiescent algorithm I
(I is also called the implementation of s-send and s-receive). We show that D can be
transformed to �P.

The proof that follows makes the simplifying assumption that I does not have
an “initialization phase” that requires the sending of messages. In other words, we
assume that I is such that if no process ever s-sends any bit, then no process ever
sends any messages. This reasonable assumption allows us to simplify the proof and
illustrate the basic ideas. In the appendix, we give the full proof.

Since the range of D is finite, then for every failure detector history H of D: (a)
each failure detector module outputs some values infinitely often (these are the “limit
values”), and (b) there is a time after which it outputs only limit values. Let v be a
limit value for process p and H. A crucial observation is that with H it is possible
to construct runs such that whenever p takes a step it always gets v from its failure
detector module. It is easy to generalize the notion of a limit value for p to a limit
vector for a set of processes P : A vector f (with a value for every process in the
system) is a limit vector for P and H if, for each process p in P, the failure detector
module of p outputs f(p) infinitely often in H. Note that with H it is possible to
construct runs such that whenever a process p in P takes a step, it obtains f(p)
from its failure detector module. We say that vector f hints that P is the set of all
correct processes, if f could occur as a limit vector for P when P is the set of correct
processes (more precisely, f is a limit vector for P in a history H ∈ D(F ) where
correct proc(F ) = P ).

Consider a failure detector history H that can occur when P is the set of all
correct processes. Let f be any limit vector for P and H. Clearly, f hints that P is
the set of all correct processes. Can f also hint that a proper subset P ′ of P is the
set of all correct processes? The answer is no. As we argue next, this is because with
D, a process in P ′ should be able to s-send a bit to a process q in P \P ′ and to do so
quiescently using I.

Suppose, for contradiction, that f hints that P ′ is the set of all correct processes.
Then we can construct a run R1 of I where (a) P ′ is indeed the set of all correct
processes, (b) processes in P ′ are scheduled such that whenever they take steps they
get f from their failure detector module, (c) some process p in P ′ s-sends a bit b to
some process q in P \ P ′, and (d) processes in P \ P ′ never take a step. Because the
implementation I is quiescent, in R1 eventually all processes in P ′ (including p) stop
sending messages—they give up on trying to transmit b to q.

Since f also hints that P is the set of correct processes, we can create another run
R2 of I where (a) P is the set of correct processes, (b) processes in P are scheduled
such that whenever they take steps they get f from their failure detector module,
(c) p s-sends b to q, and (d) messages sent between processes in P ′ and processes
in P \ P ′ are lost. Note that from the point of view of processes in P ′, run R2 is
indistinguishable from run R1. Thus in R2 eventually all processes in P ′ stop sending
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messages—they give up on trying to transmit b to q. So, in R2 process q never receives
any messages, and thus it does not s-receive b from p. Since p and q are correct in
R2, the implementation I of s-send and s-receive is incorrect—a contradiction. Thus
f cannot hint that P ′ is the set of all correct processes.

Let EP be the set of all vectors that hint that P is the set of correct processes (this
set is determined by D). The algorithm that transforms D to �P uses a predetermined
“table of hints” containing, for each possible P, the set EP .

The transformation algorithm works as follows. Each process p periodically sends
its current failure detector output to every process and maintains two variables: f
and Order . Vector f stores the last failure detector value received from each process,
and Order is an ordered set of processes. Whenever p receives a failure detector value
from another process q, it records that value in f(q) and moves q to the front of Order .
Let P be the set of correct processes in this run. Note that (a) eventually f is a limit
vector for P, and (b) the correct processes percolate to the front of Order (processes
that crash end up at the tail), so that eventually P is some prefix of Order .

To satisfy the properties of �P, p must eventually output the complement of
P . By (b) above, eventually P is the largest prefix of Order that contains correct
processes. To find this maximal prefix, p repeatedly uses its current value of f and
the predetermined table of hints, as follows. For each prefix P ′ of Order , in order
of increasing size, p checks if f hints that P ′ is the set of all correct processes, i.e.,
f ∈ EP ′ , and if so p outputs the complement of P ′. This works because, as we argued
above, any limit vector f for P : (1) hints that P is the set of all correct processes, and
(2) cannot hint that a proper subset P ′ of P is the set of all correct processes. This
concludes the overview of the proof (the reader should understand why the argument
above breaks down without the simplifying assumption).

We next give the actual proof. The transformation algorithm TD→�P uses a table
which is determined a priori from D (this is the “table of hints” in our intuitive
explanation). We first define this table and show some of its properties (section 5.4).
We then describe and prove the correctness of the transformation algorithm TD→�P
that uses this table (section 5.5).

5.4. The predetermined table. Let E be an environment and D be any failure
detector with finite range R = {v1, v2, . . . , v	}. Let I be a quiescent implementation
of s-send and s-receive that uses D in environment E . Assume that if no process s-sends
any bit, then I does not send any messages (this simplifying assumption is removed
in the appendix).

Given vj ∈ R, a process p ∈ Π, and a failure detector history H with range R, we
say that vj is a limit value for p and H if, for infinitely many t, H(p, t) = vj . Let f be
an assignment of failure detector values to every process in Π, i.e., f : Π −→ R. Let
P be a nonempty set of processes. We say that f is a limit vector for P and H if for
all p ∈ P, f(p) is a limit value for p and H. The set of all limit vectors for P and H is

denoted LP (H). Let ED,E
P = {f | ∃F ∈ E ,∃H ∈ D(F ) : P = correct proc(F ) and f ∈

LP (H)}. Roughly speaking, ED,E
P is the set of limit vectors that could occur when P

is the set of correct processes.
The table used by the transformation algorithm TD→�P consists of all the sets

ED,E
P where P ranges over all nonempty subsets of processes. Note that this table is

finite. We omit the superscript D, E from ED,E
P whenever it is clear from the context.

Lemma 5.1. Let F ∈ E , P = correct proc(F ), and H ∈ D(F ). Assume P 
= ∅.
If f ∈ LP (H), then f ∈ EP and f 
∈ EP ′ for every P ′ such that ∅ ⊂ P ′ ⊂ P .

Proof. Let f ∈ LP (H). The fact that f ∈ EP is immediate from the definition of
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EP . Let P ′ be such that ∅ ⊂ P ′ ⊂ P . Suppose, for contradiction, that f ∈ EP ′ . Then
there exists a failure pattern F ′ ∈ E and H ′ ∈ D(F ′) such that P ′ = correct proc(F ′)
and f ∈ LP ′(H ′).

We now obtain a contradiction by using the quiescent implementation I of s-send
and s-receive. Let p be a process in P ′ and q be a process in P \ P ′. We construct
two runs, R1 and R2 of I using D, as follows.

1. Run R1 has failure pattern F ′ and failure detector history H ′. Initially p
s-sends some bit b to q. Processes in P ′ take steps and those in Π\P ′ do not. Processes
in P ′ take steps in round-robin fashion such that every time a process r ∈ P ′ takes
a step, it obtains f(r) from its failure detector module (since f ∈ LP ′(H ′), f(r) is a
limit value for r and H ′). Moreover, every process in P ′ receives every message sent
to it.

Since I is quiescent, there is a time t1 after which no messages are sent or received.
Assume without loss of generality that at time t1 all processes in P ′ took the same
number k of steps (otherwise, choose another time t′1 > t1). Note that all messages
in R1 are sent within the finite period of time [0, t1]. Thus the fact that all processes
in P ′ receive all the messages sent to them is consistent with the link failure pattern
of F ′ (even if in F ′ some of the links are not fair).

2. Run R2 has failure pattern F and failure detector history H. Initially, pro-
cesses in R2 behave as in R1: p s-sends some bit b to q; moreover, each process in
P ′ takes the same k steps as in R1, and processes in Π \ P ′ do not take any steps.
More precisely, processes in P ′ take steps in round-robin fashion such that every time
a process r ∈ P ′ takes a step, it obtains f(r) from its failure detector module (since
f ∈ LP (H) and r ∈ P ′ ⊂ P, f(r) is a limit value for r and H). Moreover, every
process in P ′ receives every message sent to it, and all messages sent to processes in
Π \P ′ are lost. This goes on until each process in P ′ takes k steps, exactly as in R1.

8

Let t2 be the time when this happens. After t2, processes in P take steps in round-
robin fashion such that every time a process r ∈ P ′ takes a step, it obtains f(r) from
its failure detector module (it does not matter what a process r ∈ P \ P ′ gets from
its failure detector module, as long as it is compatible with H). Moreover, after t2 no
process s-sends any bit. This completes the description of run R2.

In R2, at time t2, each process in P ′ is in the same state as in run R1 at time t1.
Moreover, each process in P \P ′ is in its initial state. By a simple induction argument
we can show that after time t2 in R2, (a) processes in P ′ continue to behave as in
R1, (b) processes in P \ P ′ behave as if they were in a run of I in which no process
ever s-sends any bit, and (c) no process sends any message (this induction uses the
simplifying assumption that in a run in which there are no s-sends, no process sends
any message). Therefore, in R2, process q (which is in P \ P ′) never receives any
messages. This implies that q does not s-receive b from p.

Note that in R2: (a) both p and q are correct; (b) p s-sends b to q; and (c) q
does not s-receive b from p. Thus I is not a correct implementation of s-send and
s-receive—a contradiction.

5.5. The transformation algorithm. The algorithm TD→D′ that transforms
D to an eventually perfect failure detector D′ = �P in environment E is shown in Fig-
ure 5.1. TD→D′ uses the table of sets EP (for all nonempty subsets of processes P ) that
has been determined a priori from the given D and E . It also uses an implementation

8This behavior of the links is consistent with F because for any finite period of time, any link
(whether fair or not in F ) may lose or not lose any message.
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1 For every process p:
2

3 Initialization:
4 for all q ∈ Π do f [q]← ⊥
5 Order ← ∅
6 D′

p ← ∅
7 { For each ∅ ⊂ P ⊆ Π, the set ED,E

P is determined a priori from D and E }
8

9 cobegin
10 || Task 1:
11 repeat periodically
12 v ← Dp {query D}
13 for all q ∈ Π do qr-send v to q
14

15 || Task 2:
16 upon qr-receive w from q do {upon receipt of a failure detector value from q}
17 f [q]← w
18 Order ← q || (Order \ {q}) {process q is moved to the front of Order}
19 if for some k ≥ 1, f ∈ ED,E

Order [1..k]
then

20 let k0 be the smallest such k
21 D′

p ← Π \Order [1..k0] {suspect processes not in Order [1..k0]}
22 coend

Fig. 5.1. Transformation of D to an eventually perfect failure detector D′ in environment E.

of qr-send and qr-receive between every pair of processes. A simple implementation is
by repeated retransmissions and diffusion (it does not have to be quiescent).

All variables are local to each process. Vector f stores the last failure detector
value that p qr-received from each process; Order is an ordered set that records the
order in which the last failure detector value from each process was qr-received; D′

p

denotes the output of the eventually perfect failure detector that p is simulating (a
set of processes that p currently suspects).

In Task 1, each process p periodically qr-sends the output of its failure detector
module Dp to every process q. Upon the qr-receipt of a failure detector value from
process q in Task 2, process p enters it into f [q] and moves q to the front of Order .
Then p checks if there is some prefix Order [1..k] of Order such that f ∈ EOrder [1..k].
If there is, it sets D′ to the complement of the smallest such prefix.

We now show that the failure detector constructed by this algorithm, namely D′,
is an eventually perfect failure detector. Consider a run of this algorithm with failure
pattern F ∈ E and failure detector history H ∈ D(F ), such that correct proc(F ) 
= ∅.
Let t be the number of processes that crash in F, i.e., t = |Π \ correct proc(F )|.
Henceforth, p denotes a correct process in F, and variables f and Order are local to
p.

Lemma 5.2. There is a time after which (1) Order [1..n− t] = correct proc(F ),
and (2) f ∈ LOrder [1..n−t](H).9

Proof. Part (1) is clear from the way Order is updated, the fact that p keeps
qr-receiving failure detector values from every correct process, and the fact that p

9This does not mean that eventually the values of variables f and Order at p stop changing. It
means that, although they may continue to change forever, eventually the predicates (1) and (2) are
true forever at p.
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eventually stops qr-receiving messages from processes that crash. Part (2) of the
lemma follows from part (1) and the fact that the range R of D is finite.

Corollary 5.3. There is a time after which (1) f ∈ EOrder [1..n−t], and (2) for
all 1 ≤ k < n− t, f 
∈ EOrder [1..k].

Proof. By Lemma 5.2, there is a time t0 after which f ∈ LOrder [1..n−t](H) and
Order [1..n− t] = correct proc(F ). So after time t0, by Lemma 5.1, f ∈ EOrder [1..n−t].
This shows (1). Let k be such that 1 ≤ k < n − t. After t0, ∅ ⊂ Order [1..k] ⊂
correct proc(F ), and f ∈ Lcorrect proc(F )(H). So, by Lemma 5.1, f 
∈ EOrder [1..k].
This shows (2).

Corollary 5.4. There is a time after which D′
p = Π \ correct proc(F ).

Proof. By Corollary 5.3 and the algorithm, there is a time after which the k0

selected in line 20 is always n− t. Now apply Lemma 5.2 part (1).
By Corollary 5.4, we have the following theorem.
Theorem 5.5. Consider an asynchronous system subject to process crashes and

message losses. Suppose failure detector D with finite range can be used to solve the
single-shot reliable send and receive problem in environment E , and that the imple-
mentation is quiescent. Assume further that if no process ever s-sends any bit, then
this implementation does not send any messages. Then D can be transformed (in
environment E) to the eventually perfect failure detector �P.

Theorems 5.5 and A.12 imply that if we restrict ourselves to failure detectors that
output a set of suspects, we cannot achieve quiescent reliable communication with a
failure detector that can be implemented. Thus we next introduce HB, a failure
detector that does not output a set of suspects. HB can be used to achieve quiescent
reliable communication and it is implementable.

6. Definition of HB. A heartbeat failure detector D has the following fea-
tures. The output of D at each process p is a list (p1, n1), (p2, n2), . . . , (pk, nk), where
p1, p2, . . . , pk are the neighbors of p, and each nj is a nonnegative integer. Intuitively,
nj increases while pj has not crashed, and stops increasing if pj crashes. We say that
nj is the heartbeat value of pj at p. The output of D at p at time t, namely H(p, t),
will be regarded as a vector indexed by the set {p1, p2, . . . , pk}. Thus H(p, t)[pj ] is
nj . The heartbeat sequence of pj at p is the sequence of the heartbeat values of pj at
p as time increases. D satisfies the following properties.

• HB-completeness. At each correct process, the heartbeat sequence of every
neighbor that crashes is bounded:

∀F, ∀H ∈ D(F ), ∀p ∈ correct proc(F ), ∀q ∈ crashed proc(F ) ∩ neighbor(p),

∃K ∈ N , ∀t ∈ T : H(p, t)[q] ≤ K.

• HB-accuracy .
– At each process, the heartbeat sequence of every neighbor is nondecreas-

ing:

∀F, ∀H ∈ D(F ), ∀p ∈ Π, ∀q ∈ neighbor(p), ∀t ∈ T : H(p, t)[q] ≤ H(p, t + 1)[q].

– At each correct process, the heartbeat sequence of every correct neighbor
is unbounded:

∀F, ∀H ∈ D(F ), ∀p ∈ correct proc(F ), ∀q ∈ correct proc(F ) ∩ neighbor(p),

∀K ∈ N , ∃t ∈ T : H(p, t)[q] > K.

The class of all heartbeat failure detectors is denoted HB. By a slight abuse of
notation, we sometimes use HB to refer to an arbitrary member of that class.
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It is easy to generalize the definition of HB so that the failure detector module at
each process p outputs the heartbeat of every process in the system [1], rather than
just the heartbeats of the neighbors of p, but we do not need this generality here.

7. Quiescent reliable communication using HB. The communication net-
works that we consider are not necessarily completely connected, but we assume that
every pair of correct processes is connected through a fair path. We first consider
a simple type of such networks, in which every link is assumed to be bidirectional10

and fair (Figure 7.1a). This assumption, a common one in practice, allows us to
give efficient and simple algorithms. We then drop this assumption and treat a more
general type of networks, in which some links may be unidirectional and/or not fair
(Figure 7.1b). For both network types, we give quiescent reliable communication al-
gorithms that use HB. Our algorithms have the following feature: processes do not
need to know the entire network topology or the number of processes in the system;
they only need to know the identity of their neighbors.

In our algorithms, Dp denotes the current output of the failure detector D at
process p.

7.1. The simple network case. We assume that all links in the network are
bidirectional and fair (Figure 7.1a). In this case, the algorithms are very simple. We
first give a quiescent implementation of quasi-reliable qr-sends,r and qr-receiver,s for
the case r ∈ neighbor(s). For s to qr-send a message m to r, it repeatedly sends m
to r every time the heartbeat of r increases, until s receives ack(m) from r. Process
r qr-receives m from s the first time it receives m from s, and r sends ack(m) to s
every time it receives m from s.

From this implementation and Remark 3.2, we can obtain a quiescent imple-
mentation of reliable broadcast. Then, from Remark 3.1, we can obtain a quiescent
implementation of quasi-reliable send and receive for every pair of processes.

7.2. The general network case. In this case (Figure 7.1b), some links may be
unidirectional, e.g., the network may contain several unidirectional rings that intersect
with each other. Moreover, some links may not be fair (and processes do not know
which ones are fair).

Achieving quiescent reliable communication in this type of network is significantly
more complex than before. For instance, suppose that we seek a quiescent implemen-
tation of quasi-reliable send and receive. In order for the sender s to qr-send a message
m to the receiver r, it has to use a diffusion mechanism, even if r is a neighbor of
s (since the link s → r may not be fair). Because of intermittent message losses,
this diffusion mechanism needs to ensure that m is repeatedly sent over fair links.
But when should this repeated send stop? One possibility is to use an acknowledge-
ment mechanism. Unfortunately, the link in the reverse direction may not be fair (or
may not even be part of the network), and so the acknowledgement itself has to be
diffused. But diffusing the acknowledgements quiescently and reliably introduces a
“chicken and egg” problem. We now explain how our algorithms avoid this problem.

We give a quiescent implementation of reliable broadcast in Figure 7.2. This
implementation can be used to obtain quasi-reliable send and receive between every
pair of processes (see Remark 3.1). For each message m that is broadcast, each process
p maintains a variable gotp[m] containing a set of processes. Intuitively, a process q

10In our model, this means that link p → q is in the network if and only if link q → p is in the
network. In other words, q ∈ neighbor(p) if and only if p ∈ neighbor(q).
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correct process process that crashes

(a) simple network case (b) general network case

link is fair link is not fair

Fig. 7.1. Examples of the simple and general network cases.

is in gotp[m] if p has evidence that q has delivered m. All the messages sent by a
process p in the reliable broadcast algorithm are of the form (m, got msg , path) where
got msg is the current value of gotp[m], and path is the sequence of processes that
this copy of (m, got msg , path) has traversed so far.

In order to reliably broadcast a message m, p first delivers m; then p initializes
variable gotp[m] to {p} and forks task diffuse(m); finally p returns from the invocation
of broadcast(m). The task diffuse(m) runs in the background. In this task, p period-
ically checks if, for some neighbor q 
∈ gotp[m], the heartbeat of q at p has increased,
and, if so, p sends (m, gotp[m], p) to all neighbors whose heartbeat increased—even
to those who are already in gotp[m].11 The task terminates when all neighbors of p
are contained in gotp[m].

Upon the receipt of a message (m, got msg , path), process p first checks if it has
already delivered m, and, if not, it delivers m and forks task diffuse(m). Then p adds
the contents of got msg to gotp[m] and appends itself to path. Finally, p forwards the
new message (m, gotp[m], path) to all its neighbors that appear at most once in path.

The code consisting of lines 19 through 27 is executed atomically.12 Each con-
current execution of the diffuse task (lines 9 to 17) has its own copy of all the local
variables in this task.

We now outline the proof that, for the general network case, Figure 7.2 is a

11It may appear that p does not need to send this message to processes in gotp[m], since they
have already gotten m! But with this “optimization” the algorithm is no longer quiescent; in the
proof of Lemma 7.8 we will indicate exactly where the sending to every neighbor whose heartbeat
increased is necessary.

12A process p executes a region of code atomically if at any time there is at most one thread of p
in this region.
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1 For every process p:
2

3 To execute broadcast(m):
4 deliver(m)
5 got [m]← {p}
6 fork task diffuse(m)
7 return
8

9 task diffuse(m):
10 for all q ∈ neighbor(p) do prev hb[q]← −1
11 repeat periodically
12 hb← Dp { query the heartbeat failure detector }
13 if for some q ∈ neighbor(p), q �∈ got [m] and prev hb[q] < hb[q] then
14 for all q ∈ neighbor(p) such that prev hb[q] < hb[q] do
15 send (m, got [m], p) to q
16 prev hb← hb
17 until neighbor(p) ⊆ got [m]
18

19 upon receive (m, got msg, path) from q do
20 if p has not previously executed deliver(m) then
21 deliver(m)
22 got [m]← {p}
23 fork task diffuse(m)
24 got [m]← got [m] ∪ got msg
25 path ← path · p
26 for all q such that q ∈ neighbor(p) and q appears at most once in path do
27 send (m, got [m], path) to q

Fig. 7.2. General network case—quiescent implementation of broadcast and deliver using HB.

quiescent implementation of reliable broadcast that uses HB. The first few lemmas
are obvious.

Lemma 7.1 (uniform integrity). For every message m, every process delivers
message m at most once, and only if m was previously broadcast by sender(m).

Lemma 7.2 (validity). If a correct process broadcasts a message m, then it even-
tually delivers m.

Lemma 7.3. For any processes p and q, (1) if at some time t, q ∈ gotp[m], then
q ∈ gotp[m] at every time t′ ≥ t; (2) when gotp[m] is initialized, p ∈ gotp[m]; and (3)
if q ∈ gotp[m], then q delivered m.

Lemma 7.4. For every m and path, there is a finite number of distinct messages
of the form (m, ∗, path).

Lemma 7.5. If some process sends a message of the form (m, ∗, path), then no
process appears more than twice in path.

Lemma 7.6. Suppose link p → q is fair, and p and q are correct processes. If p
delivers a message m, then q eventually delivers m.

Proof. Suppose, by contradiction, that p delivers m and q never delivers m. Since
p delivers m and it is correct, it forks task diffuse(m). Since q does not deliver m, by
Lemma 7.3 part (3) q never belongs to gotp[m]. Since p is correct, this implies that
p executes the loop in lines 11–17 an infinite number of times. Since q is a correct
neighbor of p, the HB-accuracy property guarantees that the heartbeat sequence of
q at p is nondecreasing and unbounded. Thus the condition in line 13 evaluates to
true an infinite number of times. Therefore, p executes line 14 an infinite number of
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times, and so p sends a message of the form (m, ∗, p) to q an infinite number of times.
By Lemma 7.4, there exists a subset g0 ⊆ Π such that p sends message (m, g0, p)
infinitely often to q. So, by the fairness property of link p → q, q eventually receives
(m, g0, p). Therefore, q delivers m. This contradicts the assumption that q does not
deliver m.

Lemma 7.7 (agreement). If a correct process p delivers a message m, then every
correct process q eventually delivers m.

Proof (sketch). By successive applications of Lemma 7.6 over any fair path from
p to q.

We now show that the algorithm in Figure 7.2 is quiescent. In order to do so, we
focus on a single invocation of broadcast and show that it causes the sending of only
a finite number of messages. This implies that the implementation sends only a finite
number of messages when broadcast is invoked a finite number of times.

Let m be a message and consider an invocation of broadcast(m). This invocation
can only cause the sending of messages of form (m, ∗, ∗). Thus, all we need to show
is that every process eventually stops sending messages of this form.

Lemma 7.8. Let p be a correct process and q be a correct neighbor of p. If p forks
task diffuse(m), then eventually condition q ∈ gotp[m] holds forever.

Proof. By Lemma 7.3 part (1), we only need to show that eventually q be-
longs to gotp[m]. Suppose, by contradiction, that q never belongs to gotp[m]. Let
(p1, p2, . . . , pk′) be a simple fair path13 from p to q with p1 = p and pk′ = q. Let
(pk′ , pk′+1, . . . , pk) be a simple fair path from q to p with pk = p. For 1 ≤ j < k, let
Pj = (p1, p2, . . . , pj). Note that a process can appear at most twice in Pk. Thus, for
1 ≤ j < k, process pj+1 appears at most once in Pj .

We claim that for each j ∈ {1, . . . , k−1}, there is a set gj containing {p1, p2, . . . , pj}
such that pj sends (m, gj , Pj) to pj+1 an infinite number of times. For j = k − 1,
this claim together with the fairness property of link pk−1 → pk immediately implies
that pk = p eventually receives (m, gk−1, Pk−1). Upon the receipt of such a message,
p adds the contents of gk−1 to its variable gotp[m]. Since gk−1 contains pk′ = q, this
contradicts the fact that q never belongs to gotp[m].

We show the claim by induction on j. For the base case note that, since q never
belongs to gotp[m] and q is a neighbor of p1 = p, then p1 executes the loop in lines 11–
17 an infinite number of times. Since q is a correct neighbor of p1, the HB-accuracy
property guarantees that the heartbeat sequence of q at p1 is nondecreasing and
unbounded. Thus, the condition in line 13 evaluates to true an infinite number of
times. So p1 executes line 14 infinitely often. Since p2 is a correct neighbor of p1, its
heartbeat sequence is nondecreasing and unbounded, and so p1 sends messages of the

form (m, ∗, p1) to p2 an infinite number of times.14 By Lemma 7.4, there is some g1

such that p1 sends (m, g1, p1) to p2 an infinite number of times. Note that Lemma 7.3
parts (1) and (2) imply that p1 ∈ g1. This shows the base case.

For the induction step, suppose that for j < k − 1, pj sends (m, gj , Pj) to pj+1

an infinite number of times for some gj containing {p1, p2, . . . , pj}. By the fairness
property of link pj → pj+1, pj+1 receives (m, gj , Pj) from pj an infinite number of
times. Since pj+2 is a neighbor of pj+1 and appears at most once in Pj+1, each time
pj+1 receives (m, gj , Pj), it sends a message of the form (m, ∗, Pj+1) to pj+2. It is easy

13A path is simple if all processes in that path are distinct.
14This is where the proof uses the fact that p sends message containing m to all its neighbors

whose heartbeat increased—even to those (such as p2) that may already be in gotp[m] (cf. line 14 of
the algorithm).
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to see that each such message is (m, g, Pj+1) for some g that contains both gj and
pj+1. By Lemma 7.4, there exists gj+1 ⊆ Π such that gj+1 contains {p1, p2, . . . , pj+1}
and pj+1 sends (m, gj+1, Pj+1) to pj+2 an infinite number of times.

Corollary 7.9. If a correct process p forks task diffuse(m), then eventually p
stops sending messages in task diffuse(m).

Proof. For every neighbor q of p, there are two cases. If q is correct, then
eventually condition q ∈ gotp[m] holds forever by Lemma 7.8. If q crashes, then
the HB-completeness property guarantees that the heartbeat sequence of q at p is
bounded, and so eventually condition prev hbp[q] ≥ hbp[q] holds forever. Therefore,
there is a time after which the guard in line 13 is always false. Hence, p eventually
stops sending messages in task diffuse(m).

Lemma 7.10 (quiescence). Eventually every process stops sending messages of
the form (m, ∗, ∗).

Proof. Suppose, for a contradiction, that the lemma is not true. Then there
exists a process p such that p never stops sending messages of the form (m, ∗, ∗). By
Lemma 7.5, the third component of a message of the form (m, ∗, ∗) ranges over a finite
set of values. Therefore, there is some fixed path such that p sends an infinite number
of messages of the form (m, ∗, path).

Now let path0 to be the shortest path such that there exists some process p0

that sends messages of the form (m, ∗, path0) an infinite number of times. Note
that p0 must be correct. Corollary 7.9 shows that there is a time after which p0

stops sending messages in its task diffuse(m). Since p0 only sends a message in task
diffuse(m) or in line 27, then p0 sends messages of the form (m, ∗, path0) in line 27 an
infinite number of times. For each (m, ∗, path0) that p0 sends in line 27, p0 must have
previously received a message of the form (m, ∗, path1) such that path0 = path1 · p0.
So p0 receives a message of the form (m, ∗, path1) an infinite number of times. By
the uniform integrity property of the links, some process p1 sends a message of form
(m, ∗, path1) to p0 an infinite number of times. But path1 is shorter than path0—a
contradiction to the minimality of path0.

From Lemmas 7.1, 7.2, 7.7, and 7.10 we have the following theorem.
Theorem 7.11. For the general network case, the algorithm in Figure 7.2 is a

quiescent implementation of reliable broadcast that uses HB.
From this theorem and Remark 3.1 we have the following corollary.
Corollary 7.12. In the general network case, quasi-reliable send and receive

between every pair of processes can be implemented with a quiescent algorithm that
uses HB.

8. Implementations of HB. We now give implementations of HB for the two
types of communication networks that we considered in the previous sections. These
implementations do not use timeouts.

8.1. The simple network case. We assume all links in the network are bi-
directional and fair (Figure 7.1a). In this case, the implementation is obvious. Each
process periodically sends a HEARTBEAT message to all its neighbors; upon the
receipt of such a message from process q, p increases the heartbeat value of q.

8.2. The general network case. In this case some links are unidirectional
and/or not fair (Figure 7.1b). The implementation is more complex than before be-
cause each HEARTBEAT has to be diffused, and this introduces the following problem:
when a process p receives a HEARTBEAT message it has to relay it even if this is not
the first time p receives such a message. This is because this message could be a
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1 For every process p:
2

3 Initialization:
4 for all q ∈ neighbor(p) do Dp[q]← 0
5

6 cobegin
7 || Task 1:
8 repeat periodically
9 for all q ∈ neighbor(p) do send (HEARTBEAT, p) to q
10

11 || Task 2:
12 upon receive (HEARTBEAT, path) from q do
13 for all q such that q ∈ neighbor(p) and q appears in path do
14 Dp[q]← Dp[q] + 1
15 path ← path · p
16 for all q such that q ∈ neighbor(p) and q does not appear in path do
17 send (HEARTBEAT, path) to q
18 coend

Fig. 8.1. General network case—implementation of HB.

new “heartbeat” from the originating process. But this could also be an “old” heart-
beat that cycled around the network and came back, and p must avoid relaying such
heartbeats.

The implementation is given in Figure 8.1. Every process p executes two concur-
rent tasks. In the first task, p periodically sends message (HEARTBEAT, p) to all its
neighbors. The second task handles the receipt of messages of the form (HEARTBEAT,
path). Upon the receipt of such message from process q, p increases the heartbeat val-
ues of all its neighbors that appear in path. Then p appends itself to path and forwards
message (HEARTBEAT, path) to all its neighbors that do not appear in path.

We now show that, for the general network case, the algorithm in Figure 8.1
implements HB.

Lemma 8.1. At every process p, the heartbeat sequence of every neighbor q is
nondecreasing.

Proof. The proof is obvious.

Lemma 8.2. At each correct process p, the heartbeat sequence of every correct
neighbor q is unbounded.

Proof (sketch). It is possible that link q → p is not fair or not even in the network.
However, there is a simple fair path P = (p1, . . . , pk) from q to p with p1 = q and
pk = p. Process p1 = q sends its heartbeat to all its neighbors infinitely often. Since
the links p1 → p2, . . . , pk−1 → pk are fair and each pj is correct, the heartbeats of
q are relayed infinitely often through that path, and pk = p receives them infinitely
often.

Corollary 8.3 (HB-accuracy). At each process the heartbeat sequence of every
neighbor is nondecreasing, and at each correct process the heartbeat sequence of every
correct neighbor is unbounded.

Proof. The proof follows from Lemmas 8.1 and 8.2.

The proofs of the next two lemmas are obvious.

Lemma 8.4. If some process p sends (HEARTBEAT, path) then (1) p is the last
process in path, and (2) no process appears twice in path.



ON QUIESCENT RELIABLE COMMUNICATION 2061

Lemma 8.5. Let p, q be processes, and let path be a nonempty sequence of pro-
cesses. If p receives message (HEARTBEAT, path ·q) an infinite number of times, then
q receives message (HEARTBEAT, path) an infinite number of times.

Lemma 8.6 (HB-completeness). At each correct process, the heartbeat sequence
of every neighbor that crashes is bounded.

Proof (sketch). Let p be a correct process, and let q be a neighbor of p that crashes.
Suppose that the heartbeat sequence of q at p is not bounded. Then p increments Dp[q]
an infinite number of times. So, for an infinite number of times, p receives messages of
the form (HEARTBEAT, ∗) with a second component that contains q. By Lemma 8.4
part (2), the second component of a message of the form (HEARTBEAT, ∗) ranges
over a finite set of values. Thus there exists a path containing q such that p receives
(HEARTBEAT, path) an infinite number of times.

Let path = (p1, . . . , pk). Then, for some j ≤ k, pj = q. If j = k, then, by
the uniform integrity property of the links and by Lemma 8.4 part (1), q sends
(HEARTBEAT, path) to p an infinite number of times. This contradicts the fact that
q crashes. If j < k, then, by repeated applications of Lemma 8.5, we conclude that
pj+1 receives message (HEARTBEAT, (p1, . . . , pj)) an infinite number of times. There-
fore, by the uniform integrity property of the links and Lemma 8.4 part (1), pj sends
(HEARTBEAT, (p1, . . . , pj)) to pj+1 an infinite number of times. Since pj = q, this
contradicts the fact that q crashes.

By Corollary 8.3 and the above lemma, we have the following theorem.
Theorem 8.7. For the general network case, the algorithm in Figure 8.1 imple-

ments HB.
9. Stronger communication primitives. Quasi-reliable send and receive and

reliable broadcast are sufficient to solve many problems (see section 10.1). However,
stronger types of communication primitives, namely, reliable send and receive and
uniform reliable broadcast, are sometimes needed. We now give quiescent implemen-
tations of these primitives for systems with process crashes and message losses.

Let t be the number of processes that may crash. [5] shows that if t ≥ n/2 (i.e.,
half of the processes may crash), these primitives cannot be implemented, even if we
assume that links may lose only a finite number of messages and we do not require
that the implementation be quiescent.

We now show that if t < n/2, then there are quiescent implementations of these
primitives for the two types of network considered in this paper. The implementations
that we give here are simple and modular but are inefficient (in terms of number of
messages sent). More efficient ones can be obtained by modifying the algorithms in
sections 7.1 and 7.2. Hereafter, we assume that t < n/2.

9.1. Reliable send and receive. Consider any two distinct processes s and r.
We define reliable send and receive from s to r in terms of two primitives: r-sends,r and
r-receiver,s. We require that if a correct process invokes r-send, it eventually returns
from this invocation. If a process s returns from the invocation of r-sends,r(m), we
say that s completes the r-send of message m to r. With quasi-reliable send and
receive, it is possible that s completes the qr-send of m to r, then s crashes, and r
never qr-receives m (even though it does not crash). In contrast, with reliable send
and receive primitives, if s completes the r-send of message m to a correct process r,
then r eventually r-receives m (even if s crashes). More precisely, reliable send and
receive satisfies the following properties.

1. Uniform integrity . For all k ≥ 1, if r r-receives m from s exactly k times by
time t, then s r-sent m to r at least k times before time t.
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1 For process s:
2

3 Initialization:
4 seq ← 0 { seq is the current sequence number }
5

6 To execute r-sends,r(m):
7 seq ← seq + 1
8 lseq ← seq
9 broadcast(m, lseq, s, r)
10 wait until qr-received (ACK, lseq) from t + 1 processes
11 return
12

13 For every process p:
14

15 upon deliver(m, lseq, s, r) do
16 qr-sendp,s(ACK, lseq)
17 if p = r then r-receiver,s(m)

Fig. 9.1. Quiescent implementation of r-sends,r and r-receiver,s for n > 2t.

2. No loss. For all k ≥ 1, if r is correct and s completes the r-send of m to r
exactly k times by time t, then r eventually r-receives m from s at least k times.15

A quiescent implementation of r-send and r-receive can be obtained using a quies-
cent implementation of reliable broadcast and of qr-send/qr-receive between every pair
of processes. Roughly speaking, when s wishes to r-send m to r, it broadcasts a mes-
sage that contains m, s, r, and a fresh sequence number, and then waits to qr-receive
t + 1 acknowledgements for that message before returning from this invocation of
r-send. When a process p delivers this broadcast message, it qr-sends an acknowledge-
ment back to s, and if p = r, then it also r-receives m from s. This algorithm is shown
in Figure 9.1 (the code consisting of lines 7 and 8 is executed atomically).

9.2. Uniform reliable broadcast. The agreement property of reliable broad-
cast states that if a correct process delivers a message m, then all correct processes
eventually deliver m. This requirement allows a faulty process (i.e., one that subse-
quently crashes) to deliver a message that is never delivered by the correct processes.
This behavior is undesirable in some applications, such as atomic commitment in dis-
tributed databases [4, 19, 22]. For such applications, a stronger version of reliable
broadcast is more suitable, namely, uniform reliable broadcast which satisfies uniform
integrity, validity (section 3.2), and the following.

• Uniform agreement [31]. If any process delivers a message m, then all correct
processes eventually deliver m.

A quiescent implementation of uniform reliable broadcast can be obtained us-
ing quiescent implementations of reliable broadcast, and of quasi-reliable send and
receive between every pair of processes. Roughly speaking, when p wishes to uniform-
broadcast m, it broadcasts m. Upon the delivery of m, each process r qr-sends an
acknowledgement to every process, waits for the qr-receipt of such acknowledgements
from t + 1 processes, and then uniform-delivers m.

15The no loss and quasi no loss properties are very similar to the strong validity and validity
properties in section 6 of [23].
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10. Using HB to extend previous work. HB can be used to extend previous
work in order to solve problems with algorithms that are both quiescent and tolerant
of process crashes and messages losses.

10.1. Extending existing algorithms to tolerate link failures. HB can be
used to transform many existing algorithms that tolerate process crashes into quies-
cent algorithms that tolerate both process crashes and message losses. For example,
consider the randomized consensus algorithms of [7, 14, 16, 33], the failure-detector
based ones of [2, 12], the probabilistic one of [9], and the algorithms for atomic broad-
cast in [12], k-set agreement in [13], atomic commitment in [20], and approximate
agreement in [15]. All these algorithms tolerate process crashes. Moreover, it is easy
to verify that the only communication primitives that they actually need are quasi-
reliable send and receive and/or reliable broadcast. Thus in systems where HB is
available, all these algorithms can be made to tolerate both process crashes and mes-
sage losses (with fair links) by simply plugging in the quiescent communication prim-
itives given in section 7.16 The resulting algorithms tolerate message losses and are
quiescent.

10.2. Extending results of Basu, Charron-Bost, and Toueg [5]. Another
way to solve problems with quiescent algorithms that tolerate both process crashes
and message losses is obtained by extending the results of [5]. That work addresses
the following question: given a problem that can be solved in a system where the only
possible failures are process crashes, is the problem still solvable if links can also fail
by losing messages? One of the models of lossy links considered in [5] is called fair
lossy. Roughly speaking, a fair lossy link p → q satisfies the following property. If p
sends an infinite number of messages to q and q is correct, then q receives an infinite
number of messages from p (see section 11.3 for a brief comparison between fair lossy
and fair links).

[5] establishes the following result: any problem P that can be solved in systems
with process crashes can also be solved in systems with process crashes and fair lossy
links, provided P is correct-restricted17 or a majority of processes are correct. For
each of these two cases, [5] shows how to transform any algorithm that solves P in a
system with process crashes into one that solves P in a system with process crashes
and fair lossy links. The algorithms that result from these transformations, however,
are not quiescent: each transformation requires processes to repeatedly send messages
forever.

Given HB, we can modify the transformations in [5] to ensure that if the orig-
inal algorithm is quiescent, then so is the transformed one. Roughly speaking, the
modification consists of (1) adding message acknowledgements; (2) suppressing the
sending of a message from p to q if either (a) p has received an acknowledgement for
that message from q, or (b) the heartbeat of q has not increased since the last time p
sent a message to q; and (3) modifying the meaning of the operation “append Queue1

to Queue2” so that only the elements in Queue1 that are not in Queue2 are actually
appended to Queue2. The results in [5], combined with the above modification, show
that if a problem P can be solved with a quiescent algorithm in a system with crash
failures only, and either P is correct-restricted or a majority of processes are correct,

16This can also be done to algorithms that require reliable send/receive or uniform reliable broad-
cast by plugging in the implementations given in section 9, provided a majority of processes are
correct.

17Intuitively, a problem P is correct-restricted if its specification does not refer to the behavior of
faulty processes [6, 18].
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then P is solvable with a quiescent algorithm that uses HB in a system with crash
failures and fair lossy links.

11. Concluding remarks.

11.1. About message buffering. We now address the issue of message buffer-
ing in the implementation of quasi-reliable send and receive, and of reliable broadcast
(section 7). Soon after a process p crashes, its heartbeat ceases everywhere and pro-
cesses stop sending messages to p. However, they do have to keep the messages they
intended to send to p, just in case p is merely very slow, and the heartbeat of p resumes
later on. In theory, they have to keep these messages forever. In practice, however,
the system will eventually decide that p is indeed useless and will “remove” p (e.g.,
via a group membership protocol). All the stored messages addressed to p can then
be discarded. The removal of p may take a long time,18 but the heartbeat mechanism
ensures that processes stop sending messages to p soon after p actually crashes, and
much before its removal.

11.2. Quiescence versus termination. In this paper, we considered reliable
communication protocols that tolerate process crashes and message losses, and we
focused on achieving quiescence. What about achieving termination? A terminating
protocol guarantees that every process eventually reaches a halting state from which
it cannot take further actions. A terminating protocol is obviously quiescent, but
the converse is not necessarily true. For example, consider the protocol described
at the beginning of section 1. In this protocol, (a) s sends a copy of m repeatedly
until it receives ack(m) from r, and then it halts; and (b) upon each receipt of m, r
sends ack(m) back to s. In the absence of process crashes this protocol is quiescent.
However, the protocol is not terminating because r never halts: r remains (forever)
ready to reply to the receipt of a possible message from s.

Can we use HB to obtain reliable communication protocols that are terminat-
ing? The answer is no, even for systems with no process crashes, as we now explain.
Consider a system with message losses (fair links) and no process crashes. [27] proves
that for any terminating protocol P and any initial configuration of P, there are runs
of P in which all processes halt without receiving any message. This implies that
a terminating protocol cannot solve the reliable communication problem (in systems
with fair links).

To deal with this problem, we propose a layering that allows applications to
terminate. This layering, shown in Figure 11.1, separates applications, reliable com-
munication, and failure detection. At the lowest level, there are failure detectors,
such as HB. Of course, these are neither quiescent nor terminating. At the middle
level, there are reliable communication protocols, such as those that we described
in sections 3 and 9. These communication protocols are quiescent (thanks to the
failure detectors at the lower level) but not terminating. Finally, at the top level,
there are applications, such as concurrent instances of consensus, atomic broadcast,
atomic commitment protocols, etc. Applications are both quiescent and terminating:
they achieve termination thanks to the reliable communication layer. For example,
consider an instance of consensus. Once a process decides, it delegates the task of
broadcasting the decision value to the reliable communication layer, and then it ter-
minates (without waiting for the broadcast to terminate). Since every correct process
eventually decides and terminates, this instance of consensus terminates.

18In some group membership protocols, the timeout used to remove a process is on the order of
minutes: killing a process is expensive and so timeouts are set conservatively.
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(quiescent and terminating)

Instance #1 of atomic commitment

Reliable communication
(quiescent, non-terminating)

Failure detection

(non-quiescent, non-terminating)

Instance #1 of consensus

Applications

Instance #2 of consensus

Fig. 11.1. Layering that separates applications, reliable communication, and failure detection.

If necessary, termination in the reliable communication layer can also be achieved
in practice, as we now explain. A reliable communication protocol is unable to termi-
nate when processes cannot determine whether a nonresponsive process has crashed
or it is only very slow. However, as we mentioned in our discussion of message buffer-
ing, a process that actually crashes is eventually removed by the operating system or
a group membership protocol (and the remaining processes are notified accordingly).
When this happens, the communication protocol can terminate. Note that with the
heartbeat mechanism quiescence can be achieved long before termination (this is be-
cause when a process crashes, it may take a relatively long time to decide that it
actually crashed, but its heartbeat count at other processes stops increasing almost
immediately).

As a final remark, we note that some communication protocols, such as standard
data link protocols, are inherently nonterminating: they are shared communication
services that are always “ready” for message transmission. The reliable communica-
tion protocols (in our middle level) could also be viewed in the same way, namely, as
nonterminating shared services that are always ready for message transmission.

11.3. Fair links versus fair lossy links. Fair links and fair lossy links are two
typical models of lossy links considered in the literature.19 Roughly speaking, a fair
link guarantees that for every m, if p sends m to q an infinite number of times, and q is
correct, then q receives m an infinite number of times. On the other hand, a fair lossy
link guarantees that if p sends an infinite number of messages to q, and q is correct,
then q receives an infinite number of messages from p. Fair lossy links and fair links
differ in a subtle way. For instance, if process p sends the infinite sequence of distinct
messages m1,m2,m3, . . . to q and p → q is fair lossy, then q is guaranteed to receive
an infinite subsequence, whereas if p → q is fair, q may receive nothing (because each
distinct message is sent only once). On the other hand, if p sends the infinite sequence
m1,m2,m1,m2, . . . and p → q is fair lossy, q may never receive a copy of m2 (while

19In [29], these links correspond to the strong and weak loss limitation properties, respectively.
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it receives m1 infinitely often), whereas if p → q is fair, q is guaranteed to receive an
infinite number of copies of both m1 and m2.

In this paper, we chose the fair links model. A natural question is whether our
results still hold with fair lossy links instead. It turns out that the answer is yes, as
we now explain. First note that Theorems 4.1, 5.5, and A.12 still hold because their
proofs rely only on the fact that lossy links may lose (or not lose) messages arbitrarily
during any finite period of time—a behavior allowed by fair lossy links. Moreover,
the algorithms in sections 7 and 8 can be easily modified to work with fair lossy links
through the use of piggybacking; namely, every time a process wishes to send a mes-
sage, it piggybacks all the messages that it previously sent.20 Finally, the algorithms
in section 9 are still correct because they do not directly use the communication links;
rather, they rely only on the communication algorithms of section 7.

11.4. Quiescent versus nonquiescent transformations. We proved that if
D is a failure detector with finite range that can be used to solve quiescent reliable
communication, then D can be transformed to �P. Our transformation is not quies-
cent: to “extract” �P out of D, processes keep on sending messages forever. This,
however, does not invalidate the two facts that we wanted to show, namely:

1. D encodes at least as much information as �P.
2. D cannot be implemented (this follows from the transformation from D to

�P, and the fact that �P cannot be implemented).
This shows that finite-range failure detectors have some inherent limitation (be-

cause there is a failure detector with infinite range, namely HB, that can be used to
solve quiescent reliable communication such that (1) HB does not encode �P, and (2)
HB can be implemented).

Even though a nonquiescent transformation was sufficient to establish our re-
sults, quiescent transformations are necessary when comparing the power of failure
detectors to solve tasks with quiescent algorithms, as we now explain. If D can be
transformed to D′, we can conclude that D is (at least) as powerful as D′ in terms of
task solving (intuitively, a task is a relation between inputs and outputs [8, 25]). If
the transformation from D to D′ is not quiescent, however, D may not be as powerful
as D′ in terms of solving tasks quiescently: there may be a task that can be solved
quiescently with D′ but not with D. On the other hand, if the transformation from
D to D′ is quiescent, we can conclude that D is (at least) as powerful as D′ in terms
of solving tasks with quiescent algorithms. The study of quiescent transformations is
a new and interesting subject of research.

11.5. Extension to partitionable networks. In this paper, we considered
networks that do not partition: we assumed that every pair of correct processes are
reachable from each other through fair paths. In a subsequent paper [1], we drop this
assumption and consider partitionable networks. We first generalize the definition of
HB and show how to implement it in such networks. We then consider generalized
versions of reliable communication and of consensus for partitionable networks and
use HB to solve these problems with quiescent protocols (to solve consensus we also
use a generalization of the eventually strong failure detector [12]).

Appendix. Removing the simplifying assumption from Theorem 5.5.
We now give an extended, more complex proof of Theorem 5.5 without the simplifying
assumption.

20With the fair links used in this paper, this expensive piggybacking is avoided. We believe that
in practice, links that intermittently lose messages are both fair and fair lossy.
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Let E be an environment and D be any failure detector with finite range R =
{v1, v2, . . . , v	}. Let I be a quiescent implementation of s-send and s-receive that uses
D in environment E .

As in the simpler proof in section 5, the transformation algorithm TD→�P uses a
finite table that is predetermined from D. We first define this table and show some
of its properties (section A.1). We then describe and prove the correctness of the
transformation algorithm TD→�P that uses this table (section A.2).

A.1. The predetermined table. For the definitions in this proof, let

• vj be a failure detector value, i.e., vj ∈ R,
• p be a process, i.e., p ∈ Π,
• F be a failure pattern,
• H be a failure detector history with range R,
• f be an assignment of failure detector values to every process in Π, i.e.,

f : Π −→ R,
• P and P0 be a nonempty set of processes,
• p0, p1, . . . , pm−1 be the processes in P (where m = |P | and p0 < p1 < · · · <

pm−1).

Definition A.1. We say that vj is a limit value for p and H if, for infinitely
many t, H(p, t) = vj.

Definition A.2. We say that f is a limit vector for P and H if for all p ∈ P,
f(p) is a limit value for p and H. The set of all limit vectors for P and H is denoted
LP (H).

Definition A.3. RRIRounds(P, f) is defined as follows.

Consider the round-robin execution of implementation I in which (a) processes
in P take steps forever in a round-robin fashion21 and processes in Π \P do not take
any steps, (b) no process ever s-sends any bit, (c) every time a process p ∈ P queries
its failure detector module, p gets f(p), (d) every time a process p ∈ P takes a step,
p receives the earliest message sent to it that it did not yet receive (thus, every p ∈ P
eventually receives each message sent to it), and (e) all messages sent to processes in
Π \ P are lost.22

There are two possible cases in the above round-robin execution of I.
1. Every process eventually stops sending messages. In this case, after some
number k of round-robin rounds, no process ever receives any messages. We
say that “round-robin initialization (r.r.i.) occurs in k rounds,” and define
RRIRounds(P, f) = k.

2. Some process never stops sending messages. In this case, we define
RRIRounds(P, f) = ∞.

Intuitively, we say that F and H allow r.r.i. for P and f if the following hold:
(a) in the above execution with P and f, r.r.i. occurs in k rounds for some k, and
(b) there is a schedule compatible with F and H that allows this k-round r.r.i. More
precisely, we have the following definition.

Definition A.4. We say that F and H allow r.r.i. for P and f if

(a) RRIRounds(P, f) = k for some k, and
(b) there are times t0 < t1 < · · · < tmk−1 such that for every 0 ≤ j ≤ mk −

1, (1) pj mod m is not crashed at time tj , i.e., pj mod m 
∈ F (tj), and (2)

21That is, p0 takes the first step, then p1 takes a step, and so on, so that the jth step is taken by
process p(j−1) mod m.

22It is possible that this is not a valid execution of I using D in environment E.
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the failure detector module of pj mod m at time tj outputs f(pj mod m), i.e.,
H(pj mod m, tj) = f(pj mod m).

Definition A.5. LP,P0(F,H) = {f | f ∈ LP (H), and F and H allow r.r.i. for
P0 and f}.

Definition A.6. ED,E
P,P0

= {f | ∃F ∈ E ,∃H ∈ D(F ) : P = correct proc(F ), and
f ∈ LP,P0(F,H)}.

Roughly speaking, ED,E
P,P0

is the set of limit vectors f that could occur when P is
the set of correct processes and it is possible to have r.r.i. for P0 and f .

The table used by the transformation algorithm TD→�P consists of all the sets
ED,E
P,P0

where P and P0 range over all nonempty subsets of processes. Note that this

table is finite. We omit the superscript D, E from ED,E
P,P0

whenever it is clear from the
context.

Lemma A.7. Let F ∈ E , P = correct proc(F ), H ∈ D(F ), and f ∈ LP (H).
Assume P 
= ∅. Then RRIRounds(P, f) < ∞.

Proof. We can construct a run R of implementation I using D with F ∈ E , such
that all processes behave exactly as in the round-robin execution of I that was used
to define RRIRounds(P, f). To see this, note that since F ∈ E , P = correct proc(F ),
H ∈ D(F ), and f ∈ LP (H), we can find times for the round-robin steps of cor-
rect processes such that, for each time u at which a process p takes a step, the
output H(p, u) of its failure detector module is f(p). Since I is quiescent, there is
a time after which no process sends any message in run R. Thus, RRIRounds(P, f) <
∞.

Lemma A.8. Let F ∈ E , P = correct proc(F ), and H ∈ D(F ). Assume P 
= ∅
and let P0 be such that P ⊆ P0 ⊆ Π. If f ∈ LP,P0

(F,H), then f ∈ EP,P0
and

f 
∈ EP ′,P0 for all P
′ such that ∅ ⊂ P ′ ⊂ P .

Proof. Let f ∈ LP,P0(F,H). The fact that f ∈ EP,P0 is immediate from the
definition of EP,P0 . Let P ′ be such that ∅ ⊂ P ′ ⊂ P . Suppose, for contradiction, that
f ∈ EP ′,P0 . Then there exists a failure pattern F ′ ∈ E and H ′ ∈ D(F ′) such that
P ′ = correct proc(F ′) and f ∈ LP ′,P0(F

′, H ′).
We now obtain a contradiction by using the quiescent implementation I. Let p

be a process in P ′ and q be a process in P \P ′. We construct three runs of I, namely,
R0, R1, and R2. Roughly speaking, each one of these runs starts with an r.r.i. for P0

and f . After this initialization, in R0 nothing else happens, in R1 process p s-sends
some bit to q but q crashes, and in R2 process p s-sends the same bit to q and q is
correct. We will reach a contradiction by arguing that in R2 process q behaves as in
R0, and thus it never s-receives any bit from p—this violates the defining property of
s-send and s-receive.

Runs R0, R1, and R2 are defined as follows.23

1. Run R0 has failure pattern F and failure detector history H. Since f ∈
LP,P0(F,H), f ∈ LP (H), and F and H allow r.r.i. for P0 and f . R0 consists initially
of an r.r.i. for P0 and f . More precisely, initially: (a) processes in P0 take steps in
a round-robin fashion and processes in Π \ P0 do not take any steps, (b) no process
s-sends any bit, (c) every time a process r ∈ P0 queries its failure detector module, r
gets f(r), (d) every time a process r ∈ P0 takes a step, r receives the earliest message
sent to it that it did not yet receive, and (e) all messages sent to processes in Π \ P0

are lost. This goes on until each process in P0 has taken RRIRounds(P0, f) steps. Let

23In each one of these runs, we will require that for a certain finite period of time, some messages
are lost while others are not. As we explained in our model (section 2.5), this behavior is consistent
with any link failure pattern.
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t0 be the time when this happens. After t0, processes in P take steps in a round-robin
fashion such that every time a process r ∈ P takes a step, it obtains f(r) from its
failure detector module (this is possible because f ∈ LP (H)); moreover, no process
s-sends any bit. Note that since both p and q are in P = correct proc(F ), and p
does not s-send any bit to q, it must be that q does not s-receive any bit from p.
Furthermore, after time t0, no processes send or receive any messages.

2. Run R1 has failure pattern F ′ and failure detector history H ′. Since f ∈
LP ′,P0

(F ′, H ′), f ∈ LP ′(H ′), and F ′ and H ′ allow r.r.i. for P0 and f . Initially,
processes in R1 behave as in R0, i.e., R1 starts with an r.r.i. for P0 and f . Then,
execution proceeds as follows: (a) p s-sends some bit b to q, (b) processes in P ′ take
steps in round-robin fashion and processes in Π \ P ′ take no steps, (c) every time a
process r ∈ P ′ takes a step, it obtains f(r) from its failure detector module, (d) every
time a process r ∈ P ′ takes a step, r receives the earliest message sent to it that it
did not yet receive, and (e) all messages sent to processes in Π \ P ′ are lost.

Note that, since implementation I is quiescent, there is a time t1 after which
no messages are sent or received. Assume without loss of generality that at time t1
every process in P ′ took the same number k of steps (otherwise, choose another time
t′1 > t1).

3. Run R2 has failure pattern F and failure detector history H. Initially, pro-
cesses in R2 behave as in R1: R2 starts with an r.r.i. for P0 and f, and then p s-sends b
to q and execution continues as in R1, until each process in P ′ has taken k steps (this
is possible because f ∈ LP (H) and P ′ ⊆ P ). Let t2 be the time when this happens.
After t2, execution proceeds as follows: (a) no process s-sends any bit, (b) processes in
P take steps in round-robin fashion and processes in Π\P take no steps, and (c) every
time a process r ∈ P takes a step, it obtains f(r) from its failure detector module
(this is possible because f ∈ LP (H)).

In R2, at time t2, each process in P ′ is in the same state as in run R1 at time
t1, and each process in P \ P ′ is in the same state as in run R0 at time t0. A simple
induction on the steps taken shows that, in R2, (1) processes in P ′ have the same
behavior as in run R1; (2) processes in P \ P ′ have the same behavior as in run R0;
(3) no messages are sent or received after time t2. Since q ∈ P \ P ′ and q does not
s-receive any bit from p in R0, it does not s-receive any bit from p in R2.

In summary, in R2: (a) both p and q are correct; (b) p s-sends b to q; and (c) q
does not s-receive b from p. Thus, I is not a correct implementation of s-send and
s-receive—a contradiction.

A.2. The transformation algorithm. The algorithm TD→D′ that transforms
D to an eventually perfect failure detector D′ = �P in environment E is shown in
Figure A.1. TD→D′ uses the table of sets EP,P0 (for all nonempty subsets P and P0 of
processes) that has been determined a priori from the given D and E . It also uses an
implementation of qr-send and qr-receive between every pair of processes. A simple
implementation is by repeated retransmissions and diffusion (it does not have to be
quiescent).

All variables are local to each process. Sequences is a finite set of finite sequences
of pairs (p, v) where p ∈ Π is a process and v ∈ R is a failure detector value. It stores
possible schedules that could have resulted from F and H. Vector f stores the last
failure detector value that p qr-received from each process. Order is an ordered set
that records the order in which the last failure detector value from each process was
qr-received. D′

p denotes the output of the eventually perfect failure detector that p
is simulating (a set of processes that p currently suspects). AllowsRRI is a Boolean
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1 For every process p:
2

3 Initialization:
4 for all q ∈ Π do f [q]← ⊥
5 Order ← ∅
6 Sequences ← {λ}
7 D′

p ← ∅
8 { For each ∅ ⊂ P, P0 ⊆ Π, the set ED,E

P,P0
is determined a priori from D and E }

9

10 cobegin
11 || Task 1:
12 repeat periodically
13 v ← Dp {query D}
14 append (p, v) to each sequence in Sequences
15 for all q ∈ Π do qr-send (Sequences, v) to q
16

17 || Task 2:
18 upon qr-receive (Sequences′, v′) from q do
19 f [q]← v′

20 Order ← q || (Order \ {q}) {process q is moved to the front of Order}
21 Sequences ← Sequences ∪ Sequences′
22 if for some k ≥ 1, AllowsRRI (Sequences,Order [1..k], f) then
23 let k0 be the largest such k

24 if for some k′ ≥ 1, f ∈ ED,E
Order [1..k′],Order [1..k0]

then

25 let k1 be the smallest such k′

26 D′
p ← Π \Order [1..k1] {suspect processes not in Order [1..k1]}

27 coend

Fig. A.1. Transformation of D to an eventually perfect failure detector D′.

function that takes three parameters: a set Sequences, a set P = {p0, p1, . . . , pm−1} ⊆
Π (where p0 < p1 < · · · < pm−1), and a vector f . It returns true if and only if
for some sequence s ∈ Sequences, there exists a subsequence of s that consists of
RRIRounds(P, f) repetitions of (p0, f(p0)), (p1, f(p1)), . . . , (pm−1, f(pm−1)).

In Task 1, each process p periodically queries its failure detector module, ap-
pends a new pair to each sequence in Sequences, and then qr-sends Sequences and
the output of its failure detector module Dp to every process. Upon the qr-receipt
of (Sequences ′, v′) from process q in Task 2, process p enters v′ into f [q], moves q to
the front of Order , and updates Sequences. Then, p uses the function AllowsRRI
to check whether there is some k such that r.r.i. could have occurred for Order [1..k]
and f . If there is, it sets k0 to the largest such k and then checks if for some k′,
f ∈ EOrder [1..k′],Order [1..k0]. If so, it sets k1 to the smallest such k′ and sets D′ to the
complement of Order [1..k1].

We now show that the failure detector constructed by this algorithm, namely D′,
is an eventually perfect failure detector. Consider a run of this algorithm with failure
pattern F ∈ E and failure detector history H ∈ D(F ), such that correct proc(F ) 
= ∅.
Let t be the number of processes that crash in F, i.e., t = |Π \ correct proc(F )|.
Henceforth, p denotes a correct process in F, and f, Order , and Sequences are variables
local to p.

Lemma A.9. There is a time t0 after which (1) Order [1..n−t] = correct proc(F ),
(2) f ∈ LOrder [1..n−t](H), and (3) AllowsRRI (Sequences,Order [1..n− t], f).24

24This does not mean that eventually the values of variables f, Sequences, and Order at p stop
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Proof. Note that p eventually stops qr-receiving messages from processes that
crash, and p never stops qr-receiving messages from correct processes. From the way
Order is updated, there is a time t1 after which (1) holds.

Let P = correct proc(F ). Variable f ranges over a finite number of values, so
there are functions f1, f2, . . . , fN : Π → R such that (a) for every 1 ≤ j ≤ N, variable
f is equal to fj an infinite number of times, and (b) there is a time t2 after which
the predicate f ∈ {f1, f2, . . . , fN} holds. We now show that for every 1 ≤ j ≤ N,
fj ∈ LP (H), and there is a time τj after which AllowsRRI (Sequences, P, fj) holds.
Together with (1) and (b), this implies that after time t0 = max{t1, t2, τ1, τ2, . . . , τN},
both (2) and (3) hold.

Let 1 ≤ j ≤ N . We first claim that each process q ∈ P obtains fj(q) from D
in line 13 an infinite number of times—this immediately implies fj ∈ LP (H). To
show the claim, note that process p qr-receives a message from q and updates f [q] an
infinite number of times. Together with (a), this implies that p qr-receives a message
containing fj(q) from q an infinite number of times, and this implies the claim.

We now show that there is a time τj after which AllowsRRI (Sequences, P, fj)
holds. Since fj ∈ LP (H), by Lemma A.7, RRIRounds(P, fj) = k for some k < ∞.
Let p0 < p1 < · · · < pm−1 be the processes in P . By the claim, at some time u0,
p0 obtains fj(p0) from D in line 13. After doing so, p0 appends (p0, fj(p0)) to all
sequences in Sequences and qr-sends a message containing Sequences to all processes.
At some time u′

1 > u0, p1 qr-receives this message and updates Sequences. By the
claim, at some time u1 > u′

1, p1 obtains fj(p1) from D in line 13. After doing so,
p1 appends (p1, fj(p1)) to all sequences in Sequences and so p1 obtains a sequence
containing (p0, fj(p0)) before (p1, fj(p1)). We can repeat this argument for all the
processes in P in a round-robin order, for k+1 rounds, and conclude that eventually
AllowsRRI (Sequences, P, fj) holds.

Lemma A.10. There is a time t1 after which for every m0 ≥ n − t such that
AllowsRRI (Sequences, Order [1..m0], f) holds: (1) f ∈ EOrder [1..n−t],Order [1..m0] and
(2) for all 1 ≤ m1 < n− t, f 
∈ EOrder [1..m1],Order [1..m0].

Proof. By Lemma A.9, there is a time t0 after which (a) Order [1..n − t] =
correct proc(F ), and (b) f ∈ LOrder [1..n−t](H). Let t1 = t0. Suppose that at
some time t′1 > t1, AllowsRRI (Sequences,Order [1..m0], f) holds for some
m0 ≥ n − t. This implies that F and H allow r.r.i. for Order [1..m0] and f . From
(b), f ∈ LOrder [1..n−t],Order [1..m0](F,H) holds at time t′1. By Lemma A.8, f ∈
EOrder [1..n−t],Order [1..m0].

Let 1 ≤ m1 < n− t. By (a), ∅ ⊂ Order [1..m1] ⊂ correct proc(F ) ⊆ Order [1..m0]
holds at time t′1. Note that f ∈ LOrder [1..n−t],Order [1..m0](F,H) holds at time t′1. By
Lemma A.8, f 
∈ EOrder [1..m1],Order [1..m0].

Corollary A.11. There is a time after which D′
p = Π \ correct proc(F ).

Proof. By Lemma A.9 part (3), there is a time t0 after which every time p
qr-receives some message, the if in line 22 evaluates to true and the k0 selected in
line 23 is at least n − t. After time t0, by Lemma A.10, there is a time after which
every time p qr-receives some message, the if in line 24 evaluates to true and the k1

selected in line 25 is n− t. Now apply Lemma A.9 part (1).
By Corollary A.11, we have the following theorem.
Theorem A.12. Consider an asynchronous system subject to process crashes

and message losses. Suppose that failure detector D with finite range can be used to

changing. It means that, although they may continue to change forever, eventually the predicates
(1), (2), and (3) are true forever at p.
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solve the single-shot reliable send and receive problem in environment E and that the
implementation is quiescent. Then D can be transformed (in environment E) to the
eventually perfect failure detector �P.
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Abstract. We present a linear programming-based method for finding “gadgets,” i.e., combi-
natorial structures reducing constraints of one optimization problem to constraints of another. A
key step in this method is a simple observation which limits the search space to a finite one. Using
this new method we present a number of new, computer-constructed gadgets for several different
reductions. This method also answers a question posed by Bellare, Goldreich, and Sudan [SIAM J.
Comput., 27 (1998), pp. 804–915] of how to prove the optimality of gadgets: linear programming
duality gives such proofs.

The new gadgets, when combined with recent results of H̊astad [Proceedings of the 29th ACM
Symposium on Theory of Computing, 1997, pp. 1–10], improve the known inapproximability results
for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of
16/17 + ε and 12/13 + ε, respectively, is NP-hard for every ε > 0. Prior to this work, the best-known
inapproximability thresholds for both problems were 71/72 (M. Bellare, O. Goldreich, and M. Sudan
[SIAM J. Comput., 27 (1998), pp. 804–915]). Without using the gadgets from this paper, the best
possible hardness that would follow from Bellare, Goldreich, and Sudan and H̊astad is 18/19. We also
use the gadgets to obtain an improved approximation algorithm for MAX3 SAT which guarantees
an approximation ratio of .801. This improves upon the previous best bound (implicit from M. X.
Goemans and D. P. Williamson [J. ACM, 42 (1995), pp. 1115–1145]; U. Feige and M. X. Goemans
[Proceedings of the Third Israel Symposium on Theory of Computing and Systems, 1995, pp. 182–
189]) of .7704.

Key words. combinatorial optimization, approximation algorithms, reductions, intractability,
NP-completeness, probabilistic proof systems
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1. Introduction. A “gadget” is a finite combinatorial structure which trans-
lates a given constraint of one optimization problem into a set of constraints of a
second optimization problem. A classical example is in the reduction from 3SAT to
MAX 2SAT, due to Garey, Johnson, and Stockmeyer [6]. Given an instance of 3SAT
on variables X1, . . . , Xn and with clauses C1, . . . , Cm, the reduction creates an in-
stance of MAX 2SAT on the original or “primary” variables X1, . . . , Xn along with
new or “auxiliary” variables Y 1, . . . , Y m. The clauses of the MAX 2SAT instance are
obtained by replacing each clause of length 3 in the 3SAT instance with a “gadget,” in
this case a collection of 10 2SAT clauses. For example, the clause Ck = X1 ∨X2 ∨X3

would be replaced with the following 10 clauses on the variables X1, X2, X3 and a
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new auxiliary variable Y k:

X1, X2, X3, ¬X1 ∨ ¬X2, ¬X2 ∨ ¬X3, ¬X3 ∨ ¬X1,

Y k, X1 ∨ ¬Y k, X2 ∨ ¬Y k, X3 ∨ ¬Y k.

The property satisfied by this gadget is that for any assignment to the primary vari-
ables, if clause Ck is satisfied, then 7 of the 10 new clauses can be satisfied by setting
Y k appropriately; otherwise only 6 of the 10 are satisfiable. (Notice that the gadget
associated with each clause Ck uses its own auxiliary variable Y

k, and thus Y k may
be set independently of the values of variables not appearing in Ck’s gadget.) Using
this simple property of the gadget it is easy to see that the maximum number of
clauses satisfied in the MAX 2SAT instance by any assignment is 7m if and only if
the instance of 3SAT is satisfiable. This was used by [6] to prove the NP-hardness of
solving MAX 2SAT. We will revisit the 3SAT-to-2SAT reduction in Lemma 6.5.
Starting with the work of Karp [12], gadgets have played a fundamental role in

showing the hardness of optimization problems. They are the core of any reduction
between combinatorial problems, and they retain this role in the spate of new results
on the nonapproximability of optimization problems.
Despite their importance, the construction of gadgets has always been a “black

art” with no general methods of construction known. In fact, until recently no one
had even proposed a concrete definition of a gadget; Bellare, Goldreich, and Sudan [2]
finally did so, with a view to quantifying the role of gadgets in nonapproximability
results. Their definition is accompanied by a seemingly natural “cost” measure for a
gadget. The more costly the gadget, the weaker the reduction. However, first, finding
a gadget for a given reduction remained an ad hoc task. Second, it remained hard to
prove that a gadget’s cost was optimal.
This paper addresses these two issues. We show that for a large class of reductions,

the space of potential gadgets that need to be considered is actually finite. This is
not entirely trivial, and the proof depends on properties of the problem that is being
reduced to. However, the method is very general and encompasses a large number of
problems. An immediate consequence of the finiteness of the space is the existence of a
search procedure to find an optimal gadget. But a naive search would be impracticably
slow, and search-based proofs of the optimality (or the nonexistence) of a gadget would
be monstrously large.
Instead, we show how to express the search for a gadget as a linear program (LP)

whose constraints guarantee that the potential gadget is indeed valid, and whose
objective function is the cost of the gadget. Central to this step is the idea of work-
ing with weighted versions of optimization problems rather than unweighted ones.
(Weighted versions result in LPs, while unweighted versions would result in integer
programs (IPs).) This seemingly helps only in showing hardness of weighted opti-
mization problems, but a result due to Crescenzi, Silvestri, and Trevisan [3] shows
that for a large class of optimization problems (including all the ones considered in
this paper), the weighted versions are exactly as hard with respect to approximation
as the unweighted ones. Therefore, working with a weighted version is as good as
working with an unweighted one.
The LP representation has many benefits. First, we are able to search for much

more complicated gadgets than is feasible manually. Second, we can use the theory
of LP duality to present short(er) proofs of optimality of gadgets and nonexistence
of gadgets. Last, we can solve relaxed or constrained versions of the LP to obtain
upper and lower bounds on the cost of a gadget, which can be significantly quicker
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than solving the actual LP. Being careful in the relaxing/constraining process (and
with a bit of luck), we can often get the bounds to match, thereby producing optimal
gadgets with even greater efficiency!
Armed with this tool for finding gadgets (and an RS/6000, OSL, and often

APL21), we examine some of the known gadgets and construct many new ones. (In
what follows we often talk of “gadgets reducing problem X to problem Y” when we
mean “gadgets used to construct a reduction from problem X to problem Y.”) Bellare,
Goldreich, and Sudan [2] presented gadgets reducing the computation of a “verifier”
for a probabilistically checkable proof system (PCP) to several problems, including
MAX 3SAT, MAX 2SAT, and MAX CUT. We examine these in turn and show that
the gadgets in [2] for MAX 3SAT and MAX 2SAT are optimal, but their MAX CUT
gadget is not. We improve on the efficiency of the last, thereby improving on the factor
to which approximating MAX CUT can be shown to be NP-hard. We also construct
a new gadget for the MAX DICUT problem, thereby strengthening the known bound
on its hardness. Plugging our gadget into the reduction (specifically Lemma 4.15)
of [2] shows that approximating MAX CUT to within a factor of 60/61 is NP-hard,
as is approximating MAX DICUT to within a factor of 44/45.2 For both problems,
the hardness factor proved in [2] was 71/72. The PCP machinery of [2] has since
been improved by H̊astad [9]. Our gadgets and H̊astad’s result show that, for every
ε > 0, approximating MAX CUT to within a factor of 16/17 + ε is NP-hard, as is
approximating MAX DICUT to within a factor of 12/13+ ε. Using H̊astad’s result in
combination with the gadgets of [2] would have given a hardness factor of 18/19 + ε
for both problems for every ε > 0.
Obtaining better reductions between problems can also yield improved approxi-

mation algorithms (if the reduction goes the right way!). We illustrate this point by
constructing a gadget reducing MAX 3SAT to MAX 2SAT. Using this new reduction
in combination with a technique of Goemans and Williamson [7, 8] and the state-of-
the-art .931-approximation algorithm for MAX 2SAT due to Feige and Goemans [5]
(which improves upon the previous .878-approximation algorithm of [8]), we obtain a
.801-approximation algorithm for MAX 3SAT. The best result that could be obtained
previously, by combining the technique of [7, 8] and the bound of [5], was .7704. (The
best previously published result is a .769 approximation algorithm by Ono, Hirata,
and Asano [14].)
Finally, our reductions have implications for PCPs. Let PCPc,s[log, q] be the class

of languages that admit membership proofs that can be checked by a probabilistic
verifier that uses a logarithmic number of random bits, reads at most q bits of the
proof, accepts correct proofs of strings in the language with probability at least c,
and accepts purported proofs of strings not in the language with probability at most
s. We show the following: first, for any ε > 0, there exist constants c and s, c/s >
10/9 − ε, such that NP ⊆ PCPc,s[log, 2]; and second, for all c, s with c/s > 2.7214,
PCPc,s[log, 3] ⊆ P. The best bound for the former result obtainable from [2, 9] is
22/21− ε; the best previous bound for the latter was 4 [16].
All the gadgets we use are computer constructed. In the final section, we present

an example of a lower bound on the performance of a gadget. The bound is not

1Respectively, an IBM RiscSystem/6000 workstation, the IBM Optimization Subroutine Library,
which includes an LP package, and (not that we are partisan) IBM’s APL2 programming language.

2Approximation ratios in this paper for maximization problems are less than 1 and represent
the weight of the solution achievable by a polynomial-time algorithm divided by the weight of the
optimal solution. This matches the convention used in [18, 7, 8, 5] and is the reciprocal of the measure
used in [2].
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computer constructed and cannot be, by the nature of the problem. The bound still
relies on defining an LP that describes the optimal gadget and extracting the lower
bound from the LP’s dual.

Subsequent work. Subsequent to the original presentation of this work [17], the
approximability results presented in this paper have been superseded. Karloff and
Zwick [10] present a 7/8-approximation algorithm for MAX 3SAT. This result is tight
unless NP = P [9]. The containment result PCPc,s[log, 3] ⊆ P has also been improved
by Zwick [19] and shown to hold for any c/s ≥ 2. This result is also tight, again
by [9]. Finally, the gadget construction methods of this paper have found at least
two more applications. H̊astad [9] and Zwick [19] use gadgets constructed by these
techniques to show hardness results for two problems they consider: MAX 2LIN and
MAX NAE3SAT, respectively.

Version. An extended abstract of this paper appeared as [17]. This version cor-
rects some errors, pointed out by Karloff and Zwick [11], in the extended abstract.
This version also presents inapproximability results resting on the improved PCP
constructions of H̊astad [9], while mentioning the results that could be obtained oth-
erwise.

Organization of this paper. The next section introduces precise definitions which
formalize the preceding outline. Section 3 presents the finiteness proof and the LP-
based search strategy. Section 4 contains negative (nonapproximability) results and
the gadgets used to derive them. Section 5 briefly describes our computer system for
generating gadgets. Section 6 presents the positive result for approximating MAX
3SAT. Section 7 presents proofs of optimality of the gadgets for some problems and
lower bounds on the costs of others. It includes a mix of computer-generated and
hand-generated lower bounds.

2. Definitions. We begin with some definitions we will need before giving the
definition of a gadget from [2]. In what follows, for any positive integer n, let [n]
denote the set {1, . . . , n}.

Definition 2.1. A (k-ary) constraint function is a Boolean function f : {0, 1}k →
{0, 1}.
We refer to k as the arity of a k-ary constraint function f . When it is applied

to variables X1, . . . , Xk (see the following definitions), the function f is thought of as
imposing the constraint f(X1, . . . , Xk) = 1.

Definition 2.2. A constraint family F is a collection of constraint functions.
The arity of F is the maximum of the arity of the constraint functions in F .

Definition 2.3. A constraint C over a variable set X1, . . . , Xn is a pair C =
(f, (i1, . . . , ik)), where f : {0, 1}k → {0, 1} is a constraint function and i1, . . . , ik are
distinct members of [n]. The constraint C is said to be satisfied by an assignment

�a = a1, . . . , an to X1, . . . , Xn if C(a1, . . . , an)
def
= f(ai1 , . . . , aik) = 1. We say that

constraint C is from F if f ∈ F .
Constraint functions, constraint families, and constraints are of interest due to

their defining role in a variety of NP optimization problems.
Definition 2.4. For a finitely specified constraint family F , MAX F is the op-

timization problem given by
Input: An instance consisting of m constraints C1, . . . , Cm, on n Boolean variables
X1, . . . , Xn, with nonnegative real weights w1, . . . , wm. (An instance is thus a triple

( �X, �C, �w).)

Goal: Find an assignment �b to the variables �X which maximizes the weight∑m
j=1 wjCj(

�b) of satisfied constraints.



2078 L. TREVISAN, G. B. SORKIN, M. SUDAN, AND D. P. WILLIAMSON

Constraint functions and families and the class {MAX F | F} allow descriptions
of optimization problems and reductions in a uniform manner. For example, if F =
2SAT is the constraint family consisting of all constraint functions of arity at most
2 that can be expressed as the disjunction of up to 2 literals, then MAX 2SAT is
the corresponding MAX F problem. Similarly MAX 3SAT is the MAX F problem
defined using the constraint family F = 3SAT consisting of all constraint functions of
arity up to 3 that can be expressed as the disjunction of up to 3 literals.
One of the motivations for this work is to understand the “approximability”

of many central optimization problems that can be expressed as MAX F problems,
including MAX 2SAT and MAX 3SAT. For β ∈ [0, 1], an algorithm A is said to be
a β-approximation algorithm for the MAX F problem if on every instance ( �X, �C, �w)
of MAX F with n variables and m constraints, A outputs an assignment �a subject
to (s.t.)

∑m
j=1 wjCj(�a) ≥ βmax	b{

∑m
j=1 wjCj(

�b)}. We say that the problem MAX F
is β-approximable if there exists a polynomial time-bounded algorithm A that is a
β-approximation algorithm for MAX F . We say that MAX F is hard to approximate
to within a factor β (β-inapproximable) if the existence of a polynomial-time β-
approximation algorithm for MAX F implies NP = P.
Recent research has yielded a number of new approximability results for several

MAX F problems (see [7, 8]) and a number of new results yielding hardness of ap-
proximations (see [2, 9]). One of our goals is to construct efficient reductions between
MAX F problems that allow us to translate “approximability” and “inapproximabil-
ity” results. As we saw in the opening example, such reductions may be constructed by
constructing “gadgets” reducing one constraint family to another. More specifically,
the example shows how a reduction from 3SAT to 2SAT results from the availability,
for every constraint function f in the family 3SAT, of a gadget reducing f to the
family 2SAT. This notion of a gadget reducing a constraint function f to a constraint
family F is formalized in the following definition.

Definition 2.5 (gadget [2]). For α ∈ R+, a constraint function f : {0, 1}k →
{0, 1}, and a constraint family F , an α-gadget (or “gadget with performance α”)
reducing f to F is a set of variables Y1, . . . , Yn, a finite collection of real weights
wj ≥ 0, and associated constraints Cj from F over primary variables X1, . . . , Xk and
auxiliary variables Y1, . . . , Yn, with the property that, for Boolean assignments �a to
X1, . . . , Xk and �b to Y1, . . . , Yn, the following are satisfied:

(∀�a : f(�a) = 1) (∀�b) :
∑
j

wjCj(�a,�b) ≤ α,(2.1)

(∀�a : f(�a) = 1) (∃�b) :
∑
j

wjCj(�a,�b) = α,(2.2)

(∀�a : f(�a) = 0) (∀�b) :
∑
j

wjCj(�a,�b) ≤ α− 1.(2.3)

The gadget is strict if, in addition,

(∀�a : f(�a) = 0) (∃�b) :
∑
j

wjCj(�a,�b) = α− 1.(2.4)

We use the shorthand notation Γ = (�Y , �C, �w) to denote the gadget described above.
It is straightforward to verify that the introductory example yields a strict 7-

gadget reducing the constraint function f(X1, X2, X3) = X1∨X2∨X3 to the family
2SAT.
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Observe that an α-gadget Γ = (�Y , �C, �w) can be converted into an α′ > α gadget
by “rescaling,” i.e., multiplying every entry of the weight vector �w by α′/α (although
strictness is not preserved). This indicates that a “strong” gadget is one with a small α;
in the extreme, a 1-gadget would be the “optimal” gadget. This intuition will be
confirmed in the role played by gadgets in the construction of reductions. Before
describing this, we first list the constraints and constraint families that are of interest
to us.
For convenience we now give a comprehensive list of all the constraints and con-

straint families used in this paper.
Definition 2.6.
• Parity check (PC) is the constraint family {PC0,PC1}, where, for i ∈ {0, 1},
PCi is defined as follows:

PCi(a, b, c) =

{
1 if a⊕ b⊕ c = i,
0 otherwise.

Henceforth we will simply use terms such as MAX PC to denote the optimization
problem MAX F , where F = PC. MAX PC (referred to as MAX 3LIN in [9]) is the
source of all our inapproximability results.

• For any k ≥ 1, Exactly-k-SAT (EkSAT) is the constraint family {f : {0, 1}k →
{0, 1} : |{�a : f(�a) = 0}| = 1}, that is, the set of k-ary disjunctive constraints.

• For any k ≥ 1, kSAT is the constraint family
⋃
l∈[k] ElSAT.

• SAT is the constraint family
⋃
l≥1 ElSAT.

The problems MAX 3SAT, MAX 2SAT, and MAX SAT are by now classical opti-
mization problems. They were considered originally in [6]; subsequently their central
role in approximation was highlighted in [15]; and recently, novel approximation algo-
rithms were developed in [7, 8, 5]. The associated families are typically the targets of
gadget constructions in this paper. Shortly, we will describe a lemma which connects
the inapproximability of MAX F to the existence of gadgets reducing PC0 and PC1

to F . This method has so far yielded in several cases tight, and in other cases the
best-known, inapproximability results for MAX F problems.

In addition to 3SAT’s use as a target, its members are also used as sources; gadgets
reducing members of MAX 3SAT to MAX 2SAT help give an improved MAX 3SAT
approximation algorithm.

• 3-Conjunctive SAT (3ConjSAT) is the constraint family {f000, f100, f110, f111},
where
(1) f000(a, b, c) = a ∧ b ∧ c,
(2) f001(a, b, c) = a ∧ b ∧ ¬c,
(3) f011(a, b, c) = a ∧ ¬b ∧ ¬c,
(4) f111(a, b, c) = ¬a ∧ ¬b ∧ ¬c.

Members of 3ConjSAT are sources in gadgets reducing them to 2SAT. These gadgets
enable a better approximation algorithm for the MAX 3ConjSAT problem, which in
turn sheds light on the class PCPc,s[log, 3].

• CUT: {0, 1}2 → {0, 1} is the constraint function given by CUT(a, b) = a⊕ b.
CUT/0 is the family of constraints {CUT,T}, where T(a) = 0 ⊕ a = a.
CUT/1 is the family of constraints {CUT,F}, where F(a) = 1⊕ a = ¬a.

MAX CUT is again a classical optimization problem. It has attracted attention due
to the recent result of Goemans and Williamson [8] providing a 0.878 approximation
algorithm. An observation from Bellare, Goldreich, and Sudan [2] shows that the ap-
proximabilities of MAX CUT/0, MAX CUT/1, and MAX CUT are all identical; this
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is also formalized in Proposition 4.1 below. Hence MAX CUT/0 becomes the target
of gadget constructions in this paper, allowing us to get inapproximability results for
these three problems.

• DICUT: {0, 1}2 → {0, 1} is the constraint function given by DICUT(a, b) =
¬a ∧ b.

MAX DICUT is another optimization problem to which the algorithmic results of [8, 5]
apply. Gadgets whose target is DICUT will enable us to get inapproximability results
for MAX DICUT.

• 2CSP is the constraint family consisting of all 16 binary functions, i.e., 2CSP =
{f : {0, 1}2 → {0, 1}}.

MAX 2CSP was considered in [5], which gives a 0.859 approximation algorithm; here
we provide inapproximability results.

• Respect of monomial basis check (RMBC) is the constraint family {RMBCij |
i, j ∈ {0, 1}}, where

RMBCij(a, b, c, d) =



1 if a = 0 and b = c⊕ i,
1 if a = 1 and b = d⊕ j,
0 otherwise.

RMBC00 may be thought of as the test (c, d)[a]
?
= b, RMBC01 as the test

(c,¬d)[a] ?
= b, RMBC10 as the test (¬c, d)[a] ?

= b, and RMBC11 as the test

(¬c,¬d)[a] ?
= b, where the notation (v1, . . . , vn)[i] refers to the (i+ 1)’st coor-

dinate of the vector (v1, . . . , vn).

Our original interest in RMBC came from the work of Bellare, Goldreich, and Su-
dan [2], which derived hardness results for MAX F using gadgets reducing every con-
straint function in PC and RMBC to F . This work has been effectively superseded
by H̊astad’s [9], which only requires gadgets reducing members of PC to F . How-
ever we retain some of the discussion regarding gadgets with RMBC functions as a
source, since these constructions were significantly more challenging, and some of the
techniques applied to overcome the challenges may be applicable in other gadget con-
structions. A summary of all the gadgets we found, with their performances and lower
bounds, is given in Table 2.1.

We now put forth a theorem, essentially from [2] (and obtainable as a general-
ization of its Lemmas 4.7 and 4.15), that relates the existence of gadgets with F as
target to the hardness of approximating MAX F . Since we will not be using this
theorem except as a motivation for studying the family RMBC, we do not prove it
here.

Theorem 2.7. For any family F , if there exists an α1-gadget reducing every
function in PC to F and an α2-gadget reducing every function in RMBC to F , then
for any ε > 0, MAX F is hard to approximate to within 1− .15

.6α1+.4α2
+ ε.

In this paper we will use the following, stronger, result by H̊astad.

Theorem 2.8 (see [9]). For any family F , if there exists an α0-gadget reducing
PC0 to F and an α1-gadget reducing PC1 to F , then for any ε > 0, MAX F is hard
to approximate to within 1− 1

α0+α1
+ ε.

Thus, using CUT/0, DICUT, 2CSP, EkSAT, and kSAT as the target of gad-
get constructions from PC0 and PC1, we can show the hardness of MAX CUT,
MAX DICUT, MAX 2CSP, MAX EkSAT, and MAX kSAT, respectively. Further-
more, minimizing the value of α in the gadgets gives better hardness results.
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Table 2.1
All gadgets described are provably optimal and strict. The sole exception (†) is the best possible

strict gadget; there is a nonstrict 3-gadget. All “previous” results quoted are interpretations of the
results in [2], except the gadget reducing 3SAT to 2SAT, which is due to [6], and the gadget reducing
PC to 3SAT, which is folklore.

Source f −→ target F Previous α Our α Lower bound

3SAT −→ 2SAT 7 3.5 3.5
3ConjSAT −→ 2SAT(†) 4 4

PC −→ 3SAT 4 4
PC −→ 2SAT 11 11
PC −→ 2CSP 11 5 5

PC0 −→ CUT/0 10 8 8
PC0 −→ DICUT 6.5 6.5
PC1 −→ CUT/0 9 9
PC1 −→ DICUT 6.5 6.5

RMBC −→ 2CSP 11 5 5
RMBC −→ 3SAT 4 4
RMBC −→ 2SAT 11 11

RMBC00 −→ CUT/0 11 8 8
RMBC00 −→ DICUT 6 6
RMBC01 −→ CUT/0 12 8 8
RMBC01 −→ DICUT 6.5 6.5
RMBC10 −→ CUT/0 12 9 9
RMBC10 −→ DICUT 6.5 6.5
RMBC11 −→ CUT/0 12 9 9
RMBC11 −→ DICUT 7 7

3. The basic procedure. The key aspect of making the gadget search spaces
finite is to limit the number of auxiliary variables by showing that duplicates (in a
sense to be clarified) can be eliminated by means of proper substitutions. In general,
this is possible if the target of the reduction is a “hereditary” family as defined below.

Definition 3.1. A constraint family F is hereditary if for any f ∈ F of arity
k and any two indices i, j ∈ [k], the function f when restricted to Xi ≡ Xj and
considered as a function of k−1 variables is identical (up to the order of the arguments)
to some other function f ′ ∈ F∪{0, 1} (where 0 and 1 denote the constant functions).

Definition 3.2. A family F is complementation closed if it is hereditary and,
for any f ∈ F of arity k and any index i ∈ [k], the function f ′ given by f ′(X1, . . . , Xk)
= f(X1, . . . , Xi−1,¬Xi, Xi+1, . . . , Xk) is contained in F .

Definition 3.3 (partial gadget). For α ∈ R+, S ⊆ {0, 1}k, a constraint function
f : {0, 1}k → {0, 1}, and a constraint family F , an S-partial α-gadget (or “S-partial
gadget with performance α”) reducing f to F is a finite collection of constraints
C1, . . . , Cm from F over primary variables X1, . . . , Xk and finitely many auxiliary
variables Y1, . . . , Yn, and a collection of nonnegative real weights w1, . . . , wm, with
the property that, for Boolean assignments �a to X1, . . . , Xk and �b to Y1, . . . , Yn, the
following are satisfied:

(∀�a ∈ {0, 1}k : f(�a) = 1) (∀�b ∈ {0, 1}n) :
m∑
j=1

wjCj(�a,�b) ≤ α,(3.1)

(∀�a ∈ S : f(�a) = 1) (∃�b ∈ {0, 1}n) :
m∑
j=1

wjCj(�a,�b) = α,(3.2)
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(∀�a ∈ {0, 1}k : f(�a) = 0) (∀�b ∈ {0, 1}n) :
m∑
j=1

wjCj(�a,�b) ≤ α− 1,(3.3)

(∀�a ∈ S : f(�a) = 0) (∃�b ∈ {0, 1}n) :
m∑
j=1

wjCj(�a,�b) = α− 1.(3.4)

We use the shorthand notation Γ = (�Y , �C, �w) to denote the partial gadget.
The following proposition follows immediately from the definitions of a gadget

and a partial gadget.
Proposition 3.4. For a constraint function f : {0, 1}k → {0, 1}, let S1 = {�a ∈

{0, 1}k : f(�a) = 1} and let S2 = {0, 1}k. Then for every α ∈ R+ and constraint family
F ,

(1) an S1-partial α-gadget reducing f to F is an α-gadget reducing f to F ;
(2) an S2-partial α-gadget reducing f to F is a strict α-gadget reducing f to F .

Definition 3.5. For α ≥ 1 and S ⊆ {0, 1}k, let Γ = (�Y , �C, �w) be an S-partial
α-gadget reducing a constraint f : {0, 1}k → {0, 1} to a constraint family F . We say
that the function b : S → {0, 1}n is a witness for the partial gadget, witnessing the set
S, if b(�a) satisfies equations (3.2) and (3.4). Specifically,

(∀�a ∈ S : f(�a) = 1) :

m∑
j=1

wjCj(�a, b(�a)) = α and

(∀�a ∈ S : f(�a) = 0) :

m∑
j=1

wjCj(�a, b(�a)) = α− 1.

The witness function can also be represented as an |S| × (k + n) matrix Wb whose
rows are the vectors (�a, b(�a)). Notice that the columns of the matrix correspond to the
variables of the gadget, with the first k columns corresponding to primary variables,
and the last n corresponding to auxiliary variables. In what follows we shall often
prefer the matrix notation.

Definition 3.6. For a set S ⊆ {0, 1}k, let MS be the matrix whose rows are
the vectors �a ∈ S, let k′S be the number of distinct columns in MS , and let k′′S be
the number of columns in MS distinct up to complementation. Given a constraint f
of arity k and a hereditary constraint family F that is not complementation closed,
an (S, f,F)-canonical witness matrix (for an S-partial gadget reducing f to F) is
the |S| × (2|S| + k − k′S) matrix W whose first k columns correspond to the k pri-
mary variables and whose remaining columns are all possible column vectors that
are distinct from one another and from the columns corresponding to the primary
variables. If F is complementation closed, then a canonical witness matrix is the
|S| × (2|S|−1 + k − k′′S) matrix W whose first k columns correspond to the k primary
variables and whose remaining columns are all possible column vectors that are dis-
tinct up to complementation from one another and from the columns corresponding
to the primary variables.
The following lemma is the crux of this paper and establishes that the optimal

gadget reducing a constraint function f to a hereditary family F is finite. To motivate
the lemma, we first present an example, due to Karloff and Zwick [11], showing that
this need not hold if the family F is not hereditary. Their counterexample has f(a) = a
and F = {PC1}. Using k auxiliary variables, Y1, . . . , Yk, one may construct a gadget
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for the constraint X using the constraints X ⊕ Yi ⊕ Yj , 1 ≤ i < j ≤ k, with each
constraint having the same weight. For an appropriate choice of this weight it may be
verified that this yields a (2− 2/k)-gadget for even k; thus the performance tends to
2 in the limit. On the other hand it can be shown that any gadget with k auxiliary
variables has performance at most 2− 21−k; thus no finite gadget achieves the limit.
It is clear that for this example the lack of hereditariness is critical: any hereditary
family containing PC1 would also contain f, providing a trivial 1-gadget.

To see why the hereditary property helps in general, consider an α-gadget Γ
reducing f to F , and let W be a witness matrix for Γ. Suppose two columns of W,
corresponding to auxiliary variables Y1 and Y2 of Γ, are identical. Then we claim that
Γ does not really need the variable Y2. In every constraint containing Y2, replace it
with Y1 to yield a new collection of weighted constraints. By the hereditary property
of F , all the resulting constraints are from F . And, the resulting instance satisfies
all the properties of an α-gadget. (The universal properties follow trivially, while
the existential properties follow from the fact that in the witness matrix Y1 and Y2

have the same assignment.) Thus this collection of constraints forms a gadget with
fewer variables and performance at least as good. The finiteness follows from the fact
that a witness matrix with distinct columns has a bounded number of columns. The
following lemma formalizes this argument. In addition it also describes the canonical
witness matrix for an optimal gadget—something that will be of use later.

Lemma 3.7. For α ≥ 1, set S ⊂ {0, 1}k, constraint f : {0, 1}k → {0, 1}, and
hereditary constraint family F , if there exists an S-partial α-gadget Γ reducing f to F
with witness matrix W, then for any (S, f,F)-canonical witness matrix W ′ and some
α′ ≤ α, there exists an α′-gadget Γ′ reducing f to F with W ′ as a witness matrix.

Proof. We first consider the case where F is not complementation closed. Let
Γ = (�Y , �C, �w) be an S-partial α-gadget reducing f to F and let W be a witness
matrix for Γ. We create a gadget Γ′ with n′ = 2|S|−k′ auxiliary variables Y ′

1 , . . . , Y
′
n′ ,

one associated with each column of the matrix W ′ other than the first k.

With each variable Yi of Γ we associate a variable Z such that the column corre-
sponding to Yi in W is the same as the column corresponding to Z in W ′. Notice that
Z may be one of the primary variables X1, . . . , Xk or one of the auxiliary variables
Y ′

1 , . . . , Y
′
n′ . By definition of a canonical witness, such a column and hence variable Z

does exist.

Now for every constraint Cj on variables Yi1 , . . . , Yik in Γ with weight wj , we
introduce the constraint Cj on variables Y

′
i′1
, . . . , Y ′

i′
k
in Γ′ with weight wj where Y

′
i′
l

is the variable associated with Yil . Notice that in this process the variables involved
with a constraint do not necessarily remain distinct. This is where the hereditary
property of F is used to ensure that a constraint Cj ∈ F , when applied to a tuple of
nondistinct variables, remains a constraint in F . In the process we may arrive at some
constraints which are either always satisfied or never satisfied. For the time being, we
assume that the constraints 0 and 1 are contained in F , so this occurrence does not
cause a problem. Later we show how this assumption is removed.

This completes the description of Γ′. To verify that Γ′ is indeed an S-partial α-
gadget, we notice that the universal constraints (conditions (3.1) and (3.3) in Defini-
tion 3.3) are trivially satisfied, since Γ′ is obtained from Γ by renaming some variables
and possibly identifying some others. To see that the existential constraints (condi-
tions (3.2) and (3.4) in Definition 3.3) are satisfied, notice that the assignments to the

variables �Y that witness these conditions in Γ are allowable assignments to the corre-
sponding variables in �Y ′ and in fact this is what dictated our association of variables
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in �Y to the variables in �Y ′. Thus Γ′ is indeed an S-partial α-gadget reducing f to F ,
and, by construction, has W ′ as a witness matrix.
Last, we remove the assumption that Γ′ must include constraints 0 and 1. Any

constraints 0 can be safely thrown out of the gadget without changing any of the
parameters, since such constraints are never satisfied. On the other hand, constraints 1
do affect α. If we throw away a 1 constraint of weight wj , this reduces the total weight
of satisfied clauses in every assignment by wj . Throwing away all such constraints
reduces α by the total weight of the 1 constraints, producing a gadget of (improved)
performance α′ ≤ α.
Finally, we describe the modifications required to handle the case where F is

complementation closed (in which case the definition of a canonical witness changes).
Here, for each variable Yi and its associated column of W, either there is an equal
column in W ′, in which case we replace Yi with the column’s associated variable
Y ′
i′ , or there is a complementary column in W ′, in which case we replace Yi with
the negation of the column’s associated variable, ¬Y ′

i′ , The rest of the construction
proceeds as above, and the proof of correctness is the same.
It is an immediate consequence of Lemma 3.7 that an optimum gadget reducing a

constraint function to a hereditary family does not need to use more than an explicitly
bounded number of auxiliary variables.

Corollary 3.8. Let f be a constraint function of arity k with s satisfying
assignments. Let F be a constraint family and α ≥ 1 be such that there exists an
α-gadget reducing f to F .

(1) If F is hereditary, then there exists an α′-gadget with at most 2s−k′ auxiliary
variables reducing f to F , where α′ ≤ α and k′ is the number of distinct
variables among the satisfying assignments of f .

(2) If F is complementation closed, then there exists an α′-gadget with at most
2s−1 − k′′ auxiliary variables reducing f to F for some α′ ≤ α, where k′′ is
the number of distinct variables, up to complementation, among the satisfying
assignments of f .

Corollary 3.9. Let f be a constraint function of arity k. Let F be a constraint
family and α ≥ 1 be such that there exists a strict α-gadget reducing f to F .

(1) If F is hereditary, then there exists a strict α′-gadget with at most 22
k − k

auxiliary variables reducing f to F for some α′ ≤ α.
(2) If F is complementation closed, then there exists a strict α′-gadget with at

most 22
k−1 − k auxiliary variables reducing f to F for some α′ ≤ α.

We will now show how to cast the search for an optimum gadget as an LP.
Definition 3.10. For a constraint function f of arity k, constraint family F ,

and s× (k + n) witness matrix M, LP(f,F ,M) is an LP defined as follows:
• Let C1, . . . , Cm be all the possible distinct constraints that arise from applying

a constraint function from F to a set of n + k Boolean variables. Thus for
every j, Cj : {0, 1}k+n → {0, 1}. The LP variables are w1, . . . , wm, where wj
corresponds to the weight of the constraint Cj. Additionally the LP has one
more variable α.

• Let S ⊆ {0, 1}k and b : S → {0, 1}n be such that M = Wb (i.e., M is the
witness matrix corresponding to the witness function b for the set S). The
LP inequalities correspond to the definition of an S-partial gadget:

(∀�a ∈ {0, 1}k : f(�a) = 1) (∀�b ∈ {0, 1}n) :
m∑
j=1

wjCj(�a,�b) ≤ α,(3.5)
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(∀�a ∈ S : f(�a) = 1) :

m∑
j=1

wjCj(�a, b(�a)) = α,(3.6)

(∀�a ∈ {0, 1}k : f(�a) = 0) (∀�b ∈ {0, 1}n) :
m∑
j=1

wjCj(�a,�b) ≤ α− 1,(3.7)

(∀�a ∈ S : f(�a) = 0) :

m∑
j=1

wjCj(�a, b(�a)) = α− 1.(3.8)

Finally the LP has the inequalities wj ≥ 0.
• The objective of the LP is to minimize α.

Proposition 3.11. For any constraint function f of arity k, constraint family
F , and s × (k + n) witness matrix M witnessing the set S ⊆ {0, 1}k, if there exists
an S-partial gadget reducing f to F with witness matrix M, then LP(f,F ,M) finds
such a gadget with the minimum possible α.

Proof. The LP-generated gadget consists of k primary variables X1, . . . , Xk cor-
responding to the first k columns ofM ; n auxiliary variables Y1, . . . , Yn corresponding
to the remaining n columns ofM ; constraints C1, . . . , Cm as defined in Definition 3.10;
and weights w1, . . . , wm as returned by LP(f,F ,M). By construction the LP solution
returns the minimum possible α for which an S-partial α-gadget reducing f to F with
witness M exists.

Theorem 3.12 (main). Let f be a constraint function of arity k with s satisfying
assignments. Let k′ be the number of distinct variables of f and k′′ be the number of
distinct variables up to complementation. Let F be a hereditary constraint family with
functions of arity at most l. Then

• if there exists an α-gadget reducing f to F , then there exists such a gadget with
at most v auxiliary variables, where v = 2s−1 − k′′ if F is complementation
closed and v = 2s − k′ otherwise;

• if there exists a strict α-gadget reducing f to F , then there exists such a

gadget with at most v auxiliary variables, where v = 22
k−1 − k′′ if F is

complementation closed and v = 22
k − k′ otherwise.

Furthermore such a gadget with smallest performance can be found by solving an LP
with at most |F| × (v + k)l variables and 2v+k constraints.

Remark 3.12. The sizes given above are upper bounds. In specific instances, the
sizes may be much smaller. In particular, if the constraints of F exhibit symmetries,
or are not all of the same arity, then the number of variables of the LP will be much
smaller.

Proof. By Proposition 3.11 and Lemma 3.7, we have that LP(f,F ,WS) yields
an optimal S-partial gadget if one exists. By Proposition 3.4 the setting S = S1 =
{�a|f(�a) = 1} gives a gadget, and the setting S = S2 = {0, 1}k gives a strict gadget.
Corollaries 3.8 and 3.9 give the required bound on the number of auxiliary variables;
and the size of the LP then follows from the definition.
To conclude this section, we mention some (obvious) facts that become relevant

when searching for large gadgets. First, if S′ ⊆ S, then the performance of an S′-
partial gadget reducing f to F is also a lower bound on the performance of an S-partial
gadget reducing f to F . The advantage here is that the search for an S′-partial gadget
may be much faster. Similarly, to get upper bounds on the performance of an S-partial
gadget, one may use other witness matrices for S (rather than the canonical one), in
particular ones with (many) fewer columns. This corresponds to making a choice of
auxiliary variables not to be used in such a gadget.
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4. Improved negative results.

4.1. MAX CUT. We begin by showing an improved hardness result for the
MAX CUT problem. It is not difficult to see that no gadget per Definition 2.5 can
reduce any member of PC to CUT: for any setting of the variables which satisfies
(2.2), the complementary setting has the opposite parity (so that it must be subject
to inequality (2.3)), but the values of all the CUT constraints are unchanged, so that
the gadget’s value is still α, violating (2.3). Following [2], we use instead the fact that
MAX CUT and MAX CUT/0 are equivalent with respect to approximation as shown
below.

Proposition 4.1. MAX CUT is equivalent to MAX CUT/0. Specifically, given
an instance I of either problem, we can create an instance I ′ of the other with the
same optimum and with the feature that an assignment satisfying constraints of total
weight W to the latter can be transformed into an assignment satisfying constraints
of the same total weight in I.

Proof. The reduction from MAX CUT to MAX CUT/0 is trivial, since the family
CUT/0 contains CUT, and thus the identity map provides the required reduction.

In the reverse direction, given an instance ( �X, �C, �w) of MAX CUT/0 with n

variables and m clauses, we create an instance ( �X ′, �C ′, �w) of MAX CUT with n + 1

variables and m clauses. The variables are simply the variables �X with one additional
variable called 0. The constraints of �C are transformed as follows. If the constraint
is a CUT constraint on variables Xi and Xj it is retained as is. If the constraint is
T (Xi) it is replaced with the constraint CUT(Xi, 0). Given an assignment �a to the

vector �X ′, notice that its complement also satisfies the same number of constraints
in I ′. We pick the one among the two that sets the variable 0 to 0, and then observe
that the induced assignment to �X satisfies the corresponding clauses of I.
Thus we can look for reductions to CUT/0. Notice that the CUT/0 constraint

family is hereditary, since identifying the two variables in a CUT constraint yields the
constant function 0. Thus by Theorem 3.12, if there is an α-gadget reducing PC0 to
CUT/0, then there is an α-gadget with at most 13 auxiliary variables (16 variables in
all). Only

(
16
2

)
= 120 CUT constraints are possible on 16 variables. Since we only need

to consider the cases when Y1 = 0, we can construct an LP as above with 2
16−1+4 =

32,772 constraints to find the optimal α-gadget reducing PC0 to CUT/0. An LP of
the same size can similarly be constructed to find a gadget reducing PC1 to CUT/0.

Lemma 4.2. There exists an 8-gadget reducing PC0 to CUT/0, and it is optimal
and strict.

We show the resulting gadget in Figure 4.1 as a graph. The primary variables
are labeled x1, x2, and x3, while 0 is a special variable. The unlabeled vertices are
auxiliary variables. Each constraint of nonzero weight is shown as an edge. An edge
between the vertex 0 and some vertex x corresponds to the constraint T (x). Any other
edge between x and y represents the constraint CUT(x, y). Note that some of the 13
possible auxiliary variables do not appear in any positive weight constraint and thus
are omitted from the graph. All nonzero weight constraints have weight .5.

By the same methodology, we can prove the following.

Lemma 4.3. There exists a 9-gadget reducing PC1 to CUT/0, and it is optimal
and strict.

The gadget is similar to the previous one, but the old vertex 0 is renamed Z, and
a new vertex labeled 0 is joined to Z by an edge of weight 1.

The two lemmas along with Proposition 4.1 above imply the following theorem.
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0

x1

x2

x3

Fig. 4.1. 8-gadget reducing PC0 to CUT. Every edge has weight .5. The auxiliary variable
which is always 0 is labeled 0.

Theorem 4.4. For every ε > 0, MAX CUT is hard to approximate to within
16/17 + ε.

Proof. Combining Theorem 2.8 with Lemmas 4.2 and 4.3, we find that MAX
CUT/0 is hard to approximate to within 16/17 + ε. The theorem then follows from
Proposition 4.1.

RMBC gadgets. Finding RMBC gadgets was more difficult. We discuss this point
since it leads to ideas that can be applied in general when finding large gadgets. Indeed,
it turned out that we couldn’t exactly apply the technique above to find an optimal
gadget reducing, say, RMBC00 to CUT/0. (Recall that the RMBC00(a1, a2, a3, a4)

is the function (a3, a4)[a1]
?
= a2.) Since there are 8 satisfying assignments to the

4 variables of the RMBC00 constraint, by Theorem 3.12, we would need to con-
sider 28 − 4 = 252 auxiliary variables, leading to an LP with 2252 + 8 constraints,
which is somewhat beyond the capacity of current computing machines. To over-
come this difficulty, we observed that for the RMBC00 function, the value of a4 is
irrelevant when a1 = 0 and the value of a3 is irrelevant when a1 = 1. This led us
to try only restricted witness functions for which �b(0, a2, a3, 0) = �b(0, a2, a3, 1) and
�b(1, a2, 0, a4) = �b(1, a2, 1, a4) (dropping from the witness matrix columns violating
the above conditions), even though it is not evident a priori that a gadget with a wit-
ness function of this form exists. The number of distinct variable columns that such
a witness matrix can have is at most 16. Excluding auxiliary variables identical to a1

or a2, we considered gadgets with at most 14 auxiliary variables. We then created an
LP with

(
18
2

)
= 153 variables and 218−1 + 8 = 131,080 constraints. The result of the

LP was that there exists an 8-gadget with constant 0 reducing RMBC00 to CUT, and
that it is strict. Since we used a restricted witness function, the LP does not prove
that this gadget is optimal.
However, lower bounds can be established through construction of optimal S-

partial gadgets. If S is a subset of the set of satisfying assignments of RMBC00, then
its defining equalities and inequalities (see Definition 3.3) are a subset of those for a
gadget, and thus the performance of the partial gadget is a lower bound for that of a
true gadget.
In fact, we have always been lucky with the latter technique, in that some choice

of the set S has always yielded a lower bound and a matching gadget. In particular,
for reductions from RMBC to CUT, we have the following result.
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Fig. 4.2. 8-gadget reducing PC0 to DICUT. Edges have weight 1 except when marked otherwise.

Theorem 4.5. There is an 8-gadget reducing RMBC00 to CUT/0, and it is
optimal and strict; there is an 8-gadget reducing RMBC01 to CUT/0, and it is optimal
and strict; there is a 9-gadget reducing RMBC10 to CUT/0, and it is optimal and
strict; and there is a 9-gadget reducing RMBC11 to CUT/0, and it is optimal and
strict.

Proof. In each case, for some set S of satisfying assignments, an optimal S-
partial gadget also happens to be a true gadget, and strict. In the same notation as
in Definition 2.6, the appropriate sets S of 4-tuples (a, b, c, d) are, for RMBC00, S =
{0001, 1101, 0110, 1010}; for RMBC01, S = {0000, 1100, 0111, 1011}; for RMBC10,
S = {0100, 1000, 0011, 1111}; and for RMBC11, S = {0101, 1001, 0010, 1110}.

4.2. MAX DICUT. As in the previous subsection, we observe that if there
exists an α-gadget reducing an element of PC to DICUT, there exists an α-gadget
with 13 auxiliary variables. This leads to LPs with 16 · 15 variables (one for each
possible DICUT constraint, corresponding to a directed edge) and 216 + 4 = 65,540
linear constraints. The solution to the LPs gives the following.

Lemma 4.6. There exist 6.5-gadgets reducing PC0 and PC1 to DICUT, and they
are optimal and strict.
The PC0 gadget is shown in Figure 4.2. Again x1, x2, and x3 refer to the primary

variable and an edge from x to y represents the constraint ¬x∧b. The PC1 gadget is
similar but has all edges reversed.

Theorem 4.7. For every ε > 0, MAX DICUT is hard to approximate to within
12/13 + ε.
RMBC gadgets. As with the reductions to CUT/0, reductions from the RMBC

family members to DICUT can be done by constructing optimal S-partial gadgets,
and again (with fortuitous choices of S) these turn out to be true gadgets, and strict.

Theorem 4.8. There is a 6-gadget reducing RMBC00 to DICUT, and it is optimal
and strict; there is a 6.5-gadget reducing RMBC01 to DICUT, and it is optimal and
strict; there is a 6.5-gadget reducing RMBC10 to DICUT, and it is optimal and strict;
and there is a 7-gadget reducing RMBC11 to DICUT, and it is optimal and strict.

Proof. Using, case by case, the same sets S as in the proof of Theorem 4.5, again
yields in each case an optimal S-partial gadget that also happens to be a true, strict
gadget.
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4.3. MAX 2-CSP. For reducing an element of PC to the 2CSP family we need
consider only four auxiliary variables, for a total of seven variables. There are two
nonconstant functions on a single variable, and twelve nonconstant functions on pairs
of variables, so that there are 2 ·7+12 ·

(
7
2

)
= 266 functions to consider overall. We can

again set up an LP with a variable per function and 27 + 4 = 132 linear constraints.
We obtain the following lemma.

Lemma 4.9. There exist 5-gadgets reducing PC0 and PC1 to 2CSP, and they are
optimal and strict.
The gadget reducing PC0 to 2CSP is the following:

X1 ∧ ¬Y1, X1 ∧ Y2, ¬X1 ∧ Y3, ¬X1 ∧ Y4,
X2 ∧ ¬Y1, ¬X2 ∧ Y2, X2 ∧ Y3, ¬X2 ∧ Y4,
¬X3 ∧ Y1, X3 ∧ ¬Y2, X3 ∧ ¬Y3, ¬X3 ∧ ¬Y4.

The gadget reducing PC1 to 2CSP can be obtained from this one by complementing
all the occurrences of X1.

Theorem 4.10. For every ε > 0, MAX 2CSP is hard to approximate to within
9/10 + ε.
MAX 2CSP can be approximated to within .859 [5]. The above theorem has im-

plications for probabilistically checkable proofs. Reversing the well-known reduction
from constraint-satisfaction problems to probabilistically checkable proofs (see [1]),3

Theorem 4.10 yields the following theorem.
Theorem 4.11. For any ε > 0, constants c and s exist such that NP ⊆

PCPc,s[log, 2] and c/s > 10/9− ε.
The previously known gap between the completeness and soundness achievable

reading two bits was 74/73 [2]. It would be 22/21− ε using H̊astad’s result [9] in com-
bination with the argument of [2]. Actually the reduction from constraint-satisfaction
problems to probabilistically checkable proofs is reversible, and this will be important
in section 7.
RMBC gadgets.
Theorem 4.12. For each element of RMBC, there is a 5-gadget reducing it to

2CSP, and it is optimal and strict.
Proof. Using the same selected assignments as in Theorems 4.5 and 4.8 again

yields lower bounds and matching strict gadgets.

5. Interlude: Methodology. Despite their seeming variety, all the gadgets in
this paper were computed using a single program (in the language APL2) to generate
an LP and call upon OSL (the IBM Optimization Subroutine Library) to solve it.
This “gadget-generating” program takes several parameters.
The source function f is specified explicitly by a small program that computes f .
The target family F is described by a single function, implemented as a small

program, and applied to all possible clauses of specified lengths and symmetries. The
symmetries are chosen from among the following: whether clauses are unordered or
ordered; whether their variables may be complemented; and whether they may include
the constants 0 or 1. For example, a reduction to MAX CUT/0 would take as F the
function x1 ⊕x2, applied over unordered binomial clauses, in which complementation
is not allowed but the constant 0 is allowed. This means of describing F is relatively
intuitive and has never restricted us, even though it is not completely general. Finally,

3The reverse connection is by now a folklore result and may be proved along the lines of [2,
Proposition 10.3, Part (3)].
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we specify an arbitrary set S of selected assignments, which allows us to search for S-
partial gadgets (recall Definition 3.3). From (3.2) and (3.4), each selected assignment �a

generates a constraint that (∃�b) :
∑
j wjCj(�a,

�b) = α − (1 − f(�a)). Selecting all
satisfying assignments of f reproduces the set of constraints (2.2) for an α-gadget,
while selecting all assignments reproduces the set of constraints (2.2) and (2.4) for a
strict α-gadget.
Selected assignments are specified explicitly; by default, to produce an ordinary

gadget, they are the satisfying assignments of f . The canonical witness for the selected
set of assignments is generated by our program as governed by Definition 3.6. Notice
that the definition of the witness depends on whether F is complementation closed
or not, and this is determined by the explicitly specified symmetries.
To facilitate the generation of restricted witness matrices, we have also made use

of a “don’t-care” state (in lieu of 0 or 1) to reduce the number of selected assignments.
For example, in reductions from RMBC00, we have used selected assignments of (00 ∗
0), (011∗), (10∗0), and (11∗1). The various LP constraints must be satisfied for both
values of any don’t-care, while the witness function must not depend on the don’t-
care values. So in this example, use of a don’t-care reduces the number of selected
assignments from 8 to 4, reduces the number of auxiliary variables from about 28 to
24 (ignoring duplications of the 4 primary variables, or any symmetries), and reduces

the number of constraints in the LP from 22
8

(about 1077) to 22
4

(a more reasonable
65,536). Use of don’t-cares provides a technique complementary to selecting a subset
of all satisfying assignments in that if the LP is feasible it provides an upper bound
and a gadget, but the gadget may not be optimal.
In practice, selecting a subset of satisfying assignments has been by far the more

useful of the two techniques; so far we have always been able to choose a subset which
produces a lower bound and a gadget to match.
After constructing and solving an LP, the gadget-generating program uses brute

force to make an independent verification of the gadget’s validity, performance, and
strictness.
The hardest computations were those for gadgets reducing from RMBC; on an

IBM Risc System/6000 model 43P-240 workstation, running at 233MHz, these took
up to half an hour and used 500 MB or so of memory. However, the strength of [9]
makes PC virtually the sole source function of contemporary interest, and all the
reductions from PC are easy; they use very little memory, and run in seconds on an
ordinary 233MHz Pentium processor.

6. Improved positive results. In this section we show that we can use gadgets
to improve approximation algorithms. In particular, we look at MAX 3SAT, and
a variation, MAX 3ConjSAT, in which each clause is a conjunction (rather than a
disjunction) of three literals. An improved approximation algorithm for the latter
problem leads to improved results for probabilistically checkable proofs in which the
verifier examines only three bits. Both of the improved approximation algorithms rely
on strict gadgets reducing the problem to MAX 2SAT. We begin with some notation.

Definition 6.1. A (β1, β2) approximation algorithm for MAX 2SAT is an algo-
rithm which receives as input an instance with unary clauses of total weight m1 and
binary clauses of total weight m2, and two reals u1 ≤ m1 and u2 ≤ m2, and produces
reals s1 ≤ u1 and s2 ≤ u2 and an assignment satisfying clauses of total weight at
least β1s1 + β2s2. If there exists an optimum solution that satisfies unary clauses of
weight no more than u1 and binary clauses of weight no more than u2, then there is
a guarantee that no assignment satisfies clauses of total weight more than s1 + s2.
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That is, supplied with a pair of “upper bounds” u1, u2, a (β1, β2) approxima-
tion algorithm produces a single upper bound of s1 + s2, along with an assignment
respecting a lower bound of β1s1 + β2s2.

Lemma 6.2 (Feige and Goemans [5]).There exists a polynomial-time (.976, .931)-
approximation algorithm for MAX 2SAT.

6.1. MAX 3SAT. In this section we show how to derive an improved approxi-
mation algorithm for MAX 3SAT. By restricting techniques in [8] from MAX SAT to
MAX 3SAT and using a .931-approximation algorithm for MAX 2SAT due to Feige
and Goemans [5], one can obtain a .7704-approximation algorithm for MAX 3SAT.
The basic idea of [8] is to reduce each clause of length 3 to the three possible sub-
clauses of length 2, give each new length-2 clause one-third the original weight, and
then apply an approximation algorithm for MAX 2SAT. This approximation algo-
rithm is then “balanced” with another approximation algorithm for MAX 3SAT to
obtain the result. Here we show that by using a strict gadget to reduce 3SAT to
MAX 2SAT, a good (β1, β2)-approximation algorithm for MAX 2SAT leads to a .801-
approximation algorithm for MAX 3SAT.

Lemma 6.3. If for every f ∈ E3SAT there exists a strict α-gadget reducing f
to 2SAT, there exists a (β1, β2)-approximation algorithm for MAX 2SAT, and α ≥
1 + (β1−β2)

2(1−β2)
, then there exists a ρ-approximation algorithm for MAX 3SAT with

ρ =
1

2
+

(β1 − 1/2)(3/8)
(α− 1)(1− β2) + (β1 − β2) + (3/8)

.

Proof. Let φ be an instance of MAX 3SAT with length-1 clauses of total weight
m1, length-2 clauses of total weight m2, and length-3 clauses of total weight m3.
We use the two algorithms listed below, getting the corresponding upper and lower
bounds on the number of satisfiable clauses:

• Random: We set each variable to 1 with probability 1/2. This gives a solution
of weight at least m1/2 + 3m2/4 + 7m3/8.

• Semidefinite programming: We use the strict α-gadget to reduce every length-
3 clause to length-2 clauses. This gives an instance of MAX 2SAT. We apply
the (β1, β2)-approximation algorithm with parameters u1 = m1 and u2 =
m2+αm3 to find an approximate solution to this problem. The approximation
algorithm gives an upper bound s1 + s2 on the weight of any solution to
the MAX 2SAT instance and an assignment of weight β1s1 + β2s2. When
translated back to the MAX 3SAT instance, the assignment has weight at
least β1s1 + β2s2 − (α − 1)m3. Furthermore, s1 ≤ m1, s2 ≤ m2 + αm3,
and the maximum weight satisfiable in the MAX 3SAT instance is at most
s1 + s2 − (α− 1)m3.

The performance guarantee of the algorithm which takes the better of the two
solutions is at least

ρ1
def
= min

s1≤m1
s2≤m2+αm3

max{m1/2 + 3m2/4 + 7m3/8, β1s1 + β2s2 − (α− 1)m3}
s1 + s2 − (α− 1)m3

.

We now define a sequence of simplifications which will help prove the bound:

ρ2
def
= min

t1≤m1
t2≤m2+m3

1

t1 + t2
max{ m1/2 + 3m2/4 + 7m3/8,

β1t1 + β2t2 − (1− β2)(α− 1)m3},
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ρ3
def
= min

t1≤m1
t2≤m2+m3

1

t1 + t2
max{ t1/2 + 3t2/4 +m3/8,

t1/2 + 7m3/8,
β1t1 + β2t2 − (1− β2)(α− 1)m3},

ρ4
def
= min

t2≤t

1

t
max{ t/2 + t2/4 +m3/8,

t/2− t2/2 + 7m3/8,
β1t− (β1 − β2)t2 − (1− β2)(α− 1)m3},

ρ5
def
=
1

2
+

( 3
8 (β1 − 1

2 )

(1− β2)(α− 1) + (β1 − β2) +
3
8

)
.

To finish the proof of the lemma, we claim that

ρ1 ≥ ρ2 ≥ · · · ≥ ρ5.

To see this, notice that the first inequality follows from the substitution of variables
t1 = s1, t2 = s2 − (α− 1)m3. The second follows from the fact that setting m1 to t1
and m2 to max{0, t2 −m3} only reduces the numerator. The third inequality follows
from setting t = t1+ t2. The fourth is obtained by substituting a convex combination
of the arguments instead of max and then simplifying. The convex combination takes
a θ1 fraction of the first argument, θ2 of the second, and θ3 of the third, where

θ1 =
2
3 (1− β2)(α− 1) + 7

6 (β1 − β2)

(1− β2)(α− 1) + (β1 − β2) +
3
8

,

θ2 =
1
3 (1− β2)(α− 1)− 1

6 (β1 − β2)

(1− β2)(α− 1) + (β1 − β2) +
3
8

,

and

θ3 =
3
8

(1− β2)(α− 1) + (β1 − β2) +
3
8

.

Observe that θ1 + θ2 + θ3 = 1 and that the condition on α guarantees that θ2
≥ 0.

Remark 6.4. The analysis given in the proof of the above lemma is tight. In
particular for an instance with m clauses such that

m3
def
= m

β1 − 1/2
(1− β2)(α− 1) + (β1 − β2) + 3/8

,

m1
def
= m−m3, m2

def
= 0, s1 = m1, and s2 = αm3, it is easy to see that ρ1 = ρ5.

The following lemma gives the strict gadget reducing functions in E3SAT to
2SAT. Notice that finding strict gadgets is almost as forbidding as finding gadgets for
RMBC, since there are eight existential constraints in the specification of a gadget.
This time we relied instead on luck. We looked for an S-partial gadget for the set
S = {111, 100, 010, 001} and found an S-partial 3.5-gadget that turned out to be a
gadget! Our choice of S was made judiciously, but we could have afforded to run
through all

(
8
4

)
sets S of size 4 in the hope that one would work.
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Lemma 6.5. For every function f ∈ E3SAT, there exists a strict (and optimal)
3.5-gadget reducing f to 2SAT.

Proof. Since 2SAT is complementation closed, it is sufficient to present a 3.5-
gadget reducing (X1∨X2∨X3) to 2SAT. The gadget is X1 ∨ X3,¬X1 ∨ ¬X3, X1 ∨
¬Y,¬X1 ∨Y,X3 ∨¬Y,¬X3 ∨Y,X2 ∨Y, where every clause except the last has weight
1/2, and the last clause has weight 1.
Combining Lemmas 6.2, 6.3, and 6.5 we get a .801-approximation algorithm.
Theorem 6.6. MAX 3SAT has a polynomial-time .801-approximation algorithm.

6.2. MAX 3-ConjSAT. We now turn to the MAX 3ConjSAT problem. The
analysis is similar to that of Lemma 6.3.

Lemma 6.7. If for every f ∈ 3ConjSAT there exists a strict (α1 + α2)-gadget
reducing f to 2SAT composed of α1 length-1 clauses and α2 length-2 clauses and
there exists a (β1, β2) approximation algorithm for MAX 2SAT, then there exists a ρ
approximation algorithm for MAX 3ConjSAT with

ρ =
1
8β1

1
8 + (1− α1)(β1 − β2) + (1− β2)(α1 + α2 − 1)

provided α1 + α2 > 1 + 1/8(1− β2).
Proof. Let φ be an instance of MAX 3ConjSAT with constraints of total weight

m. As in the MAX 3SAT case, we use two algorithms and take the better of the two
solutions:

• Random: We set every variable to 1 with probability half. The total weight
of satisfied constraints is at least m/8.

• Semidefinite programming: We use the strict α-gadget to reduce any con-
straint to 2SAT clauses. This gives an instance of MAX 2SAT and we use the
(β1, β2)-approximation algorithm with parameters u1 = α1m and u2 = α2m.
The algorithm returns an upper bound s1 + s2 on the total weight of satis-
fiable constraints in the MAX 2SAT instance, and an assignment of measure
at least β1s1 + β2s2. When translated back to the MAX 3ConjSAT instance,
the measure of the assignment is at least β1s1 + β2s2 − (α1 + α2 − 1)m. Fur-
thermore, s1 ≤ α1m, s2 ≤ α2m, and the total weight of satisfiable constraints
in the MAX 3ConjSAT instance is at most s1 + s2 − (α1 + α2 − 1)m.

Thus we get that the performance ratio of the algorithm which takes the better
of the two solutions above is at least

ρ1
def
= min

s1≤α1m

s2≤α2m

max{m/8, β1s1 + β2s2 − (α1 + α2 − 1)m}
s1 + s2 − (α1 + α2 − 1)m

.

We now define a sequence of simplifications which will help prove the bound:

ρ2
def
= min

t1≤α1m

t2≤(1−α1)m

1

t1 + t2
max{m/8, β1t1 + β2t2 − (1− β2)(α1 + α2 − 1)m},

ρ3
def
= min

t≤m
t2≤(1−α1)m

1

t
max{m/8, β1t− (β1 − β2)t2 − (1− β2)(α1 + α2 − 1)m},

ρ4
def
= min

t≤m

1

t
max{m/8, β1t− ((1− α1)(β1 − β2) + (1− β2)(α1 + α2 − 1))m},
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ρ5
def
=

1
8β1

1
8 + (1− α1)(β1 − β2) + (1− β2)(α1 + α2 − 1)

.

In order to prove the lemma, we claim that

ρ1 ≥ ρ2 ≥ · · · ≥ ρ5.

To see this, observe that the first inequality follows from the substitution of variables
t1 = s1 and t2 = s2 − (α1 + α2 − 1)m. The second follows from setting t = t1 + t2.
The third inequality follows from the fact that setting t2 to (1 − α1)m only reduces
the numerator. The fourth is obtained by substituting a convex combination of the
arguments instead of max and then simplifying.
The following gadget was found by looking for an S-partial gadget for S =

{111, 110, 101, 011}.
Lemma 6.8. For any f ∈ 3ConjSAT there exists a strict (and optimal) 4-gadget

reducing f to 2SAT. The gadget is composed of one length-1 clause and three length-2
clauses.

Proof. Recall that 2SAT is complementation closed, and thus it is sufficient to
exhibit a gadget reducing f(a1, a2, a3) = a1 ∧ a2 ∧ a3 to 2SAT. Such a gadget is Y,
(¬Y ∨ X1), (¬Y ∨ X2), (¬Y ∨ X3), where all clauses have weight 1. The variables
X1, X2, X3 are primary variables and Y is an auxiliary variable.

Theorem 6.9. MAX 3ConjSAT has a polynomial-time .367-approximation algo-
rithm.
It is shown by Trevisan [16, Theorem 18] that the above theorem has consequences

for PCPc,s[log, 3]. This is because the computation of the verifier in such a proof
system can be described by a decision tree of depth 3 for every choice of random
string. Further, there is a 1-gadget reducing every function which can be computed
by a decision tree of depth k to kConjSAT.

Corollary 6.10. PCPc,s[log, 3] ⊆ P provided that c/s > 2.7214.
The previous best trade-off between completeness and soundness for polynomial-

time PCP classes was c/s > 4 [16].

7. Lower bounds for gadget constructions. In this section we shall show
that some of the gadget constructions mentioned in this paper and in [2] are optimal,
and we shall prove lower bounds for some other gadget constructions.
The following result is useful to prove lower bounds for the RMBC family.
Lemma 7.1. If there exists an α-gadget reducing an element of RMBC to a

complementation-closed constraint family F , then there exists an α-gadget reducing
all elements of PC to F .

Proof. If a family F is complementation closed, then an α-gadget reducing an
element of PC (respectively, RMBC) to F can be modified (using complementations)
to yield α-gadgets reducing all elements of PC (respectively RMBC) to F . For this
reason, we will restrict our analysis to PC0 and RMBC00 gadgets. Note that, for any
a1, a2, a3 ∈ {0, 1}3, PC0(a1, a2, a3) = 1 if and only if RMBC00(a1, a2, a3, a3) = 1. Let
Γ be an α-gadget over primary variables x1, . . . , x4 and auxiliary variables y1, . . . , yn
reducing RMBC to 2SAT. Let Γ′ be the gadget obtained from Γ by imposing x4 ≡ x3:
it is immediate to verify that Γ′ is an α-gadget reducing PC0 to F .

7.1. Reducing PC and RMBC to 2SAT.
Theorem 7.2. If Γ is an α-gadget reducing an element of PC to 2SAT, then

α ≥ 11.
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Proof. It suffices to consider PC0. We prove that the optimum of (LP1) is at
least 11. To this end, consider the dual program of (LP1). We have a variable y	a,	b
for any �a ∈ {0, 1}3 and any �b ∈ {0, 1}4, plus additional variables ŷ	a,	bopt(	a) for any

�a : PC(�a) = 1, where �bopt is the “optimal” witness function defined in section 3. The
formulation is

maximize
∑
	a,	b:PC(	a)=0 y	a,	b

subject to∑
	a,	b y	a,	b ≤ 1 +

∑
	a:PC(	a)=1 y	a,	bopt(	a),∑

	a,	b y	a,	bCj(�a,
�b) ≥

∑
	a:PC(	a)=1 ŷ	a,	bopt(	a)Cj(�a,

�bopt(�a)) ∀j ∈ [98],
y	a,	b ≥ 0 (∀�a ∈ {0, 1}3) (∀�b ∈ {0, 1}4),

ŷ	a,	bopt(	a) ≥ 0 (∀�a : PC(�a) = 1),

(DUAL1).
There exists a feasible solution for (DUAL1) whose cost is 11.
Corollary 7.3. If Γ is an α-gadget reducing an element of RMBC to 2SAT,

then α ≥ 11.

7.2. Reducing PC and RMBC to SAT.
Theorem 7.4. If Γ is an α-gadget reducing an element of PC to SAT, then

α ≥ 4.
Proof. As in the proof of Theorem 7.2 we give a feasible solution to the dual

to obtain the lower bound. The LP that finds the best gadget reducing PC0 to SAT
is similar to (LP1), the only difference being that a larger number N of clauses are

considered, namely, N =
∑7
i=1

(
7
i

)
2i. The dual program is then

maximize
∑
	a,	b:PC(	a)=0 y	a,	b

subject to∑
	a,	b y	a,	b ≤ 1 +

∑
	a:PC(	a)=1 y	a,	bopt(	a),∑

	a,	b y	a,	bCj(�a,
�b) ≥

∑
	a:PC(	a)=1 ŷ	a,	bopt(	a)Cj(�a,

�bopt(�a)) ∀j ∈ [N ],
y	a,	b ≥ 0 (∀�a ∈ {0, 1}3) (∀�b ∈ {0, 1}4),

ŷ	a,	bopt(	a) ≥ 0 (∀�a : PC(�a) = 1),

(DUAL2).
Consider now the following assignment of values to the variables of (DUAL2) (the

unspecified values have to be set to zero):

(∀�a : PC(�a) = 1) ŷ	a,	bopt(	a) =
3
4 ,

(∀�a : PC(�a) = 1)(∀�a′ : d(�a,�a′) = 1) y	a′,	bopt(	a) =
1
3 ,

where d is the Hamming distance between binary sequences. It is possible to show
that this is a feasible solution for (DUAL2) and it is immediate to verify that its cost
is 4.

Corollary 7.5. If Γ is an α-gadget reducing an element RMBC to SAT, then
α ≥ 4.

7.3. Reducing kSAT to lSAT. Let k and l be any integers k > l ≥ 3. The
standard reduction from EkSAT to lSAT can be seen as a �(k − 2)/(l − 2)�-gadget.
In this section we shall show that this is asymptotically the best possible. Note that
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since lSAT is complementation closed we can restrict ourselves to considering just one
constraint function of EkSAT, say f(a1, . . . , ak) ≡

∨
i ai.

Theorem 7.6. For any k > l > 2, if Γ is an α-gadget reducing f to lSAT, then
α ≥ k/l.

Proof. We can write an LP whose optimum gives the smallest α such that an
α-gadget exists reducing f to lSAT. Let b be the witness function used to formulate

this LP. We can assume that b is 22
k

-ary and we let K = 22
k

. Also let N be the total
number of constraints from lSAT that can be defined over k +K variables. Assume
some enumeration C1, . . . , CN of such constraints. The dual LP is

maximize
∑
	a,	b:PC(	a)=0 y	a,	b

subject to ∑
	a,	b y	a,	b ≤ 1 +

∑
	a:f(	a)=1 y	a,	bkSAT−lSAT (	a),

∀j ∈ [N ]
∑
	a,	b y	a,	bCj(�a,

�b) ≥
∑
	a:f(	a)=1 ŷ	a,	bkSAT−lSAT (	a)Cj(�a,

�bkSAT−lSAT (�a)),

∀�a ∈ {0, 1}k, ∀�b ∈ {0, 1}K y	a,	b ≥ 0,
∀�a : f(�a) = 1 ŷ	a,	bkSAT−lSAT (	a) ≥ 0

(DUAL3).

The witness function �bkSAT−lSAT is an “optimal” witness function for gadgets reduc-
ing kSAT to lSAT.
Let Ak ⊂ {0, 1}k be the set of binary k-ary strings with exactly one nonzero

component (note that |Ak| = k). Also let �0 (respectively, �1) be the k-ary string all of
whose components are equal to 0 (respectively, 1). The following is a feasible solution
for (DUAL3) whose cost is k/l. We only specify nonzero values:

(∀�a ∈ Ak) ŷ	a,	bkSAT−lSAT (	a) = 1/l,

(∀�a ∈ Ak) y	0,	bkSAT−lSAT (	a) = 1/l,

(∀�a ∈ Ak) y	1,	bkSAT−lSAT (	a) = 1/k .

In view of the above lower bound, a gadget cannot provide an approximation-
preserving reduction from MAX SAT to MAX kSAT. More generally, there can-
not be an approximation-preserving gadget reduction from MAX SAT to, say, MAX
(log n)SAT. In partial contrast with this lower bound, Khanna et al. [13] have given
an approximation-preserving reduction from MAX SAT to MAX 3SAT and Crescenzi
and Trevisan [4] have provided a tight reduction between MAX SAT and MAX
(log n)SAT, showing that the two problems have the same approximation threshold.
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